JPWO2014199421A1 - Plasma generating apparatus, plasma processing apparatus, plasma generating method and plasma processing method - Google Patents

Plasma generating apparatus, plasma processing apparatus, plasma generating method and plasma processing method Download PDF

Info

Publication number
JPWO2014199421A1
JPWO2014199421A1 JP2013549460A JP2013549460A JPWO2014199421A1 JP WO2014199421 A1 JPWO2014199421 A1 JP WO2014199421A1 JP 2013549460 A JP2013549460 A JP 2013549460A JP 2013549460 A JP2013549460 A JP 2013549460A JP WO2014199421 A1 JPWO2014199421 A1 JP WO2014199421A1
Authority
JP
Japan
Prior art keywords
magnetic field
plasma
electrode
main surface
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013549460A
Other languages
Japanese (ja)
Inventor
後藤 哲也
哲也 後藤
平山 昌樹
昌樹 平山
須川 成利
成利 須川
大見 忠弘
忠弘 大見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Publication of JPWO2014199421A1 publication Critical patent/JPWO2014199421A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32669Particular magnets or magnet arrangements for controlling the discharge

Abstract

プラズマ励起領域の周辺に存在する電極等の部材材料が加速された電子によりスパッタされることを実質的に無くすことができるプラズマ発生装置を提供する。主面(10a)および背面(10b)を有するプラズマ形成用の電極(10)と、周波数が200MHz以上の高周波電力を電極(10)に供給する高周波供給部(100,70,60)と、電極(10)の背面側に設けられ、N極が前記背面に対向配置された第1の固定磁石(56)とS極が背面に対向配置された第2の固定磁石(58)とを含み、励起されるプラズマを主面(10a)付近に閉じ込めるためのループ状の磁場領域LMRを形成する磁場形成機構(50)と、を有し、磁場形成機構(50)の形成するループ状の磁場領域LMRは、主面(10a)に平行な方向に3000ガウス以上の強磁場を有する。Provided is a plasma generation device capable of substantially eliminating sputtering of member materials such as electrodes existing around a plasma excitation region by accelerated electrons. An electrode (10) for plasma formation having a main surface (10a) and a back surface (10b), a high-frequency supply unit (100, 70, 60) for supplying high-frequency power having a frequency of 200 MHz or more to the electrode (10), an electrode A first fixed magnet (56) provided on the back side of (10) and having a north pole opposed to the back and a second fixed magnet (58) having a south pole opposed to the back; And a magnetic field forming mechanism (50) for forming a looped magnetic field region LMR for confining the excited plasma near the main surface (10a), and the looped magnetic field region formed by the magnetic field forming mechanism (50) The LMR has a strong magnetic field of 3000 gauss or more in a direction parallel to the main surface (10a).

Description

本発明は、プラズマ発生装置およびこのプラズマ発生装置を用いたプラズマ処理装置と、プラズマ発生方法およびこのプラズマ発生方法を用いたプラズマ処理方法とに関する。   The present invention relates to a plasma generation apparatus, a plasma processing apparatus using the plasma generation apparatus, a plasma generation method, and a plasma processing method using the plasma generation method.

プラズマCVD(Chemical Vapor Deposition)等のプラズマ処理プロセスでは、シリコンウエハ等の基板の表面に入射するイオン照射エネルギーを低く抑えてイオン照射ダメージを低減するために、電子温度の低いプラズマが求められている。一般に、プラズマ励起周波数を高くすると、プラズマ密度が増加し電子温度が低下する。そこで、通常の高周波電源の周波数である13.56MHzより高い30〜300MHzのVHF(Very High Frequency)帯の高周波をプラズマ処理に用いることが行われている(例えば、特許文献1、2参照)。   Plasma processing processes such as plasma CVD (Chemical Vapor Deposition) require plasma with a low electron temperature in order to reduce ion irradiation damage by suppressing ion irradiation energy incident on the surface of a substrate such as a silicon wafer. . In general, when the plasma excitation frequency is increased, the plasma density increases and the electron temperature decreases. Therefore, a high frequency of a VHF (Very High Frequency) band of 30 to 300 MHz, which is higher than a frequency of 13.56 MHz, which is a frequency of a normal high frequency power source, is used for plasma processing (for example, see Patent Documents 1 and 2).

特開平9−312268号公報JP-A-9-31268 特開2009−021256号公報JP 2009-021256 A

例えば、マイクロ波プラズマ技術においては、上記したようにプラズマ励起周波数を高くすれば、励起されたプラズマが拡散する拡散プラズマ領域におけるイオン照射エネルギーを十分に低下させることができ、シリコンウエハのイオン照射ダメージをほぼなくすことができる段階にきている。しかしながら、プラズマ励起領域においては、強いマイクロ波電界により電子が加速されるため、イオン照射エネルギーが数十eVまで上昇してしまう。その結果、加速された電子より、電界形成用の電極や処理チャンバの内壁面等のプラズマ励起領域の周辺に存在する部材材料がスパッタされ、このスパッタされた材料がシリコンウエハに付着することによるコンタミネーションが発生する。   For example, in the microwave plasma technology, if the plasma excitation frequency is increased as described above, the ion irradiation energy in the diffusion plasma region where the excited plasma diffuses can be sufficiently reduced, and the ion irradiation damage of the silicon wafer can be reduced. We are at a stage where we can almost eliminate. However, in the plasma excitation region, electrons are accelerated by a strong microwave electric field, so that the ion irradiation energy rises to several tens of eV. As a result, the accelerated electrons cause sputtering of the member material existing around the plasma excitation region such as the electric field forming electrode and the inner wall surface of the processing chamber, and the sputtered material adheres to the silicon wafer. Nation occurs.

本発明の目的は、シリコンウエハ等の被処理体のイオン照射ダメージを無くすことができる程度にプラズマの電子温度を低下させることに加えて、プラズマ励起領域の周辺に存在する電極等の部材材料が加速された電子によりスパッタされることを実質的に無くすことができるプラズマ発生装置および方法を提供することにある。また、本発明の目的の一つは、このプラズマ発生装置および方法を用いた、プラズマ処理装置および方法を提供することにある。   The object of the present invention is to reduce the electron temperature of the plasma to such an extent that ion irradiation damage to the object to be processed such as a silicon wafer can be eliminated. It is an object of the present invention to provide a plasma generation apparatus and method capable of substantially eliminating sputtering by accelerated electrons. Another object of the present invention is to provide a plasma processing apparatus and method using the plasma generating apparatus and method.

本発明のプラズマ発生装置は、主面および当該主面とは反対の背面とを有するプラズマ形成用の電極と、周波数が200MHz以上の高周波電力を前記プラズマ形成用の電極に供給する高周波供給部と、前記電極の背面側に設けられ、N極が前記背面に対向配置された第1の固定磁石とS極が前記背面に対向配置された第2の固定磁石とを含み、前記第1の固定磁石のN極から出て前記電極を透過して前記第2の固定磁石のS極に入る磁力線を用いて、励起されるプラズマを前記主面付近に閉じ込めるためのループ状の磁場領域を形成する磁場形成機構と、を有し、前記磁場形成機構の形成するループ状の磁場領域は、前記主面に平行な方向に3000ガウス以上の強磁場を有する、ことを特徴とする。   The plasma generator of the present invention includes a plasma forming electrode having a main surface and a back surface opposite to the main surface, and a high frequency supply unit that supplies high frequency power having a frequency of 200 MHz or more to the plasma forming electrode. A first fixed magnet provided on the back side of the electrode and having an N pole opposed to the back surface and a second fixed magnet having an S pole opposed to the back surface, the first fixed magnet Using a magnetic field line that exits from the N pole of the magnet and passes through the electrode and enters the S pole of the second fixed magnet, a loop-shaped magnetic field region is formed to confine excited plasma near the main surface. A loop-shaped magnetic field region formed by the magnetic field forming mechanism has a strong magnetic field of 3000 gauss or more in a direction parallel to the main surface.

本発明のプラズマ処理装置は、上記のプラズマ発生装置を用いて、前記電極の主面に対向して配置される被処理体をプラズマ処理するプラズマ処理装置であって、前記電極は、プラズマ化すべき原料ガスを前記ループ状の磁場領域へ供給するための原料ガス供給部を、前記ループ状の磁場領域に対応する領域に備えることを特徴とする。   The plasma processing apparatus of the present invention is a plasma processing apparatus that performs plasma processing on an object to be processed that is disposed to face the main surface of the electrode by using the plasma generator, and the electrode should be converted into plasma. A source gas supply unit for supplying source gas to the loop-shaped magnetic field region is provided in a region corresponding to the loop-shaped magnetic field region.

本発明のプラズマ発生方法は、主面および当該主面とは反対の背面とを有するプラズマ形成用の電極に、周波数が200MHz以上の高周波電力を供給し、前記電極の背面側に設けられ、N極が前記背面に対向配置された第1の固定磁石とS極が前記背面に対向配置された第2の固定磁石とを含む磁場形成機構を用いて、前記第1の固定磁石のN極から出て前記電極を透過して前記第2の固定磁石のS極に入る磁力線を用いて、励起されるプラズマを前記主面付近に閉じ込めるためのループ状の磁場領域を形成し、前記ループ状の磁場領域が、前記主面に平行な方向に3000ガウス以上の強磁場を有するように、前記ループ状の磁場領域を形成する、ことを特徴とする。   The plasma generation method of the present invention supplies a high frequency power having a frequency of 200 MHz or more to a plasma forming electrode having a main surface and a back surface opposite to the main surface, and is provided on the back surface side of the electrode. From the N pole of the first fixed magnet using a magnetic field forming mechanism including a first fixed magnet having a pole opposed to the back surface and a second fixed magnet having an S pole opposed to the back surface. Using a magnetic field line that passes through the electrode and enters the south pole of the second fixed magnet, a loop-shaped magnetic field region for confining the excited plasma near the main surface is formed, and the loop-shaped magnetic field region is formed. The loop-shaped magnetic field region is formed so that the magnetic field region has a strong magnetic field of 3000 gauss or more in a direction parallel to the main surface.

本発明のプラズマ処理方法は、上記のプラズマ発生方法を用いて、前記電極の主面に対向して配置される被処理体をプラズマ処理するプラズマ処理方法であって、前記電極の前記ループ状の磁場領域に対応する領域に設けられた原料ガス供給部から、プラズマ化すべき原料ガスを前記ループ状の磁場領域へ供給する、ことを特徴とする。   The plasma processing method of the present invention is a plasma processing method of performing plasma processing on an object to be processed that is disposed to face the main surface of the electrode by using the plasma generation method described above, wherein the loop shape of the electrode is A material gas to be converted into plasma is supplied to the loop-shaped magnetic field region from a material gas supply unit provided in a region corresponding to the magnetic field region.

本発明では、プラズマ形成用の電極に、周波数が200MHz以上の高周波電力を供給してプラズマを励起し、励起されたプラズマを電極の主面に形成したループ状の磁場領域に閉じ込める。そして、ループ状の磁場領域を主面に平行な方向の磁場強度が3000ガウス以上の強磁界を有するものとすることで、プラズマを磁力線に強く巻き付かせてプラズマ密度をさらに高めることができ、その結果、閉じ込められたプラズマの電子温度をプラズマ励起領域周辺に配置されたプラズマ形成用の電極等の部材をスパッタしない程度まで低下させることができる。   In the present invention, plasma is excited by supplying high-frequency power having a frequency of 200 MHz or more to an electrode for plasma formation, and the excited plasma is confined in a looped magnetic field region formed on the main surface of the electrode. And, by making the loop magnetic field region have a strong magnetic field of 3000 gauss or more in the direction parallel to the main surface, it is possible to further increase the plasma density by strongly winding the plasma around the lines of magnetic force, As a result, the electron temperature of the confined plasma can be lowered to such an extent that a member such as a plasma forming electrode disposed around the plasma excitation region is not sputtered.

本発明の一実施形態に係るプラズマ処理装置の概略を示す断面図。1 is a cross-sectional view schematically showing a plasma processing apparatus according to an embodiment of the present invention. 図1の円IIA内の拡大図。FIG. 2 is an enlarged view in a circle IIA in FIG. 1. シャワープレートのガス供給孔の配列を示す図。The figure which shows the arrangement | sequence of the gas supply hole of a shower plate. 図1の装置の磁場形成機構の構成を示す平面図。The top view which shows the structure of the magnetic field formation mechanism of the apparatus of FIG. 磁場形成機構の他の例を示す平面図。The top view which shows the other example of a magnetic field formation mechanism. 磁場形成機構のさらに他の例を示す平面図。The top view which shows the further another example of a magnetic field formation mechanism. 固定磁石とループ状磁場領域との関係を示す断面図。Sectional drawing which shows the relationship between a fixed magnet and a loop-shaped magnetic field area | region. 主面に形成されるループ状磁場領域の水平磁場強度分布を示すグラフ。The graph which shows horizontal magnetic field strength distribution of the loop-shaped magnetic field area | region formed in a main surface. 給電部の構造を示す図1のVI-VI線の断面図。Sectional drawing of the VI-VI line of FIG. 1 which shows the structure of an electric power feeding part.

以下に添付図面を参照しながら、本発明の実施形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

ここで、本発明の基本原理を説明する。本発明では、シリコンウエハ等の被処理体のイオン照射によるダメージを除去するために、従来から実施されてきたプラズマ励起周波数の高周波化を行う。これに加えて、磁場による閉じ込め効果を利用して、供給される高周波電力をプラズマの加速のためではなく、プラズマ密度を増加させるためのエネルギーに転換する。ここで、本発明者らは、プラズマ閉じ込めのための磁場領域が、電極の主面に平行な方向の磁場(以下、水平磁場と呼ぶ。)の強度が3000ガウス以上の強磁場を有するものにすることにより、プラズマが磁力線に強く巻き付くことでプラズマ閉じ込め効果が向上してプラズマ密度が高まり、プラズマ励起領域のプラズマの電子温度をプラズマ形成用の電極やその周辺の部材のスパッタが実質的に発生しない程度まで下げることができることを新たに見出した。プラズマ密度が高まるということは、投入された高周波電力がプラズマ密度の上昇に消費されて、プラズマの電子温度が下がることを意味する。本発明のプラズマ発生装置は、これに限定されるわけではないが、「水平方向強磁界印加高周波励起プラズマ装置」とも呼ぶことができるものである。   Here, the basic principle of the present invention will be described. In the present invention, in order to remove damage caused by ion irradiation of an object to be processed such as a silicon wafer, the conventional plasma excitation frequency is increased. In addition to this, the confinement effect by the magnetic field is utilized to convert the supplied high frequency power into energy for increasing the plasma density, not for accelerating the plasma. Here, the inventors of the present invention set the magnetic field region for confining the plasma to a magnetic field in which the intensity of a magnetic field in a direction parallel to the main surface of the electrode (hereinafter referred to as a horizontal magnetic field) is 3000 gauss or more. As a result, the plasma confinement effect is improved by strongly wrapping the plasma around the magnetic field lines, the plasma density is increased, and the electron temperature of the plasma in the plasma excitation region is substantially reduced by the sputtering of the electrode for forming the plasma and the surrounding members. It was newly found that it can be lowered to the extent that it does not occur. An increase in plasma density means that the input high frequency power is consumed for increasing the plasma density, and the electron temperature of the plasma is decreased. The plasma generator of the present invention is not limited to this, but can also be referred to as a “horizontal high magnetic field application high frequency excitation plasma apparatus”.

本実施形態に係るプラズマ処理装置(以下、装置1という。)は、図1に示すように、例えば、プラズマCVD(Chemical Vapor Deposition)等の各種プラズマ処理に用いられる。装置1は、密閉空間201を画定する金属製の処理チャンバ200、処理チャンバ200内に設置された窒化アルミニウム等から形成されたシリコンウエハ等の基板Wを載置するためのステージ220、ステージ220の上方に設けられたプラズマ形成用の電極10、電極10に設置された磁場形成機構50、電極10に電気的に接続された給電部60、処理チャンバ200の上蓋202上に設けられた整合器70、および、電源100を有する。ステージ220は、回転軸線Cを中心に基板Wを回転可能になっている。   As shown in FIG. 1, a plasma processing apparatus according to the present embodiment (hereinafter referred to as apparatus 1) is used for various plasma processes such as plasma CVD (Chemical Vapor Deposition), for example. The apparatus 1 includes a metal processing chamber 200 that defines a sealed space 201, a stage 220 for mounting a substrate W such as a silicon wafer formed from aluminum nitride or the like installed in the processing chamber 200, The plasma forming electrode 10 provided above, the magnetic field forming mechanism 50 installed on the electrode 10, the power supply unit 60 electrically connected to the electrode 10, and the matching unit 70 provided on the upper lid 202 of the processing chamber 200. And a power supply 100. The stage 220 can rotate the substrate W about the rotation axis C.

処理チャンバ200は、アルミニウム合金、ステンレス等の導電性材料で形成され、基準電位に接続されている。処理チャンバ200の底部には、処理チャンバ200内の雰囲気を排気するための排気口205が設けられ、この排気口205に処理チャンバ200の外部に設置された図示しない真空ポンプなどの排気装置が接続される。この排気装置により、密閉空間201は減圧される。   The processing chamber 200 is made of a conductive material such as aluminum alloy or stainless steel, and is connected to a reference potential. An exhaust port 205 for exhausting the atmosphere in the processing chamber 200 is provided at the bottom of the processing chamber 200, and an exhaust device such as a vacuum pump (not shown) installed outside the processing chamber 200 is connected to the exhaust port 205. Is done. With this exhaust device, the sealed space 201 is depressurized.

電極10は、導電性の板状部材で形成され、非磁性材料、例えば、表面に陽極酸化膜が形成されたアルミニウム合金で形成されている。電極10は、外周部を酸化アルミニウム等の絶縁体で形成された保持部材80で保持され、ステージ220に対向する側に平面からなる主面10aと主面10aとは逆に背面10bを備えている。保持部材80は、処理チャンバ200の上部に固定され、電極10との間はOリング82でシールされ、処理チャンバ200との間はOリング84でシールされている。電極10は、図2Aに示すように、背面10bに、磁場形成機構50の後述する固定磁石56,58を埋め込むための溝11が形成され、主面10a側には、例えば、SiH4、N2、O2、N2O等の原料ガスを供給するためのガス流路12が形成され、内部には電極10の過熱を防ぐための冷却水が通過する冷却水流路14が形成されている。ガス流路12の主面10a側には、シャワープレート20が、主面10aと面一となるように電極10に一体的に設けられている。すなわち、シャワープレート20の表面は、主面10aの一部を構成している。シャワープレート20は、電極10と同じ材料で形成されている。シャワープレート20には、ガス供給孔21が多数形成されており、ガス供給孔21は、図2Bに示すように配列されており、例えば、孔径0.2mm、ピッチ0.5mmで圧力500mTorr,ガス流量1000sccmの条件か5m/sのガス流速でガスを供給可能である。なお、シャワープレート20の配置については後述する。The electrode 10 is formed of a conductive plate-like member, and is formed of a nonmagnetic material, for example, an aluminum alloy having an anodized film formed on the surface. The electrode 10 is held by a holding member 80 having an outer peripheral portion formed of an insulator such as aluminum oxide, and includes a main surface 10a formed of a plane on the side facing the stage 220 and a back surface 10b opposite to the main surface 10a. Yes. The holding member 80 is fixed to the upper part of the processing chamber 200, is sealed with an O-ring 82 between the electrode 10, and is sealed with an O-ring 84 with the processing chamber 200. As shown in FIG. 2A, the electrode 10 is formed with grooves 11 for embedding fixed magnets 56 and 58 (to be described later) of the magnetic field forming mechanism 50 on the back surface 10b, and on the main surface 10a side, for example, SiH 4 , N 2 , a gas flow path 12 for supplying a source gas such as O 2 and N 2 O is formed, and a cooling water flow path 14 through which cooling water for preventing overheating of the electrode 10 passes is formed. . On the main surface 10a side of the gas flow path 12, a shower plate 20 is provided integrally with the electrode 10 so as to be flush with the main surface 10a. That is, the surface of the shower plate 20 constitutes a part of the main surface 10a. The shower plate 20 is made of the same material as the electrode 10. A large number of gas supply holes 21 are formed in the shower plate 20, and the gas supply holes 21 are arranged as shown in FIG. 2B. For example, the hole diameter is 0.2 mm, the pitch is 0.5 mm, the pressure is 500 mTorr, and the gas Gas can be supplied under conditions of a flow rate of 1000 sccm or a gas flow rate of 5 m / s. The arrangement of the shower plate 20 will be described later.

磁場形成機構50は、平板状に形成されたヨーク52と、ヨーク52の下面に設けられた第1の固定磁石としての磁石56および第2の固定磁石としての磁石58とを有する。ヨーク52は、鉄で形成されており、下面以外の表面がアルミニウム合金等で形成された導電性カバー53で覆われている。これは、抵抗が比較的高い鉄製のヨーク52に高周波電流が流れると発熱によるエネルギー損失が生じることから、アルミニウム合金等の抵抗の低い材料でヨーク52を覆うことで、これを防ぐためである。   The magnetic field forming mechanism 50 includes a yoke 52 formed in a flat plate shape, and a magnet 56 as a first fixed magnet and a magnet 58 as a second fixed magnet provided on the lower surface of the yoke 52. The yoke 52 is made of iron, and the surface other than the lower surface is covered with a conductive cover 53 made of aluminum alloy or the like. This is to prevent this by covering the yoke 52 with a low-resistance material such as an aluminum alloy because energy loss due to heat generation occurs when a high-frequency current flows through the iron yoke 52 having a relatively high resistance.

磁石56,58は、板状磁石からなり、強い磁界を安定して発生させるために、Sm−Co系焼結磁石、Nd−Fe−B系焼結磁石等の残留磁束密度、保磁力、エネルギー積の高い磁石が用いられる。磁石56,58は、図2Aに示す電極10の背面側に形成された溝11に埋め込まれている。磁石56,58の表面には、フッ化炭素樹脂(商品名:テフロン(登録商標))等の絶縁材料が被覆されており、電極10と磁石56,58との間は電気的に絶縁されている。各磁石56,58はその表面に垂直な方向に磁化されている。磁石56は、N極が電極10の背面10bに対向配置され、図3Aに示すように、Y軸方向に延在するとともにX軸方向に等間隔で配列されている。磁石58は、S極が電極10の背面10bに対向配置され、隣り合う2つの磁石56の間に配置されるとともにY軸方向に沿った複数の長手部58aと、複数の長手部58aの両端部を互いに接続する連結部58bとからなる。磁石56と磁石58の長手部58aとの間は、一定のギャップが形成されている。磁石56と磁石58の連結部58bとの間にも、一定のギャップが形成されている。なお、図3Aにおいて、X軸方向の両端部の2つの長手部58aの幅は、他の長手部58aの幅よりも狭くなっている。磁石56は、例えば、幅が20mm、長さが330mmの寸法を有し、磁石58は、例えば、X軸方向の全幅が410mm、Y軸方向の全幅が390mm、両端以外の長手部58aの幅が20mm、両端の長手部58aの幅が15mm、連結部58bの幅が10mmの寸法を有する。   The magnets 56 and 58 are plate-shaped magnets, and in order to stably generate a strong magnetic field, the residual magnetic flux density, coercive force, energy of Sm—Co based sintered magnet, Nd—Fe—B based sintered magnet, etc. High product magnets are used. The magnets 56 and 58 are embedded in the groove 11 formed on the back side of the electrode 10 shown in FIG. 2A. The surfaces of the magnets 56 and 58 are covered with an insulating material such as a fluorocarbon resin (trade name: Teflon (registered trademark)), and the electrode 10 and the magnets 56 and 58 are electrically insulated. Yes. Each magnet 56, 58 is magnetized in a direction perpendicular to its surface. The magnets 56 are arranged so that the north pole faces the back surface 10b of the electrode 10, and extends in the Y-axis direction and is arranged at equal intervals in the X-axis direction as shown in FIG. 3A. The magnet 58 has a south pole facing the back surface 10b of the electrode 10, is disposed between two adjacent magnets 56, and has a plurality of longitudinal portions 58a along the Y-axis direction, and both ends of the plurality of longitudinal portions 58a. It consists of the connection part 58b which connects a part mutually. A certain gap is formed between the magnet 56 and the longitudinal portion 58 a of the magnet 58. A certain gap is also formed between the magnet 56 and the connecting portion 58 b of the magnet 58. In FIG. 3A, the widths of the two longitudinal portions 58a at both ends in the X-axis direction are narrower than the widths of the other longitudinal portions 58a. The magnet 56 has dimensions of, for example, a width of 20 mm and a length of 330 mm. The magnet 58 has, for example, an overall width in the X-axis direction of 410 mm, an overall width in the Y-axis direction of 390 mm, and the width of the longitudinal portion 58a other than both ends. 20 mm, the width of the longitudinal portion 58 a at both ends is 15 mm, and the width of the connecting portion 58 b is 10 mm.

ここで、図4に概略的に示すように、磁石56のN極から出る磁力線の一部MFLは、磁石56のN極と磁石58のS極とが隣り合わせになっていることから、電極10を透過して電極10の主面10aを通過し、再び、電極10を透過して、隣り合う磁石58のS極に入る。この磁力線MFLは、磁石56の全周囲に形成され、これにより、図3Ani点線で示す領域に、励起されるプラズマを主面10a付近に閉じ込めるためのループ状の磁場領域LMRが形成される。本発明では、磁場領域LMRは、主面10aに平行な方向に3000ガウス以上の強磁場を有するように、磁場形成機構50が構成される。主面10aに平行な方向の磁場を水平磁場と呼ぶ。図5のグラフは、電極10の主面10aから垂直方向に8mm離れた位置のX軸上の水平磁場の強度分布を示している。磁場領域LMRは、水平磁場強度が3000ガウスを越える領域に形成される。ループ状の磁場領域LMRの幅は、例えば、10mm程度である。そして、上記したシャワープレート20は、このループ状の磁場領域LMRに対向する位置に設けられる。これにより、プラズマ化すべき原料ガスをループ状の磁場領域LMRに直接的に供給可能となる。   Here, as schematically shown in FIG. 4, a part MFL of the lines of magnetic force emerging from the north pole of the magnet 56 is such that the north pole of the magnet 56 and the south pole of the magnet 58 are adjacent to each other. , Passes through the main surface 10a of the electrode 10, passes through the electrode 10 again, and enters the south pole of the adjacent magnet 58. The magnetic lines of force MFL are formed around the entire circumference of the magnet 56, whereby a loop-shaped magnetic field region LMR for confining the excited plasma in the vicinity of the main surface 10a is formed in the region indicated by the dotted line in FIG. In the present invention, the magnetic field forming mechanism 50 is configured so that the magnetic field region LMR has a strong magnetic field of 3000 gauss or more in a direction parallel to the main surface 10a. A magnetic field in a direction parallel to the main surface 10a is called a horizontal magnetic field. The graph of FIG. 5 shows the intensity distribution of the horizontal magnetic field on the X axis at a position 8 mm away from the principal surface 10a of the electrode 10 in the vertical direction. The magnetic field region LMR is formed in a region where the horizontal magnetic field strength exceeds 3000 gauss. The width of the loop magnetic field region LMR is, for example, about 10 mm. The shower plate 20 described above is provided at a position facing the loop-shaped magnetic field region LMR. As a result, the source gas to be converted into plasma can be directly supplied to the loop-shaped magnetic field region LMR.

電源100は、同軸ケーブル101を通じて200MHz以上の高周波電力を整合器70および給電部60を通じて電極10に供給する。本実施形態では、200MHzの高周波電力を供給する。給電部60は、整合器70と電気的に接続された受電ロッド66、受電ロッド66と電気的に接続された導電板62、導電板62に電気的に接続された給電ロッド68、および、位相調整板64を有する。図6に示すように、導電板62は、その中央部に受電ロッド66が接続されるとともに、中央部から八方向に分岐する第1および第2の分岐部62a,62bを有する。各第1および第2の分岐部62a,62bの先端部には、それぞれ給電ロッド68の一端が接続されている。給電ロッド68の他端は、電極10の背面10bに電気的に接続されている。受電ロッド66および導電板62は、例えば、銅合金で形成され、給電ロッド68は、例えば、アルミニウム合金で形成されている。4つの第1の分岐部62aは、電気的に等しい長さを有し、4つの第2の分岐部62aは、電気的に等しい長さを有するとともに、第1の分岐部62aよりも短い。位相調整板64は、例えば、石英等の誘電体で形成され、4つの第2の分岐部62a上に設けられている。位相調整板64は、第2の分岐部62bに供給される高周波電力の位相を調整して、8箇所に設けられた給電ロッド68に同位相の高周波電力を供給するために設けられている。   The power supply 100 supplies high-frequency power of 200 MHz or more through the coaxial cable 101 to the electrode 10 through the matching unit 70 and the power feeding unit 60. In this embodiment, high frequency power of 200 MHz is supplied. The power feeding unit 60 includes a power receiving rod 66 electrically connected to the matching unit 70, a conductive plate 62 electrically connected to the power receiving rod 66, a power feeding rod 68 electrically connected to the conductive plate 62, and a phase. An adjustment plate 64 is provided. As shown in FIG. 6, the conductive plate 62 has a power receiving rod 66 connected to the central portion thereof and first and second branch portions 62 a and 62 b that branch in eight directions from the central portion. One end of a power feed rod 68 is connected to the tip of each of the first and second branch portions 62a and 62b. The other end of the power feeding rod 68 is electrically connected to the back surface 10 b of the electrode 10. The power receiving rod 66 and the conductive plate 62 are made of, for example, a copper alloy, and the power feeding rod 68 is made of, for example, an aluminum alloy. The four first branch portions 62a have an electrically equal length, and the four second branch portions 62a have an electrically equal length and are shorter than the first branch portion 62a. The phase adjustment plate 64 is formed of a dielectric such as quartz, and is provided on the four second branch parts 62a. The phase adjustment plate 64 is provided to adjust the phase of the high-frequency power supplied to the second branch portion 62b and to supply the high-frequency power having the same phase to the feeding rods 68 provided at eight locations.

装置1では、200MHzの高周波電力が整合器70および給電部60を通じて電極10に供給されると、電極10の主面10a付近でプラズマが励起される。主面10a付近のプラズマ励起領域、特に、シャワープレート20上には、ループ状の磁場領域LMRが形成されていることから、励起されたプラズマは、ループ状の磁場領域LMRによってシャワープレート20の表面付近に閉じ込められ、ループに沿って移動する。そして、シャワープレート20のガス供給孔21から供給される原料ガスは、プラズマ化される。このとき、ループ状の磁場領域LMRの水平磁場強度が3000ガウス以上とすることにより、プラズマが磁力線に強く巻き付き、プラズマ閉じ込め効果が向上してプラズマ密度が高まる。その結果、磁場領域LMRに閉じ込められたプラズマの電子温度を、電極10、その周辺に配置された部材、処理チャンバ200の内壁面のスパッタが実質的に発生しない程度まで下げることができることが分かった。これにより、プラズマ処理される基板W上に、スパッタされた材料が付着することがなくなり、成膜品質を改善できることが分かった。   In the apparatus 1, when 200 MHz high frequency power is supplied to the electrode 10 through the matching unit 70 and the power feeding unit 60, plasma is excited in the vicinity of the main surface 10 a of the electrode 10. Since the loop-shaped magnetic field region LMR is formed on the plasma excitation region in the vicinity of the main surface 10a, particularly on the shower plate 20, the excited plasma is transferred to the surface of the shower plate 20 by the loop-shaped magnetic field region LMR. It is confined in the vicinity and moves along the loop. The source gas supplied from the gas supply hole 21 of the shower plate 20 is turned into plasma. At this time, by setting the horizontal magnetic field strength of the loop magnetic field region LMR to 3000 gauss or more, the plasma is strongly wound around the magnetic lines of force, the plasma confinement effect is improved, and the plasma density is increased. As a result, it has been found that the electron temperature of the plasma confined in the magnetic field region LMR can be lowered to such an extent that sputtering of the electrode 10, members disposed around the electrode 10 and the inner wall surface of the processing chamber 200 does not substantially occur. . Thus, it was found that the sputtered material does not adhere to the substrate W to be plasma-treated, and the film formation quality can be improved.

また、本実施形態では、上記したように、ステージ220上の基板Wは、回転軸線Cを中心に回転可能になっている。このとき、図3Aに示すように、円盤状の基板Wの中心を回転軸線Cに対して例えば10mm程度偏心させて回転させると、円盤状の基板Wは円MWの領域内を移動する。これにより、磁場領域LMRを縦長のループ状にしたとしても、基板W上に形成される膜の均一性を確保できる。   In the present embodiment, as described above, the substrate W on the stage 220 is rotatable about the rotation axis C. At this time, as shown in FIG. 3A, when the center of the disk-shaped substrate W is decentered by about 10 mm with respect to the rotation axis C and rotated, for example, the disk-shaped substrate W moves within the region of the circle MW. Thereby, even if the magnetic field region LMR is formed in a vertically long loop shape, the uniformity of the film formed on the substrate W can be ensured.

上記実施形態では、磁場形成機構50の磁石56,58をラダー状に配置した場合について説明したが、本発明はこれに限定されない。3000ガウス以上の強磁場を形成できるものであればいずれの構成も採用できる。例えば、図3Bに示すように、第1の固定磁石として、円柱状の磁石56Aおよび環状の磁石56B,56Cを同心に配置し、第2の固定磁石として、環状の磁石58Aおよび58Bを磁石56Aと磁石56Bと磁石56Cとの間に配置する構成も採用可能である。また、図3Cに示すように、第1の固定磁石としての磁石156(156a,156b)と、第2の固定磁石としての磁石158とを、酸化アルミニウム等の絶縁体59(59a,59b)で分離することも可能である。具体的には、複数の磁石156aの間、磁石156aと156bとの間、および、複数の磁石158の間に絶縁体59a,59bを挿入する。   Although the case where the magnets 56 and 58 of the magnetic field forming mechanism 50 are arranged in a ladder shape has been described in the above embodiment, the present invention is not limited to this. Any configuration can be adopted as long as it can form a strong magnetic field of 3000 gauss or more. For example, as shown in FIG. 3B, cylindrical magnets 56A and annular magnets 56B and 56C are arranged concentrically as the first fixed magnets, and annular magnets 58A and 58B are magnets 56A as the second fixed magnets. It is also possible to employ a configuration in which the magnet 56B and the magnet 56C are disposed. Further, as shown in FIG. 3C, a magnet 156 (156a, 156b) as a first fixed magnet and a magnet 158 as a second fixed magnet are made of an insulator 59 (59a, 59b) such as aluminum oxide. It is also possible to separate them. Specifically, insulators 59a and 59b are inserted between the plurality of magnets 156a, between the magnets 156a and 156b, and between the plurality of magnets 158.

上記実施形態では、プラズマ処理としてプラズマCVDを例示したが、本発明はこれに限定されるわけではなく、プラズマエッチング等の他のプラズマ処理にも適用可能である。   In the above embodiment, plasma CVD is exemplified as the plasma processing. However, the present invention is not limited to this and can be applied to other plasma processing such as plasma etching.

上記実施形態では、本発明のプラズマ発生装置をプラズマ処理に用いる場合について説明したが、本発明はこれに限定されるわけではなく、電極等をスパッタしない程度に電子温度が低くかつ高密度のプラズマの発生が必要な状況に応用できる。   In the above embodiment, the case where the plasma generator of the present invention is used for plasma processing has been described. However, the present invention is not limited to this, and the plasma has a low electron temperature and a high density so as not to sputter an electrode or the like. It can be applied to situations where the occurrence of

以上、添付図面を参照しながら本発明の実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described in detail, referring an accompanying drawing, this invention is not limited to this example. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

1 プラズマ処理装置
10 電極
10a 主面
10b 背面
20 シャワープレート
21 ガス供給孔
50 磁場形成機構
56 磁石(第1の固定磁石)
58 磁石(第2の固定磁石)
70 整合器
100 電源
200 処理チャンバ
LMR ループ状の磁場領域
MFL 磁力線
PL プラズマ
DESCRIPTION OF SYMBOLS 1 Plasma processing apparatus 10 Electrode 10a Main surface 10b Back surface 20 Shower plate 21 Gas supply hole 50 Magnetic field formation mechanism 56 Magnet (1st fixed magnet)
58 Magnet (second fixed magnet)
70 Matching Device 100 Power Supply 200 Processing Chamber LMR Loop-shaped Magnetic Field MFL Magnetic Field Line PL Plasma

Claims (4)

主面および当該主面とは反対の背面とを有するプラズマ形成用の電極と、
周波数が200MHz以上の高周波電力を前記プラズマ形成用の電極に供給する高周波供給部と、
前記電極の背面側に設けられ、N極が前記背面に対向配置された第1の固定磁石とS極が前記背面に対向配置された第2の固定磁石とを含み、前記第1の固定磁石のN極から出て前記電極を透過して前記第2の固定磁石のS極に入る磁力線を用いて、励起されるプラズマを前記主面付近に閉じ込めるためのループ状の磁場領域を形成する磁場形成機構と、を有し、
前記磁場形成機構の形成するループ状の磁場領域は、前記主面に平行な方向に3000ガウス以上の強磁場を有する、ことを特徴とするプラズマ発生装置。
An electrode for plasma formation having a main surface and a back surface opposite to the main surface;
A high-frequency supply unit that supplies high-frequency power having a frequency of 200 MHz or more to the plasma forming electrode;
A first fixed magnet provided on the back side of the electrode and having a north pole facing the back surface and a second fixed magnet having a south pole facing the back surface; A magnetic field that forms a loop-shaped magnetic field region for confining the excited plasma in the vicinity of the main surface by using magnetic field lines that exit from the N-pole and pass through the electrode and enter the S-pole of the second fixed magnet. A forming mechanism,
A loop-shaped magnetic field region formed by the magnetic field forming mechanism has a strong magnetic field of 3000 gauss or more in a direction parallel to the main surface.
請求項1に記載のプラズマ発生装置を用いて、前記電極の主面に対向して配置される被処理体をプラズマ処理するプラズマ処理装置であって、
前記電極は、プラズマ化すべき原料ガスを前記ループ状の磁場領域へ供給するための原料ガス供給部を、前記ループ状の磁場領域に対応する領域に備えることを特徴とするプラズマ処理装置。
A plasma processing apparatus that uses the plasma generator according to claim 1 to perform plasma processing on an object to be processed that is disposed to face the main surface of the electrode.
The plasma processing apparatus, wherein the electrode includes a source gas supply unit for supplying source gas to be converted into plasma to the loop-shaped magnetic field region in a region corresponding to the loop-shaped magnetic field region.
主面および当該主面とは反対の背面とを有するプラズマ形成用の電極に、周波数が200MHz以上の高周波電力を供給し、
前記電極の背面側に設けられ、N極が前記背面に対向配置された第1の固定磁石とS極が前記背面に対向配置された第2の固定磁石とを含む磁場形成機構を用いて、前記第1の固定磁石のN極から出て前記電極を透過して前記第2の固定磁石のS極に入る磁力線を用いて、励起されるプラズマを前記主面付近に閉じ込めるためのループ状の磁場領域を形成し、
前記ループ状の磁場領域が、前記主面に平行な方向に3000ガウス以上の強磁場を有するように、前記ループ状の磁場領域を形成する、
ことを特徴とするプラズマ発生方法。
A high frequency power having a frequency of 200 MHz or more is supplied to a plasma forming electrode having a main surface and a back surface opposite to the main surface,
Using a magnetic field forming mechanism that is provided on the back side of the electrode and includes a first fixed magnet having a north pole facing the back and a second fixed magnet having a south pole facing the back. A loop shape for confining the excited plasma near the main surface by using magnetic lines that exit from the N pole of the first fixed magnet and pass through the electrode and enter the S pole of the second fixed magnet. Forming a magnetic field region,
Forming the loop-shaped magnetic field region so that the loop-shaped magnetic field region has a strong magnetic field of 3000 gauss or more in a direction parallel to the main surface;
A plasma generation method characterized by the above.
請求項3に記載のプラズマ発生方法を用いて、前記電極の主面に対向して配置される被処理体をプラズマ処理するプラズマ処理方法であって、
前記電極の前記ループ状の磁場領域に対応する領域に設けられた原料ガス供給部から、プラズマ化すべき原料ガスを前記ループ状の磁場領域へ供給する、ことを特徴とするプラズマ処理方法。
Using the plasma generation method according to claim 3, a plasma processing method for plasma-treating an object to be processed that is disposed to face the main surface of the electrode,
A plasma processing method, comprising: supplying a source gas to be plasmified to a looped magnetic field region from a source gas supply unit provided in a region corresponding to the looped magnetic field region of the electrode.
JP2013549460A 2013-06-14 2013-06-14 Plasma generating apparatus, plasma processing apparatus, plasma generating method and plasma processing method Pending JPWO2014199421A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/003744 WO2014199421A1 (en) 2013-06-14 2013-06-14 Plasma generation apparatus, plasma processing apparatus, plasma generation method, and plasma processing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014165867A Division JP2015015249A (en) 2014-08-18 2014-08-18 Plasma generating device, plasma processing device, plasma generating method, and plasma processing method

Publications (1)

Publication Number Publication Date
JPWO2014199421A1 true JPWO2014199421A1 (en) 2017-02-23

Family

ID=52021757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013549460A Pending JPWO2014199421A1 (en) 2013-06-14 2013-06-14 Plasma generating apparatus, plasma processing apparatus, plasma generating method and plasma processing method

Country Status (2)

Country Link
JP (1) JPWO2014199421A1 (en)
WO (1) WO2014199421A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186942A (en) * 1984-10-03 1986-05-02 Anelva Corp Discharge reaction apparatus using rotary magnetic field
JPH10270431A (en) * 1997-03-27 1998-10-09 Mitsubishi Electric Corp Plasma treating device
JP2001035839A (en) * 1999-05-18 2001-02-09 Hitachi Kokusai Electric Inc Plasma producing device and semiconductor manufacturing method
JP2001077029A (en) * 1999-09-09 2001-03-23 Nec Corp Thin film manufacturing device and its manufacture method
JP2001181848A (en) * 1999-12-20 2001-07-03 Anelva Corp Plasma treatment equipment
JP2006303265A (en) * 2005-04-22 2006-11-02 Dainippon Printing Co Ltd Film forming system and method
WO2009078094A1 (en) * 2007-12-18 2009-06-25 Canon Anelva Corporation Plasma processor
JP2011034705A (en) * 2009-07-30 2011-02-17 Canon Anelva Corp Plasma treatment device
JP2013007104A (en) * 2011-06-24 2013-01-10 National Institute Of Advanced Industrial Science & Technology Plasma generator and plasma treatment device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186942A (en) * 1984-10-03 1986-05-02 Anelva Corp Discharge reaction apparatus using rotary magnetic field
JPH10270431A (en) * 1997-03-27 1998-10-09 Mitsubishi Electric Corp Plasma treating device
JP2001035839A (en) * 1999-05-18 2001-02-09 Hitachi Kokusai Electric Inc Plasma producing device and semiconductor manufacturing method
JP2001077029A (en) * 1999-09-09 2001-03-23 Nec Corp Thin film manufacturing device and its manufacture method
JP2001181848A (en) * 1999-12-20 2001-07-03 Anelva Corp Plasma treatment equipment
JP2006303265A (en) * 2005-04-22 2006-11-02 Dainippon Printing Co Ltd Film forming system and method
WO2009078094A1 (en) * 2007-12-18 2009-06-25 Canon Anelva Corporation Plasma processor
JP2011034705A (en) * 2009-07-30 2011-02-17 Canon Anelva Corp Plasma treatment device
JP2013007104A (en) * 2011-06-24 2013-01-10 National Institute Of Advanced Industrial Science & Technology Plasma generator and plasma treatment device

Also Published As

Publication number Publication date
WO2014199421A1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
Baranov et al. Plasma under control: Advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis
EP0184812B1 (en) High frequency plasma generation apparatus
JP5610543B2 (en) Ion source
US8771538B2 (en) Plasma source design
WO2009142016A1 (en) Plasma generating apparatus and plasma processing apparatus
US6439154B2 (en) Plasma processing apparatus for semiconductors
JP2013511812A (en) Plasma source design
JP2001257199A (en) Plasma processing method and device thereof
JP4945566B2 (en) Capacitively coupled magnetic neutral plasma sputtering system
KR20120005026A (en) Conjugated icp and ecr plasma sources for wide ribbon ion beam generation and control
JP3254069B2 (en) Plasma equipment
JP2013543057A (en) Sputtering source and sputtering method for high pressure sputtering with large targets
JP5373903B2 (en) Deposition equipment
JP2008240112A (en) Magnetron sputtering apparatus and manufacturing method of semiconductor device
JP2015015249A (en) Plasma generating device, plasma processing device, plasma generating method, and plasma processing method
KR0166418B1 (en) Plasma processing device
WO2014199421A1 (en) Plasma generation apparatus, plasma processing apparatus, plasma generation method, and plasma processing method
KR20110006070U (en) Magnetized inductively coupled plasma processing apparatus
JP2007314842A (en) Plasma-generating device and sputtering source using the same
WO2009048294A2 (en) Magnetized inductively coupled plasma processing apparatus and generating method
JP2009062568A (en) Magnetron sputtering film deposition system
TW201448677A (en) Plasma generating device, plasma processing device, plasma generating method and plasma processing method
JP6595335B2 (en) Plasma processing equipment
JP2011034705A (en) Plasma treatment device
JPH0578849A (en) High magnetic field microwave plasma treating device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527