JPWO2015102100A1 - Optical element, optical element manufacturing method, and concentrating solar power generation apparatus - Google Patents

Optical element, optical element manufacturing method, and concentrating solar power generation apparatus Download PDF

Info

Publication number
JPWO2015102100A1
JPWO2015102100A1 JP2015555886A JP2015555886A JPWO2015102100A1 JP WO2015102100 A1 JPWO2015102100 A1 JP WO2015102100A1 JP 2015555886 A JP2015555886 A JP 2015555886A JP 2015555886 A JP2015555886 A JP 2015555886A JP WO2015102100 A1 JPWO2015102100 A1 JP WO2015102100A1
Authority
JP
Japan
Prior art keywords
optical element
glass substrate
sheet
lens sheet
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015555886A
Other languages
Japanese (ja)
Inventor
安部 浩司
浩司 安部
慎二 平松
慎二 平松
勝洋 藤田
勝洋 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Publication of JPWO2015102100A1 publication Critical patent/JPWO2015102100A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

ガラス基板と光集光機能パターンを有するシート状成形体を貼り合わせた後に、温度変化のある環境下でも、光集光機能パターンのレンズ形状に変化が生じることを低減することができる光学素子及び集光型太陽光発電装置を提供する。ガラス基板(5)と、ガラス基板(5)上に接着された、熱可塑性樹脂からなるフレネルレンズパターン(6a)を有するシート状成形体(6)を備えた光学素子(4)であって、シート状成形体(6)の同心円中心に対して、その半径の70%以上外側の位置から、シート状成形体(6)に対して垂直に直径5mmφの光ビームを入射させたときに、ビーム中心の光が中心線と交わった位置において、最大輝度から1/10の輝度となる範囲の大きさをαとすると、温度を25℃と55℃とに変化させたときの、αに関して最大値をαA、最小値をαBとしときのαB/αAの値が0.70以上としている。An optical element capable of reducing the occurrence of a change in the lens shape of the light condensing function pattern even in an environment with a temperature change after bonding the glass substrate and the sheet-like molded body having the light condensing function pattern, and A concentrating solar power generation device is provided. An optical element (4) comprising a glass substrate (5) and a sheet-like molded body (6) having a Fresnel lens pattern (6a) made of a thermoplastic resin bonded on the glass substrate (5), When a light beam having a diameter of 5 mmφ is incident on the sheet-shaped molded body (6) perpendicularly to the sheet-shaped molded body (6) from a position outside the center of the concentric circle of the sheet-shaped molded body (6) by 70% or more of the radius. The maximum value for α when the temperature is changed between 25 ° C. and 55 ° C., where α is the size of the range from the maximum luminance to 1/10 of the luminance at the position where the central light intersects the center line. Is αA and the minimum value is αB, the value of αB / αA is 0.70 or more.

Description

本発明は、光学素子、光学素子の製造方法及び集光型太陽光発電装置に関する。   The present invention relates to an optical element, a method for manufacturing the optical element, and a concentrating solar power generation apparatus.

近年、自然エネルギーの利用が注目されており、そのひとつに太陽光のエネルギーを太陽電池によって電力に変換する太陽光発電がある。このような太陽光発電として、発電効率(光電変換効率)を高めて大電力を得るために、同一平面上に複数配置された太陽電池素子の前方側に、太陽光を各太陽電池素子に集光させるための光学素子(集光レンズ)を配設した構成の集光型太陽光発電装置が知られている(例えば、特許文献1参照)。   In recent years, the use of natural energy has attracted attention, and one of them is solar power generation that converts solar energy into electric power using a solar cell. As such solar power generation, in order to increase power generation efficiency (photoelectric conversion efficiency) and obtain large power, sunlight is collected on each solar cell element on the front side of a plurality of solar cell elements arranged on the same plane. A concentrating solar power generation apparatus having a configuration in which an optical element (condensing lens) for causing light to be emitted is known (see, for example, Patent Document 1).

集光型太陽光発電装置は、光学素子(集光レンズ)で太陽光を集光して太陽電池素子に受光させる構成により、高価な太陽電池素子のサイズを小さくできるので、発電装置全体の低コスト化を図ることができる。このため、集光型太陽光発電装置は、日照時間が長く、集光面を大面積化しても設置可能な広大な地域などで、電力供給用途として普及しつつある。   The concentrating solar power generation device can reduce the size of an expensive solar cell element by concentrating sunlight with an optical element (condensing lens) and receiving the light to the solar cell element. Cost can be reduced. For this reason, the concentrating solar power generation apparatus is spreading as a power supply application in a vast area where the sunshine duration is long and the condensing surface can be installed even when the condensing surface is enlarged.

特開2006−343435号公報JP 2006-343435 A

前記特許文献1の集光型太陽光発電装置では、アクリル樹脂(PMMA樹脂)からなるシート状の光学素子(集光レンズ)の太陽光入射面側の表面には、耐環境性などを考慮して透明なガラス基板が接着されている。   In the concentrating solar power generation device of Patent Document 1, environmental resistance is considered on the surface on the sunlight incident surface side of the sheet-like optical element (condensing lens) made of acrylic resin (PMMA resin). A transparent glass substrate is bonded.

ところで、透明性と耐光性と兼ね備えたアクリル系の熱可塑性樹脂からなる光集光機能パターンを有する集光レンズシートとガラス基板とを貼り合わせて接着する際には、従来よりシリコーン樹脂等の接着剤などが用いられている。   By the way, when pasting and bonding a condensing lens sheet having a light condensing function pattern made of an acrylic thermoplastic resin that has both transparency and light resistance and a glass substrate, adhesion of silicone resin or the like is conventionally required. Agents are used.

しかしながら、ガラス基板と熱可塑性樹脂を貼り合せる温度が高くなると、貼り合せ後に常温に戻した場合に、ガラス基板の線膨張係数と熱可塑性樹脂の線膨張係数との違いから、熱可塑性樹脂からなる光学部材に形成された集光レンズのレンズ形状に歪みが生じるために、光学的な特性が設計値と異なってしまい、更に、作製された光学素子を温度変化のある環境下においた場合に集光レンズのレンズ形状に変化が生じる。   However, when the temperature at which the glass substrate and the thermoplastic resin are bonded becomes high, the glass substrate is made of a thermoplastic resin due to the difference between the linear expansion coefficient of the glass substrate and the linear expansion coefficient of the thermoplastic resin when the temperature is returned to room temperature after bonding. Since the lens shape of the condensing lens formed on the optical member is distorted, the optical characteristics differ from the design values, and further, when the manufactured optical element is placed in an environment with a temperature change, it is collected. A change occurs in the lens shape of the optical lens.

このように、熱可塑性樹脂からなる光学部材に形成された集光レンズのレンズ形状に変化が生じていると、太陽電池素子上に光を効率よく集光できなくなり、発電効率が低下する。   As described above, when the lens shape of the condensing lens formed on the optical member made of the thermoplastic resin is changed, the light cannot be efficiently collected on the solar cell element, and the power generation efficiency is lowered.

そこで、本発明は、ガラス基板と熱可塑性樹脂(光集光機能パターンを有する集光レンズシート)を貼り合わせて接着した後に、温度変化のある環境下においても、光集光機能パターンのレンズ形状に変化が生じることを低減し、発電効率の低下を抑制することができる光学素子、光学素子の製造方法及び集光型太陽光発電装置を提供することを目的とする。   Therefore, the present invention provides a lens shape of the light condensing function pattern even in an environment where the temperature changes after the glass substrate and the thermoplastic resin (condensing lens sheet having the light condensing function pattern) are bonded and bonded together. It is an object of the present invention to provide an optical element, a method for manufacturing the optical element, and a concentrating solar power generation device that can reduce the occurrence of a change in power consumption and suppress a decrease in power generation efficiency.

前記目的を達成するために本発明に係る光学素子は、ガラス基板と、一方の面に同心円状の光集光機能パターンを有し他方の面が前記ガラス基板上に接着された、ブロック重合組成を持つアクリル系の熱可塑性樹脂からなる集光レンズシートを備えた光学素子であって、前記集光レンズシートの同心円中心に対して、その半径の70%以上外側の位置から、前記集光レンズシートに対して垂直に直径5mmφの光ビームを入射させたときに、ビーム中心の光が中心線と交わった位置において、最大輝度から1/10の輝度となる範囲の大きさをαとすると、温度を25℃と55℃とに変化させたときの、前記αに関して最大値をαA、最小値をαBとしたときのαB/αAの値が0.7以上であることを特徴としている。   In order to achieve the above object, an optical element according to the present invention is a block polymerization composition comprising a glass substrate, a concentric light condensing function pattern on one surface, and the other surface adhered to the glass substrate. An optical element comprising a condensing lens sheet made of an acrylic thermoplastic resin having the condensing lens sheet, the condensing lens from a position outside of 70% or more of its radius with respect to the concentric center of the condensing lens sheet When a light beam having a diameter of 5 mmφ is incident perpendicularly to the sheet, α is the size of the range in which the brightness at the center of the beam crosses the center line and becomes 1/10 of the maximum brightness. When the temperature is changed between 25 ° C. and 55 ° C., the value of αB / αA is 0.7 or more when the maximum value for α is αA and the minimum value is αB.

本発明に係る光学素子の製造方法は、ブロック重合組成を持つアクリル系の熱可塑性樹脂を、一方の面に同心円状の光集光機能パターンを有する集光レンズシートに成形し、成形された前記集光レンズシートの、前記集光機能パターンと反対側の他方の面を活性処理し、シランカップリング剤を架橋剤として、前記ガラス基板上に貼り合わせるようにして接着させることを特徴としている。   In the method for producing an optical element according to the present invention, an acrylic thermoplastic resin having a block polymerization composition is molded into a condensing lens sheet having a concentric light condensing function pattern on one surface, and the molded The other surface of the condensing lens sheet opposite to the condensing function pattern is subjected to an activation treatment, and a silane coupling agent is used as a cross-linking agent and bonded to the glass substrate.

本発明に係る集光型太陽光発電装置は、太陽光を集光する光学素子と、前記光学素子により集光された太陽光を受光して光電変換する太陽電池素子を備えた集光型太陽光発電装置において、前記光学素子は、請求項1乃至6のいずれか一項に記載の光学素子であることを特徴としている。   A concentrating solar power generation apparatus according to the present invention includes an optical element that condenses sunlight, and a concentrating solar element that includes a solar cell element that receives and photoelectrically converts sunlight collected by the optical element. In the photovoltaic device, the optical element is an optical element according to any one of claims 1 to 6.

本発明に係る光学素子によれば、25℃と55℃に温度変化させた場合でも、集光レンズシートの光集光機能パターン(例えば、フレネルレンズパターン)の形状変化を小さくすることができるので、光集光機能パターンで集光した太陽光の集光像(以下「集光スポット」という)の広がり、太陽電池素子からのはみだし、発電効率が低下すること等、を低減できる。   According to the optical element of the present invention, even when the temperature is changed to 25 ° C. and 55 ° C., the shape change of the light condensing function pattern (for example, Fresnel lens pattern) of the condensing lens sheet can be reduced. It is possible to reduce the spread of a condensed image of sunlight (hereinafter referred to as a “condensing spot”) condensed by the light condensing function pattern, protruding from the solar cell element, and reducing power generation efficiency.

また、本実施形態に係る集光型太陽光発電装置によれば、温度変化が例えば25℃〜55℃となるような自然環境下においても、この光学素子で集光された光を、太陽電池素子の受光領域に安定して良好に受光させることができるので、安定して高い発電効率を維持することができる。さらに、本実施形態に係る集光型太陽光発電装置によれば、温度変化が例えば25℃〜55℃となるような自然環境下においても、この光学素子で集光された光の集光スポットが大きく広がることなく、太陽電池素子の受光領域に安定して良好に受光させることができるので、高価な太陽電池素子のサイズを小さくし、装置のコストを大幅に低減できる。   Moreover, according to the concentrating solar power generation device according to the present embodiment, the light collected by this optical element is converted into a solar cell even in a natural environment where the temperature change is, for example, 25 ° C. to 55 ° C. Since light can be received stably and satisfactorily in the light receiving region of the element, high power generation efficiency can be stably maintained. Furthermore, according to the concentrating solar power generation device according to the present embodiment, the condensing spot of the light collected by this optical element even in a natural environment where the temperature change is 25 ° C. to 55 ° C., for example. Can be received stably and satisfactorily in the light receiving region of the solar cell element, so that the size of the expensive solar cell element can be reduced and the cost of the apparatus can be greatly reduced.

本発明の実施形態に係る光学素子を備えた集光型太陽光発電装置の概略構成を示した図。The figure which showed schematic structure of the concentrating solar power generation device provided with the optical element which concerns on embodiment of this invention. 本発明の実施形態に係る集光型太陽光発電装置の太陽光入射側から見た概要を示した平面図。The top view which showed the outline | summary seen from the sunlight incident side of the concentrating solar power generation device which concerns on embodiment of this invention. ガラス基板とシート状成形体の各接着面を示した図。The figure which showed each adhesion surface of a glass substrate and a sheet-like molded object. ガラス基板とシート状成形体の各接着面が接着された状態を示した図。The figure which showed the state by which each adhesive surface of the glass substrate and the sheet-like molded object was adhere | attached. 本実施形態に係る光学素子に対して、温度を25℃から55℃に変化させたときのαの変化率の測定を説明するための図。The figure for demonstrating the measurement of the change rate of (alpha) when changing temperature from 25 degreeC to 55 degreeC with respect to the optical element which concerns on this embodiment. 光学素子の中心から離れた位置にレーザ光を入射させた状態を示す図。The figure which shows the state which entered the laser beam in the position away from the center of the optical element. 光学素子表面に紫外線吸収層を設けた集光型太陽光発電装置の概略構成を示す断面図。Sectional drawing which shows schematic structure of the concentrating solar power generation device which provided the ultraviolet-ray absorption layer in the optical element surface. 光学素子表面に防汚コート層を設けた集光型太陽光発電装置の概略構成を示す断面図。Sectional drawing which shows schematic structure of the concentrating solar power generation device which provided the antifouling coating layer in the optical element surface. 光学素子表面に反射防止コート層を設けた集光型太陽光発電装置の概略構成を示す断面図。Sectional drawing which shows schematic structure of the concentrating solar power generation device which provided the antireflection coating layer in the optical element surface. 本実施例と比較例の光学素子に対して、温度を25℃から55℃に変化させたときの、焦点スポットの大きさの測定結果を示す図。The figure which shows the measurement result of the magnitude | size of a focal spot when changing temperature from 25 degreeC to 55 degreeC with respect to the optical element of a present Example and a comparative example.

以下、本発明を図示の実施形態に基づいて説明する。図1は、本発明の実施形態に係る光学素子を備えた集光型太陽光発電装置の概略構成を模式的に示した図である。   Hereinafter, the present invention will be described based on the illustrated embodiments. FIG. 1 is a diagram schematically illustrating a schematic configuration of a concentrating solar power generation apparatus including an optical element according to an embodiment of the present invention.

〈集光型太陽光発電装置の全体構成〉
図1に示すように、本実施形態に係る集光型太陽光発電装置1は、受光した太陽光を光電変換する太陽電池素子(太陽電池セル)2と、該太陽電池素子2が実装された太陽電池基板3と、太陽電池素子2の前方側(太陽光入射側)に対向するようにして配置され、太陽光を集光する光学素子4とを主要構成部材として備えている。なお、図1において、L1は光学素子4に入射する太陽光、L2は光学素子4で集光された太陽光を示している。
<Overall configuration of concentrating solar power generation system>
As shown in FIG. 1, a concentrating solar power generation device 1 according to this embodiment includes a solar cell element (solar cell) 2 that photoelectrically converts received sunlight, and the solar cell element 2. A solar cell substrate 3 and an optical element 4 that is arranged so as to face the front side (sunlight incident side) of the solar cell element 2 and condense sunlight are provided as main constituent members. In FIG. 1, L <b> 1 indicates sunlight incident on the optical element 4, and L <b> 2 indicates sunlight condensed by the optical element 4.

光学素子4は、太陽光入射側に設けた透明なガラス基板5と、該ガラス基板5の出射側(太陽電池素子2と対向する側)の面に接着された透光性を有する熱可塑性重合体組成物からなるシート状成形体6とで構成されている。   The optical element 4 includes a transparent glass substrate 5 provided on the sunlight incident side, and a light-transmitting thermoplastic layer bonded to the surface of the glass substrate 5 on the emission side (opposite the solar cell element 2). It is comprised with the sheet-like molded object 6 which consists of a united composition.

シート状成形体6のガラス基板5と反対側(太陽電池素子2と対向する側)の面には、入射された太陽光を太陽電池素子2の受光領域に集光させるフレネルレンズパターン6aが同心円状に形成されている。このように、このフレネルレンズパターン6aが形成されたシート状成形体6は、集光レンズとして機能する。   A Fresnel lens pattern 6 a that condenses incident sunlight on the light receiving region of the solar cell element 2 is concentrically formed on the surface of the sheet-like molded body 6 opposite to the glass substrate 5 (side facing the solar cell element 2). It is formed in a shape. Thus, the sheet-like molded body 6 on which the Fresnel lens pattern 6a is formed functions as a condenser lens.

この集光型太陽光発電装置1は、図2に示すように、太陽電池基板3(図1参照)上に一定間隔で複数の太陽電池素子2が実装され、また各太陽電池素子2の受光領域とそれぞれ対向するようにして複数の光学素子4が同一平面上に一体的に設けられている。   As shown in FIG. 2, the concentrating solar power generation device 1 has a plurality of solar cell elements 2 mounted on a solar cell substrate 3 (see FIG. 1) at regular intervals, and receives light from each solar cell element 2. A plurality of optical elements 4 are integrally provided on the same plane so as to face the regions.

各太陽電池素子2と各光学素子4は、精度よく位置決めされて配置されており、また太陽電池基板3と光学素子4との間の側面周囲等は、太陽電池基板3と光学素子4との間の空間内部に湿気(水分)や塵等が侵入しないように封止されている。なお、対向配置される太陽電池素子2と光学素子4の数や大きさは、集光型太陽光発電装置1のサイズや設置場所等によって任意に設定される。   Each solar cell element 2 and each optical element 4 are accurately positioned and arranged, and the side surface periphery between the solar cell substrate 3 and the optical element 4 is between the solar cell substrate 3 and the optical element 4. It is sealed so that moisture (moisture), dust and the like do not enter the space between them. Note that the number and size of the solar cell elements 2 and the optical elements 4 that are opposed to each other are arbitrarily set depending on the size, installation location, and the like of the concentrating solar power generation device 1.

〈シート状成形体6の詳細〉
本実施形態におけるシート状成形体6は、透明性、耐候性、柔軟性等に優れている、以下のようなアクリル系ブロック共重合体(A)とアクリル樹脂(B)とを含む熱可塑性重合体組成物を用いて形成されている。
<Details of sheet-like molded body 6>
The sheet-like molded body 6 in the present embodiment is excellent in transparency, weather resistance, flexibility, and the like, and is composed of a thermoplastic heavy resin containing the following acrylic block copolymer (A) and acrylic resin (B). It is formed using a coalescence composition.

上記の熱可塑性重合体組成物は、前記アクリル系ブロック共重合体(A)が、アクリル酸エステル単位を主体とする重合体ブロック(a1)の両末端にそれぞれメタクリル酸エステル単位を主体とする重合体ブロック(a2)が結合した構造を分子内に少なくとも1つ有するアクリル系ブロック共重合体であり、重量平均分子量が10,000〜100,000であって;
前記アクリル系ブロック共重合体(A)が、重合体ブロック(a2)の含有量が40質量%以上80質量%以下であるアクリル系ブロック共重合体(A1)と重合体ブロック(a2)の含有量が10質量%以上40質量%未満であるアクリル系ブロック共重合体(A2)を含み;
前記アクリル樹脂(B)が、主としてメタクリル酸エステル単位から構成され;
アクリル系ブロック共重合体(A)とアクリル樹脂(B)との質量比〔(A)/(B)〕が97/3〜10/90である。
In the thermoplastic polymer composition described above, the acrylic block copolymer (A) is a heavy polymer mainly composed of methacrylic ester units at both ends of the polymer block (a1) composed mainly of acrylate units. An acrylic block copolymer having at least one structure in the molecule to which the combined block (a2) is bonded, and having a weight average molecular weight of 10,000 to 100,000;
Content of the acrylic block copolymer (A1) and the polymer block (a2) in which the content of the polymer block (a2) is 40% by mass or more and 80% by mass or less. An acrylic block copolymer (A2) having an amount of 10% by mass or more and less than 40% by mass;
The acrylic resin (B) is mainly composed of methacrylate units;
The mass ratio [(A) / (B)] of the acrylic block copolymer (A) and the acrylic resin (B) is 97/3 to 10/90.

なお、前記アクリル系ブロック共重合体(A)は、アクリル酸エステル単位を主体とする重合体ブロック(a1)の両端末にそれぞれメタクリル酸エステル単位を主体とする重合体ブロック(a2)が結合した構造、即ち、(a2)−(a1)−(a2)の構造(この構造中「−」は、化学結合を示す)を分子内に少なくとも1つ有するアクリル系ブロック共重合体である。   In the acrylic block copolymer (A), the polymer block (a2) mainly composed of methacrylic ester units was bonded to both terminals of the polymer block (a1) mainly composed of acrylate units. It is an acrylic block copolymer having at least one structure in the molecule, that is, a structure of (a2)-(a1)-(a2) (in the structure, “-” indicates a chemical bond).

また、前記アクリル樹脂(B)は、主として、メタクリル酸エステル単位から構成されるアクリル樹脂である。上記の熱可塑性重合体組成物からなるシート状成形体の透明性、成形加工性等を向上させる観点から、メタクリル酸エステルの単独重合体又はメタクリル酸エステル単位を主体とする共重合体であることが好ましい。   The acrylic resin (B) is an acrylic resin mainly composed of methacrylic acid ester units. From the viewpoint of improving the transparency, molding processability, etc. of the sheet-like molded article comprising the thermoplastic polymer composition, it is a methacrylic acid ester homopolymer or a copolymer mainly composed of a methacrylic acid ester unit. Is preferred.

本実施形態における上記の熱可塑性重合体組成物の詳細については、国際公開第2010/055798号に記載されている。そして、この熱可塑性重合体組成物からなるシート状成形体(表面にフレネルレンズパターンが形成される前の成形体)は、例えば、周知のTダイ法やインフレーション法などによって製造することができる。   The details of the thermoplastic polymer composition in the present embodiment are described in International Publication No. 2010/055798. And the sheet-like molded object (molded object before a Fresnel lens pattern is formed in the surface) which consists of this thermoplastic polymer composition can be manufactured by the well-known T-die method, an inflation method, etc., for example.

また、この熱可塑性重合体組成物からなるシート状成形体6の表面にフレネルレンズパターン6aを形成する方法として、例えば、周知のプレス成形法、射出成形法、紫外線硬化性樹脂を用いた2P(Photo Polymerization)成形法などが挙げられる。   Moreover, as a method of forming the Fresnel lens pattern 6a on the surface of the sheet-like molded body 6 made of this thermoplastic polymer composition, for example, a well-known press molding method, injection molding method, 2P (using ultraviolet curable resin) Photo Polymerization) molding method.

次に、本実施形態に係る光学素子4の製造方法における、ガラス基板5とシート状成形体6との接着方法について説明する。   Next, a method for bonding the glass substrate 5 and the sheet-like molded body 6 in the method for manufacturing the optical element 4 according to the present embodiment will be described.

図3Aに示すように、ガラス基板5とシート状成形体6とを接着させる前に、シート状成形体6のガラス基板5との接着面6aにプラズマ(活性エネルギー)を照射して、表面処理(プラズマ処理)する。   As shown in FIG. 3A, before bonding the glass substrate 5 and the sheet-like molded body 6, the surface 6 a is irradiated with plasma (active energy) on the bonding surface 6 a of the sheet-like molded body 6 with the glass substrate 5. (Plasma treatment).

また、ガラス基板5とシート状成形体6とを接着させる前に、ガラス基板5のシート状成形体6との接着面5aにシランカップリング剤を塗布する処理を行う。   In addition, before the glass substrate 5 and the sheet-shaped molded body 6 are bonded, a process of applying a silane coupling agent to the bonding surface 5a of the glass substrate 5 with the sheet-shaped molded body 6 is performed.

そして、図3Bに示すように、このような処理が行われたガラス基板5とシート状成形体6の接着面5a,6b同士を、例えば、周知の真空圧着(熱圧着)法や真空ラミネート法によって、20〜50℃の温度範囲で貼り合わせるようにして接着する。   Then, as shown in FIG. 3B, the adhesive surfaces 5a and 6b of the glass substrate 5 and the sheet-like molded body 6 that have been subjected to such a process, for example, are well-known by vacuum bonding (thermocompression bonding) or vacuum laminating. Is bonded in a temperature range of 20 to 50 ° C.

このように、アクリル酸エステルを含む樹脂成形体(シート状成形体6)の接着面にプラズマ(活性化エネルギー)を照射することで、この接着面表面を活性化させ、OH基やCOOH基が増加状態において、ガラス基板5とシート状成形体6の接着面5a,6b間にシランカップリング剤を介することで、シランカップリング剤とOH基やCOOH基とが強固に結合する。   In this way, by irradiating plasma (activation energy) on the adhesion surface of the resin molded body (sheet-shaped molded body 6) containing an acrylate ester, the surface of the adhesion surface is activated, and OH groups and COOH groups are generated. In the increased state, the silane coupling agent is bonded to the OH group or the COOH group firmly by passing the silane coupling agent between the glass substrate 5 and the adhesive surfaces 5a and 6b of the sheet-like molded body 6.

本実施形態における接着方法で得られた光学素子4は、ガラス基板5とシート状成形体6の接着面5a,6b同士を、20〜50℃の適切な温度範囲(低温でもなく高温でもない温度範囲)で貼り合わせるようにして接着しているので、貼り合せ後の光学素子4全体の反りが抑えられ、フレネルレンズパターン6aのレンズ形状の歪みが抑えられる。   The optical element 4 obtained by the bonding method in the present embodiment has an appropriate temperature range of 20 to 50 ° C. (temperature that is neither low nor high temperature) between the glass substrate 5 and the bonding surfaces 5a and 6b of the sheet-like molded body 6. In this case, the warp of the entire optical element 4 after bonding is suppressed, and distortion of the lens shape of the Fresnel lens pattern 6a is suppressed.

なお、貼り合わせ時の温度が高いと、光学素子4全体はガラス板5側に凸状となるように反り、貼り合わせ時の温度が低いと、光学素子4全体はシート状成形体6側に凸状となるように反る。   In addition, when the temperature at the time of bonding is high, the entire optical element 4 warps so as to be convex toward the glass plate 5 side, and when the temperature at the time of bonding is low, the entire optical element 4 moves toward the sheet-like molded body 6 side. Warps to be convex.

そして、上記した接着方法で得られた光学素子4に対して、図4A,図4Bに示すように、フレネルレンズパターン6aの焦点位置に平面状の受光センサ(二次元センサ)10を配置し、光学素子4の集光レンズ(シート状成形体6のフレネルレンズパターン6a)の同心円の中心Mからの位置がレンズ半径の70%以上外側の位置で、光学素子4に対して垂直にスポット径5mmφのレーザ光L(波長:532nm)を入射させる。なお、図4A,図4Bに示した光学素子4は、200mm角サイズの大きさである。   Then, as shown in FIGS. 4A and 4B, a planar light receiving sensor (two-dimensional sensor) 10 is disposed at the focal position of the Fresnel lens pattern 6a with respect to the optical element 4 obtained by the bonding method described above. A spot diameter of 5 mmφ perpendicular to the optical element 4 at a position where the concentric center M of the condensing lens of the optical element 4 (Fresnel lens pattern 6a of the sheet-like molded body 6) is 70% or more of the lens radius. Laser beam L (wavelength: 532 nm) is incident. Note that the optical element 4 shown in FIGS. 4A and 4B has a size of 200 mm square.

そして、光学素子4の集光レンズ(シート状成形体6のフレネルレンズパターン6a)の焦点位置(受光センサ10)におけるビーム中心の光が前記同心円の中心Mと交わった点に対して、最大輝度から1/10の輝度となる範囲の大きさをαとしたときに、25℃と55℃に温度変化させたときの、最大値をαA、最小値をαBとしたときのαB/αAの値が0.7以上であった。   Then, the maximum luminance with respect to the point where the light at the center of the beam at the focal position (light receiving sensor 10) of the condensing lens of the optical element 4 (Fresnel lens pattern 6a of the sheet-like molded body 6) intersects the center M of the concentric circle. The value of αB / αA when the maximum value is αA and the minimum value is αB when the temperature is changed to 25 ° C and 55 ° C, where α is the size of the brightness range of 1/10 to Was 0.7 or more.

なお、最大輝度から1/10の輝度となる範囲の大きさαは、光学素子4に入射したレーザ光Lの受光センサ10上での焦点スポットとして表される。   In addition, the size α of the range in which the luminance is 1/10 from the maximum luminance is expressed as a focal spot on the light receiving sensor 10 of the laser light L incident on the optical element 4.

上記したように、作製された光学素子4は、25℃と55℃に温度変化させた場合でも、フレネルレンズパターン6aの形状変化が小さく、この結果、前記αの変化率が小さくなる。   As described above, even when the manufactured optical element 4 is changed in temperature to 25 ° C. and 55 ° C., the shape change of the Fresnel lens pattern 6a is small, and as a result, the rate of change of α is small.

よって、本実施形態に係る集光型太陽光発電装置1によれば、温度変化が例えば25℃〜55℃となるような自然環境下においても、この光学素子4で集光された光を、太陽電池素子2の受光領域に安定して良好に受光させることができるので、発電効率が低下することなく、安定して高い発電効率を維持することができ、結果として発電コストを低減することができる。   Therefore, according to the concentrating solar power generation device 1 according to the present embodiment, the light collected by the optical element 4 can be collected even in a natural environment where the temperature change is, for example, 25 ° C. to 55 ° C. Since the light receiving region of the solar cell element 2 can receive light stably and satisfactorily, high power generation efficiency can be stably maintained without lowering power generation efficiency, resulting in reduction in power generation cost. it can.

また、上記したシート状成形体6又は/及びガラス基板5の中に紫外線吸収剤を含むように構成してもよい。更に、図5Aに示すように、ガラス基板5の太陽光入射側の表面に紫外線吸収剤を塗布して、紫外線吸収層7を形成してもよい。これらの構成によって、光学素子4に入射する太陽光の紫外線が吸収されるので、紫外線によるシート状成形体6の着色や物性の変化を抑制し、長期にわたって良好な発電効率を維持することができる。   Moreover, you may comprise so that an ultraviolet absorber may be included in the above-mentioned sheet-like molded object 6 or / and the glass substrate 5. FIG. Furthermore, as shown in FIG. 5A, an ultraviolet absorber may be applied to the surface of the glass substrate 5 on the sunlight incident side to form the ultraviolet absorbing layer 7. With these configurations, ultraviolet rays of sunlight incident on the optical element 4 are absorbed, so that coloring of the sheet-like molded body 6 and changes in physical properties due to ultraviolet rays can be suppressed, and good power generation efficiency can be maintained over a long period of time. .

また、図5Bに示すように、ガラス基板5の太陽光入射側の表面に防汚コート剤を塗布して、防汚コート層8を形成してもよい。このように防汚処理を施して、ガラス基板5の太陽光入射側の表面への砂や埃などの付着を抑えることで、光透過率の低下が抑えられ、これにより長期にわたって良好な発電効率を維持することができる。   5B, the antifouling coating layer 8 may be formed by applying an antifouling coating agent to the surface of the glass substrate 5 on the sunlight incident side. By applying antifouling treatment in this way and suppressing adhesion of sand, dust, etc. to the surface of the glass substrate 5 on the sunlight incident side, a decrease in light transmittance can be suppressed, and thereby good power generation efficiency over a long period of time. Can be maintained.

更に、図5Cに示すように、ガラス基板5の太陽光入射側の表面に反射防止コート剤を塗布して、反射防止コート層9を形成してもよい。このように反射防止処理を施すことで、太陽光の透過率がより向上し、発電効率をより高めることができる。   Further, as shown in FIG. 5C, an antireflection coating layer 9 may be formed by applying an antireflection coating agent to the surface of the glass substrate 5 on the sunlight incident side. By performing the antireflection treatment in this way, the sunlight transmittance can be further improved, and the power generation efficiency can be further increased.

次に、前記した本実施形態に係る光学素子4の、温度を25℃から55℃に変化させたときの前記αの変化率を評価するために、以下に示す本発明の実施例1と比較用の比較例1〜3の構成の光学素子を作製した。   Next, in order to evaluate the rate of change of α when the temperature is changed from 25 ° C. to 55 ° C. of the optical element 4 according to the present embodiment described above, it is compared with Example 1 of the present invention shown below. Optical elements having the configurations of Comparative Examples 1 to 3 were prepared.

〈実施例1〉
実施例1では、線膨張係数が6.6×10-5/℃で、MD方向(長さ方向)の引張弾性率が300MPa、TD方向(幅方向)の引張弾性率が200MPaである、メタアクリル酸メチル(MMA)とアクリル酸ブチル(BA)のブロック共重合体とメタアクリル樹脂の混合物(上記した熱可塑性重合体組成物に相当)からなる、厚み400μmのシート状成形体に、密着性を高めるために下記のプラズマ処理を行った。なお、このシート状成形体の一方の面にはフレネルレンズパターンが形成されている。
<Example 1>
In Example 1, the linear expansion coefficient is 6.6 × 10 −5 / ° C., the tensile elastic modulus in the MD direction (length direction) is 300 MPa, and the tensile elastic modulus in the TD direction (width direction) is 200 MPa. Adhesiveness to a sheet-like molded article having a thickness of 400 μm made of a mixture of a block copolymer of methyl acrylate (MMA) and butyl acrylate (BA) and a methacrylic resin (corresponding to the above thermoplastic polymer composition). The following plasma treatment was performed in order to increase the temperature. A Fresnel lens pattern is formed on one surface of the sheet-like molded body.

シート状成形体に対面するガラス基板表面には、信越化学工業株式会社製のシランカップリング剤(商品名:KBM-903)を厚み約40nmで塗布した。そして、25℃の温度をかけながら厚み2mmの透明なガラス基板にシート状成形体を、真空圧着(熱圧着)して貼り合わせて接着した構成の200mm角サイズの光学素子を作製した。   A silane coupling agent (trade name: KBM-903) manufactured by Shin-Etsu Chemical Co., Ltd. was applied to the surface of the glass substrate facing the sheet-like molded product with a thickness of about 40 nm. Then, a 200 mm square optical element having a structure in which a sheet-like molded body was bonded to a transparent glass substrate having a thickness of 2 mm by vacuum compression bonding (thermocompression bonding) while applying a temperature of 25 ° C. was produced.

シート状成形体へのプラズマ処理は、次のように行った。   The plasma treatment on the sheet-like molded body was performed as follows.

春日電機株式会社製の大気圧プラズマ装置(APG-500型)を用いて、供給エアー流量190NL/min、定格出力電力を450〜500W、照射距離を10mmの条件で照射した。大気プラズマが照射される面積は約3cmであり、同一場所に約1秒間プラズマが照射される条件でヘッドを動かし、シート状成形体全体にプラズマを照射した。Using an atmospheric pressure plasma apparatus (APG-500 type) manufactured by Kasuga Electric Co., Ltd., irradiation was performed under the conditions of a supply air flow rate of 190 NL / min, a rated output power of 450 to 500 W, and an irradiation distance of 10 mm. The area irradiated with the atmospheric plasma was about 3 cm 2 , and the head was moved under the condition that the plasma was irradiated to the same place for about 1 second, and the entire sheet-like molded body was irradiated with the plasma.

そして、作製された光学素子に対して、図4Aに示したように、フレネルレンズパターンの焦点位置に平面状の受光センサを配置し、温度25℃の環境下で、光学素子の集光レンズ(シート状成形体のフレネルレンズパターン)の同心円中心から117.4mmの位置に、レーザ光(波長532nm、スポット径5mmφ)を入射させ、ビーム中心の光が前記同心円中心と交わった点で、最大輝度から1/10の輝度となる範囲の大きさの最大値を測定したところ、3.78mmであった。   Then, as shown in FIG. 4A, a planar light receiving sensor is disposed at the focal position of the Fresnel lens pattern with respect to the manufactured optical element, and the condenser lens ( The maximum brightness at the point where laser light (wavelength 532 nm, spot diameter 5 mmφ) is incident at a position 117.4 mm from the center of the concentric circle of the Fresnel lens pattern of the sheet-like molded body) and the light at the beam center intersects the center of the concentric circle. The maximum value of the range in which the luminance is 1/10 to 1 was measured to be 3.78 mm.

そして、温度を25℃から55℃に変化させて、同様に光学素子の集光レンズ(シート状成形体のフレネルレンズパターン)の同心円中心から117.4mmの位置に、レーザ光(波長532nm、スポット径5mmφ)を入射させ、ビーム中心の光が前記同心円中心と交わった点で、最大輝度から1/10の輝度となる範囲の大きさの最大値を測定したところ、2.78mmであった。   Then, by changing the temperature from 25 ° C. to 55 ° C., similarly, laser light (wavelength 532 nm, spot) at a position 117.4 mm from the concentric center of the condensing lens of the optical element (Fresnel lens pattern of the sheet-like molded product). The maximum value of the size within a range from the maximum luminance to 1/10 of the luminance at the point where the light at the center of the beam intersects the center of the concentric circle was measured and found to be 2.78 mm.

よって、温度を25℃から55℃に変化させたときの、αに関して最大値をαA、最小値をαBとした時のαB/αAの値が0.74であり、フレネルレンズパターン6aのレンズ形状変化が小さかった。   Therefore, when the temperature is changed from 25 ° C. to 55 ° C., the value of αB / αA is 0.74 when the maximum value for α is αA and the minimum value is αB, and the lens shape of the Fresnel lens pattern 6a The change was small.

図6は、上記実施例1、及び下記の比較例1〜3における、温度が25℃と55℃の場合の、光学素子の集光レンズ(シート状成形体のフレネルレンズパターン)の同心円中心から117.4mmの位置に、レーザ光(波長532nm、スポット径5mmφ)を入射し、ビーム中心の光が前記同心円中心と交わった点で、最大輝度から1/10の輝度となる範囲の大きさ(形状と位置)を模式的に示したものである。なお、図6に示した実施例1と比較例1〜3における測定範囲は一辺が10mmであり、受光センサ(図4A参照)の受光面の大きさに対応している。   FIG. 6 shows the concentric circle center of the condensing lens (Fresnel lens pattern of the sheet-like molded body) of the optical element when the temperature is 25 ° C. and 55 ° C. in Example 1 and Comparative Examples 1 to 3 below. A laser beam (wavelength of 532 nm, spot diameter of 5 mmφ) is incident at a position of 117.4 mm, and the size of the range in which the light at the center of the beam intersects with the center of the concentric circle is 1/10 of the maximum luminance ( (Shape and position) are schematically shown. Note that the measurement range in Example 1 and Comparative Examples 1 to 3 shown in FIG. 6 is 10 mm on a side, and corresponds to the size of the light receiving surface of the light receiving sensor (see FIG. 4A).

〈比較例1〉
比較例1では、180℃の温度をかけながら厚み2mmの透明なガラス基板にシート状成形体を、真空圧着(熱圧着)して貼り合わせた構成の200mm角サイズの光学素子を作製した。それ以外は、実施例1と同様の処理を施したガラス基板とシート状成形体を用いた。
<Comparative example 1>
In Comparative Example 1, a 200 mm square optical element having a structure in which a sheet-like molded body was bonded to a transparent glass substrate having a thickness of 2 mm while applying a temperature of 180 ° C. by vacuum pressure bonding (thermocompression bonding) was produced. Other than that, the glass substrate and sheet-like molded object which performed the process similar to Example 1 were used.

そして、作製された光学素子に対して、フレネルレンズパターンの焦点位置に平面状の受光センサ(図4A参照)を配置し、温度25度の環境下で、光学素子の集光レンズ(シート状成形体のフレネルレンズパターン)の同心円中心から117.4mmの位置に、レーザ光(波長532nm、スポット径5mmφ)を入射し、ビーム中心の光が前記同心円中心と交わった点で、最大輝度から1/10の輝度となる範囲の大きさの最大値を測定したところ、6.7mmであった。   Then, a planar light receiving sensor (see FIG. 4A) is arranged at the focal position of the Fresnel lens pattern with respect to the manufactured optical element, and the condensing lens (sheet-like molding) of the optical element in an environment of a temperature of 25 degrees. Laser light (wavelength 532 nm, spot diameter 5 mmφ) is incident at a position 117.4 mm from the center of the concentric circle of the Fresnel lens pattern of the body), and the beam intensity at the point where the light at the center of the beam intersects the center of the concentric circle is It was 6.7 mm when the maximum value of the magnitude | size of the range used as the brightness | luminance of 10 was measured.

そして、温度を25℃から55℃に変化させて、同様に光学素子の集光レンズ(シート状成形体のフレネルレンズパターン)の同心円中心から117.4mmの位置に、レーザ光(波長532nm、スポット径5mmφ)を入射し、ビーム中心の光が前記同心円中心と交わった点で、最大輝度から1/10の輝度となる範囲の大きさの最大値を測定したところ、4.4mmであった。   Then, by changing the temperature from 25 ° C. to 55 ° C., similarly, laser light (wavelength 532 nm, spot) at a position 117.4 mm from the concentric center of the condensing lens of the optical element (Fresnel lens pattern of the sheet-like molded product). The maximum value of the size within the range from the maximum luminance to 1/10 of the luminance at the point where the light at the center of the beam intersects the center of the concentric circle was measured and found to be 4.4 mm.

よって、温度を25℃から55℃に変化させたときの、上記αに関して最大値をαA、最小値をαBとしたときのαB/αAの値が0.65であり、フレネルレンズパターン6aのレンズ形状変化が大きかった。   Therefore, when the temperature is changed from 25 ° C. to 55 ° C., the value of αB / αA is 0.65 when the maximum value is αA and the minimum value is αB, and the lens of the Fresnel lens pattern 6a. The shape change was large.

〈比較例2〉
比較例2では、シート状成形体として信越化学工業株式会社製のシリコーン樹脂(商品名:KE-106)を用いて、25℃でガラス基板上にフレネルレンズ形状を形成しながら硬化させて貼り合わせた構成の200mm角サイズの光学素子を作製した。
<Comparative example 2>
In Comparative Example 2, a silicone resin (trade name: KE-106) manufactured by Shin-Etsu Chemical Co., Ltd. was used as a sheet-like molded body, and cured and formed while forming a Fresnel lens shape on a glass substrate at 25 ° C. An optical element having a 200 mm square size having the above-described configuration was produced.

そして、作製された光学素子に対して、フレネルレンズパターンの焦点位置に平面状の受光センサ(図4A参照)を配置し、温度25℃の環境下で、光学素子の集光レンズ(シート状成形体のフレネルレンズパターン)の同心円中心から117.4mmの位置に、レーザ光(波長532nm、スポット径5mmφ)を入射し、ビーム中心の光が前記同心円中心と交わった点で、最大輝度から1/10の輝度となる範囲の大きさの最大値を測定したところ、2.5mmであった。   Then, a planar light receiving sensor (see FIG. 4A) is disposed at the focal position of the Fresnel lens pattern for the manufactured optical element, and the condensing lens (sheet-shaped molding) of the optical element is performed in an environment at a temperature of 25 ° C. Laser light (wavelength 532 nm, spot diameter 5 mmφ) is incident at a position 117.4 mm from the center of the concentric circle of the Fresnel lens pattern of the body), and the beam intensity at the point where the light at the center of the beam intersects the center of the concentric circle is It was 2.5 mm when the maximum value of the magnitude | size of the range used as the brightness | luminance of 10 was measured.

そして、温度を25℃から55℃に変化させて、同様に光学素子の集光レンズ(シート状成形体のフレネルレンズパターン)の同心円中心から117.4mmの位置に、レーザ光(波長532nm、スポット径5mmφ)を入射し、ビーム中心の光が前記同心円中心と交わった点で、最大輝度から1/10の輝度となる範囲の大きさの最大値を測定したところ、9.7mmであった。   Then, by changing the temperature from 25 ° C. to 55 ° C., similarly, laser light (wavelength 532 nm, spot) at a position 117.4 mm from the concentric center of the condensing lens of the optical element (Fresnel lens pattern of the sheet-like molded product). The maximum value of the size within the range from the maximum luminance to 1/10 the luminance at the point where the light at the center of the beam intersects the center of the concentric circle was measured and found to be 9.7 mm.

よって、温度を25℃から55℃に変化させたときの、上記αに関して最大値をαA、最小値をαBとしたときのαB/αAの値が0.26であり、フレネルレンズパターン6aのレンズ形状変化が大きくなっていた。   Therefore, when the temperature is changed from 25 ° C. to 55 ° C., the value of αB / αA is 0.26 with αA being the maximum value and αB being the minimum value, and the lens of the Fresnel lens pattern 6a. The shape change was large.

〈比較例3〉
比較例3では、シート状成形体として信越化学工業株式会社製のシリコーン樹脂(商品名:KE-106)を用いて、55℃でガラス基板上にフレネルレンズ形状を形成しながら硬化させて貼り合わせた構成の200mm角サイズの光学素子を作製した。
<Comparative Example 3>
In Comparative Example 3, a silicone resin (trade name: KE-106) manufactured by Shin-Etsu Chemical Co., Ltd. was used as a sheet-like molded body, and cured and formed while forming a Fresnel lens shape on a glass substrate at 55 ° C. An optical element having a 200 mm square size having the above-described configuration was produced.

そして、作製された光学素子に対して、フレネルレンズパターンの焦点位置に平面状の受光センサ(図4A参照)を配置し、温度25℃の環境下で、光学素子の集光レンズ(シート状成形体のフレネルレンズパターン)の同心円中心から117.4mmの位置に、レーザ光(波長532nm、スポット径5mmφ)を入射し、ビーム中心の光が前記同心円中心と交わった点で、最大輝度から1/10の輝度となる範囲の大きさの最大値を測定したところ、9.1mmであった。   Then, a planar light receiving sensor (see FIG. 4A) is disposed at the focal position of the Fresnel lens pattern for the manufactured optical element, and the condensing lens (sheet-shaped molding) of the optical element is performed in an environment at a temperature of 25 ° C. Laser light (wavelength 532 nm, spot diameter 5 mmφ) is incident at a position 117.4 mm from the center of the concentric circle of the Fresnel lens pattern of the body), and the beam intensity at the point where the light at the center of the beam intersects the center of the concentric circle is It was 9.1 mm when the maximum value of the magnitude | size of the range used as the brightness | luminance of 10 was measured.

そして、温度を25℃から55℃に変化させて、同様に光学素子の集光レンズ(シート状成形体のフレネルレンズパターン)の同心円中心から117.4mmの位置に、レーザ光(波長532nm、スポット径5mmφ)を入射し、ビーム中心の光が前記同心円中心と交わった点で、最大輝度から1/10の輝度となる範囲の大きさの最大値を測定したところ、3.9mmであった。   Then, by changing the temperature from 25 ° C. to 55 ° C., similarly, laser light (wavelength 532 nm, spot) at a position 117.4 mm from the concentric center of the condensing lens of the optical element (Fresnel lens pattern of the sheet-like molded product). The maximum value of the size within the range from the maximum luminance to 1/10 of the luminance at the point where the light at the center of the beam intersects the center of the concentric circle was measured and found to be 3.9 mm.

よって、温度を25℃から55℃に変化させたときの、上記αに関して最大値をαA、最小値をαBとしたときのαB/αAの値が0.44であり、フレネルレンズパターン6aのレンズ形状変化が大きくなっていた。   Therefore, when the temperature is changed from 25 ° C. to 55 ° C., the value of αB / αA is 0.44 when the maximum value is αA and the minimum value is αB, and the lens of the Fresnel lens pattern 6a. The shape change was large.

関連出願の相互参照Cross-reference of related applications

本願は、2014年1月6日に日本国特許庁に出願された特願2014−000582号に基づく優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。   This application claims the priority based on Japanese Patent Application No. 2014-000582 for which it applied to the Japan Patent Office on January 6, 2014, The indications of all are fully incorporated by reference in this specification.

1 集光型太陽光発電装置
2 太陽電池素子
3 太陽電池基板
4 光学素子
5 ガラス基板
5a 接着面
6 シート状成形体(集光レンズシート)
6a フレネルレンズパターン
6b 接着面
10 受光センサ
DESCRIPTION OF SYMBOLS 1 Concentration type solar power generation device 2 Solar cell element 3 Solar cell substrate 4 Optical element 5 Glass substrate 5a Adhesive surface 6 Sheet-like molded object (condensing lens sheet)
6a Fresnel lens pattern 6b Adhesive surface 10 Light receiving sensor

Claims (9)

ガラス基板と、一方の面に同心円状の光集光機能パターンを有し他方の面が前記ガラス基板上に接着された、熱可塑性樹脂からなる集光レンズシートを備えた光学素子であって、
前記集光レンズシートの同心円中心に対して、その半径の70%以上外側の位置から、前記集光レンズシートに対して垂直に直径5mmφの光ビームを入射させたときに、
ビーム中心の光が集光レンズの主平面に対して垂直でレンズの中心を通る中心線と交わった位置において、最大輝度から1/10の輝度となる範囲の大きさをαとすると、温度を25℃と55℃とに変化させたときの、前記αに関して最大値をαA、最小値をαBとしときのαB/αAの値が0.70以上であることを特徴とする光学素子。
An optical element comprising a glass substrate and a condensing lens sheet made of a thermoplastic resin having a concentric light condensing function pattern on one surface and the other surface adhered on the glass substrate,
When a light beam having a diameter of 5 mmφ is incident on the condensing lens sheet perpendicularly with respect to the concentric center of the condensing lens sheet from a position outside the radius of 70% or more,
If the size of the range in which the light at the center of the beam is perpendicular to the main plane of the condenser lens and intersects with the center line passing through the center of the lens and the luminance is 1/10 of the maximum luminance is α, the temperature is An optical element, wherein the value of αB / αA is 0.70 or more when the maximum value is αA and the minimum value is αB when α is changed to 25 ° C and 55 ° C.
前記光集光機能パターンは、フレネルレンズパターンであることを特徴とする請求項1に記載の光学素子。   The optical element according to claim 1, wherein the light condensing function pattern is a Fresnel lens pattern. 前記集光レンズシートの中に紫外線吸収剤を含んでいることを特徴とする請求項1又は2に記載の光学素子。   The optical element according to claim 1 or 2, wherein the condensing lens sheet contains an ultraviolet absorber. 前記ガラス基板の、前記集光レンズシートが接合された面と反対側の面に紫外線吸収層が形成されていることを特徴とする請求項1乃至3のいずれか一項に記載の光学素子。   The optical element according to any one of claims 1 to 3, wherein an ultraviolet absorbing layer is formed on a surface of the glass substrate opposite to a surface to which the condenser lens sheet is bonded. 前記ガラス基板の、前記集光レンズシートが接合された面と反対側の面に防汚処理が施されていることを特徴とする請求項1乃至4のいずれか一項に記載の光学素子。   5. The optical element according to claim 1, wherein a surface of the glass substrate opposite to a surface to which the condenser lens sheet is bonded is subjected to an antifouling treatment. 前記ガラス基板の、前記集光レンズシートが接合された面と反対側の面に反射防止処理が施されていることを特徴とする請求項1乃至5のいずれか一項に記載の光学素子。   The optical element according to any one of claims 1 to 5, wherein an antireflection treatment is performed on a surface of the glass substrate opposite to a surface to which the condenser lens sheet is bonded. ブロック重合組成を持つアクリル系の熱可塑性樹脂を、一方の面に同心円状の光集光機能パターンを有する集光レンズシートに成形し、
成形された前記集光レンズシートの、前記集光機能パターンと反対側の他方の面を活性処理し、シランカップリング剤を架橋剤として、前記ガラス基板上に貼り合わせるようにして接着させることを特徴とする光学素子の製造方法。
Acrylic thermoplastic resin having a block polymerization composition is molded into a condensing lens sheet having a concentric light condensing function pattern on one side,
The other surface of the molded condensing lens sheet opposite to the light condensing function pattern is subjected to an active treatment, and a silane coupling agent is used as a cross-linking agent to be bonded to the glass substrate. A method for manufacturing an optical element.
前記集光レンズシートを前記ガラス基板上に貼り合わせるときの温度は、20℃〜50℃の範囲であることを特徴とする請求項7に記載の光学素子の製造方法。   The method for manufacturing an optical element according to claim 7, wherein a temperature when the condensing lens sheet is bonded to the glass substrate is in a range of 20 ° C. to 50 ° C. 8. 太陽光を集光する光学素子と、前記光学素子により集光された太陽光を受光して光電変換する太陽電池素子を備えた集光型太陽光発電装置において、
前記光学素子は、請求項1乃至6のいずれか一項に記載の光学素子であることを特徴とする集光型太陽光発電装置。
In a concentrating solar power generation apparatus including an optical element that condenses sunlight and a solar cell element that receives and photoelectrically converts sunlight collected by the optical element,
The said optical element is an optical element as described in any one of Claims 1 thru | or 6, The concentrating solar power generation device characterized by the above-mentioned.
JP2015555886A 2014-01-06 2014-12-26 Optical element, optical element manufacturing method, and concentrating solar power generation apparatus Pending JPWO2015102100A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014000582 2014-01-06
JP2014000582 2014-01-06
PCT/JP2014/084641 WO2015102100A1 (en) 2014-01-06 2014-12-26 Optical element, method for manufacturing optical element, light collecting type photovoltaic device

Publications (1)

Publication Number Publication Date
JPWO2015102100A1 true JPWO2015102100A1 (en) 2017-03-23

Family

ID=53493441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015555886A Pending JPWO2015102100A1 (en) 2014-01-06 2014-12-26 Optical element, optical element manufacturing method, and concentrating solar power generation apparatus

Country Status (3)

Country Link
JP (1) JPWO2015102100A1 (en)
TW (1) TW201532297A (en)
WO (1) WO2015102100A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093867A (en) * 2005-09-28 2007-04-12 Central Glass Co Ltd Optical component for transmission type screen
JP4670669B2 (en) * 2006-02-08 2011-04-13 スターライト工業株式会社 Composite optical component and manufacturing method thereof
JP5128808B2 (en) * 2006-12-06 2013-01-23 スリーエム イノベイティブ プロパティズ カンパニー Fresnel lens
JPWO2009125722A1 (en) * 2008-04-08 2011-08-04 シャープ株式会社 Concentrating optical member and concentrating solar power generation module
ES2461498T3 (en) * 2008-11-11 2014-05-20 Kuraray Co., Ltd. Thermoplastic polymer compositions and sheet-shaped molded articles prepared therefrom
JP5637675B2 (en) * 2009-10-29 2014-12-10 株式会社朝日ラバー Hybrid lens
DE102010034020A1 (en) * 2010-08-11 2012-02-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Surface structure and Fresnel lens and tool for producing a surface structure
DE102011003311A1 (en) * 2011-01-28 2012-08-02 Evonik Röhm Gmbh Long-life optical concentrator based on a special Fresnell lens made of polymer materials for solar energy generation
JP5846809B2 (en) * 2011-08-26 2016-01-20 株式会社クラレ Film made of acrylic resin composition
JP5351366B1 (en) * 2012-05-28 2013-11-27 パナソニック株式会社 Solar cell and manufacturing method thereof
CN104487874B (en) * 2012-07-09 2016-08-24 株式会社可乐丽 Optical element and light-focusing type solar power generating device

Also Published As

Publication number Publication date
WO2015102100A1 (en) 2015-07-09
TW201532297A (en) 2015-08-16

Similar Documents

Publication Publication Date Title
JP6414745B2 (en) Optical element and concentrating solar power generation device
JP6376565B2 (en) Method for producing glass substrate laminate, method for producing optical element, optical element and concentrating solar power generation apparatus
TWI382551B (en) Solar concentrating module
TWI447923B (en) Transmittance enhancement film and the solar cell module comprising the same
JP2007253463A (en) Surface protective sheet for solar cell module
JPS5870581A (en) Solar battery device
KR101484908B1 (en) Solar cell module for increasing light trapping efficiency by forming nano plastic balls in light-concentrating part
JP2013199617A (en) Antifouling film
WO2015102100A1 (en) Optical element, method for manufacturing optical element, light collecting type photovoltaic device
CN204441300U (en) A kind of transparent solar cell notacoria and assembly thereof
CN115579414A (en) Color photovoltaic module for increasing incident light and application thereof
JP2018057160A (en) Method for manufacturing glass base laminate, method for manufacturing optical element, optical element and light-condensing solar power generator
CN211542697U (en) Transparent sheet
JP6776546B2 (en) Manufacturing method of optical control sheet and laminated glass
JP2009094362A (en) Optical film for solar cell module
KR20100137614A (en) High photovoltaic efficiency optical film for solar cell system
KR101095844B1 (en) Photoelectric lens module and fabrication method thereof
JP2016111334A (en) Solar cell module
TWM569527U (en) Solar module with honeycomb support structure
JP2019103208A (en) Reflection mirror excellent in dust-resistant performance and photovoltaic power generation system having the same
CN107887464A (en) A kind of concentrating solar photovoltaic cell glass panel and its manufacture method
JP2013251514A (en) Method of manufacturing condenser lens member for solar cell, and condenser lens member for solar cell
JP2013214702A (en) Method of manufacturing condenser lens member for solar battery, and condenser lens member for solar battery