JPWO2015016032A1 - Manufacturing method of laminate type secondary battery - Google Patents

Manufacturing method of laminate type secondary battery Download PDF

Info

Publication number
JPWO2015016032A1
JPWO2015016032A1 JP2015529491A JP2015529491A JPWO2015016032A1 JP WO2015016032 A1 JPWO2015016032 A1 JP WO2015016032A1 JP 2015529491 A JP2015529491 A JP 2015529491A JP 2015529491 A JP2015529491 A JP 2015529491A JP WO2015016032 A1 JPWO2015016032 A1 JP WO2015016032A1
Authority
JP
Japan
Prior art keywords
electrolytic solution
container
negative electrode
laminate
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015529491A
Other languages
Japanese (ja)
Inventor
直之 岩田
直之 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Publication of JPWO2015016032A1 publication Critical patent/JPWO2015016032A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

正極引出し端子3と負極引出し端子4とが積層体18の同じ辺に位置するように、正極電極と負極電極とをセパレータを介して交互に積層し、積層体18を形成し、2枚のラミネートフィルムで積層体18を挟んで、正極引出し端子3と負極引出し端子4とが水平方向を向いているときに鉛直上方となる位置に開口31となる部分を残して、2枚のラミネートフィルムを融着して、ラミネートフィルムからなる容器11に積層体18を収容する。そして、正極引出し端子3と負極引出し端子4とが水平方向を向くように容器11を配置し、開口31から所定量の電解液32を注入し、容器11の外部から圧力を加えて、または、少なくとも容器11の内部を減圧して、電解液32の液面を複数段階に分けて上昇させることで積層体に電解液を含浸させて、容器11の開口31を融着して封止する。The laminated body 18 is formed by alternately laminating the positive electrode and the negative electrode through the separator so that the positive electrode extraction terminal 3 and the negative electrode extraction terminal 4 are located on the same side of the laminated body 18, and two laminates are formed. The laminated body 18 is sandwiched between films, and the two laminated films are melted, leaving a portion that becomes an opening 31 at a position that is vertically upward when the positive electrode extraction terminal 3 and the negative electrode extraction terminal 4 are oriented in the horizontal direction. The laminated body 18 is accommodated in the container 11 made of a laminated film. Then, the container 11 is arranged so that the positive electrode extraction terminal 3 and the negative electrode extraction terminal 4 are oriented in the horizontal direction, a predetermined amount of the electrolytic solution 32 is injected from the opening 31, and pressure is applied from the outside of the container 11, or At least the inside of the container 11 is depressurized, and the liquid level of the electrolytic solution 32 is raised in a plurality of stages so that the laminate is impregnated with the electrolytic solution, and the opening 31 of the container 11 is fused and sealed.

Description

本発明は、ラミネート型二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a laminated secondary battery.

ハイブリットカー、電気自動車、あるいは電動アシスト自転車などに、充電ができる二次電池が用いられている。   Rechargeable secondary batteries are used in hybrid cars, electric cars, electric assist bicycles, and the like.

二次電池には、金属箔の両面を絶縁性の樹脂層で覆った可とう性のラミネートフィルムを外装容器として用いたフィルム外装型をしているものがある。ラミネート型二次電池では、複数の正極電極と複数の負極電極とをポリエチレンやポリプロピレンなどからなるセパレータを介して交互に積層して積層体が形成され、それぞれの電極の引出し端子が集電用の正極リードまたは負極リードに接続されている。そして、ラミネートフィルムで構成された容器の中に積層体が電解液とともに密封されている。   Some secondary batteries have a film exterior type using a flexible laminate film in which both surfaces of a metal foil are covered with an insulating resin layer as an exterior container. In a laminate type secondary battery, a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated via separators made of polyethylene, polypropylene, etc., and a laminated body is formed. Connected to positive or negative lead. And the laminated body is sealed with electrolyte solution in the container comprised with the laminate film.

ラミネート型二次電池では、正極リードと負極リードとがラミネートフィルムによって封止される同一の辺から導出される構成と、異なる2辺から導出される構成とがある。正極リードと負極リードとが同じ方向を向いているラミネート型二次電池の場合の製造工程は次のようになる。まず、積層体を形成し、正極リードと負極リードとが導出するように、1枚、あるいは2枚のラミネートフィルムで積層体を包んで熱融着する。ただし、電解液は、積層体の、引出し端子が位置しない辺側から注入される。そのため、2つのリードが水平方向を向いた状態で鉛直上方に電解液注入用の開口が形成されるように、ラミネートフィルムの一部を熱融着しない。そして、2つのリードが水平方向を向いた状態で電解液注入用の開口からラミネートフィルムによって形成された容器内に所定量の電解液を注入する。そして、容器の電解液注入用の開口も熱融着によって塞ぐ。   In the laminated secondary battery, there are a configuration in which the positive electrode lead and the negative electrode lead are derived from the same side sealed by the laminate film, and a configuration in which the positive electrode lead and the negative electrode lead are derived from two different sides. The manufacturing process in the case of a laminated secondary battery in which the positive electrode lead and the negative electrode lead are oriented in the same direction is as follows. First, a laminated body is formed, and the laminated body is wrapped and heat-sealed with one or two laminated films so that the positive electrode lead and the negative electrode lead are led out. However, the electrolytic solution is injected from the side of the laminated body where the extraction terminal is not located. Therefore, a part of the laminate film is not heat-sealed so that an opening for electrolyte injection is formed vertically upward with the two leads facing the horizontal direction. Then, a predetermined amount of the electrolytic solution is injected into the container formed of the laminate film from the opening for injecting the electrolytic solution with the two leads facing in the horizontal direction. And the opening for electrolyte injection of a container is also plugged up by heat fusion.

図1A〜図1Cに関連技術の一例のラミネート型電池の課題を説明する概略図を示す。図1Aは、図1Cに示すラミネート型二次電子のX部を電解液注入用の開口側から見た概略図であり、引出し端子115の様子を示している。図1Bは、電解液の含浸速度の違いを示す図である。図1Cは、ある時間経過後の電極とセパレータとの間の電解液の分布を示す写真である。黒い部分には電解液が含浸しており、白い部分には電解液が含浸していない。   FIG. 1A to FIG. 1C are schematic views illustrating problems of a laminated battery as an example of related art. FIG. 1A is a schematic view of the X portion of the laminate-type secondary electrons shown in FIG. 1C as viewed from the opening side for electrolyte injection, and shows the state of the extraction terminal 115. FIG. 1B is a diagram showing a difference in the impregnation rate of the electrolytic solution. FIG. 1C is a photograph showing the distribution of the electrolyte solution between the electrode and the separator after a certain period of time. The black portion is impregnated with the electrolytic solution, and the white portion is not impregnated with the electrolytic solution.

図1Aに示すように、積層体118の、各電極の引出し端子115、116は正極または負極のリード120、121に接続するため、正極あるいは負極の引出し端子115、116同士の間はリード120、121に向かって小さくなる。つまり、引出し端子115、116によって、図1Bや図1CのZ部における積層体118の端部が封止されたようになる。一方、正極の引出し端子115と負極の引出し端子116の間のY部における、各電極とセパレータとの間隔はほぼ一定である。以上のことから、積層体118に電解液を含浸させる場合、Z部は電解液が含浸しにくいため、Y部に電解液が集中し、Y部はZ部に比べて電解液が含浸しやすくなる。したがって、図1Bの矢印で示すように、Y部とZ部とでは積層体118内への電解液の含浸速度が異なる。実際、図1Cの写真で示すように、Y部とZ部とに均等に積層体118に電解液が含浸していない。そのため、ポリエチレンやポリプロピレンなどからなるセパレータにはしわが生じやすい。セパレータのしわは、電極間の距離を変化させ、ラミネート型二次電池の電気容量の劣化などの電気的特性の低下を引き起こす。   As shown in FIG. 1A, since the lead terminals 115 and 116 of each electrode of the laminate 118 are connected to the positive and negative lead terminals 120 and 121, between the positive and negative lead terminals 115 and 116, the lead 120, It becomes small toward 121. That is, the end portions of the stacked body 118 in the Z portion of FIGS. 1B and 1C are sealed by the lead terminals 115 and 116. On the other hand, the distance between each electrode and the separator in the Y portion between the positive lead terminal 115 and the negative lead terminal 116 is substantially constant. From the above, when the laminate 118 is impregnated with the electrolytic solution, the electrolytic solution concentrates in the Y portion because the Z portion is difficult to impregnate, and the Y portion is more easily impregnated with the electrolytic solution than the Z portion. Become. Therefore, as indicated by the arrows in FIG. 1B, the impregnation rate of the electrolytic solution into the laminate 118 is different between the Y part and the Z part. Actually, as shown in the photograph of FIG. 1C, the laminate 118 is not impregnated with the electrolyte evenly in the Y portion and the Z portion. Therefore, wrinkles are likely to occur in a separator made of polyethylene, polypropylene, or the like. The wrinkles of the separator change the distance between the electrodes and cause a decrease in electrical characteristics such as deterioration of the electric capacity of the laminated secondary battery.

そこで、特許文献1では、電解液をラミネートフィルムからなる容器内に注入するときに、点滴注入、つまり、少量の電解液を複数回にわけて容器内に注入する。このように電解液を少しずつ注入することで、一部分に電解液が集中することを防ぎ、それにより、均等に電解液が積層体に含浸するので、セパレータのしわの発生を抑えることができる。   Therefore, in Patent Document 1, when the electrolytic solution is injected into a container made of a laminate film, drip injection, that is, a small amount of electrolytic solution is injected into the container in a plurality of times. By injecting the electrolyte solution little by little in this way, it is possible to prevent the electrolyte solution from concentrating on a part, and thereby the electrolyte solution is uniformly impregnated into the laminate, thereby suppressing the occurrence of wrinkles in the separator.

特開2009−146602号公報JP 2009-146602 A

しかしながら、上記の特許文献1の方法の場合、少量の電解液を複数回に分けてラミネートフィルムからなる容器内に注入するため、電解液の注入から含浸までに要する時間が長い。そのため、ラミネート型二次電池の量産化に課題が残る。   However, in the case of the above-described method of Patent Document 1, a small amount of electrolyte is divided into a plurality of times and injected into a container made of a laminate film, so that the time required from injection of electrolyte to impregnation is long. Therefore, a problem remains in mass production of the laminate type secondary battery.

本発明は、電解液の注入から含浸までに要する時間を短縮することが困難である、といった課題を解決する、ラミネート型二次電池の製造方法を提供することを目的とする。   An object of the present invention is to provide a method for manufacturing a laminate type secondary battery that solves the problem that it is difficult to shorten the time required from injection of electrolyte to impregnation.

本発明の、正極引出し端子を有する正極電極と負極引出し端子を有する負極電極とがセパレータを挟んで交互に積層されて形成される積層体を有するラミネート型二次電池の製造方法では、正極引出し端子と負極引出し端子とが積層体の同じ辺に位置し、かつ重ならないように、正極電極と負極電極とをセパレータを介して交互に積層し、積層体を形成する。そして、2枚のラミネートフィルムで積層体を挟んで、正極引出し端子と負極引出し端子とが水平方向を向いているときに鉛直上方となる位置に開口となる部分を少なくとも残して、2枚のラミネートフィルムを融着して、ラミネートフィルムからなる容器に積層体を収容する。正極引出し端子と負極引出し端子とが水平方向を向くように容器を配置し、開口から所定量の電解液を注入する。そして、容器の外部から圧力を加えて、または、少なくとも容器の内部を減圧して、電解液の液面を複数段階に分けて上昇させることで積層体に電解液を含浸させて、容器の開口を融着して封止する。   In the method of manufacturing a laminate type secondary battery having a laminate in which the positive electrode having the positive electrode lead terminal and the negative electrode having the negative electrode lead terminal are alternately laminated with the separator interposed therebetween, the positive electrode lead terminal The positive electrode and the negative electrode are alternately laminated via a separator so that the negative electrode lead-out terminal and the negative electrode lead-out terminal are located on the same side of the laminate and do not overlap with each other, thereby forming a laminate. Then, the laminate is sandwiched between two laminate films, and at least a portion that becomes an opening is left at a position vertically upward when the positive electrode lead terminal and the negative electrode lead terminal are oriented in the horizontal direction. The film is fused and the laminate is accommodated in a container made of a laminate film. The container is arranged so that the positive electrode extraction terminal and the negative electrode extraction terminal face in the horizontal direction, and a predetermined amount of electrolyte is injected from the opening. Then, pressure is applied from the outside of the container, or at least the inside of the container is depressurized, and the liquid level of the electrolytic solution is raised in multiple stages to impregnate the laminate with the electrolytic solution, thereby opening the container. Are fused and sealed.

本発明によれば、電解液の注入と含浸に要する時間を短縮することができ、ラミネート型二次電池を量産することができる。   According to the present invention, the time required for the injection and impregnation of the electrolyte can be shortened, and the laminate type secondary battery can be mass-produced.

関連技術の一例のラミネート型電池の課題を説明する図であり、図1Cに示すラミネート型二次電子のX部を電解液注入用の開口側から見た図である。It is a figure explaining the subject of the laminated battery of an example of related technology, and is the figure which looked at the X section of the laminated secondary electron shown to FIG. 1C from the opening side for electrolyte injection. 関連技術の一例のラミネート型電池の課題を説明する図であり、電解液の含浸速度の違いを示す図である。It is a figure explaining the subject of the laminated battery of an example of related technology, and is a figure which shows the difference in the impregnation rate of electrolyte solution. 関連技術の一例のラミネート型電池の課題を説明する図であり、ある時間経過後の電極とセパレータとの間の電解液の分布を示す写真である。It is a figure explaining the subject of the laminated battery of an example of related technology, and is a photograph which shows distribution of the electrolyte solution between an electrode and a separator after progress for a certain time. ラミネート型二次電池の一実施形態における正極電極の概略構成図である。It is a schematic block diagram of the positive electrode in one Embodiment of a laminate type secondary battery. ラミネート型二次電池の一実施形態におけるセパレータの概略構成図である。It is a schematic block diagram of the separator in one Embodiment of a laminate type secondary battery. ラミネート型二次電池の一実施形態における負極電極の概略構成図である。It is a schematic block diagram of the negative electrode in one Embodiment of a laminate type secondary battery. ラミネート型二次電池の一実施形態の概略構成図である。It is a schematic block diagram of one embodiment of a laminate type secondary battery. 電解液を容器に注入する様子を示す概略図である。It is the schematic which shows a mode that electrolyte solution is inject | poured into a container. 液面の上昇工程の第1の段階を説明する概略図である。It is the schematic explaining the 1st step of the raising process of a liquid level. 液面の上昇工程の第2の段階を説明する概略図である。It is the schematic explaining the 2nd step of the raise process of a liquid level. 液面の上昇工程の第3の段階を説明する概略図である。It is the schematic explaining the 3rd step of the raise process of a liquid level. 容器を加圧する第1の方法を説明するための概略図であり、負極引出し端子を越えない高さの第1のスペーサを収容部材内に挿入した状態を示している。It is the schematic for demonstrating the 1st method of pressurizing a container, and has shown the state which inserted the 1st spacer of the height which does not exceed a negative electrode extraction terminal in the accommodating member. 容器を加圧する第1の方法を説明するための概略図であり、引出し端子同士の間の高さの第2のスペーサを収容部材内に挿入し状態を示している。It is the schematic for demonstrating the 1st method of pressurizing a container, The 2nd spacer of the height between drawer terminals is inserted in the accommodation member, and the state is shown. 容器を加圧する第1の方法を説明するための概略図であり、正極引出し端子を超える高さの第3のスペーサを収容部材内に挿入した状態を示している。It is the schematic for demonstrating the 1st method of pressurizing a container, and has shown the state which inserted the 3rd spacer of the height exceeding a positive electrode extraction terminal in the accommodating member.

以下に、添付の図面に基づき、本発明の実施の形態の詳細について説明する。なお、同一の機能を有する構成には添付図面中、同一の番号を付与し、その説明を省略することがある。   Details of embodiments of the present invention will be described below with reference to the accompanying drawings. In addition, the same number is attached | subjected to the structure which has the same function in an accompanying drawing, and the description may be abbreviate | omitted.

図2A〜図2Dは、ラミネート型二次電池の一実施形態の概略構成図であり、図2Aは、正極電極、図2Bはセパレータ、図2Cは負極電極、図2Dはラミネート型二次電池である。   2A to 2D are schematic configuration diagrams of an embodiment of a laminated secondary battery. FIG. 2A is a positive electrode, FIG. 2B is a separator, FIG. 2C is a negative electrode, and FIG. 2D is a laminated secondary battery. is there.

正極電極13には正極引出し端子3が設けられ、負極電極14には負極引出し端子4が設けられている。シート状のセパレータ5は、例えば、ポリエチレンやポリプロピレンなどの合成樹脂製の微多孔性フィルムが用いられる。   The positive electrode 13 is provided with a positive electrode extraction terminal 3, and the negative electrode 14 is provided with a negative electrode extraction terminal 4. As the sheet-like separator 5, for example, a microporous film made of a synthetic resin such as polyethylene or polypropylene is used.

上述した正極電極13と負極電極14とがセパレータ15を挟んで交互に積層されることで、積層体18が構成されている。また、このとき、正極引出し端子3と負極引出し端子4とが同じ方向を向くように正極電極13と負極電極14とが積層される。つまり、積層体18の同じ辺に正極引出し端子3と負極引出し端子4とが位置している。ただし、正極引出し端子3と負極引出し端子4とが重ならないようにする必要がある。なぜなら、正極電極13の正極引出し端子3と負極電極14の負極引出端子4とが接触し短絡すること防止するためである。   The positive electrode 13 and the negative electrode 14 described above are alternately stacked with the separator 15 interposed therebetween, thereby forming a stacked body 18. At this time, the positive electrode 13 and the negative electrode 14 are laminated so that the positive electrode extraction terminal 3 and the negative electrode extraction terminal 4 face the same direction. That is, the positive electrode extraction terminal 3 and the negative electrode extraction terminal 4 are located on the same side of the laminate 18. However, it is necessary to prevent the positive electrode extraction terminal 3 and the negative electrode extraction terminal 4 from overlapping each other. This is to prevent the positive electrode extraction terminal 3 of the positive electrode 13 and the negative electrode extraction terminal 4 of the negative electrode 14 from contacting and short-circuiting.

各正極電極13の正極引出し端子3は正極リード23に接続され、各負極電極14の負極引出し端子4は負極リード24に接続される。   The positive electrode lead terminal 3 of each positive electrode 13 is connected to the positive electrode lead 23, and the negative electrode lead terminal 4 of each negative electrode 14 is connected to the negative electrode lead 24.

積層体18は、電解液と共に例えばアルミ箔などの金属箔の両面を樹脂層で覆った可とう性の1枚または2枚のラミネートフィルムで構成される容器11内に密封されている。このとき、正極リード23と負極リード24は容器11から導出している。以上のようにしてラミネート型二次電池25は構成されている。なお、以降の説明では、2枚のラミネートフィルムを使用する例を説明する。   The laminated body 18 is sealed in a container 11 composed of one or two flexible laminate films in which both surfaces of a metal foil such as an aluminum foil are covered with a resin layer together with an electrolytic solution. At this time, the positive electrode lead 23 and the negative electrode lead 24 are led out from the container 11. The laminated secondary battery 25 is configured as described above. In the following description, an example in which two laminate films are used will be described.

次に、ラミネート型二次電池25の製造方法について説明する。まず、正極引出し端子3と負極引出し端子4とが同じ方向を向くように、正極電極13と負極電極14とを、セパレータ15を介して所定の枚数だけ積層して、積層体18を形成する。そして、各正極電極13の正極引出し端子3を正極リード23に接続し、各負極電極14の負極引出し端子4を負極リード24に接続する。   Next, a method for manufacturing the laminate type secondary battery 25 will be described. First, a predetermined number of the positive electrode 13 and the negative electrode 14 are laminated via the separator 15 so that the positive electrode extraction terminal 3 and the negative electrode extraction terminal 4 face in the same direction, thereby forming a laminate 18. Then, the positive electrode extraction terminal 3 of each positive electrode 13 is connected to the positive electrode lead 23, and the negative electrode extraction terminal 4 of each negative electrode 14 is connected to the negative electrode lead 24.

次に、積層体18を2枚のラミネートフィルムで挟む。そして、2枚のラミネートフィルムを熱融着して、ラミネートフィルムからなる容器11に積層体18を収容する。ただし、正極リード23と負極リード24はラミネートフィルム、つまり容器11から導出するようにする。また、正極リード23と負極リード24とが水平方向を向いているときに鉛直方向を向く部分に、電解液注入用の開口31を設ける必要があるので、この部分は熱融着しない。   Next, the laminate 18 is sandwiched between two laminate films. And two laminated films are heat-seal | fused and the laminated body 18 is accommodated in the container 11 which consists of laminated films. However, the positive electrode lead 23 and the negative electrode lead 24 are led out from the laminate film, that is, the container 11. Moreover, since it is necessary to provide the opening 31 for electrolyte injection in the part which turns to the vertical direction when the positive electrode lead 23 and the negative electrode lead 24 have faced the horizontal direction, this part is not heat-sealed.

次に、図3に示すように、開口31が鉛直上方を向くように、容器11を配置し、開口31から容器11内に電解液32を所定量注入する。   Next, as shown in FIG. 3, the container 11 is arranged so that the opening 31 faces vertically upward, and a predetermined amount of electrolyte solution 32 is injected into the container 11 from the opening 31.

次に、容器11を外部から加圧または容器11内を減圧することで、容器11内の電解液32の液面を上昇させ、積層体18に電解液を含浸させる。本願発明では、液面の上昇を複数回に分けて行う。図4A〜図4Cに、液面の上昇工程を説明する概略図を示す。図4Aが第1段階、図4Bが第2段階、図4Cが第3段階である。   Next, by pressurizing the container 11 from the outside or reducing the pressure inside the container 11, the liquid level of the electrolytic solution 32 in the container 11 is raised, and the laminate 18 is impregnated with the electrolytic solution. In the present invention, the liquid level is raised in multiple steps. 4A to 4C are schematic views for explaining the liquid level raising process. 4A is the first stage, FIG. 4B is the second stage, and FIG. 4C is the third stage.

まず第1段階では、電解液32の液面を、鉛直方向で下方に位置する引出し端子、本実施形態では負極引出し端子4を超えない位置(第1の位置A)まで上昇させる。第2段階では、電解液32の液面を引出し端子3、4同士の間の位置(第2の位置B)まで上昇させる。第3段階では、電解液32の液面を、鉛直方向で上方に位置する引出し端子、本実施形態では正極引出し端子3を超える位置(第3の位置C)まで上昇させる。このように、複数の段階に分けて、所定の時間を経過するごとに電解液32の液面を上昇させることで、積層体18の電解液32が含浸しやすい部分(図1Aと図1BのY部)と含浸しにくい部分(図1Aと図1BのZ部)とにわけて、積層体18に電解液32を含浸させることができる。つまり、第1の段階では、電解液32が含浸しやすい引出し端子3、4同士の間には液面が達していないため、電解液の積層体18への含浸はほぼ均一に行われる。第2の段階では、電解液32が含浸しやすい引出し端子3、4同士の間に達するが、第1の段階ですでに電解液32が含浸しにくい積層体18の負極引出し端子4の部分に含浸しているため、含浸のしやすさに大きな違いは生じない。第3の段階では、第2の段階ですでに電解液32が含浸しやすい積層体18の引出し端子3、4同士の間を含浸しているため、含浸のしやすさに大きな違いは生じない。以上のことから、関連技術とは異なり、本願発明では特定の場所に電解液32を集中しないため、積層体18に電解液32が均等に含浸するようになる。したがって、セパレータ15に生じるしわを抑制することができる。   First, in the first stage, the liquid level of the electrolytic solution 32 is raised to a position (first position A) that does not exceed the extraction terminal positioned below in the vertical direction, in this embodiment, the negative electrode extraction terminal 4. In the second stage, the liquid level of the electrolytic solution 32 is raised to a position between the extraction terminals 3 and 4 (second position B). In the third stage, the liquid level of the electrolytic solution 32 is raised to a position (third position C) exceeding the extraction terminal positioned upward in the vertical direction, in this embodiment, the positive electrode extraction terminal 3. As described above, the liquid level of the electrolytic solution 32 is raised every time a predetermined time is passed, so that the portion of the laminate 18 that is easily impregnated with the electrolytic solution 32 (in FIGS. 1A and 1B). The laminated body 18 can be impregnated with the electrolytic solution 32 in a portion (Y portion) and a portion that is difficult to impregnate (Z portion in FIGS. 1A and 1B). That is, in the first stage, since the liquid level does not reach between the lead terminals 3 and 4 which are easily impregnated with the electrolytic solution 32, the impregnation of the electrolytic solution into the laminate 18 is performed almost uniformly. In the second stage, it reaches between the lead terminals 3 and 4 that are easily impregnated with the electrolyte solution 32, but in the negative electrode lead terminal 4 portion of the laminate 18 that is already impregnated with the electrolyte solution 32 in the first stage. Since it is impregnated, there is no significant difference in the ease of impregnation. In the third stage, since the gaps between the lead terminals 3 and 4 of the laminate 18 that are already easily impregnated with the electrolytic solution 32 in the second stage are impregnated, there is no significant difference in the ease of impregnation. . From the above, unlike the related art, in the present invention, the electrolytic solution 32 is not concentrated at a specific place, so that the laminated body 18 is uniformly impregnated with the electrolytic solution 32. Therefore, wrinkles generated in the separator 15 can be suppressed.

具体的に電解液32の液面を上昇させる方法について説明する。電解液32の液面を上昇させる第1の方法では、容器11を挟むことで容器11を加圧し、容器11内の電解液32の液面を上昇させる。図5A〜図5Cに、容器11を加圧する第1の方法を説明するための概略図を示す。例えば、容器11を収容可能な収容部材41とスペーサ42とを有する加圧部材43を用いる。まず、収容部材41内に電解液32が注入された容器11を配置する。そして、図5Aの例では負極引出し端子を越えない高さの第1のスペーサ42aを収容部材41内に挿入し、収容部材41と第1のスペーサ42aとで容器11を挟み加圧することで、第1の位置Aまで電解液32の液面を上昇させる(図4A及び図5A)参照)。次に、第1のスペーサ42aに替えて、第1のスペーサ42aより大きい、図5Bの例では引出し端子3、4同士の間の高さの第2のスペーサ42bを収容部材41内に挿入し、収容部材41と第2のスペーサ42bとで容器11を挟み加圧することで、第2の位置Bまで電解液32の液面を上昇させる(図4B及び図5B参照)。次に、第2のスペーサ42bに替えて第2のスペーサ42bより大きい、図5Cの例では正極引出し端子3を超える高さの第3のスペーサ42cを収容部材41内に挿入し、収容部材41と第3のスペーサ42cとで容器11を挟み加圧することで、第3の位置Cまで電解液32の液面を上昇させる(図4C及び図5C参照)。   A method for raising the liquid level of the electrolytic solution 32 will be specifically described. In the first method of raising the liquid level of the electrolytic solution 32, the container 11 is pressurized by sandwiching the container 11, and the liquid level of the electrolytic solution 32 in the container 11 is raised. The schematic for demonstrating the 1st method of pressurizing the container 11 to FIG. 5A-FIG. 5C is shown. For example, a pressurizing member 43 having an accommodating member 41 capable of accommodating the container 11 and a spacer 42 is used. First, the container 11 into which the electrolytic solution 32 is injected is placed in the housing member 41. In the example of FIG. 5A, the first spacer 42a having a height not exceeding the negative electrode extraction terminal is inserted into the housing member 41, and the container 11 is sandwiched between the housing member 41 and the first spacer 42a and pressurized. The liquid level of the electrolytic solution 32 is raised to the first position A (see FIGS. 4A and 5A). Next, in place of the first spacer 42a, a second spacer 42b larger than the first spacer 42a and having a height between the lead terminals 3 and 4 in the example of FIG. 5B is inserted into the housing member 41. Then, the liquid level of the electrolytic solution 32 is raised to the second position B by sandwiching and pressurizing the container 11 between the housing member 41 and the second spacer 42b (see FIGS. 4B and 5B). Next, in place of the second spacer 42b, a third spacer 42c larger than the second spacer 42b, which is higher than the positive electrode lead terminal 3 in the example of FIG. And the third spacer 42c sandwiching and pressurizing the container 11 raises the liquid level of the electrolytic solution 32 to the third position C (see FIGS. 4C and 5C).

電解液32の液面を上昇させる第2の方法では、開口31を介してポンプなどで大気雰囲気中にある容器11の内部を減圧することで、電解液32を吸い上げ、液面を上昇させる。このとき、電解液32の成分や、容器11の大きさなどを考慮したうえで、容器11の内部を3段階に分けて減圧することで、それぞれ第1位置A、第2の位置B、第3の位置Cまで電解液32の液面を上昇させることができる。   In the second method of raising the liquid level of the electrolytic solution 32, the inside of the container 11 in the atmospheric atmosphere is decompressed by a pump or the like through the opening 31, thereby sucking up the electrolytic solution 32 and raising the liquid level. At this time, in consideration of the components of the electrolytic solution 32, the size of the container 11, and the like, the interior of the container 11 is decompressed in three stages, so that the first position A, the second position B, the first The liquid level of the electrolytic solution 32 can be raised to the position C of 3.

電解液32の液面を上昇させる第3の方法では、電解液32を注入した容器11をチャンバーに配置し、チャンバー内を減圧することで、積層体18内から空気を抜き、積層体内を負圧にする。そのため、電解液32の液面が上昇する。チャンバー内の圧力は、電解液32の成分や、容器11の大きさ、あるいは積層体18の大きさなどを考慮したうえで決定すればよい。   In the third method of raising the liquid level of the electrolytic solution 32, the container 11 into which the electrolytic solution 32 has been injected is placed in a chamber, and the inside of the laminated body 18 is evacuated by depressurizing the inside of the laminated body. Pressure. Therefore, the liquid level of the electrolytic solution 32 rises. The pressure in the chamber may be determined in consideration of the components of the electrolytic solution 32, the size of the container 11, the size of the stacked body 18, and the like.

なお、電解液32の液面を第1位置Aから第3の位置Cまで段階的に変化させることができれば、いずれの手段であっても構わない。   Any means may be used as long as the liquid level of the electrolytic solution 32 can be changed stepwise from the first position A to the third position C.

上記の含浸の工程を経た後に、2枚のラミネートフィルムからなる容器11の開口31を、熱融着などで塞ぐ。   After the above impregnation step, the opening 31 of the container 11 made of two laminated films is closed by heat sealing or the like.

以上の工程を経て出来上がったラミネート型二次電池25では、セパレータ15のしわの発生が抑制されるため、電極間の距離が均一になり、電気容量の劣化などの電気的特性の低下を防止することができる。また、電解液32を一度容器11に注入するだけでよいので、関連技術の特許文献1に比べて電解液32の注入から含浸までに要する時間を短くすることができる。そのため、本発明はラミネート型二次電池25の量産化に寄与することができる。   In the laminated secondary battery 25 completed through the above steps, wrinkles of the separator 15 are suppressed, so that the distance between the electrodes is uniform, and deterioration of electrical characteristics such as deterioration of electric capacity is prevented. be able to. Further, since it is only necessary to inject the electrolytic solution 32 into the container 11 once, the time required from the injection of the electrolytic solution 32 to the impregnation can be shortened as compared with Patent Document 1 of the related art. Therefore, the present invention can contribute to mass production of the laminate type secondary battery 25.

また、1度で所定の電解液32の量の全ても容器11内に注入しなくてもよく、電解液32の液面を第1位置Aから第2の位置Bに上昇させる間、あるいは第2に位置Bから第3の位置Cに上昇させる間に、電解液32を注入して、電解液32の量を調整してもよい。   Further, it is not necessary to inject the entire amount of the predetermined electrolytic solution 32 into the container 11 at a time, while the liquid level of the electrolytic solution 32 is raised from the first position A to the second position B, or 2, the amount of the electrolyte solution 32 may be adjusted by injecting the electrolyte solution 32 while being raised from the position B to the third position C.

さらに、上記説明では3段階に分けて電解液32の液面を上昇させたが、4段階以上に分けて電解液32の液面を上昇させても構わない。   Furthermore, in the above description, the liquid level of the electrolytic solution 32 is raised in three stages, but the liquid level of the electrolytic solution 32 may be raised in four or more stages.

以上、実施形態を参照して本願発明を説明したが、本発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理解し得る様々な変更をすることができる。   Although the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.

この出願は、2013年7月31日に出願された日本出願特願2013−159374を基礎とする優先権を主張し、その開示の全てをここに取り込む。   This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2013-159374 for which it applied on July 31, 2013, and takes in those the indications of all here.

3 正極引出し端子
4 負極引出し端子
11 容器
13 正極電極
14 負極電極
15 セパレータ
18 積層体
25 ラミネート型二次電池
31 開口
32 電解液
3 Positive Electrode Lead Terminal 4 Negative Electrode Lead Terminal 11 Container 13 Positive Electrode 14 Negative Electrode 15 Separator 18 Laminate 25 Laminated Secondary Battery 31 Opening 32 Electrolyte

Claims (7)

正極電極の正極引出し端子と負極電極の負極引出し端子とが、前記正極電極と前記負極電極とがセパレータを挟んで交互に積層される積層体の同じ辺に位置し、かつ重ならないように、前記正極電極と前記負極電極とを前記セパレータを介して交互に積層し、前記積層体を形成する工程と、
ラミネートフィルムで前記積層体を挟んで、前記正極引出し端子と前記負極引出し端子とが水平方向を向いているときに鉛直上方となる位置に開口となる部分を少なくとも残して、前記ラミネートフィルムを融着して、前記ラミネートフィルムからなる容器に前記積層体を収容する工程と、
前記正極引出し端子と前記負極引出し端子とが水平方向を向くように前記容器を配置し、前記開口から所定量の電解液を注入する工程と、
前記容器の外部から圧力を加えて、または、少なくとも前記容器の内部を減圧して、前記電解液の液面を複数段階に分けて上昇させることで前記積層体に前記電解液を含浸させる工程と、
前記容器の前記開口を融着して封止する工程と、を含む、ラミネート型電池の製造方法。
The positive electrode extraction terminal of the positive electrode and the negative electrode extraction terminal of the negative electrode are located on the same side of the laminate in which the positive electrode and the negative electrode are alternately stacked with a separator interposed therebetween, and do not overlap each other. A step of alternately laminating positive electrodes and negative electrodes through the separator, and forming the laminate;
The laminate is sandwiched between laminate films, and the laminate film is fused, leaving at least an opening portion at a position that is vertically upward when the positive electrode terminal and the negative electrode terminal are horizontally oriented. And storing the laminate in a container made of the laminate film;
Arranging the container so that the positive electrode extraction terminal and the negative electrode extraction terminal are horizontally oriented, and injecting a predetermined amount of electrolyte from the opening;
Applying the pressure from the outside of the container, or depressurizing at least the inside of the container, and increasing the liquid level of the electrolytic solution in multiple stages to impregnate the laminate with the electrolytic solution; ,
Fusing and sealing the opening of the container.
前記電解液の前記液面を上昇させて前記電解液を含浸させる工程では、前記電解液の前記液面を3段階に分けて上昇させる、請求項1に記載のラミネート型二次電池の製造方法。   2. The method for manufacturing a laminated secondary battery according to claim 1, wherein in the step of increasing the liquid level of the electrolytic solution and impregnating the electrolytic solution, the liquid level of the electrolytic solution is increased in three stages. . 前記3段階は、
前記正極引出し端子と前記負極引出し端子のうち鉛直方向の下方に位置する引出し端子を超えない位置まで前記電解液の前記液面を上昇させる第1段階と、
前記正極引出し端子と前記負極引出し端子との間の位置まで前記電解液の前記液面を上昇させる第2段階と、
鉛直方向の上方に位置する引出し端子を超える位置まで前記電解液の前記液面を上昇させる第3段階と、からなる、請求項2に記載のラミネート型二次電池の製造方法。
The three steps are:
A first stage in which the liquid level of the electrolyte is raised to a position not exceeding a drawer terminal located below in the vertical direction among the positive electrode lead terminal and the negative electrode lead terminal;
A second step of raising the liquid level of the electrolyte to a position between the positive electrode extraction terminal and the negative electrode extraction terminal;
3. The method for manufacturing a laminated secondary battery according to claim 2, comprising: a third stage in which the liquid level of the electrolytic solution is raised to a position exceeding a drawer terminal located above in the vertical direction.
前記容器を挟み込むことで前記容器を加圧する、請求項1から3のいずれか1項に記載のラミネート型二次電池の製造方法。   The method for manufacturing a laminated secondary battery according to any one of claims 1 to 3, wherein the container is pressurized by sandwiching the container. 前記開口を介して前記容器の内部を減圧する、請求項1から3のいずれか1項に記載のラミネート型二次電池の製造方法。   The method for manufacturing a laminated secondary battery according to claim 1, wherein the inside of the container is depressurized through the opening. 前記容器をチャンバー内に配置して、前記チャンバーを減圧する、請求項1から3のいずれか1項に記載のラミネート型二次電池の製造方法。   The method for manufacturing a laminated secondary battery according to any one of claims 1 to 3, wherein the container is disposed in a chamber and the pressure in the chamber is reduced. 前記電解液の前記液面を上昇させて前記電解液を含浸させる工程において、前記液面を上昇させる段階の前に前記電解液を加え、前記電解液の量を調節する、請求項1から6のいずれか1項に記載のラミネート型二次電池の製造方法。   In the step of impregnating the electrolytic solution by raising the liquid level of the electrolytic solution, the amount of the electrolytic solution is adjusted by adding the electrolytic solution before the step of raising the liquid level. The manufacturing method of the lamination-type secondary battery of any one of these.
JP2015529491A 2013-07-31 2014-07-10 Manufacturing method of laminate type secondary battery Pending JPWO2015016032A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013159374 2013-07-31
JP2013159374 2013-07-31
PCT/JP2014/068465 WO2015016032A1 (en) 2013-07-31 2014-07-10 Method for manufacturing laminated secondary battery

Publications (1)

Publication Number Publication Date
JPWO2015016032A1 true JPWO2015016032A1 (en) 2017-03-02

Family

ID=52431572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015529491A Pending JPWO2015016032A1 (en) 2013-07-31 2014-07-10 Manufacturing method of laminate type secondary battery

Country Status (2)

Country Link
JP (1) JPWO2015016032A1 (en)
WO (1) WO2015016032A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156220A (en) * 1998-11-18 2000-06-06 Sanoh Industrial Co Ltd Electrolyte filling method and device for secondary battery
JP2009146602A (en) * 2007-12-11 2009-07-02 Nec Tokin Corp Method for manufacturing lamination type secondary battery
JP2009181862A (en) * 2008-01-31 2009-08-13 Nec Tokin Corp Method and device of manufacturing film-wrapped electric device
JP2011150868A (en) * 2010-01-21 2011-08-04 Nissan Motor Co Ltd Device and method for injecting electrolyte
WO2011126068A1 (en) * 2010-04-07 2011-10-13 日産自動車株式会社 Electrolyte pouring device and electrolyte pouring method
JP2012204104A (en) * 2011-03-24 2012-10-22 Toshiba Corp Secondary battery, and manufacturing method therefor
JP2013004383A (en) * 2011-06-17 2013-01-07 Fujikin Inc Electrochemical element
JP2013105564A (en) * 2011-11-11 2013-05-30 Nissan Motor Co Ltd Manufacturing method of electric device and its manufacturing device, and electric device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238508A (en) * 2008-03-26 2009-10-15 Fdk Corp Electrochemical device, and manufacturing method of electrochemical device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156220A (en) * 1998-11-18 2000-06-06 Sanoh Industrial Co Ltd Electrolyte filling method and device for secondary battery
JP2009146602A (en) * 2007-12-11 2009-07-02 Nec Tokin Corp Method for manufacturing lamination type secondary battery
JP2009181862A (en) * 2008-01-31 2009-08-13 Nec Tokin Corp Method and device of manufacturing film-wrapped electric device
JP2011150868A (en) * 2010-01-21 2011-08-04 Nissan Motor Co Ltd Device and method for injecting electrolyte
WO2011126068A1 (en) * 2010-04-07 2011-10-13 日産自動車株式会社 Electrolyte pouring device and electrolyte pouring method
JP2012204104A (en) * 2011-03-24 2012-10-22 Toshiba Corp Secondary battery, and manufacturing method therefor
JP2013004383A (en) * 2011-06-17 2013-01-07 Fujikin Inc Electrochemical element
JP2013105564A (en) * 2011-11-11 2013-05-30 Nissan Motor Co Ltd Manufacturing method of electric device and its manufacturing device, and electric device

Also Published As

Publication number Publication date
WO2015016032A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
KR101348366B1 (en) Battery Cell of Asymmetric Structure and Battery Pack Employed with the Same
KR101738734B1 (en) Pouch type secondary battery
JP6407297B2 (en) BATTERY CELL CONTAINING OUTER PERIPHERAL SEALING PORTION FORMED WITH SEALING LINE AND BATTERY CELL SEALING DEVICE FOR PRODUCING THE SAME
JP2017092047A (en) Battery cell of stair-like structure
JP2020532835A (en) Pouch type battery case including crack prevention structure and its manufacturing method
JP6743664B2 (en) Power storage device and method of manufacturing power storage device
JP5660619B2 (en) Film-clad battery and manufacturing method thereof
US10879573B2 (en) Energy storage apparatus and method of manufacturing energy storage apparatus
JP6326206B2 (en) Pressurizing method for film-clad battery
JP2010097891A (en) Stacked lithium-ion secondary battery
KR20100013279A (en) Laminate secondary battery
JP2011096418A (en) Battery pack
KR20150010481A (en) Pouch battery and manufacturing method thereof
CN102412379B (en) Secondary battery and manufacturing method of the same
JP2014199780A (en) Electricity storage element
JP2006164784A (en) Film-armored electric device
JP2013105564A (en) Manufacturing method of electric device and its manufacturing device, and electric device
JP2019096392A (en) Manufacturing method of bipolar battery
KR101546002B1 (en) electrochemical energy storage device
KR101580086B1 (en) Electrode Assembly of Combination Structure
JP6683089B2 (en) Power storage device
WO2015016032A1 (en) Method for manufacturing laminated secondary battery
CN104393335A (en) Lithium ion battery and manufacturing method thereof
JP2019087414A (en) Method for manufacturing bipolar battery
JP6542754B2 (en) Method of manufacturing secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190320

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190320

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190328

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190402

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190517

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20190521

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200218

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200630

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201006

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201105

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201105