JPWO2014189105A1 - MmWave module - Google Patents

MmWave module Download PDF

Info

Publication number
JPWO2014189105A1
JPWO2014189105A1 JP2015518287A JP2015518287A JPWO2014189105A1 JP WO2014189105 A1 JPWO2014189105 A1 JP WO2014189105A1 JP 2015518287 A JP2015518287 A JP 2015518287A JP 2015518287 A JP2015518287 A JP 2015518287A JP WO2014189105 A1 JPWO2014189105 A1 JP WO2014189105A1
Authority
JP
Japan
Prior art keywords
millimeter wave
dielectric substrate
multilayer dielectric
cap
wave module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015518287A
Other languages
Japanese (ja)
Inventor
和田 靖
靖 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2014189105A1 publication Critical patent/JPWO2014189105A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4037Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink
    • H01L2023/4062Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink heatsink to or through board or cabinet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6627Waveguides, e.g. microstrip line, strip line, coplanar line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6683High-frequency adaptations for monolithic microwave integrated circuit [MMIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/028Transitions between lines of the same kind and shape, but with different dimensions between strip lines

Abstract

本発明のミリ波モジュールは、複数のMMIC(600a,600b)と該複数のMMICを接続する伝送線路(500a,500b)とで構成されるミリ波回路と、該ミリ波回路が実装された多層の誘電体基板(100)とを備える。該ミリ波回路は多層の誘電体基板(100)の表面層に実装されている。当該ミリ波回路が実装された多層の誘電体基板(100)を支持する金属製のベース(200)と、前記表面層の上に設置され、前記ミリ波回路を覆う金属製のキャップ(300)と、キャップ(300)と多層の誘電体基板(200)の両方を貫通してベース(100)に螺合するネジ(400a,400b)と、が備えられている。これらのネジによって多層の誘電体基板(100)がベース(200)とキャップ(300)とで挟み込まれている。The millimeter wave module of the present invention includes a millimeter wave circuit composed of a plurality of MMICs (600a, 600b) and transmission lines (500a, 500b) connecting the plurality of MMICs, and a multilayer in which the millimeter wave circuit is mounted. And a dielectric substrate (100). The millimeter wave circuit is mounted on the surface layer of a multilayer dielectric substrate (100). A metal base (200) that supports the multilayer dielectric substrate (100) on which the millimeter wave circuit is mounted, and a metal cap (300) that is installed on the surface layer and covers the millimeter wave circuit. And screws (400a, 400b) that pass through both the cap (300) and the multilayer dielectric substrate (200) and are screwed into the base (100). A multilayer dielectric substrate (100) is sandwiched between the base (200) and the cap (300) by these screws.

Description

本発明は、ミリ波帯における高周波回路(ミリ波モジュールと呼ばれる。)の構造に関する。   The present invention relates to a structure of a high frequency circuit (referred to as a millimeter wave module) in the millimeter wave band.

従来のミリ波モジュールとして、図1aにその平面図、さらに図1bにその断面図を示す。図1a及び図1bに示されるように、従来のミリ波モジュールは、金属製ベース10に複数のMMIC(Monolithic Microwave IC)30a,30bとそれらを接続する誘電体材料の伝送線路20a,20b,20cを搭載することで構成されている。この際、MMICへの給電、またはIF信号(中間周波信号)、LO信号(ローカル信号)を外部回路と接続するために、金属製ベース10にピン50a〜50eを設ける必要性が生じる。このようなミリ波モジュールは例えば60GHz以上の高い周波数帯で用いられる場合、ミリ波信号の接続部が導波管の構造になる。例えば図1a及び図1bに示すように、金属製ベース10に導波管60を成すための空孔が加工されている。   As a conventional millimeter wave module, a plan view thereof is shown in FIG. 1a and a sectional view thereof is shown in FIG. 1b. As shown in FIGS. 1a and 1b, the conventional millimeter wave module includes a plurality of MMICs (Monolithic Microwave ICs) 30a, 30b and a dielectric material transmission line 20a, 20b, 20c connecting them to a metal base 10. It is configured by mounting. At this time, it is necessary to provide pins 50a to 50e on the metal base 10 in order to supply power to the MMIC, or to connect the IF signal (intermediate frequency signal) and LO signal (local signal) to an external circuit. When such a millimeter wave module is used in a high frequency band of, for example, 60 GHz or more, the connection portion of the millimeter wave signal has a waveguide structure. For example, as shown in FIGS. 1 a and 1 b, holes for forming the waveguide 60 are processed in the metal base 10.

上記のように、複数のMMICとそれらを接続する伝送線路とで構成されるミリ波回路では、ミリ波回路を実装する金属製ベースに、外部と信号を接続するピンを設けたり、使用周波数に合った導波管を設けたりする必要があった。ピンや空孔を設けるために金属製ベースを高精度に加工する金型や装置などを用意しなければならず、他の周波数帯用のミリ波回路に仕様変更するときの柔軟性が非常に低かった。このような従来構造は、周波数ごとに専用の設備や作製方法を開発することとなるため、低コストのミリ波モジュールの実現を阻む要因の一つであった。   As described above, in a millimeter wave circuit composed of a plurality of MMICs and transmission lines connecting them, a metal base on which the millimeter wave circuit is mounted is provided with pins for connecting signals to the outside, It was necessary to provide a matching waveguide. In order to provide pins and holes, it is necessary to prepare molds and equipment that process metal bases with high precision, and flexibility when changing specifications to millimeter wave circuits for other frequency bands is extremely high It was low. Such a conventional structure has been one of the factors hindering the realization of a low-cost millimeter-wave module because it develops dedicated equipment and manufacturing methods for each frequency.

同様に特許文献1〜3では、ミリ波回路が実装される多層基板においてMMICを収容する凹部を加工し、該凹部の開口を覆う金属製のカバーを多層基板上に接着固定するという構造がとられている。すなわち、これらの文献に開示される装置もまた、他の周波数帯用のミリ波回路に仕様変更するときの柔軟性が非常に低く、ミリ波モジュールのコスト低減が困難であった。   Similarly, Patent Documents 1 to 3 have a structure in which a recess for housing an MMIC is processed in a multilayer substrate on which a millimeter wave circuit is mounted, and a metal cover that covers the opening of the recess is bonded and fixed on the multilayer substrate. It has been. That is, the devices disclosed in these documents are also very low in flexibility when changing specifications to millimeter wave circuits for other frequency bands, and it is difficult to reduce the cost of the millimeter wave module.

国際公開WO2008/111391パンフレットInternational Publication WO2008 / 111391 Pamphlet 特開2010−093146号公報JP 2010-093146 A 特開2005−303141号公報JP-A-2005-303141

本発明の目的の一例は、上述の課題に鑑み、安価なミリ波モジュールを実現できる構造を提供することである。   An example of the object of the present invention is to provide a structure that can realize an inexpensive millimeter-wave module in view of the above-described problems.

本発明は、複数のMMICとそれらを接続する伝送線路とで構成されるミリ波回路と、該ミリ波回路を搭載する金属製のベースと、を備えたミリ波モジュールに係わる。   The present invention relates to a millimeter wave module including a millimeter wave circuit composed of a plurality of MMICs and a transmission line connecting them, and a metal base on which the millimeter wave circuit is mounted.

この発明の一態様は、ベースの上に載置された多層の誘電体基板と、金属製のキャップと、キャップまたはベースと螺合する螺合部材と、を備える。そして、螺合部材の締付けで、キャップとベースとで多層の誘電体基板が挟み込まれた状態が維持されている。   One aspect of the present invention includes a multilayer dielectric substrate placed on a base, a metal cap, and a screwing member screwed into the cap or the base. The state where the multilayer dielectric substrate is sandwiched between the cap and the base is maintained by tightening the screwing member.

ミリ波回路を構成する複数のMMICとそれらを接続する伝送線路は、多層の誘電体基板の表面層の上に実装され、ミリ波モジュールの外部と信号接続を行う端子(例えば給電、LO信号、およびIF信号の接続端子など)が該多層の誘電体基板の周縁に配設されている。キャップは多層の誘電体基板の表面層の上に設置され、該多層の誘電体基板の周縁の端子を露出してMMICと伝送線路を覆う形状にされている。   A plurality of MMICs constituting the millimeter wave circuit and a transmission line connecting them are mounted on the surface layer of the multilayer dielectric substrate, and terminals for signal connection to the outside of the millimeter wave module (for example, power supply, LO signal, And IF signal connection terminals) are disposed on the periphery of the multilayer dielectric substrate. The cap is disposed on the surface layer of the multilayer dielectric substrate, and is configured to expose the peripheral terminal of the multilayer dielectric substrate to cover the MMIC and the transmission line.

このように本態様では、ミリ波回路を構成する複数のMMICとそれらを接続する伝送線路を一般的な多層の誘電体基板に実装し、ミリ波モジュール外部と信号を接続する端子を多層の誘電体基板の周縁に設け、そして、その多層誘電体基板を金属製のベースとキャップとで挟み込み、それらをネジ等の螺合部材で締結するという構造がとられている。   As described above, in this embodiment, a plurality of MMICs constituting a millimeter wave circuit and a transmission line connecting them are mounted on a general multilayer dielectric substrate, and a terminal for connecting a signal to the outside of the millimeter wave module is provided as a multilayer dielectric. A structure is provided in which the multilayer dielectric substrate is sandwiched between a metal base and a cap and fastened with a screwing member such as a screw.

従来のミリ波モジュールの構造を示す平面図。The top view which shows the structure of the conventional millimeter wave module. 従来のミリ波モジュールの構造を示す断面図。Sectional drawing which shows the structure of the conventional millimeter wave module. 本発明の一実施態様によるミリ波モジュールを示す断面図。Sectional drawing which shows the millimeter wave module by one embodiment of this invention. 図2の多層誘電体基板(100)上に構成されたミリ波回路を説明する図。The figure explaining the millimeter wave circuit comprised on the multilayer dielectric substrate (100) of FIG. 図2の態様のミリ波モジュールの構造を示す断面図。Sectional drawing which shows the structure of the millimeter wave module of the aspect of FIG. 図2の態様のミリ波モジュールを組立てる様子を示した図。The figure which showed a mode that the millimeter wave module of the aspect of FIG. 2 was assembled. 本発明の他の実施態様によるミリ波モジュールの断面図。Sectional drawing of the millimeter wave module by other embodiment of this invention.

100 多層の誘電体基板
110 導波管の一部である空孔
111a,112a,113a,114a,115a,111b,112b,113b,114b,115b 端子
120 貫通穴
140a,140b,150 多層基板の内層の配線
200 金属製のベース
300 キャップ
400a,400b ネジ
500a,500b 伝送線路としての誘電体基板
600a,600b MMIC
700a,700b コンデンサ
750 ボンディングワイヤ(金ワイヤ)
800,850 導波管
900 ショート面
100 Multilayer Dielectric Substrate 110 Holes 111a, 112a, 113a, 114a, 115a, 111b, 112b, 113b, 114b, 115b Terminal 120 Through Holes 140a, 140b, 150 Wiring 200 Metal base 300 Cap 400a, 400b Screw 500a, 500b Dielectric substrates 600a, 600b MMIC as transmission lines
700a, 700b Capacitor 750 Bonding wire (gold wire)
800,850 Waveguide 900 Short surface

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図2は、本発明の一実施形態によるミリ波モジュールの断面図である。図2において、本態様のミリ波モジュールは、ミリ波回路と、多層の誘電体基板100と、金属製のベース200と、キャップ300と、ネジ400a,400bとを備える。   FIG. 2 is a cross-sectional view of a millimeter wave module according to an embodiment of the present invention. In FIG. 2, the millimeter wave module of this embodiment includes a millimeter wave circuit, a multilayer dielectric substrate 100, a metal base 200, a cap 300, and screws 400a and 400b.

前記ミリ波回路は、複数のMMIC600a,600bと、それらを接続する伝送線路としての誘電体基板500a,500bとで構成されている。   The millimeter wave circuit includes a plurality of MMICs 600a and 600b and dielectric substrates 500a and 500b as transmission lines connecting them.

複数のMMIC600a,600bと、それらを接続する誘電体基板500a,500bとが多層の誘電体基板100上に搭載されている。そのようにMMIC600a,600bと誘電体基板500a,500bを備えた多層誘電体基板100は金属製のベース200とキャップ300とで挟み込まれ、この状態が螺合部材としてのネジ400a,400bを用いて維持されている。   A plurality of MMICs 600 a and 600 b and dielectric substrates 500 a and 500 b connecting them are mounted on a multilayer dielectric substrate 100. The multilayer dielectric substrate 100 including the MMICs 600a and 600b and the dielectric substrates 500a and 500b is sandwiched between the metal base 200 and the cap 300, and this state is obtained by using screws 400a and 400b as screwing members. Maintained.

言い換えれば、MMIC600a,600bと誘電体基板500a,500bとが搭載された多層誘電体基板100の上面にキャップ300が前記ネジの締付け力で押し付けられ、そのような多層誘電体基板100の下面も金属製のベース200に前記ネジの締付け力で押し付けられている。   In other words, the cap 300 is pressed against the upper surface of the multilayer dielectric substrate 100 on which the MMICs 600a and 600b and the dielectric substrates 500a and 500b are mounted by the tightening force of the screws, and the lower surface of the multilayer dielectric substrate 100 is also made of metal. It is pressed against the made base 200 by the tightening force of the screw.

キャップ300には、MMIC600a,600bと誘電体基板500a,500bとで構成されるミリ波回路を包囲する空洞(キャビティ)850が形成されている。また、互いに接合された多層配線基板100及びベース200を貫通する空孔が、誘電体基板500aにおけるMMIC600aとは反対側の端部に対応して設けられ、この空孔によって導波管800が構成されている。導波管800には、キャップ300のキャビティ850と接する面であるショート面900が施されている。   The cap 300 is formed with a cavity (cavity) 850 that surrounds the millimeter wave circuit composed of the MMICs 600a and 600b and the dielectric substrates 500a and 500b. In addition, a hole penetrating the multilayer wiring board 100 and the base 200 joined to each other is provided corresponding to an end of the dielectric substrate 500a opposite to the MMIC 600a, and the waveguide 800 constitutes the hole. Has been. The waveguide 800 is provided with a short surface 900 that is a surface in contact with the cavity 850 of the cap 300.

このような態様で構成されたミリ波モジュールは例えば、ミリ波帯の送信機または受信機として使用可能であり、ミリ波帯の信号は、導波管800によってアンテナなどの外部機器と接続される。   The millimeter wave module configured in this manner can be used as, for example, a millimeter wave band transmitter or receiver, and the millimeter wave band signal is connected to an external device such as an antenna by the waveguide 800. .

次に、図3を参照し、ミリ波回路が実装された多層の誘電体基板100を説明する。   Next, a multilayer dielectric substrate 100 on which a millimeter wave circuit is mounted will be described with reference to FIG.

多層の誘電体基板100は、4層構造であり、第1層(表面層)にはロジャース材、第2層と第3層と第4層にはFR4のコンポジット基板が使用されている。この多層誘電体基板100上には、MMIC600a,600bとそれらを接続するための誘電体基板500a,500b、並びに、MMIC600aへの給電時におけるデカップリングを目的としたコンデンサ700a,700bが搭載されている。なお、これらの部材は、銀ペーストなどの、導電性があり、且つ硬化温度の比較的低い接着剤を用いて実装される。   The multilayer dielectric substrate 100 has a four-layer structure, and a Rogers material is used for the first layer (surface layer), and a FR4 composite substrate is used for the second, third, and fourth layers. Mounted on the multilayer dielectric substrate 100 are MMICs 600a and 600b, dielectric substrates 500a and 500b for connecting them, and capacitors 700a and 700b for decoupling when power is supplied to the MMIC 600a. . These members are mounted using an adhesive having a conductive property and a relatively low curing temperature, such as a silver paste.

図3に示したミリ波回路は、送信器であり、MMIC600aが送信増幅器の機能を担い、MMIC600bが周波数変換機の機能を担う。   The millimeter wave circuit shown in FIG. 3 is a transmitter. The MMIC 600a functions as a transmission amplifier, and the MMIC 600b functions as a frequency converter.

多層誘電体基板100上には、コンデンサ700a,700bとそれぞれ接続される端子111a,113aと、MMIC600bと接続される2つの端子112a,114aと、誘電体基板500bと接続される端子115aとが設けられている。これらの接続手段としてボンディングワイヤ750が用いられている。なお、端子111a,113aはMMIC600aを間に挟むようにして配置されており、コンデンサ700aは端子111aとMMIC600aとの間に配置され、コンデンサ700bは端子113aとMMIC600aとの間に配置されている。   On the multilayer dielectric substrate 100, terminals 111a and 113a connected to the capacitors 700a and 700b, two terminals 112a and 114a connected to the MMIC 600b, and a terminal 115a connected to the dielectric substrate 500b are provided. It has been. Bonding wires 750 are used as these connection means. The terminals 111a and 113a are arranged so as to sandwich the MMIC 600a, the capacitor 700a is arranged between the terminals 111a and MMIC 600a, and the capacitor 700b is arranged between the terminals 113a and MMIC 600a.

端子111a,113a,112a,114a,115aにはそれぞれ端子111b,112b,113b,114b,115bが基板100の内層の配線14a,140b等を介して接続されており、各々の端子111b,112b,113b,114b,115bは、四角形の多層誘電体基板100の外周縁に配設されている。端子111b,112b、該四角形の基板100の4辺のうちの、MMIC600aと端子111aとを結ぶ仮想線およびMMIC600bと端子112aとを結ぶ仮想線に交差する第1の辺100aに位置する。端子113b,114bは、該基板100の第1の辺100aに対向する第2の辺100bに位置する。端子115bは、該基板の4辺のうちの、誘電体基板500bと端子115aを仮想線に交差する第3の辺100cに位置する。   Terminals 111b, 112b, 113b, 114b, and 115b are connected to the terminals 111a, 113a, 112a, 114a, and 115a via wirings 14a, 140b, and the like on the inner layer of the substrate 100, and the respective terminals 111b, 112b, and 113b are connected. , 114b, 115b are disposed on the outer peripheral edge of the rectangular multilayer dielectric substrate 100. Of the four sides of the terminals 111b and 112b and the rectangular substrate 100, the first side 100a intersects with a virtual line connecting the MMIC 600a and the terminal 111a and a virtual line connecting the MMIC 600b and the terminal 112a. The terminals 113b and 114b are located on the second side 100b opposite to the first side 100a of the substrate 100. The terminal 115b is located on the third side 100c of the four sides of the substrate that intersects the dielectric substrate 500b and the terminal 115a with the imaginary line.

さらに、多層誘電体基板100の表面に多数のスルーホール130が施されており、これらのスルーホールは、多層誘電体基板100の裏面に設けられているグランド面に導通している。また、多層誘電体基板100には、キャップ300やベース200を固定するためのネジ400a,400bを通す貫通穴120が開けられている。   Furthermore, a large number of through holes 130 are formed on the surface of the multilayer dielectric substrate 100, and these through holes are electrically connected to a ground plane provided on the back surface of the multilayer dielectric substrate 100. The multilayer dielectric substrate 100 has through holes 120 through which screws 400 a and 400 b for fixing the cap 300 and the base 200 are passed.

多層誘電体基板100には、導波管800の一部を構成する空孔110が、MMIC600aに接続されている側とは反対側の誘電体基板500aの端部に対応するように開けられている。   In the multilayer dielectric substrate 100, a hole 110 constituting a part of the waveguide 800 is opened so as to correspond to the end of the dielectric substrate 500a opposite to the side connected to the MMIC 600a. Yes.

ここで、送信機である図3のミリ波回路では、周波数変換機(MMIC600b)はイメージ抑圧型偶高調波ミキサである。このことから、90度位相差を持つIF信号が、多層誘電体基板100の対向する辺100a,100bに在る端子112b,114bから入力され、図3中に点線で示した内層の配線140a,140bを通じ、端子112a、114a経由でMMIC600bのIF端子に入力される。   Here, in the millimeter wave circuit of FIG. 3 which is a transmitter, the frequency converter (MMIC 600b) is an image suppression type even harmonic mixer. Therefore, an IF signal having a phase difference of 90 degrees is input from the terminals 112b and 114b on the opposite sides 100a and 100b of the multilayer dielectric substrate 100, and the inner-layer wirings 140a and 140b indicated by dotted lines in FIG. Through 140b, the signal is input to the IF terminal of the MMIC 600b via the terminals 112a and 114a.

さらにLO信号が、多層誘電体基板100の第3の辺100cに在る端子115bから内層配線を介して端子115aに送られ、当該端子115aからMMIC600bのLO信号端子に入力される。   Further, the LO signal is sent from the terminal 115b on the third side 100c of the multilayer dielectric substrate 100 to the terminal 115a via the inner layer wiring, and is input from the terminal 115a to the LO signal terminal of the MMIC 600b.

送信増幅器(MMIC600a)への給電については、多層誘電体基板100の対向する辺100a,100b在る端子111b,113bから内層の配線、端子111a,113a、コンデンサ700a,700bを通じて電力が供給される。   As for the power supply to the transmission amplifier (MMIC 600a), power is supplied from the terminals 111b and 113b on the opposing sides 100a and 100b of the multilayer dielectric substrate 100 through the inner layer wiring, terminals 111a and 113a, and capacitors 700a and 700b.

RF(無線周波数)となるミリ波の信号は、導波管の一部としての空孔110を介し、例えばアンテナなどの外部機器と接続される。   A millimeter-wave signal that becomes RF (radio frequency) is connected to an external device such as an antenna via a hole 110 as a part of the waveguide.

図4は、本実施態様のミリ波モジュールの構造を示す断面図である。この図に示すように、多層の誘電体基板100は、4層構造であって、表面層としての第1層101はロジャース材(RO4350B)で、多層基板の内層である第2層102と第3層103、ならびに裏面層である第4層104はFR4で構成されている。このような多層基板を金属製のベース200とキャップ300の間に挟み込み、それらをネジ400a,400bの締付けで動かないようにしている(図2も参照されたい)。なお、キャップ300は、多層誘電体基板100上のミリ波回路を覆うが、多層誘電体基板100の周縁に配設された外部接続用の端子111b,112b,113b,114b,115bを露出する形状にされている。   FIG. 4 is a cross-sectional view showing the structure of the millimeter wave module of this embodiment. As shown in this figure, the multilayer dielectric substrate 100 has a four-layer structure, and the first layer 101 as the surface layer is a Rogers material (RO4350B), and the second layer 102 and the second layer 102, which are the inner layers of the multilayer substrate. The 3rd layer 103 and the 4th layer 104 which is a back surface layer are comprised by FR4. Such a multilayer substrate is sandwiched between a metal base 200 and a cap 300 so that they cannot be moved by tightening screws 400a and 400b (see also FIG. 2). The cap 300 covers the millimeter wave circuit on the multilayer dielectric substrate 100 but exposes the external connection terminals 111b, 112b, 113b, 114b, and 115b disposed on the periphery of the multilayer dielectric substrate 100. Has been.

このような構造のミリ波モジュールで例えば外部からLO信号をミキサMMIC600に入力させる際には、多層誘電体基板100の周縁の端子115bからLO信号が入力される。このとき、そのLO信号は、金属製のキャップ300と電気的な干渉を避けるために、キャップ300の干渉部(多層誘電体基板100表面にキャップ300が接触する部分)では、第2層102に形成された配線150を通る。   For example, when an LO signal is input to the mixer MMIC 600 from the outside in the millimeter wave module having such a structure, the LO signal is input from the peripheral terminal 115 b of the multilayer dielectric substrate 100. At this time, the LO signal is transmitted to the second layer 102 at the interference portion of the cap 300 (the portion where the cap 300 contacts the surface of the multilayer dielectric substrate 100) in order to avoid electrical interference with the metal cap 300. It passes through the formed wiring 150.

この際、表面層である第1層101の端子パターンと第2層102の配線150との接続は、スルーホール116bを介して行われる。そしてLO信号は、MMIC600近傍でスルーホール116aを介して、2層目の配線150から表面層の端子115aに接続された後、金ワイヤ750でミキサMMIC600のLO端子に接続される。   At this time, the connection between the terminal pattern of the first layer 101 as the surface layer and the wiring 150 of the second layer 102 is made through the through hole 116b. The LO signal is connected from the second layer wiring 150 to the surface layer terminal 115a through the through hole 116a in the vicinity of the MMIC 600, and then connected to the LO terminal of the mixer MMIC 600 by the gold wire 750.

図5は、本実施態様によるミリ波モジュールを組立てる様子を示している。この図に示すように、アルミ製のベース200の上に、ミリ波回路の構成要素(MMIC600a,600b、誘電体基板500a,500b)が実装された多層の誘電体基板100が設置され、この多層誘電体基板100の上にアルミ製のキャップ300が被せられる。そして、キャップ300の上からネジ400a,400bをキャップ300と多層誘電体基板100に貫通させ、各ネジ400a,400bの先端をベース200に螺合することにより、多層誘電体基板100がアルミ製のベース200とキャップ300とで挟み込まれる構造になっている。このとき、キャップ300のキャビティ850内に、多層誘電体基板100上のMMIC600a,600bや誘電体基板500a,500bが収容され、キャップ300の外側に、多層誘電体基板100上の周縁の端子111b,112b,113b,114b,115bが露出する。各ネジ400a,400bは、図3に示した多層誘電体基板100の貫通穴120に通されている。なお、この貫通穴120に対応してキャップ300にも貫通穴(不図示)が設けられている。また、ネジ400a,400bをベース200の下よりベース200と多層誘電体基板100を貫通させてキャップ300に螺合させる組立方法であってもよい。   FIG. 5 shows how the millimeter wave module according to this embodiment is assembled. As shown in this figure, a multilayer dielectric substrate 100 on which components (MMICs 600a and 600b, dielectric substrates 500a and 500b) of millimeter wave circuits are mounted is installed on an aluminum base 200. An aluminum cap 300 is placed on the dielectric substrate 100. The screws 400a and 400b are passed through the cap 300 and the multilayer dielectric substrate 100 from above the cap 300, and the tips of the screws 400a and 400b are screwed into the base 200, whereby the multilayer dielectric substrate 100 is made of aluminum. The structure is sandwiched between the base 200 and the cap 300. At this time, the MMICs 600 a and 600 b and the dielectric substrates 500 a and 500 b on the multilayer dielectric substrate 100 are accommodated in the cavity 850 of the cap 300, and the peripheral terminals 111 b and 111 b on the multilayer dielectric substrate 100 are disposed outside the cap 300. 112b, 113b, 114b, and 115b are exposed. Each screw 400a, 400b is passed through the through hole 120 of the multilayer dielectric substrate 100 shown in FIG. Note that a through hole (not shown) is also provided in the cap 300 corresponding to the through hole 120. Alternatively, an assembly method in which the screws 400 a and 400 b are threaded into the cap 300 through the base 200 and the multilayer dielectric substrate 100 from below the base 200 may be used.

次に、本実施態様の作用および効果を説明する。   Next, the operation and effect of this embodiment will be described.

上述したように多層の誘電体基板100は、ロジャース材とFR4とで構成された一般的な基板であり、入手性やコスト面で優れている。また金属製のベース200とキャップ300は、アルミ材であり、加工性とコスト面で優れている。   As described above, the multilayer dielectric substrate 100 is a general substrate composed of Rogers material and FR4, and is excellent in availability and cost. The metal base 200 and the cap 300 are made of aluminum, and are excellent in workability and cost.

このような形態のミリ波モジュールは、図1a,1bに示したような高価となる専用高周波パッケージと異なり、ミリ波回路を外部と電気的に接続する基板を一般的な多層誘電体基板で構成し、これを金属製のベースとキャップで挟み、それらをネジで押えこむ構造である。このため、ミリ波回路を使用する周波数帯に合わせて、導波管を形成したベースとキャップを容易に変更することができる。アルミ材のベースとキャップは加工しやすく製造コストも低減される。つまり、他の周波数帯用のミリ波回路への仕様変更に柔軟に対応でき、ミリ波モジュールの低コスト化に非常に優れた構造であると言える。   Unlike the expensive high-frequency package shown in FIGS. 1a and 1b, the millimeter wave module having such a configuration is configured by a general multilayer dielectric substrate for electrically connecting the millimeter wave circuit to the outside. In addition, this structure is sandwiched between a metal base and a cap, and these are held in place with screws. For this reason, the base and cap on which the waveguide is formed can be easily changed in accordance with the frequency band in which the millimeter wave circuit is used. Aluminum bases and caps are easy to process and reduce manufacturing costs. In other words, it can be said that the structure can flexibly respond to specification changes to millimeter wave circuits for other frequency bands and is extremely excellent in reducing the cost of millimeter wave modules.

最後に、本願発明は上記の実施形態例に限定されるものではなく、その技術思想を逸脱しない範囲で種々変更して実施することが可能であることは言うまでもない。   Finally, it is needless to say that the present invention is not limited to the above-described embodiment, and can be implemented with various modifications without departing from the technical concept thereof.

例えば、上述したように多層の誘電体基板として、ロジャース材とFR4とのコンポジット基板を用いたが、コンポジット材でなくロジャース材のみの多層基板でも良い。   For example, as described above, the composite substrate of the Rogers material and FR4 is used as the multilayer dielectric substrate, but a multilayer substrate only of the Rogers material instead of the composite material may be used.

また、上述した実施態様ではミリ波帯の偶高調波ミキサを想定して説明した。このため、LO信号の周波数はRF信号周波数の1/2になるため、端子115bからミキサMMICへのLO信号の入力線路には、設計されたマイクロストリップラインが想定されている(図2〜図4参照)。しかし本発明はこれに限られず、図6に示すようにLO信号の外部接続手段が導波管950で構成されていても良い。   In the above-described embodiment, the description has been made assuming an even harmonic mixer in the millimeter wave band. For this reason, since the frequency of the LO signal is ½ of the RF signal frequency, a designed microstrip line is assumed for the input line of the LO signal from the terminal 115b to the mixer MMIC (FIG. 2 to FIG. 2). 4). However, the present invention is not limited to this, and the LO signal external connection means may be constituted by a waveguide 950 as shown in FIG.

なお、この出願は、2013年5月23日に出願された日本出願特願2013-108859を基礎とする優先権を主張し、その開示の全てをここに取り込む。   This application claims priority based on Japanese Patent Application No. 2013-108859 filed on May 23, 2013, the entire disclosure of which is incorporated herein.

Claims (6)

複数のMMICとそれらを接続する伝送線路とで構成されるミリ波回路と、
該ミリ波回路を搭載する金属製のベースと、を備え、
前記ベースの上に載置された多層の誘電体基板であって、該多層の誘電体基板の表面層の上に前記MMICと前記伝送線路が実装され、ミリ波モジュールの外部と信号接続を行う端子が該多層の誘電体基板の周縁に配設されている前記多層の誘電体基板と、
前記表面層の上に設置され、前記多層の誘電体基板の周縁の前記端子を露出して前記MMICと前記伝送線路を覆う金属製のキャップと、
前記ベースと前記キャップとで前記多層の誘電体基板が挟み込まれた状態を維持するように前記キャップまたは前記ベースと螺合する螺合部材と、
をさらに備えるミリ波モジュール。
A millimeter wave circuit composed of a plurality of MMICs and a transmission line connecting them;
A metal base on which the millimeter wave circuit is mounted,
A multilayer dielectric substrate placed on the base, wherein the MMIC and the transmission line are mounted on a surface layer of the multilayer dielectric substrate and perform signal connection with the outside of the millimeter wave module The multilayer dielectric substrate having terminals disposed on the periphery of the multilayer dielectric substrate;
A metal cap that is installed on the surface layer and exposes the terminals on the periphery of the multilayer dielectric substrate to cover the MMIC and the transmission line;
A screwing member that is screwed with the cap or the base so as to maintain a state in which the multilayer dielectric substrate is sandwiched between the base and the cap;
Further equipped with a millimeter wave module.
前記多層の誘電体基板は、前記MMICまたは前記伝送線路と前記端子とを接続する配線パターンを有し、当該配線パターンは、前記キャップが前記表面層と干渉する部分では前記多層の誘電体基板の内層に形成されている、請求項1に記載のミリ波モジュール。   The multilayer dielectric substrate has a wiring pattern for connecting the MMIC or the transmission line and the terminal, and the wiring pattern is formed on the multilayer dielectric substrate at a portion where the cap interferes with the surface layer. The millimeter wave module according to claim 1, wherein the millimeter wave module is formed in an inner layer. 前記多層の誘電体基板は表面層がロジャース材で構成され、その他の層がFR4で構成された基板である、請求項1または2に記載のミリ波モジュール。   3. The millimeter wave module according to claim 1, wherein the multilayer dielectric substrate is a substrate in which a surface layer is made of a Rogers material and another layer is made of FR4. 金属製の前記ベースと前記キャップはアルミ材で構成されている、請求項1から3のいずれか1項に記載のミリ波モジュール。   The millimeter wave module according to any one of claims 1 to 3, wherein the metal base and the cap are made of an aluminum material. ミリ波信号を外部と接続する導波管を有し、該導波管を成す空孔が前記ベースと前記多層の誘電体基板に貫通形成されている、請求項1から4のいずれか1項に記載のミリ波モジュール。   5. The device according to claim 1, further comprising: a waveguide that connects a millimeter-wave signal to the outside, wherein a hole that forms the waveguide is formed through the base and the multilayer dielectric substrate. The millimeter wave module described in. 前記MMICへの給電時におけるデカップリングを目的としたコンデンサが前記表面層の上に搭載されている、請求項1から4のいずれか1項に記載のミリ波モジュール。   5. The millimeter wave module according to claim 1, wherein a capacitor for decoupling at the time of feeding power to the MMIC is mounted on the surface layer. 6.
JP2015518287A 2013-05-23 2014-05-22 MmWave module Pending JPWO2014189105A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013108859 2013-05-23
JP2013108859 2013-05-23
PCT/JP2014/063581 WO2014189105A1 (en) 2013-05-23 2014-05-22 Millimeter-wave module

Publications (1)

Publication Number Publication Date
JPWO2014189105A1 true JPWO2014189105A1 (en) 2017-02-23

Family

ID=51933656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015518287A Pending JPWO2014189105A1 (en) 2013-05-23 2014-05-22 MmWave module

Country Status (2)

Country Link
JP (1) JPWO2014189105A1 (en)
WO (1) WO2014189105A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5921586B2 (en) * 2014-02-07 2016-05-24 株式会社東芝 Millimeter-wave band semiconductor package and millimeter-wave band semiconductor device
JP6536283B2 (en) * 2015-08-24 2019-07-03 富士通株式会社 High frequency module and method of manufacturing high frequency module
KR101948588B1 (en) 2017-12-18 2019-02-15 한국광기술원 connecting apparatus for milimeter wave signal transmission

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125830A (en) * 1996-10-24 1998-05-15 Hitachi Ltd High frequency module and manufacturing method thereof
JP2001177312A (en) * 1999-12-15 2001-06-29 Hitachi Kokusai Electric Inc High-frequency connection module
JP2001358242A (en) * 2000-06-16 2001-12-26 Toshiba Corp Microwave package
JP2002164465A (en) * 2000-11-28 2002-06-07 Kyocera Corp Wiring board, wiring board, their mounted board, and multi-chip module
JP2009535973A (en) * 2006-05-04 2009-10-01 ジョージア テック リサーチ コーポレイション Module, filter and antenna technology for millimeter wave multi-gigabit wireless systems

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265774B1 (en) * 1998-11-19 2001-07-24 Trw Inc. Millimeter wave adjustable cavity package

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125830A (en) * 1996-10-24 1998-05-15 Hitachi Ltd High frequency module and manufacturing method thereof
JP2001177312A (en) * 1999-12-15 2001-06-29 Hitachi Kokusai Electric Inc High-frequency connection module
JP2001358242A (en) * 2000-06-16 2001-12-26 Toshiba Corp Microwave package
JP2002164465A (en) * 2000-11-28 2002-06-07 Kyocera Corp Wiring board, wiring board, their mounted board, and multi-chip module
JP2009535973A (en) * 2006-05-04 2009-10-01 ジョージア テック リサーチ コーポレイション Module, filter and antenna technology for millimeter wave multi-gigabit wireless systems

Also Published As

Publication number Publication date
WO2014189105A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
KR102266668B1 (en) high frequency module
US7444737B2 (en) Method for manufacturing an antenna
US8901719B2 (en) Transition from a chip to a waveguide port
US10512153B2 (en) High frequency circuit
US8654542B2 (en) High-frequency switch module
WO2011021328A1 (en) Semiconductor device having shield layer and element-side power supply terminal capacitively coupled therein
CN101772859A (en) Waveguide connection structure
US11659658B2 (en) Multilayer board
JP2008244289A (en) Electromagnetic shielding structure
WO2014189105A1 (en) Millimeter-wave module
JP2017187379A (en) Multilayer substrate circuit module, radio communication apparatus and radar equipment
CN112885811A (en) Vertical interconnection structure of multilayer substrate
US7982684B2 (en) Method and structure for RF antenna module
US9450282B2 (en) Connection structure between a waveguide and a substrate, where the substrate has an opening larger than a waveguide opening
KR101555403B1 (en) Wiring board
KR20140073786A (en) Microwave transmit/receive module and packaging method for the same
TWI523186B (en) Module ic package structure with electrical shielding function and method of making the same
JP2798070B2 (en) Composite microwave integrated circuit
US9172126B2 (en) Module and coupling arrangement
WO2022215372A1 (en) Electronic circuit module
JP2014053445A (en) Circuit board and composite module
KR102468935B1 (en) Transmit/receive module based on multilayer liquid crystal polymer multilayer substrate
CN219998479U (en) Electronic device
JP2012109386A (en) Wiring board
TWI700859B (en) Integrated millimeter wave antenna structure

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404