JPWO2015111227A1 - Linear member - Google Patents

Linear member Download PDF

Info

Publication number
JPWO2015111227A1
JPWO2015111227A1 JP2015558716A JP2015558716A JPWO2015111227A1 JP WO2015111227 A1 JPWO2015111227 A1 JP WO2015111227A1 JP 2015558716 A JP2015558716 A JP 2015558716A JP 2015558716 A JP2015558716 A JP 2015558716A JP WO2015111227 A1 JPWO2015111227 A1 JP WO2015111227A1
Authority
JP
Japan
Prior art keywords
linear member
displacement
test force
wire
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2015558716A
Other languages
Japanese (ja)
Inventor
和三 赤津
和三 赤津
仁二 石川
仁二 石川
阿部 隆
隆 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shintec Co Ltd
Original Assignee
Shintec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shintec Co Ltd filed Critical Shintec Co Ltd
Publication of JPWO2015111227A1 publication Critical patent/JPWO2015111227A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0693Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a strand configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/12Ropes or cables with a hollow core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2029Open winding
    • D07B2201/203Cylinder winding, i.e. S/Z or Z/S
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/206Improving radial flexibility

Landscapes

  • Ropes Or Cables (AREA)
  • Materials For Medical Uses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

しなやかさを兼ね備えた線状部材を提供する。複数本のワイヤ1を内側に空間部を有し且つ各ワイヤ1間に軸線方向に間隙部2を開けて螺旋巻きした第1〜第4螺旋体11〜14を径方向に複数階層させた線状部材であって、試験力に対する変位に関する引張試験において、該線状部材が破断する最大試験力Fの半分の半試験力fにおける変位dが、該最大試験力Fにおける変位Dの25%〜35%となるように、前記階層数と各階層における各ワイヤのピッチと各階層における各ワイヤの螺旋巻角度とが決定される。A linear member having flexibility is provided. A linear shape in which a plurality of wires 1 have a space portion inside, and first to fourth spiral bodies 11 to 14 spirally wound with a gap portion 2 between each wire 1 in an axial direction are spirally wound. In a tensile test related to a displacement with respect to a test force, the displacement d at a half test force f that is half the maximum test force F at which the linear member breaks is 25% to 35% of the displacement D at the maximum test force F. The number of layers, the pitch of each wire in each layer, and the spiral winding angle of each wire in each layer are determined so as to be%.

Description

本発明は、複数本のワイヤを内側に空間部を有し且つ各ワイヤ間に軸線方向に間隙部を開けて螺旋巻きした螺旋体を径方向に複数階層させた線状部材に関する。   The present invention relates to a linear member in which a plurality of wires have a space inside, and a spiral body spirally wound with a gap portion between each wire in the axial direction is formed in a plurality of layers in the radial direction.

従来この種の線状部材としては、本願発明者による、超弾性形状記憶合金よりなる複数本のワイヤを配列した基本体をワイヤの配列方向に螺旋巻きにし、内側に空間部を形成し、線状部材の外径をD、螺旋巻きのピッチをPとして、−0.191D+1.03D−0.427≦P≦3.44D−5.06D+2.32の範囲内とした線状部材が知られている(下記特許文献1参照)。Conventionally, as this kind of linear member, a basic body according to the inventor of the present application in which a plurality of wires made of superelastic shape memory alloy are arranged is spirally wound in the wire arrangement direction, and a space portion is formed inside, A linear member having an outer diameter of D-shaped member and a spiral winding pitch of P-0.191D 2 + 1.03D−0.427 ≦ P ≦ 3.44D 2 −5.06D + 2.32 Known (see Patent Document 1 below).

かかる線状部材によれば、装身具として、輪ゴムのように伸ばして手首に嵌めるような場合に、数十パーセントの伸び率を実現しつつ、かつ、復元力に優れた線状部材を実現することができる。   According to such a linear member, when it is stretched like a rubber band and fits on the wrist as an accessory, it realizes a linear member that achieves an elongation of several tens of percent and has excellent restoring force. Can do.

特許5306763号Patent 53066763

ここで、近年、装身具および医療用として望まれる線状部材は、伸び率と復元力とを備えるのみならず、しなやかさを兼ね備えることが望まれている。   Here, in recent years, linear members desired for jewelry and medical use are desired not only to have an elongation rate and a restoring force, but also to have flexibility.

そこで、本発明は、しなやかさを兼ね備えた線状部材を提供することを目的とする。   Then, an object of this invention is to provide the linear member which has suppleness.

第1発明の線状部材は、複数本のワイヤを内側に空間部を有し且つ各ワイヤ間に軸線方向に間隙部を開けて螺旋巻きした螺旋体を径方向に複数階層させた線状部材であって、
試験力に対する変位に関する引張試験において、該線状部材が破断する最大試験力の半分の半試験力における変位が、該最大試験力における変位の25%〜35%となるように、前記階層数と各階層における各ワイヤのピッチと各階層における各ワイヤの螺旋巻角度とを決定することを特徴とする。
The linear member according to the first aspect of the present invention is a linear member in which a plurality of wires have a space inside, and a spiral body spirally wound by opening a gap in the axial direction between the wires is formed in a plurality of layers in the radial direction. There,
In the tensile test related to the displacement with respect to the test force, the number of layers is set so that the displacement at the half test force that is half the maximum test force at which the linear member breaks is 25% to 35% of the displacement at the maximum test force. The pitch of each wire in each layer and the spiral winding angle of each wire in each layer are determined.

本願発明者の鋭意の試験研究によれば、線状部材のしなやかさは、加重の比較的小さな領域では伸び率が際立つ一方、加重が大きくなっていった場合に適度な硬さが維持されるとの知見に至った。   According to the inventor's diligent test research, the flexibility of the linear member is conspicuous in the region where the load is relatively small, while the elongation rate is conspicuous, while the moderate hardness is maintained when the load increases. And led to the knowledge.

第1発明は、かかる知見に基づいて、試験力に対する変位に関する引張試験において、線状部材が破断する最大試験力の半分の半試験力における変位が、該最大試験力における変位の25%〜35%となるように、階層数と各階層における各ワイヤのピッチと各階層における各ワイヤの螺旋巻角度とを決定する。   Based on this knowledge, the first invention is a tensile test related to the displacement against the test force. The displacement at the half test force that is half the maximum test force at which the linear member breaks is 25% to 35% of the displacement at the maximum test force. The number of layers, the pitch of each wire in each layer, and the spiral winding angle of each wire in each layer are determined so as to be%.

ここで、線状部材は、通常、破断直前で変位量が大きくなるところ、線状部材が破断する最大試験力の半分の半試験力を基準とすることで、加重の小さな領域での伸び率を特定することができる。   Here, the linear member usually has a large amount of displacement immediately before breakage, but the elongation rate in a region with a small load is obtained by using a half test force that is half of the maximum test force at which the linear member breaks. Can be specified.

さらに、半試験力における変位が、破断時の最大試験力における変位の25%未満の場合には、加重の小さな領域での伸び率が小さくしなやかに欠けてしまう。   Further, when the displacement at the half test force is less than 25% of the displacement at the maximum test force at the time of breaking, the elongation rate in the region with a small load is small and lacks easily.

一方で、半試験力における変位が、破断時の最大試験力における変位の35%を超える場合には、加重が大きくなっていった際に伸び切ってしまい、逆にしなやかさに欠けてしまう。   On the other hand, when the displacement at the half test force exceeds 35% of the displacement at the maximum test force at the time of rupture, the load increases as the load increases, and conversely lacks flexibility.

そこで、第1発明は、線状部材が破断する最大試験力の半分の半試験力における変位が、該最大試験力における変位の25%〜35%となるように、階層数と各階層における各ワイヤのピッチと各階層における各ワイヤの螺旋巻角度とを決定することで、しなやかさを兼ね備えることができる。   Accordingly, the first invention provides the number of layers and each level in each layer so that the displacement at the half test force that is half the maximum test force at which the linear member breaks is 25% to 35% of the displacement at the maximum test force. By determining the pitch of the wire and the spiral winding angle of each wire in each layer, it is possible to combine flexibility.

第2発明の線状部材は、第1発明の線状部材において、
複数階層の前記螺旋体は、隣接する階層の該螺旋体の螺旋方向が逆方向となるように配置されることを特徴とする。
The linear member of the second invention is the linear member of the first invention,
The spirals in a plurality of layers are arranged such that the spiral directions of the spirals in adjacent layers are opposite to each other.

第2発明の線状部材によれば、隣接する階層の螺旋体の螺旋方向が逆方向となるように配置することで、高い復元力を実現することができると共に、加重が大きくなっていった際に伸び切ってしまい、逆にしなやかさに欠けてしまうことを防止することができる。   According to the linear member of the second invention, by arranging the spirals of the spirals of the adjacent layers to be opposite directions, a high restoring force can be realized and the weight increases. In other words, it is possible to prevent the suppleness from being lost.

第3発明の線状部材は、第1または第2発明において、
前記ワイヤにチタンを含む金属を用いることを特徴とする。
The linear member of the third invention is the first or second invention,
A metal containing titanium is used for the wire.

第3発明の線状部材によれば、ワイヤにチタンを含む金属を用いることで、螺旋体および当該線状部材の機械的強度を維持しつつ、体内で使用可能な金属部材として生体適合性を兼ね備えることができる。   According to the linear member of the third invention, by using a metal containing titanium in the wire, it has biocompatibility as a metal member usable in the body while maintaining the mechanical strength of the spiral body and the linear member. be able to.

実施例の4層の線状部材を示す外観図。The external view which shows the linear member of 4 layers of an Example. 実施例の4層の線状部材を示す外観図写真。The external view photograph which shows the 4-layer linear member of an Example. 実施例の引張試験の結果を示す図。The figure which shows the result of the tension test of an Example. 他の実施例の2層の線状部材を示す外観図写真。The external view photograph which shows the two-layer linear member of another Example. 比較例の線状部材を示す外観図写真。The external view photograph which shows the linear member of a comparative example. 比較例の引張試験の結果を示す図。The figure which shows the result of the tension test of a comparative example. 他の比較例の線状部材を示す外観図写真。The external view photograph which shows the linear member of another comparative example. 他の比較例の引張試験の結果を示す図。The figure which shows the result of the tension test of another comparative example. 実施例と他の比較例のしなやかさを比較した図The figure which compared the flexibility of the example and other comparative examples

図1(A)に正面図、図1(B)に(A)のI−I線に沿った端面図で示すように、本実施形態の線状部材は、複数本のワイヤ1を内側に空間部を有し且つ各ワイヤ1間に軸線方向に間隙部2を開けて螺旋巻きした螺旋体10を径方向に複数階層させた線状部材である。   As shown in a front view in FIG. 1 (A) and an end view along line II in FIG. 1 (B), the linear member of the present embodiment has a plurality of wires 1 on the inside. This is a linear member having a space and a plurality of spiral bodies 10 spirally wound with a gap 2 between the wires 1 in the axial direction in the radial direction.

螺旋体10は、内側から第1螺旋体11、第2螺旋体12、第3螺旋体13、第4螺旋体14、・・のように複数階層となっている。   The spiral body 10 has a plurality of layers such as a first spiral body 11, a second spiral body 12, a third spiral body 13, a fourth spiral body 14, and so on from the inside.

ここで、階層数と各階層における各ワイヤ1のピッチと各階層における各ワイヤ1の螺旋巻角度θとは、当該線状部材の試験力に対する変位に関する引張試験において、当該線状部材が破断する最大試験力Fの半分の半試験力fにおける変位dが、該最大試験力における変位Dの25%〜35%となるように決定される。   Here, the number of layers, the pitch of each wire 1 in each layer, and the spiral winding angle θ of each wire 1 in each layer are determined in the tensile test related to the displacement of the linear member against the test force. The displacement d at the half test force f that is half the maximum test force F is determined to be 25% to 35% of the displacement D at the maximum test force.

なお、ワイヤ1のピッチとは、1回転当たりの送り量であり、ワイヤ1の螺旋巻角度θは、図1に示すように、当該線状部材の長手方向とワイヤの巻き方向とのなす角である。   Note that the pitch of the wire 1 is a feed amount per one rotation, and the spiral winding angle θ of the wire 1 is an angle formed by the longitudinal direction of the linear member and the winding direction of the wire as shown in FIG. It is.

次に、図2(A)に正面図、図2(B)に断面図で示す実際の4層の線状部材について説明する。   Next, an actual four-layer linear member shown in a front view in FIG. 2A and a sectional view in FIG. 2B will be described.

図2に示す線状部材は、各層のワイヤがチタンを含む合金、例えば64チタン(Ti−6Al−4V)であって、第1螺旋体11〜第4螺旋体14までが、表1のように構成される。   The linear member shown in FIG. 2 is an alloy in which the wires of each layer include titanium, for example, 64 titanium (Ti-6Al-4V), and the first spiral body 11 to the fourth spiral body 14 are configured as shown in Table 1. Is done.

表1の第1螺旋体11は、直径0.18mmのワイヤ1が10本で構成され、ピッチが5.0mmであり、螺旋巻角度θが右巻きで66.9°となっている。   The first spiral body 11 in Table 1 is composed of ten wires 1 having a diameter of 0.18 mm, the pitch is 5.0 mm, and the spiral winding angle θ is 66.9 ° when it is wound clockwise.

第2螺旋体12は、直径0.18mmのワイヤ1が15本で構成され、ピッチが6.5mmであり、螺旋巻角度θが左巻きで63.3°となっている。   The second spiral body 12 is composed of 15 wires 1 having a diameter of 0.18 mm, the pitch is 6.5 mm, and the spiral winding angle θ is 63.3 ° when it is counterclockwise.

第3螺旋体13は、直径0.18mmのワイヤ1が21本で構成され、ピッチが8.7mmであり、螺旋巻角度θが右巻きで63.2°となっている。   The third spiral body 13 is composed of 21 wires 1 having a diameter of 0.18 mm, the pitch is 8.7 mm, and the spiral winding angle θ is 63.2 ° when it is wound clockwise.

第4螺旋体14は、直径0.18mmのワイヤ1が26本で構成され、ピッチが11.0mmであり、螺旋巻角度θが左巻きで63.3°となっている。   The fourth spiral body 14 is composed of 26 wires 1 having a diameter of 0.18 mm, the pitch is 11.0 mm, and the spiral winding angle θ is 63.3 ° when it is counterclockwise.

次に、図3において、図2に示した実際の4層の線状部材の破断試験の結果について説明する。   Next, in FIG. 3, the result of the fracture test of the actual four-layer linear member shown in FIG. 2 will be described.

図3(A)は、かかる4層の線状部材の破断試験の結果であり、図3(B)は、同結果に当該線状部材が破断する最大試験力Fの半分の半試験力fにおける変位dを示した図である。   FIG. 3 (A) shows the result of a fracture test of such a four-layer linear member, and FIG. 3 (B) shows a half test force f that is half the maximum test force F at which the linear member breaks. It is the figure which showed the displacement d in.

図3(A)において、破断試験は、同一試験片に対して3回行い、1回目の最大試験力F1は2.24[kN]であり、その最大変位D1は、21.8[mm]である。2回目の最大試験力F2は2.22[kN]であり、その最大変位D2は、21.9[mm]である。3回目の最大試験力F3は2.20[kN]であり、その最大変位D3は、19.9[mm]である。   In FIG. 3A, the fracture test is performed three times on the same test piece, the first maximum test force F1 is 2.24 [kN], and the maximum displacement D1 is 21.8 [mm]. It is. The second maximum test force F2 is 2.22 [kN], and the maximum displacement D2 is 21.9 [mm]. The third maximum test force F3 is 2.20 [kN], and the maximum displacement D3 is 19.9 [mm].

図3(B)において、1回目の半試験力f1は1.12[kN]であり、その変位d1は、5.5[mm]である。2回目の半試験力f2は1.11[kN]であり、その変位d2は、5.8[mm]である。3回目の最半試験力f3は1.10[kN]であり、その変位d3は、5.6[mm]である。   In FIG. 3B, the first half test force f1 is 1.12 [kN], and the displacement d1 is 5.5 [mm]. The second half test force f2 is 1.11 [kN], and the displacement d2 is 5.8 [mm]. The third half test force f3 is 1.10 [kN], and the displacement d3 is 5.6 [mm].

ここから、1回目における最大変位D1に対する半試験力f1の変位d1は、25.2%であり、2回目における最大変位D2に対する半試験力f2の変位d2は、26.5%であり、3回目における最大変位D3に対する半試験力f3の変位d3は、28.1%である。   From this, the displacement d1 of the half test force f1 with respect to the maximum displacement D1 at the first time is 25.2%, and the displacement d2 of the half test force f2 with respect to the maximum displacement D2 at the second time is 26.5%. The displacement d3 of the half test force f3 with respect to the maximum displacement D3 at the second time is 28.1%.

このように、線状部材が破断する最大試験力Fの半分の半試験力fにおける変位dが、該最大試験力における変位Dの25%〜35%となるように、階層数と各階層における各ワイヤ1のピッチと各階層における各ワイヤ1の螺旋巻角度θとを決定することで、しなやかさを兼ね備えることができる。   As described above, the number of layers and the number of layers in each layer are set so that the displacement d at the half test force f that is half of the maximum test force F at which the linear member breaks is 25% to 35% of the displacement D at the maximum test force. By determining the pitch of each wire 1 and the spiral winding angle θ of each wire 1 in each layer, flexibility can be achieved.

すなわち、線状部材が破断する最大試験力Fの半分の半試験力fを基準とすることで、加重の小さな領域での伸び率を特定することができ、かかる荷重の小さな領域での半試験力fにおける変位dが、破断時の最大試験力Fにおける変位Dの25%未満の場合のように、加重の小さな領域での伸び率が小さくしなやかに欠けてしまうこともない。   That is, by using the half test force f that is half of the maximum test force F at which the linear member breaks as a reference, it is possible to specify the elongation rate in a region with a small load, and the half test in a region with a small load. As in the case where the displacement d in the force f is less than 25% of the displacement D in the maximum test force F at the time of breakage, the elongation rate in the region with a small load is not easily lost.

一方で、半試験力fにおける変位dが、破断時の最大試験力Fにおける変位の35%を超える場合のように、加重が大きくなっていった際に伸び切ってしまい、逆にしなやかさに欠けてしまうということもない。   On the other hand, as the displacement d at the half test force f exceeds 35% of the displacement at the maximum test force F at the time of breakage, it is fully extended when the load increases, and on the contrary, it is supple. There is no lack of it.

なお、本実施形態では、4層の線状部材について説明したが、これに限定されるものではなく、図4(A)に正面図、図4(B)に断面図で示す実際の2層の線状部材や3層、5層、6層・・の線状部材(図示省略)において、線状部材が破断する最大試験力Fの半分の半試験力fにおける変位dが、該最大試験力における変位Dの25%〜35%となるように、階層数と各階層における各ワイヤ1のピッチと各階層における各ワイヤ1の螺旋巻角度θとを決定してもよい。   In the present embodiment, the four-layer linear member has been described. However, the present invention is not limited to this, and the actual two-layer shown in FIG. 4A is a front view and FIG. 4B is a cross-sectional view. In a linear member or a three-layer, five-layer, six-layer linear member (not shown), the displacement d at a half test force f that is half the maximum test force F at which the linear member breaks is the maximum test. The number of layers, the pitch of each wire 1 in each layer, and the spiral winding angle θ of each wire 1 in each layer may be determined so as to be 25% to 35% of the displacement D in force.

さらに、線状部材の階層数と各階層における各ワイヤ1のピッチと各階層における各ワイヤ1の螺旋巻角度θとを決定する際には、当該線状部材が破断する最大試験力Fの半分の半試験力fにおける変位dが、該最大試験力Fにおける変位Dの25%〜30%となることがより好ましい。これにより、荷重が大きくなった際の線状部材の伸び切りを抑えて、適度な弾力性のあるしなやかさを実現することができる。   Furthermore, when determining the number of layers of the linear member, the pitch of each wire 1 in each layer, and the spiral winding angle θ of each wire 1 in each layer, half of the maximum test force F at which the linear member breaks. The displacement d at the half test force f is more preferably 25% to 30% of the displacement D at the maximum test force F. As a result, it is possible to suppress the expansion of the linear member when the load increases, and to realize flexibility with moderate elasticity.

以上説明した本実施形態の線状部材に対して、図5(A)に正面図、図5(B)に断面図で示す比較例の線状部材では、図6(A)に、かかる比較例の線状部材の破断試験の結果、図6(B)に、同結果に当該線状部材が破断する最大試験力Fの半分の半試験力fにおける変位dを示した図で示すように、線状部材が破断する最大試験力Fの半分の半試験力fにおける変位dが、最大試験力Fにおける変位Dの25%未満となってしまい、加重の小さな領域での伸び率が小さくしなやかに欠けてしまう。   Compared to the linear member of the present embodiment described above, the comparative linear member shown in the front view in FIG. 5A and the cross-sectional view in FIG. As a result of the break test of the example linear member, as shown in FIG. 6B, the displacement d at the half test force f that is half the maximum test force F at which the linear member breaks is shown in FIG. The displacement d at the half test force f, which is half the maximum test force F at which the linear member breaks, is less than 25% of the displacement D at the maximum test force F, and the elongation in a small load region is small. Will be lacking.

また、図7(A)に正面図、図7(B)に断面図で示す他の比較例の線状部材では、図8(A)に、かかる比較例の線状部材の破断試験の結果、図8(B)に、同結果に当該線状部材が破断する最大試験力Fの半分の半試験力fにおける変位dを示した図で示すように、線状部材が破断する最大試験力Fの半分の半試験力fにおける変位dが、最大試験力Fにおける変位Dの25%未満となってしまい、加重の小さな領域での伸び率が小さくしなやかに欠けてしまう。   Moreover, in the linear member of the other comparative example shown in a front view in FIG. 7A and a cross-sectional view in FIG. 7B, the result of the fracture test of the linear member in the comparative example is shown in FIG. FIG. 8B shows the maximum test force at which the linear member breaks, as shown in FIG. 8B, which shows the displacement d at half test force f that is half of the maximum test force F at which the linear member breaks. The displacement d at half the test force f, which is half of F, is less than 25% of the displacement D at the maximum test force F, and the elongation in a region with a small load is small and lacks flexibly.

次に、参考として、しなやかさを表す別の指標として、図9(A)に、ハング量(H)とたわみ量(δ)との関係をプロットして示す。ここでのハング量(H)とたわみ量(δ)は、図9(B)に模式的に示すように、線状部材の一端から250mmをハング端とし、他端を固定し、ハング端を自重でたわませたときのハング量(H)とたわみ量(δ)となっている。   Next, for reference, FIG. 9A is a plot of the relationship between the hang amount (H) and the deflection amount (δ) as another index representing flexibility. As shown schematically in FIG. 9B, the hang amount (H) and the deflection amount (δ) are 250 mm from one end of the linear member, the other end is fixed, and the hang end is fixed. The amount of hang (H) and the amount of deflection (δ) when deflected by its own weight are shown.

しなやかな部材ほど、自重で下方にたわむことから、たわみ量δは大きな値となり、ハング量Hは小さな値となる。   The more flexible the member is bent downward due to its own weight, the deflection amount δ is a large value and the hang amount H is a small value.

図9(A)に示すように、他の比較例の線状部材(図7,図8の線状部材)と比較して、実施例の線状部材(図2,図3の線状部材)のしなやかさが高い。   As shown in FIG. 9A, the linear member of the example (the linear member of FIGS. 2 and 3) is compared with the linear member of the other comparative example (the linear member of FIGS. 7 and 8). ) High flexibility.

以上詳しく説明したように、本実施形態の線状部材によれば、しなやかさを兼ね備えた線状部材を提供することができる。   As described above in detail, according to the linear member of the present embodiment, it is possible to provide a linear member having flexibility.

なお、本実施形態では、ワイヤがチタンを含む合金、例えば64チタン(Ti−6Al−4V)の場合について説明したが、これに限定されるものではなく、線状部材の用途に応じて適時選択される。   In the present embodiment, the case where the wire is an alloy containing titanium, for example, 64 titanium (Ti-6Al-4V) has been described. However, the present invention is not limited to this, and is selected as appropriate according to the use of the linear member. Is done.

1…ワイヤ、2…間隙、10…螺旋体、11…第1螺旋体、12…第2螺旋体、13…第3螺旋体、14…第4螺旋体、θ…螺旋巻角度。 DESCRIPTION OF SYMBOLS 1 ... Wire, 2 ... Gap | interval, 10 ... Spiral body, 11 ... 1st spiral body, 12 ... 2nd spiral body, 13 ... 3rd spiral body, 14 ... 4th spiral body, (theta) ... Spiral winding angle.

Claims (3)

複数本のワイヤを内側に空間部を有し且つ各ワイヤ間に軸線方向に間隙部を開けて螺旋巻きした螺旋体を径方向に複数階層させた線状部材であって、
試験力に対する変位に関する引張試験において、該線状部材が破断する最大試験力の半分の半試験力における変位が、該最大試験力における変位の25%〜35%となるように、前記階層数と各階層における各ワイヤのピッチと各階層における各ワイヤの螺旋巻角度とを決定することを特徴とする線状部材。
A linear member in which a plurality of wires have a space inside, and a spiral body spirally wound by opening a gap portion between the wires in the axial direction and having a plurality of layers in the radial direction,
In the tensile test related to the displacement with respect to the test force, the number of layers is set so that the displacement at the half test force that is half the maximum test force at which the linear member breaks is 25% to 35% of the displacement at the maximum test force. A linear member characterized by determining a pitch of each wire in each layer and a spiral winding angle of each wire in each layer.
請求項1記載の線状部材において、
複数階層の前記螺旋体は、隣接する階層の該螺旋体の螺旋方向が逆方向となるように配置されることを特徴とする線状部材。
The linear member according to claim 1,
The linear member characterized in that the spiral members of a plurality of layers are arranged so that the spiral directions of the spiral members of adjacent layers are opposite to each other.
請求項1または2記載の線状部材において、
前記ワイヤにチタンを含む金属を用いることを特徴とする線状部材。
In the linear member according to claim 1 or 2,
A linear member using a metal containing titanium for the wire.
JP2015558716A 2014-01-27 2014-01-27 Linear member Withdrawn JPWO2015111227A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/051724 WO2015111227A1 (en) 2014-01-27 2014-01-27 Linear member

Publications (1)

Publication Number Publication Date
JPWO2015111227A1 true JPWO2015111227A1 (en) 2017-03-23

Family

ID=53681053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015558716A Withdrawn JPWO2015111227A1 (en) 2014-01-27 2014-01-27 Linear member

Country Status (2)

Country Link
JP (1) JPWO2015111227A1 (en)
WO (1) WO2015111227A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1305704A (en) * 1961-10-20 1962-10-05 Olin Mathieson Hollow core cable and its manufacturing process
JPS61168345A (en) * 1985-01-21 1986-07-30 住友電気工業株式会社 Metal wire for treating bone fracture part of living body
JPH07163583A (en) * 1993-09-20 1995-06-27 Johnson & Johnson Professional Inc Surgical fastening cable
JP2011136143A (en) * 2009-06-29 2011-07-14 Shintekku:Kk Medical linear member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1305704A (en) * 1961-10-20 1962-10-05 Olin Mathieson Hollow core cable and its manufacturing process
JPS61168345A (en) * 1985-01-21 1986-07-30 住友電気工業株式会社 Metal wire for treating bone fracture part of living body
JPH07163583A (en) * 1993-09-20 1995-06-27 Johnson & Johnson Professional Inc Surgical fastening cable
JP2011136143A (en) * 2009-06-29 2011-07-14 Shintekku:Kk Medical linear member

Also Published As

Publication number Publication date
WO2015111227A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
US10245412B2 (en) Catheter
JP5067845B2 (en) Medical guidewire
US9504476B2 (en) Catheter markers
NO971761L (en) Braided structure of super-elastic alloy
US11311697B2 (en) Catheter
JP2016529983A5 (en)
EP3072549A1 (en) Catheter
US20130131642A1 (en) Guidewire
JP6548200B2 (en) Stent
US20210102335A1 (en) Small diameter cable
JP5946186B2 (en) Coil body
JPWO2015111227A1 (en) Linear member
EP4238539A3 (en) Stent with atraumatic spacer
JP6195382B2 (en) Medical tube body
JP6677906B2 (en) Medical cable
JP5631722B2 (en) Medical linear members
JP6190994B2 (en) Medical linear members for bone healing
JP2015136385A (en) medical guide wire
JP2018071211A5 (en)
JP2013141521A (en) Flexible tube for endoscope
US10850010B2 (en) Stent
JP2005312952A (en) Catheter tube and catheter
JP2006198230A (en) Flexible tube and its manufacturing method
JP2007044915A (en) Water and hot water supply hose
JPH0434801Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170703

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170704

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20171030