JPWO2014171361A1 - Metal defect detection method - Google Patents

Metal defect detection method Download PDF

Info

Publication number
JPWO2014171361A1
JPWO2014171361A1 JP2015512450A JP2015512450A JPWO2014171361A1 JP WO2014171361 A1 JPWO2014171361 A1 JP WO2014171361A1 JP 2015512450 A JP2015512450 A JP 2015512450A JP 2015512450 A JP2015512450 A JP 2015512450A JP WO2014171361 A1 JPWO2014171361 A1 JP WO2014171361A1
Authority
JP
Japan
Prior art keywords
inspection surface
etching solution
etching
metal
segregation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015512450A
Other languages
Japanese (ja)
Other versions
JP5904304B2 (en
Inventor
谷 雅弘
雅弘 谷
福永 新一
新一 福永
昌文 瀬々
昌文 瀬々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Application granted granted Critical
Publication of JP5904304B2 publication Critical patent/JP5904304B2/en
Publication of JPWO2014171361A1 publication Critical patent/JPWO2014171361A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/91Investigating the presence of flaws or contamination using penetration of dyes, e.g. fluorescent ink
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/204Structure thereof, e.g. crystal structure
    • G01N33/2045Defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

この金属の欠陥検出方法では、金属試料の検査面を上向きにして、前記検査面の全面がエッチング液で覆われるように前記検査面の上部にエッチング液を保持して欠陥を現出させ、前記検査面の上部の前記エッチング液の厚みを0mm超10mm以下とし、この状態で撮像装置によって前記検査面を撮像する。In this metal defect detection method, the inspection surface of the metal sample is faced upward, the etching solution is held on the upper surface of the inspection surface so that the entire surface of the inspection surface is covered with the etching solution, and the defect appears. The thickness of the etching solution above the inspection surface is set to be greater than 0 mm and equal to or less than 10 mm, and the inspection surface is imaged by the imaging device in this state.

Description

本発明は、金属試料の検査面をエッチング処理して欠陥を現出させ、撮像装置によって検査面を撮像することにより欠陥を検出する金属の欠陥検出方法に関する。
本願は、2013年4月17日に、日本に出願された特願2013−086496号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a metal defect detection method for detecting defects by etching an inspection surface of a metal sample to reveal defects and imaging the inspection surface with an imaging device.
This application claims priority on April 17, 2013 based on Japanese Patent Application No. 2013-086496 for which it applied to Japan, and uses the content here.

金属材料、特に鋼片や鋳片内部の割れや偏析といった欠陥部の検出と評価は、鋳片の品質管理及び鋳片の製造プロセスの適正化と操業管理を行う上で不可欠である。金属材料内部の品質評価方法として、従来はサルファプリント法やエッチプリント法が用いられてきた。いずれも、金属材料から試料を切り出し、金属材料の断面を検査面として研磨し、評価を行う。   Detection and evaluation of defects such as cracks and segregation in metal materials, particularly steel slabs and slabs, are indispensable for quality control of slabs and optimization and operation management of slab manufacturing processes. Conventionally, a sulfur printing method or an etch printing method has been used as a quality evaluation method inside a metal material. In any case, a sample is cut out from the metal material, the cross section of the metal material is polished as an inspection surface, and evaluation is performed.

サルファプリント法では、臭化銀を含む転写用印画紙に硫酸水溶液を浸して検査面に貼りつけ、試料中の硫黄の偏析状況を印画紙上に現出する。このサルファプリント法によれば、鋳片の中心偏析部や割れ部に硫黄が偏析する性質を利用し、鋳片の中心偏析や内部割れの評価を行うことができる。サルファプリント法は金属材料中の硫黄濃度が高い材料に対して用いられるが、硫黄濃度が低い極低硫鋼などでは適用することができない。   In the sulfur printing method, a sulfuric acid aqueous solution is immersed in a transfer printing paper containing silver bromide and attached to the inspection surface, and the state of segregation of sulfur in the sample appears on the printing paper. According to this sulfur printing method, it is possible to evaluate the center segregation or internal crack of a slab by utilizing the property that sulfur segregates at the center segregation part or crack part of the slab. The sulfur printing method is used for a material having a high sulfur concentration in a metal material, but cannot be applied to an extremely low sulfur steel having a low sulfur concentration.

エッチプリント法は、検査面の中心偏析部や割れ部に元素が偏析する性質を利用し、検査面をエッチングして元素の偏析部を現出し、試料にワセリンを塗り込んだ上で再研磨することにより、偏析、割れを可視化する技術である。このエッチプリント法は、硫黄濃度が低い材料に対しても用いることができる。   The etch print method uses the property that elements are segregated at the center segregation and cracks on the inspection surface. The inspection surface is etched to reveal the element segregation, and the sample is coated with petroleum jelly and then re-polished. This is a technique for visualizing segregation and cracking. This etch printing method can also be used for materials having a low sulfur concentration.

近年の金属材料の高品質化、高純度化にともない、金属材料の欠陥検出のさらなる高精度化が求められている。サルファプリント法については、使用する印画紙の安定供給に問題が生じており、そもそも極低硫鋼にはサルファプリント法が適用できない。エッチプリント法については、作業全体に数時間を要し、欠陥検出の迅速化が求められている。   With the recent improvement in quality and purity of metal materials, there has been a demand for higher accuracy in detecting defects in metal materials. Regarding the sulfur printing method, there is a problem in the stable supply of photographic paper to be used, and the sulfur printing method cannot be applied to extremely low-sulfur steel in the first place. The etch printing method requires several hours for the entire operation, and speeding up of defect detection is required.

金属材料の検査面にエッチングを施した上で、検査面を直接カメラ等の撮像装置で撮像して画像として記録することができれば、エッチプリント法と異なって迅速に欠陥検出ができるので好ましい。この場合、欠陥部はエッチングが進行して深く掘れていることから、深く掘れた欠陥部を暗部とし、それ以外の正常部(非欠陥部)を明部として欠陥検出を行う必要がある。ところが、検査面をエッチング(マクロ腐食)し、検査面を撮像装置で撮像するに際し、照明として自然光やライト照明で撮像したのでは、正常部の明度が低いために欠陥部と正常部との明度コントラストが小さいという問題がある。   It is preferable if the inspection surface of the metal material is etched and then the inspection surface can be directly picked up by an imaging device such as a camera and recorded as an image because defects can be detected quickly unlike the etch printing method. In this case, since the defect portion is deeply dug due to the progress of etching, it is necessary to detect the defect using the deeply dug defect portion as a dark portion and the other normal portion (non-defect portion) as a bright portion. However, when the inspection surface is etched (macro corrosion) and the inspection surface is imaged with an imaging device, the lightness of the defective portion and the normal portion is low because the lightness of the normal portion is low. There is a problem that the contrast is small.

これに対し特許文献1においては、金属試料の検査面を一方向に研磨し、当該金属試料にエッチング処理を行って金属試料中の欠陥を現出させる。そして、線状に連続した光源又は複数の点光源を線状に配置した光源(線状光源)を用いて所定の配置位置から検査面を照射し、撮像装置によって検査面を撮像する。これにより、検査面撮像画像における正常部の明度を均一かつ明るくし、欠陥部を明瞭に検出することを可能としている。   On the other hand, in patent document 1, the test | inspection surface of a metal sample is grind | polished to one direction, the said metal sample is etched, and the defect in a metal sample appears. Then, the inspection surface is irradiated from a predetermined arrangement position using a linearly continuous light source or a light source (linear light source) in which a plurality of point light sources are linearly arranged, and the inspection surface is imaged by the imaging device. Thereby, the brightness of the normal part in the inspection surface captured image is made uniform and bright, and the defective part can be detected clearly.

日本国特開2011−203201号公報Japanese Unexamined Patent Publication No. 2011-203201

特許文献1に記載の方法は、あくまで正常部の明度を上げることにより、欠陥部と正常部のコントラストを増大しようとするものであり、欠陥部の明度を下げるものではない。従って、コントラストの増大にも自ずと限度がある。また、光源の種類が線状光源に限定されており、さらに光源の設置方法、具体的には線状光源の線状方向と研磨方向との関係、及び研磨方向に対する照射角度が限定されており、欠陥検出作業の効率をより向上させたいとのニーズが存在した。   The method described in Patent Document 1 is intended to increase the contrast between the defective part and the normal part by increasing the lightness of the normal part, but not to reduce the lightness of the defective part. Therefore, the increase in contrast is naturally limited. In addition, the type of light source is limited to a linear light source, and further, the installation method of the light source, specifically, the relationship between the linear direction of the linear light source and the polishing direction, and the irradiation angle with respect to the polishing direction are limited. There was a need to improve the efficiency of defect detection work.

本発明は、金属試料の検査面をエッチング処理して欠陥を現出させ、撮像装置によって検査面を撮像することにより欠陥を検出する金属の欠陥検出方法において、欠陥部の明度を下げることによって欠陥部と正常部のコントラストをより増大し、かつ光源や検査面の研磨方向に限定を加えることなく、欠陥部を明瞭に検出することのできる金属の欠陥検出方法を提供することを目的とする。   The present invention relates to a metal defect detection method in which a defect is detected by etching an inspection surface of a metal sample to reveal a defect, and the defect is detected by imaging the inspection surface with an imaging device, thereby reducing the brightness of the defect portion. An object of the present invention is to provide a metal defect detection method capable of clearly detecting a defect portion without increasing the contrast between the portion and the normal portion and without limiting the light source and the polishing direction of the inspection surface.

本発明の要旨とするところは以下のとおりである。
(1)本発明の第一の態様は、金属試料の検査面を上向きにして、前記検査面の全面がエッチング液で覆われるように前記検査面の上部にエッチング液を保持して欠陥を現出させ、前記検査面の上部の前記エッチング液の厚みを0mm超10mm以下とし、この状態で撮像装置によって前記検査面を撮像する金属の欠陥検出方法である。
(2)上記(1)に記載の金属の欠陥検出方法では、前記エッチング液の中に前記金属試料を浸漬させてもよい。
(3)上記(1)又は(2)に記載の金属の欠陥検出方法では、前記金属試料が、炭素濃度が0.5質量%以下の鋼であってもよい。
The gist of the present invention is as follows.
(1) In the first aspect of the present invention, the inspection surface of the metal sample faces upward, and the etching solution is held on the inspection surface so that the entire surface of the inspection surface is covered with the etching solution. In this method, the thickness of the etching solution above the inspection surface is set to more than 0 mm and not more than 10 mm, and the inspection surface is imaged by the imaging device in this state.
(2) In the metal defect detection method according to (1) above, the metal sample may be immersed in the etching solution.
(3) In the metal defect detection method according to the above (1) or (2), the metal sample may be steel having a carbon concentration of 0.5% by mass or less.

金属試料の検査面をエッチング処理して欠陥を現出させ、撮像装置によって検査面を撮像することにより欠陥を検出する金属の欠陥検出方法において、検査面上に少なくとも検査面全面がエッチング液で覆われるようにエッチング液を保持し、エッチング液除去の前に撮像装置によって検査面を撮像する。これにより、偏析部には明度の暗い溶出元素もしくは溶出元素の化合物が残存しているため、周囲の正常部と比較してコントラストが強くなるので、偏析領域が狭くあるいは偏析部の溶出元素濃度が高くない場合であっても、光源や検査面の研磨方向に限定を加えることなく、撮像装置による撮像で偏析部の検出が可能になる。   In a metal defect detection method in which a defect is detected by etching an inspection surface of a metal sample and the inspection surface is imaged by an imaging device, at least the entire inspection surface is covered with an etching solution on the inspection surface. The etching solution is held as shown, and the inspection surface is imaged by the imaging device before the etching solution is removed. As a result, since the elution element or the compound of the elution element having a low brightness remains in the segregation part, the contrast becomes stronger compared to the surrounding normal part, so that the segregation area is narrow or the concentration of the elution element in the segregation part is reduced. Even if it is not high, the segregation part can be detected by imaging with the imaging device without limiting the light source and the polishing direction of the inspection surface.

金属材料の検査面付近の部分断面図であり、偏析部の所在を示す概念図である。It is a fragmentary sectional view of the inspection surface vicinity of a metal material, and is a conceptual diagram which shows the location of a segregation part. 金属材料の検査面付近の部分断面図であり、エッチング終了時の概念図である。It is a fragmentary sectional view near the inspection surface of a metal material, and is a conceptual diagram at the end of etching. 金属材料の検査面付近の部分断面図であり、エッチング後にエッチング液を除去する状況を示す概念図である。It is a fragmentary sectional view near the inspection surface of a metal material, and is a conceptual diagram showing a situation where an etching solution is removed after etching. 金属材料の検査面付近の部分断面図であり、エッチング液除去後の状況を示す概念図である。It is a fragmentary sectional view near the test | inspection surface of a metal material, and is a conceptual diagram which shows the condition after etching liquid removal. 本発明の1実施形態を示す斜視概念図である。It is a perspective conceptual diagram showing one embodiment of the present invention. 本発明の1実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of this invention. 本発明の1実施形態を示す斜視概念図である。It is a perspective conceptual diagram showing one embodiment of the present invention. 撮像装置と光源を含め、本発明の1実施形態を示す斜視概念図である。It is a perspective conceptual diagram showing one embodiment of the present invention including an imaging device and a light source.

金属材料中の偏析部には、溶出元素が正偏析している。図1Aに示す金属試料1において、偏析部3a、偏析部3bには溶出元素が正偏析している。このような金属試料1の検査面にエッチング液5を接触させると、正常な金属材料が露出している正常部4についてはエッチング速度が遅く、溶出元素が偏析している偏析部3(欠陥部)はエッチング速度が速いので、エッチング深さに差が生じ、図1Bに示すように、偏析部3a、偏析部3bなどの欠陥部は深くエッチングされ、窪み9a、9bが生成する。   In the segregation part in the metal material, the eluted element is segregated positively. In the metal sample 1 shown in FIG. 1A, the segregated portion 3a and the segregated portion 3b are positively segregated from the eluted element. When the etching solution 5 is brought into contact with the inspection surface of such a metal sample 1, the etching rate is slow for the normal part 4 where the normal metal material is exposed, and the segregation part 3 (defect part) where the eluted element segregates. ) Has a high etching rate, a difference occurs in the etching depth, and as shown in FIG. 1B, the defect portions such as the segregation portion 3a and the segregation portion 3b are deeply etched to form the recesses 9a and 9b.

欠陥部については、このようにエッチング速度に差が生じる以外にも、エッチングによって生成した溶出元素もしくは溶出元素の化合物の明度にも特徴を有することがわかった。偏析部3で生成する溶出元素もしくは溶出元素の化合物は、一般に黒色といっていいほどに暗い明度を有している。従って、図1Bに示すように、偏析部などの欠陥部(偏析部3a、3b)に形成された窪み(9a、9b)には溶出元素もしくは溶出元素の化合物(8a、8b)が存在する。これら溶出元素もしくは溶出元素の化合物をそのまま欠陥部に残存させることができれば、欠陥部の明度が暗くなるので、明るい正常部との明度差(コントラスト)が強烈となり、撮像装置によって検査面を撮像したときに欠陥部をより一層際だたせることができる。ところが、エッチングが進行した後に、従来はエッチング液を除去して検査面を洗浄しているため、図1Cに示すように、暗い色合いの溶出元素もしくは溶出元素の化合物(8c、8d)も洗い流されてしまい、欠陥検出に利用することができなかった。洗浄後の検査面は、図1Dに示すように窪み(9a、9b)が残るのみであり、正常部も欠陥部も明度は同一であるため、窪み9aのように深く窪んだ欠陥部のみが、明度が暗くなることによって正常部と差別化できることとなっていた。偏析部3bについては、もともと偏析領域が狭く、あるいは偏析部の溶出元素濃度が高くないため、窪み9bの深さも浅くなり、正常部との明度差が小さいために欠陥として検出することが困難となる。   In addition to the difference in the etching rate as described above, it has been found that the defect portion has characteristics in the lightness of the eluted element or the compound of the eluted element generated by etching. The eluting element or compound of the eluting element generated in the segregation part 3 has a lightness that is generally dark enough to be black. Therefore, as shown in FIG. 1B, the elution element or the compound (8a, 8b) of the elution element exists in the depression (9a, 9b) formed in the defect portion (segregation portion 3a, 3b) such as the segregation portion. If these eluting elements or compounds of the eluting elements can remain in the defective part as they are, the lightness of the defective part will be dark, so the brightness difference (contrast) from the bright normal part will be intense, and the inspection surface was imaged by the imaging device. Sometimes the defect can be made even more pronounced. However, after the etching has progressed, the etching surface is conventionally removed and the inspection surface is cleaned, so as shown in FIG. 1C, the dark-colored elution elements or elution element compounds (8c, 8d) are also washed away. Therefore, it could not be used for defect detection. As shown in FIG. 1D, only the dents (9a, 9b) remain on the inspection surface after cleaning, and the normal part and the defective part have the same lightness. Therefore, only the defective part deeply recessed like the dent 9a is present. It was supposed to be able to differentiate from the normal part by the brightness becoming darker. As for the segregation part 3b, since the segregation region is originally narrow or the concentration of the eluted element in the segregation part is not high, the depth of the recess 9b becomes shallow and the brightness difference from the normal part is small, so that it is difficult to detect as a defect. Become.

本発明においては、検査面にエッチング液を接触させてエッチングを行った後、エッチング液を洗浄・除去せず、さらにはエッチング液を検査面上で流動させることもせず、エッチング生成物である溶出元素もしくは溶出元素の化合物を偏析部に残存させたままの状態を保持して撮像装置で検査面の撮像を行う。具体的には、図2A〜図4に示すように、検査面2を上向きにして、検査面上に少なくとも検査面全面がエッチング液5で覆われるようにエッチング液5を保持し、この状態で撮像装置12によって検査面2を撮像する。図1Bに示すように、偏析部3には明度の暗い溶出元素もしくは溶出元素の化合物8が残存しているため、周囲の正常部4と比較してコントラストが強くなるので、撮像画像において偏析部は暗い部分として認識することが可能となる。その結果、図1Aの偏析部3bのように、もともと偏析領域が狭く、あるいは偏析部の溶出元素濃度が高くない場合であって、エッチング後の窪み9bの深さが浅い場合であっても、窪み9bに明度の暗い溶出元素もしくは溶出元素の化合物8bが残存しているため(図1B)、撮像装置による撮像で偏析部3bの検出が可能になる。さらに、偏析を伴う割れも検出することができる。   In the present invention, after etching is performed by bringing the etching solution into contact with the inspection surface, the etching solution is not washed and removed, and further, the etching solution is not allowed to flow on the inspection surface, and the etching product is eluted. The inspection surface is imaged with the imaging device while the element or the compound of the eluted element is kept in the segregation part. Specifically, as shown in FIGS. 2A to 4, with the inspection surface 2 facing upward, the etching solution 5 is held on the inspection surface so that at least the entire inspection surface is covered with the etching solution 5. The inspection surface 2 is imaged by the imaging device 12. As shown in FIG. 1B, since the elution element having a low brightness or the compound 8 of the elution element remains in the segregation part 3, the contrast becomes stronger than that of the surrounding normal part 4, so that the segregation part in the captured image. Can be recognized as a dark part. As a result, as in the case of the segregation part 3b in FIG. 1A, even when the segregation region is originally narrow or the concentration of the eluted element in the segregation part is not high, and the depth of the recess 9b after etching is shallow, Since the eluting element having a darkness or the compound 8b of the eluting element remains in the depression 9b (FIG. 1B), the segregation part 3b can be detected by imaging with the imaging device. Furthermore, cracks accompanied by segregation can also be detected.

検査面にエッチング液を接触させてからエッチングが進行するのに必要な所定の時間だけ保持する。そしてこの保持中においても検査面へのエッチング液の接触を継続し、なおかつエッチング液の流動を起こさせないことが必要である。   After the etching solution is brought into contact with the inspection surface, the etching liquid is held for a predetermined time necessary for the etching to proceed. Even during this holding, it is necessary to continue the contact of the etching solution with the inspection surface and not cause the etching solution to flow.

検査面に接触するエッチング液の必要最少量としては、撮像装置で撮像する時点において、少なくとも検査面全面がエッチング液で覆われる程度に存在していればよい。具体的には、検査面全体がエッチング液で濡れている状況が保持されていればよい。   The necessary minimum amount of the etching solution that contacts the inspection surface may be present so that at least the entire inspection surface is covered with the etching solution at the time of imaging with the imaging device. Specifically, it is only necessary to maintain a state in which the entire inspection surface is wet with the etchant.

一方、検査面の上部を覆うエッチング液の厚みHが厚すぎると(エッチング液表面から検査面までの深さが深すぎると)、図1Cに示すように、検査面上部のエッチング液の流れ7が発生しやすくなる。この流動によって偏析部から溶出元素もしくは溶出元素の化合物8が流出してしまうと偏析部の明度を暗く保持することができなくなる。エッチング液の流れ7は、例えば検査面温度とエッチング液温度に温度差が存在してエッチング液の対流が発生することによる流動、あるいは検査面上にエッチング液を注ぎ込む際の流動が考えられ、これらはいずれも、検査面上のエッチング液の厚みHが厚くなるほど顕著となる。本発明においては、検査面上のエッチング液の厚みHを10mm以下とすることにより、エッチング液の流れ7を有効に抑制し、溶出元素もしくは溶出元素の化合物8を偏析部3に保持することが可能となる。検査面上のエッチング液の厚みHは、好ましくは7mm以下であり、より好ましくは5mm以下であり、更に好ましくは3mm以下である。検査面上のエッチング液の厚みHの下限値としては、検査面の全面がエッチング液で覆われていればよいことから、0mm超である。ただし、偏析部を好適に溶出させるために、0.3mm以上、あるいは0.5mm以上としてもよい。   On the other hand, if the thickness H of the etching solution covering the upper portion of the inspection surface is too thick (if the depth from the etching solution surface to the inspection surface is too deep), as shown in FIG. Is likely to occur. If the elution element or the compound 8 of the elution element flows out of the segregation part due to this flow, the brightness of the segregation part cannot be kept dark. For example, the flow 7 of the etching solution may be a flow caused by the convection of the etching solution due to a temperature difference between the inspection surface temperature and the etching solution temperature, or a flow when the etching solution is poured onto the inspection surface. Both become more significant as the thickness H of the etching solution on the inspection surface increases. In the present invention, by setting the thickness H of the etching solution on the inspection surface to 10 mm or less, the flow 7 of the etching solution can be effectively suppressed, and the eluted element or the compound 8 of the eluted element can be held in the segregation part 3. It becomes possible. The thickness H of the etching solution on the inspection surface is preferably 7 mm or less, more preferably 5 mm or less, and further preferably 3 mm or less. The lower limit of the thickness H of the etching solution on the inspection surface is more than 0 mm because the entire inspection surface only needs to be covered with the etching solution. However, it is good also as 0.3 mm or more or 0.5 mm or more in order to elute a segregation part suitably.

検査面の上部にエッチング液を保持する方法として、図2A、図2Bに示すようにエッチング用容器10中のエッチング液中に金属試料1を浸漬させる方法を採用することができる。この場合、エッチング用容器10に金属試料1を入れ、そのあとにエッチング液5を注ぎ込む方法、あるいはエッチング用容器10にエッチング液5を入れ、そのあとに金属試料1を浸漬させる方法のいずれを採用しても良い。また、図3に示すように、金属試料1の検査面2の周囲にエッチング液流出防止板11を設置し、検査面2とエッチング液流出防止板11で形成される枠内にエッチング液5を注ぎ込む方法を採用しても良い。   As a method of holding the etching solution on the upper surface of the inspection surface, a method of immersing the metal sample 1 in the etching solution in the etching container 10 as shown in FIGS. 2A and 2B can be employed. In this case, either the method in which the metal sample 1 is put in the etching container 10 and then the etching solution 5 is poured or the method in which the etching solution 5 is put in the etching container 10 and the metal sample 1 is immersed after that is adopted. You may do it. Further, as shown in FIG. 3, an etchant outflow prevention plate 11 is installed around the inspection surface 2 of the metal sample 1, and the etchant 5 is placed in a frame formed by the inspection surface 2 and the etchant outflow prevention plate 11. You may employ | adopt the method of pouring.

検査面上のエッチング液の厚みHが10mm以下であることを確認するための方法について説明する。図2A、図2Bに示す方法を用いる場合であれば、エッチング用容器10の側面に長さ測定のスケールを設置して、このスケールでエッチング液の水位を測定する。事前に金属試料1の厚みを把握しておけば、エッチング用容器内に金属試料1の底部が接する高さとエッチング液の水位の差を計測し、この計測値から金属試料1の厚みを減算することにより、エッチング液の厚みHを算出することができる。また図3に示す方法を用いる場合であれば、エッチング液流出防止板11の内側の側面にスケールを設置して、エッチング液の厚みHを測定することができる。   A method for confirming that the thickness H of the etching solution on the inspection surface is 10 mm or less will be described. If the method shown in FIGS. 2A and 2B is used, a length measurement scale is installed on the side surface of the etching container 10 and the water level of the etching solution is measured using this scale. If the thickness of the metal sample 1 is known in advance, the difference between the height at which the bottom of the metal sample 1 is in contact with the etching container and the water level of the etching solution is measured, and the thickness of the metal sample 1 is subtracted from this measured value. Thus, the thickness H of the etching solution can be calculated. If the method shown in FIG. 3 is used, the thickness H of the etchant can be measured by installing a scale on the inner side surface of the etchant outflow prevention plate 11.

本発明のエッチング処理で用いるエッチング液としては、通常に用いられるエッチング液のうちから、偏析部で生成する溶出元素もしくは溶出元素の化合物の明度が暗い濃色(例えば黒色)となるものを容易に採用することができる。例えば、過硫酸アンモニウム水溶液や、ピクリン酸水溶液などが好適に用いられる。この他、偏析部もしくは偏析部を伴う割れ部から、濃色(例えば黒色)の溶出元素もしくは溶出元素の化合物を生じさせるエッチング液であれば、いずれの液を用いても良い。また、検査面をエッチング液に浸漬してから撮像するまでの保持時間については、使用するエッチング液について通常用いられている保持時間とすればよい。   As an etching solution used in the etching treatment of the present invention, an etching solution that is a dark color (for example, black) with a lightness of an eluted element or a compound of the eluted element generated in a segregation part is easily selected from etching liquids that are usually used. Can be adopted. For example, an aqueous solution of ammonium persulfate or an aqueous solution of picric acid is preferably used. In addition, any liquid may be used as long as it is an etching liquid that produces a segregated part or a cracked part with a segregated part to produce a dark color (for example, black) eluted element or a compound of the eluted element. Moreover, what is necessary is just to set it as the holding time normally used about the etching liquid to be used about the holding time after an inspection surface is immersed in etching liquid until it images.

本発明においては、正常部(非欠陥部)を明るい明度とし、偏析部などの欠陥部を暗い明度として、正常部と欠陥部の明度差(コントラスト差)によって欠陥を検出するものである。従って、正常部を明るい明度とすることが必要である。本発明では欠陥部の明度を暗い濃色とすることができるので、正常部については、通常の研磨面とすることによって十分な明度を確保することができる。具体的には、検査面をJIS R6252(2006年)に規定する1000番以下100番以上の粗さを有する研磨手段を用いて研磨を行えばよい。これにより、検査面の粗さを好適な粗さとすることができる。研磨の方向は特に限定する必要はない。研磨手段として、研磨紙、研磨布、研磨材のいずれを用いても良い。   In the present invention, a normal part (non-defect part) has a bright brightness, and a defect part such as a segregation part has a dark brightness, and a defect is detected by a brightness difference (contrast difference) between the normal part and the defect part. Therefore, it is necessary to make the normal part bright. In the present invention, since the lightness of the defective portion can be a dark dark color, sufficient lightness can be ensured by making the normal portion a normal polished surface. Specifically, polishing may be performed using polishing means having a roughness of 1000 or less and 100 or more as defined in JIS R6252 (2006). Thereby, the roughness of an inspection surface can be made into suitable roughness. The direction of polishing need not be particularly limited. As the polishing means, any of polishing paper, polishing cloth, and polishing material may be used.

撮像のために研磨面を照らす照明についても、特に限定はない。撮像装置で撮像するのに必要な明るさが確保できればよい。撮像装置から検査面を観察し、検査面が鏡面であると仮定したときに、観察する検査面に照明光源が写り込むような位置は避けた方が好ましい。検査面が乱反射面であるとしても、検査面の上のエッチング液面が正反射面であり、光源の像が液面に反射して撮像画像に写り込むからである。   There is no particular limitation on the illumination that illuminates the polished surface for imaging. It is only necessary to ensure the brightness necessary for imaging with the imaging device. When the inspection surface is observed from the imaging device and it is assumed that the inspection surface is a mirror surface, it is preferable to avoid a position where the illumination light source is reflected on the inspection surface to be observed. This is because even if the inspection surface is an irregular reflection surface, the etching liquid surface on the inspection surface is a regular reflection surface, and the image of the light source is reflected on the liquid surface and reflected in the captured image.

撮像装置12としては、検査面を撮像できる撮像装置であれば、フィルムカメラ、デジタルカメラのいずれも使用可能である。半導体撮像素子などを用いた撮像装置を用いれば、撮像画像データを画像処理装置に取り込んで欠陥部の画像解析を行うことができるので好ましい。図4に示すように、検査面2の幾何学的中心Cの鉛直上方に撮像装置12を配置すると好ましい。なお、この場合でさらに光源高さが撮像装置高さと同じである条件では、光源13の配置位置としては、検査面2の2倍の幅と長さを有する領域14を想定し、この領域14の幾何学的中心を撮像装置12とし、この領域14の外側に光源13を配置することとすれば、撮像画像中の検査面部分に光源の直接反射光が写り込まないので好ましい。   As the imaging device 12, any film camera or digital camera can be used as long as the imaging device can image the inspection surface. It is preferable to use an imaging device using a semiconductor imaging device or the like because captured image data can be taken into an image processing device and image analysis of a defective portion can be performed. As shown in FIG. 4, it is preferable to arrange the imaging device 12 vertically above the geometric center C of the inspection surface 2. In this case, under the condition that the height of the light source is the same as the height of the imaging device, an area 14 having a width and length twice that of the inspection surface 2 is assumed as the arrangement position of the light source 13. If the light source 13 is arranged outside the region 14 with the geometric center of the image pickup device 12, the light directly reflected by the light source is not reflected on the inspection surface portion in the picked-up image.

撮像終了後に、金属試料1を洗浄することによって検査面2からエッチング液を除去する。   After the imaging is completed, the etching liquid is removed from the inspection surface 2 by washing the metal sample 1.

金属試料中の含有不純物、例えば含有炭素量が多くなると、偏析部以外の正常部であっても、エッチングに際して金属中に正常に含有する元素が溶出元素としてふるまい、正常部についても溶出元素もしくは溶出元素の化合物が発生して正常部の明度を暗くする作用を及ぼす。正常部の明度があまりにも暗くなり過ぎると、偏析部などの欠陥部との明度差が認識しづらくなる。金属試料が炭素鋼である場合、鋼中の炭素濃度が0.5質量%以下である場合には、正常部の明度がさほど暗くなり過ぎず、本発明を好適に用いることができる。   When the amount of impurities contained in a metal sample, for example, the amount of carbon contained in the sample increases, even if it is a normal part other than the segregation part, the element normally contained in the metal during the etching behaves as an elution element. An elemental compound is generated and acts to darken the brightness of the normal part. If the brightness of the normal part becomes too dark, it becomes difficult to recognize a brightness difference from a defect part such as a segregation part. When the metal sample is carbon steel, when the carbon concentration in the steel is 0.5% by mass or less, the brightness of the normal part is not so dark, and the present invention can be suitably used.

炭素濃度の異なる3水準の炭素鋼として、表1に示す成分を有する3種類の炭素鋼について本発明を適用した。それぞれの鋼種の連続鋳造鋳片(幅1200mm、厚み250mm、長さ5000mm)を、長さ方向(鋳造方向)に垂直に切断して長さ方向50mmの金属試料を切り出し、さらに幅方向に2分割して、600mm×250mm×50mmの金属試料1を切り出し、前記連続鋳造鋳片の長さ方向に対する垂直断面を検査面2(サイズ:600mm×250mm)とした。検査面2について、JIS R6252に規定する300番の研磨紙を用いて研磨を行った。研磨方向については何ら意識せず、ランダム方向に研磨を行った。   The present invention was applied to three types of carbon steel having the components shown in Table 1 as three levels of carbon steel having different carbon concentrations. Continuous cast slabs (width: 1200 mm, thickness: 250 mm, length: 5000 mm) of each steel type are cut perpendicularly in the length direction (casting direction) to cut out a metal sample having a length direction of 50 mm and further divided into two in the width direction. Then, a metal sample 1 of 600 mm × 250 mm × 50 mm was cut out, and a vertical cross section with respect to the length direction of the continuous cast slab was set as an inspection surface 2 (size: 600 mm × 250 mm). The inspection surface 2 was polished using No. 300 polishing paper defined in JIS R6252. Polishing was performed in a random direction without being aware of the polishing direction.

Figure 2014171361
Figure 2014171361

検査面の上部にエッチング液を保持する方法として、図2A、図2Bに示すようにエッチング用容器10中のエッチング液中に金属試料を浸漬させる方法を主に用い、図3に示すように、金属試料1の検査面2の周囲にエッチング液流出防止板11を設置し、検査面2とエッチング液流出防止板11で形成される枠内にエッチング液5を注ぎ込む方法を1例だけ採用した。エッチング液5として過硫酸アンモニウム10%水溶液を用い、金属試料1をエッチング用容器10内に配置した上でエッチング液を供給した。図2A、図2Bに示す方法では、エッチング用容器10の内側の側面にスケールを設置して、エッチング用容器中の金属試料1が無い部位でのエッチング液の厚みを測定し、事前に測定した金属試料厚みを減算して、検査面上部のエッチング液の厚みHを評価した。検査面が全面に濡れていない場合の厚みHは測定値が得られなかった。   As a method of holding the etching solution on the upper surface of the inspection surface, mainly using a method of immersing a metal sample in the etching solution in the etching container 10 as shown in FIGS. 2A and 2B, as shown in FIG. An etching solution outflow prevention plate 11 is installed around the inspection surface 2 of the metal sample 1 and only one example is adopted in which the etching solution 5 is poured into a frame formed by the inspection surface 2 and the etching solution outflow prevention plate 11. An etching solution was supplied after using a 10% aqueous solution of ammonium persulfate as the etching solution 5 and placing the metal sample 1 in the etching container 10. In the method shown in FIG. 2A and FIG. 2B, a scale is installed on the inner side surface of the etching container 10 to measure the thickness of the etching solution in a portion where the metal sample 1 is not present in the etching container, and the measurement is performed in advance. The thickness H of the etching solution at the upper part of the inspection surface was evaluated by subtracting the metal sample thickness. No measured value was obtained for the thickness H when the inspection surface was not wet.

撮像装置としてはデジタル一眼レフカメラ(撮像画面サイズ:22.3mm×14.9mm、有効画素:約1510万画素、レンズ:焦点距離28mm)を、図4に示すように、検査面2の重心(幾何学的中心C)の直上1.5m離れた位置に設置した。また、照明用の光源13として、図7に示すように撮像装置12の位置を重心として検査面2と平行な正方形(1.5m×1.5m)の4角に定格消費電力500Wの電球を4個配置した。光源13の配置位置として好ましくない領域14は、1.2m×0.5mの範囲であるから、光源13はいずれも領域14の範囲外に配置されており、撮像画像の検査面の領域には光源の反射像は写り込まない。   As an imaging device, a digital single-lens reflex camera (imaging screen size: 22.3 mm × 14.9 mm, effective pixels: about 15.1 million pixels, lens: focal length 28 mm), as shown in FIG. It was installed at a position 1.5 m above the geometric center C). Further, as a light source 13 for illumination, as shown in FIG. 7, a bulb with a rated power consumption of 500 W is formed at four corners of a square (1.5 m × 1.5 m) parallel to the inspection surface 2 with the position of the imaging device 12 as the center of gravity. Four were arranged. Since the region 14 which is not preferable as the arrangement position of the light source 13 is in a range of 1.2 m × 0.5 m, all the light sources 13 are arranged outside the range of the region 14, and the region of the inspection surface of the captured image is The reflected image of the light source is not reflected.

種々の条件のもとで、60秒間のエッチング処理と検査面2の画像撮像を行った。表2に処理条件と評価結果を示す。表2において、実施例1〜6、比較例1〜5は図2A、図2Bに示す方法を用いた場合であり、実施例7は図3に示す方法を用いた場合である。本発明範囲から外れる条件にアンダーラインを付している。エッチング液と金属試料の温度は常温とした。   Under various conditions, an etching process for 60 seconds and an image of the inspection surface 2 were taken. Table 2 shows processing conditions and evaluation results. In Table 2, Examples 1 to 6 and Comparative Examples 1 to 5 are cases where the method shown in FIGS. 2A and 2B is used, and Example 7 is a case where the method shown in FIG. 3 is used. Conditions that deviate from the scope of the present invention are underlined. The temperature of the etching solution and the metal sample was room temperature.

Figure 2014171361
Figure 2014171361

各検査水準について、撮像装置で撮像した撮像画像を画像解析し、明度のしきい値を定めて画像を2値化し、2値化後の黒色部を欠陥と判断した。検査面2における欠陥個数をカウントした。次いで、実施例1〜4および比較例1〜3については評価した欠陥個数を比較例1において評価した欠陥個数で規格化し、実施例5および比較例4については評価した欠陥個数を比較例4において評価した欠陥個数で規格化し、実施例6および比較例5については評価した欠陥個数を比較例5において評価した欠陥個数で規格化し、各条件における欠陥個数NNLを算出した。このNNLから、下記判断基準に従って検査状況を評価し、表2に記入した。
1.6<NNL ・・・かなり良い
1.3<NNL≦1.6 ・・・良い
1.0<NNL≦1.3 ・・・良いが少し劣る
0.7<NNL≦1.0 ・・・劣る
NNL≦0.7 ・・・かなり劣る
For each inspection level, the captured image captured by the imaging device was subjected to image analysis, the brightness threshold value was set, the image was binarized, and the black portion after binarization was determined to be a defect. The number of defects on the inspection surface 2 was counted. Next, the number of defects evaluated for Examples 1 to 4 and Comparative Examples 1 to 3 was normalized with the number of defects evaluated in Comparative Example 1, and the number of defects evaluated for Example 5 and Comparative Example 4 was compared with Comparative Example 4. The number of defects evaluated was normalized by the number of defects evaluated in Comparative Example 5 for Example 6 and Comparative Example 5, and the number of defects NNL in each condition was calculated. From this NNL, the inspection status was evaluated according to the following criteria and entered in Table 2.
1.6 <NNL ... pretty good 1.3 <NNL ≤ 1.6 ... good 1.0 <NNL ≤ 1.3 ... good but a little inferior 0.7 <NNL ≤ 1.0・ Inferior
NNL ≦ 0.7 ... considerably inferior

実施例1、比較例1については、比較例1を基準とし、検査面2の撮像タイミングを変化させたものである。エッチング液除去後に撮像した比較例1は評価結果が「劣る」という結果であったが、エッチング液除去前に撮像した実施例1は「かなり良い」という結果であった。   In Example 1 and Comparative Example 1, the imaging timing of the inspection surface 2 is changed using Comparative Example 1 as a reference. Comparative Example 1 imaged after removing the etching solution had a result of “inferior”, but Example 1 imaged before removing the etching solution had a result of “pretty good”.

実施例1〜4、比較例2と3は、実施例1と基準とし、検査面とエッチング液の濡れ状況、検査面上に保持するエッチング液の厚みを変化させたものである。検査面がエッチング液で全面に濡れており、かつエッチング液の厚みHが10mm以下であれば、良好な評価結果を得ることができる。また、図3に示す方法を用いた実施例7についても良好な結果を得ることができた。   Examples 1 to 4 and Comparative Examples 2 and 3 are based on Example 1 and change the wetness of the inspection surface and the etching solution and the thickness of the etching solution held on the inspection surface. If the inspection surface is wetted with the etching solution and the thickness H of the etching solution is 10 mm or less, a good evaluation result can be obtained. Also, good results could be obtained for Example 7 using the method shown in FIG.

比較例1、4、5は、比較例1を基準と同様とし、鋼種を変化させたものである。実施例1、5、6は、実施例1を基準と同様とし、鋼種を変化させたものである。金属材料中の炭素含有量が0.50%を超えると、評価結果が「良いが少し劣る」に低下している。   In Comparative Examples 1, 4, and 5, Comparative Example 1 is the same as the standard, and the steel type is changed. In Examples 1, 5, and 6, Example 1 is the same as the standard, and the steel type is changed. When the carbon content in the metal material exceeds 0.50%, the evaluation result decreases to “good but slightly inferior”.

表2において、基準となる実施例1と比較例1については、比較を容易にするために各実施例群について重複して掲載している。   In Table 2, the reference Example 1 and Comparative Example 1 are duplicated for each example group for easy comparison.

表2において、本発明例はいずれも評価結果が「かなり良い」から「良いが少し劣る」の範囲に入っていることがわかった。   In Table 2, it was found that all of the examples of the present invention were in the range from “pretty good” to “good but slightly inferior”.

なお、本発明は、前述の実施の形態及び実施例に具体的に記載された形態に限定されるものではなく、特許請求の範囲に規定する範囲内での変更は可能であり、例えば、前記したそれぞれの実施の形態、実施例や変形例の一例又は全部を組み合わせて、本発明の金属中、特に鋼片中の欠陥部を、高精度かつ迅速に検出する方法を構成する場合も本発明の権利範囲に含まれる。   The present invention is not limited to the embodiments specifically described in the above-described embodiments and examples, and can be modified within the scope defined in the claims. For example, The present invention is also applicable to the case of configuring a method for detecting a defective portion in a metal of the present invention, in particular, a steel piece, with high accuracy and speed by combining one or all of the above embodiments, examples and modifications. Is included in the scope of rights.

本発明によれば、欠陥部を明瞭に検出することのできる金属の欠陥検出方法を提供することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, the defect detection method of the metal which can detect a defect part clearly can be provided.

1 金属試料
2 検査面
3 偏析部
4 正常部
5 エッチング液
7 エッチング液の流れ
8 溶出元素もしくは溶出元素の化合物
9 窪み
10 エッチング用容器
11 エッチング液流出防止板
12 撮像装置
13 光源
14 領域
DESCRIPTION OF SYMBOLS 1 Metal sample 2 Inspection surface 3 Segregation part 4 Normal part 5 Etching liquid 7 Flow of etching liquid 8 Elution element or compound of elution element 9 Depression 10 Etching container 11 Etching liquid outflow prevention plate 12 Imaging device 13 Light source 14 Area

本発明の要旨とするところは以下のとおりである。
(1)本発明の第一の態様は、炭素濃度が0.5質量%以下の鋼である金属試料の検査面を上向きにして、前記検査面の全面がエッチング液で覆われるように前記検査面の上部にエッチング液を保持して欠陥を現出させ、前記検査面の上部の前記エッチング液の厚みを0mm超10mm以下とし、この状態で撮像装置によって前記検査面を撮像する金属の欠陥検出方法である。
(2)上記(1)に記載の金属の欠陥検出方法では、前記エッチング液の中に前記金属試料を浸漬させてもよい。
The gist of the present invention is as follows.
(1) In the first aspect of the present invention, the inspection is performed so that the inspection surface of a metal sample made of steel having a carbon concentration of 0.5% by mass or less faces upward and the entire inspection surface is covered with an etching solution. Defect detection of metal in which the etching solution is held on the upper surface to reveal defects, the thickness of the etching solution on the upper surface of the inspection surface is more than 0 mm and 10 mm or less, and the inspection surface is imaged by the imaging device in this state Is the method.
(2) In the metal defect detection method according to (1) above, the metal sample may be immersed in the etching solution.

種々の条件のもとで、60秒間のエッチング処理と検査面2の画像撮像を行った。表2に処理条件と評価結果を示す。表2において、実施例1〜5、参考例1、比較例1〜5は図2A、図2Bに示す方法を用いた場合であり、実施例7は図3に示す方法を用いた場合である。本発明範囲から外れる条件にアンダーラインを付している。エッチング液と金属試料の温度は常温とした。 Under various conditions, an etching process for 60 seconds and an image of the inspection surface 2 were taken. Table 2 shows processing conditions and evaluation results. In Table 2, Examples 1 to 5, Reference Example 1 and Comparative Examples 1 to 5 are cases where the method shown in FIGS. 2A and 2B is used, and Example 7 is a case where the method shown in FIG. 3 is used. . Conditions that deviate from the scope of the present invention are underlined. The temperature of the etching solution and the metal sample was room temperature.

Figure 2014171361
Figure 2014171361

各検査水準について、撮像装置で撮像した撮像画像を画像解析し、明度のしきい値を定めて画像を2値化し、2値化後の黒色部を欠陥と判断した。検査面2における欠陥個数をカウントした。次いで、実施例1〜4および比較例1〜3については評価した欠陥個数を比較例1において評価した欠陥個数で規格化し、実施例5および比較例4については評価した欠陥個数を比較例4において評価した欠陥個数で規格化し、参考例1および比較例5については評価した欠陥個数を比較例5において評価した欠陥個数で規格化し、各条件における欠陥個数NNLを算出した。このNNLから、下記判断基準に従って検査状況を評価し、表2に記入した。
1.6<NNL ・・・かなり良い
1.3<NNL≦1.6 ・・・良い
1.0<NNL≦1.3 ・・・良いが少し劣る
0.7<NNL≦1.0 ・・・劣る
NNL≦0.7 ・・・かなり劣る
For each inspection level, the captured image captured by the imaging device was subjected to image analysis, the brightness threshold value was set, the image was binarized, and the black portion after binarization was determined to be a defect. The number of defects on the inspection surface 2 was counted. Next, the number of defects evaluated for Examples 1 to 4 and Comparative Examples 1 to 3 was normalized with the number of defects evaluated in Comparative Example 1, and the number of defects evaluated for Example 5 and Comparative Example 4 was compared with Comparative Example 4. The number of defects evaluated was normalized by the number of defects evaluated in Comparative Example 5 for Reference Example 1 and Comparative Example 5, and the number of defects NNL in each condition was calculated. From this NNL, the inspection status was evaluated according to the following criteria and entered in Table 2.
1.6 <NNL ... pretty good 1.3 <NNL ≤ 1.6 ... good 1.0 <NNL ≤ 1.3 ... good but a little inferior 0.7 <NNL ≤ 1.0・ Inferior
NNL ≦ 0.7 ... considerably inferior

比較例1、4、5は、比較例1を基準と同様とし、鋼種を変化させたものである。実施例1、5、及び参考例1は、実施例1を基準と同様とし、鋼種を変化させたものである。金属材料中の炭素含有量が0.50%を超えると、評価結果が「良いが少し劣る」に低下している。 In Comparative Examples 1, 4, and 5, Comparative Example 1 is the same as the standard, and the steel type is changed. Examples 1, 5 and Reference Example 1 are the same as those in Example 1 except that the steel type is changed. When the carbon content in the metal material exceeds 0.50%, the evaluation result decreases to “good but slightly inferior”.

Claims (3)

金属試料の検査面を上向きにして、前記検査面の全面がエッチング液で覆われるように前記検査面の上部にエッチング液を保持して欠陥を現出させ、前記検査面の上部の前記エッチング液の厚みを0mm超10mm以下とし、この状態で撮像装置によって前記検査面を撮像する
ことを特徴とする金属の欠陥検出方法。
With the inspection surface of the metal sample facing upward, the etching solution is held on the upper surface of the inspection surface so that the entire surface of the inspection surface is covered with the etching solution, so that defects appear, and the etching solution above the inspection surface is exposed. A metal defect detection method, wherein the inspection surface is imaged by an imaging apparatus in this state, with a thickness of 0 mm to 10 mm.
前記エッチング液の中に前記金属試料を浸漬させる
ことを特徴とする請求項1に記載の金属の欠陥検出方法。
The metal defect detection method according to claim 1, wherein the metal sample is immersed in the etching solution.
前記金属試料が、炭素濃度が0.5質量%以下の鋼である
ことを特徴とする請求項1又は2に記載の金属の欠陥検出方法。
The metal defect detection method according to claim 1 or 2, wherein the metal sample is steel having a carbon concentration of 0.5 mass% or less.
JP2015512450A 2013-04-17 2014-04-07 Metal defect detection method Active JP5904304B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013086496 2013-04-17
JP2013086496 2013-04-17
PCT/JP2014/060117 WO2014171361A1 (en) 2013-04-17 2014-04-07 Metal defect detection method

Publications (2)

Publication Number Publication Date
JP5904304B2 JP5904304B2 (en) 2016-04-13
JPWO2014171361A1 true JPWO2014171361A1 (en) 2017-02-23

Family

ID=51731305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015512450A Active JP5904304B2 (en) 2013-04-17 2014-04-07 Metal defect detection method

Country Status (3)

Country Link
JP (1) JP5904304B2 (en)
BR (1) BR112015025556B1 (en)
WO (1) WO2014171361A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102310422B1 (en) * 2017-07-11 2021-10-07 현대자동차 주식회사 Deformation detection system of vehicle body, and the control method thereof
JP6863206B2 (en) * 2017-09-28 2021-04-21 日本製鉄株式会社 Fragment analyzer, slab analysis method and program
JP7417406B2 (en) * 2019-11-25 2024-01-18 リンナイ株式会社 How to install a kitchen system
CN112147142B (en) * 2020-09-23 2023-10-27 中国航发贵州黎阳航空动力有限公司 Detection method for improving part lining degree by using detection liquid and detection liquid preparation method
CN113406294B (en) * 2021-06-30 2022-02-18 江苏汉诺威铸业有限公司 Metal casting surface detection equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2948372B2 (en) * 1991-09-04 1999-09-13 三菱重工業株式会社 Fatigue damage detection method for steel materials
JP5024865B2 (en) * 2007-02-26 2012-09-12 独立行政法人 宇宙航空研究開発機構 Semiconductor substrate evaluation method
JP5234038B2 (en) * 2010-03-26 2013-07-10 新日鐵住金株式会社 Metal defect detection method
JP5540849B2 (en) * 2010-04-08 2014-07-02 新日鐵住金株式会社 Metal defect detection method and defect detection apparatus

Also Published As

Publication number Publication date
WO2014171361A1 (en) 2014-10-23
BR112015025556A2 (en) 2017-07-18
BR112015025556B1 (en) 2021-12-14
JP5904304B2 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5904304B2 (en) Metal defect detection method
JP2013221861A (en) Inspection method of wetted state of solder, automatic appearance inspection device and substrate inspection system using the same
KR101879052B1 (en) Metal mask material and metal mask
JP2008051619A (en) Visual inspection device of ceramic sphere
JP4760029B2 (en) Defect inspection method and defect inspection apparatus
JP2015105930A (en) Minute defect inspection method for translucent substrate and minute defect inspection device for translucent substrate
KR20180083326A (en) Method of judging defective area
JP5540849B2 (en) Metal defect detection method and defect detection apparatus
KR20160087197A (en) Defect detecting apparatus and method for thereof
JP5234038B2 (en) Metal defect detection method
KR101159939B1 (en) Method for evaluating centerline segregation in continuous casting slab
JP7040871B2 (en) Board processing equipment and parts inspection method for substrate processing equipment
JP5435904B2 (en) How to detect fatal wounds
JP5803788B2 (en) Metal defect detection method
JP2012146774A (en) Substrate inspection system, program, and computer readable storage medium
JP2014025945A (en) Inspection device of plugged honeycomb structure and inspection method of plugged honeycomb structure
JP2011209113A (en) Inspection system
KR101885614B1 (en) Wafer inspection method and wafer inspection apparatus
JP6373743B2 (en) Surface evaluation method and surface evaluation apparatus
JP2010271045A (en) Visual examination device of ceramics sphere
JPH07306161A (en) Method for detecting segregation of metallic material
JP5765040B2 (en) Wrinkle detection method and wrinkle detection device
JP2008180601A (en) Substrate end face inspection device
JP2010117282A (en) Method and device of detecting surface defect of slab
JP2006078282A (en) Method for visual inspection solder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160229

R151 Written notification of patent or utility model registration

Ref document number: 5904304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350