JPWO2015147183A1 - Zinc alloy tubular material and method for producing the same, stent using the same, and method for producing the same - Google Patents

Zinc alloy tubular material and method for producing the same, stent using the same, and method for producing the same Download PDF

Info

Publication number
JPWO2015147183A1
JPWO2015147183A1 JP2016510490A JP2016510490A JPWO2015147183A1 JP WO2015147183 A1 JPWO2015147183 A1 JP WO2015147183A1 JP 2016510490 A JP2016510490 A JP 2016510490A JP 2016510490 A JP2016510490 A JP 2016510490A JP WO2015147183 A1 JPWO2015147183 A1 JP WO2015147183A1
Authority
JP
Japan
Prior art keywords
zinc alloy
mass
tube material
stent
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016510490A
Other languages
Japanese (ja)
Other versions
JP6560192B2 (en
Inventor
尋子 高橋
尋子 高橋
吉田 浩一
浩一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Publication of JPWO2015147183A1 publication Critical patent/JPWO2015147183A1/en
Application granted granted Critical
Publication of JP6560192B2 publication Critical patent/JP6560192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon

Abstract

【課題】ステントなどの医療器具を構成する金属材料として、生体内への埋入後に生体吸収がされやすく但しその吸収速度が速すぎず、かつ所定の高い強度などの機械的特性を有するとともに、冷間加工等での加工性に優れる生体吸収性亜鉛合金管材とそれを用いたステントを提供する。【解決手段】Alを0.1〜5質量%、Mnを0.1〜5質量%、Mgを0.1〜5質量%、及び希土類を0.1〜5質量%からなる群から選ばれる少なくとも1つ以上の元素を含有し、Feを0.05質量%未満、及びOを0.1質量%未満とし、残部が亜鉛と0.1質量%以下の不可避不純物からなる組成を有する亜鉛合金管材とその製造方法、及びそれを用いてなる血管拡張用ステントとその製造方法。【選択図】なしAs a metal material constituting a medical instrument such as a stent, it is easy to be absorbed by a living body after being implanted into a living body, but its absorption rate is not too fast, and has mechanical properties such as a predetermined high strength, Provided are a bioabsorbable zinc alloy tube material excellent in workability in cold working or the like and a stent using the same. SOLUTION: Al is selected from the group consisting of 0.1-5% by mass, Mn 0.1-5% by mass, Mg 0.1-5% by mass, and rare earth 0.1-5% by mass. A zinc alloy containing at least one element, Fe less than 0.05% by mass, O less than 0.1% by mass, and the balance consisting of zinc and 0.1% by mass or less of inevitable impurities Tubing material and manufacturing method thereof, and stent for vasodilation using the same and manufacturing method thereof. [Selection figure] None

Description

本発明は、生体吸収性を示す亜鉛合金管材とその製造方法、及びそれを用いてなる血管拡張用のステントとその製造方法に関する。   The present invention relates to a zinc alloy tube material exhibiting bioabsorbability and a method for producing the same, and a stent for blood vessel expansion using the same and a method for producing the same.

狭心症などで狭窄した冠動脈などの血管内に、管腔内部側から血管を拡張する目的でステントを留置することがある。この場合、留置されたステントは生体にとって異物であるので、その表面で新生内膜増殖異常が生じて血栓が形成される場合があり、酷い時には再狭窄が起こってしまう。そのため、なるべく早い時期に血管内皮細胞がステント表面を覆い内皮化されることが重要である。また、細胞の足場材料として所定期間、一般に3〜6か月間は血管を拡張する機能を奏して、前記内皮化された後、一般に6〜12か月後あるいは1〜2年後には、ステントが溶出して生体に完全に吸収されることが求められている。   A stent may be placed in a blood vessel such as a coronary artery that has been narrowed due to angina or the like for the purpose of expanding the blood vessel from the inside of the lumen. In this case, since the indwelled stent is a foreign substance to the living body, a neointimal proliferation abnormality may occur on the surface of the stent, and a thrombus may be formed. In severe cases, restenosis occurs. Therefore, it is important that vascular endothelial cells cover the stent surface and become endothelialized as early as possible. In addition, as a scaffold material for cells, the stent has a function of expanding blood vessels for a predetermined period, generally 3 to 6 months. After the endothelialization, the stent is generally 6 to 12 months or 1 to 2 years later. It is required to elute and be completely absorbed by the living body.

現在、冠動脈拡張用に使用されるステント用金属材料として、ニッケル−チタン合金(ニチノール)やステンレス鋼(代表的には、SUS316L)などが使用されている。しかし、これらの金属材料は生体吸収性に乏しく、血管内に装着された後に再狭窄を引き起こす誘因となることがある。そこで、これを抑制する上で、細胞増殖抑制剤、免疫抑制剤、抗炎活性剤等が用いられることがある。特に細胞増殖抑制剤の中でも抗ガン剤であるシロリムス(sirolimus)、パクリタキセル(paclitaxel)、ゾタロリムス(zotarolimus)などがよく用いられている。これらの薬剤をステント表面に塗布するなどの技術が採用されているが、完全に再狭窄を抑制するには至っていない。また、小児へステントを適用する場合には、装着されたステントが体の成長に追随できないという不具合もある。その為に、生体吸収性に優れ、所定の期間後に溶けて体に吸収されるステント用金属材料が求められている。
しかし、これまでに生体吸収性金属材料として検討されてきたものでは、血管内へ装着後の分解が早すぎることが問題となっている。
Currently, nickel-titanium alloys (Nitinol), stainless steel (typically SUS316L), and the like are used as metal materials for stents used for coronary artery dilation. However, these metallic materials are poorly bioabsorbable and may cause restenosis after being placed in a blood vessel. Therefore, in order to suppress this, a cell growth inhibitor, an immunosuppressant, an anti-inflammatory active agent, or the like may be used. In particular, among cell growth inhibitors, sirolimus, paclitaxel, zotarolimus, and the like, which are anticancer agents, are often used. Techniques such as applying these drugs to the stent surface have been adopted, but they have not yet completely prevented restenosis. In addition, when a stent is applied to a child, there is a problem that the attached stent cannot follow the growth of the body. Therefore, there is a demand for a metal material for a stent that is excellent in bioabsorbability and melts after a predetermined period and is absorbed by the body.
However, what has been studied as a bioabsorbable metal material until now has a problem that it is decomposed too quickly after being inserted into a blood vessel.

そこで、ステントなどの医療器具を構成する金属材料として、体内への埋入後に内皮化と生体吸収がされやすく、かつステンレス鋼(SUS)系のものほどには高すぎずポリマー系のものほどには低くない、所定の強度を有するとともに、加工性に優れる生体吸収性亜鉛合金材料、例えばステント用亜鉛合金材料が求められていた。
また、ステントのように生体内に埋入させて用いる医療器具には、生体への毒性がないことが大前提である。金属材料については、金属材料の個々の合金成分が生体に毒性を有さない元素であること(多量のスズなどを含有しないこと)に加えて、分解後の生成物も生体に毒性を有さないことや、分解途中に金属材の破片が脱落して血管などの生体組織を傷つけることがないことなども重要である。一方、この観点から、現在一般に構造材などに用いられている通常の亜鉛合金は、必ずしも医療器具用の金属材料として満足できるとはいえない。
Therefore, as a metal material constituting a medical device such as a stent, it is easy to be endothelialized and bioabsorbed after implantation into the body, and is not too high as a stainless steel (SUS) type and is not as high as a polymer type. There is a need for a bioabsorbable zinc alloy material, for example, a zinc alloy material for stents, which is not low, has a predetermined strength and is excellent in workability.
In addition, it is a major premise that a medical device used by being implanted in a living body such as a stent is not toxic to the living body. For metal materials, in addition to the fact that the individual alloy components of the metal material are elements that are not toxic to the living body (not containing a large amount of tin, etc.), the decomposed product is also toxic to the living body. It is also important that there is no damage to the living tissue such as blood vessels due to the metal pieces not falling off during decomposition. On the other hand, from this point of view, ordinary zinc alloys that are currently generally used for structural materials and the like are not necessarily satisfactory as metal materials for medical devices.

ここで、「生体吸収性」とは、生体に埋入すると生体に取り込まれる性質をいう。これは、生体に埋入しても生体機能に害を及ぼさないいわゆる「生体適合性」を有する上に、生体に埋入すると生体と親和するいわゆる「生体親和性」を具備していることが前提であり、高次元の特性であるといえる。   Here, “bioabsorbability” refers to the property of being taken into a living body when implanted in the living body. In addition to having so-called “biocompatibility” that does not harm biological functions even when implanted in a living body, it has so-called “biocompatibility” that is compatible with a living body when implanted in a living body. It is a premise and can be said to be a high-dimensional characteristic.

特許文献1には、Zn−0.1〜1質量%Ti合金、Zn−0.1〜2質量%Au―0.1〜1質量%Ti合金、Zn−4.5質量%以上Ca合金(Example 1)が開示されており、前記合金を生分解性の冠動脈ステントとして用いることが開示されている。   Patent Document 1 includes a Zn-0.1-1 mass% Ti alloy, a Zn-0.1-2 mass% Au-0.1-1 mass% Ti alloy, a Zn-4.5 mass% or more Ca alloy ( Example 1) is disclosed, and the use of the alloy as a biodegradable coronary stent is disclosed.

米国特許第6,287,332号明細書US Pat. No. 6,287,332

特許文献1に記載のZn―4.5質量%以上Ca合金に関して、Ca添加量が増加するに従い強度は向上するが生体内での分解速度は速くなる。特に、Fe濃度が0.05質量%を上回ると顕著に分解速度が早くなる。特許文献1に記載の亜鉛合金は、生体内での溶解が速すぎて溶解吸収速度の点でまだ満足のいくものではなかった。   Regarding the Ca alloy of Zn-4.5 mass% or more described in Patent Document 1, the strength is improved as the Ca addition amount is increased, but the decomposition rate in vivo is increased. In particular, when the Fe concentration exceeds 0.05% by mass, the decomposition rate is remarkably increased. The zinc alloy described in Patent Document 1 is not yet satisfactory in terms of dissolution and absorption speed because dissolution in vivo is too fast.

上記のような従来の技術における問題点に鑑み、本発明は、ステントなどの医療器具を構成する金属材料として、生体内への埋入後に生体吸収がされやすく但しその吸収速度が速すぎず、かつ所定の高い強度などの機械的特性を有するとともに、冷間加工等での加工性に優れる生体吸収性亜鉛合金管材とそれを用いたステントを提供することを課題とする。   In view of the problems in the prior art as described above, the present invention, as a metal material constituting a medical instrument such as a stent, is easy to be absorbed into the living body after implantation into the living body, but its absorption speed is not too fast, It is another object of the present invention to provide a bioabsorbable zinc alloy tube material having a mechanical property such as a predetermined high strength and excellent workability in cold working or the like and a stent using the bioabsorbable zinc alloy tube material.

本発明者らは、生体内への埋入後に生体吸収がされやすく但しその吸収速度が速すぎず、かつ所定の高い強度などの機械的特性を有するとともに、加工性に優れる生体吸収性亜鉛合金管材を開発すべく鋭意検討を行った。その結果、特定の亜鉛合金組成とすることと、好ましくは金属組織として平均結晶粒径と、さらに好ましくは管材の形状として管材肉厚/管外径の比とを適正に制御することとによって、生体内への埋入後に生体吸収がされやすく但しその吸収速度が速すぎず、かつ所定の高い強度などの機械的特性を有するとともに、加工性に優れる生体吸収性亜鉛合金管材が得られることを見出した。本発明は、この知見に基づいて完成されるに至ったものである。   The inventors of the present invention have a bioabsorbable zinc alloy that is easy to be absorbed after being implanted in a living body, but whose absorption rate is not too high, has mechanical properties such as a predetermined high strength, and is excellent in workability. We have intensively studied to develop pipe materials. As a result, by setting a specific zinc alloy composition, preferably by appropriately controlling the average crystal grain size as a metal structure, and more preferably the ratio of the tube thickness / outer diameter as the shape of the tube, A bioabsorbable zinc alloy tube material that is easy to be absorbed after implantation in a living body but has an excessively high absorption rate and has mechanical properties such as a predetermined high strength and excellent workability. I found it. The present invention has been completed based on this finding.

すなわち、本発明によれば、下記に記載の手段が提供される:
(1)Alを0.1〜5質量%、Mnを0.1〜5質量%、Mgを0.1〜5質量%、及び希土類を0.1〜5質量%からなる群から選ばれる少なくとも1つ以上の元素を含有し、Feを0.05質量%未満、及びOを0.1質量%未満とし、残部が亜鉛と0.1質量%以下の不可避不純物からなる組成を有することを特徴する亜鉛合金管材。
(2)管材表面の片側または両側が請求項1に記載の組成であって、前記Al、Mn、Mg及び希土類の少なくとも1つ以上の含有量が前記管材の肉厚方向で傾斜した組成である(1)項に記載の亜鉛合金管材。
(3)さらにCaを0.1〜5質量%含有する(1)項に記載の亜鉛合金管
(4)管材表面の片側または両側が(1)項に記載の組成であって、前記Al、Mn、Mg、希土類及びCaの少なくとも1つ以上の含有量が前記管材の肉厚方向で傾斜した組成である(3)項に記載の亜鉛合金管材。
(5)母材の平均結晶粒径が1〜20μmである(1)〜(4)のいずれか1項に記載の亜鉛合金管材。
(6)前記管材の肉厚/管外径の比が0.02〜0.5である(1)〜(5)のいずれか1項に記載の亜鉛合金管材。
(7)引張強度が300MPaより高く、0.2%耐力が150MPaより高く、かつ、引張破断伸びが10%より大きい(1)〜(6)のいずれか1項に記載の亜鉛合金管材。
(8)Naを142mM、Kを5mM、Mg2+を1.5mM、Ca2+を2.5mM、Clを148.8mM、HCO を4.2mM、HPO 2−を1mM、SO 2−を0.5mMで含有する37℃の擬似体液(SBF)中に浸漬した場合に、6か月後の減肉量が100μm以下である(1)〜(7)のいずれか1項に記載の亜鉛合金管材。
(9)(1)または(3)項に記載の組成を与える亜鉛合金素材を溶解鋳造してビレットを得て[工程A−1]、そのビレットを穴開け加工を施した[工程B−1]後に、熱間押出加工して亜鉛合金管材を得る[工程C−1]、各工程をこの順に行うことを特徴する(1)、(3)、(5)、(6)、(7)または(8)項に記載の亜鉛合金管材の製造方法。
(10)前記熱間押出加工[工程C−1]後に、冷間加工[工程D−1]を行う(9)項に記載の亜鉛合金管材の製造方法。
(11)前記熱間押出加工[工程C−1]を、ダイス出側で急速冷却を施しながら行う(9)または(10)項に記載の亜鉛合金管材の製造方法。
(12)亜鉛合金素材を溶解鋳造してビレットを得て[工程A−2]、そのビレットを穴開け加工を施した[工程B−2]後に、熱間押出加工して亜鉛管材を得て[工程C−2]、得られた管材の表面にスパッタ、溶射、電析の少なくとも1つ以上によってAl、Mn、Mg、希土類及びCaからなる群から選ばれる少なくとも1つ以上を含有する単層または多層膜を形成し[工程E−2]、この単層若または多層膜に輻射、レーザ照射、及び通電からなる群から選ばれる少なくとも1つ以上の加熱を施す[工程F−2]、各工程をこの順に行うことを特徴とする(1)〜(8)のいずれか1項に記載の亜鉛合金管材の製造方法。
(13)前記熱間押出加工[工程C−2]後に、冷間加工[工程D−2]を行う(12)項に記載の亜鉛合金管材の製造方法。
(14)前記熱間押出加工[工程C−2]を、ダイス出側で急速冷却を施しながら行う(12)または(13)項に記載の亜鉛合金管材の製造方法。
(15)(1)〜(8)のいずれか1項に記載の亜鉛合金管材からなる血管拡張用ステント。
(16)(9)〜(14)のいずれか1項に記載の製造方法で得られた亜鉛合金管材に対して、ステントの形状にレーザ加工し[工程G]、表面を研磨し[工程H]、その後、表面処理を施す[工程I]、各工程をこの順に行う血管拡張用ステントの製造方法。
That is, according to the present invention, the following means are provided:
(1) At least selected from the group consisting of 0.1 to 5% by mass of Al, 0.1 to 5% by mass of Mn, 0.1 to 5% by mass of Mg, and 0.1 to 5% by mass of rare earth One or more elements are contained, Fe is less than 0.05% by mass, O is less than 0.1% by mass, and the balance is composed of zinc and 0.1% by mass or less of inevitable impurities. Zinc alloy tubing.
(2) One side or both sides of the surface of the pipe material is the composition according to claim 1, wherein at least one content of the Al, Mn, Mg and rare earth is inclined in the thickness direction of the pipe material. The zinc alloy tube material according to item (1).
(3) The zinc alloy pipe according to (1), further containing 0.1 to 5 mass% of Ca. (4) One or both sides of the pipe material surface is the composition according to (1), wherein the Al, The zinc alloy pipe according to the item (3), wherein the content of at least one of Mn, Mg, rare earth, and Ca is inclined in the thickness direction of the pipe.
(5) The zinc alloy tube material according to any one of (1) to (4), wherein the base material has an average crystal grain size of 1 to 20 μm.
(6) The zinc alloy pipe according to any one of (1) to (5), wherein a ratio of the thickness of the pipe to the pipe outer diameter is 0.02 to 0.5.
(7) The zinc alloy tube material according to any one of (1) to (6), wherein the tensile strength is higher than 300 MPa, the 0.2% proof stress is higher than 150 MPa, and the tensile breaking elongation is higher than 10%.
(8) Na + 142 mM, K + 5 mM, Mg 2+ 1.5 mM, Ca 2+ 2.5 mM, Cl 148.8 mM, HCO 3 4.2 mM, HPO 4 2− 1 mM, SO 4 2- when immersed in 37 ° C. pseudo body fluid containing (SBF) at 0.5 mM, any one of thickness reduction after 6 months is 100μm or less (1) to (7) Zinc alloy pipe material described in 1.
(9) A zinc alloy material giving the composition described in (1) or (3) is melt-cast to obtain a billet [Step A-1], and the billet is drilled [Step B-1 After that, a zinc alloy tube material is obtained by hot extrusion [Step C-1], and the steps are performed in this order (1), (3), (5), (6), (7) Or the manufacturing method of the zinc alloy pipe material as described in (8) term.
(10) The method for producing a zinc alloy tubular material according to (9), wherein cold working [step D-1] is performed after the hot extrusion processing [step C-1].
(11) The method for producing a zinc alloy tube material according to (9) or (10), wherein the hot extrusion [Step C-1] is performed while rapid cooling is performed on the die exit side.
(12) A zinc alloy material is melt cast to obtain a billet [Step A-2], and after drilling the billet [Step B-2], hot extrusion is performed to obtain a zinc pipe material. [Step C-2], a single layer containing at least one selected from the group consisting of Al, Mn, Mg, rare earths and Ca by at least one of sputtering, thermal spraying and electrodeposition on the surface of the obtained tube material Alternatively, a multilayer film is formed [Step E-2], and the single layer or multilayer film is subjected to at least one or more heating selected from the group consisting of radiation, laser irradiation, and energization [Step F-2], The method according to any one of (1) to (8), wherein the steps are performed in this order.
(13) The method for producing a zinc alloy tubular material according to (12), wherein cold working [step D-2] is performed after the hot extrusion processing [step C-2].
(14) The method for producing a zinc alloy tube material according to (12) or (13), wherein the hot extrusion process [Step C-2] is performed while rapid cooling is performed on the die exit side.
(15) A vascular dilatation stent comprising the zinc alloy tube material according to any one of (1) to (8).
(16) The zinc alloy tube material obtained by the manufacturing method according to any one of (9) to (14) is laser-processed into a stent shape [Step G], and the surface is polished [Step H Then, a surface treatment is performed [Step I], and a method for manufacturing a vascular dilatation stent in which the steps are performed in this order.

本発明の亜鉛合金管材は、生体内への埋入後に生体吸収がされやすく但しその吸収速度が速すぎず、かつ所定の高い強度などの機械的特性を有するとともに、加工性に優れるために、生体吸収性ステントに代表される医療器具用の金属材料として好適である。
本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
The zinc alloy tube of the present invention is easily absorbed by the body after implantation in the living body, but its absorption rate is not too fast, and has mechanical properties such as a predetermined high strength, and is excellent in workability. It is suitable as a metal material for a medical device represented by a bioabsorbable stent.
The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.

[合金組成]
まず、本発明の亜鉛合金管材を構成する亜鉛合金の組成を説明する。
[Alloy composition]
First, the composition of the zinc alloy constituting the zinc alloy tube of the present invention will be described.

(必須添加元素)
本発明の亜鉛合金管材を構成する亜鉛合金への必須添加元素Al、Mn、Mg及び希土類からなる群から選ばれる少なくとも1種の元素の含有量とその作用について示す。
Al、Mn、Mg及び希土類からなる群から選ばれる少なくとも1種の元素を所定量含有することで、高強度かつ高伸びとするとともに、生体内での分解速度を適正に遅く抑制することができる。
(Essential additive element)
The content and action of at least one element selected from the group consisting of the essential additive elements Al, Mn, Mg and rare earths to the zinc alloy constituting the zinc alloy pipe of the present invention will be described.
By containing a predetermined amount of at least one element selected from the group consisting of Al, Mn, Mg and rare earth, it is possible to achieve high strength and high elongation, and to appropriately suppress the degradation rate in vivo. .

(Al)
本発明においては、Alの含有量を0.1〜5質量%とする。Alの含有量が高すぎると、分解速度が急激に早くなる。Al含有量が高すぎる場合、高強度化と生体吸収性の緩和とはトレード・オフの関係にあるため、本発明の目的とする、所望の適度の速度の生体吸収性が得られない。一方、Alの含有量が低すぎると、得られる亜鉛合金材の強度が急激に低下し、ステント用途において血管拡張時の保持力を発現する上での高強度化が図れない。なお、加工性の観点からは、Alの含有量を0.1〜1質量%とすることが好ましい。
(Al)
In the present invention, the Al content is 0.1 to 5 mass%. If the Al content is too high, the decomposition rate is rapidly increased. When the Al content is too high, there is a trade-off relationship between increasing the strength and reducing the bioabsorbability, so that the desired bioabsorbability at an appropriate rate, which is the object of the present invention, cannot be obtained. On the other hand, if the Al content is too low, the strength of the obtained zinc alloy material is drastically reduced, and it is not possible to increase the strength for expressing the retention force during vascular dilation in stent applications. From the viewpoint of workability, the Al content is preferably 0.1 to 1% by mass.

(Mn)
本発明においては、Mnの含有量を0.1〜5質量%とする。Mnの含有量が高すぎると、分解速度が急激に早くなる。一方、Mnの含有量が低すぎると、得られる亜鉛合金材の強度が急激に低下し、ステント用途において血管拡張時の保持力を発現する上での高強度化が図れない。なお、加工性の観点からは、Mnの含有量を0.1〜1質量%とすることが好ましい。
(Mn)
In the present invention, the Mn content is set to 0.1 to 5% by mass. When the content of Mn is too high, the decomposition rate is rapidly increased. On the other hand, if the content of Mn is too low, the strength of the obtained zinc alloy material is drastically reduced, and it is not possible to increase the strength for expressing the retention force during vascular dilation in stent applications. From the viewpoint of workability, the Mn content is preferably 0.1 to 1% by mass.

(Mg)
本発明においては、Mgの含有量を0.1〜5質量%とする。Mgの含有量が高すぎると、加工性が著しく低下する。一方、Mgの含有量が低すぎると、得られる亜鉛合金材の高強度化に寄与しない。なお、加工性の観点からは、Mgの含有量を0.1〜1質量%とすることが好ましい。
(Mg)
In the present invention, the Mg content is 0.1 to 5% by mass. If the Mg content is too high, the workability is significantly reduced. On the other hand, when the content of Mg is too low, it does not contribute to increasing the strength of the obtained zinc alloy material. From the viewpoint of workability, the Mg content is preferably 0.1 to 1% by mass.

(希土類)
本発明においては、希土類の含有量を0.1〜5質量%とする。希土類としてはイットリウム(Y)が好ましい。希土類(RE、好ましくはY)は、伸びの低下を回避しながら高強度化に寄与する。希土類の含有量が高すぎると、細胞増殖に異常をきたし細胞毒の存在が示唆され、また、生体内での分解速度が急激に増加する。一方、希土類の含有量が低すぎると、高強度化の効果が発現されない。なお、加工性の観点からは、希土類の含有量を0.1〜1質量%とすることが好ましい。
(rare earth)
In the present invention, the rare earth content is 0.1 to 5% by mass. As the rare earth, yttrium (Y) is preferable. The rare earth (RE, preferably Y) contributes to increasing the strength while avoiding a decrease in elongation. If the rare earth content is too high, cell proliferation is abnormal, suggesting the presence of a cytotoxin, and the rate of degradation in vivo rapidly increases. On the other hand, if the rare earth content is too low, the effect of increasing the strength is not exhibited. From the viewpoint of workability, the rare earth content is preferably 0.1 to 1% by mass.

(任意添加元素)
本発明の亜鉛合金管材を構成する亜鉛合金へは、前記必須添加元素Al、Mn、Mg及び希土類からなる群から選ばれる少なくとも1種の元素に加えて、Caを所定の含有量で含有してもよい。以下にこの任意添加元素Caの含有量とその作用について示す。
Caを所定量含有することで、高強度かつ高伸びとするとともに、生体内での分解速度を適正に遅く抑制することができる。
(Optional addition element)
In addition to at least one element selected from the group consisting of the essential additive elements Al, Mn, Mg and rare earths, the zinc alloy constituting the zinc alloy tube of the present invention contains Ca at a predetermined content. Also good. The content of the optional additive element Ca and the action thereof will be described below.
By containing a predetermined amount of Ca, the strength and elongation can be increased, and the decomposition rate in the living body can be appropriately slowed down.

(Ca)
本発明においては、添加する場合、Caの含有量は0.1〜5質量%とする。Caの含有量が高すぎると、分解速度が急激に早くなる。一方、Caの含有量が低すぎると、血管拡張時の保持力を発現する上での高強度化が図れない。なお、加工性の観点からは、Caの含有量を0.1〜1質量%とすることが好ましい。
(Ca)
In this invention, when adding, content of Ca shall be 0.1-5 mass%. When the content of Ca is too high, the decomposition rate is rapidly increased. On the other hand, if the content of Ca is too low, the strength cannot be increased in order to develop the holding power during vasodilation. From the viewpoint of workability, the Ca content is preferably 0.1 to 1% by mass.

(規制元素)
次に、本発明の亜鉛合金管材を構成する亜鉛合金においてその含有が規制される元素Fe及びOの許容含有量とその規制理由について示す。
(Regulated elements)
Next, the allowable contents of the elements Fe and O whose contents are regulated in the zinc alloy constituting the zinc alloy tube of the present invention and the reasons for the regulation will be described.

(Fe)
本発明においては、Feの含有量を0.05質量%未満に規制する。Feの含有量が高すぎると、得られる亜鉛合金の生体内での分解速度が急激に早くなる。
(Fe)
In the present invention, the Fe content is restricted to less than 0.05% by mass. When the content of Fe is too high, the decomposition rate of the obtained zinc alloy in vivo is rapidly increased.

(O)
本発明においては、Oの含有量を0.1質量%未満に規制する。酸素はMg、AlやCaなどと結合して介在物を形成する。この介在物が鋳造時に母相内部に取り込まれた場合には、繰り返し応力が印可されると破断の起点となり、疲労特性に劣った亜鉛合金となってしまう。この酸素含有介在物の形成とそれによる疲労特性の劣化は、Oの含有量を0.1質量%未満に規制することで防ぐことができる。
(O)
In the present invention, the O content is restricted to less than 0.1% by mass. Oxygen combines with Mg, Al, Ca and the like to form inclusions. When this inclusion is taken into the matrix during casting, if a repeated stress is applied, it becomes the starting point of fracture and becomes a zinc alloy inferior in fatigue characteristics. The formation of the oxygen-containing inclusions and the deterioration of fatigue characteristics caused thereby can be prevented by regulating the O content to less than 0.1% by mass.

(不可避不純物)
本発明において亜鉛合金中の不可避不純物としては、例えば、Cu、Li、Ni、Si、Pdなどが挙げられる。本発明の亜鉛合金管材を構成する亜鉛合金においては、これらの不可避不純物を合計で0.1質量%以下での含有を許容する。
(Inevitable impurities)
In the present invention, examples of inevitable impurities in the zinc alloy include Cu, Li, Ni, Si, and Pd. In the zinc alloy constituting the zinc alloy pipe of the present invention, the inclusion of these inevitable impurities in a total amount of 0.1% by mass or less is allowed.

本発明の亜鉛合金管材は前記で規定する亜鉛合金組成を有するが、管材全体で均一組成であっても(第一態様、下記製法1または2)よく、または、管材の表面が前記組成であって管材の内部は前記Al、Mn、Mg、希土類及びCaからなる群から選ばれる少なくとも1つ以上の濃度(含有量)が管材表面とは異なる傾斜組成であってもよい(第二態様、下記製法2)。
この第二態様の場合、前記Al、Mn、Mg、希土類及びCaからなる群から選ばれる少なくとも1つ以上の濃度が管材表面では最も高く、管材の表面から内部に向かって肉厚方向で減じている。このような濃度変化を傾斜組成という。
The zinc alloy tube material of the present invention has the zinc alloy composition defined above, but may be a uniform composition throughout the tube material (first aspect, production method 1 or 2 below), or the surface of the tube material may have the above composition. The inside of the pipe material may have a gradient composition in which at least one concentration (content) selected from the group consisting of Al, Mn, Mg, rare earth and Ca is different from that of the pipe material surface (second aspect, below) Production method 2).
In the case of this second aspect, the concentration of at least one or more selected from the group consisting of Al, Mn, Mg, rare earth and Ca is highest on the surface of the tube material, and decreases in the thickness direction from the surface of the tube material toward the inside. Yes. Such a change in concentration is called a gradient composition.

[亜鉛合金管材の母材の平均結晶粒径]
本発明においては、母材の平均結晶粒径を1〜20μmとすることが好ましい。結晶粒を微細化することで、腐食しやすい亜鉛合金の孔食や粒界腐食の軽減を達成することができる。母材の平均結晶粒径が大きすぎると、腐食速度が急激に増加して生体吸収速度が速すぎる。一方、母材の平均結晶粒径が小さすぎると、その結晶粒微細化の為の熱処理前の大きな歪の付与時、例えば冷間加工時、に破断等が発生することがあり、また、腐食速度が飽和して生体吸収速度の緩和効果が小さくなる。
[Average crystal grain size of base material of zinc alloy tube]
In the present invention, the average crystal grain size of the base material is preferably 1 to 20 μm. By refining the crystal grains, it is possible to reduce pitting corrosion and intergranular corrosion of a zinc alloy that is easily corroded. If the average crystal grain size of the base material is too large, the corrosion rate increases rapidly and the bioabsorption rate is too fast. On the other hand, if the average crystal grain size of the base material is too small, breakage or the like may occur at the time of applying a large strain before heat treatment for crystal grain refinement, for example, during cold working, and corrosion. The rate is saturated and the effect of relaxing the bioabsorption rate is reduced.

[亜鉛合金管材の形状]
本発明においては、亜鉛合金管材の肉厚/管外径の比を0.02〜0.5とすることが好ましい。
亜鉛合金は最密六方格子構造(hcp構造)を有することから特に冷間加工性が悪い金属材料として知られている。この為、300〜400℃、より好ましくは320〜360℃で熱間押出方式により亜鉛合金管材を製造する。その際に、管材の肉厚/管外径の比が小さすぎる場合には、押出し時のメタルの限界から割れ等の欠陥が発生することがある。一方、管材の肉厚/管外径の比が大きすぎる場合には、特にステントとして拡張する際に過剰な力が必要となる。
[Zinc alloy tube shape]
In the present invention, it is preferable that the ratio of the thickness of the zinc alloy pipe material / the outer diameter of the pipe is 0.02 to 0.5.
Zinc alloys are known as metal materials with particularly poor cold workability because they have a close-packed hexagonal lattice structure (hcp structure). For this reason, a zinc alloy pipe is manufactured by a hot extrusion method at 300 to 400 ° C., more preferably 320 to 360 ° C. At that time, if the ratio of the wall thickness / outside diameter of the pipe material is too small, defects such as cracks may occur due to the limit of the metal during extrusion. On the other hand, when the ratio of the wall thickness / outer diameter of the tube is too large, an excessive force is required particularly when expanding as a stent.

管材の肉厚は特に制限されないが、ステントとして用いる場合には100〜700μm程度であることが好ましい。
また、管材の外径は特に制限されないが、ステントとして用いる場合には0.3〜13mm程度であることが好ましい。
The thickness of the tube material is not particularly limited, but is preferably about 100 to 700 μm when used as a stent.
The outer diameter of the tube is not particularly limited, but is preferably about 0.3 to 13 mm when used as a stent.

[亜鉛合金管材の製造方法]
本発明の亜鉛合金管材の製造方法は、得られる亜鉛合金組成を与える素材を、管全体で均一組成にする(下記製法1)か、あるいは、均一組成または傾斜組成とする(下記製法2)かで、2つの製造方法に大別される。
[Method of manufacturing zinc alloy tube]
In the method for producing a zinc alloy pipe according to the present invention, the material that gives the obtained zinc alloy composition has a uniform composition throughout the pipe (the following production method 1), or a uniform composition or a gradient composition (the following production method 2). Thus, it is roughly divided into two manufacturing methods.

(製法1)
この製造方法で得られる本発明の亜鉛合金管材は、管全体が均一組成である。
(Production method 1)
As for the zinc alloy pipe material of this invention obtained by this manufacturing method, the whole pipe | tube has a uniform composition.

まず、前記所定の組成を与える亜鉛合金素材の配合を行い、真空溶解炉または雰囲気炉にて融点以上(合金組成によるが例えば420℃以上)600℃以下で溶解し、これを金型鋳造、連続鋳造法などによりビレットを得る[工程A−1]。このビレットの内部(好ましくは中心)にドリル等で穴開け加工を行う[工程B−1]。この穴開きビレットを、300〜400℃、好ましくは320〜360℃の熱間で、マンドレルを用いた前方押出加工をすることにより管材を得る[工程C−1]。さらに必要により、この管材にレデューサ等で冷間加工[工程D−1]、例えば、冷間抽伸加工を行う。熱間押出加工で所定の管サイズと管形が得られれば、この冷間加工(抽伸)は省略することができる。この熱間押出加工と任意の冷間加工における減面率(断面積減少率)を適正に調整することによって、加工後の管材の肉厚比(前記肉厚/管外径の比)を0.02〜0.5とすることができる。   First, a zinc alloy material giving the predetermined composition is blended, and melted at a melting point or higher (for example, 420 ° C. or higher, depending on the alloy composition) at 600 ° C. or lower in a vacuum melting furnace or an atmospheric furnace. A billet is obtained by a casting method or the like [Step A-1]. The billet is drilled (preferably in the center) with a drill or the like [Step B-1]. A tube material is obtained by subjecting this perforated billet to forward extrusion using a mandrel at a temperature of 300 to 400 ° C., preferably 320 to 360 ° C. [Step C-1]. Further, if necessary, this pipe material is subjected to cold working [step D-1], for example, cold drawing using a reducer or the like. If a predetermined tube size and tube shape are obtained by hot extrusion, this cold working (drawing) can be omitted. By appropriately adjusting the area reduction rate (cross-sectional area reduction rate) in this hot extrusion process and any cold process, the wall thickness ratio of the processed tube material (ratio of the wall thickness / outer tube diameter) is 0. 0.02 to 0.5.

前記製法1について、好ましい条件などを説明する。
好ましくは、前記溶解及び鋳造[工程A−1]を不活性ガス雰囲気下、例えば、アルゴン雰囲気下で行う。
前記穴開け加工[工程B−1]後に、穴開きビレットを雰囲気加熱炉内にて不活性ガス雰囲気下、例えば、アルゴン雰囲気下で、300〜400℃、好ましくは320〜360℃で1〜3時間保持することが好ましい。その後、好ましくはこの温度で熱間押出加工[工程C−1]を実施する。
前記熱間押出加工[工程C−1]時には、押出ダイスの出側に液体窒素などの冷媒を直接吹付け出来る急冷装置を用いて、ダイス出側で急速冷却を施しながら押出加工を施すことが好ましい。この熱間押出加工直後に急冷することによって、母材の結晶粒を微細化する組織制御を行うことができる。
前記冷間加工を行う場合、前記冷間加工[工程D−1]の減面率は、好ましくは10〜50%である。
For the production method 1, preferable conditions and the like will be described.
Preferably, the melting and casting [Step A-1] is performed in an inert gas atmosphere, for example, in an argon atmosphere.
After the drilling [Step B-1], the perforated billet is set to 1 to 3 at 300 to 400 ° C., preferably 320 to 360 ° C. in an inert gas atmosphere, for example, an argon atmosphere in an atmosphere heating furnace. It is preferable to hold for a time. Thereafter, the hot extrusion process [Step C-1] is preferably performed at this temperature.
At the time of the hot extrusion process [Step C-1], using a quenching device capable of directly spraying a refrigerant such as liquid nitrogen on the exit side of the extrusion die, the extrusion process is performed while performing rapid cooling on the exit side of the die. preferable. By rapid cooling immediately after this hot extrusion, the structure control for refining the crystal grains of the base material can be performed.
When performing the cold work, the area reduction rate of the cold work [Step D-1] is preferably 10 to 50%.

(製法2)
この製造方法で得られる本発明の亜鉛合金管材は、前記製法1と同様に管材全体が均一組成であってもよく、または管材表面の片側もしくは両側は亜鉛以外の例えばアルミニウムなどの含有量が高く(例えば、Al−リッチ)、管内部では亜鉛の含有量が高く(Zn−リッチ)、管材の肉厚方向で濃度に勾配がある傾斜組成であってもよい。但し、後者の傾斜組成の場合であっても、管材表面の片側または両側における合金組成は、前記規定のとおりであって製法1における均一組成と同一である。
(Manufacturing method 2)
The zinc alloy tubular material of the present invention obtained by this production method may have a uniform composition throughout the tubular material as in Production Method 1, or one side or both sides of the surface of the tubular material has a high content of, for example, aluminum other than zinc. (For example, Al-rich), a gradient composition having a high zinc content inside the pipe (Zn-rich) and a gradient in concentration in the thickness direction of the pipe may be used. However, even in the case of the latter gradient composition, the alloy composition on one side or both sides of the tube material surface is as defined above, and is the same as the uniform composition in Production Method 1.

まず、亜鉛合金素材を、真空溶解炉または雰囲気炉にて融点以上(合金組成によるが例えば420℃以上)600℃以下で溶解し、これを金型鋳造、連続鋳造法などによりビレットを得る[工程A−2]。次に、このビレットの内部(好ましくは中心)にドリル等で穴開け加工を行う[工程B−2]。このビレットを300〜400℃、好ましくは320〜360℃の熱間で、マンドレルを用いた前方押出加工をすることにより管材を得る[工程C−2]。さらに必要により、この管材にレデューサ等で冷間加工[工程D−2]、例えば、冷間抽伸加工を行う。熱間押出加工で所定の管サイズと管形が得られれば、この冷間加工(抽伸)は省略することができる。   First, a zinc alloy material is melted at a melting point or more (depending on the alloy composition, for example, 420 ° C. or more) and 600 ° C. or less in a vacuum melting furnace or an atmospheric furnace, and a billet is obtained by die casting, continuous casting method, etc. [Process A-2]. Next, drilling is performed inside the billet (preferably at the center) with a drill or the like [Step B-2]. The billet is subjected to forward extrusion using a mandrel at a temperature of 300 to 400 ° C., preferably 320 to 360 ° C. to obtain a pipe [Step C-2]. Further, if necessary, the pipe material is subjected to cold working [Step D-2], for example, cold drawing using a reducer or the like. If a predetermined tube size and tube shape are obtained by hot extrusion, this cold working (drawing) can be omitted.

その後、得られた亜鉛合金管材の表面にスパッタ、溶射、電析の少なくとも1つ以上によって前記Al、Mn、Mg、希土類及びCaからなる群から選ばれる少なくとも1つ以上を含有する単層または多層膜を形成する[工程E−2]。この単層または多層膜に輻射、レーザ照射、及び通電からなる群から選ばれる少なくとも1つ以上で250℃以上かつ合金の固相線より10℃低い温度以下、特に好ましくは400℃近辺の温度で1時間以上の加熱を施す[工程F−2]。この加熱[工程F−2]によって、前記亜鉛合金管材の表面に設けた単層または多層膜から前記Al、Mn、Mg、希土類及びCaからなる群から選ばれる少なくとも1つ以上を管材の肉厚方向に拡散させる。この加熱[工程F−2]に付す加熱温度及び加熱時間を適正に調整することで、均一組成の亜鉛合金管材か、または管材の肉厚方向で組成的に濃度勾配を有する傾斜組成の亜鉛合金管材のいずれかを製造する。ここで、この製法2で得る亜鉛合金管材においては、管材全体か、または少なくとも管材表面の片側もしくは両側が、前記規定のとおりの亜鉛合金組成である。   Thereafter, the surface of the obtained zinc alloy tube material is a single layer or a multilayer containing at least one selected from the group consisting of Al, Mn, Mg, rare earth and Ca by at least one of sputtering, thermal spraying and electrodeposition A film is formed [Step E-2]. At least one selected from the group consisting of radiation, laser irradiation, and energization is applied to the single layer or multilayer film at a temperature of 250 ° C. or higher and 10 ° C. lower than the solidus of the alloy, particularly preferably a temperature around 400 ° C. Heat for 1 hour or longer [Step F-2]. By this heating [Step F-2], at least one or more selected from the group consisting of Al, Mn, Mg, rare earth and Ca from the single layer or multilayer film provided on the surface of the zinc alloy tube is formed into the wall thickness of the tube. Spread in the direction. By appropriately adjusting the heating temperature and the heating time applied to this heating [Step F-2], the zinc alloy tube material having a uniform composition or the zinc alloy having a gradient composition having a concentration gradient in the thickness direction of the tube material Manufacture any of the tubing. Here, in the zinc alloy tube material obtained by this production method 2, the entire tube material, or at least one side or both sides of the tube material surface has the zinc alloy composition as defined above.

前記製法2について、好ましい条件などを説明する。
前記溶解及び鋳造[工程A−2]に付す亜鉛合金素材は、前記Al、Mn、Mg、希土類及びCaからなる群から選ばれる少なくとも1つ以上の内で、後の[工程E−2]で亜鉛合金管上に設ける単層または多層膜の構成成分となる元素以外の各々の元素を所定量含有し、規制元素であるFeとOを規定量未満に規制し、残部がZnと不可避不純物からなる組成とする。例えば、[工程E−2]でAl膜を形成する場合には、前記溶解及び鋳造[工程A−2]に付す亜鉛合金素材は、Al以外のMn、Mg及び希土類の内の必要な元素と必要によりCaとを所定量で含有し、FeとOを規定量未満に規制し、残部がZnと不可避不純物からなる組成とする。
Regarding the production method 2, preferable conditions and the like will be described.
The zinc alloy material to be subjected to the melting and casting [Step A-2] is at least one selected from the group consisting of Al, Mn, Mg, rare earth and Ca, and later in [Step E-2]. Contains a predetermined amount of each element other than the constituent elements of the single layer or multilayer film provided on the zinc alloy tube, restricts Fe and O as regulatory elements to less than the prescribed amount, and the remainder from Zn and inevitable impurities The composition is as follows. For example, when an Al film is formed in [Step E-2], the zinc alloy material subjected to the melting and casting [Step A-2] includes Mn other than Al, Mg, and necessary elements of rare earths. If necessary, Ca is contained in a predetermined amount, Fe and O are regulated to less than the prescribed amount, and the balance is made of Zn and inevitable impurities.

好ましくは、前記溶解及び鋳造[工程A−2]を不活性ガス雰囲気下、例えば、アルゴン雰囲気下で行う。
前記穴開け加工[工程B−2]後に、穴開きビレットを雰囲気加熱炉内にて不活性ガス雰囲気下、例えば、アルゴン雰囲気下で、300〜400℃、好ましくは320〜360℃で1〜3時間保持することが好ましい。その後、好ましくはこの温度で熱間押出加工[工程C−2]を実施する。
前記熱間押出加工[工程C−2]時には、押出ダイスの出側に液体窒素などの冷媒を直接吹付け出来る急冷装置を用いて、ダイス出側で急速冷却を施しながら押出加工を施すことが好ましい。この熱間押出加工直後に急冷することによって、母材の結晶粒を微細化する組織制御を行うことができる。
前記冷間加工を行う場合、前記冷間加工[工程D−2]の減面率は、好ましくは10〜50%である。
Preferably, the melting and casting [Step A-2] is performed in an inert gas atmosphere, for example, in an argon atmosphere.
After the drilling [Step B-2], the perforated billet is heated in an atmosphere heating furnace in an inert gas atmosphere, for example, in an argon atmosphere, at 300 to 400 ° C., preferably 320 to 360 ° C. It is preferable to hold for a time. Thereafter, the hot extrusion process [Step C-2] is preferably performed at this temperature.
At the time of the hot extrusion process [Step C-2], an extrusion process may be performed while rapid cooling is performed on the die outlet side using a quenching apparatus capable of directly spraying a refrigerant such as liquid nitrogen on the outlet side of the extrusion die. preferable. By rapid cooling immediately after this hot extrusion, the structure control for refining the crystal grains of the base material can be performed.
When performing the cold work, the area reduction rate of the cold work [Step D-2] is preferably 10 to 50%.

前記[工程E−2]で亜鉛合金管上に前記Al、Mn、Mg、希土類及びCaの少なくとも1つ以上の単層または多層膜を設ける際には、例えば、ドライチャンバー内でイオン性の液体を用いて目的の添加元素を電析させることができる。例えば、前記[工程E−2]で亜鉛合金管上にAlの単層または多層膜を設ける場合であれば、AlCl−NaCl−KCl系のイオン性液体を用いてAlを電析させることができる。この時の亜鉛合金管材の表面に生成させる単層または多層膜の厚さは、0.1〜300μm程度とすることが好ましい。管材を構成するZnとその表面に生成させる単層または多層膜を構成する金属種(例えば、Mg)との比重の関係にもよるが、前記単層または多層膜を厚めっきとする場合もある。
前記加熱[工程F−2]においては、加熱温度は250℃以上かつ合金の固相線より10℃低い温度以下で、加熱時間は1〜20時間とすることが好ましい。この加熱温度を高く及び/または加熱時間を長くすれば、前記単層または多層膜の構成元素を該単層または多層膜から管材の肉厚方向に完全に拡散を完了させることができる。一方、この加熱温度を低く及び/または加熱時間を短くすれば、前記単層または多層膜の構成元素を該単層または多層膜から管材の肉厚方向に完全に拡散させる前に、所望の傾斜組成の状態で拡散を止めることができる。
When providing at least one monolayer or multilayer film of Al, Mn, Mg, rare earth and Ca on the zinc alloy tube in [Step E-2], for example, an ionic liquid is used in a dry chamber. The target additive element can be electrodeposited by using. For example, if an Al single layer or multilayer film is provided on the zinc alloy tube in [Step E-2], Al can be electrodeposited using an AlCl 3 —NaCl—KCl-based ionic liquid. it can. The thickness of the single layer or multilayer film formed on the surface of the zinc alloy tube at this time is preferably about 0.1 to 300 μm. Depending on the specific gravity relationship between the Zn constituting the tube and the metal species (for example, Mg) constituting the single layer or multilayer film formed on the surface thereof, the single layer or multilayer film may be thick plated. .
In the heating [Step F-2], the heating temperature is preferably 250 ° C. or higher and 10 ° C. or lower than the solidus of the alloy, and the heating time is preferably 1 to 20 hours. If the heating temperature is increased and / or the heating time is increased, the constituent elements of the single layer or multilayer film can be completely diffused from the single layer or multilayer film in the thickness direction of the tube. On the other hand, if the heating temperature is lowered and / or the heating time is shortened, the constituent elements of the single layer or the multilayer film are diffused from the single layer or the multilayer film in the thickness direction of the tube material before the desired inclination. Diffusion can be stopped in the composition state.

[ステントの製造方法]
本発明のステントは、前記本発明の亜鉛合金管材に対して、以下の工程を経て製造される。
本発明の亜鉛合金管材をパルス・レーザ等を用いたレーザ加工により切断して所定の網目状のステント形状(メッシュ状の管)に加工する[工程G]。その後、レーザ加工の際に生じたバリを化学的な研磨を施すことで取り除く[工程H]。前記研磨としては、例えば、酸(希硫酸など)を用いた溶解・研磨を施すことができる。その後、材料表面に、アパタイト等の表面処理を施す[工程I]。こうして得られたステントに使用前に滅菌処理を施して、血管拡張用ステントを得る。
前記レーザ加工[工程G]では、本発明のマグネシウム合金管材にレーザ加工を施すことによって、拡張可能なステントの形状に加工できればよく、例えば、一般的な網目形状とすればよい。ステントの形状は前記網目形状に限定されるものではない。
[Stent manufacturing method]
The stent of the present invention is manufactured through the following steps with respect to the zinc alloy pipe of the present invention.
The zinc alloy tube material of the present invention is cut by laser processing using a pulse laser or the like and processed into a predetermined mesh-like stent shape (mesh tube) [Step G]. Thereafter, burrs generated during laser processing are removed by chemical polishing [Step H]. As the polishing, for example, dissolution / polishing using an acid (dilute sulfuric acid or the like) can be performed. Thereafter, the surface of the material is subjected to a surface treatment such as apatite [Step I]. The stent thus obtained is sterilized before use to obtain a vasodilator stent.
In the said laser processing [process G], what is necessary is just to be able to process in the shape of an expandable stent by performing laser processing to the magnesium alloy pipe material of this invention, for example, what is necessary is just to make it a general mesh shape. The shape of the stent is not limited to the mesh shape.

この表面処理では、例えば、アパタイト(ヒドロキシアパタイト(Hap)など)、ポリビニルアルコール(PVA)、ポリ乳酸(PLLA)、炭酸カルシウムなどの生体適合性の物質からなる層を管外表面に設ける。この表面処理で生体適合性を付与することによって、得られるステントをさらに生体適合性が高いものとすることができる。   In this surface treatment, for example, a layer made of a biocompatible substance such as apatite (such as hydroxyapatite (Hap)), polyvinyl alcohol (PVA), polylactic acid (PLLA), or calcium carbonate is provided on the outer surface of the tube. By imparting biocompatibility by this surface treatment, the resulting stent can be further biocompatible.

[亜鉛合金管材の特性]
本発明の亜鉛合金管材は、例えば生体吸収性ステントに要求される特性を満足することができる。本発明の亜鉛合金管材は下記の特性を有することが好ましい。
(1)機械的特性
・引張強度(TS)が300MPaより高いことが好ましい。より好ましくは300MPaより高く415MPa以下である。
・0.2%耐力(YS)が150MPaより高いことが好ましい。より好ましくは150MPaより高く317MPa以下である。
・引張破断伸び(El)が10%より大きいことが好ましい。より好ましくは10%より大きく13%以下である。
(2)疲労特性
拍動相当の加速試験結果の換算値で1億回(1年分)以上であることが好ましい。
(3)生体吸収特性
ヒトの体液を模擬した溶液、例えば擬似体液(SBF、組成は実施例で示した通り。)を37℃で保持した際、6か月浸漬後の減肉量が100μm以下であることが好ましい。この減肉量が50μm以下であることがさらに好ましい。より具体的には外形8mm、内径7.2mmのマグネシウム合金管材を用いた場合、2か月間浸漬後の減肉量が100μm以下となる生体吸収性が好ましい。減肉量とは、所定の管を所定の液に浸漬した後、管の肉厚が管の内外面から溶解して減少する量を言う。あるいは、擬似体液(SBF、37℃)に浸漬後に消失するまでの分解期間が6か月以上と長いことが好ましい。生体吸収性の尺度である、亜鉛合金管材が前記SBF中に完全に溶出するまでの時間(分解時間)の上限には特に制限はないが、1年(12か月)であることが好ましい。
なお、各特性の詳細な測定条件は特に断らない限り実施例に記載のとおりとする。
[Characteristics of zinc alloy tube]
The zinc alloy tube material of the present invention can satisfy the characteristics required for a bioabsorbable stent, for example. The zinc alloy tube material of the present invention preferably has the following characteristics.
(1) Mechanical properties-The tensile strength (TS) is preferably higher than 300 MPa. More preferably, it is higher than 300 MPa and not higher than 415 MPa.
-It is preferable that 0.2% yield strength (YS) is higher than 150 MPa. More preferably, it is higher than 150 MPa and not higher than 317 MPa.
-It is preferable that tensile elongation at break (El) is larger than 10%. More preferably, it is more than 10% and 13% or less.
(2) Fatigue property It is preferable that it is 100 million times (one year) or more by the conversion value of the acceleration test result equivalent to pulsation.
(3) Bioabsorption characteristics When a solution simulating human body fluid, for example, simulated body fluid (SBF, composition is as shown in the examples) is held at 37 ° C., the thickness loss after 6 months immersion is 100 μm or less. It is preferable that It is more preferable that the thinning amount be 50 μm or less. More specifically, when a magnesium alloy tube material having an outer diameter of 8 mm and an inner diameter of 7.2 mm is used, the bioabsorbability is preferably such that the thickness loss after immersion for 2 months is 100 μm or less. The amount of thinning refers to the amount by which the wall thickness of the pipe is dissolved and reduced from the inner and outer surfaces of the pipe after the predetermined pipe is immersed in a predetermined liquid. Or it is preferable that the decomposition | disassembly period until it lose | disappears after immersion in simulated body fluid (SBF, 37 degreeC) is as long as 6 months or more. There is no particular upper limit on the time (decomposition time) until the zinc alloy tube material is completely dissolved in the SBF, which is a measure of bioabsorbability, but it is preferably 1 year (12 months).
Unless otherwise specified, detailed measurement conditions for each characteristic are as described in the examples.

以上、本発明の亜鉛合金管材について、その用途として生体吸収性ステントに関して説明した。但し、本発明の亜鉛合金管材の用途は、前記ステントに限定されるものではなく、所定の生体吸収特性(生体内での分解速度)を適宜調整することにより、ステント以外の医療器具にも応用できる。このようなステント以外の医療器具用途としては、特に、生体吸収性インプラント、例えば、プレート、ピン、ねじなどの骨固定装置や骨と軟部組織の固定装置などを挙げることができる。   As described above, the zinc alloy pipe of the present invention has been described with respect to the bioabsorbable stent as its application. However, the use of the zinc alloy tube material of the present invention is not limited to the stent, and it can be applied to medical devices other than stents by appropriately adjusting predetermined bioabsorption characteristics (decomposition rate in vivo). it can. Examples of medical device applications other than stents include bioabsorbable implants such as bone fixation devices such as plates, pins, and screws, and bone and soft tissue fixation devices.

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1〜3、6)
[亜鉛合金管材の製造]
亜鉛合金素材として、特種亜鉛地金、Al地金、Mn地金、高純度マグネシウム地金1種A、高純度金属Ca、金属Yを用いて、Al、Mn、Mg、Ca、Yを含有し、FeとOを規制して、残部がZnと不可避不純物からなる表1に記載の各々の組成となるように配合し、アルゴン雰囲気炉にて誘導加熱により420〜600℃で溶解を行った。そして、アルゴン雰囲気下でφ50mm×100mmLのビレットを金型鋳造した。ICP発光分光分析装置及び酸素分析を用いてビレットの成分を測定した。ドリルを用いてこのビレットの中心にφ9mmの穴を機械的に開けた。この穴開きビレットをアルゴン雰囲気炉にて350℃で1時間保持した後に、この温度で熱間押出しを実施し、外径φ10mm、内径φ9mmの亜鉛合金管材(平均肉厚:0.5mm)を得た。なお、熱間押出時にビレットが入っているコンテナを外部から加熱してビレットの温度を安定(±10℃)させた。また、押出ダイスの出側に液体窒素を直接吹付け出来る急冷装置を用いて急冷することで結晶粒を微細化し、母材の平均結晶粒径の制御を行った。
なお、この亜鉛合金管材に対して、レデューサを用いて外径φ8mm、内径φ7.2mmまで冷間抽伸加工(減面率36%)を実施し、表面割れの無い亜鉛合金管材を得ることが出来た。
(Examples 1-3, 6)
[Manufacture of zinc alloy tubing]
As zinc alloy material, special zinc ingot, Al ingot, Mn ingot, high purity magnesium ingot 1 type A, high purity metal Ca, metal Y, Al, Mn, Mg, Ca, Y are contained. Fe and O were regulated so that the balance was composed of Zn and unavoidable impurities as shown in Table 1 and dissolved at 420 to 600 ° C. by induction heating in an argon atmosphere furnace. A billet of φ50 mm × 100 mmL was die-cast in an argon atmosphere. Billet components were measured using an ICP emission spectrometer and oxygen analysis. Using a drill, a 9 mm hole was mechanically drilled in the center of the billet. After holding this perforated billet at 350 ° C. for 1 hour in an argon atmosphere furnace, hot extrusion was performed at this temperature to obtain a zinc alloy tube (average thickness: 0.5 mm) having an outer diameter of φ10 mm and an inner diameter of φ9 mm. It was. The container containing the billet during hot extrusion was heated from the outside to stabilize the billet temperature (± 10 ° C.). Moreover, the crystal grains were refined by quenching using a quenching apparatus capable of directly spraying liquid nitrogen on the exit side of the extrusion die, and the average crystal grain size of the base material was controlled.
This zinc alloy pipe material can be cold drawn (reduction ratio 36%) to an outer diameter of φ8 mm and an inner diameter of φ7.2 mm using a reducer to obtain a zinc alloy pipe material having no surface cracks. It was.

(実施例4〜5)
[亜鉛合金管材の製造]
亜鉛合金素材として、特種亜鉛地金、金属Ca、金属Yを用いて、Ca、Yを含有し、FeとOを規制して、残部がZnと不可避不純物からなる表1に記載の各々の組成となるように配合し、アルゴン雰囲気炉にて誘導加熱により420〜600℃で溶解を行った。そして、アルゴン雰囲気下でφ50mm×100mmLのビレットを金型鋳造した。ICP発光分光分析装置及び酸素分析を用いてビレットの成分を測定した。ドリルを用いてこのビレットの中心にφ9mmの穴を機械的に開けた。この穴開きビレットをアルゴン雰囲気炉にて350℃で1時間保持した後に、この温度で熱間押出しを実施し、外径φ10mm、内径φ9mmの亜鉛合金管材(平均肉厚:0.5mm)を得た。なお、熱間押出時にビレットが入っているコンテナを外部から加熱してビレットの温度を安定(±10℃)させた。また、押出ダイスの出側に液体窒素を直接吹付け出来る急冷装置を用いて急冷することで結晶粒の制御を行った。
なお、この亜鉛合金管材に対して、レデューサを用いて外径φ8mm、内径φ7.2mmまで冷間抽伸加工(減面率36%)を実施し、表面割れの無い亜鉛合金管材を得ることが出来た。
(Examples 4 to 5)
[Manufacture of zinc alloy tubing]
As a zinc alloy material, special zinc ingot, metal Ca, metal Y are used, Ca, Y are contained, Fe and O are regulated, and the balance is composed of Zn and inevitable impurities. It melt | dissolved at 420-600 degreeC by the induction heating in the argon atmosphere furnace. A billet of φ50 mm × 100 mmL was die-cast in an argon atmosphere. Billet components were measured using an ICP emission spectrometer and oxygen analysis. Using a drill, a 9 mm hole was mechanically drilled in the center of the billet. After holding this perforated billet at 350 ° C. for 1 hour in an argon atmosphere furnace, hot extrusion was performed at this temperature to obtain a zinc alloy tube (average thickness: 0.5 mm) having an outer diameter of φ10 mm and an inner diameter of φ9 mm. It was. The container containing the billet during hot extrusion was heated from the outside to stabilize the billet temperature (± 10 ° C.). In addition, the crystal grains were controlled by quenching using a quenching apparatus capable of spraying liquid nitrogen directly on the exit side of the extrusion die.
This zinc alloy pipe material can be cold drawn (reduction ratio 36%) to an outer diameter of φ8 mm and an inner diameter of φ7.2 mm using a reducer to obtain a zinc alloy pipe material having no surface cracks. It was.

次に、この亜鉛合金管材にドライチャンバー内でイオン性の液体(AlCl−NaCl−KC系)を用いてAlを電析させた。この時の亜鉛合金管材の表面に生成したアルミニウム層の厚さは19μmであった。Next, Al was electrodeposited on the zinc alloy pipe using an ionic liquid (AlCl 3 —NaCl—KC system) in a dry chamber. At this time, the thickness of the aluminum layer formed on the surface of the zinc alloy tube was 19 μm.

その後、前記その表面にAl皮膜層が形成された亜鉛合金管材をアルゴン雰囲気下で400℃、1時間加熱保持した。この加熱によって管材表面のAlを管材の肉厚方向に拡散させて亜鉛合金組成の傾斜組成化を図った。その結果の管材表面での組成を蛍光X線により測定した。   Thereafter, the zinc alloy tube material having an Al coating layer formed on the surface was heated and held at 400 ° C. for 1 hour in an argon atmosphere. By this heating, Al on the surface of the pipe material was diffused in the thickness direction of the pipe material to achieve a gradient composition of the zinc alloy composition. The resulting composition on the tube surface was measured by fluorescent X-rays.

(実施例1〜6)
[ステントの製造]
次に、前記得られた各々の亜鉛合金管材に、CWレーザ(SM500W)を用いて、ピーク出力500Wで網目状のステント加工を施した。その後、レーザ加工の際に発生した管内面のバリを酸にて溶解・研磨した。その後、このステント素材の表面にアパタイトをコーテングする表面処理を施した。こうして得られたステントに使用前に滅菌処理を施し、血管拡張用ステントを作成した。
(Examples 1-6)
[Manufacture of stents]
Next, each of the obtained zinc alloy pipes was subjected to mesh-like stent processing with a peak output of 500 W using a CW laser (SM500W). Thereafter, the burr on the inner surface of the tube generated during laser processing was dissolved and polished with acid. Thereafter, the surface of the stent material was subjected to a surface treatment for coating apatite. The stent thus obtained was sterilized before use to prepare a vasodilator stent.

(比較例1〜5)
各比較例について、表1に記載の亜鉛合金組成、製法とした以外は前記実施例と同様にして、亜鉛合金管材とステントを作製した。
(Comparative Examples 1-5)
About each comparative example, the zinc alloy pipe material and the stent were produced like the said Example except having set it as the zinc alloy composition of Table 1, and the manufacturing method.

なお、前記得られた各々の亜鉛合金管材について、以下のとおりに各種の物性、特性を試験、測定して評価した。結果を表1に示す。表1中の製法1、2の区別は、前記説明したとおりの「製法1」と「製法2」の意味である。亜鉛合金組成は、製法1の場合はICP発光分析装置で測定した値であり、製法2の場合は蛍光X線により管材の表面について測定した値である。   In addition, about each obtained said zinc alloy pipe material, various physical properties and characteristics were tested, measured, and evaluated as follows. The results are shown in Table 1. The distinction between production methods 1 and 2 in Table 1 is the meaning of “production method 1” and “production method 2” as described above. In the case of production method 1, the zinc alloy composition is a value measured with an ICP emission analyzer, and in the case of production method 2, it is a value measured on the surface of the tube with fluorescent X-rays.

(平均結晶粒径(GS))
管材母材の平均結晶粒径は、前記ステント加工(レーザ加工)に付す前の亜鉛合金管材の押出し方向に垂直な断面で交差法により求めた。
(Average crystal grain size (GS))
The average crystal grain size of the tube base material was determined by a crossing method in a cross section perpendicular to the extrusion direction of the zinc alloy tube before being subjected to the stent processing (laser processing).

(管材形状としての肉厚比)
前記ステント加工に付す前の亜鉛合金管材の平均肉厚を測定し、外径との比として、肉厚/管外径の比を計算して求めた。
(Thickness ratio as tube shape)
The average thickness of the zinc alloy tube before being subjected to the stent processing was measured, and the ratio of the wall thickness / tube outer diameter was calculated as the ratio to the outer diameter.

(機械的特性)
前記ステント加工に付す前の亜鉛合金管材に対して、JIS Z2201、Z2241に従って引張試験を行い、引張強度(TS)、0.2%耐力(YS)、引張破断伸び(El)を求めた。
(Mechanical properties)
A tensile test was performed on the zinc alloy tube material before being subjected to the stent processing in accordance with JIS Z2201 and Z2241, and tensile strength (TS), 0.2% proof stress (YS), and tensile elongation at break (El) were obtained.

(生体吸収性)
ステント加工に付す前の亜鉛合金管材を37±1℃で制御した所定量の擬似体液(SBF、Simulated body fluid)中に浸漬した。そして、亜鉛合金管材から疑似体液中に溶出するZn2+濃度の経時変化をICP発光分析装置にて測定して、浸漬させた亜鉛合金管材の重量変化から分解速度を腐食速度として算出した。前記擬似体液の含有イオン種と各イオン濃度は以下のとおりである。Na:142mM、K:5mM、Mg2+:1.5mM、Ca2+:2.5mM、Cl:148.8mM、HCO3−:4.2mM、HPO 2−:1mM、SO 2−:0.5mM(mMはミリモル/リットルの意味である)。
この分解速度に基づいて、当該亜鉛合金管材から加工、製造されるステントが厚み方向で完全に溶解するまでに要する時間を計算し、その完全溶解に要する時間として6か月間以上である(つまり、溶解が速すぎない)場合を合格基準として生体吸収性(分解速度)を判断した。
各試験結果について、前記完全溶解に要する時間(分解期間)が6か月以上の場合を生体吸収性に優れると判定して表中に「A」と示し、6か月未満と溶解が速すぎる場合を生体吸収性に劣ると判定して表中に「D」と示した。
(Bioresorbability)
The zinc alloy tube material before being subjected to stent processing was immersed in a predetermined amount of simulated body fluid (SBF) controlled at 37 ± 1 ° C. And the time-dependent change of Zn <2+ > density | concentration eluted from a zinc alloy pipe material in a pseudo body fluid was measured with the ICP emission spectrometer, and the decomposition rate was computed as a corrosion rate from the weight change of the immersed zinc alloy pipe material. The ionic species and each ion concentration contained in the simulated body fluid are as follows. Na + : 142 mM, K + : 5 mM, Mg 2+ : 1.5 mM, Ca 2+ : 2.5 mM, Cl : 148.8 mM, HCO 3− : 4.2 mM, HPO 4 2− : 1 mM, SO 4 2−. : 0.5 mM (mM means millimole / liter).
Based on this decomposition rate, the time required for the stent to be processed and manufactured from the zinc alloy tube material to completely dissolve in the thickness direction is calculated, and the time required for complete dissolution is 6 months or more (that is, The bioabsorbability (decomposition rate) was judged on the basis of the case where the dissolution was not too fast.
For each test result, the case where the time required for complete dissolution (decomposition period) is 6 months or more is judged to be excellent in bioabsorbability and indicated as “A” in the table, and dissolution is too fast at less than 6 months. The case was judged to be inferior in bioabsorbability and indicated as “D” in the table.

(冷間加工性)
前記減面率36%のレデューサによる冷間抽伸加工を施した際に微細な割れが発生したかどうかで評価した。管の長手1mをマイクロ・スコープ(倍率×100)で観察して割れ(欠陥)が無いものを冷間加工性に優れると判定して表中に「A」と示し、割れが検出されたものを冷間加工性に劣ると判定して表中に「D」と示した。
(Cold workability)
It was evaluated by whether or not fine cracks were generated when cold drawing with a reducer with a surface reduction rate of 36% was performed. A tube with a length of 1 m observed with a microscope (magnification × 100), and the one without cracks (defects) was judged to be excellent in cold workability and indicated as “A” in the table, and a crack was detected Was determined to be inferior in cold workability and indicated as “D” in the table.

(総合判定)
上記のように求めた機械的特性、SBF中での分解期間で評価した生体吸収性、及び冷間加工性を総合的に評価した結果を総合判定として示した。良好なものを表中に「A」と示し、不良なものを「D」と示した。
(Comprehensive judgment)
The results of comprehensive evaluation of the mechanical characteristics obtained as described above, the bioabsorbability evaluated during the decomposition period in SBF, and the cold workability were shown as comprehensive judgments. Good ones were indicated as “A” and bad ones were indicated as “D”.

Figure 2015147183
Figure 2015147183

表1に示した結果から明らかなとおり、本発明で規定する合金組成で、本発明で規定する製造方法にて得た各実施例の亜鉛合金管材は、高強度で伸びも高いとともに、良好な冷間加工性と速すぎない適正な生体吸収性を示した。これらの各実施例の亜鉛合金管材は、好ましい平均結晶粒径と管材形状(肉厚/管外径の比)も満たしていた。従って、本発明の亜鉛合金管材は、ステントに代表される低侵襲医療デバイス用材料に好適に用いられる。   As is apparent from the results shown in Table 1, the zinc alloy pipes of each Example obtained by the production method defined by the present invention with the alloy composition defined by the present invention have high strength, high elongation, and good It showed cold workability and proper bioabsorbability not too fast. The zinc alloy pipes of each of these examples also satisfied a preferable average crystal grain size and pipe shape (ratio of wall thickness / tube outer diameter). Therefore, the zinc alloy tubular material of the present invention is suitably used for a material for a minimally invasive medical device represented by a stent.

これに対して、各比較例の試料では、いずれかの特性が劣った結果となった。   On the other hand, in the sample of each comparative example, one of the characteristics was inferior.

比較例1〜5は、いずれも合金組成が本発明の規定の範囲外であった。比較例1〜5は、いずれも生体(SBF)への吸収速度が速すぎて、ステントには不適合であった。さらに比較例1〜4は、冷間加工性が劣っていた。また、比較例1〜5は、いずれも強度(TSとYS)か伸び(El)の一方が劣っていた。
なお、生体吸収性の上限は特に規定しないが、前記実施例、比較例のいずれも1年を超えるものはなかった。
In all of Comparative Examples 1 to 5, the alloy composition was outside the specified range of the present invention. In Comparative Examples 1 to 5, the absorption rate to the living body (SBF) was too fast and was unfit for the stent. Further, Comparative Examples 1 to 4 were inferior in cold workability. Moreover, all of Comparative Examples 1 to 5 were inferior in strength (TS and YS) or elongation (El).
In addition, although the upper limit of bioabsorbability is not prescribed | regulated in particular, neither the said Example and the comparative example exceeded one year.

本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。   While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.

本願は、2014年3月28日に日本国で特許出願された特願2014−070223に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。   This application claims the priority based on Japanese Patent Application No. 2014-070223 for which it applied for a patent in Japan on March 28, 2014, and this is referred to here for the contents of this description. Capture as part.

Claims (16)

Alを0.1〜5質量%、Mnを0.1〜5質量%、Mgを0.1〜5質量%、及び希土類を0.1〜5質量%からなる群から選ばれる少なくとも1つ以上の元素を含有し、Feを0.05質量%未満、及びOを0.1質量%未満とし、残部が亜鉛と0.1質量%以下の不可避不純物からなる組成を有することを特徴する亜鉛合金管材。   At least one or more selected from the group consisting of 0.1 to 5 mass% Al, 0.1 to 5 mass% Mn, 0.1 to 5 mass% Mg, and 0.1 to 5 mass% rare earth A zinc alloy characterized in that Fe is less than 0.05% by mass, O is less than 0.1% by mass and the balance is composed of zinc and 0.1% by mass or less of inevitable impurities. Tube material. 管材表面の片側または両側が請求項1に記載の組成であって、前記Al、Mn、Mg及び希土類の少なくとも1つ以上の含有量が前記管材の肉厚方向で傾斜した組成である請求項1に記載の亜鉛合金管材。   The composition according to claim 1, wherein one or both sides of the surface of the tube material is the composition according to claim 1, wherein the content of at least one of the Al, Mn, Mg and rare earth is inclined in the thickness direction of the tube material. Zinc alloy pipe material described in 1. さらにCaを0.1〜5質量%含有する請求項1に記載の亜鉛合金管   Furthermore, the zinc alloy pipe | tube of Claim 1 containing 0.1-5 mass% of Ca. 管材表面の片側または両側が請求項1に記載の組成であって、前記Al、Mn、Mg、希土類及びCaの少なくとも1つ以上の含有量が前記管材の肉厚方向で傾斜した組成である請求項3に記載の亜鉛合金管材。   The composition according to claim 1, wherein one side or both sides of the surface of the tube material is a composition in which the content of at least one of Al, Mn, Mg, rare earth and Ca is inclined in the thickness direction of the tube material. Item 4. The zinc alloy tube material according to Item 3. 母材の平均結晶粒径が1〜20μmである請求項1〜4のいずれか1項に記載の亜鉛合金管材。   The zinc alloy pipe according to any one of claims 1 to 4, wherein the base material has an average crystal grain size of 1 to 20 µm. 前記管材の肉厚/管外径の比が0.02〜0.5である請求項1〜5のいずれか1項に記載の亜鉛合金管材。   The zinc alloy pipe according to any one of claims 1 to 5, wherein a ratio of the thickness of the pipe / the outer diameter of the pipe is 0.02 to 0.5. 引張強度が300MPaより高く、0.2%耐力が150MPaより高く、かつ、引張破断伸びが10%より大きい請求項1〜6のいずれか1項に記載の亜鉛合金管材。   The zinc alloy pipe according to any one of claims 1 to 6, wherein the tensile strength is higher than 300 MPa, the 0.2% proof stress is higher than 150 MPa, and the tensile breaking elongation is higher than 10%. Naを142mM、Kを5mM、Mg2+を1.5mM、Ca2+を2.5mM、Clを148.8mM、HCO を4.2mM、HPO 2−を1mM、SO 2−を0.5mMで含有する37℃の擬似体液(SBF)中に浸漬した場合に、6か月後の減肉量が100μm以下である請求項1〜7のいずれか1項に記載の亜鉛合金管材。Na + 142 mM, K + 5 mM, Mg 2+ 1.5 mM, Ca 2+ 2.5 mM, Cl 148.8 mM, HCO 3 4.2 mM, HPO 4 2− 1 mM, SO 4 2− The zinc alloy according to any one of claims 1 to 7, wherein a thickness loss after 6 months is 100 µm or less when immersed in a simulated body fluid (SBF) containing 37 mM at 37 ° C. Tube material. 請求項1または3に記載の組成を与える亜鉛合金素材を溶解鋳造してビレットを得て[工程A−1]、そのビレットを穴開け加工を施した[工程B−1]後に、熱間押出加工して亜鉛合金管材を得る[工程C−1]、各工程をこの順に行うことを特徴する請求項1、3、5、6、7または8に記載の亜鉛合金管材の製造方法。   A zinc alloy material giving the composition according to claim 1 or 3 is melt-cast to obtain a billet [Step A-1], and after drilling the billet [Step B-1], hot extrusion is performed. The method for producing a zinc alloy tube material according to claim 1, 3, 5, 6, 7 or 8, wherein the zinc alloy tube material is processed to obtain a zinc alloy tube material [step C-1], and the respective steps are performed in this order. 前記熱間押出加工[工程C−1]後に、冷間加工[工程D−1]を行う請求項9に記載の亜鉛合金管材の製造方法。   The manufacturing method of the zinc alloy pipe material of Claim 9 which performs cold work [process D-1] after the said hot extrusion process [process C-1]. 前記熱間押出加工[工程C−1]を、ダイス出側で急速冷却を施しながら行う請求項9または10に記載の亜鉛合金管材の製造方法。   The method for producing a zinc alloy tube material according to claim 9 or 10, wherein the hot extrusion process [Step C-1] is performed while rapid cooling is performed on the die exit side. 亜鉛合金素材を溶解鋳造してビレットを得て[工程A−2]、そのビレットを穴開け加工を施した[工程B−2]後に、熱間押出加工して亜鉛管材を得て[工程C−2]、得られた管材の表面にスパッタ、溶射、電析の少なくとも1つ以上によってAl、Mn、Mg、希土類及びCaからなる群から選ばれる少なくとも1つ以上を含有する単層または多層膜を形成し[工程E−2]、この単層若または多層膜に輻射、レーザ照射、及び通電からなる群から選ばれる少なくとも1つ以上の加熱を施す[工程F−2]、各工程をこの順に行うことを特徴する請求項1〜8のいずれか1項に記載の亜鉛合金管材の製造方法。   A zinc alloy material is melted and cast to obtain a billet [Step A-2], and after drilling the billet [Step B-2], hot extrusion is performed to obtain a zinc pipe [Step C]. -2] Single layer or multilayer film containing at least one selected from the group consisting of Al, Mn, Mg, rare earth and Ca by at least one of sputtering, thermal spraying and electrodeposition on the surface of the obtained tube [Step E-2], and subjecting the single layer or multilayer film to at least one or more heating selected from the group consisting of radiation, laser irradiation, and energization [Step F-2]. It performs in order, The manufacturing method of the zinc alloy pipe | tube material of any one of Claims 1-8 characterized by the above-mentioned. 前記熱間押出加工[工程C−2]後に、冷間加工[工程D−2]を行う請求項12に記載の亜鉛合金管材の製造方法。   The manufacturing method of the zinc alloy pipe material of Claim 12 which performs a cold work [process D-2] after the said hot extrusion process [process C-2]. 前記熱間押出加工[工程C−2]を、ダイス出側で急速冷却を施しながら行う請求項12または13に記載の亜鉛合金管材の製造方法。   The method for producing a zinc alloy tube material according to claim 12 or 13, wherein the hot extrusion [Step C-2] is performed while rapid cooling is performed on the die exit side. 請求項1〜8のいずれか1項に記載の亜鉛合金管材からなる血管拡張用ステント。   A stent for vasodilation comprising the zinc alloy tube material according to any one of claims 1 to 8. 請求項9〜14のいずれか1項に記載の製造方法で得られた亜鉛合金管材に対して、ステントの形状にレーザ加工し[工程G]、表面を研磨し[工程H]、その後、表面処理を施す[工程I]、各工程をこの順に行う血管拡張用ステントの製造方法。   The zinc alloy tube material obtained by the manufacturing method according to claim 9 is laser-processed into a stent shape [Step G], the surface is polished [Step H], and then the surface A method for producing a stent for vasodilation, in which treatment is performed [step I] and each step is performed in this order.
JP2016510490A 2014-03-28 2015-03-26 Zinc alloy tubular material and method for producing the same, stent using the same, and method for producing the same Active JP6560192B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014070223 2014-03-28
JP2014070223 2014-03-28
PCT/JP2015/059415 WO2015147183A1 (en) 2014-03-28 2015-03-26 Zinc alloy pipe material, method for manufacturing same, stent formed using zinc alloy pipe material, and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2015147183A1 true JPWO2015147183A1 (en) 2017-04-13
JP6560192B2 JP6560192B2 (en) 2019-08-14

Family

ID=54195687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016510490A Active JP6560192B2 (en) 2014-03-28 2015-03-26 Zinc alloy tubular material and method for producing the same, stent using the same, and method for producing the same

Country Status (2)

Country Link
JP (1) JP6560192B2 (en)
WO (1) WO2015147183A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113005330A (en) * 2021-03-17 2021-06-22 昆明理工大学 Biodegradable superfine crystal Zn-Li alloy material and preparation method and application thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018082728A (en) * 2015-03-26 2018-05-31 テルモ株式会社 Medical implant composed of zinc alloy
JP2018082726A (en) * 2015-03-26 2018-05-31 テルモ株式会社 Medical implant composed of zinc alloy, and method for producing the same
CN105648272A (en) * 2016-02-01 2016-06-08 中国科学院宁波材料技术与工程研究所 Degradable zinc alloy material, and preparation method and application thereof
CN107460372B (en) * 2016-06-02 2019-06-25 北京大学 A kind of Zn-Mn system kirsite and the preparation method and application thereof
CN107773781B (en) * 2016-08-29 2021-04-02 上海交通大学 Preparation method of bendable fully-degradable zinc alloy nerve conduit
CN106399885A (en) * 2016-09-30 2017-02-15 西安爱德万思医疗科技有限公司 Zinc alloy, heat treatment method of zinc alloy and implant material
CN110512117B (en) * 2019-09-27 2022-05-13 石家庄新日锌业有限公司 Medical zinc alloy material and preparation method thereof
CN112899527B (en) * 2021-01-20 2022-04-08 湖南华锐科技集团股份有限公司 Degradable zinc alloy bar and preparation method thereof
CN113416867A (en) * 2021-06-16 2021-09-21 东北大学 Preparation method of zinc alloy pipe capable of being used for degradable cardiovascular stent
CN115612901A (en) * 2022-11-07 2023-01-17 福建省产品质量检验研究院(福建省缺陷产品召回技术中心) Method for industrially producing high-quality Zn-22Al alloy pipe by semi-continuous casting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012932A (en) * 2000-06-30 2002-01-15 Yoshikawa Kogyo Co Ltd Zn-Mg-Al ALLOY WIRE ROD AND ITS PRODUCTION METHOD
JP2002020826A (en) * 2000-07-05 2002-01-23 Dowa Mining Co Ltd Zn-Al ALLOY WIRE, ITS PRODUCTION METHOD AND Zn-Al ALLOY WIRE ROD
JP2003183855A (en) * 2001-10-05 2003-07-03 Nippon Steel Corp Piping and piping member for plain water
JP2010516414A (en) * 2007-01-30 2010-05-20 ヘモテック アーゲー Biodegradable vascular support
WO2012070659A1 (en) * 2010-11-26 2012-05-31 独立行政法人物質・材料研究機構 Nickel-free stainless steel stent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012932A (en) * 2000-06-30 2002-01-15 Yoshikawa Kogyo Co Ltd Zn-Mg-Al ALLOY WIRE ROD AND ITS PRODUCTION METHOD
JP2002020826A (en) * 2000-07-05 2002-01-23 Dowa Mining Co Ltd Zn-Al ALLOY WIRE, ITS PRODUCTION METHOD AND Zn-Al ALLOY WIRE ROD
JP2003183855A (en) * 2001-10-05 2003-07-03 Nippon Steel Corp Piping and piping member for plain water
JP2010516414A (en) * 2007-01-30 2010-05-20 ヘモテック アーゲー Biodegradable vascular support
WO2012070659A1 (en) * 2010-11-26 2012-05-31 独立行政法人物質・材料研究機構 Nickel-free stainless steel stent

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. VOJTECH, J. KUBASEK, J. SERAK, P. NOVAK: "Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixati", ACTA BIOMATERIALIA, vol. 7, JPN6015023462, 14 May 2011 (2011-05-14), NL, pages 3515 - 3522, ISSN: 0003964632 *
PATRICK K. BOWEN, JAROSLAW DRELICH, AND JEREMY GOLDMAN: "Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents", ADVANCED MATERIALS, vol. 25, JPN6015023463, 14 May 2013 (2013-05-14), DE, pages 2577 - 2582, XP055224983, ISSN: 0003964633, DOI: 10.1002/adma.201300226 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113005330A (en) * 2021-03-17 2021-06-22 昆明理工大学 Biodegradable superfine crystal Zn-Li alloy material and preparation method and application thereof

Also Published As

Publication number Publication date
WO2015147183A1 (en) 2015-10-01
JP6560192B2 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
JP6560192B2 (en) Zinc alloy tubular material and method for producing the same, stent using the same, and method for producing the same
JP6560193B2 (en) Magnesium alloy tube material and manufacturing method thereof, and stent using the same and manufacturing method thereof
Venezuela et al. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review
Mostaed et al. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation
Sikora-Jasinska et al. Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications
US10085860B2 (en) Magnesium-based absorbable implants
CN102802689B (en) Biodegradable implantable medical devices formed from super - pure magnesium-based material
JP5952803B2 (en) Implants made from biodegradable magnesium alloys
US9849008B2 (en) Bioabsorbable implants
JP6392250B2 (en) Biodegradable endoprosthesis and method of processing biodegradable magnesium alloy used therein
JP2019137921A (en) Magnesium alloy, method for production thereof, and use thereof
Toong et al. Bioresorbable metals in cardiovascular stents: Material insights and progress
US9504554B2 (en) Microstructured absorbable implant
Liu et al. Influence of fine-grain and solid-solution strengthening on mechanical properties and in vitro degradation of WE43 alloy
US9913707B2 (en) Implant and method for production thereof
JP2018515156A (en) Microstructure of biodegradable magnesium alloys for endoprostheses
US11284988B2 (en) Method for producing biocorrodible magnesium alloy implant
Li et al. Effects of thermomechanical processing on microstructures, mechanical properties, and biodegradation behaviour of dilute Zn–Mg alloys
Barua Study of the structural properties and control of degradation rate for biodegradable metallic stents using cold spray
US20100137971A1 (en) Stent with a Structure of a Biocorrodible Material and a Controlled Corrosion Behavior
JP2016187501A (en) Medical implant
Galvin Characterisation of the performance of an absorbable magnesium stent by experimental and numerical analysis
de Oliveira Botelho Biodegradable stents made of pure Mg and AZ91 alloy through SPS sintering

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181112

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190328

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190718

R151 Written notification of patent or utility model registration

Ref document number: 6560192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350