JPWO2015190440A1 - Battery panel - Google Patents

Battery panel Download PDF

Info

Publication number
JPWO2015190440A1
JPWO2015190440A1 JP2016527797A JP2016527797A JPWO2015190440A1 JP WO2015190440 A1 JPWO2015190440 A1 JP WO2015190440A1 JP 2016527797 A JP2016527797 A JP 2016527797A JP 2016527797 A JP2016527797 A JP 2016527797A JP WO2015190440 A1 JPWO2015190440 A1 JP WO2015190440A1
Authority
JP
Japan
Prior art keywords
battery
assembled
air flow
batteries
flow resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016527797A
Other languages
Japanese (ja)
Other versions
JP6572889B2 (en
Inventor
光雅 中野
光雅 中野
三代 祐一朗
祐一朗 三代
連 新東
連 新東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corporation
Showa Denko Materials Co Ltd
Original Assignee
Resonac Corporation
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resonac Corporation, Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Resonac Corporation
Publication of JPWO2015190440A1 publication Critical patent/JPWO2015190440A1/en
Application granted granted Critical
Publication of JP6572889B2 publication Critical patent/JP6572889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • H01M10/652Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations characterised by gradients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

誘引送風装置により蓄電池盤内を循環する空気流の上流・下流のどちらに位置するかに拘わらず、各蓄電池をなるべく均等に冷却することのできる蓄電池盤を提供する。蓄電池盤1は上側組電池グループGuに含まれる組電池3aと下側組電池グループGlに含まれる組電池3bとを有する。筐体5の天板部に設けられた誘引送風装置7は筐体5の上部の空気を外部に排出し、筐体5の底板部から外部の空気を取り入れるので、組電池3aは組電池3bからの吸熱を経た高い温度の空気が供給される一方、空気流抵抗調整部材13aが空気流抵抗をより小さくするため冷却効率が高く、逆に組電池3bはより低い温度の空気で冷却されるが、空気流抵抗調整部材13bの調整する空気流抵抗がより大きいため冷却効率がより低い。これにより蓄電池盤1内の位置に拘わらず、各組電池3a,3bの温度を均等に近くすることができる。Provided is a storage battery panel capable of cooling each storage battery as evenly as possible regardless of whether it is positioned upstream or downstream of the air flow circulating in the storage battery panel by an induced air blower. The storage battery panel 1 includes an assembled battery 3a included in the upper assembled battery group Gu and an assembled battery 3b included in the lower assembled battery group Gl. The induction blower 7 provided on the top plate portion of the housing 5 discharges the air at the top of the housing 5 to the outside and takes in the outside air from the bottom plate portion of the housing 5. On the other hand, the air flow resistance adjusting member 13a reduces the air flow resistance so that the cooling efficiency is high while the assembled battery 3b is cooled by the lower temperature air. However, since the air flow resistance adjusted by the air flow resistance adjusting member 13b is larger, the cooling efficiency is lower. Thereby, irrespective of the position in the storage battery board 1, the temperature of each assembled battery 3a, 3b can be made close equally.

Description

本発明は、電気的に接続されて並設された複数本の円筒状蓄電池の両端を一対のセル・ホルダでそれぞれ保持してなる組電池を備えた蓄電池盤に関するものである。   The present invention relates to a storage battery board including an assembled battery in which both ends of a plurality of cylindrical storage batteries that are electrically connected and arranged in parallel are held by a pair of cell holders.

円筒状蓄電池は、所望の電圧や容量を得るために、複数本の蓄電池を組み合わせて組電池を構成し、さらに、1以上の組電池を組み合わせたものを筐体に収納して蓄電池盤を構成して使用するのが一般的である。特に、リチウムイオン二次電池を用いた蓄電池盤には、リチウムイオン二次電池の発熱対策として、蓄電池盤の筐体内に外部の空気を取り入れて、内部の空気を外部に吐き出す冷却ファンが備えられており、さらに空気の流れを調整して冷却効率を向上させるために、空気流のガイドないしは空気流抵抗として作用する断面形状菱形の部材が蓄電池相互の間の空間に配置されている[特許第3988324号公報の図17(特許文献1)]。   In order to obtain a desired voltage and capacity, a cylindrical storage battery constitutes an assembled battery by combining a plurality of storage batteries, and further, a combination of one or more assembled batteries is housed in a housing to constitute a storage battery panel. Is generally used. In particular, a storage battery panel using a lithium ion secondary battery is equipped with a cooling fan that takes external air into the housing of the storage battery panel and discharges the internal air to the outside as a countermeasure against heat generation of the lithium ion secondary battery. In addition, in order to further improve the cooling efficiency by adjusting the air flow, a diamond-shaped member having a cross-sectional shape acting as an air flow guide or air flow resistance is arranged in the space between the batteries [Patent No. 1] FIG. 17 (Patent Document 1) of Japanese Patent No. 3988324].

特許第3988324号公報Japanese Patent No. 3988324

蓄電池盤に冷却ファンを備えたとしても、蓄電池盤内の全ての蓄電池を均等に冷却することは困難である。最も典型的には、外部から取り入れられたばかりの空気と、排気直前の空気とを比較すると、蓄電池から発生する熱を既に吸っている後者の方がより高温になる。そのため空気吸入口の近くに位置する蓄電池よりも空気排出口の近くに位置する蓄電池の方が冷却されにくくなる。蓄電池盤に含まれる各蓄電池に大きな温度のバラツキが生じると、一部の蓄電池において十分に充電・放電が行われず蓄電池盤の性能が損なわれるほか、安全性にも影響を及ぼすことがある。   Even if the storage battery panel is provided with a cooling fan, it is difficult to uniformly cool all the storage batteries in the storage battery panel. Most typically, when the air just taken from the outside is compared with the air just before the exhaust, the latter, which has already sucked the heat generated from the storage battery, has a higher temperature. Therefore, the storage battery located near the air discharge port is less likely to be cooled than the storage battery located near the air inlet. When a large temperature variation occurs in each storage battery included in the storage battery panel, some of the storage batteries are not sufficiently charged and discharged, and the performance of the storage battery panel may be impaired, and safety may be affected.

本発明の目的は、蓄電池盤内を流れる空気流の上流・下流のどちらに位置するかに拘わらず、各組電池内の蓄電池の温度のバラツキを小さくすることができる蓄電池盤を提供することにある。   An object of the present invention is to provide a storage battery panel that can reduce the variation in the temperature of the storage battery in each assembled battery regardless of whether it is located upstream or downstream of the air flow flowing in the storage battery panel. is there.

本発明の蓄電池盤は、複数の組電池と、内部に複数の組電池を収納する筐体と、筐体の天板部に設けられて筐体内から空気を誘引して外部に吐き出す誘引送風装置とを備えている。各組電池は、複数本の円筒状蓄電池から複数の電池列が構成され、さらに複数の電池列から電池群が構成され、この電池群が一対のホルダ間に保持されて構成される。複数の電池列は、複数本の円筒状蓄電池が、該蓄電池の長手方向と直交する第1の方向に所定の間隔をあけて並べられて構成される。電池群は、複数の電池列が長手方向及び第1の方向と直交する第2の方向に所定の間隔をあけて配置されてなる。そして電池群が、長手方向の両側に対向するように配置された一対のホルダ間に保持されて各組電池を構成する。   The storage battery panel according to the present invention includes a plurality of assembled batteries, a housing that houses a plurality of assembled batteries therein, and an induction blower that is provided on the top plate portion of the housing and that draws air from inside the housing and discharges it to the outside. And. Each assembled battery includes a plurality of battery arrays formed of a plurality of cylindrical storage batteries, and further includes a battery group formed of a plurality of battery arrays, and this battery group is held between a pair of holders. The plurality of battery rows are configured by arranging a plurality of cylindrical storage batteries at a predetermined interval in a first direction orthogonal to the longitudinal direction of the storage batteries. The battery group is formed by arranging a plurality of battery rows at predetermined intervals in a longitudinal direction and a second direction orthogonal to the first direction. And a battery group is hold | maintained between a pair of holder arrange | positioned so as to oppose the both sides of a longitudinal direction, and each assembled battery is comprised.

2以上の組電池が筐体内に横方向に並べられて構成される複数の組電池グループが、誘引送風装置が駆動されているときに、全ての組電池内を空気が流れるように、筐体内に上下方向に分けて配置されている。そして組電池内には、誘引送風装置によって発生する空気流の抵抗を調整するために、少なくとも隣り合う2本以上の円筒状蓄電池によって囲まれた空間内に、空気流抵抗調整部材が配置されている。本発明では、上下方向に隣接する2つの組電池グループにおいて、上側に位置する組電池グループに含まれる複数の組電池内の冷却効率が、下側に位置する組電池グループに含まれる複数の組電池内の冷却効率よりも良くなるように、複数の組電池グループに含まれる複数の組電池内の空気流抵抗調整部材の形状が定められている。   A plurality of assembled battery groups configured by arranging two or more assembled batteries in a horizontal direction in the casing so that air flows through all the assembled batteries when the induction blower is driven. Are arranged separately in the vertical direction. In the assembled battery, an air flow resistance adjusting member is disposed in a space surrounded by at least two adjacent cylindrical storage batteries in order to adjust the resistance of the air flow generated by the induction blower. Yes. In the present invention, in two battery pack groups adjacent in the vertical direction, the cooling efficiency in the battery packs included in the battery pack group located on the upper side is the plurality of battery packs included in the battery pack group located on the lower side. The shape of the air flow resistance adjusting member in the plurality of assembled batteries included in the plurality of assembled battery groups is determined so as to be better than the cooling efficiency in the battery.

組電池内の冷却性能(または冷却効率)は、蓄電池の外表面に沿って流れる空気流の速度と風量の影響を受ける。そこで発明者は、空気流抵抗調整部材の横断面形状を変えることにより、組電池の冷却性能(冷却効率)を調整することにより、電池盤内の複数の蓄電池の温度のバラツキを小さくすることを考えた。空気流抵抗調整部材の横断面積が小さくなると、空気流抵抗調整部材が無い状態に近づき、空気流抵抗調整部材の横断面積が大きくなると、空気流抵抗調整部材と隣接する蓄電池との間の流路が狭くなり、その間を通る空気流の速度が速くなって冷却性能の向上を図ることが可能になる。しかしながらあまりこの流路が狭くなると、この流路を通る空気の量が少なくなって、冷却性能(冷却効率)を低下させる。そこで発明者は、電池盤内の複数の蓄電池の温度のバラツキを、この空気流抵抗調整部材を利用して抑制することを考えた。空気流抵抗調整部材として同じ横断面形状寸法を有する組電池が、左右及び上下方向に並べられた場合、上側に位置する組電池グループに含まれる組電池と下側に位置する組電池グループに含まれる組電池内の蓄電池の温度を比較すると、上側に位置する組電池グループに含まれる組電池内を流れる空気流の温度は、下側に位置する組電池グループに含まれる組電池内を流れる空気流の温度よりも高くなることが確認された。そこで本発明では、上側に位置する組電池グループに含まれる複数の組電池の冷却効率が、下側に位置する組電池グループに含まれる複数の組電池の冷却効率よりも良くなるように、複数の組電池グループに含まれる複数の組電池内の空気流抵抗調整部材の形状を定めているので、上側に位置する組電池グループに含まれる複数の組電池内を流れる空気流の温度が高くなっても、組電池内の蓄電池の冷却効率が高くなって、蓄電池の温度上方を抑制できる。その結果、上側に位置する組電池グループに含まれる複数の組電池内の蓄電池の温度と、下側に位置する組電池グループに含まれる複数の組電池内の蓄電池の温度のバラツキ幅を小さくすることができる。   The cooling performance (or cooling efficiency) in the assembled battery is affected by the speed of the air flow and the air volume flowing along the outer surface of the storage battery. Therefore, the inventor has reduced the temperature variation of the plurality of storage batteries in the battery panel by adjusting the cooling performance (cooling efficiency) of the assembled battery by changing the cross-sectional shape of the air flow resistance adjusting member. Thought. When the cross-sectional area of the air flow resistance adjusting member decreases, the air flow resistance adjusting member approaches the state where there is no air flow resistance adjusting member, and when the cross-sectional area of the air flow resistance adjusting member increases, the flow path between the air flow resistance adjusting member and the adjacent storage battery Becomes narrower, and the speed of the air flow passing between them becomes faster, so that the cooling performance can be improved. However, if this flow path becomes too narrow, the amount of air passing through this flow path will decrease and cooling performance (cooling efficiency) will be reduced. Then, the inventor considered suppressing the variation in the temperature of the some storage battery in a battery panel using this airflow resistance adjustment member. When assembled batteries having the same cross-sectional shape dimensions as the air flow resistance adjusting member are arranged in the left-right and up-down directions, they are included in the assembled battery group located on the upper side and the assembled battery group located on the lower side When the temperature of the storage battery in the assembled battery is compared, the temperature of the air flow flowing in the assembled battery included in the assembled battery group located on the upper side is the air flowing in the assembled battery included in the assembled battery group located on the lower side. It was confirmed that the temperature was higher than the flow temperature. Therefore, in the present invention, the cooling efficiency of the plurality of assembled batteries included in the assembled battery group positioned on the upper side is improved so that the cooling efficiency of the plurality of assembled batteries included in the assembled battery group positioned on the lower side is improved. Since the shape of the air flow resistance adjusting member in the plurality of assembled batteries included in the assembled battery group is determined, the temperature of the air flow flowing in the plurality of assembled batteries included in the upper assembled battery group becomes high. However, the cooling efficiency of the storage battery in an assembled battery becomes high, and the temperature upper direction of a storage battery can be suppressed. As a result, the variation width of the temperature of the storage batteries in the plurality of battery packs included in the battery pack group located on the upper side and the temperature of the storage batteries in the battery packs included in the battery pack group located on the lower side are reduced. be able to.

1つのグループは、必ずしも同じ高さ位置にある必要はなく、例えば上下4段に組電池が配置されていれば、上方の2段と下方の2段とを分けて、2つの組電池グループとしてもよい。また上下3段以上の組電池をそれぞれ1段ずつの3つ以上の組電池グループに分け、少なくとも1つの組電池グループ同士の間に冷却性能の差を生じさせるように構成してもよい。また電池列を構成する蓄電池の個数、及び電池群を構成する電池列の数もそれぞれ任意である。典型的には、電池列は3本の蓄電池より構成され、2つの電池列が組み合わされて電池群が構成され、組電池は6本の蓄電池を含む。このような構成例の場合、空気流抵抗調整部材は、隣り合う4本の蓄電池により囲まれた空間が2箇所存在し、それらの各空間それぞれに配置されることが好ましい。また他の隣り合う2本以上の蓄電池の間に配置してもよく、その場合には隣り合う組電池に属する蓄電池も含んで、複数の蓄電池により囲まれた空間になる。   One group does not necessarily have to be at the same height. For example, if assembled batteries are arranged in four upper and lower stages, the upper two stages and the lower two stages are divided into two assembled battery groups. Also good. Alternatively, the assembled batteries of three or more stages in the upper and lower stages may be divided into three or more assembled battery groups each having one stage, and a difference in cooling performance may be generated between at least one assembled battery group. Further, the number of storage batteries constituting the battery train and the number of battery trains constituting the battery group are also arbitrary. Typically, a battery row is composed of three storage batteries, two battery rows are combined to form a battery group, and the assembled battery includes six storage batteries. In the case of such a configuration example, it is preferable that the air flow resistance adjusting member has two spaces surrounded by four adjacent storage batteries, and is arranged in each of these spaces. Moreover, you may arrange | position between 2 or more other adjacent storage batteries, and in that case, also including the storage battery which belongs to an adjacent assembled battery, it becomes the space enclosed by the some storage battery.

本発明によると、蓄電池盤内を流れる空気の上流・下流のいずれに位置するかに拘わらず、各蓄電池の温度の温度差はできるだけ小さく維持される。従って多くの蓄電池が、同じ気道環境内で充放電されるので、蓄電池盤の性能を十分に発揮できるほか、蓄電池が過熱することによる不具合の発生を防止することができる。   According to the present invention, regardless of whether the air flowing in the storage battery panel is located upstream or downstream, the temperature difference between the temperatures of the storage batteries is kept as small as possible. Therefore, since many storage batteries are charged / discharged in the same airway environment, the performance of the storage battery panel can be fully exhibited, and the occurrence of problems due to overheating of the storage battery can be prevented.

空気流抵抗調整部材は、長手方向に延びており、空気流抵抗調整部材の長手方向と直交する方向の断面形状の輪郭は、上方向に向かって近付く第1及び第2の辺と、下方向に向かって近付く第3及び第4の辺とを少なくとも有していてもよい。すなわち空気流抵抗調整部材の断面形状の輪郭の概形は、少なくとも第1及び第2の辺との間の(またはそれらの仮想される延長線上にある)角が最上部に位置し、第3及び第4の辺との間の(又はそれらの仮想される延長線上にある)角が最下部に位置するように姿勢が調整された方形である。好ましくは、空気流抵抗調整部材の断面形状の輪郭の概形は、正方形又は菱形である。このような輪郭の外形に空気流抵抗調整部材の断面形状を形成すると、他の形状に比較して、蓄電池盤内の空気流抵抗が減少して、冷却効率が向上することができることが確認されている。   The air flow resistance adjusting member extends in the longitudinal direction, and the outline of the cross-sectional shape in the direction orthogonal to the longitudinal direction of the air flow resistance adjusting member is the first and second sides approaching upward, and the downward direction. You may have at least the 3rd and 4th edge | side which approaches toward. In other words, the outline of the profile of the cross-sectional shape of the air flow resistance adjusting member is such that at least the corner between the first and second sides (or on an imaginary extension line thereof) is located at the top, And a square whose posture is adjusted so that the corner between the fourth side and the fourth side (or on an imaginary extension line thereof) is located at the lowermost part. Preferably, the outline of the outline of the cross-sectional shape of the air flow resistance adjusting member is a square or a rhombus. It is confirmed that when the cross-sectional shape of the air flow resistance adjusting member is formed in such an outline, the air flow resistance in the storage battery panel is reduced and the cooling efficiency can be improved as compared with other shapes. ing.

さらに、空気流抵抗調整部材は、その断面形状の輪郭に、第1の辺と第3の辺との間に上下方向に延びる第5の辺が更に形成されており、第2の辺と第4の辺との間に上下方向に延びる第6の辺が更に形成されていてもよい。すなわち空気流抵抗調整部材の断面形状の輪郭の概形は、それぞれ左右の端に位置する角(またはその近辺)に上下方向に延びる第5の辺と第6の辺が形成されて、左右の角が面取りされた方形、または六角形になる。このような輪郭の断面形状を有する空気流抵抗調整部材を用いると、冷却効率を向上させることの調整が容易になる。   Further, the air flow resistance adjusting member further includes a fifth side extending in the vertical direction between the first side and the third side in the outline of the cross-sectional shape, and the second side and the second side A sixth side extending in the vertical direction may be further formed between the four sides. That is, the outline of the profile of the cross-sectional shape of the air flow resistance adjusting member is that the fifth side and the sixth side extending in the vertical direction are formed at the corners (or the vicinity thereof) positioned at the left and right ends, respectively. It becomes a square with a chamfered corner or a hexagon. When the air flow resistance adjusting member having such a cross-sectional shape is used, adjustment for improving the cooling efficiency is facilitated.

これに加えて、第1の辺と第2の辺との間と、第3の辺と第4の辺との間、すなわち空気流抵抗調整部材の上下の端に位置する角(またはその近辺)に、それぞれ左右方向に延びる第7の辺及び第8の辺が形成されていてもよく、その場合には空気流抵抗調整部材の輪郭の概形は、4隅が面取りされた方形、または八角形になる。この構造にすると、さらに冷却効率を向上させることの調整が容易になる。   In addition to this, the corner (or the vicinity thereof) located between the first side and the second side, between the third side and the fourth side, that is, at the upper and lower ends of the air flow resistance adjusting member. ) May be formed with a seventh side and an eighth side respectively extending in the left-right direction, in which case the outline of the outline of the air flow resistance adjusting member is a square with four corners chamfered, or It becomes an octagon. With this structure, adjustment for further improving the cooling efficiency is facilitated.

本発明の蓄電池盤の実施の形態を示す図であり、(A)は正面図、(B)は(A)の上側組電池グループに属する組電池の各蓄電池、空気流抵抗調整部材及び一方のホルダのみを示す拡大正面図、(C)は(A)の下側組電池グループに属する組電池の(B)と同様の図である。It is a figure which shows embodiment of the storage battery panel of this invention, (A) is a front view, (B) is each storage battery of the assembled battery which belongs to the upper assembled battery group of (A), an airflow resistance adjustment member, and one side The enlarged front view which shows only a holder, (C) is a figure similar to (B) of the assembled battery which belongs to the lower assembled battery group of (A). (A)は図1(B)に示した組電池を示す側面図であり、(B)は同じ組電池の平面図である。(A) is a side view which shows the assembled battery shown to FIG. 1 (B), (B) is a top view of the same assembled battery. (A)は図1(B)の組電池を各蓄電池を破線で示す斜視図であり、(B)は図1(C)の組電池の(A)と同様の斜視図である。(A) is the perspective view which shows each storage battery with a broken line the assembled battery of FIG. 1 (B), (B) is a perspective view similar to (A) of the assembled battery of FIG. 1 (C). 図1(C)の空気流抵抗調整部材の長手方向の断面形状の輪郭を拡大して示す図である。It is a figure which expands and shows the outline of the cross-sectional shape of the longitudinal direction of the airflow resistance adjustment member of FIG.1 (C). 空気流抵抗調整部材の異なる断面形状を示す図である。It is a figure which shows the different cross-sectional shape of an airflow resistance adjustment member. (A)及び(B)は、試験に用いた温度センサを配置して温度を測定する測定位置と空気流抵抗調整部材の位置関係を示す図である。(A) And (B) is a figure which shows the positional relationship of the measurement position which arrange | positions the temperature sensor used for the test, and measures temperature, and an airflow resistance adjustment member. (A)は組電池内の中央の位置の電池温度を示す図であり、(B)は各測定位置における測定温度のバラツキを示す図である。(A) is a figure which shows the battery temperature of the center position in an assembled battery, (B) is a figure which shows the dispersion | variation in the measurement temperature in each measurement position.

以下、図面を参照しつつ、本発明の蓄電池盤の実施の形態の一例について説明する。本実施の形態の蓄電池盤1は、図1(A)に示すように、4×4のマトリクス状に並んだ計16個の組電池3a,3bと、内部に組電池3a,3bを収納する筐体5と、筐体5内に冷却用の空気を引き込む誘引送風装置7とを備えている。   Hereinafter, an example of an embodiment of a storage battery board according to the present invention will be described with reference to the drawings. As shown in FIG. 1A, the storage battery panel 1 of the present embodiment houses a total of 16 assembled batteries 3a and 3b arranged in a 4 × 4 matrix, and the assembled batteries 3a and 3b therein. A housing 5 and an induction blower 7 that draws cooling air into the housing 5 are provided.

誘引送風装置7は筐体5の天板部5Aに設けられており、筐体5の上部の空気を誘引して外部に吐き出し、これにより図示していない空気吸入口(筐体5の底板部5Bまたは筐体5の側壁部5Cの底板部5B寄りの位置に設けられている。)から筐体5内に外部の空気が取り入れられる。筐体5の正面側の側壁部を構成する扉部材は、図示を省略してある。また組電池が置かれる設置棚も図示を省略してある。筐体5の底板部5Bから取り入れられた外部の空気は、各組電池3a,3bの間の空間を通過する間に各組電池3a,3bの表面から熱を吸熱して、誘引送風装置7を通して筐体5の外部に排出される。従って、筐体5内に取り入れられたばかりの空気よりも、排出される空気の方が温度が高い。   The induction blower 7 is provided on the top plate portion 5A of the housing 5 and attracts air from the upper portion of the housing 5 to discharge it to the outside, whereby an air inlet (not shown) (the bottom plate portion of the housing 5) is drawn. 5B or the bottom plate 5B of the side wall 5C of the housing 5 is provided near the bottom plate 5B.) External air is taken into the housing 5. The door member constituting the side wall portion on the front side of the housing 5 is not shown. An installation shelf on which the assembled battery is placed is also not shown. The external air taken in from the bottom plate portion 5B of the housing 5 absorbs heat from the surface of each assembled battery 3a, 3b while passing through the space between each assembled battery 3a, 3b, and the induced air blower 7 It is discharged to the outside of the housing 5 through. Therefore, the temperature of the discharged air is higher than that of the air just taken into the housing 5.

図1(B)及び(C)及び図2、図3に示すように、各組電池3a,3bは、それぞれ6本の円筒状蓄電池9を備えている。図3においては、蓄電池9は破線で示してある。なお以下円筒状蓄電池を単に蓄電池を言う。横方向に並んだ3本の蓄電池9により1列の電池列が構成されている。そして2列の電池列を上下方向に離して配置することにより、6本の蓄電池9を含む電池群が構成されている。電池群が一対の絶縁樹脂製のホルダ11,11間に保持されて各組電池3a,3bがそれぞれ構成されている。本実施の形態では、一対のホルダ11,11は存在を示すためだけに概略的に示してある。また各蓄電池9間を電気的に接続するバスバ、測定用の配線及び制御回路については図示を省略してある。この組電池3a,3bの各蓄電池9は、ホルダ11,11間に保持されている。なおホルダ11,11間には、補強用バーも架け渡されているが、図示を省略してある。各蓄電池9のホルダ11,11間に位置する部分は、空冷のために露出した状態になっている。   As shown in FIGS. 1B and 1C and FIGS. 2 and 3, each of the assembled batteries 3 a and 3 b includes six cylindrical storage batteries 9. In FIG. 3, the storage battery 9 is indicated by a broken line. Hereinafter, a cylindrical storage battery is simply referred to as a storage battery. One battery row is constituted by three storage batteries 9 arranged in the horizontal direction. And the battery group containing the six storage batteries 9 is comprised by arrange | positioning two battery rows apart in the up-down direction. The battery group is held between a pair of insulating resin holders 11 and 11, and each of the assembled batteries 3a and 3b is configured. In the present embodiment, the pair of holders 11 and 11 are schematically shown only to indicate their presence. The bus bar, the measurement wiring, and the control circuit that electrically connect the storage batteries 9 are not shown. Each storage battery 9 of the assembled batteries 3a and 3b is held between holders 11 and 11. A reinforcing bar is also bridged between the holders 11 and 11, but the illustration is omitted. The part located between the holders 11 and 11 of each storage battery 9 is in an exposed state for air cooling.

2列の電池列10A及び10Bは、それぞれ3本の蓄電池9が、該蓄電池9の長手方向と直交する第1の方向である図1で見たときの水平方向に所定の間隔をあけて並べられて構成される。電池群8は、2列の電池列10A及び10Bが、長手方向及び第1の方向と直交する第2の方向である図1で見たときの垂直方向に所定の間隔をあけて配置されて構成される。そして電池群8が、長手方向の両側にそれぞれの一面を対向して配置された一対のホルダ11(図1では奥の一方のみ表す)間に保持されている。   In the two battery rows 10A and 10B, three storage batteries 9 are arranged at predetermined intervals in the horizontal direction when viewed in FIG. 1, which is the first direction orthogonal to the longitudinal direction of the storage batteries 9. Configured. In the battery group 8, two battery rows 10A and 10B are arranged at a predetermined interval in the vertical direction when viewed in FIG. 1, which is the second direction orthogonal to the longitudinal direction and the first direction. Composed. The battery group 8 is held between a pair of holders 11 (only one in the back is shown in FIG. 1) disposed on both sides in the longitudinal direction so as to face each other.

組電池3a,3bが筐体5内に水平方向に並べられて構成される2つの組電池グループである上側組電池グループGuと下側組電池グループGlとは、誘引送風装置7が駆動されているときに、全ての組電池3a,3b内を空気が流れるように、筐体5内に上下方向に分けて配置されている。組電池3a,3b内には、誘引送風装置7によって発生する空気流の抵抗を調整するために、隣り合う4本の蓄電池9によって囲まれたそれぞれ2つの空間内に、上側組電池グループGuに属する組電池3aには空気流抵抗調整部材13aが2本ずつ配置され、下側組電池グループGlに属する組電池3bには空気流抵抗調整部材13bが、2本ずつ配置されている。空気流抵抗調整部材13a及び空気流抵抗調整部材13bは、絶縁樹脂材料によって筒状に形成された構造を有しており、それぞれ両端がホルダ11,11に固定されている。   The upper assembled battery group Gu and the lower assembled battery group G1, which are two assembled battery groups configured by horizontally arranging the assembled batteries 3a and 3b in the housing 5, are driven by the induction blower 7 In the case 5, the battery packs 3a and 3b are arranged separately in the vertical direction so that air flows through all the assembled batteries 3a and 3b. In the assembled batteries 3a and 3b, in order to adjust the resistance of the air flow generated by the induction blower 7, the upper assembled battery group Gu is placed in each of two spaces surrounded by four adjacent storage batteries 9. Two air flow resistance adjusting members 13a are arranged in each of the assembled batteries 3a to which the battery pack 3a belongs, and two air flow resistance adjusting members 13b are arranged in each of the assembled batteries 3b belonging to the lower assembled battery group Gl. The air flow resistance adjusting member 13a and the air flow resistance adjusting member 13b have a structure formed in a cylindrical shape by an insulating resin material, and both ends are fixed to the holders 11 and 11, respectively.

上下方向に隣接する2つの組電池グループにおいて、上側組電池グループGuに含まれる各組電池3a内の空気流抵抗は、下側組電池グループGlに含まれる各組電池3b内の空気流抵抗よりも小さくなるように、各組電池3a,3b内の空気流抵抗調整部材13a、13bの形状が定められている。なお、空気流抵抗調整部材13a,13bの内部には信号線が通されており、ホルダ11の一方に装填されている制御回路(図示していない)に、各蓄電池9ごとに検知された電圧を示す信号等を送信する。   In two battery groups adjacent in the vertical direction, the air flow resistance in each battery pack 3a included in the upper battery group Gu is higher than the air flow resistance in each battery pack 3b included in the lower battery group Gl. The shape of the air flow resistance adjusting members 13a and 13b in each of the assembled batteries 3a and 3b is determined so as to be smaller. In addition, a signal line is passed through the air flow resistance adjusting members 13a and 13b, and a voltage detected for each storage battery 9 by a control circuit (not shown) mounted on one side of the holder 11 is detected. The signal etc. which show are transmitted.

空気流抵抗調整部材13bは、組電池3b内を蓄電池9の長手方向に延びており、両端がそれぞれ一対のホルダ11,11の相互に対向する内壁部に固定されている。図4に示すように、空気流抵抗調整部材13bの長手方向と直交する方向の横断面形状の輪郭は、図4で見て上方向に向かって近付く第1の辺15及び第2の辺17と、下方向に向かって近付く第3の辺19及び第4の辺21とを有する。また、第1の辺15と第3の辺19との間に上下方向に延びる第5の辺23が、第2の辺17と第4の辺21との間に垂直方向に延びる第6の辺25が、第1の辺15と第2の辺17との間に左右方向に延びる第7の辺27が、第3の辺19と第4の辺21との間に水平方向に延びる第8の辺29がそれぞれ形成されている。第1の辺15〜第4の辺21の長さは同じで、第5の辺23〜第8の29の長さも同じであるが、第1の辺15〜第4の辺21よりも短い。対向する辺の4つの組(第1の辺15と第4の辺21、第2の辺17と第3の辺19、第5の辺23と第6の辺25、第7辺27と第8の辺29)は相互に平行であり、各角の角度は135°である。   The air flow resistance adjusting member 13b extends in the assembled battery 3b in the longitudinal direction of the storage battery 9, and both ends thereof are fixed to inner walls facing each other of the pair of holders 11 and 11, respectively. As shown in FIG. 4, the outline of the cross-sectional shape in the direction orthogonal to the longitudinal direction of the air flow resistance adjusting member 13b is a first side 15 and a second side 17 that approach in the upward direction as viewed in FIG. And a third side 19 and a fourth side 21 approaching downward. In addition, a fifth side 23 extending in the vertical direction between the first side 15 and the third side 19 has a sixth side extending in the vertical direction between the second side 17 and the fourth side 21. A side 25 has a seventh side 27 extending in the left-right direction between the first side 15 and the second side 17, and a seventh side 27 extending in the horizontal direction between the third side 19 and the fourth side 21. Eight sides 29 are respectively formed. The lengths of the first side 15 to the fourth side 21 are the same, and the lengths of the fifth side 23 to the eighth side 29 are also the same, but shorter than the first side 15 to the fourth side 21. . Four sets of opposing sides (first side 15 and fourth side 21, second side 17 and third side 19, fifth side 23 and sixth side 25, seventh side 27 and second side The eight sides 29) are parallel to each other and the angle of each corner is 135 °.

すなわち空気流抵抗調整部材13bの断面形状の輪郭の概形は、第1の辺15と第2の辺17との間の第7の辺27が最も上に位置し、第3の辺19と第4の辺21との間の第8の辺29が最も下に位置し、第1の辺15と第3の辺19との間の第5の辺23が最も左に位置し、第2の辺17と第4の辺21との間の第6の辺25が最も右に位置するように配置された八角形、または四隅が面取りされた正方形である。このような断面形状の輪郭の概形を有する空気流抵抗調整部材13bを、図4のような姿勢で、図1(A)及び(B)のように4本の蓄電池9によって囲まれた空間に配置すると、他の形状の空気流抵抗調整部材を配置した場合に比較して、組電池3a,3b内の(従って蓄電池盤1内の)空気流抵抗が減少して、冷却効率が向上する。空気流抵抗調整部材13aの断面形状の輪郭の概形は、空気流抵抗調整部材13bの寸法を小さくした相似形なので、説明を省略する。   That is, the outline of the outline of the cross-sectional shape of the air flow resistance adjusting member 13b is such that the seventh side 27 between the first side 15 and the second side 17 is located at the top, and the third side 19 and The eighth side 29 between the fourth side 21 and the fourth side 21 is located at the bottom, the fifth side 23 between the first side 15 and the third side 19 is located at the leftmost side, and the second side An octagon arranged so that the sixth side 25 between the side 17 and the fourth side 21 is located on the rightmost side, or a square with four corners chamfered. A space surrounded by four storage batteries 9 as shown in FIGS. 1A and 1B in the air flow resistance adjusting member 13b having the outline of the cross-sectional outline as shown in FIG. If it arrange | positions, compared with the case where the air flow resistance adjustment member of another shape is arrange | positioned, the air flow resistance in assembled battery 3a, 3b (hence, in the storage battery panel 1) will reduce, and cooling efficiency will improve. . The outline of the outline of the cross-sectional shape of the air flow resistance adjusting member 13a is similar to the reduced size of the air flow resistance adjusting member 13b, and thus description thereof is omitted.

2つのタイプの組電池3a,3bは、空気流抵抗調整部材13a,13bの形状を除いて、同一の構成である。空気流抵抗調整部材を備えた同一の構成の組電池であれば、冷却用の空気が組電池内を通過する際の速度が速くなるにつれて、冷却効率が向上する。組電池3aと組電池3bとを比較すると、それぞれに備えられている空気流抵抗調整部材13aと空気流抵抗調整部材13bとの断面形状の輪郭の相違により、組電池内を流れる空気流の速度は、組電池3aの方が組電池3bよりも速くなる。   The two types of assembled batteries 3a and 3b have the same configuration except for the shape of the air flow resistance adjusting members 13a and 13b. With the assembled battery having the same configuration provided with the air flow resistance adjusting member, the cooling efficiency improves as the speed at which the cooling air passes through the assembled battery increases. When the assembled battery 3a and the assembled battery 3b are compared, the velocity of the air flow flowing in the assembled battery is different due to the difference in the cross-sectional contours of the air flow resistance adjusting member 13a and the air flow resistance adjusting member 13b provided in each of them. The assembled battery 3a is faster than the assembled battery 3b.

蓄電池盤1の筐体5の天板部5Aに設けられた誘引送風装置7が、筐体5の上部から筐体5の空気を外部に排出し、筐体5の底板部から外部の空気を取り入れると、上側組電池グループGuに含まれる組電池3aには、下側組電池グループGlに含まれる組電池3bによって暖められて、より高い温度の空気が供給されるものの、各組電池3aの冷却効率が高いので、蓄電池の温度上昇を抑制することができる。逆に下側組電池グループGlに含まれる組電池3bは外部から取り入れられたばかりの、より低い温度の空気で冷却されるが、冷却効率が低くても、蓄電池の温度上昇は抑制される。その結果、上側組電池グループGuに含まれる組電池3a内の蓄電池9の温度と、下側組電池グループGlに含まれる組電池3bに含まれる蓄電池9の温度の差を小さくして、各蓄電池の温度のバラツキを小さくすることができる。   The induction blower 7 provided on the top plate portion 5A of the housing 5 of the storage battery panel 1 exhausts the air in the housing 5 from the upper portion of the housing 5 and removes the external air from the bottom plate portion of the housing 5. When taken in, the assembled battery 3a included in the upper assembled battery group Gu is heated by the assembled battery 3b included in the lower assembled battery group Gl and supplied with higher temperature air, but each of the assembled batteries 3a Since cooling efficiency is high, the temperature rise of a storage battery can be suppressed. Conversely, the assembled battery 3b included in the lower assembled battery group Gl is cooled by air having a lower temperature just taken from the outside, but even if the cooling efficiency is low, the temperature rise of the storage battery is suppressed. As a result, the difference between the temperature of the storage battery 9 in the assembled battery 3a included in the upper assembled battery group Gu and the temperature of the storage battery 9 included in the assembled battery 3b included in the lower assembled battery group Gl is reduced, so that each storage battery The variation in temperature can be reduced.

よって本実施の形態によると、蓄電池盤1内を流れる空気の上流(下側組電池グループGlの位置)・下流(上側組電池グループGuの位置)のいずれに位置するかに拘わらず、各組電池3a,3b内の蓄電池9の温度の差を所定の範囲内にすることができる。従ってすべての組電池3a,3bが適正に充放電動作を遂行できるので、蓄電池盤1の性能を十分に発揮できるほか、組電池3a,3b内の一部の蓄電池9が過熱することによる不具合の発生を防止することができる。   Therefore, according to the present embodiment, regardless of whether the air flowing in the storage battery panel 1 is located upstream (position of the lower assembled battery group Gl) or downstream (position of the upper assembled battery group Gu), The temperature difference between the storage batteries 9 in the batteries 3a and 3b can be set within a predetermined range. Therefore, since all the assembled batteries 3a and 3b can properly perform the charging / discharging operation, the performance of the storage battery panel 1 can be fully exhibited, and there are problems caused by overheating of some of the storage batteries 9 in the assembled batteries 3a and 3b. Occurrence can be prevented.

空気流抵抗調整部材13a,13bの長手方向と直交する方向の断面の輪郭形状は、上記実施の形態に限定されるものではない。空気流抵抗調整部材の長手方向と直交する方向の断面の輪郭形状の相違によって、その他の構成が同じであっても、電池群内の電池の温度上昇にバラツキが発生することを確認する試験を実施した。図5は、この確認試験に用いた空気流抵抗調整部材の長手方向と直交する方向の断面の輪郭形状と各部の寸法を示している。なお図5において、図面における上方向は、誘引送風装置が配置される方向である。ちなみに1番の形状が図1(B)の空気流抵抗調整部材の横断面形状であり、3番の形状が図1(C)の空気流抵抗調整部材の横断面形状である。なお寸法の単位はmmである。図6(A)及び(B)は、試験に用いた温度センサを配置して温度を測定する測定位置と空気流抵抗調整部材の位置関係を示している。図7(A)は、組電池内の中央の位置の電池温度を示しており、図7(B)は各測定位置における測定温度のバラツキを示している。この試験では、容量75Ahで電圧22.8Vのリチウムイオン電池を用いて、2本の蓄電池列間の距離(ピッチ)を5.5mmとし、蓄電池列内の蓄電池間の距離を8.0mmに設定した。そして誘引送風装置により組電池の上方から空気を誘引して、筐体内に配置した組電池内に空気流を流した。なお誘引送風装置の風量は、14000m3/hで、充放電電流は150Aで、充放電を1サイクル繰り返した後に温度を測定した。図7(A)及び(B)を見ると判るように、1番及び2番の形状を採用すると、冷却効率を上げることができることが判る。空気流抵抗調整部材の形状として、どのような形状を用いるかは、使用する組電池の構成に応じて適宜に決定することになる。The contour shape of the cross section in the direction orthogonal to the longitudinal direction of the air flow resistance adjusting members 13a and 13b is not limited to the above embodiment. Test to confirm that variation in the temperature rise of the batteries in the battery group occurs due to the difference in the contour shape of the cross section in the direction orthogonal to the longitudinal direction of the air flow resistance adjusting member, even if other configurations are the same. Carried out. FIG. 5 shows the contour shape of the cross section in the direction orthogonal to the longitudinal direction of the air flow resistance adjusting member used in this confirmation test and the dimensions of each part. In FIG. 5, the upward direction in the drawing is the direction in which the attracting air blower is arranged. Incidentally, the shape of No. 1 is the cross-sectional shape of the air flow resistance adjusting member of FIG. 1B, and the shape of No. 3 is the cross-sectional shape of the air flow resistance adjusting member of FIG. The unit of dimension is mm. 6A and 6B show the positional relationship between the measurement position where the temperature sensor used in the test is arranged and the temperature is measured and the air flow resistance adjusting member. FIG. 7A shows the battery temperature at the center position in the assembled battery, and FIG. 7B shows the variation in the measured temperature at each measurement position. In this test, a lithium ion battery having a capacity of 75 Ah and a voltage of 22.8 V was used, the distance (pitch) between the two storage battery rows was set to 5.5 mm, and the distance between the storage batteries in the storage battery row was set to 8.0 mm. did. And air was attracted | sucked from the upper direction of the assembled battery with the induced air blower, and the air flow was flowed in the assembled battery arrange | positioned in the housing | casing. The air flow of the induction blower was 14000 m 3 / h, the charge / discharge current was 150 A, and the temperature was measured after one cycle of charge / discharge. As can be seen from FIGS. 7A and 7B, it is understood that the cooling efficiency can be increased by adopting the first and second shapes. What shape is used as the shape of the air flow resistance adjusting member is appropriately determined according to the configuration of the assembled battery to be used.

なお、本実施の形態では、蓄電池としてリチウムイオン二次電池を用いたが、充放電可能な他の円筒形状の蓄電池、キャパシタなどを用いてもよいのはもちろんである。   In this embodiment, a lithium ion secondary battery is used as the storage battery. However, other cylindrical storage batteries and capacitors that can be charged and discharged may be used.

また本実施の形態においては、上下4段に並設された組電池を2段の組電池グループに分けたが、例えば上下3段以上の組電池をそれぞれ1段ずつの3つ以上の組電池グループに分け、少なくとも1つの組電池グループ同士の間に空気流抵抗の差を生じさせるように構成してもよい。また電池列を構成する蓄電池の個数、及び電池群を構成する電池列の数もそれぞれ任意である。例えば電池列は4本以上の蓄電池より構成され、3列以上の電池列が組み合わされて電池群が構成され、組電池は6本以上の蓄電池を含むようにしてもよい。空気流抵抗調整部材は、1つの組電池内において隣り合う4本の蓄電池により囲まれた空間全てに配置されることが好ましいが、配置されない箇所があってもよい。また空気流抵抗調整部材は1つの組電池内の隣り合う2本の蓄電池の間に配置してもよく、その場合には隣り合う組電池に属する蓄電池とともに、複数の蓄電池により囲まれた空間が形成されることもある。   Further, in the present embodiment, the assembled batteries arranged in the upper and lower four stages are divided into two-stage assembled battery groups. For example, the upper and lower assembled batteries of three or more stages are each one stage of three or more assembled batteries. You may divide into a group and you may comprise so that the difference of an airflow resistance may be produced between at least 1 assembled battery group. Further, the number of storage batteries constituting the battery train and the number of battery trains constituting the battery group are also arbitrary. For example, the battery array may be composed of four or more storage batteries, and a battery group may be configured by combining three or more battery arrays, and the assembled battery may include six or more storage batteries. The air flow resistance adjusting member is preferably arranged in all spaces surrounded by four adjacent storage batteries in one assembled battery, but there may be places where the air flow resistance adjusting member is not arranged. In addition, the air flow resistance adjusting member may be disposed between two adjacent storage batteries in one assembled battery, and in that case, a space surrounded by the plurality of storage batteries together with the storage batteries belonging to the adjacent assembled batteries. Sometimes formed.

本発明によれば、蓄電池盤内を循環して各蓄電池を冷却するための空気の上流・下流のいずれに位置するかに拘わらず、各蓄電池の温度のバラツキを小さくすることができるので、蓄電池盤の性能を十分発揮できるほか、蓄電池が過熱することによる不具合の発生を防止することができる。   According to the present invention, it is possible to reduce the variation in the temperature of each storage battery regardless of whether it is located upstream or downstream of the air circulating in the storage battery panel to cool each storage battery. In addition to fully exhibiting the performance of the panel, it is possible to prevent the occurrence of problems due to overheating of the storage battery.

1 蓄電池盤
3a,3b 組電池
5 筐体
7 誘引送風装置
9 蓄電池
11 ホルダ
13a,13b 空気流抵抗調整部材
Gu 上側組電池グループ
Gl 下側組電池グループ
DESCRIPTION OF SYMBOLS 1 Storage battery board 3a, 3b Battery assembly 5 Case 7 Attracting air blower 9 Storage battery 11 Holder 13a, 13b Air flow resistance adjustment member Gu Upper assembled battery group Gl Lower assembled battery group

Claims (6)

複数本の円筒状蓄電池が該蓄電池の長手方向と直交する第1の方向に所定の間隔をあけて並べられて構成された複数の電池列が、前記長手方向及び前記第1の方向と直交する第2の方向に所定の間隔をあけて配置されてなる電池群が、前記長手方向の両側に対向するように配置された一対のホルダ間に保持されてなる複数の組電池と、
内部に前記複数の組電池を収納する筐体と、
前記筐体の天板部に設けられて前記筐体内から空気を誘引して外部に吐き出す誘引送風装置とを備え、
2以上の前記組電池が前記筐体内に横方向に並べられて構成される複数の組電池グループが、前記誘引送風装置が駆動されているときに、全ての前記組電池内を空気が流れるように、前記筐体内に上下方向に分けて配置されており、
前記組電池内には、前記誘引送風装置によって発生する空気流の抵抗を調整するために、少なくとも隣り合う2本以上の前記円筒状蓄電池によって囲まれた空間内に、空気流抵抗調整部材が配置されており、
上下方向に隣接する2つの前記組電池グループにおいて、上側に位置する前記組電池グループに含まれる前記複数の組電池内の冷却効率が、下側に位置する前記組電池グループに含まれる前記複数の組電池内の前記蓄電池の冷却効率よりも良くなるように、前記複数の組電池グループに含まれる前記複数の組電池内の前記空気流抵抗調整部材の形状が定められていることを特徴とする蓄電池盤。
A plurality of battery arrays configured by arranging a plurality of cylindrical storage batteries at a predetermined interval in a first direction orthogonal to the longitudinal direction of the storage battery are orthogonal to the longitudinal direction and the first direction. A plurality of assembled batteries that are held between a pair of holders arranged so that the battery group arranged at a predetermined interval in the second direction is opposed to both sides in the longitudinal direction;
A housing that houses the plurality of assembled batteries therein;
An induction blower provided on the top plate portion of the housing and attracting air from inside the housing and discharging it to the outside;
A plurality of assembled battery groups configured by arranging two or more of the assembled batteries in the housing in the horizontal direction so that air flows through all the assembled batteries when the attraction blower is driven. Are arranged separately in the vertical direction in the housing,
In the assembled battery, an air flow resistance adjusting member is disposed in a space surrounded by at least two adjacent cylindrical storage batteries in order to adjust the resistance of the air flow generated by the attraction blower. Has been
In the two battery pack groups adjacent in the vertical direction, the cooling efficiency in the battery packs included in the battery pack group located on the upper side is the plurality of battery packs included in the battery pack group located on the lower side. The shape of the air flow resistance adjusting member in the plurality of assembled batteries included in the plurality of assembled battery groups is determined so as to be better than the cooling efficiency of the storage battery in the assembled battery. Storage battery panel.
前記空気流抵抗調整部材は、前記長手方向に延びており、
前記空気流抵抗調整部材の前記長手方向と直交する方向の断面形状の輪郭は、上方向に向かって近付く第1及び第2の辺と、下方向に向かって近付く第3及び第4の辺とを少なくとも有している請求項1に記載の蓄電池盤。
The air flow resistance adjusting member extends in the longitudinal direction;
The outline of the cross-sectional shape in the direction orthogonal to the longitudinal direction of the air flow resistance adjusting member includes first and second sides approaching upward, and third and fourth sides approaching downward. The storage battery board according to claim 1 having at least.
前記第1の辺と前記第3の辺との間に上下方向に延びる第5の辺が更に形成されており、
前記第2の辺と前記第4の辺との間に前記上下方向に延びる第6の辺が更に形成され、
1の辺と第2の辺との間と、第3の辺と第4の辺との間に、それぞれ左右方向に延びる第7の辺及び第8の辺が形成されている請求項2に記載の蓄電池盤。
A fifth side extending in the vertical direction is further formed between the first side and the third side;
A sixth side extending in the vertical direction is further formed between the second side and the fourth side;
A seventh side and an eighth side extending in the left-right direction are formed between the side 1 and the second side and between the third side and the fourth side, respectively. Storage battery board of description.
前記上側に位置する前記組電池グループに含まれる前記複数の組電池内の前記空気流抵抗調整部材の横断面積が、前記下側に位置する前記組電池グループに含まれる前記複数の組電池内の前記空気流抵抗調整部材の横断面積よりも小さい請求項2または3に記載の蓄電池盤。   The cross-sectional area of the air flow resistance adjusting member in the plurality of assembled batteries included in the assembled battery group located on the upper side is within the plurality of assembled batteries included in the assembled battery group located on the lower side. The storage battery board of Claim 2 or 3 smaller than the cross-sectional area of the said airflow resistance adjustment member. 前記複数の電池列は、平行に並ぶ2本の前記電池列からなり、
一方の前記電池列に含まれる隣接する2本の前記円筒状蓄電池と他方の前記電池列に含まれる隣接2本の蓄電池とによって囲まれる空間内に1本の前記空気流抵抗調整部材が配置されている請求項1,2,3または4に記載の蓄電池盤。
The plurality of battery rows are composed of two battery rows arranged in parallel,
One airflow resistance adjusting member is disposed in a space surrounded by two adjacent cylindrical storage batteries included in one of the battery arrays and two adjacent storage batteries included in the other battery array. The storage battery board according to claim 1, 2, 3, or 4.
前記円筒状蓄電池が円筒状リチウムイオン電池である請求項1乃至5のいずれか1項に記載の蓄電池盤。   The storage battery board according to any one of claims 1 to 5, wherein the cylindrical storage battery is a cylindrical lithium ion battery.
JP2016527797A 2014-06-10 2015-06-08 Storage battery panel Active JP6572889B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014120047 2014-06-10
JP2014120047 2014-06-10
PCT/JP2015/066499 WO2015190440A1 (en) 2014-06-10 2015-06-08 Storage battery board

Publications (2)

Publication Number Publication Date
JPWO2015190440A1 true JPWO2015190440A1 (en) 2017-04-20
JP6572889B2 JP6572889B2 (en) 2019-09-11

Family

ID=54833531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016527797A Active JP6572889B2 (en) 2014-06-10 2015-06-08 Storage battery panel

Country Status (2)

Country Link
JP (1) JP6572889B2 (en)
WO (1) WO2015190440A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270095A (en) * 1997-03-24 1998-10-09 Toyota Motor Corp Battery power source cooling device
JP2000133225A (en) * 1998-10-30 2000-05-12 Sanyo Electric Co Ltd Battery pack
JP2008226488A (en) * 2007-03-08 2008-09-25 Ngk Insulators Ltd Package for sodium-sulfur battery
JP2013196908A (en) * 2012-03-19 2013-09-30 Toshiba Corp Battery unit board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270095A (en) * 1997-03-24 1998-10-09 Toyota Motor Corp Battery power source cooling device
JP2000133225A (en) * 1998-10-30 2000-05-12 Sanyo Electric Co Ltd Battery pack
JP2008226488A (en) * 2007-03-08 2008-09-25 Ngk Insulators Ltd Package for sodium-sulfur battery
JP2013196908A (en) * 2012-03-19 2013-09-30 Toshiba Corp Battery unit board

Also Published As

Publication number Publication date
WO2015190440A1 (en) 2015-12-17
JP6572889B2 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
JP6187694B2 (en) Battery panel
US20160111762A1 (en) Electrical storage apparatus
KR101877996B1 (en) Battery system
JP4592469B2 (en) Assembled battery
JP6624364B2 (en) Electronic equipment rack and storage battery storage system
US10950907B2 (en) Battery pack
JP6099194B2 (en) Storage device cooling structure
JP5927702B2 (en) Battery pack and container equipped with the same
US20150357614A1 (en) Battery case
US9077057B2 (en) Structure for cooling battery cells accommodated in battery module case
JP5293973B2 (en) Battery cooling structure for vehicles
JP2013171662A5 (en)
JP2014523079A5 (en)
JP6390549B2 (en) Battery pack
JP2010186681A (en) Battery pack
JP2016091951A (en) Battery pack
JP6390550B2 (en) Battery pack
JP2012028207A (en) Battery cooling structure
JP2019097293A (en) Battery monitoring device
JP6121856B2 (en) Power storage device
JP6572889B2 (en) Storage battery panel
JP6835201B2 (en) Power storage device and power storage system
CN102207759B (en) Fan bracket
JP6636898B2 (en) Power storage device
WO2014132331A1 (en) Cell module and power storage facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190729

R151 Written notification of patent or utility model registration

Ref document number: 6572889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250