JPWO2015119195A1 - Epoxy resin composition, cured product thereof, and semiconductor device - Google Patents

Epoxy resin composition, cured product thereof, and semiconductor device Download PDF

Info

Publication number
JPWO2015119195A1
JPWO2015119195A1 JP2015561026A JP2015561026A JPWO2015119195A1 JP WO2015119195 A1 JPWO2015119195 A1 JP WO2015119195A1 JP 2015561026 A JP2015561026 A JP 2015561026A JP 2015561026 A JP2015561026 A JP 2015561026A JP WO2015119195 A1 JPWO2015119195 A1 JP WO2015119195A1
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
epoxy
parts
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015561026A
Other languages
Japanese (ja)
Other versions
JP6470186B2 (en
Inventor
政隆 中西
政隆 中西
一真 井上
一真 井上
川野 裕介
裕介 川野
田中 栄一
栄一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Publication of JPWO2015119195A1 publication Critical patent/JPWO2015119195A1/en
Application granted granted Critical
Publication of JP6470186B2 publication Critical patent/JP6470186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/063Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/08Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/04Epoxynovolacs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、耐熱性、難燃性に優れたエポキシ樹脂組成物と、その硬化物、およびそれらを用いた半導体装置を提供することを目的とする。本発明のエポキシ樹脂組成物は、軟化点(ASTM D 3104準拠)が100〜120℃である下記式(1)で表されるエポキシ樹脂と下記式(2)で表されるエポキシ化合物のエポキシ樹脂混合物、ビフェニルアラルキル型のフェノール樹脂および無機フィラーを含有する。【化1】(式(1)中、nは平均値で5〜20の数を表す。)【化2】An object of this invention is to provide the epoxy resin composition excellent in heat resistance and a flame retardance, its hardened | cured material, and a semiconductor device using them. The epoxy resin composition of the present invention has an epoxy resin represented by the following formula (1) and an epoxy compound represented by the following formula (2) whose softening point (according to ASTM D 3104) is 100 to 120 ° C. Contains a mixture, a biphenyl aralkyl type phenolic resin and an inorganic filler. (In the formula (1), n is an average value and represents a number of 5 to 20.)

Description

本発明は耐熱性、難燃性に優れた硬化物を与えるエポキシ樹脂組成物に関する。   The present invention relates to an epoxy resin composition that provides a cured product excellent in heat resistance and flame retardancy.

さらに、本発明は高機能が要求される電気電子材料用途、特に半導体の封止剤、薄膜基板材料として好適なエポキシ樹脂組成物、およびその硬化物と、それらを用いた半導体装置に関する。   Furthermore, the present invention relates to an electrical and electronic material application that requires high functionality, in particular, an epoxy resin composition suitable as a semiconductor sealant and a thin film substrate material, a cured product thereof, and a semiconductor device using them.

エポキシ樹脂組成物は作業性及びその硬化物の優れた電気特性、耐熱性、接着性、耐湿性(耐水性)等により電気・電子部品、構造用材料、接着剤、塗料等の分野で幅広く用いられている。   Epoxy resin compositions are widely used in the fields of electrical and electronic parts, structural materials, adhesives, paints, etc. due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. It has been.

しかし近年、電気・電子分野においてはその発展に伴い、樹脂組成物の高純度化をはじめ耐湿性、密着性、誘電特性、フィラー(無機または有機充填剤)を高充填させるための低粘度化、成型サイクルを短くするための反応性のアップ等の諸特性の一層の向上が求められている。又、構造材としては航空宇宙材料、レジャー・スポーツ器具用途などにおいて軽量で機械物性の優れた材料が求められている。特に近年、省エネの視点からパワーデバイスへの注目が大きくなってきている(非特許文献1)。
従来、パワーデバイスはシリコンゲルでの封止が主流であったが、今後、生産性やコストの面、さらにその強度、信頼性の面から熱硬化性の樹脂への変換がこれから大きく進展しようとしている。さらにこのパワーデバイスの駆動温度は年々上昇していく傾向にあり、例えばシリコン系の半導体では150℃以上での駆動温度を想定して設計されており、150℃を超える非常に高い温度に対する耐熱性が求められている(非特許文献2)。
However, in recent years, with the development in the electric / electronic field, moisture resistance, adhesion, dielectric properties, low viscosity for high filling of filler (inorganic or organic filler) as well as high purity of resin composition, There is a need for further improvements in various properties such as increased reactivity to shorten the molding cycle. Further, as a structural material, there is a demand for a material that is lightweight and has excellent mechanical properties in applications such as aerospace materials and leisure / sports equipment. In particular, in recent years, attention has been focused on power devices from the viewpoint of energy saving (Non-Patent Document 1).
In the past, power devices were mainly sealed with silicon gel, but in the future, conversion to thermosetting resins will continue to make significant progress in terms of productivity and cost, as well as strength and reliability. Yes. Furthermore, the driving temperature of this power device tends to increase year by year. For example, silicon-based semiconductors are designed assuming a driving temperature of 150 ° C. or higher, and have heat resistance to very high temperatures exceeding 150 ° C. (Non-Patent Document 2).

“2008年 STRJ報告 半導体ロードマップ専門委員会 平成20年度報告”、第8章、p1−17、[online]、平成21年3月、JEITA (社)電子情報技術産業協会 半導体技術ロードマップ専門委員会、[平成24年5月30日検索]、インターネット<URL:http://strj−jeita.elisasp.net/strj/nenjihoukoku−2008.cfm>“2008 STRJ Report Semiconductor Roadmap Technical Committee 2008 Report”, Chapter 8, p1-17, [online], March 2009, JEITA Japan Electronics and Information Technology Industries Association Semiconductor Technology Roadmap Specialist Association, [May 30, 2012 search], Internet <URL: http: // strj-jeita. eliasp. net / strj / nenjihoukoku-2008. cfm> 高倉信之他、松下電工技報 車関連デバイス技術 車載用高温動作IC、74号、日本、2001年5月31日、35−40頁Nobuyuki Takakura et al., Matsushita Electric Engineering Technical Report Car-related device technology High-temperature operation IC for vehicles, 74, Japan, May 31, 2001, pp. 35-40

耐熱性の高いエポキシ樹脂は一般に架橋密度の高いエポキシ樹脂となる。
そして架橋密度の高いエポキシ樹脂は吸水率が高く、もろく、熱分解特性が悪くなる。また電気特性が悪くなる傾向にある。高温駆動の半導体の場合、熱分解特性が重要であるだけでなく電気特性が重要であるため、架橋密度の高いエポキシ樹脂の使用は好ましくない。架橋密度を下げるとこれらの不利な特性は改善されるが、耐熱性が低くなり、ガラス転移点(Tg)が低下する。駆動温度がガラス転移点を超える場合、一般にTgを超える温度で体積抵抗率が低下することから、電気特性が悪化する。
こういった特性を改善しようとした場合、樹脂自体の分子量を大きくすることで耐熱性を向上させるという手法が用いられる場合があるが、非常に粘度が高くなる。そのため、半導体の封止においては半導体全体をきれいに覆う必要があるところ、高粘度であるときれいに覆われにくくなることからボイド等の未充填部ができ、半導体封止材としては適当でない。
また一般に耐熱性の高い硬化物は難燃性が悪くなる傾向を有する。
特に150℃以上の熱機械特性でのTgを有する化合物は難燃性が悪いものが多く、その両立が求められている。
即ち、本発明は、半導体封止用に好適な流動性を有し、かつ耐熱性、難燃性に優れたエポキシ樹脂組成物と、その硬化物、およびそれらを用いた半導体装置を提供することを目的とする。
An epoxy resin having high heat resistance generally becomes an epoxy resin having a high crosslinking density.
An epoxy resin having a high crosslinking density has a high water absorption rate, is brittle, and deteriorates thermal decomposition characteristics. In addition, the electrical characteristics tend to deteriorate. In the case of a semiconductor driven at high temperature, the use of an epoxy resin having a high crosslinking density is not preferable because not only thermal decomposition characteristics are important but also electrical characteristics are important. Lowering the crosslinking density improves these disadvantageous properties, but lowers heat resistance and lowers the glass transition point (Tg). When the driving temperature exceeds the glass transition point, the volume resistivity is generally lowered at a temperature exceeding Tg, so that the electrical characteristics are deteriorated.
When trying to improve these characteristics, a technique of improving the heat resistance by increasing the molecular weight of the resin itself may be used, but the viscosity becomes very high. Therefore, it is necessary to cleanly cover the entire semiconductor when sealing the semiconductor. However, when the viscosity is high, it is difficult to cleanly cover the semiconductor, and thus unfilled portions such as voids are formed, which is not suitable as a semiconductor sealing material.
In general, a cured product having high heat resistance tends to have poor flame retardancy.
In particular, many compounds having Tg with thermomechanical properties of 150 ° C. or higher have poor flame retardancy, and both are required to be compatible.
That is, the present invention provides an epoxy resin composition having fluidity suitable for semiconductor encapsulation and having excellent heat resistance and flame retardancy, a cured product thereof, and a semiconductor device using them. With the goal.

本発明者らは前記したような実状に鑑み、鋭意検討した結果、本発明を完成させるに至った。
すなわち本発明は、下記[1]〜[4]に関する。
[1]軟化点(ASTM D 3104準拠)が100〜120℃である下記式(1)で表されるエポキシ樹脂と下記式(2)で表されるエポキシ化合物のエポキシ樹脂混合物、ビフェニルアラルキル型のフェノール樹脂および無機フィラーを含有するエポキシ樹脂組成物。
As a result of intensive studies in view of the actual situation as described above, the present inventors have completed the present invention.
That is, the present invention relates to the following [1] to [4].
[1] An epoxy resin mixture of an epoxy resin represented by the following formula (1) and an epoxy compound represented by the following formula (2) having a softening point (according to ASTM D 3104) of 100 to 120 ° C., biphenylaralkyl type An epoxy resin composition containing a phenol resin and an inorganic filler.

Figure 2015119195
Figure 2015119195

(式(1)中、nは平均値で5〜20の数を表す。) (In formula (1), n represents an average value of 5 to 20)

Figure 2015119195
Figure 2015119195

[2]前記式(1)で表されるエポキシ樹脂がオルソクレゾールノボラックにエピハロヒドリンを反応させることで得られるエポキシ樹脂であって、
該オルソクレゾールノボラック中の2核体および3核体の合計含有量が、ゲルパーミエーションクロマトグラフィー(GPC)面積百分率で10面積%以下である[1]に記載のエポキシ樹脂組成物。
[3][1]または[2]に記載のエポキシ樹脂組成物を硬化させた硬化物。
[4]粒状またはタブレット状に成型した[1]または[2]に記載のエポキシ樹脂組成物で半導体チップ覆い、175〜250℃で成型した半導体装置。
[2] The epoxy resin represented by the formula (1) is an epoxy resin obtained by reacting an orthocresol novolak with an epihalohydrin,
The epoxy resin composition according to [1], wherein the total content of the binuclear body and the trinuclear body in the orthocresol novolak is 10 area% or less in terms of area percentage of gel permeation chromatography (GPC).
[3] A cured product obtained by curing the epoxy resin composition according to [1] or [2].
[4] A semiconductor device formed by covering a semiconductor chip with the epoxy resin composition according to [1] or [2] molded into a granular or tablet shape and molded at 175 to 250 ° C.

本発明によれば、半導体封止用に好適な流動性を有し、かつ耐熱性、難燃性に優れたエポキシ樹脂組成物と、その硬化物、およびそれらを用いた半導体装置を提供することができる。
特に、本発明のエポキシ樹脂組成物は半導体の封止、特にパワーデバイス用の半導体素子の封止に用いられ、高い耐熱性、難燃性を有する信頼性の高い半導体装置を与えることができる。
According to the present invention, there are provided an epoxy resin composition having fluidity suitable for semiconductor encapsulation and excellent in heat resistance and flame retardancy, a cured product thereof, and a semiconductor device using them. Can do.
In particular, the epoxy resin composition of the present invention is used for semiconductor sealing, particularly for sealing semiconductor elements for power devices, and can provide a highly reliable semiconductor device having high heat resistance and flame retardancy.

本発明のエポキシ樹脂組成物は特定のエポキシ樹脂混合物と特定の硬化剤、および無機フィラーを含有する。尚、本明細書において、軟化点は特に断りのない限りASTM D 3104準拠(メトラ法)で測定した値である。   The epoxy resin composition of the present invention contains a specific epoxy resin mixture, a specific curing agent, and an inorganic filler. In this specification, the softening point is a value measured according to ASTM D 3104 (Metra method) unless otherwise specified.

本発明におけるエポキシ樹脂混合物は、オルソクレゾールノボラック型エポキシ樹脂と4,4’−ビスグリシジルオキシビフェニルを含有する。本発明におけるエポキシ樹脂混合物は、オルソクレゾールノボラック型エポキシ樹脂を主成分とする。エポキシ樹脂混合物中、4,4’−ビスグリシジルオキシビフェニルの含有量は、10〜25面積%(ゲルパーミエーションクロマトグラフィー(以下、GPCと称す。)(検出器:RI)で得られたチャートにより算出)が好ましく、より好ましくは10〜23面積%、特に好ましくは10〜20面積%である。4,4’−ビスグリシジルオキシビフェニルとオルソクレゾールノボラック型エポキシ樹脂の好ましい割合は、GPCの面積%比で9:1〜3:1(オルソクレゾールノボラック型エポキシ樹脂:4,4’−ビスグリシジルオキシビフェニル)であり、特に好ましい割合は、9:1〜4:1である。
4,4’−ビスグリシジルオキシビフェニルは、10面積%以上含まれることで流動性の向上に有効であり、含有量が25面積%以下であることで耐熱分解特性、耐水特性の維持に有効である。
本発明におけるエポキシ樹脂混合物においては、上記の通りオルソクレゾールノボラック型エポキシ樹脂を主成分とするところ、このようなオルソクレゾールノボラック型エポキシ樹脂は、下記式(1)で表されるエポキシ樹脂である。
The epoxy resin mixture in the present invention contains an ortho-cresol novolac type epoxy resin and 4,4′-bisglycidyloxybiphenyl. The epoxy resin mixture in the present invention contains an ortho-cresol novolac type epoxy resin as a main component. In the epoxy resin mixture, the content of 4,4′-bisglycidyloxybiphenyl is 10 to 25 area% (gel permeation chromatography (hereinafter referred to as GPC) (detector: RI)). Calculation) is preferable, more preferably 10 to 23 area%, and particularly preferably 10 to 20 area%. A preferred ratio of 4,4′-bisglycidyloxybiphenyl to orthocresol novolac type epoxy resin is 9: 1 to 3: 1 in terms of area percentage of GPC (orthocresol novolac type epoxy resin: 4,4′-bisglycidyloxy Biphenyl), and a particularly preferred ratio is 9: 1 to 4: 1.
4,4'-bisglycidyloxybiphenyl is effective in improving fluidity when contained in 10% by area or more, and effective in maintaining heat-resistant decomposition characteristics and water-resistant characteristics when the content is 25% by area or less. is there.
In the epoxy resin mixture in the present invention, an ortho-cresol novolak type epoxy resin is a main component as described above, and such an ortho-cresol novolak type epoxy resin is an epoxy resin represented by the following formula (1).

Figure 2015119195
Figure 2015119195

(式(1)中、nは平均値で5〜20の数を表す。)
本発明におけるエポキシ樹脂混合物中のオルソクレゾールノボラック型エポキシ樹脂は、nが平均値で5〜20であり、5〜10であることが好ましい。また、このようなオルソクレゾールノボラック型エポキシ樹脂は特にGPCでの測定において、数平均分子量が100〜10000であることが好ましく、1000〜5000であることがより好ましく、1300〜2000であることが特に好ましい。また、本発明のエポキシ樹脂組成物中のオルソクレゾールノボラック型エポキシ樹脂の軟化点は100〜120℃であり、好ましくは100〜115℃である。軟化点100℃を下回る樹脂であるとできたエポキシ樹脂組成物の耐熱性や、耐熱分解特性が低下し、120℃を超えるエポキシ樹脂の場合、ビフェノールのエポキシ樹脂との組成物となってもその溶融粘度が下がりきらず、半導体封止用途等の用途においては流動性に課題があり、ボイドの発生要因となる。
(In formula (1), n represents an average value of 5 to 20)
The ortho cresol novolac type epoxy resin in the epoxy resin mixture in the present invention has an average value of 5 to 20, and preferably 5 to 10. Further, such an ortho-cresol novolak type epoxy resin has a number average molecular weight of preferably from 100 to 10,000, more preferably from 1000 to 5,000, particularly preferably from 1,300 to 2,000, particularly in measurement by GPC. preferable. Moreover, the softening point of the ortho cresol novolak type epoxy resin in the epoxy resin composition of the present invention is 100 to 120 ° C, preferably 100 to 115 ° C. The heat resistance and thermal decomposition characteristics of the epoxy resin composition which has been made to be a resin having a softening point lower than 100 ° C. are reduced, and in the case of an epoxy resin having a temperature higher than 120 ° C. The melt viscosity does not decrease, and there is a problem in fluidity in applications such as semiconductor sealing, which causes voids.

本発明におけるエポキシ樹脂混合物の形状としては、均質に混合されている場合、結晶性を帯びた固形樹脂形状を持つことが好ましく、軟化点(ASTM D 3104準拠)はハンドリング性、また硬化時の成形性の問題から、100〜120℃であることが好ましく、より好ましくは100〜110℃である。一般の樹脂は室温で取り扱うとベタつきを生じやすく、少なくとも軟化点の50℃以下の温度で使用することが好ましいとされる。特に電子材料に関しては東南アジアでの生産が考えられるため、室内が40℃を超えることが想定されるため、軟化点が100℃を超えることで、室温での取り扱いが非常に簡便になるだけでなく、粉砕、混練性に優れる。しかしながら軟化点が高すぎる場合、混練時にきれいに溶解しないという課題があるばかりか、溶融させようと温度をかけすぎると、混練時に反応をしてしまう可能性が高い。したがって120℃以下の軟化点が好ましい。
尚、結晶性を帯びた樹脂とは、それ自体結晶性を帯び、白濁した樹脂となっておらず、一見結晶性を発現していなくても25〜100℃の間で8時間以上放置することで透明な樹脂から白濁するような樹脂を意味する。
As the shape of the epoxy resin mixture in the present invention, it is preferable to have a solid resin shape with crystallinity when homogeneously mixed, and the softening point (according to ASTM D 3104) is handling property and molding at the time of curing. From the problem of property, it is preferable that it is 100-120 degreeC, More preferably, it is 100-110 degreeC. General resins tend to be sticky when handled at room temperature, and are preferably used at least at a softening point of 50 ° C. or lower. In particular, electronic materials can be produced in Southeast Asia, so it is assumed that the room will exceed 40 ° C. Therefore, the softening point exceeding 100 ° C will not only make the handling at room temperature very convenient. , Excellent crushing and kneading properties. However, when the softening point is too high, there is a problem that it does not dissolve cleanly at the time of kneading, and there is a high possibility that a reaction will occur at the time of kneading if the temperature is too high for melting. Therefore, a softening point of 120 ° C. or lower is preferable.
In addition, the resin having crystallinity is itself crystalline and does not become a cloudy resin, and it is allowed to stand at 25-100 ° C. for 8 hours or more even if it does not express crystallinity at first glance. It means a resin that becomes cloudy from a transparent resin.

本発明におけるエポキシ樹脂混合物はその150℃における溶融粘度が0.11Pa以上1.0Pa・s以下であることが好ましく、さらに好ましくは0.11Pa・s以上0.8Pa・s以下であり、特に0.11Pa・s以上0.7Pa・s以下であることが好ましい。
特にパワーデバイスにおいてはワイヤが太いため、粘度が高くても封止ができるが、1.0Pa・sを超えると、成型性に課題が出てくる恐れがある。また、逆に低すぎる場合、空気を巻き込んだまま硬化してしまうウェルドボイドができる等の課題があり、ある程度の粘度、すなわち0.11Pa・s以上の粘度がある方が空気をベントより金型の外に押し出しやすく、好ましい。
The epoxy resin mixture in the present invention preferably has a melt viscosity at 150 ° C. of 0.11 Pa to 1.0 Pa · s, more preferably 0.11 Pa · s to 0.8 Pa · s, particularly 0. It is preferably 11 Pa · s or more and 0.7 Pa · s or less.
Especially in a power device, since the wire is thick, it can be sealed even if the viscosity is high, but if it exceeds 1.0 Pa · s, there may be a problem in moldability. On the other hand, if it is too low, there is a problem such as forming a weld void that hardens while entraining the air. It is preferable because it can be easily pushed out of the glass.

本発明におけるエポキシ樹脂混合物はそれぞれのエポキシ樹脂を均一に混合しても構わないが、本発明においてはクレゾールノボラックと4,4’−ビフェノールを混合し、エピハロヒドリンと反応させることで得ることが好ましい。クレゾールノボラックとしてはオルソクレゾールノボラックであることが好ましい。
また、使用するクレゾールノボラックないしオルソクレゾールノボラックにおいては、2核体及び3核体の含有量がGPCでの測定において合計で15面積%以下であることが好ましく、10面積%以下であることが特に好ましい。また、2核体は10面積%以下であることが好ましく、5面積%以下であることが特に好ましい。さらに、3核体は10面積%以下であることが好ましく、5面積%以下であることが特に好ましい。
The epoxy resin mixture in the present invention may be obtained by uniformly mixing the respective epoxy resins, but in the present invention, it is preferably obtained by mixing cresol novolak and 4,4′-biphenol and reacting with epihalohydrin. The cresol novolak is preferably an ortho cresol novolak.
Further, in the cresol novolak or orthocresol novolak to be used, the content of the binuclear body and the trinuclear body is preferably 15 area% or less in total as measured by GPC, and particularly preferably 10 area% or less. preferable. The binuclear body is preferably 10 area% or less, particularly preferably 5 area% or less. Furthermore, the trinuclear body is preferably 10 area% or less, and particularly preferably 5 area% or less.

単純に混合する場合、クレゾールノボラックのエポキシ化と、4,4’−ビフェノールのエポキシ化を別々に行う。その場合、エポキシ化時にクレゾールノボラック同士が一部結合する、また4,4’−ビフェノール同士が一部結合するという反応がおこる。この場合、クレゾールノボラック同士の一部重合は粘度が上昇する程度が著しい。また、4,4’−ビフェノール同士が結合したものは結晶性が非常に高く、相溶性が悪いため、均質に溶解させることが難しい。また耐熱性の低下も誘引する。
これに対し、クレゾールノボラックと4,4’−ビフェノールの混合物をエポキシ化する場合、クレゾールノボラックとビフェノールの一部結合した化合物ができることでクレゾールノボラック同士の重合を抑え、低粘度化を促進することができる。さらに、本化合物はクレゾールノボラックとビフェノール両方の特性を有し、相溶性にもすぐれ、また耐熱性の低下をより抑えることができる。
For simple mixing, the epoxidation of cresol novolac and the epoxidation of 4,4′-biphenol are performed separately. In this case, a reaction occurs in which cresol novolacs are partially bonded to each other and 4,4′-biphenols are partially bonded to each other during epoxidation. In this case, the partial polymerization of cresol novolacs is markedly increased in viscosity. In addition, those in which 4,4′-biphenols are bonded to each other have very high crystallinity and poor compatibility, so that it is difficult to dissolve them uniformly. It also induces a decrease in heat resistance.
In contrast, in the case of epoxidizing a mixture of cresol novolak and 4,4′-biphenol, the formation of a compound in which cresol novolak and biphenol are partially bonded can suppress polymerization between cresol novolacs and promote low viscosity. it can. Furthermore, this compound has the characteristics of both cresol novolac and biphenol, is excellent in compatibility, and can further suppress a decrease in heat resistance.

本発明において使用できるクレゾールノボラックは市販されているものを使用してもよいが、クレゾールとホルムアルデヒドの反応により製造することもできる(日本国特開2002−179750号公報、日本国特開2004−131585号公報を参照)。当該クレゾールノボラック樹脂のとしては、軟化点(ASTM D 3104準拠)は120〜150℃が好ましく、より好ましくは120〜145℃、特に好ましくは120〜140℃が好ましい。
またその構造としてはオルソクレゾールノボラックが好ましく、特に2官能のビスクレゾールFがGPCの測定において5面積%以下、3官能のクレゾールノボラックが5面積%以下であることが好ましい。
またそのMw(平均分子量)は1000以上10000未満が好ましく、特に1000以上5000未満が好ましい。本範囲内にあることで流動性、相溶性、耐熱性、耐熱分解性のバランスが優れる傾向にある。また、分子量分布(Mw/Mn)においては、1.8〜2.5のものを使用することが好ましい。特に好ましくは1.85〜2.15であることが好ましい。
The cresol novolak that can be used in the present invention may be a commercially available one, but can also be produced by the reaction of cresol and formaldehyde (Japanese Patent Laid-Open No. 2002-179750, Japanese Patent Laid-Open No. 2004-131585). Issue no.). As the cresol novolak resin, the softening point (according to ASTM D 3104) is preferably 120 to 150 ° C, more preferably 120 to 145 ° C, and particularly preferably 120 to 140 ° C.
The structure is preferably ortho-cresol novolak, and particularly preferably bifunctional biscresol F is 5 area% or less in GPC measurement, and trifunctional cresol novolac is 5 area% or less.
The Mw (average molecular weight) is preferably 1000 or more and less than 10,000, and particularly preferably 1000 or more and less than 5000. It exists in the tendency for the balance of fluidity | liquidity, compatibility, heat resistance, and thermal decomposition resistance to be excellent because it exists in this range. Moreover, in molecular weight distribution (Mw / Mn), it is preferable to use a thing of 1.8-2.5. Particularly preferred is 1.85 to 2.15.

4,4’−ビフェノールに関しては純度99%以上であることが好ましい。酸化等により一部酸化されてしまっている場合、一官能となってしまうことから耐熱性の低下を招く恐れがあるためである。   With respect to 4,4'-biphenol, the purity is preferably 99% or more. This is because, when it has been partially oxidized by oxidation or the like, it becomes monofunctional and may cause a decrease in heat resistance.

クレゾールノボラックと4,4’−ビフェノールの混合物とエピハロヒドリンとの反応の手法としては特に限定しないが、以下にその合成方法の一例を記載する。   The method for reacting a mixture of cresol novolak, 4,4'-biphenol and epihalohydrin is not particularly limited, but an example of the synthesis method is described below.

本発明におけるエポキシ樹脂混合物を得る反応において、クレゾールノボラック(CN)と4,4’−ビフェノール(BP)を同時にエピハロヒドリンと反応させることでエポキシ樹脂混合物とすることができる。ここで(CN)と(BP)の比率(重量比)としてはCN/BP=3〜9が好ましく、より好ましくは3.5〜5.7、特に好ましくは3.5〜4.5である。耐熱性、難燃性、流動性のバランスの面から本範囲が好ましい。なお、以下、(CN)と(BP)の混合物を本発明におけるフェノール混合物と称す。   In the reaction for obtaining an epoxy resin mixture in the present invention, an epoxy resin mixture can be obtained by simultaneously reacting cresol novolac (CN) and 4,4'-biphenol (BP) with epihalohydrin. Here, the ratio (weight ratio) of (CN) to (BP) is preferably CN / BP = 3 to 9, more preferably 3.5 to 5.7, and particularly preferably 3.5 to 4.5. . This range is preferable from the viewpoint of the balance of heat resistance, flame retardancy, and fluidity. Hereinafter, a mixture of (CN) and (BP) is referred to as a phenol mixture in the present invention.

本発明におけるエポキシ樹脂混合物を得る反応において、エピハロヒドリンとしては工業的に入手が容易なエピクロルヒドリンが好ましい。エピハロヒドリンの使用量は本発明のフェノール混合物の水酸基1モルに対し通常3.0〜15モル、好ましくは3.0〜10モル、より好ましくは3.5〜8.5モルであり、特に好ましくは4.0〜6.0モルである。
3.0モルを下回るとエポキシ当量が大きくなることがあり、また、できたエポキシ樹脂の作業性が悪くなることがあり、15モルを超えると溶剤量が多量になることがある。
特に本発明においては、クレゾールノボラックとビフェノールの反応物が特性に寄与するため、6.0モル以下のエピクロルヒドリン量であることが好ましい。これによりクレゾールノボラックとビフェノールの結合を調整する。
この際、ビフェノールのクレゾールノボラックへの取り込まれ量としては1〜10%が好ましく、特に好ましくは1〜8%である。この量はNMR等でビフェノールとクレゾールのモル数とGPCデータとから算出できるほか、合成時に仕込んだ際の理論的な反応比率とGPCの面積%から算出することができる。具体的な算出方法は下記の通りである。仕込み量から理論上のジグリシジルオキシビフェニルの量を確認する。これに対し、GPCの面積比より、ジグリシジルオキシビフェニルのピーク面積(検出器:RI)にて含有量を確認する。この差引分が取り込まれ量となる。ビフェノールのみであるとビフェノール同士の結合が優先的であるが、クレゾールノボラックの量が多い条件下においては確率論からクレゾールノボラックに優先的に取り込まれることから、その差引分が取り込まれ量と判断して差し支えないと判断する。一方、NMRでの測定においては各々のベンゼン核のプロトン、あるいはカーボンのピーク面積比率によりモル比率を算出する。そのモル比率より理論上のジグリシジルオキシビフェニル量を確認する。後は上記と同様である。尚、仕込み比率から算出される理論エポキシ当量に対する実際のエポキシ当量との差異により大雑把には算出することも可能である。
In the reaction for obtaining the epoxy resin mixture in the present invention, the epihalohydrin is preferably epichlorohydrin which is industrially easily available. The amount of epihalohydrin used is usually 3.0 to 15 mol, preferably 3.0 to 10 mol, more preferably 3.5 to 8.5 mol, particularly preferably 1 mol per mol of the hydroxyl group of the phenol mixture of the present invention. It is 4.0-6.0 mol.
When the amount is less than 3.0 mol, the epoxy equivalent may be increased, and the workability of the resulting epoxy resin may be deteriorated. When the amount exceeds 15 mol, the amount of the solvent may be increased.
In particular, in the present invention, since the reaction product of cresol novolac and biphenol contributes to the characteristics, the amount of epichlorohydrin is preferably 6.0 mol or less. This adjusts the bond between cresol novolac and biphenol.
At this time, the amount of biphenol taken into the cresol novolac is preferably 1 to 10%, particularly preferably 1 to 8%. This amount can be calculated from the number of moles of biphenol and cresol and GPC data by NMR or the like, and can also be calculated from the theoretical reaction ratio and GPC area% when charged during synthesis. A specific calculation method is as follows. The theoretical amount of diglycidyloxybiphenyl is confirmed from the charged amount. On the other hand, the content is confirmed by the peak area of diglycidyloxybiphenyl (detector: RI) from the area ratio of GPC. This subtraction is taken in and becomes the amount. When only biphenol is used, the binding between biphenols is preferential, but under the condition where the amount of cresol novolak is large, it is preferentially incorporated into cresol novolac from the probability theory, so the difference is judged to be the amount incorporated. Judge that there is no problem. On the other hand, in the NMR measurement, the molar ratio is calculated from the proton or carbon peak area ratio of each benzene nucleus. The theoretical amount of diglycidyloxybiphenyl is confirmed from the molar ratio. The rest is the same as above. In addition, it is also possible to roughly calculate based on the difference between the actual epoxy equivalent and the theoretical epoxy equivalent calculated from the charging ratio.

上記反応において、エピハロヒドリンとの反応にはアルカリ金属水酸化物の使用が好ましい。使用しうるアルカリ金属水酸化物としては水酸化ナトリウム、水酸化カリウム等が挙げられ、固形物を利用してもよく、その水溶液を使用してもよいが、本発明においては特に、水分、溶解性、ハンドリングの面からフレーク状に成型された固形物の使用が好ましい。
アルカリ金属水酸化物の使用量はフェノール混合物の水酸基1モルに対して通常0.90〜1.5モルであり、好ましくは0.95〜1.25モル、より好ましくは0.99〜1.15モルである。
In the above reaction, it is preferable to use an alkali metal hydroxide for the reaction with epihalohydrin. Examples of the alkali metal hydroxide that can be used include sodium hydroxide, potassium hydroxide, and the like, and a solid substance may be used, or an aqueous solution thereof may be used. From the viewpoint of property and handling, it is preferable to use a solid material molded into a flake shape.
The amount of alkali metal hydroxide used is usually 0.90 to 1.5 mol, preferably 0.95 to 1.25 mol, more preferably 0.99 to 1. mol, per mol of hydroxyl group in the phenol mixture. 15 moles.

反応を促進するためにテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩を触媒として添加してもかまわない。4級アンモニウム塩の使用量としては本発明のフェノール混合物の水酸基1モルに対し通常0.1〜15gであり、好ましくは0.2〜10gである。   In order to accelerate the reaction, a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide or trimethylbenzylammonium chloride may be added as a catalyst. The amount of the quaternary ammonium salt used is usually 0.1 to 15 g, preferably 0.2 to 10 g, per 1 mol of the hydroxyl group of the phenol mixture of the present invention.

本反応においては上記エピハロヒドリンに加え、非極性プロトン溶媒(ジメチルスルホキシド、ジオキサン、ジメチルイミダゾリジノン等、本発明においてはジメチルスルホキシド、ジオキサンが好ましい。)や、炭素数1〜5のアルコールを併用することが好ましい。炭素数1〜5のアルコールとしてはメタノール、エタノール、イソプロピルアルコールなどのアルコール類である(本発明においてはメタノールが好ましい。)。非極性プロトン溶媒もしくは炭素数1〜5のアルコールの使用量はエピハロヒドリンの使用量に対し通常2〜50重量%、好ましくは4〜25重量%である。また、共沸脱水等の手法により、系内の水分をコントロールしながらエポキシ化を行ってもかまわない。
反応系中の水分が多い場合には、得られたエポキシ樹脂混合物において電気信頼性が低下することがあり、水分は5%以下にコントロールして合成することが好ましい。また、非極性プロトン溶媒を使用してエポキシ樹脂混合物を得た際には、電気信頼性に優れるエポキシ樹脂混合物が得られるため、非極性プロトン溶媒は好適に使用できる。
In this reaction, in addition to the above epihalohydrin, a nonpolar proton solvent (dimethylsulfoxide, dioxane, dimethylimidazolidinone, etc., dimethylsulfoxide and dioxane are preferred in the present invention) and an alcohol having 1 to 5 carbon atoms are used in combination. Is preferred. Examples of the alcohol having 1 to 5 carbon atoms include alcohols such as methanol, ethanol and isopropyl alcohol (methanol is preferred in the present invention). The usage-amount of a nonpolar protic solvent or a C1-C5 alcohol is 2-50 weight% normally with respect to the usage-amount of an epihalohydrin, Preferably it is 4-25 weight%. Moreover, epoxidation may be performed while controlling the moisture in the system by a technique such as azeotropic dehydration.
When the water content in the reaction system is large, the electrical reliability of the obtained epoxy resin mixture may be lowered, and it is preferable to synthesize with the water content controlled to 5% or less. Moreover, when an epoxy resin mixture is obtained using a nonpolar proton solvent, an epoxy resin mixture having excellent electrical reliability can be obtained, and therefore a nonpolar proton solvent can be suitably used.

反応温度は通常30〜90℃であり、好ましくは35〜80℃である。特に本発明においては、より高純度なエポキシ化のために60℃以上が好ましく、還流条件に近い条件での反応が特に好ましい。反応時間は通常0.5〜10時間であり、好ましくは1〜8時間、特に好ましくは1〜3時間である。反応時間が短いと反応が進みきらず、反応時間が長くなると副生成物ができることがある。
これらのエポキシ化反応の反応物を水洗後、または水洗無しに加熱減圧下でエピハロヒドリンや溶媒等を除去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂混合物とするために、回収したエポキシ樹脂混合物を炭素数4〜7のケトン化合物(たとえば、メチルイソブチルケトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン等が挙げられる。)を溶剤として溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて反応を行い、閉環を確実なものにすることも出来る。この場合アルカリ金属水酸化物の使用量はエポキシ化に使用した本発明のフェノール混合物の水酸基1モルに対して通常0.01〜0.3モル、好ましくは0.05〜0.2モルである。反応温度は通常50〜120℃、反応時間は通常0.5〜2時間である。
The reaction temperature is usually 30 to 90 ° C, preferably 35 to 80 ° C. In particular, in the present invention, 60 ° C. or higher is preferable for higher-purity epoxidation, and reaction under conditions close to reflux conditions is particularly preferable. The reaction time is usually 0.5 to 10 hours, preferably 1 to 8 hours, particularly preferably 1 to 3 hours. If the reaction time is short, the reaction cannot proceed, and if the reaction time is long, a by-product may be formed.
After the reaction product of these epoxidation reactions is washed with water or without washing with water, the epihalohydrin, the solvent and the like are removed under heating and reduced pressure. Furthermore, in order to obtain an epoxy resin mixture with less hydrolyzable halogen, the recovered epoxy resin mixture is a ketone compound having 4 to 7 carbon atoms (for example, methyl isobutyl ketone, methyl ethyl ketone, cyclopentanone, cyclohexanone, etc.). Is dissolved as a solvent, and the reaction is carried out by adding an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide to ensure ring closure. In this case, the amount of alkali metal hydroxide used is usually 0.01 to 0.3 mol, preferably 0.05 to 0.2 mol, based on 1 mol of the hydroxyl group of the phenol mixture of the present invention used for epoxidation. . The reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.

反応終了後、生成した塩を濾過、水洗などにより除去し、更に加熱減圧下溶剤を留去することにより本発明におけるエポキシ樹脂混合物が得られる。なお、加熱減圧下、溶剤を留去した後、110〜170℃に保った後、100℃以下、より好ましくは80℃以下の板状体(プレート状、シート状、ベルト状等の形状のもの)上に流延もしくは滴下することで、板状、水滴状(マーブル状)等の形状に成型し、取り出すことが好ましい。なお、80℃以下での冷却後、さらに60℃以下で冷却するという段階的な冷却方法でもかまわない。本工程で得られる固形物は透明なアモルファス状、もしくは結晶が分散した白濁した形状を示すが、もし、固形物は透明なアモルファス状であっても50〜100℃で30分〜10時間加温することで、結晶が分散した白濁した形状となる。   After completion of the reaction, the produced salt is removed by filtration, washing with water, etc., and the solvent is distilled off under heating and reduced pressure to obtain the epoxy resin mixture in the present invention. In addition, after distilling off the solvent under heating and decompression, after maintaining at 110 to 170 ° C., a plate-like body (plate shape, sheet shape, belt shape or the like having a temperature of 100 ° C. or less, more preferably 80 ° C. or less ) It is preferable to form and take out a plate shape, a water droplet shape (marble shape) or the like by casting or dropping on the surface. Note that a stepwise cooling method of cooling at 60 ° C. or lower after cooling at 80 ° C. or lower may be used. The solid material obtained in this step shows a transparent amorphous state or a cloudy shape in which crystals are dispersed. Even if the solid material is a transparent amorphous state, it is heated at 50 to 100 ° C. for 30 minutes to 10 hours. By doing so, it becomes a cloudy shape in which crystals are dispersed.

本発明におけるエポキシ樹脂混合物の好ましい樹脂特性としてはエポキシ当量が175〜215g/eq.であることが好ましく、より好ましくは175〜210g/eq.である。エポキシ当量が上記範囲内にあることで、硬化物の耐熱性、電気信頼性に優れたエポキシ樹脂混合物をより容易に得ることができる。エポキシ当量が215g/eq.を越えている場合、エポキシの環が閉環しきらず、官能基を有さない化合物が多く含まれることがあり、エポキシ当量が下がっていないことがある。またこれら閉環しきらなかった化合物の多くには塩素が含有されている場合が多く、電子材料用途としては高温多湿条件での塩素イオンの遊離、およびそれによる配線の腐食が生じることがある。   As a preferable resin characteristic of the epoxy resin mixture in the present invention, an epoxy equivalent is 175 to 215 g / eq. And more preferably 175 to 210 g / eq. It is. When the epoxy equivalent is within the above range, an epoxy resin mixture excellent in heat resistance and electrical reliability of the cured product can be obtained more easily. Epoxy equivalent is 215 g / eq. In the case where it exceeds the upper limit, the ring of the epoxy is not completely closed, and many compounds having no functional group may be contained, and the epoxy equivalent may not be lowered. Many of these compounds that could not be ring-closed often contain chlorine, and as an electronic material application, the release of chlorine ions under high-temperature and high-humidity conditions and the resulting corrosion of wiring may occur.

また、エポキシ樹脂混合物に残存している全塩素としては、好ましくは1500ppm以下、より好ましくは1200ppm以下、特に900ppm以下であることが好ましい。なお、塩素イオン、ナトリウムイオンについては各々5ppm以下が好ましく、より好ましくは3ppm以下である。塩素イオンは先に記載し、いうまでも無いが、ナトリウムイオン等のカチオンも、特にパワーデバイス用途においては非常に重要なファクターとなり、高電圧がかかった際の不良モードの一因となる。   The total chlorine remaining in the epoxy resin mixture is preferably 1500 ppm or less, more preferably 1200 ppm or less, and particularly preferably 900 ppm or less. In addition, about chlorine ion and sodium ion, 5 ppm or less is preferable respectively, More preferably, it is 3 ppm or less. Chlorine ions are described above. Needless to say, cations such as sodium ions are also very important factors particularly in power device applications, and contribute to a defective mode when a high voltage is applied.

本発明のエポキシ樹脂組成物は、硬化剤としてビフェニルアラルキル型のフェノール樹脂を必須成分とする。
本発明における硬化剤はフェノール類がビフェニレンジイル基で結合している構造であれば特に限定されず、具体的には4,4’−ビス(クロルメチル)−1,1’−ビフェニル、4,4’−ビス(メトキシメチル)−1,1’−ビフェニル、4,4’−ビス(ヒドロキシメチル)−1,1’−ビフェニル、などの置換メチレンビフェニル化合物とフェノール類:フェノール、炭素数1−2のアルキル置換フェノール(クレゾール、エチルフェノール等)、ジヒドロキシベンゼン(レゾルシン、ハイドロキノン、カテコール等)、トリヒドロキシベンゼン(フロログリシノール等)との反応により得られるフェノール樹脂である。具体的な構造の好適なものとしては、例えば下記のものが挙げられる。
The epoxy resin composition of the present invention contains a biphenyl aralkyl type phenol resin as an essential component as a curing agent.
The curing agent in the present invention is not particularly limited as long as it is a structure in which phenols are bonded with a biphenylenediyl group. Specifically, 4,4′-bis (chloromethyl) -1,1′-biphenyl, 4,4 Substituted methylene biphenyl compounds such as' -bis (methoxymethyl) -1,1'-biphenyl, 4,4'-bis (hydroxymethyl) -1,1'-biphenyl, and phenols: phenol, carbon number of 1-2 A phenol resin obtained by a reaction with an alkyl-substituted phenol (cresol, ethylphenol, etc.), dihydroxybenzene (resorcin, hydroquinone, catechol, etc.) and trihydroxybenzene (phloroglicinol, etc.). Examples of suitable specific structures include the following.

Figure 2015119195
Figure 2015119195

(上記式中、Rはそれぞれ独立して水素原子、炭素数1〜3のアルキル基または水酸基を表し、nは繰り返し数で1〜10の数を表す。) (In the above formula, R independently represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a hydroxyl group, and n represents a number of 1 to 10 in terms of the number of repetitions.)

本発明においては、ビフェニルアラルキル型のフェノール樹脂は、軟化点(JIS K−7234準拠)が50〜120℃の樹脂が好ましく、より好ましくは55〜90℃であり、特に好ましくは50〜84℃である。軟化点が50℃をきると室温でのべたつきが激しく、ハンドリングが難しくなる恐れがある。また、120℃を超えると混練時に硬化剤とエポキシ樹脂の反応が一部進行してしまう恐れがある。
さらに、150℃における溶融粘度は0.01〜1.0Pa・sが好ましく、特に好ましくは0.01〜0.5Pa・sである。1.0Pa・sを超えると流動性が悪くなり、未充填部が多くなる恐れがあることから好ましくない。また0.01Pa・s未満である化合物は低分子量となりすぎ、またはフェノールモノマーが残留していることが考えられ、揮発および結晶性の問題から均質な組成物が得るのが難しくなる恐れがあるため、好ましくない。
In the present invention, the biphenyl aralkyl type phenol resin is preferably a resin having a softening point (based on JIS K-7234) of 50 to 120 ° C, more preferably 55 to 90 ° C, and particularly preferably 50 to 84 ° C. is there. When the softening point is below 50 ° C., the stickiness at room temperature is severe and handling may be difficult. Moreover, when it exceeds 120 degreeC, there exists a possibility that reaction of a hardening | curing agent and an epoxy resin may advance at the time of kneading | mixing.
Furthermore, the melt viscosity at 150 ° C. is preferably 0.01 to 1.0 Pa · s, particularly preferably 0.01 to 0.5 Pa · s. Exceeding 1.0 Pa · s is not preferable because the fluidity is deteriorated and the number of unfilled portions may increase. In addition, a compound having a molecular weight of less than 0.01 Pa · s has a low molecular weight, or a phenol monomer may remain, which may make it difficult to obtain a homogeneous composition due to volatilization and crystallinity problems. It is not preferable.

本発明のエポキシ樹脂組成物において本発明における硬化剤の使用量の好適な範囲は、重量比において本発明におけるエポキシ樹脂:本発明における硬化剤=0.5:1〜2:1が好ましく、0.7:1〜1.1:1がより好ましく、0.7:1〜0.9:1が特に好ましい。尚、硬化剤の含有量は全エポキシ樹脂のエポキシ基1当量に対して0.7〜1.2当量が好ましい。エポキシ基1当量に対して、0.7当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られないことがある。
ここで、ビフェニルアラルキル型フェノール樹脂の場合においては、エポキシ樹脂混合物1モルに対して、ビフェニルアラルキル型フェノール樹脂が0.8〜1.1が好ましく、0.85〜1.05が特に好ましい。
In the epoxy resin composition of the present invention, the preferred range of the amount of the curing agent used in the present invention is preferably the epoxy resin in the present invention: the curing agent in the present invention = 0.5: 1 to 2: 1 in weight ratio, 7: 1 to 1.1: 1 are more preferable, and 0.7: 1 to 0.9: 1 are particularly preferable. In addition, as for content of a hardening | curing agent, 0.7-1.2 equivalent is preferable with respect to 1 equivalent of epoxy groups of all the epoxy resins. When less than 0.7 equivalent or more than 1.2 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
Here, in the case of the biphenyl aralkyl type phenol resin, the biphenyl aralkyl type phenol resin is preferably from 0.8 to 1.1, particularly preferably from 0.85 to 1.05 with respect to 1 mol of the epoxy resin mixture.

本発明のエポキシ樹脂組成物は無機フィラーを含有する。無機フィラーとしては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。ここで、吸水率、線膨張率等の硬化物性の向上のため、本発明におけるエポキシ樹脂混合物、本発明における硬化剤と組み合わせるフィラーとして結晶シリカ、溶融シリカ又はアルミナが好ましい。これらは単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明のエポキシ樹脂組成物中において通常60〜95重量%、好ましくは70〜90重量%を占める量が用いられる。
60重量%未満であると吸水率、線膨張率が高すぎる、また95重量%を超えると均一に混練ができなくなる等の不具合が生じる恐れがある。また流動性に課題が出て、未充填なく封止することが難しい場合がある。
The epoxy resin composition of the present invention contains an inorganic filler. Examples of inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like. Examples thereof include, but are not limited to, spherical beads. Here, in order to improve cured properties such as water absorption and linear expansion coefficient, crystalline silica, fused silica or alumina is preferred as a filler to be combined with the epoxy resin mixture in the present invention and the curing agent in the present invention. These may be used alone or in combination of two or more. The content of these inorganic fillers is usually 60 to 95% by weight, preferably 70 to 90% by weight in the epoxy resin composition of the present invention.
If it is less than 60% by weight, the water absorption rate and the linear expansion coefficient may be too high, and if it exceeds 95% by weight, there may be a problem that uniform kneading cannot be performed. In addition, there is a problem in fluidity, and it may be difficult to seal without filling.

以下、本発明のエポキシ樹脂組成物の配合比率、および他の配合物について記載する。   Hereinafter, the blending ratio of the epoxy resin composition of the present invention and other blends will be described.

用い得る硬化促進剤(硬化触媒、重合触媒ともいう。)の具体例としては、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾ−ル類、2−(ジメチルアミノメチル)フェノール、1,8−ジアザ−ビシクロ[5.4.0]ウンデセン−7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、テトラブチルアンモニウム塩、トリイソプロピルメチルアンモニウム塩、トリメチルデカニルアンモニウム塩、セチルトリメチルアンモニウム塩などの4級アンモニウム塩、トリフェニルベンジルフォスフォニウム塩、トリフェニルエチルフォスフォニウム塩、テトラブチルフォスフォニウム塩などの4級フォスフォニウム塩(4級塩のカウンターイオンはハロゲン、有機酸イオン、水酸化物イオンなど、特に指定は無いが、特に有機酸イオン、水酸化物イオンが好ましい。)、オクチル酸スズ等の金属化合物等が挙げられる。硬化促進剤を用いる場合は、エポキシ樹脂100重量部に対して0.01〜5.0重量部が必要に応じ用いられる。   Specific examples of the curing accelerator that can be used (also referred to as a curing catalyst or a polymerization catalyst) include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, and 2- (dimethyl Aminomethyl) phenol, tertiary amines such as 1,8-diaza-bicyclo [5.4.0] undecene-7, phosphines such as triphenylphosphine, tetrabutylammonium salt, triisopropylmethylammonium salt, trimethyl Quaternary ammonium salts such as decanylammonium salt and cetyltrimethylammonium salt, quaternary phosphonium salts such as triphenylbenzylphosphonium salt, triphenylethylphosphonium salt and tetrabutylphosphonium salt (quaternary salt) Counter ions are halogen, organic acid ions, An oxide ion, particularly specification is not, in particular organic acid ion, a hydroxide ion.) Include metal compounds such as tin octylate. When using a hardening accelerator, 0.01-5.0 weight part is used as needed with respect to 100 weight part of epoxy resins.

エポキシ樹脂組成物において、本発明におけるエポキシ樹脂混合物以外に他のエポキシ樹脂を併用することが出来る。併用する場合、全エポキシ樹脂中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。   In the epoxy resin composition, other epoxy resins can be used in combination with the epoxy resin mixture in the present invention. When used in combination, the proportion in the total epoxy resin is preferably 30% by weight or more, particularly preferably 40% by weight or more.

他のエポキシ樹脂の具体例としては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4’−ビフェノール、2,2’−ビフェノール、3,3’,5,5’−テトラメチル−[1,1’−ビフェニル]−4,4’−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’−ビス(クロルメチル)−1,1’−ビフェニル、4,4’−ビス(メトキシメチル)−1,1’−ビフェニル、1,4−ビス(クロロメチル)ベンゼン、1,4−ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂、等シルセスキオキサン系のエポキシ樹脂(鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基、および/またはエポキシシクロヘキサン構造を有するエポキシ樹脂)等の固形または液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。   Specific examples of other epoxy resins include novolac type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, phenol aralkyl type epoxy resins, and the like. Specifically, bisphenol A, bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetate Enone, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4′-bis (chloromethyl) -1,1′-biphenyl, 4,4′-bis (methoxymethyl) -1,1′-biphenyl, 1, Glycidyl ethers derived from polycondensates with 4-bis (chloromethyl) benzene, 1,4-bis (methoxymethyl) benzene and the like, modified products thereof, halogenated bisphenols such as tetrabromobisphenol A, and alcohols , Cycloaliphatic epoxy resin, glycidylamine epoxy resin, glycidyl ester epoxy resin, silsesquioxane epoxy resin (chain structure, cyclic structure, ladder structure, or a mixed structure of at least two of them) Glycidyl group and / or epoxycyclohexane structure Solid or liquid epoxy resin having an epoxy resin) and the like having, but not limited thereto.

本発明のエポキシ樹脂組成物が含有する硬化剤としては、ビフェニルアラルキル型のフェノール樹脂以外の硬化剤を含有してもよい。例えばフェノール樹脂、フェノール系化合物、アミン系化合物、酸無水物系化合物、アミド系化合物、カルボン酸系化合物などが挙げられる。併用する場合、硬化剤中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。
用いうる硬化剤の具体例としては以下の通りである。
フェノール樹脂、フェノール化合物;ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’−ビフェノール、2,2’−ビフェノール、3,3’,5,5’−テトラメチル−[1,1’−ビフェニル]−4,4’−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、、1,4’−ビス(クロロメチル)ベンゼン、1,4’−ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、テルペンとフェノール類の縮合物などのポリフェノール類が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
As a hardening | curing agent which the epoxy resin composition of this invention contains, you may contain hardening | curing agents other than a biphenyl aralkyl type phenol resin. Examples thereof include a phenol resin, a phenol compound, an amine compound, an acid anhydride compound, an amide compound, and a carboxylic acid compound. When used in combination, the proportion of the curing agent is preferably 30% by weight or more, particularly preferably 40% by weight or more.
Specific examples of the curing agent that can be used are as follows.
Phenol resin, phenol compound; bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hy Loxyacetophenone, o-hydroxyacetophenone, dicyclopentadiene, furfural, polycondensates with 1,4′-bis (chloromethyl) benzene, 1,4′-bis (methoxymethyl) benzene, etc., and modified products thereof, Examples thereof include, but are not limited to, halogenated bisphenols such as tetrabromobisphenol A and polyphenols such as terpene and phenol condensates. These may be used alone or in combination of two or more.

併用において好ましいフェノール樹脂としては、フェノールアラルキル樹脂(芳香族アルキレン構造を有する樹脂)が挙げられ、特に好ましくはフェノール、ナフトール、クレゾールから選ばれる少なくとも一種を有する構造であり、そのリンカーとなるアルキレン部が、ベンゼン構造、ナフタレン構造から選ばれる少なくとも一種であることを特徴とする樹脂(具体的にはザイロック、ナフトールザイロック、、フェノール−ナフタレンノボラック樹脂などが挙げられる。)である。   Preferable phenol resins in combination include phenol aralkyl resins (resins having an aromatic alkylene structure), particularly preferably a structure having at least one selected from phenol, naphthol, and cresol, and an alkylene portion serving as a linker thereof. And a resin characterized by at least one selected from a benzene structure and a naphthalene structure (specific examples include zylock, naphthol zylock, and phenol-naphthalene novolak resin).

アミン系化合物、アミド系化合物;ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂などの含窒素化合物が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。   Amine compounds, amide compounds; diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, nitrogen-containing compounds such as polyamide resins synthesized from linolenic acid and ethylenediamine, It is not limited to these. These may be used alone or in combination of two or more.

酸無水物系化合物、カルボン酸系化合物;無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物、シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物、などの酸無水物;各種アルコール、カルビノール変性シリコーン、と前述の酸無水物との付加反応により得られるカルボン酸樹脂が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。   Acid anhydride compounds, carboxylic acid compounds; phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydro Phthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2.2.1] heptane-2, Acid anhydrides such as 3-dicarboxylic acid anhydride and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride; by addition reaction of various alcohols, carbinol-modified silicone, and the above-mentioned acid anhydrides Although the obtained carboxylic acid resin is mentioned, it is not limited to these. These may be used alone or in combination of two or more.

その他の併用し得る硬化剤としては、イミダゾール、トリフルオロボラン−アミン錯体、グアニジン誘導体の化合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
本発明においては特に信頼性の面からフェノール樹脂の使用が好ましい。
Other curing agents that can be used in combination include, but are not limited to, imidazole, trifluoroborane-amine complexes, guanidine derivative compounds, and the like. These may be used alone or in combination of two or more.
In the present invention, it is particularly preferable to use a phenol resin from the viewpoint of reliability.

本発明のエポキシ樹脂組成物において硬化剤の使用量は、全エポキシ樹脂のエポキシ基1当量に対して0.7〜1.2当量が好ましい。エポキシ基1当量に対して、0.7当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られないことがある。   In the epoxy resin composition of the present invention, the amount of the curing agent used is preferably 0.7 to 1.2 equivalents relative to 1 equivalent of the epoxy groups of all epoxy resins. When less than 0.7 equivalent or more than 1.2 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.

本発明のエポキシ樹脂組成物においては、硬化剤とともに硬化促進剤を併用しても差し支えない。用い得る硬化促進剤の具体例としては前記のものが挙げられる。硬化促進剤を用いる場合は、エポキシ樹脂100重量部に対して0.01〜5.0重量部が必要に応じ用いられる。   In the epoxy resin composition of the present invention, a curing accelerator may be used in combination with the curing agent. Specific examples of the curing accelerator that can be used include those described above. When using a hardening accelerator, 0.01-5.0 weight part is used as needed with respect to 100 weight part of epoxy resins.

本発明のエポキシ樹脂組成物には、リン含有化合物を難燃性付与成分として含有させることもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル−2,6−ジキシリレニルホスフェート、1,3−フェニレンビス(ジキシリレニルホスフェート)、1,4−フェニレンビス(ジキシリレニルホスフェート)、4,4’−ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3−フェニレンビス(ジキシリレニルホスフェート)、1,4−フェニレンビス(ジキシリレニルホスフェート)、4,4’−ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。リン含有化合物の含有量はリン含有化合物/全エポキシ樹脂=0.1〜0.6(重量比)が好ましい。0.1以下では難燃性が不十分であり、0.6以上では硬化物の吸湿性、誘電特性が低下することがある。   The epoxy resin composition of the present invention may contain a phosphorus-containing compound as a flame retardant component. The phosphorus-containing compound may be a reactive type or an additive type. Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric acid esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide; epoxy resin and active hydrogen of the phosphanes Contains phosphorus obtained by reacting with Poxy compounds, red phosphorus and the like can be mentioned, and phosphoric esters, phosphanes or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred. The phosphorus-containing compound content is preferably phosphorus-containing compound / total epoxy resin = 0.1 to 0.6 (weight ratio). If it is 0.1 or less, the flame retardancy is insufficient, and if it is 0.6 or more, the hygroscopicity and dielectric properties of the cured product may be deteriorated.

さらに本発明のエポキシ樹脂組成物には、必要に応じて酸化防止剤を添加しても構わない。使用できる酸化防止剤としては、フェノール系、イオウ系、リン系酸化防止剤が挙げられる。酸化防止剤は単独で又は2種以上を組み合わせて使用できる。酸化防止剤の使用量は、本発明のエポキシ樹脂組成物中の樹脂成分に対して100重量部に対して、通常0.008〜1重量部、好ましくは0.01〜0.5重量部である。   Furthermore, you may add antioxidant to the epoxy resin composition of this invention as needed. Antioxidants that can be used include phenol-based, sulfur-based, and phosphorus-based antioxidants. Antioxidants can be used alone or in combination of two or more. The usage-amount of antioxidant is 0.008-1 weight part normally with respect to 100 weight part with respect to the resin component in the epoxy resin composition of this invention, Preferably it is 0.01-0.5 weight part. is there.

フェノール系酸化防止剤の具体例として、2,6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−p−エチルフェノール、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、イソオクチル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、2,4−ビス[(オクチルチオ)メチル]−o−クレゾール、等のモノフェノール類;2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、4,4’−チオビス(3−メチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、3,5−ジ−t−ブチル−4−ヒドロキシベンジルフォスフォネート−ジエチルエステル、3,9−ビス[1,1−ジメチル−2−{β−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}エチル]2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、ビス(3,5−ジ−t−ブチル−4−ヒドロキシベンジルスルホン酸エチル)カルシウム等のビスフェノール類;1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス−[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’−ビス−(4’−ヒドロキシ−3’−t−ブチルフェニル)ブチリックアシッド]グリコールエステル、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト、1,3,5−トリス(3’,5’−ジ−t−ブチル−4’−ヒドロキシベンジル)−S−トリアジン−2,4,6−(1H,3H,5H)トリオン、トコフェノール等の高分子型フェノール類が例示される。   Specific examples of phenolic antioxidants include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl-β- (3 , 5-di-t-butyl-4-hydroxyphenyl) propionate, isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,4-bis- (n-octylthio)- Monophenols such as 6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, 2,4-bis [(octylthio) methyl] -o-cresol; 2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), 4,4′-thiobis (3- Til-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) ) Propionate], 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexamethylenebis (3,5-di-t) -Butyl-4-hydroxy-hydrocinnamamide), 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 3,5-di-t -Butyl-4-hydroxybenzylphosphonate-diethyl ester, 3,9-bis [1,1-dimethyl-2- {β- (3-t-butyl-4-hydroxy-5- Bisphenols such as (tilphenyl) propionyloxy} ethyl] 2,4,8,10-tetraoxaspiro [5.5] undecane, bis (3,5-di-t-butyl-4-hydroxybenzylsulfonate) ethyl 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t- Butyl-4-hydroxybenzyl) benzene, tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, bis [3,3′-bis- (4 '-Hydroxy-3'-tert-butylphenyl) butyric acid] glycol ester, tris- (3,5-di-tert-butyl-4-hydroxybenzyl) -iso Anureate, 1,3,5-tris (3 ′, 5′-di-t-butyl-4′-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, tocophenol And the like.

イオウ系酸化防止剤の具体例として、ジラウリル−3,3’−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネート、ジステアリル−3,3’−チオジプロピオネート等が例示される。   Specific examples of the sulfur antioxidant include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, and the like. The

リン系酸化防止剤の具体例として、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4−ジ−t−ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4−ジ−t−ブチル−4−メチルフェニル)ホスファイト、ビス[2−t−ブチル−6−メチル−4−{2−(オクタデシルオキシカルボニル)エチル}フェニル]ヒドロゲンホスファイト等のホスファイト類;9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−デシロキシ−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド等のオキサホスファフェナントレンオキサイド類などが例示される。   Specific examples of phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, diisodecylpentaerythritol phosphite, tris (2,4-di-t- Butylphenyl) phosphite, cyclic neopentanetetrayl bis (octadecyl) phosphite, cyclic neopentanetetraylbi (2,4-di-t-butylphenyl) phosphite, cyclic neopentanetetraylbi (2,4 -Di-t-butyl-4-methylphenyl) phosphite, bis [2-t-butyl-6-methyl-4- {2- (octadecyloxycarbonyl) ethyl} phenyl] hydrogen phosphite, etc. 9,10-dihydro 9-oxa-10-phosphaphenanthrene-10-oxide, 10- (3,5-di-tert-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10 -Oxaphosphaphenanthrene oxides such as 10-decyloxy-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide are exemplified.

これらの酸化防止剤はそれぞれ単独で使用できるが、2種以上を組み合わせて併用しても構わない。特に本発明においてはリン系の酸化防止剤が好ましい。   These antioxidants can be used alone, but two or more of them may be used in combination. In the present invention, a phosphorus-based antioxidant is particularly preferable.

さらに本発明のエポキシ樹脂組成物には、必要に応じて光安定剤を添加しても構わない。
光安定剤としては、ヒンダートアミン系の光安定剤、特にHALS等が好適である。HALSとしては特に限定されるものではないが、代表的なものとしては、ジブチルアミン・1,3,5−トリアジン・N,N’―ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物、コハク酸ジメチル−1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン重縮合物、ポリ〔{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}〕、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)〔〔3,5−ビス(1,1−ジメチルエチル)−4−ヒドリキシフェニル〕メチル〕ブチルマロネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ビス(1−オクチロキシ−2,2,6,6−テトラメチル−4−ピペリジル)セバケート、2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)、等が挙げられる。HALSは1種のみが用いられても良いし、2種類以上が併用されても良い。
Furthermore, you may add a light stabilizer to the epoxy resin composition of this invention as needed.
As the light stabilizer, hindered amine-based light stabilizers, particularly HALS and the like are suitable. HALS is not particularly limited, but representative examples include dibutylamine, 1,3,5-triazine, N, N′-bis (2,2,6,6-tetramethyl-4- Polycondensate of piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine, dimethyl-1- (2-hydroxyethyl) -4-hydroxy succinate -2,2,6,6-tetramethylpiperidine polycondensate, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}], bis (1,2,2, 6,6-pentamethyl-4-pi Peridyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, 2- (3,5-di -T-butyl-4-hydroxybenzyl) -2-n-butylmalonate bis (1,2,2,6,6-pentamethyl-4-piperidyl), etc. Only one HALS is used. Two or more types may be used in combination.

さらに本発明のエポキシ樹脂組成物には、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ−ナイロン系樹脂、NBR−フェノール系樹脂、エポキシ−NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、エポキシ樹脂成分100重量部に対して通常0.05〜50重量部、好ましくは0.05〜20重量部が必要に応じて用いられる。   Furthermore, a binder resin can also be mix | blended with the epoxy resin composition of this invention as needed. Examples of the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins. However, it is not limited to these. The blending amount of the binder resin is preferably in a range that does not impair the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 50 parts by weight, preferably 0.05 to 100 parts by weight with respect to 100 parts by weight of the epoxy resin component. 20 parts by weight are used as needed.

また、本発明のエポキシ樹脂組成物には、必要に応じてシアネート樹脂、マレイミド樹脂、ベンゾオキサジン等の耐熱性向上のための樹脂を配合しても構わず、その配合量は、エポキシ樹脂成分100重量部に対して通常10〜50重量部、好ましくは15〜40重量部が必要に応じて用いられる。
更に本発明のエポキシ樹脂組成物には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、界面活性剤、染料、顔料、紫外線吸収剤等の種々の配合剤、各種熱硬化性樹脂を添加することができ、エポキシ樹脂組成物の総量に対し、その使用量は、通常0.05重量%〜1.5重量%、好ましくは0.05〜1.0重量%である。
Further, the epoxy resin composition of the present invention may be blended with a resin for improving heat resistance such as cyanate resin, maleimide resin, benzoxazine, etc., if necessary. The amount is usually 10 to 50 parts by weight, preferably 15 to 40 parts by weight based on the parts by weight.
Furthermore, the epoxy resin composition of the present invention contains various combinations of a silane coupling agent, a release agent such as stearic acid, palmitic acid, zinc stearate, and calcium stearate, a surfactant, a dye, a pigment, and an ultraviolet absorber. An agent and various thermosetting resins can be added, and the amount used is generally 0.05% to 1.5% by weight, preferably 0.05 to 1.0%, based on the total amount of the epoxy resin composition. % By weight.

本発明のエポキシ樹脂組成物は、各成分を均一に混合することにより得られる。本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えば変性エポキシ樹脂と硬化剤および/または硬化促進剤、リン含有化合物、バインダー樹脂、無機充填材及び配合剤などを必要に応じて粉砕後、押出機、ニーダ、ロール等を用いて混合してエポキシ樹脂組成物を得、そのエポキシ樹脂組成物をさらに粉砕、タブレット状もしくは粒状としトランスファー成型機、もしくは圧縮成型機などを用いて140〜220℃で成型し、さらに100〜220℃で1〜10時間加熱することにより本発明の硬化物を得ることができる。   The epoxy resin composition of this invention is obtained by mixing each component uniformly. The epoxy resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method. For example, a modified epoxy resin and a curing agent and / or a curing accelerator, a phosphorus-containing compound, a binder resin, an inorganic filler and a compounding agent are pulverized as necessary, and then mixed using an extruder, kneader, roll, etc. A resin composition is obtained, and the epoxy resin composition is further pulverized, tableted or granulated and molded at 140 to 220 ° C. using a transfer molding machine or compression molding machine, and further at 100 to 220 ° C. for 1 to 10 hours. The cured product of the present invention can be obtained by heating.

本発明の半導体装置は、プリント配線板に半導体素子を実装、本発明のエポキシ樹脂組成物にて封止したものである。半導体素子の実装方法、封止方法は特に限定されない。例えば、フリップチップボンダーなどを用いて多層プリント配線板上の接続用電極部と半導体素子の半田バンプの位置合わせを行う。その後、半田バンプを融点以上に加熱し、プリント配線板と半田バンプとを溶融接合することにより接続する。次に、プリント配線板と半導体素子との間に液状封止樹脂を充填し、硬化させる。これにより、半導体装置が得られる。こうして得られた半導体装置は、優れた耐熱性および耐熱分解性を有することから、特に車載用のパワーデバイスなどに有用である。   The semiconductor device of the present invention is obtained by mounting a semiconductor element on a printed wiring board and sealing it with the epoxy resin composition of the present invention. The mounting method and the sealing method of the semiconductor element are not particularly limited. For example, a flip chip bonder or the like is used to align the connection electrode portions on the multilayer printed wiring board and the solder bumps of the semiconductor element. Thereafter, the solder bumps are heated to the melting point or more, and the printed wiring board and the solder bumps are connected by fusion bonding. Next, a liquid sealing resin is filled between the printed wiring board and the semiconductor element and cured. Thereby, a semiconductor device is obtained. Since the semiconductor device thus obtained has excellent heat resistance and heat decomposition resistance, it is particularly useful for an in-vehicle power device.

次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。尚、本発明はこれら実施例に限定されるものではない。また、以降面積%は特に断りのない限りゲルパーミエーションクロマトグラフィー(GPC)での測定値から算出した面積百分率を示す。   EXAMPLES Next, the present invention will be described more specifically with reference to examples. In the following, parts are parts by weight unless otherwise specified. The present invention is not limited to these examples. Moreover, area% shows the area percentage computed from the measured value by gel permeation chromatography (GPC) unless there is particular notice after that.

以下に実施例で用いた各種分析方法について記載する。
エポキシ当量:JIS K 7236(ISO 3001)に準拠
ICI溶融粘度:JIS K 7117−2(ISO 3219)に準拠
軟化点:ASTM D 3104準拠
GPC:
カラム(Shodex KF−603、KF−602.5、KF−602、KF−601x2)
連結溶離液はテトラヒドロフラン
流速は0.5ml/min.
カラム温度は40℃
検出:RI(示差屈折検出器)
The various analysis methods used in the examples are described below.
Epoxy equivalent: JIS K 7236 (ISO 3001) compliant ICI melt viscosity: JIS K 7117-2 (ISO 3219) compliant Softening point: ASTM D 3104 compliant GPC:
Column (Shodex KF-603, KF-602.5, KF-602, KF-601x2)
The coupled eluent is tetrahydrofuran. The flow rate is 0.5 ml / min.
Column temperature is 40 ° C
Detection: RI (differential refraction detector)

以下、実施例、比較例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

(合成例1)
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらオルソクレゾールノボラック(軟化点138℃ 2核体 2.5面積% 3核体 3.4面積% 水酸基当量120g/eq.)92.6部、4,4’−ビフェノール21.2部、エピクロロヒドリン416部、ジメチルスルホキシド95.8部を加え、撹拌下で溶解し、45℃にまで昇温した。次いでフレーク状の水酸化ナトリウム42部を90分かけて分割添加した後、更に45℃で2時間、70℃で75分反応を行った。反応終了後,油層からロータリーエバポレーターを用いて減圧下、過剰のエピクロルヒドリン等の溶剤類を留去した。残留物にメチルイソブチルケトン352部を加え溶解し、水洗後、75℃にまで昇温した。撹拌下で30重量%の水酸化ナトリウム水溶液13部を加え、1時間反応を行った後、油層の洗浄水が中性になるまで水洗を行い、得られた溶液から、ロータリーエバポレーターを用いて減圧下にメチルイソブチルケトン等を留去することで本発明におけるエポキシ樹脂混合物(EP1)153部を得た。得られたエポキシ樹脂のエポキシ当量は187g/eq.、軟化点108℃、150℃におけるICI溶融粘度は0.60Pa・sであった。
原料から算出したジグリシジルオキシビフェニルの理論量は20%。これに対し、ゲルパーミエーションクロマトグラフィーより算出したジグリシジルオキシビフェニルの量は16.2%であった。このことから3.8%のビフェノール構造がクレゾールノボラック構造に取り込まれたことがわかる。なお平均分子量Mwは2517であった。
(Synthesis Example 1)
A flask equipped with a stirrer, a reflux condenser, and a stirrer was purged with nitrogen while orthocresol novolak (softening point 138 ° C. 2.5 nuclei 2.5 area% 3 nuclei 3.4 area% hydroxyl equivalent 120 g / eq. 92.6 parts, 21.2 parts of 4,4′-biphenol, 416 parts of epichlorohydrin and 95.8 parts of dimethyl sulfoxide were added and dissolved under stirring, and the temperature was raised to 45 ° C. Next, 42 parts of flaky sodium hydroxide were added in portions over 90 minutes, and then reacted at 45 ° C. for 2 hours and at 70 ° C. for 75 minutes. After completion of the reaction, excess solvents such as epichlorohydrin were distilled off from the oil layer under reduced pressure using a rotary evaporator. The residue was dissolved by adding 352 parts of methyl isobutyl ketone, washed with water, and heated to 75 ° C. Under stirring, 13 parts of a 30% by weight aqueous sodium hydroxide solution was added and the reaction was performed for 1 hour, followed by washing with water until the washing water of the oil layer became neutral. From the resulting solution, the pressure was reduced using a rotary evaporator. Methyl isobutyl ketone and the like were distilled off below to obtain 153 parts of an epoxy resin mixture (EP1) in the present invention. The epoxy equivalent of the obtained epoxy resin was 187 g / eq. The ICI melt viscosity at a softening point of 108 ° C. and 150 ° C. was 0.60 Pa · s.
The theoretical amount of diglycidyloxybiphenyl calculated from the raw material is 20%. On the other hand, the amount of diglycidyloxybiphenyl calculated from gel permeation chromatography was 16.2%. This indicates that 3.8% of the biphenol structure was incorporated into the cresol novolac structure. The average molecular weight Mw was 2517.

(合成例2)
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらオルソクレゾールノボラック(軟化点138℃ 2核体 1.8面積% 3核体 3.0面積% 水酸基当量120g/eq.)92.6部、4,4’−ビフェノール21.2部、エピクロロヒドリン602部、ジメチルスルホキシド95.8部を加え、撹拌下で溶解し、45℃にまで昇温した。次いでフレーク状の水酸化ナトリウム42部を90分かけて分割添加した後、更に45℃で2時間、70℃で75分反応を行った。反応終了後,油層からロータリーエバポレーターを用いて減圧下、過剰のエピクロルヒドリン等の溶剤類を留去した。残留物にメチルイソブチルケトン352部を加え溶解し、水洗後、75℃にまで昇温した。撹拌下で30重量%の水酸化ナトリウム水溶液13部を加え、1時間反応を行った後、油層の洗浄水が中性になるまで水洗を行い、得られた溶液から、ロータリーエバポレーターを用いて減圧下にメチルイソブチルケトン等を留去することで本発明におけるエポキシ樹脂混合物(EP2)158部を得た。得られたエポキシ樹脂のエポキシ当量は185g/eq.、軟化点118℃、150℃におけるICI溶融粘度は0.53Pa・sであった。
原料から算出したジグリシジルオキシビフェニルの理論量は20%。これに対し、ゲルパーミエーションクロマトグラフィーより算出したジグリシジルオキシビフェニルの量は18.7%であった。このことから1.3%のビフェノール構造がクレゾールノボラック構造に取り込まれたことがわかる。なお平均分子量Mwは2368であった。
(Synthesis Example 2)
A flask equipped with a stirrer, a reflux condenser, and a stirrer was purged with nitrogen while orthocresol novolak (softening point 138 ° C. dinuclear 1.8 area% trinuclear 3.0 area% hydroxyl equivalent 120 g / eq. 92.6 parts, 21.2 parts of 4,4′-biphenol, 602 parts of epichlorohydrin and 95.8 parts of dimethyl sulfoxide were added and dissolved under stirring, and the temperature was raised to 45 ° C. Next, 42 parts of flaky sodium hydroxide were added in portions over 90 minutes, and then reacted at 45 ° C. for 2 hours and at 70 ° C. for 75 minutes. After completion of the reaction, excess solvents such as epichlorohydrin were distilled off from the oil layer under reduced pressure using a rotary evaporator. The residue was dissolved by adding 352 parts of methyl isobutyl ketone, washed with water, and heated to 75 ° C. Under stirring, 13 parts of a 30% by weight aqueous sodium hydroxide solution was added and the reaction was performed for 1 hour, followed by washing with water until the washing water of the oil layer became neutral. From the resulting solution, the pressure was reduced using a rotary evaporator. Methyl isobutyl ketone and the like were distilled off below to obtain 158 parts of an epoxy resin mixture (EP2) in the present invention. The epoxy equivalent of the obtained epoxy resin is 185 g / eq. The ICI melt viscosity at a softening point of 118 ° C. and 150 ° C. was 0.53 Pa · s.
The theoretical amount of diglycidyloxybiphenyl calculated from the raw material is 20%. On the other hand, the amount of diglycidyloxybiphenyl calculated from gel permeation chromatography was 18.7%. This indicates that 1.3% of the biphenol structure was incorporated into the cresol novolac structure. The average molecular weight Mw was 2368.

(合成例3)
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらオルソクレゾールノボラック(軟化点139℃ 2核体 1.7面積% 3核体 2.9面積% 水酸基当量120g/eq.)90.0部、4,4’−ビフェノール23.3部、エピクロロヒドリン416部、ジメチルスルホキシド95.8部を加え、撹拌下で溶解し、45℃にまで昇温した。次いでフレーク状の水酸化ナトリウム42部を90分かけて分割添加した後、更に45℃で2時間、70℃で75分反応を行った。反応終了後,油層からロータリーエバポレーターを用いて減圧下、過剰のエピクロルヒドリン等の溶剤類を留去した。残留物にメチルイソブチルケトン352部を加え溶解し、水洗後、75℃にまで昇温した。撹拌下で30重量%の水酸化ナトリウム水溶液13部を加え、1時間反応を行った後、油層の洗浄水が中性になるまで水洗を行い、得られた溶液から、ロータリーエバポレーターを用いて減圧下にメチルイソブチルケトン等を留去することで本発明におけるエポキシ樹脂混合物(EP3)149部を得た。得られたエポキシ樹脂のエポキシ当量は179g/eq.、軟化点111℃、150℃におけるICI溶融粘度は0.43Pa・sであった。
原料から算出したジグリシジルオキシビフェニルの理論量は22%。これに対し、ゲルパーミエーションクロマトグラフィーより算出したジグリシジルオキシビフェニルの量は19.3%であった。このことから2.7%のビフェノール構造がクレゾールノボラック構造に取り込まれたことがわかる。なお平均分子量Mwは2410であった。
(Synthesis Example 3)
An orthocresol novolak (softening point 139 ° C. dinuclear 1.7 nuclei 1.7 nuclei 2.9 nuclei 2.9 area% hydroxyl equivalent 120 g / eq. ) 90.0 parts, 4,4'-biphenol 23.3 parts, epichlorohydrin 416 parts, dimethyl sulfoxide 95.8 parts were added and dissolved under stirring, and the temperature was raised to 45 ° C. Next, 42 parts of flaky sodium hydroxide were added in portions over 90 minutes, and then reacted at 45 ° C. for 2 hours and at 70 ° C. for 75 minutes. After completion of the reaction, excess solvents such as epichlorohydrin were distilled off from the oil layer under reduced pressure using a rotary evaporator. The residue was dissolved by adding 352 parts of methyl isobutyl ketone, washed with water, and heated to 75 ° C. Under stirring, 13 parts of a 30% by weight aqueous sodium hydroxide solution was added and the reaction was performed for 1 hour, followed by washing with water until the washing water of the oil layer became neutral. From the resulting solution, the pressure was reduced using a rotary evaporator. Methyl isobutyl ketone and the like were distilled off below to obtain 149 parts of an epoxy resin mixture (EP3) in the present invention. The epoxy equivalent of the obtained epoxy resin was 179 g / eq. The ICI melt viscosity at a softening point of 111 ° C. and 150 ° C. was 0.43 Pa · s.
The theoretical amount of diglycidyloxybiphenyl calculated from the raw material is 22%. On the other hand, the amount of diglycidyloxybiphenyl calculated from gel permeation chromatography was 19.3%. This indicates that 2.7% of the biphenol structure was incorporated into the cresol novolac structure. The average molecular weight Mw was 2410.

(合成例4)
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらオルソクレゾールノボラック(軟化点100℃ 2核体 8.2面積% 3核体 9.1面積% 水酸基当量120g/eq.)96部、4,4’−ビフェノール18.6部、エピクロロヒドリン416部、ジメチルスルホキシド95.8部を加え、撹拌下で溶解し、45℃にまで昇温した。次いでフレーク状の水酸化ナトリウム42部を90分かけて分割添加した後、更に45℃で2時間、70℃で75分反応を行った。反応終了後,油層からロータリーエバポレーターを用いて減圧下、過剰のエピクロルヒドリン等の溶剤類を留去した。残留物にメチルイソブチルケトン352部を加え溶解し、水洗後、75℃にまで昇温した。撹拌下で30重量%の水酸化ナトリウム水溶液13部を加え、1時間反応を行った後、油層の洗浄水が中性になるまで水洗を行い、得られた溶液から、ロータリーエバポレーターを用いて減圧下にメチルイソブチルケトン等を留去することで比較用のエポキシ樹脂混合物(EP4)165部を得た。得られたエポキシ樹脂のエポキシ当量は187g/eq.、軟化点95℃、150℃におけるICI溶融粘度は0.05Pa・sであった。
原料から算出したジグリシジルオキシビフェニルの理論量は17.5%。これに対し、ゲルパーミエーションクロマトグラフィーより算出したジグリシジルオキシビフェニルの量は15.9%であった。このことから1.6%のビフェノール構造がクレゾールノボラック構造に取り込まれたことがわかる。なお平均分子量Mwは1087であった。
(Synthesis Example 4)
An orthocresol novolak (softening point 100 ° C. dinuclear body 8.2 area% trinuclear body 9.1 area% hydroxyl group equivalent 120 g / eq. Was added to a flask equipped with a stirrer, reflux condenser and stirrer while purging with nitrogen. ) 96 parts, 18.6 parts of 4,4′-biphenol, 416 parts of epichlorohydrin and 95.8 parts of dimethyl sulfoxide were added and dissolved under stirring, and the temperature was raised to 45 ° C. Next, 42 parts of flaky sodium hydroxide were added in portions over 90 minutes, and then reacted at 45 ° C. for 2 hours and at 70 ° C. for 75 minutes. After completion of the reaction, excess solvents such as epichlorohydrin were distilled off from the oil layer under reduced pressure using a rotary evaporator. The residue was dissolved by adding 352 parts of methyl isobutyl ketone, washed with water, and heated to 75 ° C. Under stirring, 13 parts of a 30% by weight aqueous sodium hydroxide solution was added and the reaction was performed for 1 hour, followed by washing with water until the washing water of the oil layer became neutral. From the resulting solution, the pressure was reduced using a rotary evaporator. By distilling off methyl isobutyl ketone and the like, 165 parts of a comparative epoxy resin mixture (EP4) was obtained. The epoxy equivalent of the obtained epoxy resin was 187 g / eq. The ICI melt viscosity at a softening point of 95 ° C. and 150 ° C. was 0.05 Pa · s.
The theoretical amount of diglycidyloxybiphenyl calculated from the raw material is 17.5%. On the other hand, the amount of diglycidyloxybiphenyl calculated from gel permeation chromatography was 15.9%. This indicates that 1.6% of the biphenol structure was incorporated into the cresol novolac structure. The average molecular weight Mw was 1087.

(合成例5)
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらオルソクレゾールノボラック(軟化点138℃ 2核体 2.2面積% 3核体 3.6面積% 水酸基当量120g/eq.)120部、エピクロロヒドリン600部、ジメチルスルホキシド95.8部を加え、撹拌下で溶解し、45℃にまで昇温した。次いでフレーク状の水酸化ナトリウム42部を90分かけて分割添加した後、更に45℃で2時間、70℃で75分反応を行った。反応終了後,油層からロータリーエバポレーターを用いて減圧下、過剰のエピクロルヒドリン等の溶剤類を留去した。残留物にメチルイソブチルケトン352部を加え溶解し、水洗後、75℃にまで昇温した。撹拌下で30重量%の水酸化ナトリウム水溶液13部を加え、1時間反応を行った後、油層の洗浄水が中性になるまで水洗を行い、得られた溶液から、ロータリーエバポレーターを用いて減圧下にメチルイソブチルケトン等を留去することでエポキシ樹脂(EP-A)166部を得た。得られたエポキシ樹脂のエポキシ当量は202g/eq.、軟化点103℃、150℃におけるICI溶融粘度は3.1Pa・sであった。なお平均分子量Mwは3073であった。
(Synthesis Example 5)
A flask equipped with a stirrer, a reflux condenser, and a stirrer was purged with nitrogen while orthocresol novolak (softening point 138 ° C. dinuclear 2.2 area% trinuclear 3.6 area% hydroxyl equivalent 120 g / eq. ) 120 parts, epichlorohydrin 600 parts and dimethyl sulfoxide 95.8 parts were added, dissolved under stirring, and the temperature was raised to 45 ° C. Next, 42 parts of flaky sodium hydroxide were added in portions over 90 minutes, and then reacted at 45 ° C. for 2 hours and at 70 ° C. for 75 minutes. After completion of the reaction, excess solvents such as epichlorohydrin were distilled off from the oil layer under reduced pressure using a rotary evaporator. The residue was dissolved by adding 352 parts of methyl isobutyl ketone, washed with water, and heated to 75 ° C. Under stirring, 13 parts of a 30% by weight aqueous sodium hydroxide solution was added and the reaction was performed for 1 hour, followed by washing with water until the washing water of the oil layer became neutral. From the resulting solution, the pressure was reduced using a rotary evaporator. Methyl isobutyl ketone and the like were distilled off to obtain 166 parts of an epoxy resin (EP-A). The epoxy equivalent of the obtained epoxy resin is 202 g / eq. The ICI melt viscosity at a softening point of 103 ° C. and 150 ° C. was 3.1 Pa · s. The average molecular weight Mw was 3073.

(合成例6)
合成例5において、「オルソクレゾールノボラック(軟化点138℃ 2核体 2.2面積% 3核体 3.6面積% 水酸基当量120g/eq.)120部」を「オルソクレゾールノボラック(軟化点130℃ 2核体<5% 3核体<5% 水酸基当量130g/eq.)130部」に変更した以外は同様の方法で合成した。得られたエポキシ樹脂(EP-B)はエポキシ当量202g/eq. 軟化点101℃ 150℃におけるICI溶融粘度は2.9Pa・sであった。なお平均分子量Mwは2980であった。
(Synthesis Example 6)
In Synthesis Example 5, “orthocresol novolak (softening point 138 ° C. dinuclear 2.2 area% trinuclear 3.6 area% hydroxyl group equivalent 120 g / eq.) 120 parts” was changed to “orthocresol novolak (softening point 130 ° C. It was synthesized in the same manner except that it was changed to “2 nuclei <5%, 3 nuclei <5%, hydroxyl equivalent 130 g / eq.) 130 parts”. The resulting epoxy resin (EP-B) had an epoxy equivalent of 202 g / eq. The ICI melt viscosity at a softening point of 101 ° C. and 150 ° C. was 2.9 Pa · s. The average molecular weight Mw was 2980.

(合成例7)
合成例5において、「オルソクレゾールノボラック(軟化点138℃ 2核体 2.2面積% 3核体 3.6面積% 水酸基当量120g/eq.)120部」を「オルソクレゾールノボラック(軟化点100℃ 2核体8.2% 3核体9.1% 水酸基当量120g/eq.)120部」に変更した以外は同様に合成した。
得られたエポキシ樹脂(EP-C)はエポキシ当量196g/eq.軟化点61℃ 150℃におけるICI溶融粘度は0.1Pa・sであった (EOCN-1020-62)。なお平均分子量Mwは1526であった。
(Synthesis Example 7)
In Synthesis Example 5, “orthocresol novolak (softening point 138 ° C. dinuclear 2.2 area% trinuclear 3.6 area% hydroxyl group equivalent 120 g / eq.) 120 parts” It was synthesized in the same manner except that it was changed to "2 parts 8.2% trinuclear 9.1% hydroxyl equivalent 120 g / eq.) 120 parts".
The obtained epoxy resin (EP-C) had an epoxy equivalent of 196 g / eq. The ICI melt viscosity at a softening point of 61 ° C. and 150 ° C. was 0.1 Pa · s (EOCN-1020-62). The average molecular weight Mw was 1526.

実施例1、2、3 比較例1〜3
<各種硬化物性試験>
前記で得られたエポキシ樹脂を下記表1の割合(重量部)で配合し、ミキシングロールを用いて均一に混合・混練し、本発明および比較例のエポキシ樹脂組成物を得た。このエポキシ樹脂組成物をミキサーにて粉砕し、更にタブレットマシーンにてタブレット化した。このタブレット化されたエポキシ樹脂組成物をトランスファー成型(175℃×60秒)し、更に脱型後160℃×2時間+180℃×6時間の条件で硬化、評価用試験片を得た。
各評価についての評価方法を以下に記載する。また評価結果を下記表1に示す。
Examples 1, 2, 3 Comparative Examples 1-3
<Various cured property tests>
The epoxy resins obtained above were blended in the proportions (parts by weight) shown in Table 1 below, and uniformly mixed and kneaded using a mixing roll to obtain the epoxy resin compositions of the present invention and comparative examples. This epoxy resin composition was pulverized with a mixer and further tableted with a tablet machine. The tableted epoxy resin composition was transfer-molded (175 ° C. × 60 seconds), and after demolding, cured under the conditions of 160 ° C. × 2 hours + 180 ° C. × 6 hours to obtain a test piece for evaluation.
The evaluation method for each evaluation is described below. The evaluation results are shown in Table 1 below.

・耐熱性(TMA):JIS K 7244に準拠して測定した。
・難燃性:UL94に準拠して行った。ただし、サンプルサイズは幅12.5mm×長さ150mmとし、厚さは0.8mmで試験を行った。
・残炎時間:5個1組のサンプルに10回接炎したあとの残炎時間の合計
・耐熱性(DMA)
動的粘弾性測定器:TA−instruments、DMA−2980
測定温度範囲:−30〜280℃
温速度:2℃/分
試験片サイズ:5mm×50mmに切り出した物を使用した(厚みは約800μm)
Tg:Tan−δのピーク点をTgとした
Heat resistance (TMA): Measured according to JIS K 7244.
Flame retardance: Performed according to UL94. However, the test was conducted with a sample size of 12.5 mm wide × 150 mm long and a thickness of 0.8 mm.
・ Afterflame time: Total afterflame time after 10 times of contact with 5 samples. ・ Heat resistance (DMA)
Dynamic viscoelasticity measuring device: TA-instruments, DMA-2980
Measurement temperature range: -30 to 280 ° C
Temperature rate: 2 ° C./min Test piece size: 5 mm × 50 mm cut out (thickness is about 800 μm)
Tg: Tan-δ peak point is defined as Tg

Figure 2015119195
Figure 2015119195

*EP5:トリスフェノールメタン型エポキシ樹脂(EPPN 501H、軟化点(JIS K−7234準拠)52℃) * EP5: Trisphenol methane type epoxy resin (EPPN 501H, softening point (conforms to JIS K-7234) 52 ° C.)

以上の結果から本発明のエポキシ樹脂組成物は高い耐熱性と難燃性を兼ね備えた硬化物が得られることが確認できた。   From the above results, it was confirmed that the epoxy resin composition of the present invention can provide a cured product having both high heat resistance and flame retardancy.

本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
なお、本出願は、2014年2月7日付で出願された日本国特許出願(特願2014−021880)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
In addition, this application is based on the Japan patent application (Japanese Patent Application No. 2014-021880) for which it applied on February 7, 2014, The whole is used by reference. Also, all references cited herein are incorporated as a whole.

本発明のエポキシ樹脂組成物は、特に耐熱性、難燃性に優れるので、電気電子材料用途、特に半導体の封止剤、薄膜基板材料として有用である。   Since the epoxy resin composition of the present invention is particularly excellent in heat resistance and flame retardancy, it is useful as an electrical and electronic material application, particularly as a semiconductor sealant and a thin film substrate material.

Claims (4)

軟化点(ASTM D 3104準拠)が100〜120℃である下記式(1)で表されるエポキシ樹脂と下記式(2)で表されるエポキシ化合物のエポキシ樹脂混合物、ビフェニルアラルキル型のフェノール樹脂および無機フィラーを含有するエポキシ樹脂組成物。
Figure 2015119195
(式(1)中、nは平均値で5〜20の数を表す。)
Figure 2015119195
An epoxy resin mixture of an epoxy resin represented by the following formula (1) and an epoxy compound represented by the following formula (2) having a softening point (according to ASTM D 3104) of 100 to 120 ° C., a biphenyl aralkyl type phenol resin, and An epoxy resin composition containing an inorganic filler.
Figure 2015119195
(In formula (1), n represents an average value of 5 to 20)
Figure 2015119195
前記式(1)で表されるエポキシ樹脂がオルソクレゾールノボラックにエピハロヒドリンを反応させることで得られるエポキシ樹脂であって、
該オルソクレゾールノボラック中の2核体および3核体の合計含有量が、ゲルパーミエーションクロマトグラフィー(GPC)面積百分率で10面積%以下である請求項1に記載のエポキシ樹脂組成物。
The epoxy resin represented by the formula (1) is an epoxy resin obtained by reacting an orthocresol novolak with an epihalohydrin,
2. The epoxy resin composition according to claim 1, wherein the total content of the binuclear body and the trinuclear body in the orthocresol novolak is 10 area% or less in terms of gel permeation chromatography (GPC) area percentage.
請求項1または2に記載のエポキシ樹脂組成物を硬化させた硬化物。   A cured product obtained by curing the epoxy resin composition according to claim 1. 粒状またはタブレット状に成型した請求項1または2に記載のエポキシ樹脂組成物で半導体チップ覆い、175〜250℃で成型した半導体装置。   A semiconductor device formed by covering the semiconductor chip with the epoxy resin composition according to claim 1 or 2 molded into a granular or tablet shape and molding at 175 to 250 ° C.
JP2015561026A 2014-02-07 2015-02-05 Epoxy resin composition, cured product thereof, and semiconductor device Active JP6470186B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014021880 2014-02-07
JP2014021880 2014-02-07
PCT/JP2015/053236 WO2015119195A1 (en) 2014-02-07 2015-02-05 Epoxy resin composition, cured product thereof, and semiconductor device

Publications (2)

Publication Number Publication Date
JPWO2015119195A1 true JPWO2015119195A1 (en) 2017-03-23
JP6470186B2 JP6470186B2 (en) 2019-02-13

Family

ID=53777996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015561026A Active JP6470186B2 (en) 2014-02-07 2015-02-05 Epoxy resin composition, cured product thereof, and semiconductor device

Country Status (5)

Country Link
JP (1) JP6470186B2 (en)
KR (1) KR20160119750A (en)
CN (1) CN105829386B (en)
TW (1) TWI651359B (en)
WO (1) WO2015119195A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748425A (en) * 1994-02-09 1995-02-21 Asahi Chiba Kk Production of novolak resin glycidyl ether
JP2011231154A (en) * 2010-04-23 2011-11-17 Panasonic Electric Works Co Ltd Epoxy resin composition for sealing semiconductor
JP2014025036A (en) * 2012-07-30 2014-02-06 Hitachi Chemical Co Ltd Epoxy resin composition and electronic component device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043333A (en) * 1996-08-23 2000-03-28 Nippon Kayaku Kabushiki Kaisha Modified epoxy resin, epoxy resin composition and cured product thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748425A (en) * 1994-02-09 1995-02-21 Asahi Chiba Kk Production of novolak resin glycidyl ether
JP2011231154A (en) * 2010-04-23 2011-11-17 Panasonic Electric Works Co Ltd Epoxy resin composition for sealing semiconductor
JP2014025036A (en) * 2012-07-30 2014-02-06 Hitachi Chemical Co Ltd Epoxy resin composition and electronic component device

Also Published As

Publication number Publication date
JP6470186B2 (en) 2019-02-13
TW201538613A (en) 2015-10-16
WO2015119195A1 (en) 2015-08-13
TWI651359B (en) 2019-02-21
KR20160119750A (en) 2016-10-14
CN105829386B (en) 2019-05-03
CN105829386A (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP6366590B2 (en) Epoxy resin mixture, epoxy resin composition, cured product, and semiconductor device
JP2013043958A (en) Epoxy resin, method of producing the same, and use of the same
JP2017071706A (en) Epoxy resin composition, curable resin composition and cured product thereof
JP6090765B2 (en) Phenol resin, epoxy resin, and curable resin composition
JPWO2015037590A1 (en) Epoxy resin mixture, epoxy resin composition, cured product, and semiconductor device
JP6120363B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP6324317B2 (en) Epoxy resin mixture, epoxy resin composition and cured product thereof
JP6427116B2 (en) Epoxy resin mixture, epoxy resin composition, cured product thereof, and semiconductor device
JP6470186B2 (en) Epoxy resin composition, cured product thereof, and semiconductor device
JP6284732B2 (en) Epoxy resin mixture and curable resin composition
JP6302280B2 (en) Epoxy resin, curable resin composition and cured product
JP2015067615A (en) Epoxy resin mixture, curable resin composition and its cured matter
JP6403554B2 (en) Phenol resin, epoxy resin, epoxy resin composition, and cured product thereof
JP6414845B2 (en) Phenolic resin, epoxy resin, epoxy resin composition, and cured products thereof
JP2015172105A (en) Epoxy resin mixture, curable resin composition, cured product thereof, and semiconductor device
WO2015060307A1 (en) Phenolic resin, epoxy resin, epoxy resin composition, prepreg, and cured product thereof
JPWO2015083748A1 (en) Phenol resin, epoxy resin, epoxy resin composition, and cured product thereof
JP6240613B2 (en) Polyvalent phenylene ether novolak resin, epoxy resin composition and cured product thereof
JP2018109191A (en) Epoxy resin, curable resin composition, and cured product
JPWO2015125760A1 (en) Resin-modified filler, epoxy resin composition, and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190117

R150 Certificate of patent or registration of utility model

Ref document number: 6470186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250