JPWO2015146424A1 - Radiation detection material - Google Patents
Radiation detection material Download PDFInfo
- Publication number
- JPWO2015146424A1 JPWO2015146424A1 JP2015515068A JP2015515068A JPWO2015146424A1 JP WO2015146424 A1 JPWO2015146424 A1 JP WO2015146424A1 JP 2015515068 A JP2015515068 A JP 2015515068A JP 2015515068 A JP2015515068 A JP 2015515068A JP WO2015146424 A1 JPWO2015146424 A1 JP WO2015146424A1
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- radiation
- detection material
- radiation detection
- specific resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 67
- 238000001514 detection method Methods 0.000 title claims abstract description 66
- 239000000463 material Substances 0.000 title claims abstract description 40
- 239000013078 crystal Substances 0.000 claims abstract description 61
- CMJCEVKJYRZMIA-UHFFFAOYSA-M thallium(i) iodide Chemical compound [Tl]I CMJCEVKJYRZMIA-UHFFFAOYSA-M 0.000 claims description 23
- 230000005251 gamma ray Effects 0.000 claims description 16
- 239000002994 raw material Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 238000005259 measurement Methods 0.000 description 12
- 238000000746 purification Methods 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 239000003708 ampul Substances 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000002600 positron emission tomography Methods 0.000 description 6
- 229910004613 CdTe Inorganic materials 0.000 description 5
- 229910004611 CdZnTe Inorganic materials 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 238000002603 single-photon emission computed tomography Methods 0.000 description 3
- 229910052716 thallium Inorganic materials 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000012264 purified product Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000004857 zone melting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/46—Sulfur-, selenium- or tellurium-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/115—Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Measurement Of Radiation (AREA)
- Nuclear Medicine (AREA)
- Light Receiving Elements (AREA)
Abstract
Tl4+2xSxI4で表すことができる単結晶体を含有する放射線検出材料に関し、PETなどの実用的な放射線検出器に使用できる放射線検出材料を提案する。式:Tl4+2xSxI4(式中、x=0.77〜1.10)で表すことができる単結晶体を含有する放射線検出材料、中でも、前記単結晶体の比抵抗が1×1011Ω・cm以上であることを特徴とする放射線検出材料を提案する。A radiation detection material that can be used in a practical radiation detector such as PET is proposed with respect to a radiation detection material containing a single crystal that can be represented by Tl4 + 2xSxI4. A radiation detection material containing a single crystal that can be represented by the formula: Tl4 + 2xSxI4 (wherein x = 0.77 to 1.10). A radiation detection material characterized by the above is proposed.
Description
本発明は、アルファ線、ベータ線、ガンマ線などの放射線を検出できる放射線検出材料に関する。中でも、放射線、特にガンマ線を吸収して直接電気信号に変換できる直接変換型放射線検出材料に関する。 The present invention relates to a radiation detection material capable of detecting radiation such as alpha rays, beta rays, and gamma rays. In particular, the present invention relates to a direct conversion type radiation detection material that can absorb radiation, particularly gamma rays, and convert it directly into an electrical signal.
放射線検出器としては、放射線を直接電荷に変換して電荷を蓄積する直接変換方式と、放射線を一度、蛍光体で光に変換し、その光を光導電層で電荷に変換し蓄積する間接変換方式がある。
間接変換方式による放射線検出装置は、小型化するのが困難であるなどの課題を抱えていたため、近年、直接変換方式による放射線検出装置が注目を集めている。As a radiation detector, a direct conversion system that converts radiation directly into electric charge and stores the charge, and indirect conversion that converts the radiation into light once with a phosphor, and converts the light into electric charge and stores it with a photoconductive layer. There is a method.
Since the indirect conversion type radiation detection apparatus has problems such as difficulty in miniaturization, in recent years, the direct conversion type radiation detection apparatus has attracted attention.
放射線を吸収して直接電気信号に変換できる材料として、例えばCdTeやCdZnTeなどが知られている。また、ガンマ線検出材料としてTlBrが研究されている。
さらに最近、Tl6SeI4がX線を直接電気信号に変換できることが開示され(特許文献1、特許文献2)、Tl6SI4についてもX線を直接電気信号に変換できることが報告されている(非特許文献1)。For example, CdTe and CdZnTe are known as materials that can absorb radiation and convert it directly into an electrical signal. Further, TlBr has been studied as a gamma ray detection material.
More recently, it has been disclosed that Tl 6 SeI 4 can directly convert X-rays into electrical signals (Patent Documents 1 and 2), and Tl 6 SI 4 has also been reported to be able to directly convert X-rays into electrical signals. (Non-Patent Document 1).
Tl4+2xSxI4で表すことができる材料は、CdTeやCdZnTeに比べて密度が高いため、放射線の検出感度を高くすることができるばかりか、バンドキャップが大きく、比抵抗が高いため、エネルギー分解能を高くすることができ、高解像度の画像を得ることもできるため、注目に値する放射線検出材料の一つである。The material that can be represented by Tl 4 + 2x S x I 4 has a higher density than CdTe and CdZnTe, so it can not only increase the detection sensitivity of radiation, but also has a large band cap and high specific resistance. Since the energy resolution can be increased and a high-resolution image can be obtained, it is one of the remarkable radiation detection materials.
ところが、従来開示されていたTl4+2xSxI4は、比抵抗の数値などをみても、PET(positron emission tomography (陽電子放出断層撮影))やSPECT(single photon emission computed tomography(単一光子放射断層撮影))などの放射線検出器に使用するには実用性に乏しいものであった。However, Tl 4 + 2x S x I 4 that has been disclosed in the past is not limited to the numerical value of specific resistance, but PET (positron emission tomography) or SPECT (single photon emission computed tomography) It was not practical for use in radiation detectors such as radiation tomography)).
そこで本発明は、Tl4+2xSxI4で表すことができる単結晶体を含有する放射線検出材料に関し、PETなどの実用的な放射線検出器に十分に使用することができる、新たな放射線検出材料を提案せんとするものである。The present invention relates to a radiation detecting material containing a single crystal body which can be represented by Tl 4 + 2x S x I 4 , it can be sufficiently used in a practical radiation detector, such as a PET, a new radiation It is intended to propose a detection material.
本発明は、式:Tl4+2xSxI4(式中、x=0.77〜1.10)で表すことができる単結晶体を含有する放射線検出材料、中でも、前記単結晶体の比抵抗が1×1011Ω・cm以上であることを特徴とする放射線検出材料を提案する。The present invention relates to a radiation detection material containing a single crystal that can be represented by the formula: Tl 4 + 2x S x I 4 (where x = 0.77 to 1.10). A radiation detection material having a specific resistance of 1 × 10 11 Ω · cm or more is proposed.
本発明が提案する放射線検出材料は、放射線、特にガンマ線を吸収して直接電気信号に変換できるばかりか、比抵抗が十分に高いため、PETなどの実用的な放射線検出器に十分に使用することができる。 The radiation detection material proposed by the present invention not only absorbs radiation, particularly gamma rays, and can be directly converted into an electric signal, but also has a sufficiently high specific resistance, so that it can be used sufficiently for practical radiation detectors such as PET. Can do.
次に、実施の形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。 Next, the present invention will be described based on an embodiment. However, the present invention is not limited to the embodiment described below.
<本発明放射線検出材料>
本発明に係る放射線検出材料(以下「本発明放射線検出材料」と称する)は、式:Tl4+2xSxI4(式中、x=0.77〜1.10)で表すことができる単結晶体(「本単結晶体」と称する)を含有する放射線検出材料である。<Radiation detection material of the present invention>
The radiation detection material according to the present invention (hereinafter referred to as “the present radiation detection material”) can be represented by the formula: Tl 4 + 2x S x I 4 (where x = 0.77 to 1.10). A radiation detection material containing a single crystal (referred to as “the present single crystal”).
Tl4+2xSxI4(式中、x=0.77〜1.10)で表すことができる単結晶体の密度は7.25g/cm3であり、CdTe(6.2g/cm3)やCdZnTe(6.0g/cm3)に比べて密度が高いため、放射線の検出感度を高くすることができる。また、ガンマγ線の検知に重要な光電効果を起こす確率は、物質の原子番号Zの5乗に比例するため、Zの大きいTl(Z=81)を含むTl4+2xSxI4(式中、x=0.77〜1.10)で表すことができる単結晶体は、Cd(Z=48)及びTe(Z=52)を含むCdTeやCdZnTeに比べ、放射線の検出感度を高くすることができる。
さらに、バンドキャップが大きく、比抵抗が高いため、エネルギー分解能を高くすることができ、高解像度の画像を得ることができる。
また、Tl4+2xSxI4(式中、x=0.77〜1.10)で表すことができる単結晶体は、素子化において適度な硬度を有しており、潮解性もないため、加工性の問題もない点でも優れている。
さらに、Tl4+2xSxI4(式中、x=0.77〜1.10)で表すことができる単結晶体の融点は、最高でも440℃と低く、CdTe(融点819℃)やCdZnTe(融点1092〜1295℃)といった高融点の物質と比べて結晶製造時の電力コストが低いという点でも生産性にも優れている。The density of the single crystal that can be represented by Tl 4 + 2x S x I 4 (wherein x = 0.77 to 1.10) is 7.25 g / cm 3 , and CdTe (6.2 g / cm 3 ) And CdZnTe (6.0 g / cm 3 ), the radiation detection sensitivity can be increased. In addition, since the probability of causing a photoelectric effect important for detection of gamma γ rays is proportional to the fifth power of the atomic number Z of the substance, Tl 4 + 2x Sx I 4 (including Tl with a large Z (Z = 81)) In the formula, a single crystal that can be represented by x = 0.77 to 1.10) has higher radiation detection sensitivity than CdTe and CdZnTe containing Cd (Z = 48) and Te (Z = 52). can do.
Furthermore, since the band cap is large and the specific resistance is high, the energy resolution can be increased and a high-resolution image can be obtained.
In addition, a single crystal that can be represented by Tl 4 + 2x S x I 4 (wherein x = 0.77 to 1.10) has an appropriate hardness in device formation and does not have deliquescence. Therefore, it is excellent in that there is no problem of workability.
Furthermore, the melting point of the single crystal that can be represented by Tl 4 + 2x S x I 4 (wherein x = 0.77 to 1.10) is as low as 440 ° C. at the maximum, and CdTe (melting point 819 ° C.) Compared with a high melting point material such as CdZnTe (melting point: 1092 to 1295 ° C.), the power cost at the time of crystal production is low and the productivity is excellent.
(本単結晶体の組成)
本単結晶体の組成式Tl4+2xSxI4において、xは0.77〜1.10であることが重要であり、中でも0.83以上或いは1.07以下であるのが好ましい。(Composition of this single crystal)
In the composition formula Tl 4 + 2x S x I 4 of this single crystal, it is important that x is 0.77 to 1.10, and it is particularly preferably 0.83 or more or 1.07 or less.
本単結晶体の組成は、比抵抗を高める観点から、化学量論組成(stoichiometry)であるx=1.0から所定の範囲内、すなわちx=0.77〜1.10であることが重要である。但し、x=0.77〜1.10に制御することは簡単なことではない。後述するように、ゾーンメルト精製(帯域精製)では、TlI(ヨウ化タリウム)が蒸発して再混入することによってTlI(ヨウ化タリウム)リッチになり易いため、後述するような特別な工夫が必要である。例えば、帯溶融精製において、アンプル内を不活性ガス雰囲気とすると共に、加熱温度をできるだけ低温、具体的には440〜450℃にすることで、TlI(ヨウ化タリウム)の蒸発を抑制しつつ、精製回数を少なくとも50回以上行った後、純度の高い先端部のみ取り出し、再度別のアンプルに入れて、さらに50回以上の精製を行うようにするなどの工夫が必要である。 From the viewpoint of increasing the specific resistance, it is important that the composition of this single crystal is within a predetermined range from x = 1.0 which is a stoichiometric composition, that is, x = 0.77 to 1.10. It is. However, it is not easy to control x = 0.77 to 1.10. As will be described later, in zone melt refining (zone refining), TlI (thallium iodide) tends to become rich by TlI (thallium iodide) evaporation and remixed, so special measures as described later are required. It is. For example, in zone melting and refining, the inside of the ampoule is made an inert gas atmosphere, and the heating temperature is made as low as possible, specifically 440 to 450 ° C., while suppressing evaporation of TlI (thallium iodide) After performing the purification at least 50 times or more, it is necessary to devise such that only the high-purity tip is taken out and placed in another ampoule and further purified 50 times or more.
(比抵抗)
本発明放射線検出材料は、比抵抗が1×1011Ω・cm以上であることが好ましく、中でも1×1012Ω・cm以上であるのが好ましく、その中でも1×1013Ω・cm以上であるのが好ましい。
従来開示されていたTl6SI4の比抵抗は5.7×109Ω・cm〜2.6×1010Ω・cm程度であったため、これに比べて本発明放射線検出材料の比抵抗は顕著に高いことが認められる。このように本発明放射線検出材料の比抵抗が高い原因としては、単結晶体の組成が所定範囲内すなわちx=0.77〜1.10に制御されており、且つ、不純物が極めて少ないためであると推察することができる。(Resistivity)
The radiation detection material of the present invention preferably has a specific resistance of 1 × 10 11 Ω · cm or more, more preferably 1 × 10 12 Ω · cm or more, and more preferably 1 × 10 13 Ω · cm or more. Preferably there is.
Since the specific resistance of Tl 6 SI 4 that has been conventionally disclosed was about 5.7 × 10 9 Ω · cm to 2.6 × 10 10 Ω · cm, the specific resistance of the radiation detection material of the present invention is Remarkably high. As described above, the reason why the specific resistance of the radiation detection material of the present invention is high is that the composition of the single crystal is controlled within a predetermined range, that is, x = 0.77 to 1.10, and the impurities are extremely small. It can be inferred that there is.
(純度)
本単結晶体は、その純度が4N以上であるのが好ましく、中でも6N以上、その中でも8N以上であるのが特に好ましい。
上述したように、本単結晶体の組成が所定範囲内すなわちx=0.77〜1.10に制御されており、且つ、不純物が極めて少ないことに起因して、本発明放射線検出材料の比抵抗を顕著に高くすることができる。(purity)
The single crystal body preferably has a purity of 4N or higher, more preferably 6N or higher, and particularly preferably 8N or higher.
As described above, the composition of the present single crystal body is controlled within a predetermined range, that is, x = 0.77 to 1.10. The resistance can be significantly increased.
本単結晶体の純度を上記の如く高めて不純物濃度を下げるためには、例えば、後述するように、帯溶融精製において、アンプル内を不活性ガス雰囲気とすると共に、加熱温度をできるだけ低温、具体的には440〜450℃にすることで、ヨウ化タリウムの蒸発を抑制しつつ、精製回数を少なくとも50回以上行った後、純度の高い先端部のみ取り出し、再度別のアンプルに入れて、さらに50回以上の精製を行うようにするのが好ましい。但し、この方法に限定するものではない。 In order to increase the purity of the single crystal as described above and reduce the impurity concentration, for example, as described later, in the zone melt purification, the ampoule is made an inert gas atmosphere and the heating temperature is set as low as possible. Specifically, by suppressing the evaporation of thallium iodide at a temperature of 440 to 450 ° C., after performing the number of purifications at least 50 times or more, only the high-purity tip is taken out and put in another ampule again, It is preferable to carry out purification 50 times or more. However, it is not limited to this method.
<本発明放射線検出材料の特性>
本発明放射線検出材料は、放射線、特にガンマ線を吸収して直接電気信号に変換することができる直接変換型放射線検出材料である。
放射線としては、ガンマ線やX線などの電磁放射線と、アルファ線、ベータ線、電子線、陽子線、中性子線、重粒子線などの粒子放射線とを挙げることができる。<Characteristics of the radiation detection material of the present invention>
The radiation detection material of the present invention is a direct conversion type radiation detection material capable of absorbing radiation, particularly gamma rays, and converting it directly into an electrical signal.
Examples of radiation include electromagnetic radiation such as gamma rays and X-rays, and particle radiation such as alpha rays, beta rays, electron beams, proton beams, neutron beams, and heavy particle beams.
本単結晶体、すなわちTl4+2xSxI4(式中、x=0.77〜1.10)で表すことができる単結晶体は、密度が高く、放射線、特にガンマ線の検出材料として検出感度を高くすることができる。This single crystal, that is, a single crystal that can be represented by Tl 4 + 2x S x I 4 (wherein x = 0.77 to 1.10) has a high density and is used as a material for detecting radiation, particularly gamma rays. Detection sensitivity can be increased.
本単結晶体を用いて作製した検出素子にバイアス電圧を印加すると、137Cs線源からのガンマ線が検出素子に入射したときに発生する相互作用により電荷が発生し、電流ピークとしてガンマ線の応答を確認することができる。
また、本単結晶体を用いて作製した検出素子にバイアス電圧を印加すると、109Cd線源および241Am線源のガンマ線に対するシグナルを確認することができ、光電ピークを測定することができる。
よって、本発明放射線検出材料は、例えばPETやSPECTなどの放射線医療装置の放射線検出材料として有効に用いることができる。When a bias voltage is applied to a detection element fabricated using this single crystal, charge is generated by the interaction that occurs when gamma rays from a 137 Cs radiation source enter the detection element, and the response of gamma rays as a current peak is generated. Can be confirmed.
In addition, when a bias voltage is applied to a detection element manufactured using this single crystal body, signals with respect to gamma rays of 109 Cd ray source and 241 Am ray source can be confirmed, and a photoelectric peak can be measured.
Therefore, the radiation detection material of the present invention can be effectively used as a radiation detection material for a radiation medical apparatus such as PET or SPECT.
<製造方法>
本単結晶体の製造方法の一例としては、例えば、所定量のTlI(ヨウ化タリウム)粉末と、所定量のTl2S粉末とを混合し、混合物をガラス管内に封入し、加熱してTl−S−I化合物を合成し、得られた合成物に対して所定の精製を行い、その後、結晶育成を行って単結晶体を得、必要に応じて研磨して本単結晶体を得る方法を挙げることができる。<Manufacturing method>
As an example of the method for producing the single crystal, for example, a predetermined amount of TlI (thallium iodide) powder and a predetermined amount of Tl 2 S powder are mixed, and the mixture is sealed in a glass tube and heated to Tl. A method of synthesizing a —SI compound, subjecting the resultant compound to a predetermined purification, then crystal growth to obtain a single crystal, and polishing as necessary to obtain the present single crystal Can be mentioned.
原料としては、単相のTlI(ヨウ化タリウム)及び単相のTl2Sを、それぞれ製造するか或いは購入して用意し、これらを原料として用いて製造するのが好ましい。
この際、TlI(ヨウ化タリウム)及びTl2Sのいずれかが異相を有するものであると、製造される単結晶体も異相を有するものとなる可能性が高くなり、例えば、本発明放射線検出材料のように、比抵抗を1×1011Ω・cm以上とすることが困難となる。As raw materials, single-phase TlI (thallium iodide) and single-phase Tl 2 S are preferably manufactured or purchased and prepared, and these are preferably used as raw materials.
At this time, if either TlI (thallium iodide) or Tl 2 S has a heterogeneous phase, there is a high possibility that the produced single crystal will also have a heterogeneous phase. Like a material, it is difficult to make the specific resistance 1 × 10 11 Ω · cm or more.
Tl−S−I化合物を合成する際の密閉管内の雰囲気としては、アルゴンなどの不活性ガス雰囲気が好ましく、その際の加熱温度としては500〜700℃が好ましく、中でも550℃以上或いは650℃以下であるのがさらに好ましい。加熱時間は、数分以上、好ましくは6時間以上で加熱温度により適宜調整するのが好ましい。 The atmosphere in the sealed tube when synthesizing the Tl-SI compound is preferably an inert gas atmosphere such as argon, and the heating temperature at that time is preferably 500 to 700 ° C, and more preferably 550 ° C or more or 650 ° C or less. More preferably. The heating time is preferably several minutes or longer, preferably 6 hours or longer, and appropriately adjusted depending on the heating temperature.
精製方法は、本単結晶体を製造する上で極めて重要である。
例えば、上述のようにして合成したTl−S−I化合物をアンプルに入れて、アルゴンなどの不活性雰囲気として密封し、このアンプルを、移動型ヒーターで周囲から加熱する帯域精製(ゾーンメルト精製)を繰り返し行うのが好ましい。
この際、帯域精製の際の温度をできるだけ低温、具体的には440〜450℃にすることで、TlI(ヨウ化タリウム)の蒸発を抑制しながら、精製回数を少なくとも50回以上行った後、純度の高い先端部のみ取り出し、再度別のアンプルに入れて、さらに50回以上の精製を行うのが好ましい。
これにより、TlI(ヨウ化タリウム)の蒸発を抑制することができ、しかも、蒸発したTlI(ヨウ化タリウム)が再混入することを抑制することができるため、1×1011Ω・cm以上という高抵抗の単結晶を得ることができる。The purification method is extremely important in producing this single crystal.
For example, the Tl-S-I compound synthesized as described above is put in an ampule, sealed as an inert atmosphere such as argon, and the ampule is heated from the surroundings with a moving heater (zone melt purification). Is preferably performed repeatedly.
At this time, after performing the purification at least 50 times while suppressing evaporation of TlI (thallium iodide) by setting the temperature during the zone purification as low as possible, specifically 440 to 450 ° C., It is preferable to take out only the high-purity tip and place it again in another ampoule, and further purify it 50 times or more.
Thereby, evaporation of TlI (thallium iodide) can be suppressed, and furthermore, evaporation of TlI (thallium iodide) can be suppressed from being mixed again, so that it is 1 × 10 11 Ω · cm or more. A high-resistance single crystal can be obtained.
結晶育成方法は、単結晶を育成できる方法であれば任意である。例えば、チョクラルスキー法(CZ法)、徐冷法、水平ブリッジマン法(HB法)、垂直ブリッジマン法(VB法)、トラベリングヒーター法(TH法)などを挙げることができる。 The crystal growth method is arbitrary as long as it can grow a single crystal. For example, the Czochralski method (CZ method), the slow cooling method, the horizontal Bridgman method (HB method), the vertical Bridgman method (VB method), the traveling heater method (TH method) and the like can be mentioned.
研磨法も任意であり、例えば研磨紙による研磨や、湿式研磨を適宜採用すればよい。 The polishing method is also arbitrary. For example, polishing with abrasive paper or wet polishing may be employed as appropriate.
<語句の説明>
本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。<Explanation of words>
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), unless otherwise specified, “X is preferably greater than X” or “preferably Y”. It also includes the meaning of “smaller”.
In addition, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), it is “preferably greater than X” or “preferably less than Y”. Includes intentions.
以下、本発明を下記実施例及び比較例に基づいてさらに詳述する。 Hereinafter, the present invention will be further described in detail based on the following examples and comparative examples.
<単結晶体の作製>
単相のTlI(ヨウ化タリウム)(4N)と単相のTl2S(4N)の量を、実施例・比較例毎に変えて混合し、混合物をガラス管内に封入し(アルゴン0.5atm)、600℃で6時間加熱してTl−S−I化合物を合成した。得られた合成物を、440℃で帯域精製を繰り返し50回行った後、純度の高い先端部のみ取り出してガラス製アンプル内に封入し(アルゴン0.5atm)、再び440℃で帯域精製を繰り返し50回行い、精製品を得た。
こうして得られた精製品を、トラベリングヒーター法(TH法)により、加熱温度440℃、育成速度5mm/時間で結晶育成して単結晶体を得、これを0.3μmのアルミナ研磨剤を用いてバフ研磨して単結晶体を得た。<Production of single crystal>
The amounts of single-phase TlI (thallium iodide) (4N) and single-phase Tl 2 S (4N) were mixed for each of the Examples and Comparative Examples, and the mixture was sealed in a glass tube (Argon 0.5 atm). ) And heated at 600 ° C. for 6 hours to synthesize a Tl-SI compound. The obtained compound was subjected to repeated zone purification at 440 ° C. 50 times, then only the high-purity tip was taken out and sealed in a glass ampoule (Argon 0.5 atm), and the zone purification was repeated again at 440 ° C. The purified product was obtained 50 times.
The purified product thus obtained was crystal-grown by a traveling heater method (TH method) at a heating temperature of 440 ° C. and a growth rate of 5 mm / hour to obtain a single crystal, which was obtained using a 0.3 μm alumina abrasive. A single crystal was obtained by buffing.
<組成測定>
前記のようにして単結晶体を秤量して塩酸と硝酸の混合物中で溶解し、適宜希釈した後ICP発光分析装置により液中のTl、S、Iの定量を行った。単結晶体の重量と希釈率により、単結晶体のTl、S、I組成(重量%)を算出した。各Tl、S、I組成値から、式:Tl4+2xSxI4におけるxを算出し表1に示した。<Composition measurement>
The single crystal was weighed as described above, dissolved in a mixture of hydrochloric acid and nitric acid, diluted as appropriate, and then Tl, S, and I in the liquid were quantified using an ICP emission spectrometer. The Tl, S, and I composition (% by weight) of the single crystal was calculated from the weight and dilution rate of the single crystal. From the respective Tl, S, and I composition values, x in the formula: Tl 4 + 2x S x I 4 was calculated and shown in Table 1.
<XRD測定>
前記のようにして得られた単結晶体をメノウ乳鉢で粉砕し、粉末X線回折測定(XRD測定)を行った。測定装置は、試料水平型強力X線回折装置 RINT-TTR III(株式会社リガク製)を用いた。測定にはCuKα線を用い、加速電圧は50kV、印加電流は300mAとした。実施例3で作製した単結晶体のX線プロファイルを図1に示す。
XRD測定した結果、実施例1〜4及び比較例1〜3で作製した単結晶体はいずれも、単相のTl6SI4からなる単結晶体であることが分かった。<XRD measurement>
The single crystal obtained as described above was pulverized in an agate mortar, and powder X-ray diffraction measurement (XRD measurement) was performed. As a measuring apparatus, a sample horizontal strong X-ray diffractometer RINT-TTR III (manufactured by Rigaku Corporation) was used. CuKα rays were used for the measurement, the acceleration voltage was 50 kV, and the applied current was 300 mA. An X-ray profile of the single crystal produced in Example 3 is shown in FIG.
As a result of XRD measurement, it was found that all the single crystals produced in Examples 1 to 4 and Comparative Examples 1 to 3 were single crystals made of single-phase Tl 6 SI 4 .
<検出素子の作製>
前記のようにして単結晶体を、0.3μmのアルミナ研磨剤を用いてバフ研磨して、0.3〜1.5mmの厚みの平板状の単結晶体を得た。これをアセトン中で超音波洗浄した後、室温で乾燥させ、真空蒸着機SVC−700(サンユー電子株式会社製)にセットした。金ワイヤーをタングステン製電極にセットして、5×10−3Paに真空引きをした後、電流約35mAで加熱し、単結晶体へ金を蒸着させ、厚さ約100nm、直径3mmの電極を形成し、検出素子を得た。
実施例3で作製した単結晶体を使用して作製した検出素子の透過像(写真)を図2に示す。<Preparation of detection element>
As described above, the single crystal was buffed using a 0.3 μm alumina abrasive to obtain a flat single crystal having a thickness of 0.3 to 1.5 mm. This was ultrasonically washed in acetone, then dried at room temperature, and set in a vacuum deposition machine SVC-700 (manufactured by Sanyu Electronics Co., Ltd.). A gold wire is set on a tungsten electrode, vacuumed to 5 × 10 −3 Pa, heated at a current of about 35 mA to deposit gold on the single crystal, and an electrode having a thickness of about 100 nm and a diameter of 3 mm is formed. The detection element was obtained.
FIG. 2 shows a transmission image (photograph) of the detection element produced using the single crystal produced in Example 3.
<放射線評価:ガンマ線応答測定>
検出素子をAl製のガードボックス内に納め、金電極と外部回路との接続はバネ接点によって行った。検出素子の出力を電荷敏感型プリアンプ581K型(クリアパルス株式会社製)に接続し、バイアス電圧の印加はバイアス電源6661P型(クリアパルス株式会社製)により行った。プリアンプからの出力は、スペクトロスコピー・アンプ4417型(クリアパルス株式会社製)で増幅し、デジタル・フォスファ・オシロスコープTDS5052B(テクトロニクス社製)を用いてガンマ線との相互作用で生じる電流ピーク(シグナル)を観察した。波高分布スペクトルの計測は、スペクトロスコピー・アンプの出力をアナログ/デジタル変換機1125型(クリアパルス株式会社製)で処理し、600秒間の信号をPCで記録した。ガンマ線源としては、1MBqの137Cs、109Cd、241Amを用い、ガンマ線測定時は検出素子から5mmの距離に設置した。<Radiation evaluation: gamma-ray response measurement>
The detection element was placed in an Al guard box, and the gold electrode and the external circuit were connected by a spring contact. The output of the detection element was connected to a charge sensitive preamplifier 581K type (manufactured by Clear Pulse Co., Ltd.), and the bias voltage was applied by a bias power source 6661P type (manufactured by Clear Pulse Co., Ltd.). The output from the preamplifier is amplified by a spectroscopic amplifier 4417 type (manufactured by Clear Pulse Co., Ltd.), and the current peak (signal) generated by the interaction with gamma rays using a digital phosphor oscilloscope TDS5052B (manufactured by Tektronix) is used. Observed. For measurement of the pulse height distribution spectrum, the output of the spectroscopic amplifier was processed by an analog / digital converter 1125 type (manufactured by Clear Pulse Co., Ltd.), and a signal for 600 seconds was recorded by a PC. As the gamma ray source, 1 MBq of 137 Cs, 109 Cd, and 241 Am was used, and the gamma ray source was installed at a distance of 5 mm from the detection element.
ガンマ線応答性を次の基準で評価し、評価結果を表1に示した。
○(good): 137Cs線源のガンマ線でシグナルが検出でき、且つ、109Cd線源のガンマ線及び241Am線源のガンマ線の光電ピークが確認できた。
△(fair): 137Cs線源のガンマ線でシグナルが検出できたが、109Cd線源のガンマ線及び241Am線源のガンマ線の光電ピークが確認できなかった。
×(poor): 137Cs線源のガンマ線でシグナルが検出できなかった。The gamma-ray response was evaluated according to the following criteria, and the evaluation results are shown in Table 1.
○ (good): A signal could be detected with gamma rays from a 137 Cs radiation source, and photoelectric peaks of gamma rays from a 109 Cd radiation source and 241 Am radiation source could be confirmed.
Δ (fair): Signals could be detected with gamma rays from a 137 Cs source, but no photopeaks of gamma rays from a 109 Cd source and 241 Am source could be confirmed.
X (poor): No signal was detected with gamma rays from a 137 Cs source.
<比抵抗測定>
検出素子をAl製のガードボックス内に納め、金電極と外部回路との接続はバネ接点によって行った。検出素子の出力をBNCの同軸ケーブルにてデジタルエレクトロメーターR8252(株式会社エーディーシー製)に接続し、I−V測定を実施した。I−V測定の傾きから、検出素子の抵抗R(Ω)を求めた。また、単結晶体の比抵抗ρ(Ω・cm)は、以下の式から算出した。ただし、Sは電極の面積(cm2)、dは検出素子の厚み(cm)である。
ρ=R・S/d
図6に実施例3、図7に比較例3のI−Vカーブを示した。
実施例1〜4及び比較例1〜3について、xと、比抵抗と、ガンマ線測定の結果を表1に示す。<Specific resistance measurement>
The detection element was placed in an Al guard box, and the gold electrode and the external circuit were connected by a spring contact. The output of the detection element was connected to a digital electrometer R8252 (manufactured by ADC Corporation) with a BNC coaxial cable, and IV measurement was performed. The resistance R (Ω) of the detection element was determined from the slope of the IV measurement. The specific resistance ρ (Ω · cm) of the single crystal was calculated from the following equation. However, S is an area (cm < 2 >) of an electrode, d is the thickness (cm) of a detection element.
ρ = R · S / d
FIG. 6 shows the IV curve of Example 3 and FIG. 7 shows the comparative example 3.
Table 1 shows the results of x, specific resistance, and gamma ray measurement for Examples 1 to 4 and Comparative Examples 1 to 3.
(考察)
実施例・比較例の比抵抗についてみると、実施例3を用いた検出素子の比抵抗は1.1×1013Ω・cmと非常に高いため、ガンマ線検出時のノイズ(暗電流)を低く抑えることができた。他の実施例についても、同様にガンマ線検出時のノイズ(暗電流)を低く抑えることができた。
他方、比較例3を用いた検出素子の抵抗は7.7×105Ω・cmと低いため、ガンマ線検出時のノイズ(暗電流)が大きくなってしまった。他の比較例についても、同様にガンマ線検出時のノイズ(暗電流)は大きいものであった。(Discussion)
As for the specific resistance of the example and comparative example, the specific resistance of the detection element using the example 3 is as high as 1.1 × 10 13 Ω · cm, so the noise (dark current) at the time of gamma ray detection is low. I was able to suppress it. Similarly, in other examples, noise (dark current) at the time of gamma ray detection could be suppressed to a low level.
On the other hand, since the resistance of the detection element using Comparative Example 3 is as low as 7.7 × 10 5 Ω · cm, noise (dark current) at the time of gamma ray detection has increased. Similarly, the noise (dark current) at the time of gamma ray detection was large for the other comparative examples.
実施例3の検出素子に800Vのバイアス電圧を印加して137Cs線源を近づけると、シグナルが確認できた。ガンマ線照射前後での実施例3の波高分布スペクトルを図3に示す。ガンマ線照射の有無で明確に波高分布スペクトルが異なるため、137Csのガンマ線を検知できた。また、同条件で109Cd、241Am線源からのガンマ線を照射したときの実施例3の波高分布スペクトルを図4、図5に示す。
109Cdの22keV、88keV、241Amの59.5keVのエネルギーのガンマ線による光電ピークが明確に判別できる。このことから、実施例3はガンマ線のエネルギーを弁別してガンマ線量を計測できる能力を有すると考えられる。When a bias voltage of 800 V was applied to the detection element of Example 3 and a 137 Cs radiation source was brought closer, a signal could be confirmed. The wave height distribution spectrum of Example 3 before and after gamma ray irradiation is shown in FIG. 137 Cs gamma rays could be detected because the wave height distribution spectrum clearly differed with and without gamma ray irradiation. In addition, FIG. 4 and FIG. 5 show the wave height distribution spectra of Example 3 when gamma rays from a 109 Cd, 241 Am radiation source are irradiated under the same conditions.
The photoelectric peaks due to gamma rays with 109 Cd of 22 keV, 88 keV, and 241 Am of 59.5 keV can be clearly distinguished. From this, it is considered that Example 3 has an ability to measure gamma dose by discriminating gamma ray energy.
実施例1の検出素子に100Vのバイアス電圧を印加して137Cs線源を近づけると、シグナルが確認できたため、ガンマ線への応答が可能なことを確認した。しかし、109Cd、241Am線源からのガンマ線を照射したときの波高分布スペクトルでは、光電ピークが確認できないため、ガンマ線検出素子としての能力は実施例3に比べると劣るものであった。これは、組成分析結果で得られたxが小さく、比抵抗が低いためであると考えられる。
他方、比較例1〜3のように比抵抗が低い単結晶体を用いた検出素子の場合、検出素子に137Cs線源を近づけてもシグナルが確認できなかった。これは、ガンマ線との相互作用による電流が流れないか、もしくは信号が弱くノイズに埋もれてしまうためと考えられる。When a bias voltage of 100 V was applied to the detection element of Example 1 and a 137 Cs radiation source was brought closer, a signal was confirmed, and it was confirmed that a response to gamma rays was possible. However, in the wave height distribution spectrum when gamma rays from a 109 Cd, 241 Am radiation source were irradiated, the photoelectric peak could not be confirmed, so the ability as a gamma ray detection element was inferior to that of Example 3. This is considered to be because x obtained from the composition analysis result is small and the specific resistance is low.
On the other hand, in the case of the detection element using a single crystal having a low specific resistance as in Comparative Examples 1 to 3, no signal could be confirmed even when a 137 Cs radiation source was brought close to the detection element. This is presumably because current due to interaction with gamma rays does not flow or the signal is weak and buried in noise.
比抵抗の大きい実施例2、3、4については、137Csのガンマ線を検知でき、109Cd、241Am線源のガンマ線の光電ピークを観測できた。実施例1は137Csのガンマ線を検知できたが、109Cd、241Am線源のガンマ線の光電ピークは観測されなかった。
一方で、比較例1〜3は比抵抗が低いため、137Csのガンマ線を検知できなかった。In Examples 2, 3, and 4 having a large specific resistance, 137 Cs gamma rays could be detected, and photoelectric peaks of 109 Cd and 241 Am ray sources were observed. In Example 1, gamma rays of 137 Cs could be detected, but no photoelectric peak of gamma rays from 109 Cd, 241 Am source was observed.
On the other hand, since Comparative Examples 1 to 3 have low specific resistance, 137 Cs gamma rays could not be detected.
図8に、実施例1〜4及び比較例1〜3について、式:Tl4+2xSxI4のx値と比抵抗との関係をプロットした。
この図から、ガンマ線を検出するためには、放射線検出材料の比抵抗が1011Ω・cm以上あることが必要であり、そのときのTl4+2xSxI4式中で表されるxの範囲は0.77〜1.10であることを見出した。望ましくは、単結晶体の比抵抗が1012Ω・cm以上であり、そのときのxの範囲は0.83以上或いは1.07以下であると考えられる。FIG. 8 plots the relationship between the x value of the formula: Tl 4 + 2x Sx I 4 and the specific resistance for Examples 1 to 4 and Comparative Examples 1 to 3.
From this figure, in order to detect gamma rays, it is necessary that the specific resistance of the radiation detection material is 10 11 Ω · cm or more, and x expressed in the Tl 4 + 2x S x I 4 equation at that time. Was found to be 0.77 to 1.10. Desirably, the specific resistance of the single crystal is 10 12 Ω · cm or more, and the range of x at that time is considered to be 0.83 or more or 1.07 or less.
上記実施例及びこれまで発明者が行ってきた試験結果などから、式:Tl4+2xSxI4(式中、x=0.77〜1.10)で表すことができる単結晶体を含有する放射線検出材料、中でも、前記単結晶体の比抵抗が1×1011Ω・cm以上である放射線検出材料であれば、37Cs線源のガンマ線に対するON/OFFを確認することができるばかりか、109Cd、241Am線源のガンマ線に対する応答シグナルを確認することができ、光電ピークを測定することができた。よって、PETなどの実用的な放射線検出器に十分に使用することができることが分かった。Based on the above examples and the results of tests conducted by the inventors so far, a single crystal body represented by the formula: Tl 4 + 2x S x I 4 (where x = 0.77 to 1.10) is obtained. The radiation detection material contained, in particular, the radiation detection material having a specific resistance of the single crystal of 1 × 10 11 Ω · cm or more can confirm ON / OFF of the 37 Cs source with respect to gamma rays. In addition, the response signal of 109 Cd, 241 Am radiation source to gamma rays could be confirmed, and the photopeak could be measured. Therefore, it turned out that it can fully be used for practical radiation detectors, such as PET.
Claims (4)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014059888 | 2014-03-24 | ||
JP2014059888 | 2014-03-24 | ||
PCT/JP2015/055153 WO2015146424A1 (en) | 2014-03-24 | 2015-02-24 | Radiation-detecting material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2015146424A1 true JPWO2015146424A1 (en) | 2017-04-13 |
Family
ID=54194958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015515068A Pending JPWO2015146424A1 (en) | 2014-03-24 | 2015-02-24 | Radiation detection material |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2015146424A1 (en) |
WO (1) | WO2015146424A1 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004077098A1 (en) * | 2003-02-27 | 2004-09-10 | Kabushiki Kaisha Toshiba | X-ray detector and x-ray examination device using it |
WO2012021519A2 (en) * | 2010-08-10 | 2012-02-16 | Northwestern University | Methods and compositions for the detection of x-ray and gamma-ray radiation |
JP5953116B2 (en) * | 2012-05-18 | 2016-07-20 | Jx金属株式会社 | Compound semiconductor crystal for radiation detection element, radiation detection element, and radiation detector |
-
2015
- 2015-02-24 WO PCT/JP2015/055153 patent/WO2015146424A1/en active Application Filing
- 2015-02-24 JP JP2015515068A patent/JPWO2015146424A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2015146424A1 (en) | 2015-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shah et al. | Thallium bromide radiation detectors | |
Shah et al. | CeBr/sub 3/scintillators for gamma-ray spectroscopy | |
Churilov et al. | Thallium bromide nuclear radiation detector development | |
Chaudhuri et al. | Charge transport properties in CdZnTeSe semiconductor room-temperature γ-ray detectors | |
Gokhale et al. | Growth, fabrication, and testing of bismuth tri-iodide semiconductor radiation detectors | |
Kim et al. | Continued development of thallium bromide and related compounds for gamma-ray spectrometers | |
JP6058030B2 (en) | Crystal materials, radiation detectors, imaging devices, nondestructive inspection devices, and lighting equipment | |
Matsumoto et al. | Bismuth tri-iodide crystal for nuclear radiation detectors | |
US20230378388A1 (en) | Methods for growing doped cesium lead halides | |
Yang et al. | Recent advances in radiation detection technologies enabled by metal-halide perovskites | |
Oliveira et al. | Purification and preparation of TlBr crystals for room temperature radiation detector applications | |
Peng et al. | X-ray detection based on crushed perovskite crystal/polymer composites | |
Krishna et al. | Characterization of Cd0. 9Zn0. 1Te based virtual Frisch grid detectors for high energy gamma ray detection | |
US9429662B2 (en) | Bulk semiconducting scintillator device for radiation detection | |
US11531124B2 (en) | Inorganic ternary halide semiconductors for hard radiation detection | |
Sajjad et al. | Growth of Large-Area Cd₀. ₉Zn₀. ₁Te single crystals and fabrication of pixelated guard-ring detector for room-temperature γ-ray detection | |
WO2015037726A1 (en) | Scintillator crystal material, single crystal scintillator, radiation detector, imaging device and non-destructive inspection device | |
Hitomi et al. | TlBr gamma-ray spectrometers using the depth sensitive single polarity charge sensing technique | |
US9416022B2 (en) | Method for preparing bismuth iodide article and method for manufacturing radiation detecting element | |
JP2017062151A (en) | Radiation detection element and method of use therefor | |
Nagarkar et al. | Lithium alkali halides-New thermal neutron detectors with n-γ discrimination | |
Onodera et al. | Fabrication of indium iodide X-and gamma-ray detectors | |
WO2015146424A1 (en) | Radiation-detecting material | |
US9612345B2 (en) | Visible scintillation photodetector device incorporating chalcopyrite semiconductor crystals | |
Hitomi et al. | Thallium lead iodide radiation detectors |