JPWO2015015531A1 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JPWO2015015531A1
JPWO2015015531A1 JP2015529219A JP2015529219A JPWO2015015531A1 JP WO2015015531 A1 JPWO2015015531 A1 JP WO2015015531A1 JP 2015529219 A JP2015529219 A JP 2015529219A JP 2015529219 A JP2015529219 A JP 2015529219A JP WO2015015531 A1 JPWO2015015531 A1 JP WO2015015531A1
Authority
JP
Japan
Prior art keywords
power
circuit
booster
solar cells
inverter circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015529219A
Other languages
Japanese (ja)
Other versions
JP6171180B2 (en
Inventor
鈴木 淳一
淳一 鈴木
森田 功
功 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2015015531A1 publication Critical patent/JPWO2015015531A1/en
Application granted granted Critical
Publication of JP6171180B2 publication Critical patent/JP6171180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

速やかに系統と接続できる電力変換装置を提供することを目的とする。複数の太陽電池(2a)〜(2e)に夫々接続され、接続された太陽電池(2a)〜(2e)の出力電圧を夫々昇圧する昇圧回路(12a)〜(12e)と、夫々の昇圧回路(12a)〜(12e)により昇圧された直流電力をまとめて入力し、入力した直流電力を商用電力系統(3)と同期する交流電力に変換して商用電力系統(3)へ重畳可能とするインバータ回路(13)と、を備え、夫々の昇圧回路(12a)〜(12e)の内の一つの昇圧回路(12a)を作動させインバータ回路(13)による変換を開始し、インバータ回路(13)による変換が開始されたのちに、夫々の昇圧回路(12a)〜(12e)の内の他の昇圧回路(12b)〜(12e)の作動を開始させることを特徴とする。It aims at providing the power converter which can be connected with a system | strain quickly. Booster circuits (12a) to (12e) that are respectively connected to the plurality of solar cells (2a) to (2e) and boost the output voltages of the connected solar cells (2a) to (2e), respectively, and the respective booster circuits The DC power boosted by (12a) to (12e) is input collectively, and the input DC power is converted into AC power synchronized with the commercial power system (3) so that it can be superimposed on the commercial power system (3) An inverter circuit (13), and one of the booster circuits (12a) to (12e) is activated to start conversion by the inverter circuit (13), and the inverter circuit (13) After the conversion by is started, the operation of the other booster circuits (12b) to (12e) among the respective booster circuits (12a) to (12e) is started.

Description

本発明は、電力変換装置に関するものである。   The present invention relates to a power conversion device.

従来より、複数の太陽電池の出力する直流電力をまとめた後交流電力に変換し、この変換した交流電力を商用電力系統へ重畳する電力変換装置が提供されている。   2. Description of the Related Art Conventionally, there has been provided a power conversion device that combines DC power output from a plurality of solar cells, converts the DC power into AC power, and superimposes the converted AC power on a commercial power system.

このような電力変換装置は、複数の太陽電池ストリング夫々に接続される昇圧回路と、夫々の昇圧回路の出力電力をまとめて入力し、この入力した直流電力を商用電力系統と同期する交流電力に変換して商用電力系統へ重畳するインバータ回路と、により構成される(特許文献1)。   Such a power conversion device inputs a booster circuit connected to each of a plurality of solar cell strings and output power of each booster circuit together, and converts the input DC power into AC power synchronized with a commercial power system. And an inverter circuit that converts and superimposes it on the commercial power system (Patent Document 1).

特許文献1に記載の電力変換装置は、太陽が昇り始めて起動に十分な日射が得られるようになると、夫々の昇圧回路が昇圧動作を開始する。そして、インバータ回路の入力側の中間電圧が所定値に安定した時点でインバータ回路を作動させて交流電力の商用電力系統への重畳を開始する。   In the power conversion device described in Patent Document 1, when the sun begins to rise and sufficient solar radiation is obtained for startup, each booster circuit starts a boost operation. Then, when the intermediate voltage on the input side of the inverter circuit is stabilized at a predetermined value, the inverter circuit is operated and superposition of AC power on the commercial power system is started.

特開2005−151662号公報Japanese Patent Laid-Open No. 2005-151662

しかしながら、特許文献1に記載の電力変換装置のように、起動時(交流電力の変換前)に、夫々の昇圧回路が昇圧動作を行った場合、昇圧回路の出力電圧が夫々の昇圧回路によって独立して調整されるため、昇圧回路の出力電圧が安定しづらく起動に時間を要してしまうという課題があった。  However, when each booster circuit performs a boosting operation at the time of start-up (before AC power conversion) as in the power conversion device described in Patent Document 1, the output voltage of the booster circuit is independent by each booster circuit. Therefore, there is a problem that the output voltage of the booster circuit is not stable and takes time to start.

本発明は、このような課題に鑑みてなされた発明であり、速やかに系統と接続できる電力変換装置を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a power conversion device that can be quickly connected to a system.

本発明の電力変換装置は、複数の太陽電池に夫々接続され、接続された前記太陽電池の出力電圧を夫々昇圧する昇圧回路と、夫々の前記昇圧回路により昇圧された直流電力をまとめて入力し、入力した直流電力を商用電力系統と同期する交流電力に変換して前記商用電力系統へ重畳可能とするインバータ回路と、を備え、夫々の前記昇圧回路の内の一つの昇圧回路を作動させ前記インバータ回路による変換を開始し、前記インバータ回路による変換が開始されたのちに、夫々の前記昇圧回路の内の他の昇圧回路の作動を開始させることを特徴とする。   The power conversion device of the present invention is connected to a plurality of solar cells, respectively, boosts the output voltage of the connected solar cells, and inputs DC power boosted by each of the boosting circuits together. An inverter circuit that converts the input DC power into AC power synchronized with the commercial power system and can be superimposed on the commercial power system, and operates one booster circuit in each of the booster circuits. The conversion by the inverter circuit is started, and after the conversion by the inverter circuit is started, the operation of another booster circuit in each of the booster circuits is started.

本発明によれば、速やかに系統と接続できる電力変換装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the power converter device which can be connected with a system | strain quickly can be provided.

実施例1における電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device in Example 1. FIG. 制御回路15の動作フローチャートを示す図である。FIG. 3 is a diagram illustrating an operation flowchart of the control circuit 15.

本実施形態は、起動時に複数の昇圧回路の内一つの昇圧回路を作動させて太陽電池の出力を系統へ供給することにより、昇圧回路とインバータ回路との間の中間電圧を安定させ系統との全出力接続移行への時間を短縮することができるようにしたものである。   In this embodiment, one of the plurality of booster circuits is activated at the time of startup to supply the output of the solar cell to the system, thereby stabilizing the intermediate voltage between the booster circuit and the inverter circuit. This makes it possible to shorten the time required to shift to all output connections.

電力変換装置1には複数の太陽電池(複数の太陽電池セルを電気的に直列及び/または並列に接続して1単位(モジュール)としたもの、または複数のモジュールを電気的に直列及び/または並列に接続して1単位(ストリング)としたものを総称している)2a〜2eが入力側に接続される。電力変換装置1は、これらの太陽電池2a〜2eの出力する直流電力を商用電力(系統)に同期する交流電力に変換して系統3へ重畳する。   The power converter 1 includes a plurality of solar cells (a plurality of solar cells electrically connected in series and / or parallel to form one unit (module), or a plurality of modules electrically connected in series and / or 2a to 2e (collectively referring to one unit (string) connected in parallel) are connected to the input side. The power converter 1 converts the DC power output from these solar cells 2 a to 2 e into AC power synchronized with commercial power (system) and superimposes it on the system 3.

図1は、実施例1の電力変換装置の構成を示す図である。電力変換装置1は、開閉器11a〜11e、昇圧回路12a〜12e、インバータ回路13、リレー14、及び制御回路15を備えている。   FIG. 1 is a diagram illustrating the configuration of the power conversion device according to the first embodiment. The power conversion device 1 includes switches 11a to 11e, booster circuits 12a to 12e, an inverter circuit 13, a relay 14, and a control circuit 15.

昇圧回路12a〜12eには、夫々開閉器11a〜11eを介して太陽電池2a〜2eが接続される。この昇圧回路12a〜12eには、スイッチ素子、リアクトル、コンデンサ、及びダイオードからなるトランスレス型の昇圧チョッパ回路を用いる。尚、トランスを介して高周波スイッチングを行う様な昇圧回路など従来の回路構成も用いることができる。   Solar cells 2a to 2e are connected to booster circuits 12a to 12e via switches 11a to 11e, respectively. For the booster circuits 12a to 12e, a transformerless booster chopper circuit including a switch element, a reactor, a capacitor, and a diode is used. A conventional circuit configuration such as a booster circuit that performs high-frequency switching through a transformer can also be used.

昇圧回路12a〜12eは、スイッチ素子のデューティ比を調節して、夫々接続された太陽電池2a〜2eの出力する直流電力の電圧を昇圧する。夫々の昇圧回路12a〜12eは、その入力電圧や出力電圧をフィードバックして出力電圧を所定値に制御する一定電圧制御と、入力電力をフィードバックして太陽電池2a〜2eの出力電力が最大になるように制御するMPPT(Maximum Power Point Tracking:最大電力点追従)制御を行うことができる。   The booster circuits 12a to 12e adjust the duty ratio of the switch elements to boost the voltage of the DC power output from the connected solar cells 2a to 2e. Each booster circuit 12a to 12e feeds back the input voltage or output voltage to control the output voltage to a predetermined value, and the input power is fed back to maximize the output power of the solar cells 2a to 2e. Thus, MPPT (Maximum Power Point Tracking) control can be performed.

開閉器11a〜11eは手動により開閉することが可能な開閉器であり、メンテナンス時にユーザーや作業者により開閉される。これにより、ユーザーや作業者は、メンテナンス時に太陽電池2a〜2eと電力変換装置1とを切り離し、太陽電池2a〜2eから電力変換装置1への供給電力を遮断した状態でメンテナンスを行うことができる。尚、開閉器11a〜11eは、電力変換装置1を動作させるときには太陽電池2a〜2eと電力変換装置1とを接続するよう切り替えられる。   The switches 11a to 11e are switches that can be manually opened and closed, and are opened and closed by a user or an operator during maintenance. Thereby, a user or an operator can perform maintenance in a state where the solar cells 2a to 2e and the power conversion device 1 are disconnected at the time of maintenance and the power supplied from the solar cells 2a to 2e to the power conversion device 1 is cut off. . The switches 11 a to 11 e are switched to connect the solar cells 2 a to 2 e and the power converter 1 when operating the power converter 1.

インバータ回路13は、入力側が夫々の昇圧回路12a〜12eに接続され、出力側がリレー14を介して系統3に接続されている。インバータ回路13は、夫々の昇圧回路12a〜12eにより昇圧された直流電力をまとめて入力する。そして、インバータ回路13は、入力した直流電力を系統3と同期する交流電力に変換して系統3へ重畳する。   The inverter circuit 13 has an input side connected to each of the booster circuits 12 a to 12 e and an output side connected to the system 3 via a relay 14. The inverter circuit 13 collectively inputs the DC power boosted by the respective booster circuits 12a to 12e. The inverter circuit 13 converts the input DC power into AC power synchronized with the system 3 and superimposes it on the system 3.

インバータ回路13は、複数のスイッチ素子からなるブリッジ回路により構成される。インバータ回路13は、目標とする交流波形(系統3に同期する交流波形)を用いたPWM変調による複数のスイッチ素子のON/OFF制御(PWM制御)により交流波形を形成する。このPWM制御は制御回路15により行われる。   The inverter circuit 13 is configured by a bridge circuit composed of a plurality of switch elements. The inverter circuit 13 forms an AC waveform by ON / OFF control (PWM control) of a plurality of switch elements by PWM modulation using a target AC waveform (AC waveform synchronized with the system 3). This PWM control is performed by the control circuit 15.

リレー14は、電力変換装置1と系統3との間を開閉するものであり、制御回路によりその開閉が制御される。リレー14は、太陽電池2a〜2eが発電し系統3へ電力を重畳するときに閉じられ、太陽電池2a〜2eの出力が不足してくると開かれる。   The relay 14 opens and closes between the power conversion apparatus 1 and the system 3, and its opening and closing is controlled by a control circuit. The relay 14 is closed when the solar cells 2a to 2e generate power and superimpose power on the grid 3, and is opened when the output of the solar cells 2a to 2e becomes insufficient.

制御回路15は、マイコン等により構成され、昇圧回路12a、インバータ回路13、及びリレー14の動作を制御する。この制御は、任意の位置に配置される電流センサや電圧センサからの情報を制御回路15が取得して、必要な個所の電流や電圧をフィードバックして行われる。   The control circuit 15 is configured by a microcomputer or the like, and controls operations of the booster circuit 12a, the inverter circuit 13, and the relay 14. This control is performed by the control circuit 15 acquiring information from a current sensor or a voltage sensor arranged at an arbitrary position and feeding back a current or voltage at a required location.

次に、実施例1の特徴である電力変換装置1の起動時の制御について述べる。   Next, the control at the time of starting of the power converter device 1 which is a feature of the first embodiment will be described.

日射量が増えて太陽電池2a〜2eの出力が上昇すると、制御回路15は、太陽電池2a〜2eの内2以上(ここでは3つとする)の太陽電池の出力電圧(昇圧回路12a〜12eへの入力電圧Vi)が所定値を超えたか否かを判断し(ステップS1)、この条件を満たした際に電力変換装置1の起動を開始する。この際の所定値は、例えば、変換時に必要な中間電圧対して適正な昇圧比が得られる入力電圧(例えば、50V〜200V)が設定される。以下、太陽電池2a〜2cの出力電圧が所定値を超えたものとして説明する。   When the amount of solar radiation increases and the output of the solar cells 2a to 2e increases, the control circuit 15 outputs the output voltage (to the booster circuits 12a to 12e) of two or more (three here) of the solar cells 2a to 2e. Is determined whether or not the input voltage Vi) exceeds a predetermined value (step S1), and the activation of the power converter 1 is started when this condition is satisfied. As the predetermined value at this time, for example, an input voltage (for example, 50 V to 200 V) that can obtain an appropriate step-up ratio with respect to the intermediate voltage required at the time of conversion is set. Hereinafter, description will be made assuming that the output voltages of the solar cells 2a to 2c exceed a predetermined value.

制御回路15は、電力変換装置1の起動が可能であると判断すると、太陽電池2a〜2cに接続される昇圧回路12a〜12cの内最も出力電圧の大きい太陽電池に接続される昇圧回路を選択する(ステップS2)。ここでは説明のため、昇圧回路12aが選択されたものとする。   When determining that the power conversion device 1 can be activated, the control circuit 15 selects the booster circuit connected to the solar cell having the highest output voltage among the booster circuits 12a to 12c connected to the solar cells 2a to 2c. (Step S2). Here, for the sake of explanation, it is assumed that the booster circuit 12a is selected.

そして、制御回路15は、昇圧回路12aの出力電圧Vm(中間電圧)が所定の電圧に一定になるように作動させる(ステップS3)。この際の昇圧回路12aの出力電圧Vmは、インバータ回路13が系統3に交流電力を重畳可能な電圧(例えば、単相三線の系統に対して480V〜550V程度)に設定される。   Then, the control circuit 15 operates so that the output voltage Vm (intermediate voltage) of the booster circuit 12a becomes constant at a predetermined voltage (step S3). At this time, the output voltage Vm of the booster circuit 12a is set to a voltage at which the inverter circuit 13 can superimpose AC power on the system 3 (for example, about 480V to 550V for a single-phase three-wire system).

制御回路15は、昇圧回路12aの出力電圧Vmが安定したか否かを判断し(ステップS4)、昇圧回路12aの出力電圧Vmが安定するとインバータ回路13の作動を開始させる(ステップS5)。このとき、制御回路15はインバータ回路13の出力電圧が系統3と同期するように昇圧回路12aで昇圧された直流電力を交流電力に変換する制御を行う。   The control circuit 15 determines whether or not the output voltage Vm of the booster circuit 12a is stabilized (step S4), and starts the operation of the inverter circuit 13 when the output voltage Vm of the booster circuit 12a is stabilized (step S5). At this time, the control circuit 15 performs control to convert the DC power boosted by the booster circuit 12a into AC power so that the output voltage of the inverter circuit 13 is synchronized with the system 3.

制御回路15は、インバータ回路13により系統3と同期する交流電圧波形が成形されたか否かを判断し(ステップS6)、インバータ回路13により系統3と同期する交流電圧波形が成形されると、リレー14をONにして(閉じて)インバータ回路13から系統3にこの交流電力を重畳させる(ステップS7)。リレー14を閉じた後は、制御回路15は、夫々の昇圧回路12a〜12eを共にMPPT動作にて作動させ(ステップS8)、インバータ回路13からは所定の出力電流が出力されるように上記交流電圧波形の振幅の制御を行う。   The control circuit 15 determines whether or not the AC voltage waveform synchronized with the system 3 is formed by the inverter circuit 13 (step S6). When the AC voltage waveform synchronized with the system 3 is formed by the inverter circuit 13, the relay circuit 15 14 is turned ON (closed), and this AC power is superimposed on the system 3 from the inverter circuit 13 (step S7). After the relay 14 is closed, the control circuit 15 operates each of the booster circuits 12a to 12e by the MPPT operation (Step S8), and the inverter circuit 13 outputs the predetermined output current. Controls the amplitude of the voltage waveform.

このように、電力変換装置1の起動時に制御回路15は、夫々の昇圧回路12a〜12eの内の一つの昇圧回路12aを作動させインバータ回路13による重畳を開始し、インバータ回路13による変換が開始されたのちに、夫々の昇圧回路12a〜12eの内他の昇圧回路12b〜12eが作動を開始させる。   As described above, when the power conversion device 1 is activated, the control circuit 15 operates one of the booster circuits 12a to 12e to start superposition by the inverter circuit 13, and starts conversion by the inverter circuit 13. After that, the other booster circuits 12b-12e out of the respective booster circuits 12a-12e start to operate.

これにより、インバータ回路13が交流電力を系統3へ重畳する際に、選択された昇圧回路12aを作動させて変換を開始する。このため、昇圧回路の昇圧電圧(中間電圧)が速やかに所定の電圧に安定してインバータ回路13の出力を系統3に供給開始することができる。また、インバータ回路により系統と同期した交流電圧を生成してからリレー14を閉じるため、系統3から電力変換装置1へ流れ込む突入電流を抑制することができる。   Thus, when the inverter circuit 13 superimposes AC power on the grid 3, the selected booster circuit 12a is operated to start conversion. For this reason, the boosted voltage (intermediate voltage) of the booster circuit can be quickly stabilized at a predetermined voltage and the supply of the output of the inverter circuit 13 to the system 3 can be started. Moreover, since the relay circuit 14 is closed after generating an AC voltage synchronized with the system by the inverter circuit, an inrush current flowing from the system 3 to the power converter 1 can be suppressed.

また、実施例1によれば、起動時に複数の太陽電池2a〜2eの内最も出力電圧の大きい太陽電池2aに接続される昇圧回路12aを選択して作動させている。即ち、最も出力が大きい太陽電池を利用して交流電力の重畳を開始することができるため、重畳を開始した直後に日射量の変化などによって出力不足になってしまう事態を抑制することができる。   Moreover, according to Example 1, the booster circuit 12a connected to the solar cell 2a having the largest output voltage among the plurality of solar cells 2a to 2e at the time of activation is selected and operated. That is, since the superposition of the AC power can be started using the solar cell having the largest output, it is possible to suppress a situation where the output becomes insufficient due to a change in the amount of solar radiation immediately after the superposition is started.

また、実施例1によれば、インバータ回路13の交流電力への変換開始後他の昇圧回路11b〜11eも作動を開始させるため、出力不足により電力変換装置1が止まることを抑制できる。   In addition, according to the first embodiment, the other booster circuits 11b to 11e are also started after the inverter circuit 13 starts to convert to AC power, so that it is possible to suppress the power conversion device 1 from stopping due to insufficient output.

また、実施例1によれば、複数の太陽電池2a〜2eの内2以上の太陽電池2a〜2cの出力電圧Viが所定値を超えたことにより電力変換装置1の起動可能の判定を行ってから昇圧回路12aの作動を開始させているので、交流電力の重畳開始後出力不足により電力変換装置1が止まってしまうことを抑制することができる。   In addition, according to the first embodiment, it is determined that the power conversion device 1 can be activated when the output voltage Vi of the two or more solar cells 2a to 2c out of the plurality of solar cells 2a to 2e exceeds a predetermined value. Since the operation of the booster circuit 12a is started, it is possible to prevent the power conversion device 1 from being stopped due to insufficient output after the start of superposition of AC power.

以上、本発明の一実施形態について説明したが、以上の説明は本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。   As mentioned above, although one Embodiment of this invention was described, the above description is for making an understanding of this invention easy, and does not limit this invention. It goes without saying that the present invention can be changed and improved without departing from the gist thereof, and that the present invention includes equivalents thereof.

例えば、昇圧回路12a〜12eの内の一つの昇圧回路12aの作動させてからインバータ回路13による変換を開始するまでの間に、太陽電池2a〜2eの内最も出力電圧の大きい太陽電池2aが別の太陽電池(例えば、太陽電池2b)に変わった場合に、作動中の昇圧回路12aを停止して、別の太陽電池2bに接続される昇圧回路11bを作動させても良い。   For example, the solar cell 2a having the highest output voltage among the solar cells 2a to 2e is separated from the time when one of the boost circuits 12a to 12e is activated until the conversion by the inverter circuit 13 is started. In the case of changing to a solar cell (for example, solar cell 2b), the operating boost circuit 12a may be stopped and the boost circuit 11b connected to another solar cell 2b may be operated.

このようにすることで、出力の高い太陽電池2を選択して交流電力への変換を開始することになるため、重畳開始後出力不足により電力変換装置1が止まってしまうことを抑制することができる。   By doing in this way, since the high output solar cell 2 will be selected and the conversion to alternating current power will be started, it will suppress that the power converter device 1 stops by the shortage of an output after a superimposition start. it can.

また、例えば、昇圧回路12a〜12eの内の一つの昇圧回路12aの作動させてからインバータ回路13による変換を開始するまでの間に、太陽電池2a〜2eの内最も出力電圧の大きい太陽電池2aが別の太陽電池(例えば、太陽電池2b)に変わった場合に、現在作動している昇圧回路による昇圧を継続しても良い。   Further, for example, the solar cell 2a having the highest output voltage among the solar cells 2a to 2e after the operation of one of the booster circuits 12a to 12e until the conversion by the inverter circuit 13 is started. May change to another solar cell (for example, solar cell 2b), the boosting by the currently operating booster circuit may be continued.

このようにすることで、昇圧回路12aによる昇圧が開始された後、インバータ回路13による重畳が開始されるまで、昇圧回路の切り替えがないため、速やかに連系可能な電圧まで昇圧回路により昇圧することができる。   By doing in this way, after the boosting by the booster circuit 12a is started, the booster circuit is not switched until the superposition by the inverter circuit 13 is started. be able to.

また、実施例1では、太陽電池2a〜2eの内2以上の太陽電池2a〜2cの出力電圧Viが所定値を超えた際に、昇圧回路12aの作動を開始させているが、例えば、複数の太陽電池2a〜2eの内の一つでも所定値を超えたら昇圧回路の作動を開始しても良い。また、例えば、太陽電池2a〜2eの出力電圧Viの合計値や平均値などが所定の値を超えたことを条件として昇圧回路の作動を開始させても良い。   In the first embodiment, the operation of the booster circuit 12a is started when the output voltage Vi of two or more of the solar cells 2a to 2e exceeds a predetermined value. When any one of the solar cells 2a to 2e exceeds a predetermined value, the operation of the booster circuit may be started. Further, for example, the operation of the booster circuit may be started on the condition that the total value or average value of the output voltages Vi of the solar cells 2a to 2e exceeds a predetermined value.

また、所定値は、太陽電池2a〜2e夫々に対して異なる値を使用しても良い。例えば、定格出力の大きい太陽電池に対しては、定格出力の小さい太陽電池に比べて大きくする。   Moreover, you may use a different value with respect to each solar cell 2a-2e for a predetermined value. For example, the solar cell with a large rated output is made larger than the solar cell with a small rated output.

また、実施例1では、作動させる昇圧回路を出力電圧が最も大きい太陽電池に接続されている昇圧回路としたが、例えば、定格出力が大きい太陽電池に接続されている昇圧回路としても良いし、電力変換装置1に設定手段を備えておき作動させる昇圧回路をこの設定手段により予め決めておいても良い。   In the first embodiment, the booster circuit to be operated is a booster circuit connected to the solar cell having the largest output voltage. However, for example, the booster circuit may be a booster circuit connected to the solar cell having the highest rated output, A step-up circuit that is provided with setting means in the power conversion device 1 to operate may be determined in advance by the setting means.

本実施形態の電力変換装置1は、太陽電池2a〜2eを含む太陽電池システム等としても利用することができる。   The power converter 1 of this embodiment can be used also as a solar cell system including the solar cells 2a to 2e.

1 電力変換装置
2a〜2e 太陽電池
3 系統(商用電力系統)
11a〜11e 開閉器
12a〜12e 昇圧回路
13 インバータ回路
14 リレー
15 制御回路

1 power converter 2a-2e solar cell 3 systems (commercial power system)
11a-11e Switch 12a-12e Booster circuit 13 Inverter circuit 14 Relay 15 Control circuit

Claims (5)

複数の太陽電池に夫々接続され、接続された前記太陽電池の出力電圧を夫々昇圧する昇圧回路と、
夫々の前記昇圧回路により昇圧された直流電力をまとめて入力し、入力した直流電力を商用電力系統と同期する交流電力に変換して前記商用電力系統へ重畳可能とするインバータ回路と、を備え、
夫々の前記昇圧回路の内の一つの昇圧回路を作動させ前記インバータ回路による変換を開始し、前記インバータ回路による変換が開始されたのちに、夫々の前記昇圧回路の内の他の昇圧回路の作動を開始させることを特徴とする電力変換装置。
A booster circuit connected to each of a plurality of solar cells, and boosting the output voltage of the connected solar cells;
DC power boosted by each of the booster circuits is collectively input, and the inverter circuit that converts the input DC power into AC power synchronized with the commercial power system and can be superimposed on the commercial power system,
One booster circuit in each of the booster circuits is operated to start conversion by the inverter circuit, and after the conversion by the inverter circuit is started, the operation of the other booster circuit in each of the booster circuits is started The power converter characterized by starting.
前記一つの昇圧回路は、前記複数の太陽電池の内出力電圧の大きい太陽電池に接続される昇圧回路であることを特徴とする請求項1に記載の電力変換装置。   2. The power converter according to claim 1, wherein the one booster circuit is a booster circuit connected to a solar cell having a large internal output voltage of the plurality of solar cells. 前記一つの昇圧回路を作動させてから前記インバータ回路による変換を開始するまでの間に、前記複数の太陽電池の内最も出力電圧の大きい太陽電池が別の太陽電池に変わった場合に、前記別の太陽電池に接続される昇圧回路を作動させることを特徴とする請求項2に記載の電力変換装置。   When the solar cell having the largest output voltage among the plurality of solar cells is changed to another solar cell between the time when the one booster circuit is activated and the conversion by the inverter circuit is started, The power converter according to claim 2, wherein a booster circuit connected to the solar cell is operated. 前記一つの昇圧回路を作動させてから前記インバータ回路による変換を開始するまでの間に、前記複数の太陽電池の内最も出力電圧の大きい太陽電池がどれであるかにかかわらず、前記作動させた昇圧回路による昇圧を継続することを特徴とする請求項2に記載の電力変換装置。   The operation is performed regardless of which of the plurality of solar cells has the highest output voltage from when the one booster circuit is activated to when the conversion by the inverter circuit is started. The power converter according to claim 2, wherein the boosting by the boosting circuit is continued. 前記複数の太陽電池の内2以上の太陽電池の出力電圧が所定値を超えた際に、前記一つの昇圧回路の作動を開始させることを特徴とする請求項1乃至4の何れか1つに記載の電力変換装置。


The operation of the one booster circuit is started when the output voltage of two or more solar cells out of the plurality of solar cells exceeds a predetermined value. The power converter described.


JP2015529219A 2013-07-31 2013-07-31 Power converter Active JP6171180B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/004634 WO2015015531A1 (en) 2013-07-31 2013-07-31 Electric power conversion device

Publications (2)

Publication Number Publication Date
JPWO2015015531A1 true JPWO2015015531A1 (en) 2017-03-02
JP6171180B2 JP6171180B2 (en) 2017-08-02

Family

ID=52431114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015529219A Active JP6171180B2 (en) 2013-07-31 2013-07-31 Power converter

Country Status (2)

Country Link
JP (1) JP6171180B2 (en)
WO (1) WO2015015531A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3139481B1 (en) * 2015-09-04 2021-05-12 Siemens Aktiengesellschaft Method for operating a photovoltaic assembly
CN105406729A (en) * 2015-12-21 2016-03-16 付强 Voltage boosting system and control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188875A (en) * 1998-10-15 2000-07-04 Canon Inc Photovoltaic power generation device and method for controlling the same
JP2004147390A (en) * 2002-10-22 2004-05-20 Canon Inc Power conversion system
JP2004215439A (en) * 2003-01-07 2004-07-29 Sharp Corp System cooperation inverter arrangement
JP2005151662A (en) * 2003-11-13 2005-06-09 Sharp Corp Inverter device and distributed power supply system
JP2013102631A (en) * 2011-11-09 2013-05-23 Panasonic Corp Power conditioner for solar power generation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188875A (en) * 1998-10-15 2000-07-04 Canon Inc Photovoltaic power generation device and method for controlling the same
JP2004147390A (en) * 2002-10-22 2004-05-20 Canon Inc Power conversion system
JP2004215439A (en) * 2003-01-07 2004-07-29 Sharp Corp System cooperation inverter arrangement
JP2005151662A (en) * 2003-11-13 2005-06-09 Sharp Corp Inverter device and distributed power supply system
JP2013102631A (en) * 2011-11-09 2013-05-23 Panasonic Corp Power conditioner for solar power generation

Also Published As

Publication number Publication date
JP6171180B2 (en) 2017-08-02
WO2015015531A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP5940946B2 (en) Power conditioner and control method thereof
US8531855B2 (en) Power conversion apparatus
EP3232532A1 (en) Uninterruptible power supply device
JP5349688B2 (en) Grid-connected inverter
US10340730B2 (en) Uninterruptible power supply apparatus
JP2009106145A (en) Power supply device with voltage converter circuit
JP2017212838A (en) Power conversion device for system interconnection with autonomous operation function, and activation control method therefor
KR102281416B1 (en) Uninterruptible power supplies, and test methods for uninterruptible power supplies
JP5887501B2 (en) Grid interconnection device
JP2015136202A (en) chopper circuit
JP6151649B2 (en) Power conversion device and power conversion method
KR101609245B1 (en) Apparatus for storing energy
JP6171180B2 (en) Power converter
US9793823B2 (en) Controller for grid tied inverter system
JP2012151923A (en) Power conversion apparatus
JP2015204746A (en) Method of supplying energy from photovoltaic power generation module of photovoltaic power generation system and inverter designed to implement the method
JP6261367B2 (en) Power conversion device in solar power generation system, and junction box and power conditioner included in the same
JP6271638B2 (en) Power conditioner and control method thereof
US20140117755A1 (en) Power system
EP3140903A1 (en) Configurable inverter apparatus, photovoltaic system comprising such an inverter apparatus
JP2013106393A (en) Instantaneous voltage drop compensation device
JP6907796B2 (en) Power generation system
JP2012205328A (en) System interconnection device
JP6236625B2 (en) Power converter
RU2523066C1 (en) Plasmatron power supply source

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R151 Written notification of patent or utility model registration

Ref document number: 6171180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151