JPWO2014157584A1 - Method for producing PEGylated bioactive substance labeled with [18F] F or fluorescent dye, and pharmacokinetic analysis thereof - Google Patents

Method for producing PEGylated bioactive substance labeled with [18F] F or fluorescent dye, and pharmacokinetic analysis thereof Download PDF

Info

Publication number
JPWO2014157584A1
JPWO2014157584A1 JP2015508736A JP2015508736A JPWO2014157584A1 JP WO2014157584 A1 JPWO2014157584 A1 JP WO2014157584A1 JP 2015508736 A JP2015508736 A JP 2015508736A JP 2015508736 A JP2015508736 A JP 2015508736A JP WO2014157584 A1 JPWO2014157584 A1 JP WO2014157584A1
Authority
JP
Japan
Prior art keywords
kda
group
divalent
formula
hydrocarbon group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015508736A
Other languages
Japanese (ja)
Other versions
JP6245707B2 (en
Inventor
周司 赤井
周司 赤井
直人 奥
直人 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Publication of JPWO2014157584A1 publication Critical patent/JPWO2014157584A1/en
Application granted granted Critical
Publication of JP6245707B2 publication Critical patent/JP6245707B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33396Polymers modified by chemical after-treatment with organic compounds containing nitrogen having oxygen in addition to nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0453Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33303Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group
    • C08G65/33317Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/337Polymers modified by chemical after-treatment with organic compounds containing other elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use

Abstract

非侵襲的に高感度・リアルタイムで薬物の時空間的な体内動態の定量化を可能とする新規な技術手段を提供する。次式(I-a)および(I-b):【化19】(式中、Ra1は2価のC1〜C6炭化水素基、Rb1〜Rb10は水素原子等、Rc1は水素原子等を示し、Xは2価のC1〜C12炭化水素基または-Rd1(OCH2CH2)mRd2-(Rd1は2価のC1〜C12炭化水素基等、Rd2は2価のC1〜C6炭化水素基等、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)、Yは生物活性物質を含む1価の基、Zは蛍光色素を含む1価の基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)で表わされる[18F]F標識または蛍光標識PEG化生物活性物質。To provide a new technical means that enables non-invasive, highly sensitive and real-time quantification of spatiotemporal pharmacokinetics of drugs. The following formulas (Ia) and (Ib): embedded image wherein Ra1 is a divalent C1-C6 hydrocarbon group, Rb1-Rb10 is a hydrogen atom, Rc1 is a hydrogen atom, etc. X is divalent C1-C12 hydrocarbon group or -Rd1 (OCH2CH2) mRd2- (Rd1 is a divalent C1-C12 hydrocarbon group, etc., Rd2 is a divalent C1-C6 hydrocarbon group, etc., m is 1 kDa to 40 kDa in terms of molecular weight Y represents a monovalent group containing a biologically active substance, Z represents a monovalent group containing a fluorescent dye, and n represents an integer in the range of 1 kDa to 40 kDa in terms of molecular weight.) [18F] F-labeled or fluorescently-labeled PEGylated bioactive substance represented by

Description

本発明は、PEG化生物活性物質の体内動態の解析等のために、生物活性物質をPEG化する技術と[18F]Fや蛍光色素によって標識する技術に関する。The present invention relates to a technique for PEGylating a bioactive substance and a technique for labeling with [ 18 F] F or a fluorescent dye for the analysis of the in vivo kinetics of the PEGylated bioactive substance.

タンパク質性医薬品に長鎖ポリエチレングリコール(PEG, 分子量5,000〜40,000程度)を結合すると薬効の持続、副作用の軽減などが期待できるため、PEG化は創薬研究で活発に利用されている。すでに、PEG化インターフェロンα(C型肝炎治療薬)やPEG化エリスロポエチン(腎性貧血治療薬)などが市販され、また、低分子の医薬品候補化合物のPEG化研究も盛んに行われている。   PEGylation is actively used in drug discovery research because long-chain polyethylene glycol (PEG, molecular weight of about 5,000 to 40,000) can be expected to maintain its efficacy and reduce side effects when bound to protein drugs. Already, PEGylated interferon α (a therapeutic agent for hepatitis C), PEGylated erythropoietin (a therapeutic agent for renal anemia), and the like are already on the market, and PEGylation of low-molecular drug candidate compounds has been actively conducted.

一方、2008年に厚労省から「マイクロドーズ臨床試験」の実施ガイダンスが発表された。これは、医薬品開発の効率化と安全性向上を目指すために、臨床開発の初期段階で、ヒトにおいて薬理作用を発現すると推定される投与量の1/100を超えない用量または100μgのいずれか少ない用量の被験物質を、健康な被験者に単回投与することにより、その薬物動態に関する情報を得る試験である。そのために、非侵襲的に高感度・リアルタイムで薬物の時空間的な体内動態を定量化する技術が必要となる。   Meanwhile, in 2008, the Ministry of Health, Labor and Welfare announced implementation guidance for the “Microdose Clinical Trial”. In order to improve the efficiency and safety of drug development, this is the dose that does not exceed 1 / 100th of the dose estimated to develop pharmacological effects in humans at the initial stage of clinical development, or 100 μg, whichever is less This is a test in which a dose of a test substance is administered to a healthy subject to obtain information on its pharmacokinetics. Therefore, a technique for quantifying the spatiotemporal pharmacokinetics of drugs in a non-invasive manner with high sensitivity and real time is required.

このような時代の要請に応えるべく、本発明者らは数年前より[18F]Fで標識した新規なPEG化合物を創製し、体内動態解析への応用研究を行ってきた。すなわち、[18F]Fで標識した新規なPEG含有低分子化合物(分子量360)を創製した。これによってリポソームをラベル化し、ラットにおける体内動態をポジトロン断層法(PET)によって可視化/定量化する新技術を開発した(特許文献1、非特許文献1)。In order to meet the demands of such an era, the present inventors have created a novel PEG compound labeled with [ 18 F] F for several years and have been conducting application studies for pharmacokinetic analysis. That is, a novel PEG-containing low molecular weight compound (molecular weight 360) labeled with [ 18 F] F was created. As a result, a new technology for labeling liposomes and visualizing / quantifying pharmacokinetics in rats by positron tomography (PET) was developed (Patent Document 1, Non-Patent Document 1).

また[18F]Fで標識した長鎖PEG(分子量2,000と10,000)を合成した。この長鎖PEGを用い、ラットにおけるPEG自身の体内動態を、PETを用いて可視化/定量化することに成功した(非特許文献2)。In addition, long chain PEG (molecular weight 2,000 and 10,000) labeled with [ 18 F] F was synthesized. Using this long-chain PEG, the pharmacokinetics of PEG itself in rats was successfully visualized / quantified using PET (Non-patent Document 2).

特許第4989241号(平成24年5月11日登録)Patent No.4989241 (registered on May 11, 2012)

J. Med. Chem. 2007, 50, 6454-6457.J. Med. Chem. 2007, 50, 6454-6457. Mol. Pharmaceutics 2011, 8, 302-308.Mol. Pharmaceutics 2011, 8, 302-308.

上記の技術では[18F]FをPEGに導入する工程を80〜120℃で行ってきたが、この加熱条件をPEG化ペプチドに適用するとペプチドが変成してしまう。更に、[18F]Fの半減期が110分であるために、[18F]F標識化は迅速に行う必要がある。In the above technique, the step of introducing [ 18 F] F into PEG has been performed at 80 to 120 ° C., but when this heating condition is applied to a PEGylated peptide, the peptide is denatured. Furthermore, since [ 18 F] F has a half-life of 110 minutes, [ 18 F] F labeling needs to be performed quickly.

本発明は、以上の通りの事情に鑑みてなされたものであり、非侵襲的に高感度・リアルタイムでPEG化生物活性物質の時空間的な体内動態の可視化/定量化を可能とする新規な技術手段を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and is a novel technique that enables visualization / quantification of spatiotemporal pharmacokinetics of a PEGylated bioactive substance in a noninvasive manner with high sensitivity and in real time. The challenge is to provide technical means.

上記の課題を解決するために、本発明は以下のことを特徴としている。   In order to solve the above problems, the present invention is characterized by the following.

本発明の[18F]Fで標識されたPEG化生物活性物質は、次式(I-a):The [ 18 F] F-labeled PEGylated bioactive substance of the present invention has the following formula (Ia):

(式中、Ra1は2価のC1〜C6炭化水素基、Rb1〜Rb10はそれぞれ独立に水素原子またはフッ素原子、Rc1は水素原子またはフッ素原子を示し、Xは2価のC1〜C12炭化水素基または-Rd1(OCH2CH2)mRd2-(Rd1はアミド基または(OCH2CH2)mの酸素原子と共に構成されてもよいカルバミン酸エステル基を有していてもよい2価のC1〜C12炭化水素基、Rd2はアミド基を有していてもよい2価のC1〜C6炭化水素基、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)、Yは生物活性物質を含む1価の基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。Ra1は-N3-の3つの窒素原子のうち両端のいずれか一方の窒素原子に結合している。)で表わされる。(In the formula, R a1 represents a divalent C 1 to C 6 hydrocarbon group, R b1 to R b10 each independently represents a hydrogen atom or a fluorine atom, R c1 represents a hydrogen atom or a fluorine atom, and X represents a divalent C 1 to C 12 hydrocarbon group or —R d1 (OCH 2 CH 2 ) m R d2 — (R d1 represents an amide group or a carbamic acid ester group which may be formed with an oxygen atom of (OCH 2 CH 2 ) m. Divalent C 1 to C 12 hydrocarbon group that may have, R d2 may be a divalent C 1 to C 6 hydrocarbon group that may have an amide group, m is 1 kDa to 40 kDa in terms of molecular weight Y represents a monovalent group containing a biologically active substance, n represents an integer in the range of 1 kDa to 40 kDa in terms of molecular weight, and R a1 represents three nitrogen atoms of —N 3 —. Are bonded to any one of the nitrogen atoms at both ends.

本発明の[18F]Fで標識されたPEG化生物活性物質の製造方法は、前記式(I-a)で表わされるPEG化生物活性物質を製造する方法であって、次式(II-a):The method for producing a PEGylated bioactive substance labeled with [ 18 F] F of the present invention is a process for producing a PEGylated bioactive substance represented by the above formula (Ia), which is represented by the following formula (II-a): :

(式中、Ra1は2価のC1〜C6炭化水素基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)で表わされる[18F]フルオロPEG化合物と、次式(III):(Wherein, R a1 is a divalent C 1 -C 6 hydrocarbon radical, n is an integer in the range of 1kDa~40kDa molecular weight basis.) And represented by [18 F] fluoro-PEG compound, the following formula (III):

(式中、Rb1〜Rb10はそれぞれ独立に水素原子またはフッ素原子、Rc1は水素原子またはフッ素原子を示し、Xは2価のC1〜C12炭化水素基または-Rd1(OCH2CH2)mRd2-(Rd1はアミド基または(OCH2CH2)mの酸素原子と共に構成されてもよいカルバミン酸エステル基を有していてもよいC1〜C12炭化水素基、Rd2はアミド基を有していてもよい2価のC1〜C6炭化水素基、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)、Yは生物活性物質を含む1価の基を示す。)で表わされる環状アセチレン化合物とを、生理的条件下(水溶液中、室温、かつ銅触媒の不存在下)に結合(Huisgen反応)させ、前記式(I-a)で表わされるPEG化生物活性物質を合成することを特徴とする。(Wherein R b1 to R b10 each independently represents a hydrogen atom or a fluorine atom, R c1 represents a hydrogen atom or a fluorine atom, X represents a divalent C 1 to C 12 hydrocarbon group or —R d1 (OCH 2 CH 2 ) m R d2 — (R d1 represents an amide group or a C 1 to C 12 hydrocarbon group optionally having a carbamic acid ester group which may be formed together with an oxygen atom of (OCH 2 CH 2 ) m ; R d2 is a divalent C 1 to C 6 hydrocarbon group which may have an amide group, m represents an integer in the range of 1 kDa to 40 kDa in terms of molecular weight, and Y includes a biologically active substance. And a cyclic acetylene compound represented by the formula (Ia) under physiological conditions (in an aqueous solution, at room temperature and in the absence of a copper catalyst) (Huisgen reaction). It is characterized by synthesizing a PEGylated bioactive substance.

本発明の蛍光標識されたPEG化生物活性物質は、次式(I-b):   The fluorescently labeled PEGylated bioactive substance of the present invention has the following formula (I-b):

(式中、Ra1は2価のC1〜C6炭化水素基、Rb1〜Rb10はそれぞれ独立に水素原子またはフッ素原子、Rc1は水素原子またはフッ素原子を示し、Xは2価のC1〜C12炭化水素基または-Rd1(OCH2CH2)mRd2-(Rd1はアミド基または(OCH2CH2)mの酸素原子と共に構成されてもよいカルバミン酸エステル基を有していてもよい2価のC1〜C12炭化水素基、Rd2はアミド基を有していてもよい2価のC1〜C6炭化水素基、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)、Yは生物活性物質を含む1価の基、Zは蛍光色素を含む1価の基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。Ra1は-N3-の3つの窒素原子のうち両端のいずれか一方の窒素原子に結合している。)で表わされる。(In the formula, R a1 represents a divalent C 1 to C 6 hydrocarbon group, R b1 to R b10 each independently represents a hydrogen atom or a fluorine atom, R c1 represents a hydrogen atom or a fluorine atom, and X represents a divalent C 1 to C 12 hydrocarbon group or —R d1 (OCH 2 CH 2 ) m R d2 — (R d1 represents an amide group or a carbamic acid ester group which may be formed with an oxygen atom of (OCH 2 CH 2 ) m. Divalent C 1 to C 12 hydrocarbon group that may have, R d2 may be a divalent C 1 to C 6 hydrocarbon group that may have an amide group, m is 1 kDa to 40 kDa in terms of molecular weight Y represents a monovalent group containing a biologically active substance, Z represents a monovalent group containing a fluorescent dye, and n represents an integer in the range of 1 kDa to 40 kDa in terms of molecular weight. a1 is represented by any one of the three nitrogen atoms of —N 3 — bonded to one of both ends.

本発明の蛍光標識されたPEG化生物活性物質の製造方法は、前記式(I-b)のPEG化生物活性物質を製造する方法であって、次式(II-b):   The method for producing a fluorescently labeled PEGylated bioactive substance of the present invention is a process for producing a PEGylated bioactive substance of the above formula (I-b), which has the following formula (II-b):

(式中、Zは蛍光色素を含む1価の基、Ra1は2価のC1〜C6炭化水素基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)で表わされる蛍光色素含有PEG化合物と、次式(III):(In the formula, Z represents a monovalent group containing a fluorescent dye, R a1 represents a divalent C 1 to C 6 hydrocarbon group, and n represents an integer in the range of 1 kDa to 40 kDa in terms of molecular weight.) Fluorescent dye-containing PEG compound and the following formula (III):

(式中、Rb1〜Rb10はそれぞれ独立に水素原子またはフッ素原子、Rc1は水素原子またはフッ素原子を示し、Xは2価のC1〜C12炭化水素基または-Rd1(OCH2CH2)mRd2-(Rd1はアミド基または(OCH2CH2)mの酸素原子と共に構成されてもよいカルバミン酸エステル基を有していてもよい2価のC1〜C12炭化水素基、Rd2はアミド基を有していてもよい2価のC1〜C6炭化水素基、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)、Yは生物活性物質を含む1価の基を示す。)で表わされる環状アセチレン化合物とを、生理的条件下(水溶液中、室温、かつ銅触媒の不存在下)に結合(Huisgen反応)させ、前記式(I-b)で表わされるPEG化生物活性物質を合成することを特徴とする。(Wherein R b1 to R b10 each independently represents a hydrogen atom or a fluorine atom, R c1 represents a hydrogen atom or a fluorine atom, X represents a divalent C 1 to C 12 hydrocarbon group or —R d1 (OCH 2 CH 2 ) m R d2 — (R d1 is a divalent C 1 to C 12 carbon atom which may have an amide group or a carbamate group which may be formed with an oxygen atom of (OCH 2 CH 2 ) m. Hydrogen group, R d2 is a divalent C 1 -C 6 hydrocarbon group optionally having an amide group, m is an integer in the range of 1 kDa to 40 kDa in terms of molecular weight), Y is a biologically active substance And a cyclic acetylene compound represented by the formula (Ib), wherein the cyclic acetylene compound represented by formula (Ib) is bound to a physiological condition (in an aqueous solution, at room temperature and in the absence of a copper catalyst). It is characterized by synthesizing a PEGylated bioactive substance represented by:

本発明のデオキシフルオロPEG化合物は、次式(II-a’):   The deoxyfluoroPEG compound of the present invention has the following formula (II-a ′):

(式中、Ra1は2価のC1〜C6炭化水素基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)で表される。このデオキシフルオロPEG化合物において、式(II-a’)のFは、例えば18Fである。(In the formula, R a1 is a divalent C 1 to C 6 hydrocarbon group, and n is an integer in the range of 1 kDa to 40 kDa in terms of molecular weight.) In this deoxyfluoroPEG compound, F in the formula (II-a ′) is, for example, 18 F.

本発明の蛍光色素含有PEG化合物は、次式(II-b):   The fluorescent dye-containing PEG compound of the present invention has the following formula (II-b):

(式中、Zは蛍光色素を含む1価の基、Ra1は2価のC1〜C6炭化水素基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)で表される。(In the formula, Z represents a monovalent group containing a fluorescent dye, R a1 represents a divalent C 1 to C 6 hydrocarbon group, and n represents an integer in the range of 1 kDa to 40 kDa in terms of molecular weight.) The

本発明のスルホニル化PEG化合物は、次式(II-c):   The sulfonylated PEG compound of the present invention has the following formula (II-c):

(式中、Rh1はハロゲン原子で置換されていてもよい1価のC1〜C12炭化水素基、またはヘテロ原子もしくはハロゲン原子を含んでいてもよいC1〜C4有機基で置換されていてもよいフェニル基、Ra1は2価のC1〜C6炭化水素基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)で表される。(In the formula, R h1 is substituted with a monovalent C 1 to C 12 hydrocarbon group which may be substituted with a halogen atom, or a C 1 to C 4 organic group which may contain a hetero atom or a halogen atom. An optionally substituted phenyl group, R a1 is a divalent C 1 -C 6 hydrocarbon group, and n is an integer in the range of 1 kDa to 40 kDa in terms of molecular weight.

本発明のスルホニル化PEG化合物の製造方法は、前記式(II-c)で表わされるスルホニル化PEG化合物の製造方法であって、次式(II-c-1):   The method for producing a sulfonylated PEG compound of the present invention is a method for producing a sulfonylated PEG compound represented by the above formula (II-c), which is represented by the following formula (II-c-1):

(式中、Ra1は2価のC1〜C6炭化水素基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)で表わされる化合物と、ジアゾ転送試薬のスルホニルアジド化合物とを溶媒中で反応させて次式(II-c-2):(Wherein R a1 is a divalent C 1 -C 6 hydrocarbon group, n is an integer in the range of 1 kDa to 40 kDa in terms of molecular weight), a diazo transfer reagent sulfonyl azide compound, Is reacted in a solvent to give the following formula (II-c-2):

(式中、Ra1およびnは前記と同義である。)を合成し、次いで得られた式(II-c-2)で表わされる化合物と、スルホニル化試薬とを溶媒中で反応させて前記式(II-c)で表わされるスルホニル化PEG化合物を合成することを特徴とする。(Wherein R a1 and n have the same meanings as described above), and then the obtained compound represented by the formula (II-c-2) is reacted with a sulfonylating reagent in a solvent. A sulfonylated PEG compound represented by the formula (II-c) is synthesized.

本発明のデオキシフルオロPEG化合物の製造方法は、前記式(II-a’)で表わされるデオキシフルオロPEG化合物の製造方法であって、次式(II-c):   The method for producing a deoxyfluoroPEG compound of the present invention is a method for producing a deoxyfluoroPEG compound represented by the above formula (II-a ′), which is represented by the following formula (II-c):

(式中、Rh1はハロゲン原子で置換されていてもよい1価のC1〜C12炭化水素基、またはヘテロ原子もしくはハロゲン原子を含んでいてもよいC1〜C4有機基で置換されていてもよいフェニル基、Ra1は2価のC1〜C6炭化水素基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)で表されるスルホニル化PEG化合物と、[18F]標識フッ素化試薬とを溶媒中で反応させて、[18F]で標識された前記式(II-a’)で表わされるデオキシフルオロPEG化合物を合成することを特徴とする。(In the formula, R h1 is substituted with a monovalent C 1 to C 12 hydrocarbon group which may be substituted with a halogen atom, or a C 1 to C 4 organic group which may contain a hetero atom or a halogen atom. An optionally substituted phenyl group, R a1 is a divalent C 1 -C 6 hydrocarbon group, n is an integer in the range of 1 kDa to 40 kDa in terms of molecular weight, and A deoxyfluoroPEG compound represented by the above formula (II-a ′) labeled with [ 18 F] is synthesized by reacting with an 18 F] labeled fluorinating reagent in a solvent.

本発明の蛍光色素含有PEG化合物の製造方法は、前記式(II-b)で表される蛍光色素含有PEG化合物の製造方法であって、次式(II-b-1):   The method for producing a fluorescent dye-containing PEG compound of the present invention is a method for producing a fluorescent dye-containing PEG compound represented by the formula (II-b), wherein the following formula (II-b-1):

(式中、Ra1は2価のC1〜C6炭化水素基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)で表される化合物と、この式(II-b-1)で表される化合物のアミノ基と反応する官能基を有する蛍光色素とを反応させて、前記式(II-b)で表される蛍光色素含有PEG化合物を合成することを特徴とする。(Wherein R a1 is a divalent C 1 -C 6 hydrocarbon group, n is an integer in the range of 1 kDa to 40 kDa in terms of molecular weight) and this formula (II-b- A fluorescent dye-containing PEG compound represented by the formula (II-b) is synthesized by reacting a fluorescent dye having a functional group that reacts with the amino group of the compound represented by 1).

本発明の環状アセチレン化合物は、次式(III):   The cyclic acetylene compound of the present invention has the following formula (III):

(式中、Rb1〜Rb10はそれぞれ独立に水素原子またはフッ素原子、Rc1は水素原子またはフッ素原子を示し、Xは2価のC1〜C12炭化水素基または-Rd1(OCH2CH2)mRd2-(Rd1はアミド基または(OCH2CH2)mの酸素原子と共に構成されてもよいカルバミン酸エステル基を有していてもよい2価のC1〜C12炭化水素基、Rd2はアミド基を有していてもよい2価のC1〜C6炭化水素基、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)、Yは生物活性物質を含む1価の基を示す。)で表わされる。(Wherein R b1 to R b10 each independently represents a hydrogen atom or a fluorine atom, R c1 represents a hydrogen atom or a fluorine atom, X represents a divalent C 1 to C 12 hydrocarbon group or —R d1 (OCH 2 CH 2 ) m R d2 — (R d1 is a divalent C 1 to C 12 carbon atom which may have an amide group or a carbamate group which may be formed with an oxygen atom of (OCH 2 CH 2 ) m. Hydrogen group, R d2 is a divalent C 1 -C 6 hydrocarbon group optionally having an amide group, m is an integer in the range of 1 kDa to 40 kDa in terms of molecular weight), Y is a biologically active substance Represents a monovalent group including).

本発明の環状アセチレン化合物は、次式(III-1):   The cyclic acetylene compound of the present invention has the following formula (III-1):

(式中、Rb1〜Rb10はそれぞれ独立に水素原子またはフッ素原子、Rc1、Rc2はそれぞれ独立に水素原子またはフッ素原子を示し、Xは2価のC1〜C12炭化水素基または-Rd1(OCH2CH2)mRd2-(Rd1はアミド基または(OCH2CH2)mの酸素原子と共に構成されてもよいカルバミン酸エステル基を有していてもよい2価のC1〜C12炭化水素基、Rd2はアミド基を有していてもよい2価のC1〜C6炭化水素基、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)を示す。)で表わされる。(Wherein R b1 to R b10 each independently represent a hydrogen atom or a fluorine atom, R c1 and R c2 each independently represent a hydrogen atom or a fluorine atom, and X represents a divalent C 1 to C 12 hydrocarbon group or -R d1 (OCH 2 CH 2 ) m R d2- (R d1 may have an amide group or a carbamate group which may be formed with an oxygen atom of (OCH 2 CH 2 ) m . C 1 -C 12 hydrocarbon group, R d2 is a divalent C 1 -C 6 hydrocarbon group optionally having an amide group, and m is an integer in the range of 1 kDa to 40 kDa in terms of molecular weight.) ).

本発明の環状アセチレン化合物の製造方法は、前記式(III-1)で表わされる環状アセチレン化合物の製造方法であって、次式(III-1-1):   The method for producing a cyclic acetylene compound of the present invention is a method for producing a cyclic acetylene compound represented by the above formula (III-1), which is represented by the following formula (III-1-1):

(式中、Rb1〜Rb10はそれぞれ独立に水素原子またはフッ素原子、Re1は2価のC1〜C5炭化水素基を示す。)で表わされる環状アセチレン化合物と、次式(III-1-2):(Wherein R b1 to R b10 each independently represents a hydrogen atom or a fluorine atom, R e1 represents a divalent C 1 to C 5 hydrocarbon group), and a cyclic acetylene compound represented by the following formula (III- 1-2):

(式中、Rc1、Rc2はそれぞれ独立に水素原子またはフッ素原子、Rc3はC1〜C8炭化水素基または-Rd3(OCH2CH2)mRd4-(Rd3は2価のC1〜C8炭化水素基またはOCH2CH2、Rd4はアミド基を有していてもよい2価のC1〜C6炭化水素基、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)、ORc4は前記(III-1)で表される蛍光色素含有PEG化合物のアミノ基との反応により脱離する脱離基を示す。)で表わされるマレイミド化合物とを反応させて、前記式(III-1)で表される蛍光色素含有PEG化合物を合成することを特徴とする。(In the formula, R c1 and R c2 are each independently a hydrogen atom or a fluorine atom, R c3 is a C 1 to C 8 hydrocarbon group or —R d3 (OCH 2 CH 2 ) m R d4 — (R d3 is divalent) C 1 to C 8 hydrocarbon group or OCH 2 CH 2 , R d4 may have an amide group, m is a divalent C 1 to C 6 hydrocarbon group, m is in the range of 1 kDa to 40 kDa in terms of molecular weight OR c4 represents a leaving group that is eliminated by the reaction with the amino group of the fluorescent dye-containing PEG compound represented by (III-1) above.) The fluorescent dye-containing PEG compound represented by the formula (III-1) is synthesized.

本発明の環状アセチレン化合物の製造方法は、前記式(III)で表わされる環状アセチレン化合物の製造方法であって、次式(III-1):   The method for producing a cyclic acetylene compound of the present invention is a method for producing a cyclic acetylene compound represented by the above formula (III), which is represented by the following formula (III-1):

(式中、Rb1〜Rb10はそれぞれ独立に水素原子またはフッ素原子、Rc1、Rc2はそれぞれ独立に水素原子またはフッ素原子を示し、Xは2価のC1〜C12炭化水素基または-Rd1(OCH2CH2)mRd2-(Rd1はアミド基または(OCH2CH2)mの酸素原子と共に構成されてもよいカルバミン酸エステル基を有していてもよい2価のC1〜C12炭化水素基、Rd2はアミド基を有していてもよい2価のC1〜C6炭化水素基、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)を示す。)で表わされる環状アセチレン化合物と、この式(III-1)で表される環状アセチレン化合物のマレイミド基と反応する官能基を有する生物活性物質とを反応させて、前記式(III)で表される環状アセチレン化合物を合成することを特徴とする。(Wherein R b1 to R b10 each independently represent a hydrogen atom or a fluorine atom, R c1 and R c2 each independently represent a hydrogen atom or a fluorine atom, and X represents a divalent C 1 to C 12 hydrocarbon group or -R d1 (OCH 2 CH 2 ) m R d2- (R d1 may have an amide group or a carbamate group which may be formed with an oxygen atom of (OCH 2 CH 2 ) m . C 1 -C 12 hydrocarbon group, R d2 is a divalent C 1 -C 6 hydrocarbon group optionally having an amide group, and m is an integer in the range of 1 kDa to 40 kDa in terms of molecular weight.) And a biologically active substance having a functional group that reacts with the maleimide group of the cyclic acetylene compound represented by the formula (III-1) to react with the above-described formula (III). A cyclic acetylene compound represented by the formula is synthesized.

本発明によれば、前記の[18F]Fで標識されたPEG化生物活性物質の体内動態をポジトロン断層法(PET)によってリアルタイムに非侵襲的かつ定量的に解析する方法が提供される。According to the present invention, there is provided a method for non-invasively and quantitatively analyzing the pharmacokinetics of the PEGylated bioactive substance labeled with [ 18 F] F in real time by positron tomography (PET).

本発明によれば、前記の蛍光標識されたPEG化生物活性物質の体内動態を蛍光検出法によってリアルタイムに非侵襲的かつ定量的に解析する方法が提供される。   According to the present invention, there is provided a method for non-invasively and quantitatively analyzing the pharmacokinetics of the fluorescently labeled PEGylated bioactive substance in real time by a fluorescence detection method.

分子量数千以上の長鎖PEGの[18F]F標識化は本発明者らの報告(非特許文献2)以外に例は無い。タンパク質は熱や化学薬品などで容易に変成するため、分子量数千以上の長鎖PEGが結合したタンパク質の[18F]F標識化は更に困難で、前例は全く無い。従って、本発明の新規性は明瞭である。[ 18 F] F labeling of long-chain PEG having a molecular weight of several thousand or more has no examples other than the report of the present inventors (Non-patent Document 2). Since proteins are easily denatured by heat, chemicals, etc., [ 18 F] F labeling of proteins with a long chain PEG having a molecular weight of several thousand or more is more difficult, and there is no precedent. Therefore, the novelty of the present invention is clear.

医薬品候補としてのPEG化タンパク質やPEG化抗体の開発は世界的に活発に研究されているが、その体内動態を生体で解析した例は全く無い。タンパク質を結合した長鎖PEGと、[18F]F標識化長鎖PEGの合成条件が全く異なるために、本発明によれば、予め各ユニットを別々に合成し、その後に生理的条件下のHuisgen反応で両者を結合することによって、初めて分子量数千以上の長鎖PEGが結合したタンパク質の[18F]F標識化が可能になる。本発明によれば、種々の[18F]F-PEG化化合物の体内動態がPETによってリアルタイムに可視化/定量化できる。The development of PEGylated proteins and PEGylated antibodies as drug candidates has been actively studied worldwide, but there are no examples of analyzing their pharmacokinetics in vivo. Since the synthesis conditions of the long-chain PEG to which the protein is bound and [ 18 F] F-labeled long-chain PEG are completely different, according to the present invention, each unit is synthesized separately in advance and then subjected to physiological conditions. By combining the two in the Huisgen reaction, it becomes possible for the first time to label [ 18 F] F of a protein with a long-chain PEG with a molecular weight of several thousand or more. According to the present invention, the pharmacokinetics of various [ 18 F] F-PEGylated compounds can be visualized / quantified in real time by PET.

リンカーXにPEG(分子量2kDa〜40kDa)を用いて式(I-a)や式(I-b)のPEG化生物活性物質を合成すれば、式(II-a)や式(II-b)由来のPEGと併せた分子量4kDa〜80kDaの長鎖PEG鎖の中程にHuisgen反応連結部分が収まる。このために、連結部分が分子全体に及ぼす影響を軽減することができる。それによって、実際のPEG化生物活性物質の体内動態と殆ど変わらない結果を得ることができると考えられる。   If the PEGylated bioactive substance of formula (Ia) or formula (Ib) is synthesized using PEG (molecular weight 2 kDa to 40 kDa) as linker X, PEG derived from formula (II-a) or formula (II-b) The Huisgen reaction ligation moiety fits in the middle of the combined long PEG chain with a molecular weight of 4 kDa to 80 kDa. For this reason, the influence which a connection part has on the whole molecule | numerator can be reduced. As a result, it is considered that a result almost the same as the pharmacokinetics of the actual PEGylated bioactive substance can be obtained.

蛍光色素を結合した式(I-b)の化合物の利用は、PETよりも簡便に可視化、定量化できる利点がある。   The use of the compound of formula (I-b) combined with a fluorescent dye has an advantage that it can be visualized and quantified more easily than PET.

本発明者らの方法では式(II-c)から式(II-a)への反応は20分以内で完了する。式(II-a)と式(III)の連結も20分程度以内に終了できれば、半減期110分の[18F]Fでも、式(I-a)の放射活性が十分量確保できる。また、リンカー部はPEG部に比べて格段に小さいため、分子全体に及ぼす影響は殆どないことがFeringa, B. et al., Angew.Chem.2011 などに記されている。In our method, the reaction from formula (II-c) to formula (II-a) is completed within 20 minutes. If the connection between formula (II-a) and formula (III) can be completed within about 20 minutes, a sufficient amount of radioactivity of formula (Ia) can be secured even with [ 18 F] F having a half-life of 110 minutes. In addition, it is described in Feringa, B. et al., Angew. Chem. 2011 and the like that the linker part is much smaller than the PEG part, and thus has little influence on the whole molecule.

PETは極めて高感度であるため、ごく微量のPEG化医薬品候補化合物を使って、ヒトで安全に動態の情報が得られる。本発明は、マイクロドーズ臨床試験を推進する極めて有力な手法を提供できる。これは、創薬研究に画期的な手法を提供し、その波及効果は非常に大きい。本発明は、世界中の製薬企業や創薬研究者が使う基本的なツールとなり得る。   Since PET is extremely sensitive, it is possible to safely obtain kinetic information in humans using a very small amount of a PEGylated drug candidate compound. The present invention can provide a very powerful technique for promoting microdose clinical trials. This provides a revolutionary method for drug discovery research, and its ripple effect is very large. The present invention can be a basic tool used by pharmaceutical companies and drug discovery researchers around the world.

疾患に特異的なバイオマーカー(抗体、ペプチド、核酸、低分子化合物など)を長鎖[18F]F-PEGに結合してPETプローブ化すれば、各種疾患の診断に利用される。[18F]F-FDG (fluorodeoxyglucose)を用いるPETによる癌診断が普及しているように、非侵襲的な全身スキャン・可視化に有効なPETのインフラ整備は進んでいる。[18F]F-PEGを活用する診断薬の充実は、近い将来、早期医療を支える1つの柱になるであろう。When biomarkers specific to diseases (antibodies, peptides, nucleic acids, low molecular weight compounds, etc.) are bound to long-chain [ 18 F] F-PEG to form PET probes, they can be used for diagnosis of various diseases. As cancer diagnosis by PET using [ 18 F] F-FDG (fluorodeoxyglucose) is widespread, infrastructure development of PET effective for noninvasive whole body scanning and visualization is progressing. Enhancement of diagnostic agents using [ 18 F] F-PEG will be a pillar supporting early medical care in the near future.

PEG化タンパク質やPEG化抗体は生化学研究の試薬としても汎用されているので、[18F]F-PEGや蛍光色素を結合したPEGを活用すれば、その用途は更に広がる。Since PEGylated proteins and PEGylated antibodies are also widely used as reagents for biochemical research, the use of [ 18 F] F-PEG and PEG combined with fluorescent dyes can be further expanded.

実施例3において化合物64とAlexa Fluor 750 Carboxylic Acid Succinimidyl Esterとの反応混合物をHPLCで分析した結果を示すチャートである。6 is a chart showing the results of HPLC analysis of the reaction mixture of Compound 64 and Alexa Fluor 750 Carboxylic Acid Succinimidyl Ester in Example 3. 実施例4において化合物64とAlexa Fluor 647 Carboxylic Acid Succinimidyl Esterとの反応混合物(粗生成物)をHPLCで分析した結果を示すチャートである。6 is a chart showing the results of analyzing the reaction mixture (crude product) of Compound 64 and Alexa Fluor 647 Carboxylic Acid Succinimidyl Ester in Example 4 by HPLC. 実施例4において化合物64とAlexa Fluor 647 Carboxylic Acid Succinimidyl Esterとの反応混合物(粗生成物)をHPLCで分析した結果を示すチャートである。6 is a chart showing the results of analyzing the reaction mixture (crude product) of Compound 64 and Alexa Fluor 647 Carboxylic Acid Succinimidyl Ester in Example 4 by HPLC. 実施例9において化合物83と化合物56の反応混合物をHPLCで分析した結果を示すチャートである。6 is a chart showing the results of HPLC analysis of the reaction mixture of Compound 83 and Compound 56 in Example 9. 実施例11において化合物83と化合物56aの反応混合物をHPLCで分析した結果を示すチャートである。6 is a chart showing the results of HPLC analysis of the reaction mixture of Compound 83 and Compound 56a in Example 11. 実施例11において化合物83と化合物56aの反応混合物をHPLCで分析した結果を示すチャートである。6 is a chart showing the results of HPLC analysis of the reaction mixture of Compound 83 and Compound 56a in Example 11. 実施例12において化合物84と化合物56の反応混合物をHPLCで分析した結果を示すチャートである。6 is a chart showing the results of HPLC analysis of the reaction mixture of compound 84 and compound 56 in Example 12. 実施例13において化合物84をHPLCで分析した結果を示すチャートである。4 is a chart showing the results of analyzing Compound 84 in Example 13 by HPLC. 実施例13において化合物84と化合物56aの反応混合物をHPLCで分析した結果を示すチャートである。4 is a chart showing the results of HPLC analysis of the reaction mixture of compound 84 and compound 56a in Example 13. 実施例13において化合物84と化合物56aの反応混合物をHPLCで分析した結果を示すチャートである。4 is a chart showing the results of HPLC analysis of the reaction mixture of compound 84 and compound 56a in Example 13. 実施例14において、A549ヒト肺がん細胞移植マウスに対照化合物(86a)を尾静脈に投与後、その体内動態をAlexa647の蛍光によってin vivoイメージングした結果を示す。In Example 14, the results of in vivo imaging of the pharmacokinetics of Alexa647 fluorescence after administration of the control compound (86a) to the tail vein of A549 human lung cancer cell transplanted mice are shown. 実施例14において、A549ヒト肺がん細胞移植マウスにRGDfC-PEG(85a)を尾静脈に投与後、その体内動態をAlexa647の蛍光によってin vivoイメージングした結果を示す。In Example 14, RGDfC-PEG (85a) is administered to the A549 human lung cancer cell-transplanted mouse into the tail vein, and the pharmacokinetics thereof are shown in vivo imaging using Alexa647 fluorescence. 実施例14において、投与3時間後にマウスを解剖し、血液、各臓器、および腫瘍への対照化合物(86a)とRGDfC-PEG(85a)の分布をIVISにてex vivoイメージングした結果を示す。In Example 14, the mouse was dissected 3 hours after administration, and the results of ex vivo imaging with IVIS of the distribution of the control compound (86a) and RGDfC-PEG (85a) in blood, each organ, and tumor are shown. 実施例15において化合物83と化合物52の反応混合物をHPLCで分析した結果を示すチャートである。6 is a chart showing the results of HPLC analysis of the reaction mixture of Compound 83 and Compound 52 in Example 15. 実施例16において化合物81と化合物52の反応混合物をHPLCで分析した結果を示すチャートである。6 is a chart showing the results of HPLC analysis of the reaction mixture of compound 81 and compound 52 in Example 16. 実施例16において化合物81と化合物52の反応混合物をHPLCで分析した結果を示すチャートである。6 is a chart showing the results of HPLC analysis of the reaction mixture of compound 81 and compound 52 in Example 16.

以下に、本発明について詳細に説明する。
(デオキシフルオロPEG化合物)
本発明のデオキシフルオロPEG化合物は、前記式(II-a’)で表される。このデオキシフルオロPEG化合物は、次のようにして合成することができる。
The present invention is described in detail below.
(DeoxyfluoroPEG compound)
The deoxyfluoroPEG compound of the present invention is represented by the formula (II-a ′). This deoxyfluoroPEG compound can be synthesized as follows.

最初に、出発原料として前記式(II-c-1)で表わされる化合物HO(CH2CH2O)n-Ra1-NH2 を用いて、ジアゾ転送試薬のスルホニルアジド化合物と反応させて前記式(II-c-2)で表わされる化合物HO(CH2CH2O)n-Ra1-N3を合成する。First, the compound HO (CH 2 CH 2 O) n —R a1 —NH 2 represented by the above formula (II-c-1) is used as a starting material, and reacted with a sulfonyl azide compound of a diazo transfer reagent. A compound HO (CH 2 CH 2 O) n —R a1 —N 3 represented by the formula (II-c-2) is synthesized.

出発原料のHO(CH2CH2O)n-Ra1-NH2 は、nが分子量換算で1kDa〜40kDaの範囲内のもので、例えば、分子量に分布はあるがその大部分がこの範囲内である市販のものが使用できる。The starting material HO (CH 2 CH 2 O) n -R a1 -NH 2 is one in which n is in the range of 1 kDa to 40 kDa in terms of molecular weight. A commercially available product can be used.

nは、分子量換算で1kDa〜40kDaの範囲内、好ましくは2kDa〜40kDaの範囲内、より好ましくは2kDa〜30kDaの範囲内である。   n is in the range of 1 kDa to 40 kDa in terms of molecular weight, preferably in the range of 2 kDa to 40 kDa, more preferably in the range of 2 kDa to 30 kDa.

Ra1は、2価のC1〜C6炭化水素基を示す。好ましくは2価のC1〜C6アルキレン基、より好ましくは2価のC2〜C4アルキレン基である。R a1 represents a divalent C 1 -C 6 hydrocarbon group. A divalent C 1 -C 6 alkylene group is preferred, and a divalent C 2 -C 4 alkylene group is more preferred.

スルホニルアジド化合物R-SO2N3は、ジアゾ転送試薬として知られているが、中でも貯蔵安定性が良く、結晶で取り扱い性も良く安全性の高いイミダゾール-1-スルホニルアジド塩酸塩が好ましい。The sulfonyl azide compound R—SO 2 N 3 is known as a diazo transfer reagent. Among them, imidazole-1-sulfonyl azide hydrochloride is preferable because of its good storage stability, crystallinity, and high safety.

イミダゾール-1-スルホニルアジド塩酸塩を用いた第一級アミンのアジドへの変換は、Ethan D. Goddard-Borger, Robert V. Stick, Org. Lett. 2007, 9, 3797-3800.に記載されている。   The conversion of primary amines to azides using imidazole-1-sulfonyl azide hydrochloride is described in Ethan D. Goddard-Borger, Robert V. Stick, Org. Lett. 2007, 9, 3797-3800. Yes.

例えば、HO(CH2CH2O)n-Ra1-NH2 を1当量、K2CO3を2当量、および触媒量のCuSO4・H2Oをメタノールに溶解し、室温でイミダゾール-1-スルホニルアジド塩酸塩1.5当量を加えて24時間撹拌して反応させた後、濃塩酸などで酸性とし、有機溶媒で抽出し、有機層を無水MgSO4で乾燥後、溶媒を減圧留去して目的物を得ることができる。For example, it dissolved HO (CH 2 CH 2 O) n -R a1 -NH 2 with 1 equivalent of K 2 CO 3 2 equivalents, and CuSO 4 · H 2 O catalytic amount in methanol, imidazole -1 at room temperature -1.5 eq. Of sulfonyl azide hydrochloride was added and reacted by stirring for 24 hours, acidified with concentrated hydrochloric acid, etc., extracted with an organic solvent, the organic layer was dried over anhydrous MgSO 4 , and the solvent was distilled off under reduced pressure. The object can be obtained.

次に、この反応によって得られたHO(CH2CH2O)n-Ra1-N3をスルホニル化試薬と溶媒中で反応させて、上記式(II-c)で表わされる化合物Rh1SO2O(CH2CH2O)n-Ra1-N3を合成する。Next, HO (CH 2 CH 2 O) n —R a1 —N 3 obtained by this reaction is reacted with a sulfonylating reagent in a solvent to obtain a compound R h1 SO represented by the above formula (II-c). 2 O (CH 2 CH 2 O) n —R a1 —N 3 is synthesized.

ここでRh1は、フッ素原子等のハロゲン原子で置換されていてもよい1価のC1〜C12炭化水素基、またはヘテロ原子もしくはハロゲン原子を含んでいてもよいC1〜C4有機基(例えば、メチル基等)で置換されていてもよいフェニル基を示す。Here, R h1 is a monovalent C 1 to C 12 hydrocarbon group which may be substituted with a halogen atom such as a fluorine atom, or a C 1 to C 4 organic group which may contain a hetero atom or a halogen atom. (For example, a methyl group etc.) The phenyl group which may be substituted is shown.

この反応は、好ましくは有機塩基の存在下で行われる。有機塩基としては、例えば、Et3N、RNMe2などを用いることができる。ここでRNMe2のRとしては、炭素数1〜6のアルキル基、炭素数7〜12のアリールアルキル基などが挙げられる。中でも、メチル基が好ましい。また、RNMe2触媒は、例えばHCl塩などの適当な塩の形態で用いてもよく、特にMe3Nの場合はHCl塩として用いることが好ましい。This reaction is preferably carried out in the presence of an organic base. As the organic base, for example, Et 3 N, RNMe 2 or the like can be used. Here, examples of R of RNMe 2 include an alkyl group having 1 to 6 carbon atoms and an arylalkyl group having 7 to 12 carbon atoms. Of these, a methyl group is preferable. Further, the RNMe 2 catalyst may be used in the form of an appropriate salt such as an HCl salt, for example, and in the case of Me 3 N, it is preferably used as an HCl salt.

スルホニル化試薬としては、例えば、p-トルエンスルホニルクロライド(TsCl)、メタンスルホニルクロリド(MsCl)、トリフルオロメタンスルホン酸無水物(Tf2O)、ノナフルオロブタンスルホン酸フルオリド(NfF)などを用いることができる。Examples of the sulfonylating reagent include p-toluenesulfonyl chloride (TsCl), methanesulfonyl chloride (MsCl), trifluoromethanesulfonic anhydride (Tf 2 O), nonafluorobutanesulfonic acid fluoride (NfF), and the like. it can.

このスルホニル化反応に用いる溶媒としては、例えば、ジクロロメタン、1,2-ジクロロエタン、トリフルオロトルエン、アセトニトリル、トルエンなどが挙げられる。   Examples of the solvent used for the sulfonylation reaction include dichloromethane, 1,2-dichloroethane, trifluorotoluene, acetonitrile, toluene and the like.

このスルホニル化反応は、例えば、原料のHO(CH2CH2O)n-Ra1-N3に対してスルホニル化試薬を1〜10当量、Et3Nを1〜10当量、RNMe2を0.05〜1当量の範囲で用いて行うことができる。This sulfonylation reaction is, for example, 1 to 10 equivalents of a sulfonylating reagent, 1 to 10 equivalents of Et 3 N, 0.05 to RNMe 2 relative to the raw material HO (CH 2 CH 2 O) n —R a1 —N 3 . It can be carried out using a range of ˜1 equivalent.

このスルホニル化反応は、例えば、反応温度-20〜60℃、反応時間1〜24時間の範囲で行うことができる。   This sulfonylation reaction can be performed, for example, at a reaction temperature of −20 to 60 ° C. and a reaction time of 1 to 24 hours.

反応後の精製は、目的物のPEG化合物はその極性の高さから分液操作や順相カラムクロマトグラフィーによる精製が困難であり、未反応のスルホニル化試薬や副生するEt3N・スルホン酸を除去することが困難である。これに対して、強酸性イオン交換樹脂Amberlite IR-120および強塩基性イオン交換樹脂Amberlite IRA-400を用いると(参考文献:Shuji Akai, Sho Ishida, Kentaro Hatanaka, Takayuki Ishii, Norihiro Harada, Hideo Tsukada, Naoto Oku, Molecular Pharmaceutics, 2011, 8, 302-308.)これらの不純物を効果的に除去することができる。Purification after the reaction is difficult due to the high polarity of the target PEG compound due to its separation operation and normal phase column chromatography, and unreacted sulfonylating reagent and Et 3 N sulfonic acid produced as a by-product Is difficult to remove. On the other hand, when the strong acid ion exchange resin Amberlite IR-120 and the strong basic ion exchange resin Amberlite IRA-400 are used (reference: Shuji Akai, Sho Ishida, Kentaro Hatanaka, Takayuki Ishii, Norihiro Harada, Hideo Tsukada, Naoto Oku, Molecular Pharmaceutics, 2011, 8, 302-308.) These impurities can be effectively removed.

次に、得られたRh1SO2O(CH2CH2O)n-Ra1-N3を、フッ素化試薬と溶媒中で反応させて上記式(II-a’)で表されるデオキシフルオロPEG化合物F(CH2CH2O)n-Ra1-N3を合成する。Next, the obtained R h1 SO 2 O (CH 2 CH 2 O) n —R a1 —N 3 is reacted in a solvent with a fluorinating reagent to represent deoxy represented by the above formula (II-a ′). FluoroPEG compound F (CH 2 CH 2 O) n —R a1 —N 3 is synthesized.

フッ素化試薬としては、例えば、フッ化テトラ-n-ブチルアンモニウム(nBu4NF :TBAF)、KF-Kryptofix- [2.2.2]、CsFなどが挙げられる。Examples of the fluorinating reagent include tetra-n-butylammonium fluoride (nBu 4 NF: TBAF), KF-Kryptofix- [2.2.2], CsF, and the like.

ここで、フッ素化試薬として、[18F]標識フッ素化試薬を用いると、式(II-a’)で表される化合物を18Fで標識することができる。19Fが18Fに変わっても反応性への影響はほとんどない。ただし、[18F]標識フッ素化試薬を用いた反応は、放射線の影響を避けるために自動合成装置で行われる(非特許文献2)。Here, when an [ 18 F] -labeled fluorinating reagent is used as the fluorinating reagent, the compound represented by the formula (II-a ′) can be labeled with 18 F. Changing 19 F to 18 F has little effect on reactivity. However, the reaction using [ 18 F] -labeled fluorinating reagent is performed by an automatic synthesizer to avoid the influence of radiation (Non-patent Document 2).

18Fは半減期が110分と短いため、[18F]F標識化反応は短時間で進行させる必要がある。そのため[18F]標識フッ素化試薬と溶媒の選択が重要になる。 Since 18 F has a short half-life of 110 minutes, the [ 18 F] F labeling reaction must proceed in a short time. Therefore, selection of [ 18 F] -labeled fluorinating reagent and solvent is important.

溶媒としては、例えば、アセトニトリル(MeCN)、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)などが挙げられる。また、t-ブタノール(t-BuOH)はCsFやnBu4NFを用いるフッ素化において反応性や選択性を向上させる溶媒として知られている(Kim, D. W.; Jeong, H. J.; Lim, S. T.; Sohn, M. H.; Katzenellenbogen, J. A.; Chi, D. Y. Facile Nucleophilic Fluorination Reactions Using tert-Alcohols as a Reaction Medium: Significantly Enhanced Reactivity of Alkali Metal Fluorides and Improved Selectivity. J. Org. Chem. 2008, 73, 957-962.)。Examples of the solvent include acetonitrile (MeCN), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and the like. T-Butanol (t-BuOH) is known as a solvent that improves reactivity and selectivity in fluorination using CsF and nBu 4 NF (Kim, DW; Jeong, HJ; Lim, ST; Sohn, MH; Katzenellenbogen, JA; Chi, DY Facile Nucleophilic Fluorination Reactions Using tert-Alcohols as a Reaction Medium: Significantly Enhanced Reactivity of Alkali Metal Fluorides and Improved Selectivity. J. Org. Chem. 2008, 73, 957-962.).

[18F]標識フッ素化試薬と溶媒の組み合わせとしては、例えば、[18F]nBu4NF/DMF、[18F]KF-Kryptofix- [2.2.2]/MeCN、[18F]nBu4NF/ MeCN、[18F]KF-Kryptofix- [2.2.2]/ t-BuOH、[18F]nBu4NF/ t-BuOH、[18F]CsF/ t-BuOHなどが挙げられるが、[18F]Fの半減期が110分と短いため、放射活性が十分量確保できるように迅速に標識化すること、例えば20分間で反応を終了することを考慮すると、[18F]nBu4NF/DMFが効果的である。Examples of the combination of [ 18 F] -labeled fluorinating reagent and solvent include [ 18 F] nBu 4 NF / DMF, [ 18 F] KF-Kryptofix- [2.2.2] / MeCN, [ 18 F] nBu 4 NF / MeCN, [18 F] KF -Kryptofix- [2.2.2] / t-BuOH, [18 F] nBu 4 NF / t-BuOH, but like [18 F] CsF / t- BuOH, [18 Considering that F] F has a short half-life of 110 minutes, taking into account rapid labeling to ensure a sufficient amount of radioactivity, for example, completion of the reaction in 20 minutes, [ 18 F] nBu 4 NF / DMF is effective.

この標識化反応は、例えば、アルゴンなどの不活性ガス雰囲気下、Rh1SO2O(CH2CH2O)n-X-N3に対して[18F]標識フッ素化試薬を用いて、50〜150℃で行うことができる。This labeling reaction is performed using, for example, an [ 18 F] -labeled fluorinating reagent for R h1 SO 2 O (CH 2 CH 2 O) n —XN 3 under an inert gas atmosphere such as argon. Can be performed at 150 ° C.

反応後の精製は、強酸性イオン交換樹脂Amberlite IR-120および強塩基性イオン交換樹脂Amberlite IRA-400を用いて行うことができる。
(蛍光色素含有PEG化合物)
前記式(II-b)で表わされる蛍光色素含有PEG化合物は、前記式(II-b-1)で表される化合物と、この式(II-b-1)で表される化合物のアミノ基と反応する官能基を有する蛍光色素とを反応させることで合成することができる。
Purification after the reaction can be carried out using the strongly acidic ion exchange resin Amberlite IR-120 and the strongly basic ion exchange resin Amberlite IRA-400.
(Fluorescent dye-containing PEG compound)
The fluorescent dye-containing PEG compound represented by the formula (II-b) includes a compound represented by the formula (II-b-1) and an amino group of the compound represented by the formula (II-b-1). It can synthesize | combine by making it react with the fluorescent dye which has a functional group which reacts.

式(II-b)において、Zは蛍光色素を含む1価の基である。蛍光色素としては、特に限定されないが、例えば、フルオレセイン・ファミリーの蛍光色素(Integrated DNA Technologies社製)、ポリハロフルオレセイン・ファミリーの蛍光色素(アプライドバイオシステムズジャパン(株)製)、ヘキサクロロフルオレセイン・ファミリーの蛍光色素(アプライドバイオシステムズジャパン(株)製)、クマリン・ファミリーの蛍光色素(インビトロジェン(株)製)、ローダミン・ファミリーの蛍光色素(GEヘルスケア バイオサイエンス(株)製)、シアニン・ファミリーの蛍光色素、インドカルボシアニン・ファミリーの蛍光色素、オキサジン・ファミリーの蛍光色素、チアジン・ファミリーの蛍光色素、スクアライン・ファミリーの蛍光色素、キレート化ランタニド・ファミリーの蛍光色素、BODIPY(登録商標)・ファミリーの蛍光色素(インビトロジェン(株)製)、ナフタレンスルホン酸・ファミリーの蛍光色素、ピレン・ファミリーの蛍光色素、トリフェニルメタン・ファミリーの蛍光色素、Alexa Fluor(登録商標)色素シリーズ(インビトロジェン(株)製)などが挙げられる。これらファミリーに含まれる代表的な蛍光色素の吸収波長(nm)および発光波長は、例えば、450〜850nmの範囲内である。   In the formula (II-b), Z is a monovalent group containing a fluorescent dye. The fluorescent dye is not particularly limited. For example, a fluorescent dye of the fluorescein family (manufactured by Integrated DNA Technologies), a fluorescent dye of the polyhalofluorescein family (manufactured by Applied Biosystems Japan Co., Ltd.), a hexachlorofluorescein family Fluorescent dyes (Applied Biosystems Japan), Coumarin family fluorescent dyes (Invitrogen), Rhodamine family fluorescent dyes (GE Healthcare Biosciences), cyanine family fluorescence Dyes, indocarbocyanine family fluorescent dyes, oxazine family fluorescent dyes, thiazine family fluorescent dyes, squaraine family fluorescent dyes, chelated lanthanide family fluorescent dyes, BODIPY® Lee's fluorescent dye (manufactured by Invitrogen), naphthalenesulfonic acid family fluorescent dye, pyrene family fluorescent dye, triphenylmethane family fluorescent dye, Alexa Fluor (registered trademark) dye series (Invitrogen Corporation) Manufactured). The absorption wavelength (nm) and emission wavelength of typical fluorescent dyes included in these families are, for example, in the range of 450 to 850 nm.

Ra1は、2価のC1〜C6炭化水素基を示す。好ましくは2価のC1〜C6アルキレン基、より好ましくは2価のC2〜C4アルキレン基である。R a1 represents a divalent C 1 -C 6 hydrocarbon group. A divalent C 1 -C 6 alkylene group is preferred, and a divalent C 2 -C 4 alkylene group is more preferred.

nは、分子量換算で1kDa〜40kDaの範囲内、好ましくは2kDa〜40kDaの範囲内、より好ましくは2kDa〜30kDaの範囲内である。   n is in the range of 1 kDa to 40 kDa in terms of molecular weight, preferably in the range of 2 kDa to 40 kDa, more preferably in the range of 2 kDa to 30 kDa.

前記式(II-b-1)で表される化合物のアミノ基と反応する官能基を有する蛍光色素としては、例えば、アミノ基と反応する官能基として-COORf1(ORf1は優れた脱離能を有する基を示し、例えば、HORf1としてN-ヒドロキシスクシミドが挙げられる)を有する蛍光色素等が挙げられる。As the fluorescent dye having a functional group that reacts with the amino group of the compound represented by the formula (II-b-1), for example, —COOR f1 (OR f1 is an excellent elimination as a functional group that reacts with the amino group) A fluorescent dye having a functional group, for example, N-hydroxysuccinimide as HOR f1 ).

前記式(II-b)で表わされる蛍光色素含有PEG化合物は、例えば、前記式(II-b-1)で表される化合物と、この式(II-b-1)で表される化合物のアミノ基と反応する官能基を有する蛍光色素とをDMF/NaHCO3 aq等の溶媒中、室温付近で反応させることで合成することができる。
(環状アセチレン化合物)
前記式(III)で表わされる環状アセチレン化合物は、前記式(III-1-1)で表わされる環状アセチレン化合物と、前記式(III-1-2)で表わされるマレイミド化合物とを反応させて合成することができる。
The fluorescent dye-containing PEG compound represented by the formula (II-b) includes, for example, a compound represented by the formula (II-b-1) and a compound represented by the formula (II-b-1). It can be synthesized by reacting a fluorescent dye having a functional group that reacts with an amino group in a solvent such as DMF / NaHCO 3 aq at around room temperature.
(Cyclic acetylene compound)
The cyclic acetylene compound represented by the formula (III) is synthesized by reacting the cyclic acetylene compound represented by the formula (III-1-1) with the maleimide compound represented by the formula (III-1-2). can do.

式(III)で表わされる環状アセチレン化合物において、Rb1〜Rb10はそれぞれ独立に水素原子またはフッ素原子、Rc1は水素原子またはフッ素原子を示す。In the cyclic acetylene compound represented by the formula (III), R b1 to R b10 each independently represent a hydrogen atom or a fluorine atom, and R c1 represents a hydrogen atom or a fluorine atom.

Xは2価のC1〜C12炭化水素基または-Rd1(OCH2CH2)mRd2-(Rd1はアミド基または(OCH2CH2)mの酸素原子と共に構成されてもよいカルバミン酸エステル基を有していてもよい2価のC1〜C12炭化水素基(ここでC1〜C12にはアミド基またはカルバミン酸エステル基の炭素原子を含まない。)、Rd2はアミド基を有していてもよい2価のC1〜C6炭化水素基(ここでC1〜C6にはアミド基の炭素原子を含まない。)、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)を示す。X may be composed of a divalent C 1 to C 12 hydrocarbon group or —R d1 (OCH 2 CH 2 ) m R d2 — (R d1 is an amide group or (OCH 2 CH 2 ) m oxygen atom. A divalent C 1 to C 12 hydrocarbon group which may have a carbamate group (wherein C 1 to C 12 do not include the carbon atom of an amide group or a carbamate group), R d2 Is a divalent C 1 to C 6 hydrocarbon group optionally having an amide group (where C 1 to C 6 do not include the carbon atom of the amide group), m is 1 kDa to 40 kDa in terms of molecular weight Represents an integer within the range of

Xの2価のC1〜C12炭化水素基は、好ましくは2価のC1〜C12アルキレン基、より好ましくは2価のC1〜C6アルキレン基である。The divalent C 1 -C 12 hydrocarbon group of X is preferably a divalent C 1 -C 12 alkylene group, more preferably a divalent C 1 -C 6 alkylene group.

XのRd1がアミド基またはカルバミン酸エステル基を含まない2価のC1〜C12炭化水素基の場合、好ましくは2価のC1〜C12アルキレン基、より好ましくは2価のC1〜C6アルキレン基である。XのRd1がアミド基または(OCH2CH2)mの酸素原子と共に構成されてもよいカルバミン酸エステル基を有する2価のC1〜C12炭化水素基の場合、例えば、-Rg1NHCORg2-(Rg1、Rg2はそれぞれ独立にC1〜C5アルキレン基を示す。)、-Rg1NHCOORg2-(Rg1、Rg2はそれぞれ独立にC1〜C5アルキレン基を示す。)、-Rg1NHCOO-(Rg1はC1〜C5アルキレン基を示し、NHCOO-は(OCH2CH2)mの酸素原子と共に構成される。)等が挙げられる。Rd2はアミド基を有していてもよい2価のC1〜C6炭化水素基であり、好ましくはC1〜C4アルキル基または-Rg3NHCORg4-(Rg3、Rg4はそれぞれ独立にC1〜C5アルキレン基を示す。)である。mは、分子量換算で1kDa〜40kDaの範囲内、好ましくは2kDa〜40kDaの範囲内、より好ましくは2kDa〜30kDaの範囲内である。When R d1 of X is a divalent C 1 to C 12 hydrocarbon group not containing an amide group or a carbamic acid ester group, it is preferably a divalent C 1 to C 12 alkylene group, more preferably a divalent C 1. ~C 6 is an alkylene group. When R d1 of X is a divalent C 1 to C 12 hydrocarbon group having an amide group or a carbamate group that may be configured with an oxygen atom of (OCH 2 CH 2 ) m , for example, -R g1 NHCOR g2 - (R g1, R g2 represent each independently a C 1 -C 5 alkylene group.), - R g1 NHCOOR g2 - (R g1, R g2 represents a C 1 -C 5 alkylene group independently. ), - R g1 NHCOO- (R g1 represents a C 1 -C 5 alkylene group, NHCOO- is (OCH 2 CH 2) include constructed) such as with an oxygen atom of m.. R d2 is a divalent C 1 to C 6 hydrocarbon group which may have an amide group, preferably a C 1 to C 4 alkyl group or —R g3 NHCOR g4 — (R g3 and R g4 are each independently represent an C 1 -C 5 alkylene group.) it is. m is in the range of 1 kDa to 40 kDa in terms of molecular weight, preferably in the range of 2 kDa to 40 kDa, more preferably in the range of 2 kDa to 30 kDa.

またYは生物活性物質を含む1価の基を示す。生物活性物質は、生物に対して生理作用ないしは薬理作用を発現する物質単体および化合物群であり、自然界から適切な方法で得られるものであっても、遺伝子工学的手法その他の人工的手法で製造される天然と同一の物質であってもよく、さらに、これらの改変型であってもよい。具体的には、例えば、ペプチド、核酸関連物質、低分子化合物、抗原、抗体、受容体、接着分子、サイトカイン、ホルモン、多糖、オリゴ糖、オリゴペプチド、酵素、抗生物質、酵素阻害剤、受容体アゴニスト、受容体アンタゴニストなどが挙げられる。   Y represents a monovalent group containing a biologically active substance. Biologically active substances are substances and compounds that exhibit physiological or pharmacological effects on living organisms. Even if they can be obtained from the natural world by appropriate methods, they are produced by genetic engineering techniques or other artificial techniques. It may be the same substance as that of nature, and may be a modified form thereof. Specifically, for example, peptides, nucleic acid related substances, low molecular compounds, antigens, antibodies, receptors, adhesion molecules, cytokines, hormones, polysaccharides, oligosaccharides, oligopeptides, enzymes, antibiotics, enzyme inhibitors, receptors An agonist, a receptor antagonist, etc. are mentioned.

前記式(III)で表わされる環状アセチレン化合物は、前記式(III-1)で表わされる環状アセチレン化合物と、この式(III-1)で表される環状アセチレン化合物のマレイミド基と反応する官能基を有する生物活性物質とをDMF/NaHCO3 aq等の溶媒中、室温付近で反応させることで合成することができる。The cyclic acetylene compound represented by the formula (III) includes a functional group that reacts with the cyclic acetylene compound represented by the formula (III-1) and the maleimide group of the cyclic acetylene compound represented by the formula (III-1). It can be synthesized by reacting with a bioactive substance having a reaction in a solvent such as DMF / NaHCO 3 aq at around room temperature.

この生物活性物質における式(III-1)で表される環状アセチレン化合物のマレイミド基と反応する官能基としては、例えば、チオール基等が挙げられる。   Examples of the functional group that reacts with the maleimide group of the cyclic acetylene compound represented by the formula (III-1) in this biologically active substance include a thiol group.

前記式(III-1)で表わされる環状アセチレン化合物は、前記式(III-1-1)で表わされる環状アセチレン化合物と、前記式(III-1-2)で表わされるマレイミド化合物とを、ジクロロメタンやTHF/aq等の溶媒中で、必要に応じてNaHCO3 やEt3N等の塩基を添加して反応させることで合成することができる。The cyclic acetylene compound represented by the formula (III-1) includes a cyclic acetylene compound represented by the formula (III-1-1) and a maleimide compound represented by the formula (III-1-2). It can be synthesized by adding a base such as NaHCO 3 or Et 3 N and reacting in a solvent such as THF or aq.

式(III-1-1)において、Rb1〜Rb10はそれぞれ独立に水素原子またはフッ素原子を示す。Re1は2価のC1〜C5炭化水素基、好ましくはC1〜C5アルキレン基である。In the formula (III-1-1), R b1 to R b10 each independently represent a hydrogen atom or a fluorine atom. R e1 is a divalent C 1 -C 5 hydrocarbon group, preferably a C 1 -C 5 alkylene group.

式(III-1-2)において、Rc1、Rc2はそれぞれ独立に水素原子またはフッ素原子を示す。Rc3はC1〜C8炭化水素基または-Rd3(OCH2CH2)mRd4-(Rd3は2価のC1〜C8炭化水素基またはOCH2CH2、Rd4はアミド基を有していてもよい2価のC1〜C6炭化水素基(ここでC1〜C6にはアミド基の炭素原子を含まない。)、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)、ORc4は前記(II-b-1)で表される蛍光色素含有PEG化合物のアミノ基との反応により脱離する脱離基ORf1と同様の基を示す。In formula (III-1-2), R c1 and R c2 each independently represent a hydrogen atom or a fluorine atom. R c3 is a C 1 to C 8 hydrocarbon group or —R d3 (OCH 2 CH 2 ) m R d4 — (R d3 is a divalent C 1 to C 8 hydrocarbon group or OCH 2 CH 2 , R d4 is an amide A divalent C 1 to C 6 hydrocarbon group which may have a group (where C 1 to C 6 do not include the carbon atom of the amide group), m is in the range of 1 kDa to 40 kDa in terms of molecular weight OR c4 represents the same group as the leaving group OR f1 that is eliminated by the reaction with the amino group of the fluorescent dye-containing PEG compound represented by (II-b-1).

Rc3のC1〜C8炭化水素基は、好ましくは2価のC1〜C8アルキレン基、より好ましくは2価のC1〜C6アルキレン基である。The C 1 to C 8 hydrocarbon group of R c3 is preferably a divalent C 1 to C 8 alkylene group, more preferably a divalent C 1 to C 6 alkylene group.

Rc3の-Rd3(OCH2CH2)mRd4-において、Rd3は2価のC1〜C8アルキレン基、より好ましくは2価のC1〜C6アルキレン基である。Rd4は2価のC1〜C6炭化水素基であり、好ましくはC1〜C4アルキル基である。mは、分子量換算で1kDa〜40kDaの範囲内、好ましくは2kDa〜40kDaの範囲内、より好ましくは2kDa〜30kDaの範囲内である。
([18F]Fで標識されたPEG化生物活性物質)
前記式(I-a)で表わされる、[18F]Fで標識されたPEG化生物活性物質は、前記式(II-a)で表わされる[18F]フルオロPEG化合物と、前記式(III)で表わされる環状アセチレン化合物とを、生理的条件下(水溶液中、室温、かつ銅触媒の不存在下)に反応させることで合成することができる。
In —R d3 (OCH 2 CH 2 ) m R d4 — of R c3 , R d3 is a divalent C 1 to C 8 alkylene group, more preferably a divalent C 1 to C 6 alkylene group. R d4 is a divalent C 1 -C 6 hydrocarbon group, preferably a C 1 -C 4 alkyl group. m is in the range of 1 kDa to 40 kDa in terms of molecular weight, preferably in the range of 2 kDa to 40 kDa, more preferably in the range of 2 kDa to 30 kDa.
(PEGylated bioactive substance labeled with [ 18 F] F)
The [ 18 F] F labeled PEGylated bioactive substance represented by the formula (Ia) includes the [ 18 F] fluoro PEG compound represented by the formula (II-a) and the formula (III). The cyclic acetylene compound represented can be synthesized by reacting under physiological conditions (in an aqueous solution, at room temperature, and in the absence of a copper catalyst).

本発明の[18F]Fで標識されたPEG化生物活性物質には、式(I-a)のリンカーXにPEG(分子量2kDa〜40kDa)を用いたものが含まれる。このような化合物の合成が実施可能であることは、後述の実施例の結果と、既に当業者に知られている技術常識より明らかであることが理解されるであろう。そしてこのような式(II-a)由来のPEGとリンカーX由来のPEGとを有する長鎖PEG化合物の合成は、前述したように、予めタンパク質を結合した長鎖PEGと、[18F]F標識化長鎖PEGの合成条件が全く異なるために、各ユニットを別々に合成し、その後に生理的条件下のHuisgen反応で両者を結合することによって、初めて分子量数千以上の長鎖PEGが結合したタンパク質の[18F]F標識化が可能ではないかと着想し、後述の実施例で実施可能な程度に裏付けられたことによる。このような長鎖PEG化合物によれば、式(II-a)由来のPEGと併せた分子量4kDa〜80kDaの長鎖PEG鎖の中程にHuisgen反応連結部分が収まるために、連結部分が分子全体に及ぼす影響を軽減することができる。PEGylated bioactive substances labeled with [ 18 F] F of the present invention include those using PEG (molecular weight of 2 kDa to 40 kDa) as linker X of formula (Ia). It will be understood that the ability to synthesize such compounds is clear from the results of the examples described later and from common technical knowledge already known to those skilled in the art. And, as described above, the synthesis of a long-chain PEG compound having such a PEG derived from the formula (II-a) and a PEG derived from the linker X is carried out by combining a long-chain PEG having a protein previously bound thereto and [ 18 F] F Since the synthesis conditions of labeled long-chain PEG are completely different, long-chain PEGs with molecular weights of several thousand or more are bound for the first time by synthesizing each unit separately and then coupling them together using a Huisgen reaction under physiological conditions. This is based on the idea that [ 18 F] F labeling of the obtained protein may be possible, and was supported to the extent that it can be carried out in the examples described later. According to such a long-chain PEG compound, since the Huisgen reaction linking portion fits in the middle of the long-chain PEG chain having a molecular weight of 4 kDa to 80 kDa combined with the PEG derived from the formula (II-a), the linking portion is the whole molecule. Can be reduced.

この[18F]Fで標識されたPEG化生物活性物質を用いることで、その体内動態をポジトロン断層法(PET)によってリアルタイムに非侵襲的かつ定量的に解析することが可能となる。By using this [ 18 F] F-labeled PEGylated bioactive substance, its pharmacokinetics can be analyzed non-invasively and quantitatively in real time by positron tomography (PET).

なお、このアジドとアルキンのHuisgen環化付加反応は、アジドおよびアルキンが高い化学的安定性を有し、かつほぼ無極性で水素結合を形成しにくい性質のため生体分子の構造特性を大きく変化させることはないという特徴がある。しかし無触媒では反応速度が非常に遅く、通常は長時間の加熱が必要であった。2002年にMeldalおよびSharplessらによって銅触媒を用いる手法が報告され、銅触媒がアルキンを活性化することで迅速かつ穏和な条件での反応が可能になった。   This Huisgen cycloaddition reaction of azide and alkyne greatly changes the structural characteristics of biomolecules because azide and alkyne have high chemical stability and are almost nonpolar and difficult to form hydrogen bonds. There is a feature that there is nothing. However, with no catalyst, the reaction rate was very slow and usually heating for a long time was required. In 2002, a method using a copper catalyst was reported by Meldal and Sharpless et al., And the reaction under rapid and mild conditions became possible when the copper catalyst activated the alkyne.

しかし、本発明では高反応性の式(III)で表わされる環状アセチレン化合物を用いることで、銅触媒を用いずとも、銅触媒を用いる手法と同程度の速度で反応が進行する。銅イオンは細胞毒性を有しているため、これが不要になることは大きな利点であり、上記のPETによる体内動態解析や、下記の蛍光色素による体内動態解析などの応用にも適している。
(蛍光標識されたPEG化生物活性物質)
前記式(I-b)で表わされる、蛍光標識されたPEG化生物活性物質は、前記式(II-b)で表わされる蛍光色素含有PEG化合物と、前記式(III)で表わされる環状アセチレン化合物とを、生理的条件下(水溶液中、室温、かつ銅触媒の不存在下)に反応させることで合成することができる。
However, in the present invention, by using the cyclic acetylene compound represented by the highly reactive formula (III), the reaction proceeds at the same rate as the method using the copper catalyst without using the copper catalyst. Since copper ion has cytotoxicity, it is a great advantage that it is not necessary, and it is also suitable for applications such as the above-described pharmacokinetic analysis using PET and the following pharmacokinetic analysis using fluorescent dyes.
(Fluorescently labeled PEGylated bioactive substance)
The fluorescently labeled PEGylated bioactive substance represented by the formula (Ib) comprises a fluorescent dye-containing PEG compound represented by the formula (II-b) and a cyclic acetylene compound represented by the formula (III). It can be synthesized by reacting under physiological conditions (in an aqueous solution, at room temperature, and in the absence of a copper catalyst).

この蛍光標識されたPEG化生物活性物質を用いることで、その体内動態を種々の蛍光検出法によってリアルタイムに非侵襲的かつ定量的に解析することが可能となる。   By using this fluorescently labeled PEGylated bioactive substance, its in vivo kinetics can be analyzed noninvasively and quantitatively in real time by various fluorescent detection methods.

以下に、実施例により本発明を更に詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<実施例1〜3> アジド基を有する官能基化された新規PEGの合成
市販されている末端にアミノ基を有するPEG(2kDa, 58)を出発原料とし、Goddard-Borgerらの手法を用いて末端アミノ基をアジド化し59を得た。続いて末端水酸基をトシル化し60を得た。なお、本発明者らが開発した陽イオン及び陰イオン交換樹脂を用いるPEGの精製法を応用することで極性の高いPEG誘導体60でも効率よく単離することができた。最後にnBu4NFを用いてフッ素化することで目的とするPEG 52を3工程79%の収率で得た。精製は同様にイオン交換樹脂を用いた。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
<Examples 1-3> Synthesis of a functionalized novel PEG having an azide group Using a commercially available PEG having an amino group at the terminal (2 kDa, 58) as a starting material, using the method of Goddard-Borger et al. The terminal amino group was azidated to give 59. Subsequently, the terminal hydroxyl group was tosylated to obtain 60. By applying the PEG purification method using the cation and anion exchange resin developed by the present inventors, it was possible to efficiently isolate even the highly polar PEG derivative 60. Finally, by fluorination using nBu 4 NF, the desired PEG 52 was obtained in a yield of 79% over 3 steps. For the purification, an ion exchange resin was similarly used.

<実施例1>
化合物59の合成
<Example 1>
Synthesis of Compound 59

HO(CH2CH2O)nC3H6NH2 (58, 平均分子量: 2 kDa, 0.40 g, 0.20 mmol)、K2CO3(55 mg 0.40 mmol)、CuSO4・H2O (2.5 mg, 10 μmol)をMeOH (2.0 ml)に溶かし、室温でImidazole-1-sulfonyl azide・HCl(63 mg, 0.30 mmol)を加え24時間撹拌した。溶媒を減圧留去し、残渣に1N HCl (5 ml)を加えCH2Cl2(5 ml)で3回抽出した。有機層を無水MgSO4で乾燥後、溶媒を減圧留去し、59(0.38 g, 97%)を得た。
1H NMR (500 MHz, CDCl3) : 1.85 (2 H, quint, J = 6.5 Hz), 3.39 (2 H, t, J = 6.5 Hz), 3.48-3.79 (ca.200 H, m). 13C NMR (500 MHz, CDCl3) : 29.0, 48.4, 61.4, 67.8, 70.1, 70.3, 70.4, 70.5, 72.8. IR (CHCl3) : 2099 cm-1.
MS (MALDI-TOF): m/z calcd for C89H179N3O44K [M (n=43) + K]+: 2033.1499, found: 2033.2044.
化合物60の合成
HO (CH 2 CH 2 O) n C 3 H 6 NH 2 (58, average molecular weight: 2 kDa, 0.40 g, 0.20 mmol), K 2 CO 3 (55 mg 0.40 mmol), CuSO 4・ H 2 O (2.5 mg, 10 μmol) was dissolved in MeOH (2.0 ml), and Imidazole-1-sulfonyl azide · HCl (63 mg, 0.30 mmol) was added at room temperature, followed by stirring for 24 hours. The solvent was evaporated under reduced pressure, 1N HCl (5 ml) was added to the residue, and the mixture was extracted 3 times with CH 2 Cl 2 (5 ml). The organic layer was dried over anhydrous MgSO 4 and the solvent was distilled off under reduced pressure to obtain 59 (0.38 g, 97%).
1 H NMR (500 MHz, CDCl 3 ): 1.85 (2 H, quint, J = 6.5 Hz), 3.39 (2 H, t, J = 6.5 Hz), 3.48-3.79 (ca.200 H, m). 13 C NMR (500 MHz, CDCl 3 ): 29.0, 48.4, 61.4, 67.8, 70.1, 70.3, 70.4, 70.5, 72.8. IR (CHCl 3 ): 2099 cm -1 .
MS (MALDI-TOF): m / z calcd for C 89 H 179 N 3 O 44 K [M (n = 43) + K] + : 2033.1499, found: 2033.2044.
Synthesis of compound 60

59 (0.19 g, 95 μmol)、TsCl (0.11 g, 0.57 mmol)、Me3N・HCl (1.0 mg, 10 μmol)をCH2Cl2(2.0 ml) に溶かし、室温でEt3N (0.10 ml, 0.67 mmol)を加え3時間撹拌した。溶媒を減圧留去し、H2O-MeCN (1:1, 20 ml)に溶かした。活性化した強酸性イオン交換樹脂Amberlite IR-120(3.0 g)および活性化した強塩基性イオン交換樹脂Amberlite IRA- 400 (3.0 g) を加え約20 分間激しく撹拌し、濾過した。濾液を減圧濃縮し、60 (0.19 g 92%)を得た。
1H NMR (500 MHz, CDCl3) : 1.84 (2 H, quint, J = 6.5 Hz), 2.44 (3 H, s), 3.38 (2 H, t, J = 6.5 Hz), 3.48-3.78 (ca.200 H, m), 4.14 (2 H, t, J = 5.0 Hz), 7.33 (2 H, d, J = 8.0 Hz), 7.78 (2 H, d, J = 8.0 Hz). 13C NMR (500 MHz, CDCl3) : 21.6, 29.1, 48.4, 67.8, 68.6, 69.2, 70.3, 70.5, 70.7, 127.9, 129.8, 132.9, 144.7. IR (CHCl3) : 2099 cm-1.
MS (MALDI-TOF): m/z calcd for C94H181N3O45SK [M (n=42) + K]+: 2143.1325, found: 2143.3302.
<実施例2>
化合物52の合成
59 (0.19 g, 95 μmol), TsCl (0.11 g, 0.57 mmol), Me 3 N ・ HCl (1.0 mg, 10 μmol) dissolved in CH 2 Cl 2 (2.0 ml), and Et 3 N (0.10 ml) at room temperature , 0.67 mmol) and stirred for 3 hours. The solvent was distilled off under reduced pressure and dissolved in H 2 O-MeCN (1: 1, 20 ml). Activated strongly acidic ion exchange resin Amberlite IR-120 (3.0 g) and activated strongly basic ion exchange resin Amberlite IRA-400 (3.0 g) were added, and the mixture was vigorously stirred for about 20 minutes and filtered. The filtrate was concentrated under reduced pressure to give 60 (0.19 g 92%).
1 H NMR (500 MHz, CDCl 3 ): 1.84 (2 H, quint, J = 6.5 Hz), 2.44 (3 H, s), 3.38 (2 H, t, J = 6.5 Hz), 3.48-3.78 (ca .200 H, m), 4.14 ( 2 H, t, J = 5.0 Hz), 7.33 (2 H, d, J = 8.0 Hz), 7.78 (2 H, d, J = 8.0 Hz). 13 C NMR ( 500 MHz, CDCl 3 ): 21.6, 29.1, 48.4, 67.8, 68.6, 69.2, 70.3, 70.5, 70.7, 127.9, 129.8, 132.9, 144.7. IR (CHCl 3 ): 2099 cm -1 .
MS (MALDI-TOF): m / z calcd for C 94 H 181 N 3 O 45 SK [M (n = 42) + K] + : 2143.1325, found: 2143.3302.
<Example 2>
Synthesis of compound 52

アルゴン雰囲気下、60 (40 mg, 20 μmol)を無水DMF (0.5 ml)に溶かし、nBuN4F (1.0 M THF solution, 30 μl, 0.30 μmol) を加え、80 °Cで20分間撹拌した。H2O-MeCN (1:1, 20 ml)に溶かした後、活性化した強酸性イオン交換樹脂Amberlite IR-120(2.0 g)および活性化した強塩基性イオン交換樹脂Amberlite IRA- 400 (2.0 g) を加え約20 分間激しく撹拌し、濾過した。濾液を減圧濃縮し、52 (35 mg 88%)を得た。
1H NMR (500 MHz, CDCl3) : 1.84 (2 H, quint, J = 6.5 Hz), 3.38 (2 H, d, J = 6.5 Hz), 3.47-3.78 (ca.200 H, m), 4.55 (2 H, td, J = 4.5, 52.0 Hz). 13C NMR (500 MHz, CDCl3) : 29.1, 48.4, 67.8, 70.3, 70.5, 70.7, 83.1 (d, J = 168 Hz). 19F NMR (470 MHz, CDCl3) : -223 (tt, J = 29, 47 Hz)
IR (CHCl3) : 2099 cm-1
MS (MALDI-TOF): m/z calcd for C89H178N3O43FK [M (n=43) + K]+: 2035.1455, found: 2035.2070.
<実施例3>
化合物64の合成
市販されている58のアミノ基を保護し、水酸基をトシル化することで62を2工程89%の収率で得た。続いて求核的にアジドを導入し、アミノ基を脱保護することで目的のPEG 64を定量的に得た。なお、各工程における精製はイオン交換樹脂や低極性溶媒による洗浄を行うことで精製困難なPEGを効率よく単離した。
Under an argon atmosphere, 60 (40 mg, 20 μmol) was dissolved in anhydrous DMF (0.5 ml), nBuN 4 F (1.0 M THF solution, 30 μl, 0.30 μmol) was added, and the mixture was stirred at 80 ° C. for 20 minutes. After dissolving in H 2 O-MeCN (1: 1, 20 ml), activated strong acidic ion exchange resin Amberlite IR-120 (2.0 g) and activated strong basic ion exchange resin Amberlite IRA-400 (2.0 g) was added and stirred vigorously for about 20 minutes and filtered. The filtrate was concentrated under reduced pressure to give 52 (35 mg 88%).
1 H NMR (500 MHz, CDCl 3 ): 1.84 (2 H, quint, J = 6.5 Hz), 3.38 (2 H, d, J = 6.5 Hz), 3.47-3.78 (ca.200 H, m), 4.55 . (2 H, td, J = 4.5, 52.0 Hz) 13 C NMR (500 MHz, CDCl 3):. 29.1, 48.4, 67.8, 70.3, 70.5, 70.7, 83.1 (d, J = 168 Hz) 19 F NMR (470 MHz, CDCl 3 ): -223 (tt, J = 29, 47 Hz)
IR (CHCl 3 ): 2099 cm -1
MS (MALDI-TOF): m / z calcd for C 89 H 178 N 3 O 43 FK [M (n = 43) + K] + : 2035.1455, found: 2035.2070.
<Example 3>
Synthesis of Compound 64 By protecting 58 commercially available amino groups and tosylating the hydroxyl group, 62 was obtained in a 2-step 89% yield. Subsequently, the target PEG 64 was quantitatively obtained by introducing azide nucleophilically and deprotecting the amino group. In the purification in each step, PEG, which is difficult to purify, was efficiently isolated by washing with an ion exchange resin or a low polarity solvent.

化合物62の合成 Synthesis of Compound 62

HO(CH2CH2O)n(CH2)3NH2 (58, 平均分子量: 2kDa, 0.10 g, 50 μmol)をCH2Cl2-1M NaOH水 (1:1, 1.0 ml)に溶かし、室温でBoc2O(23 μl, 0.10 mmol)を加え19時間撹拌した。溶媒を減圧留去し、残渣をCH2Cl2(1.0 ml) に溶かし、TsCl (57 mg, 0.30 mmol)、Me3N・HCl (1.0 mg, 10 μmol)、Et3N (49 μl, 0.35 mmol)を加え室温で24時間撹拌した。溶媒を減圧留去し、H2O-MeCN (1:1, 20 ml)に溶かした後、活性化した強酸性イオン交換樹脂Amberlite IR-120(2.0 g)および活性化した強塩基性イオン交換樹脂Amberlite IRA- 400 (2.0 g) を加え約20 分間激しく撹拌し、濾過した。濾液を減圧濃縮し、62 (0.10 g, 89%)を得た。
1H NMR (400 MHz, CDCl3) : 1.40 (9 H, s), 1.72 (2 H, quint, J = 6 Hz), 2.42 (3 H, s), 3.18 (2 H, dd, J = 12, 6 Hz), 3.47-3.78 (ca.200 H, m), 4.12 (2 H, t, J = 5 Hz), 7.32 (2 H, d, J = 8 Hz), 7.76 (2 H, d, J = 8 Hz).
HRMS (MALDI-TOF): m/z calcd for C101H195NO48SK [M (n=43) + K]+: 2261.2206, found: 2261.2132.
化合物63の合成
HO (CH 2 CH 2 O) n (CH 2 ) 3 NH 2 (58, average molecular weight: 2 kDa, 0.10 g, 50 μmol) was dissolved in CH 2 Cl 2 -1M NaOH water (1: 1, 1.0 ml), Boc 2 O (23 μl, 0.10 mmol) was added at room temperature and stirred for 19 hours. The solvent was distilled off under reduced pressure, the residue was dissolved in CH 2 Cl 2 (1.0 ml), TsCl (57 mg, 0.30 mmol), Me 3 N ・ HCl (1.0 mg, 10 μmol), Et 3 N (49 μl, 0.35 mmol) was added and stirred at room temperature for 24 hours. After removing the solvent under reduced pressure and dissolving in H 2 O-MeCN (1: 1, 20 ml), activated strong acidic ion exchange resin Amberlite IR-120 (2.0 g) and activated strong basic ion exchange Resin Amberlite IRA-400 (2.0 g) was added and stirred vigorously for about 20 minutes and filtered. The filtrate was concentrated under reduced pressure to obtain 62 (0.10 g, 89%).
1 H NMR (400 MHz, CDCl 3 ): 1.40 (9 H, s), 1.72 (2 H, quint, J = 6 Hz), 2.42 (3 H, s), 3.18 (2 H, dd, J = 12 , 6 Hz), 3.47-3.78 (ca.200 H, m), 4.12 (2 H, t, J = 5 Hz), 7.32 (2 H, d, J = 8 Hz), 7.76 (2 H, d, J = 8 Hz).
HRMS (MALDI-TOF): m / z calcd for C 101 H 195 NO 48 SK [M (n = 43) + K] + : 2261.2206, found: 2261.2132.
Synthesis of compound 63

62(0.10 g, 44 μmol)をDMF(0.5 ml)に溶かし、室温でNaN3(8.6 mg, 0.13 mmol)を加え100 °Cで2時間撹拌した。溶媒を減圧留去し、H2O-MeCN (1:1, 20 ml)に溶かした後、活性化した強酸性イオン交換樹脂Amberlite IR-120(2.0 g)および活性化した強塩基性イオン交換樹脂Amberlite IRA- 400 (2.0 g) を加え約20 分間激しく撹拌し、濾過した。濾液を減圧濃縮し、63 (0.10 g, quant.)を得た。
1H NMR (500 MHz, CDCl3) : 1.41 (9 H, s), 1.73 (2 H, quint, J = 6 Hz), 3.19 (2 H, dd, J = 13, 6 Hz), 3.37 (2 H, t, J = 5 Hz) 3.47-3.78 (ca.200 H, m)
HRMS (MALDI-TOF): m/z calcd for C94H188N4O45K [M (n=43) + K]+: 2132.2183, found: 2132.2180.
化合物64の合成
62 (0.10 g, 44 μmol) was dissolved in DMF (0.5 ml), NaN 3 (8.6 mg, 0.13 mmol) was added at room temperature, and the mixture was stirred at 100 ° C. for 2 hours. After removing the solvent under reduced pressure and dissolving in H 2 O-MeCN (1: 1, 20 ml), activated strong acidic ion exchange resin Amberlite IR-120 (2.0 g) and activated strong basic ion exchange Resin Amberlite IRA-400 (2.0 g) was added and stirred vigorously for about 20 minutes and filtered. The filtrate was concentrated under reduced pressure to obtain 63 (0.10 g, quant.).
1 H NMR (500 MHz, CDCl 3 ): 1.41 (9 H, s), 1.73 (2 H, quint, J = 6 Hz), 3.19 (2 H, dd, J = 13, 6 Hz), 3.37 (2 H, t, J = 5 Hz) 3.47-3.78 (ca.200 H, m)
HRMS (MALDI-TOF): m / z calcd for C 94 H 188 N 4 O 45 K [M (n = 43) + K] + : 2132.2183, found: 2132.2180.
Synthesis of compound 64

63(0.10 g, 44 ・ol)を4N HCl/EtOAc(1.0 ml)に溶かし、室温で4時間撹拌した。溶媒を減圧留去し、残渣をhexaneで洗浄し、64(94mg, quant.)を得た。
1H NMR (500 MHz, D2O/CDCl3) : 2.00-2.10 (2 H, m), 3.19 (2 H, t, J = 5 Hz), 3.39 (2 H, t, J = 5 Hz) 3.47-3.78 (ca.200 H, m).
HRMS (MALDI-TOF): m/z calcd for C89H180N4O43K [M (n=43) + K]+: 2032.1658, found: 2032.1563.
続いて64と775nmに最大蛍光発光を持つAlexa Fluor 750を結合した。
63 (0.10 g, 44 · ol) was dissolved in 4N HCl / EtOAc (1.0 ml) and stirred at room temperature for 4 hours. The solvent was distilled off under reduced pressure, and the residue was washed with hexane to obtain 64 (94 mg, quant.).
1 H NMR (500 MHz, D 2 O / CDCl 3 ): 2.00-2.10 (2 H, m), 3.19 (2 H, t, J = 5 Hz), 3.39 (2 H, t, J = 5 Hz) 3.47-3.78 (ca.200 H, m).
HRMS (MALDI-TOF): m / z calcd for C 89 H 180 N 4 O 43 K [M (n = 43) + K] + : 2032.1658, found: 2032.1563.
Subsequently, Alexa Fluor 750 having the maximum fluorescence emission at 64 and 775 nm was bound.

化合物56の合成 Synthesis of Compound 56

64(0.30 mg, 1.5 μmol)とAlexa Fluor 750 Carboxylic Acid, Succinimidyl Ester (90 μg)をDMF (50 μl)、NaHCO3水(0.15M, 50 μl)に溶かし、室温で21時間撹拌した。逆相HPLC(MeCN-H2O, 7:3)で精製し、56 (65%)を得た。反応液はHPLCで分析し、700nmで検出した(図1)。通常この領域に吸収をもつ化合物はない。そのため、吸収ピークは全てAlexa Fluor由来のものであると考えられ、目的とする反応が進行したことが示唆された。また、ピーク面積を基に収率を算出した。なお、これ以降反応剤の量が極めて少ない場合はHPLCによる反応追跡を行った。
<実施例4>
64と647nmに最大蛍光発光を持つAlexa Fluor 647を結合し、56aを合成した。
64 (0.30 mg, 1.5 μmol) and Alexa Fluor 750 Carboxylic Acid, Succinimidyl Ester (90 μg) were dissolved in DMF (50 μl) and NaHCO 3 water (0.15 M, 50 μl), and the mixture was stirred at room temperature for 21 hours. Purification by reverse phase HPLC (MeCN-H 2 O, 7: 3) gave 56 (65%). The reaction solution was analyzed by HPLC and detected at 700 nm (FIG. 1). There are usually no compounds that absorb in this region. Therefore, all the absorption peaks were considered to be derived from Alexa Fluor, suggesting that the intended reaction had progressed. The yield was calculated based on the peak area. Thereafter, when the amount of the reactant was very small, the reaction was traced by HPLC.
<Example 4>
56a was synthesized by binding Alexa Fluor 647 with the maximum fluorescence emission at 64 and 647 nm.

64 (0.17 μmol)をNaHCO3aq. (0.1 M, 100 μl)に溶かしAlexa Fluor 647 Carboxylic Acid, Succinimidyl Ester (0.18 μmol) のDMF溶液(100 μl) を加えた。室温で220分間撹拌した。反応粗生成物をHPLC (5C18-AR-II, 4.6×250 mm, MeCN:H2O = 5 : 95 (0 min) →5 : 95 (5 min) →50 : 50 (15 min) →50 : 50 (25 min) → 95 : 5 (30 min) → 100 : 0 (35 min), 流速1.0 mL min-1, 検出: UV 650 nm及びコロナ荷電化粒子検出器)で分析した(図2A,B)。粗生成物 (HPLC 1)および、Alexa 647 Carboxylic Acid, Succinimidyl Esterと粗生成物との混合物(HPLC 2)の比較により、保持時間21 minに現れた新しいピーク(目的化合物56a)を含む粗生成物を次の反応に用いた。
<実施例5、6> 高反応性シクロオクチンの合成
側鎖末端にマレイミド基を有する高反応性シクロオクチンを合成した。
<実施例5>
側鎖末端にマレイミド基を有する高反応性シクロオクチン(72, 79)を合成した。まず、dibenzosuberenoneに塩酸ヒドロキシルアミンを反応させオキシム68を定量的に得た。続いて徳山らのDIBALを過剰に用いるBeckman転位及びアミドの還元反応(Cho, H.; Iwama, Y.; Sugimoto, K.; Mori, S.; Tokuyama, H.J. Org. Chem. 2010, 75, 627-636.)を68に適用し、8員環アミン69を80%の収率で得た。
64 (0.17 μmol) was dissolved in NaHCO 3 aq. (0.1 M, 100 μl), and a DMF solution (100 μl) of Alexa Fluor 647 Carboxylic Acid, Succinimidyl Ester (0.18 μmol) was added. Stir at room temperature for 220 minutes. The reaction crude product was HPLC (5C 18 -AR-II, 4.6 × 250 mm, MeCN: H 2 O = 5: 95 (0 min) → 5: 95 (5 min) → 50: 50 (15 min) → 50 : 50 (25 min) → 95: 5 (30 min) → 100: 0 (35 min), flow rate 1.0 mL min -1 , detection: UV 650 nm and corona charged particle detector) (Figure 2A, B). A crude product (HPLC 1) and a crude product containing a new peak (target compound 56a) appearing at a retention time of 21 min by comparison of the mixture of Alexa 647 Carboxylic Acid, Succinimidyl Ester and crude product (HPLC 2) Was used for the next reaction.
<Examples 5 and 6> Synthesis of highly reactive cyclooctyne Highly reactive cyclooctyne having a maleimide group at the end of the side chain was synthesized.
<Example 5>
A highly reactive cyclooctyne (72, 79) having a maleimide group at the end of the side chain was synthesized. First, dioxisuberenone was reacted with hydroxylamine hydrochloride to obtain oxime 68 quantitatively. Subsequently, Tokuyama et al. And Beckman rearrangement using excessive DIBAL and amide reduction (Cho, H .; Iwama, Y .; Sugimoto, K .; Mori, S .; Tokuyama, HJ Org. Chem. 2010, 75, 627 -636.) Was applied to 68 to give 8-membered amine 69 in 80% yield.

β-アラニンならびに化合物69を原料にして73を合成した。   73 was synthesized from β-alanine and compound 69 as raw materials.

次に、マレイミドユニット67を文献(Figueiredo, R. M.; Oczipka, P.; Frohlich, R.; Christmann, M. Synthesis2008, 8, 1316-1318.)に従い合成した。   Next, maleimide unit 67 was synthesized according to the literature (Figueiredo, R.M .; Oczipka, P .; Frohlich, R .; Christmann, M. Synthesis 2008, 8, 1316-1318.).

次に、マレイミドユニット67 (X = OH)と化合物73の縮合反応を検討した。その結果、縮合剤EDCを用いた場合、72が生じたが収率は最高でも20%であったが(Entries 1-3)、67を酸クロリドへと変換した後反応させると高反応性シクロオクチン72を40%の収率で得ることができた(Entry 4)。   Next, the condensation reaction of maleimide unit 67 (X = OH) and compound 73 was examined. As a result, when the condensing agent EDC was used, 72 was produced, but the yield was 20% at the maximum (Entries 1-3) .However, when the reaction was carried out after converting 67 to acid chloride, a highly reactive cyclohexane was obtained. Octin72 was obtained in 40% yield (Entry 4).

また、73と78から、別の高反応性シクロオクチン79を合成した。   Another highly reactive cyclooctyne 79 was synthesized from 73 and 78.

化合物79の合成
73(212 mg, 0.623 mmol)、78(290 mg, 1.87 mmol)をTHF(5.5 ml)及びNaHCO3水(5.5 ml)の混合液に溶かし、室温で30分間撹拌した。NH4Cl sat.を加え、CH2Cl2で抽出した。有機層を無水MgSO4で乾燥し、溶媒を減圧留去した。残渣をカラムクロマトグラフィー(hexane-EtOAc, 1:1)で精製し79(139 mg, 62%)を得た。
1H NMR (300 MHz, CDCl3) : 2.18-2.31 (1 H, m), 2.46-2.55 (1 H, m), 3.64 (1 H, d, J = 14 Hz), 3.54-3.63 (1 H, m), 3.68-3.80 (1 H, m), 5.14 (1 H, d, J = 14 Hz), 6.53 (1H, s), 7.22-7.41 (7 H, m), 7.69 (1 H, d, J = 7 Hz).
HRMS (MALDI-TOF): m/z calcd for C22H16N2O3Na [M + Na]+: 379.1053, found: 379.1052.
<実施例6>
PEG (Mw 2kDa)を導入したシクロオクチン81を合成した。すなわち、末端にカルボキシル基とアミノ基を有する市販のPEG 80を出発原料とし、先ほどと同様にしてマレイミド基を導入した。続いてカルボキシル基をNHSで活性エステルとし、アミン73と反応させ81を3工程64%の収率で得た。
Synthesis of compound 79
73 (212 mg, 0.623 mmol) and 78 (290 mg, 1.87 mmol) were dissolved in a mixture of THF (5.5 ml) and aqueous NaHCO 3 (5.5 ml), and the mixture was stirred at room temperature for 30 minutes. NH 4 Cl sat. Was added and extracted with CH 2 Cl 2 . The organic layer was dried over anhydrous MgSO 4 and the solvent was distilled off under reduced pressure. The residue was purified by column chromatography (hexane-EtOAc, 1: 1) to obtain 79 (139 mg, 62%).
1 H NMR (300 MHz, CDCl 3 ): 2.18-2.31 (1 H, m), 2.46-2.55 (1 H, m), 3.64 (1 H, d, J = 14 Hz), 3.54-3.63 (1 H , m), 3.68-3.80 (1 H, m), 5.14 (1 H, d, J = 14 Hz), 6.53 (1H, s), 7.22-7.41 (7 H, m), 7.69 (1 H, d , J = 7 Hz).
HRMS (MALDI-TOF): m / z calcd for C 22 H 16 N 2 O 3 Na [M + Na] + : 379.1053, found: 379.1052.
<Example 6>
Cyclooctin 81 into which PEG (Mw 2 kDa) was introduced was synthesized. That is, a commercially available PEG 80 having a carboxyl group and an amino group at the terminal was used as a starting material, and a maleimide group was introduced in the same manner as before. Subsequently, the carboxyl group was converted into an active ester with NHS and reacted with amine 73 to obtain 81 in 3 steps and 64% yield.

化合物81の合成 Synthesis of compound 81

80(0.10 g, 46 μmol)、78(22 mg, 0.14 mmol)をMeCN(0.5 ml)及びNaHCO3 水(0.5 ml)に溶かし、室温で3時間撹拌した。1M HCl 水を加え、CH2Cl2で3回抽出した。有機層を無水MgSO4で乾燥し、溶媒を減圧留去した。残渣をCH2Cl2(1.0 ml)に溶かし、NHS(16 mg, 0.14 mmol)、EDC(27 mg, 0.14 mmol)を加え、室温で16時間撹拌した。H2Oを加え、CH2Cl2で3回抽出した。有機層を無水MgSO4で乾燥し、溶媒を減圧留去した。残渣をCH2Cl2(1.0 ml)に溶かし、73(25 mg, 92 μmol)、Et3N (13 μl, 92 μmol)を加え3時間撹拌した。1M HCl 水を加え、CH2Cl2で3回抽出した。有機層を無水MgSO4で乾燥し、溶媒を減圧留去した。残渣をカラムクロマトグラフィー(CH2Cl2-MeOH, 10:1)で精製した。その後、逆相HPLC (MeCN-H2O, 7:3)で精製し、81(72mg, 64%)を得た。
<実施例7〜11> PEG化ペプチドの体内動態を可視化する分子の合成
<実施例7>
化合物82の合成
最初に、前記において合成したアジドPEG 52とアルキン79を用いてHuisgen反応を検討した。
80 (0.10 g, 46 μmol) and 78 (22 mg, 0.14 mmol) were dissolved in MeCN (0.5 ml) and aqueous NaHCO 3 (0.5 ml), and the mixture was stirred at room temperature for 3 hours. 1M HCl water was added and extracted 3 times with CH 2 Cl 2 . The organic layer was dried over anhydrous MgSO 4 and the solvent was distilled off under reduced pressure. The residue was dissolved in CH 2 Cl 2 (1.0 ml), NHS (16 mg, 0.14 mmol) and EDC (27 mg, 0.14 mmol) were added, and the mixture was stirred at room temperature for 16 hours. H 2 O was added and extracted 3 times with CH 2 Cl 2 . The organic layer was dried over anhydrous MgSO 4 and the solvent was distilled off under reduced pressure. The residue was dissolved in CH 2 Cl 2 (1.0 ml), 73 (25 mg, 92 μmol) and Et 3 N (13 μl, 92 μmol) were added, and the mixture was stirred for 3 hours. 1M HCl water was added and extracted 3 times with CH 2 Cl 2 . The organic layer was dried over anhydrous MgSO 4 and the solvent was distilled off under reduced pressure. The residue was purified by column chromatography (CH 2 Cl 2 -MeOH, 10: 1). Thereafter, reverse phase HPLC: Purification by (MeCN-H 2 O, 7 3), to give the 81 (72mg, 64%).
<Examples 7 to 11> Synthesis of molecules for visualizing pharmacokinetics of PEGylated peptides <Example 7>
Synthesis of Compound 82 First, the Huisgen reaction was examined using the azide PEG 52 and alkyne 79 synthesized above.

79(4.9 mg, 14 μmol)をMeCN(0.3 ml)に溶かし、室温で52(20 mg, 10 μmol)を加え室温で15分間撹拌した。溶媒を減圧留去し、残渣を逆相HPLC(MeCN-H2O, 95:5)で精製し、82(20mg, 80%,2種の位置異性体3:2の混合物)を得た。2種の位置異性体のどちらが主生成物であるかは決定していない。79 (4.9 mg, 14 μmol) was dissolved in MeCN (0.3 ml), 52 (20 mg, 10 μmol) was added at room temperature, and the mixture was stirred at room temperature for 15 minutes. The solvent was distilled off under reduced pressure, and the residue was purified by reverse phase HPLC (MeCN-H 2 O, 95: 5) to obtain 82 (20 mg, 80%, mixture of two regioisomers 3: 2). It has not been determined which of the two regioisomers is the main product.

<実施例8>
化合物83の合成
79 (0.2 mg, 0.56 μmol)、cyclo-RGDfC-SH (0.50 μmol)をDMF(70 μl)とNaHCO3水(0.10 M, 70 μl)の混合液に溶かし、室温で24時間撹拌した。HPLC (5C18-AR-II, 4.6×250 mm, MeCN : H2O = 1 : 1, 流速1.0mLmin-1,検出: UV 254 nm)にて分析し、79ならびにcyclo-RGDfC-SHとは異なる新しいピーク(保持時間3.3分)を分取して化合物83を得た。
HRMS (MALDI-TOF): m/z calcd for C46H51N10O10S [M + H]+: 935.3505, found: 935.3492.
<Example 8>
Synthesis of compound 83
79 (0.2 mg, 0.56 μmol) and cyclo-RGDfC-SH (0.50 μmol) were dissolved in a mixture of DMF (70 μl) and NaHCO 3 water (0.10 M, 70 μl) and stirred at room temperature for 24 hours. Analysis by HPLC (5C 18 -AR-II, 4.6 × 250 mm, MeCN: H 2 O = 1: 1, flow rate 1.0mLmin -1 , detection: UV 254 nm), 79 and cyclo-RGDfC-SH Different new peaks (retention time 3.3 minutes) were fractionated to give compound 83.
HRMS (MALDI-TOF): m / z calcd for C 46 H 51 N 10 O 10 S [M + H] + : 935.3505, found: 935.3492.

<実施例9>
対照化合物として、cyclo-RGDfC-SHの代わりにドデカンチオールを導入した84を同様にして合成した。
<Example 9>
As a control compound, 84 in which dodecanethiol was introduced instead of cyclo-RGDfC-SH was synthesized in the same manner.

79(7.0 mg, 20 μmol)をMeCN(0.2 ml)とCH2Cl2(10 μl)の混合液に溶かし、0℃でドデカンチオール(3.8 μl, 15.7 μmol)、K2CO3(4.1 mg, 29 μmol)を加え、室温で11時間撹拌した。溶媒を減圧留去し、残渣をカラムクロマトグラフィー(hexane-EtOAc, 1:1)で精製し、84(6.8 mg, 78%)を得た。
1H NMR (300 MHz, CDCl3) : 0.88 (3 H, t, J = 7 Hz), 1.21-1.37 (18 H, m), 1.44-1.70 (2 H, m), 2.19 (1 H, sext, J = 8 Hz), 2.36 (1 H, dt, J = 19, 3 Hz), 2.42-2.84 (3 H, m), 2.94 (1 H, ddd, J = 22, 19, 9 Hz), 3.46-3.75 (3 H, m), 3.64 (1 H, d, J = 14 Hz), 5.14 (1 H, d, J = 14 Hz), 7.26-7.41 (7 H, m), 7.69 (1 H, d, J = 7 Hz).
HRMS (MALDI-TOF): m/z calcd for C34H43N2O3S [M + H]+: 559.2989, found: 559.2989.
<実施例10>
83と56のHuisgen反応による結合を試みた。その結果、83は速やかに消失し、化合物85が得られた(図3)。
79 (7.0 mg, 20 μmol) was dissolved in a mixture of MeCN (0.2 ml) and CH 2 Cl 2 (10 μl), and dodecanethiol (3.8 μl, 15.7 μmol), K 2 CO 3 (4.1 mg, 29 μmol) was added, and the mixture was stirred at room temperature for 11 hours. The solvent was distilled off under reduced pressure, and the residue was purified by column chromatography (hexane-EtOAc, 1: 1) to obtain 84 (6.8 mg, 78%).
1 H NMR (300 MHz, CDCl 3 ): 0.88 (3 H, t, J = 7 Hz), 1.21-1.37 (18 H, m), 1.44-1.70 (2 H, m), 2.19 (1 H, sext , J = 8 Hz), 2.36 (1 H, dt, J = 19, 3 Hz), 2.42-2.84 (3 H, m), 2.94 (1 H, ddd, J = 22, 19, 9 Hz), 3.46 -3.75 (3 H, m), 3.64 (1 H, d, J = 14 Hz), 5.14 (1 H, d, J = 14 Hz), 7.26-7.41 (7 H, m), 7.69 (1 H, d, J = 7 Hz).
HRMS (MALDI-TOF): m / z calcd for C 34 H 43 N 2 O 3 S [M + H] + : 559.2989, found: 559.2989.
<Example 10>
We tried to combine 83 and 56 by Huisgen reaction. As a result, 83 disappeared rapidly and compound 85 was obtained (FIG. 3).

化合物85の合成 Synthesis of Compound 85

83(30 nmol)、56(45 nmol)をDMF(50 μl)、H2O(50 μl)に溶かし、室温で15分間撹拌した。
<実施例11>
83と56aのHuisgen反応を行い、化合物85aを得た。
83 (30 nmol) and 56 (45 nmol) were dissolved in DMF (50 μl) and H 2 O (50 μl) and stirred at room temperature for 15 minutes.
<Example 11>
A Huisgen reaction of 83 and 56a was performed to obtain compound 85a.

83(32 nmol) をDMFとNaHCO3水の1 : 1 混合液(8.0 μl)に溶解し、56a(8 nmol)のDMF 溶液(12.5 μl)とMeCN(20 μl)の混合液を加えた。反応液を室温で8時間撹拌した。HPLC (5C18-AR-II 4.6×250 mm, MeCN:H2O = 5 : 95 (0 min) →5 : 95 (5 min) →50 : 50 (15 min) →50 : 50 (25 min) → 95 : 5 (30 min) → 100 : 0 (35 min), 流速1.0 mL min-1, 検出: UV 254 nm, 650 nm及びコロナ荷電化粒子検出器、図4A,B参照) の保持時間(21分)のピークを分取し、85aを得た。
<実施例12>
バックグラウンド用として84と56のHuisgen反応により86を合成した。700nmで検出したところ56が消失し、保持時間11.5分の新しいピークがAlexa Fluor付加体86であると考えられる(図5)。また、ピーク面積を基に収率は52%と推定した。
83 (32 nmol) was dissolved in a 1: 1 mixture (8.0 μl) of DMF and NaHCO 3 water, and a mixture of 56a (8 nmol) in DMF (12.5 μl) and MeCN (20 μl) was added. The reaction was stirred at room temperature for 8 hours. HPLC (5C 18 -AR-II 4.6 × 250 mm, MeCN: H 2 O = 5: 95 (0 min) → 5: 95 (5 min) → 50: 50 (15 min) → 50: 50 (25 min) → 95: 5 (30 min) → 100: 0 (35 min), flow rate 1.0 mL min -1 , detection: UV 254 nm, 650 nm and corona charged particle detector (see Fig. 4A, B)) The peak at 21 minutes was collected to obtain 85a.
<Example 12>
86 was synthesized by Huisgen reaction of 84 and 56 for background use. When detected at 700 nm, 56 disappeared, and a new peak with a retention time of 11.5 minutes is considered to be Alexa Fluor adduct 86 (FIG. 5). The yield was estimated to be 52% based on the peak area.

化合物86の合成 Synthesis of Compound 86

84(60 nmol)、56(30 nmol)をDMF(50 μl)、H2O(50 μl)に溶かし、室温で15分間撹拌した。逆相HPLC(MeCN-H2O, 30:70→100:0)で分析し、86(52%)を得た。
<実施例13>
対照化合物として、cyclo-RGDfCの代わりにドデカンチオールが結合した86aを同様にして合成した。
84 (60 nmol) and 56 (30 nmol) were dissolved in DMF (50 μl) and H 2 O (50 μl), and the mixture was stirred at room temperature for 15 minutes. Analysis by reverse phase HPLC (MeCN-H 2 O, 30: 70 → 100: 0) gave 86 (52%).
<Example 13>
As a control compound, 86a to which dodecanethiol was bonded instead of cyclo-RGDfC was synthesized in the same manner.

化合物86aの合成
84 (図6) (32 nmol)と56a(8 nmol) のDMF(12.5 μl)溶液を室温で70分間撹拌した。HPLC (5C18-AR-II 4.6×250 mm, MeCN:H2O = 5 : 95 (0 min) →5 : 95 (5 min) →50 : 50 (15 min) →50 : 50 (25 min) → 95 : 5 (30 min) → 100 : 0 (35 min), 流速1.0 mL min-1, 検出: UV 254 nm, 650 nm及びコロナ荷電化粒子検出器、図7A,B参照) の保持時間(21分)のピークを分取し、86aを得た。
<実施例14>
RGDfC-PEG(85a)のin vivoイメージング
1. 実験材料
各サンプル: RGDfC-PEG(85a), control-PEG(86a)
クロロフィルを含まないマウス飼育用飼料:オリエンタル酵母工業(株)
イソフルラン(エスカイン<登録商標>):メルク製薬(株)
insuflon<登録商標>:Unomedical
2. 実験方法
(がん細胞の培養)
移植がん細胞としてA549ヒト肺がん細胞株を用いた。培養培地としては、D-MEM/Ham’s F-12にペニシリンG(100 unit/mL)、ストレプトマイシン溶液(100 μg/mL)を加えたものに、非働化ウシ胎児血清(Fetal bovine serum:FBS)を加えて調製した10% FBS D-MEM/Ham’s F-12 (P/S+)を用いた。インキュベーター内で5% CO2存在下37oCで培養し、コンフルエント時には、0.25% Trypsin/EDTA-PBS(-)溶液で細胞を剥離し、継代を行った。
(担がんマウスの作製)
実験動物には5週齢の雄性BALB/c nu/nu マウス(日本SLC)を用いた。マウスは、クロロフィルを含まない飼料を与えて飼育し、イメージング時のバックグラウンドを低減した。
Synthesis of Compound 86a
84 (FIG. 6) A solution of (32 nmol) and 56a (8 nmol) in DMF (12.5 μl) was stirred at room temperature for 70 minutes. HPLC (5C 18 -AR-II 4.6 × 250 mm, MeCN: H 2 O = 5: 95 (0 min) → 5: 95 (5 min) → 50: 50 (15 min) → 50: 50 (25 min) → 95: 5 (30 min) → 100: 0 (35 min), flow rate 1.0 mL min -1 , detection: UV 254 nm, 650 nm and corona charged particle detector (see Fig. 7A, B)) The peak at 21 minutes was fractionated to obtain 86a.
<Example 14>
In vivo imaging of RGDfC-PEG (85a)
1. Experimental material samples: RGDfC-PEG (85a), control-PEG (86a)
Feed for mice rearing without chlorophyll: Oriental Yeast Co., Ltd.
Isoflurane (Escaine <registered trademark>): Merck Pharmaceutical Co., Ltd.
insuflon <registered trademark>: Unnomedical
2. Experimental method (culture of cancer cells)
A549 human lung cancer cell line was used as transplanted cancer cells. The culture medium is D-MEM / Ham's F-12 plus penicillin G (100 unit / mL) and streptomycin solution (100 μg / mL) plus inactivated fetal bovine serum (FBS). In addition, 10% FBS D-MEM / Ham's F-12 (P / S +) prepared was used. The cells were cultured in an incubator at 37 ° C. in the presence of 5% CO 2 , and when confluent, the cells were detached with a 0.25% Trypsin / EDTA-PBS (−) solution and subcultured.
(Production of cancer-bearing mice)
As experimental animals, 5-week-old male BALB / c nu / nu mice (Japan SLC) were used. Mice were fed with chlorophyll-free food to reduce background during imaging.

A549細胞の懸濁液(1.0×107cells / 0.2 mL/ mouse)をマウスの左腹側部に移植し、腫瘍径が約10 mmに到達した時点でイメージングに用いた。
(サンプル調製)
各サンプル[RGDfC-PEG (85a), control-PEG (86a)]を10 nmol / mLとなるように、適量の生理食塩水にて用時溶解した。
(in vivoイメージング)
担がんマウスの尾静脈内にカニューレ(insuflon<登録商標>)を挿入後、専用チャンバー内でイソフルラン(エスカイン<登録商標>)を用いてマウスを麻酔した。マウスをIVIS Lumina Imaging System(Xenogen社)の装置内に固定後、調製した各サンプル(2 nmol / 0.2 mL / mouse)を尾静脈内投与した。投与直後から各サンプルに含まれるAlexa647の蛍光を非侵襲的にイメージングした。投与3時間後にマウスを解剖し、血液、各臓器、および腫瘍への85a, 86aの分布をIVISにてex vivoイメージングした。
3. 実験結果
A549ヒト肺がん細胞移植マウスに投与したcontrol-PEG(86a) あるいはRGDfC-PEG(85a) の体内動態をAlexa647の蛍光によってin vivoイメージングした結果を図8A,Bに示す。いずれのサンプルにおいても腎臓から膀胱へと移行していく様子が観察された。投与3時間後にマウスを解剖し、血液、各臓器、および腫瘍への86a, 85aの分布をIVISにてex vivoイメージングした結果を図9に示す。この結果から、RGDfC-PEG(85a)の腎臓および腫瘍への顕著な集積が観察された。したがって、RGDfC-PEG(85a)は腫瘍のイメージングに有用であることが示唆された。
<実施例15>
A suspension of A549 cells (1.0 × 10 7 cells / 0.2 mL / mouse) was transplanted into the left ventral region of the mouse and used for imaging when the tumor diameter reached about 10 mm.
(Sample preparation)
Each sample [RGDfC-PEG (85a), control-PEG (86a)] was dissolved at the time of use in an appropriate amount of physiological saline so as to be 10 nmol / mL.
(In vivo imaging)
After inserting a cannula (insuflon (registered trademark)) into the tail vein of the tumor bearing mouse, the mouse was anesthetized using isoflurane (escaine (registered trademark)) in a dedicated chamber. After fixing the mouse in the device of IVIS Lumina Imaging System (Xenogen), each prepared sample (2 nmol / 0.2 mL / mouse) was administered into the tail vein. Immediately after administration, Alexa647 fluorescence contained in each sample was imaged noninvasively. Three hours after the administration, the mice were dissected, and the distribution of 85a and 86a to blood, each organ, and tumor was imaged ex vivo with IVIS.
3. Experimental results
8A and 8B show the results of in vivo imaging of the pharmacokinetics of control-PEG (86a) or RGDfC-PEG (85a) administered to A549 human lung cancer cell-transplanted mice using Alexa647 fluorescence. In each sample, a transition from the kidney to the bladder was observed. The mouse was dissected 3 hours after administration, and the results of ex vivo imaging of 86a and 85a distribution to blood, organs, and tumors by IVIS are shown in FIG. From this result, significant accumulation of RGDfC-PEG (85a) in kidney and tumor was observed. Therefore, RGDfC-PEG (85a) was suggested to be useful for tumor imaging.
<Example 15>

83(25 nmol)、52(Mw 2 kDa, 50 nmol)をDMF(50 μl)、H2O(50 μl)に溶かし、室温で15分間撹拌した。逆相HPLCで分析し、87を得た(図10)。
<実施例16>
83 (25 nmol) and 52 (Mw 2 kDa, 50 nmol) were dissolved in DMF (50 μl) and H 2 O (50 μl), and the mixture was stirred at room temperature for 15 minutes. Analysis by reverse phase HPLC gave 87 (Figure 10).
<Example 16>

化合物88の合成
81 (0.26 μmol)をMeCN (0.5ml) に溶解し、52 (0.19 μmol)を加えて室温で120分間撹拌した。HPLC (5C18-AR-II 4.6×250 mm, MeCN:H2O = 1 : 1, 流速0.4 mL min-1, 検出: UV 254 nm及びコロナ荷電化粒子検出器、図11A,B参照) の保持時間(14分)のピークを分取し、88を得た。なお、HPLCでは81は8min, 52と88はいづれも14minに現れる。88と52が重なり、反応の終点を判断することはできなかったので、念のために120分間、反応を行った。
MS (MALDI-TOF): m/z calcd for C200H371N6O88FNa [M (n1 = n2 =42) + Na]+: 4307.4622, found: 4307.3684.
<実施例17>
Synthesis of Compound 88
81 (0.26 μmol) was dissolved in MeCN (0.5 ml), 52 (0.19 μmol) was added, and the mixture was stirred at room temperature for 120 minutes. HPLC (5C 18 -AR-II 4.6 × 250 mm, MeCN: H 2 O = 1: 1, flow rate 0.4 mL min −1 , detection: UV 254 nm and corona charged particle detector, see FIGS. 11A and B) A peak with a retention time (14 minutes) was collected to obtain 88. In HPLC, 81 appears in 8 min, and 52 and 88 both appear in 14 min. Since 88 and 52 overlapped and the end point of the reaction could not be judged, the reaction was performed for 120 minutes just in case.
MS (MALDI-TOF): m / z calcd for C 200 H 371 N 6 O 88 FNa [M (n 1 = n 2 = 42) + Na] + : 4307.4622, found: 4307.3684.
<Example 17>

化合物90の合成
89 (2.2 μmol)のMeCN (0.4ml)溶液にK2CO3 (0.6 mg, 4.4 μmol)を加えた後、dodecanethiol のMeCN溶液(24 mM)を0.1 ml加え、反応液を室温で220分間撹拌した。粗生成物(化合物90)はそのまま次の反応に用いた。
HRMS (MALDI-TOF): m/z calcd for C111H211N3O50SK [M (n = 42) + K]+: 2457.3413, found: 2457.3437.
<実施例18>
Synthesis of compound 90
After adding K 2 CO 3 (0.6 mg, 4.4 μmol) to 89 (2.2 μmol) MeCN (0.4 ml) solution, add 0.1 ml of dodecanethiol MeCN solution (24 mM) and stir the reaction at room temperature for 220 minutes. did. The crude product (Compound 90) was directly used in the next reaction.
HRMS (MALDI-TOF): m / z calcd for C 111 H 211 N 3 O 50 SK (M (n = 42) + K] + : 2457.3413, found: 2457.3437.
<Example 18>

化合物91の合成
90 (4.0×102 μmol)のCH2Cl2 (0.25 ml)溶液に73のCH2Cl2 溶液(36 mM)を17.5 μl加え、室温で15分間撹拌し、化合物91を得た。
HRMS (MALDI-TOF): m/z calcd for C127H226N4O49SK [M (n = 43) + K]+: 2662.4668, found: 2662.4610.
Synthesis of compound 91
17.5 μl of 73 CH 2 Cl 2 solution (36 mM) was added to 90 (4.0 × 10 2 μmol) CH 2 Cl 2 (0.25 ml) solution and stirred at room temperature for 15 minutes to obtain Compound 91.
HRMS (MALDI-TOF): m / z calcd for C 127 H 226 N 4 O 49 SK [M (n = 43) + K] + : 2662.4668, found: 2662.4610.

Claims (17)

次式(I-a):
(式中、Ra1は2価のC1〜C6炭化水素基、Rb1〜Rb10はそれぞれ独立に水素原子またはフッ素原子、Rc1は水素原子またはフッ素原子を示し、Xは2価のC1〜C12炭化水素基または-Rd1(OCH2CH2)mRd2-(Rd1はアミド基または(OCH2CH2)mの酸素原子と共に構成されてもよいカルバミン酸エステル基を有していてもよい2価のC1〜C12炭化水素基、Rd2はアミド基を有していてもよい2価のC1〜C6炭化水素基、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)、Yは生物活性物質を含む1価の基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。Ra1は-N3-の3つの窒素原子のうち両端のいずれか一方の窒素原子に結合している。)で表わされる、[18F]Fで標識されたPEG化生物活性物質。
The following formula (Ia):
(In the formula, R a1 represents a divalent C 1 to C 6 hydrocarbon group, R b1 to R b10 each independently represents a hydrogen atom or a fluorine atom, R c1 represents a hydrogen atom or a fluorine atom, and X represents a divalent C 1 to C 12 hydrocarbon group or —R d1 (OCH 2 CH 2 ) m R d2 — (R d1 represents an amide group or a carbamic acid ester group which may be formed with an oxygen atom of (OCH 2 CH 2 ) m. Divalent C 1 to C 12 hydrocarbon group that may have, R d2 may be a divalent C 1 to C 6 hydrocarbon group that may have an amide group, m is 1 kDa to 40 kDa in terms of molecular weight Y represents a monovalent group containing a biologically active substance, n represents an integer in the range of 1 kDa to 40 kDa in terms of molecular weight, and R a1 represents three nitrogen atoms of —N 3 —. PEGylated bioactive substance labeled with [ 18 F] F, which is bound to any one of the nitrogen atoms at both ends.
請求項1に記載のPEG化生物活性物質を製造する方法であって、次式(II-a):
(式中、Ra1は2価のC1〜C6炭化水素基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)で表わされる[18F]フルオロPEG化合物と、次式(III):
(式中、Rb1〜Rb10はそれぞれ独立に水素原子またはフッ素原子、Rc1は水素原子またはフッ素原子を示し、Xは2価のC1〜C12炭化水素基または-Rd1(OCH2CH2)mRd2-(Rd1はC1〜C12炭化水素基または2価のC1〜C12アミド基またはカルバミン酸エステル基含有炭化水素基、Rd2は2価のC1〜C6炭化水素基、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)、Yは生物活性物質を含む1価の基を示す。)で表わされる環状アセチレン化合物とを、生理的条件下(水溶液中、室温、かつ銅触媒の不存在下)に反応させ、前記式(I-a)で表わされるPEG化生物活性物質を合成することを特徴とする、[18F]Fで標識されたPEG化生物活性物質の製造方法。
A process for producing the PEGylated bioactive substance according to claim 1, wherein the formula (II-a):
(Wherein, R a1 is a divalent C 1 -C 6 hydrocarbon radical, n is an integer in the range of 1kDa~40kDa molecular weight basis.) And represented by [18 F] fluoro-PEG compound, the following formula (III):
(Wherein R b1 to R b10 each independently represents a hydrogen atom or a fluorine atom, R c1 represents a hydrogen atom or a fluorine atom, X represents a divalent C 1 to C 12 hydrocarbon group or —R d1 (OCH 2 CH 2 ) m R d2- (R d1 is a C 1 to C 12 hydrocarbon group or divalent C 1 to C 12 amide group or carbamic acid ester group-containing hydrocarbon group, R d2 is a divalent C 1 to C 6 hydrocarbon group, m represents an integer in the range of 1 kDa to 40 kDa in terms of molecular weight.), Y represents a monovalent group containing a biologically active substance.) And a cyclic acetylene compound represented by physiological conditions Labeled with [ 18 F] F, characterized in that the reaction is carried out under an aqueous solution (at room temperature and in the absence of a copper catalyst) to synthesize the PEGylated bioactive substance represented by the formula (Ia). A method for producing a PEGylated bioactive substance.
次式(I-b):
(式中、Ra1は2価のC1〜C6炭化水素基、Rb1〜Rb10はそれぞれ独立に水素原子またはフッ素原子、Rc1は水素原子またはフッ素原子を示し、Xは2価のC1〜C12炭化水素基または-Rd1(OCH2CH2)mRd2-(Rd1はアミド基または(OCH2CH2)mの酸素原子と共に構成されてもよいカルバミン酸エステル基を有していてもよい2価のC1〜C12炭化水素基、Rd2はアミド基を有していてもよい2価のC1〜C6炭化水素基、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)、Yは生物活性物質を含む1価の基、Zは蛍光色素を含む1価の基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。Ra1は-N3-の3つの窒素原子のうち両端のいずれか一方の窒素原子に結合している。)で表わされる、蛍光標識されたPEG化生物活性物質。
Formula (Ib):
(In the formula, R a1 represents a divalent C 1 to C 6 hydrocarbon group, R b1 to R b10 each independently represents a hydrogen atom or a fluorine atom, R c1 represents a hydrogen atom or a fluorine atom, and X represents a divalent C 1 to C 12 hydrocarbon group or —R d1 (OCH 2 CH 2 ) m R d2 — (R d1 represents an amide group or a carbamic acid ester group which may be formed with an oxygen atom of (OCH 2 CH 2 ) m. Divalent C 1 to C 12 hydrocarbon group that may have, R d2 may be a divalent C 1 to C 6 hydrocarbon group that may have an amide group, m is 1 kDa to 40 kDa in terms of molecular weight Y represents a monovalent group containing a biologically active substance, Z represents a monovalent group containing a fluorescent dye, and n represents an integer in the range of 1 kDa to 40 kDa in terms of molecular weight. a1 is a fluorescently labeled PEGylated bioactive substance represented by the following formula: a1 is bonded to any one of the three nitrogen atoms of —N 3 —.
請求項3に記載のPEG化生物活性物質を製造する方法であって、次式(II-b):
(式中、Zは蛍光色素を含む1価の基、Ra1は2価のC1〜C6炭化水素基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)で表わされる蛍光色素含有PEG化合物と、次式(III):
(式中、Rb1〜Rb10はそれぞれ独立に水素原子またはフッ素原子、Rc1は水素原子またはフッ素原子を示し、Xは2価のC1〜C12炭化水素基または-Rd1(OCH2CH2)mRd2-(Rd1はアミド基または(OCH2CH2)mの酸素原子と共に構成されてもよいカルバミン酸エステル基を有していてもよい2価のC1〜C12炭化水素基、Rd2はアミド基を有していてもよい2価のC1〜C6炭化水素基、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)、Yは生物活性物質を含む1価の基を示す。)で表わされる環状アセチレン化合物とを、生理的条件下(水溶液中、室温、かつ銅触媒の不存在下)に反応させ、前記式(I-b)で表わされるPEG化生物活性物質を合成することを特徴とする、蛍光標識されたPEG化生物活性物質の製造方法。
A method for producing the PEGylated bioactive substance according to claim 3, wherein the formula (II-b):
(In the formula, Z represents a monovalent group containing a fluorescent dye, R a1 represents a divalent C 1 to C 6 hydrocarbon group, and n represents an integer in the range of 1 kDa to 40 kDa in terms of molecular weight.) Fluorescent dye-containing PEG compound and the following formula (III):
(Wherein R b1 to R b10 each independently represents a hydrogen atom or a fluorine atom, R c1 represents a hydrogen atom or a fluorine atom, X represents a divalent C 1 to C 12 hydrocarbon group or —R d1 (OCH 2 CH 2 ) m R d2 — (R d1 is a divalent C 1 to C 12 carbon atom which may have an amide group or a carbamate group which may be formed with an oxygen atom of (OCH 2 CH 2 ) m. Hydrogen group, R d2 is a divalent C 1 -C 6 hydrocarbon group optionally having an amide group, m is an integer in the range of 1 kDa to 40 kDa in terms of molecular weight), Y is a biologically active substance Is reacted with a cyclic acetylene compound represented by formula (Ib) in physiological conditions (in aqueous solution, at room temperature and in the absence of a copper catalyst). A method for producing a fluorescently labeled PEGylated bioactive substance, comprising synthesizing a bioactive substance.
次式(II-a’):
(式中、Ra1は2価のC1〜C6炭化水素基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)で表されるデオキシフルオロPEG化合物。
Formula (II-a '):
(Wherein R a1 is a divalent C 1 -C 6 hydrocarbon group, and n is an integer in the range of 1 kDa to 40 kDa in terms of molecular weight).
式(II-a’)のFが、18Fである請求項5に記載のデオキシフルオロPEG化合物。The deoxyfluoroPEG compound according to claim 5, wherein F in the formula (II-a ′) is 18 F. 次式(II-b):
(式中、Zは蛍光色素を含む1価の基、Ra1は2価のC1〜C6炭化水素基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)で表される蛍光色素含有PEG化合物。
Formula (II-b):
(In the formula, Z represents a monovalent group containing a fluorescent dye, R a1 represents a divalent C 1 to C 6 hydrocarbon group, and n represents an integer in the range of 1 kDa to 40 kDa in terms of molecular weight.) Fluorescent dye-containing PEG compound.
次式(II-c):
(式中、Rh1はハロゲン原子で置換されていてもよい1価のC1〜C12炭化水素基、またはヘテロ原子もしくはハロゲン原子を含んでいてもよいC1〜C4有機基で置換されていてもよいフェニル基、Ra1は2価のC1〜C6炭化水素基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)で表されるスルホニル化PEG化合物。
Formula (II-c):
(In the formula, R h1 is substituted with a monovalent C 1 to C 12 hydrocarbon group which may be substituted with a halogen atom, or a C 1 to C 4 organic group which may contain a hetero atom or a halogen atom. phenyl groups optionally, R a1 is a divalent C 1 -C 6 hydrocarbon radical, n is an integer in the range of 1kDa~40kDa molecular weight terms.) sulfonylated PEG compound represented by.
請求項8に記載のスルホニル化PEG化合物の製造方法であって、次式(II-c-1):
(式中、Ra1は2価のC1〜C6炭化水素基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)で表わされる化合物と、ジアゾ転送試薬のスルホニルアジド化合物とを溶媒中で反応させて次式(II-c-2):
(式中、Ra1およびnは前記と同義である。)を合成し、次いで得られた式(II-c-2)で表わされる化合物と、スルホニル化試薬とを溶媒中で反応させて前記式(II-c)で表わされるスルホニル化PEG化合物を合成することを特徴とするスルホニル化PEG化合物の製造方法。
A method for producing a sulfonylated PEG compound according to claim 8, which is represented by the following formula (II-c-1):
(Wherein R a1 is a divalent C 1 -C 6 hydrocarbon group, n is an integer in the range of 1 kDa to 40 kDa in terms of molecular weight), a diazo transfer reagent sulfonyl azide compound, Is reacted in a solvent to give the following formula (II-c-2):
(Wherein R a1 and n have the same meanings as described above), and then the obtained compound represented by the formula (II-c-2) is reacted with a sulfonylating reagent in a solvent. A method for producing a sulfonylated PEG compound, comprising synthesizing a sulfonylated PEG compound represented by the formula (II-c).
請求項6に記載のデオキシフルオロPEG化合物の製造方法であって、次式(II-c):
(式中、Rh1はハロゲン原子で置換されていてもよい1価のC1〜C12炭化水素基、またはヘテロ原子もしくはハロゲン原子を含んでいてもよいC1〜C4有機基で置換されていてもよいフェニル基、Ra1は2価のC1〜C6炭化水素基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)で表されるスルホニル化PEG化合物と、[18F]標識フッ素化試薬とを溶媒中で反応させて、[18F]で標識された前記式(II-a’)で表わされるデオキシフルオロPEG化合物を合成することを特徴とするデオキシフルオロPEG化合物の製造方法。
It is a manufacturing method of the deoxyfluoro PEG compound of Claim 6, Comprising: following formula (II-c):
(In the formula, R h1 is substituted with a monovalent C 1 to C 12 hydrocarbon group which may be substituted with a halogen atom, or a C 1 to C 4 organic group which may contain a hetero atom or a halogen atom. An optionally substituted phenyl group, R a1 is a divalent C 1 -C 6 hydrocarbon group, n is an integer in the range of 1 kDa to 40 kDa in terms of molecular weight, and A deoxyfluoroPEG compound represented by the above formula (II-a ′) labeled with [ 18 F] is synthesized by reacting with an 18 F] labeled fluorinating reagent in a solvent. Compound production method.
請求項7に記載の蛍光色素含有PEG化合物の製造方法であって、次式(II-b-1):
(式中、Ra1は2価のC1〜C6炭化水素基、nは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)で表される化合物と、この式(II-b-1)で表される化合物のアミノ基と反応する官能基を有する蛍光色素とを反応させて、前記式(II-b)で表される蛍光色素含有PEG化合物を合成することを特徴とする蛍光色素含有PEG化合物の製造方法。
A method for producing a fluorescent dye-containing PEG compound according to claim 7, wherein the following formula (II-b-1):
(Wherein R a1 is a divalent C 1 -C 6 hydrocarbon group, n is an integer in the range of 1 kDa to 40 kDa in terms of molecular weight) and this formula (II-b- Fluorescence characterized by synthesizing a fluorescent dye-containing PEG compound represented by the formula (II-b) by reacting with a fluorescent dye having a functional group that reacts with the amino group of the compound represented by 1) A method for producing a dye-containing PEG compound.
次式(III):
(式中、Rb1〜Rb10はそれぞれ独立に水素原子またはフッ素原子、Rc1は水素原子またはフッ素原子を示し、Xは2価のC1〜C12炭化水素基または-Rd1(OCH2CH2)mRd2-(Rd1はアミド基または(OCH2CH2)mの酸素原子と共に構成されてもよいカルバミン酸エステル基を有していてもよい2価のC1〜C12炭化水素基、Rd2はアミド基を有していてもよい2価のC1〜C6炭化水素基、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)、Yは生物活性物質を含む1価の基を示す。)で表わされる環状アセチレン化合物。
Formula (III):
(Wherein R b1 to R b10 each independently represents a hydrogen atom or a fluorine atom, R c1 represents a hydrogen atom or a fluorine atom, X represents a divalent C 1 to C 12 hydrocarbon group or —R d1 (OCH 2 CH 2 ) m R d2 — (R d1 is a divalent C 1 to C 12 carbon atom which may have an amide group or a carbamate group which may be formed with an oxygen atom of (OCH 2 CH 2 ) m. Hydrogen group, R d2 is a divalent C 1 -C 6 hydrocarbon group optionally having an amide group, m is an integer in the range of 1 kDa to 40 kDa in terms of molecular weight), Y is a biologically active substance A cyclic acetylene compound represented by the formula:
次式(III-1):
(式中、Rb1〜Rb10はそれぞれ独立に水素原子またはフッ素原子、Rc1、Rc2はそれぞれ独立に水素原子またはフッ素原子を示し、Xは2価のC1〜C12炭化水素基または-Rd1(OCH2CH2)mRd2-(Rd1はアミド基または(OCH2CH2)mの酸素原子と共に構成されてもよいカルバミン酸エステル基を有していてもよい2価のC1〜C12炭化水素基、Rd2はアミド基を有していてもよい2価のC1〜C6炭化水素基、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)を示す。)で表わされる環状アセチレン化合物。
Formula (III-1):
(Wherein R b1 to R b10 each independently represent a hydrogen atom or a fluorine atom, R c1 and R c2 each independently represent a hydrogen atom or a fluorine atom, and X represents a divalent C 1 to C 12 hydrocarbon group or -R d1 (OCH 2 CH 2 ) m R d2- (R d1 may have an amide group or a carbamate group which may be formed with an oxygen atom of (OCH 2 CH 2 ) m . C 1 -C 12 hydrocarbon group, R d2 is a divalent C 1 -C 6 hydrocarbon group optionally having an amide group, and m is an integer in the range of 1 kDa to 40 kDa in terms of molecular weight.) A cyclic acetylene compound represented by:
請求項13に記載の環状アセチレン化合物の製造方法であって、次式(III-1-1):
(式中、Rb1〜Rb10はそれぞれ独立に水素原子またはフッ素原子、Re1は2価のC1〜C5炭化水素基を示す。)で表わされる環状アセチレン化合物と、次式(III-1-2):
(式中、Rc1、Rc2はそれぞれ独立に水素原子またはフッ素原子、Rc3はC1〜C8炭化水素基または-Rd3(OCH2CH2)mRd4-(Rd3は2価のC1〜C8炭化水素基またはOCH2CH2、Rd4はアミド基を有していてもよい2価のC1〜C6炭化水素基、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)、ORc4は前記(III-1)で表される蛍光色素含有PEG化合物のアミノ基との反応により脱離する脱離基を示す。)で表わされるマレイミド化合物とを反応させて、前記式(III-1)で表される蛍光色素含有PEG化合物を合成することを特徴とする環状アセチレン化合物の製造方法。
It is a manufacturing method of the cyclic acetylene compound of Claim 13, Comprising: following formula (III-1-1):
(Wherein R b1 to R b10 each independently represents a hydrogen atom or a fluorine atom, R e1 represents a divalent C 1 to C 5 hydrocarbon group), and a cyclic acetylene compound represented by the following formula (III- 1-2):
(In the formula, R c1 and R c2 are each independently a hydrogen atom or a fluorine atom, R c3 is a C 1 to C 8 hydrocarbon group or —R d3 (OCH 2 CH 2 ) m R d4 — (R d3 is divalent) C 1 to C 8 hydrocarbon group or OCH 2 CH 2 , R d4 may have an amide group, m is a divalent C 1 to C 6 hydrocarbon group, m is in the range of 1 kDa to 40 kDa in terms of molecular weight OR c4 represents a leaving group that is eliminated by the reaction with the amino group of the fluorescent dye-containing PEG compound represented by (III-1) above.) Then, a method for producing a cyclic acetylene compound, which comprises synthesizing a fluorescent dye-containing PEG compound represented by the formula (III-1).
請求項12に記載の環状アセチレン化合物の製造方法であって、次式(III-1):
(式中、Rb1〜Rb10はそれぞれ独立に水素原子またはフッ素原子、Rc1、Rc2はそれぞれ独立に水素原子またはフッ素原子を示し、Xは2価のC1〜C12炭化水素基または-Rd1(OCH2CH2)mRd2-(Rd1はアミド基または(OCH2CH2)mの酸素原子と共に構成されてもよいカルバミン酸エステル基を有していてもよい2価のC1〜C12炭化水素基、Rd2はアミド基を有していてもよい2価のC1〜C6炭化水素基、mは分子量換算で1kDa〜40kDaの範囲内の整数を示す。)を示す。)で表わされる環状アセチレン化合物と、この式(III-1)で表される環状アセチレン化合物のマレイミド基と反応する官能基を有する生物活性物質とを反応させて、前記式(III)で表される環状アセチレン化合物を合成することを特徴とする環状アセチレン化合物の製造方法。
It is a manufacturing method of the cyclic acetylene compound of Claim 12, Comprising: following formula (III-1):
(Wherein R b1 to R b10 each independently represent a hydrogen atom or a fluorine atom, R c1 and R c2 each independently represent a hydrogen atom or a fluorine atom, and X represents a divalent C 1 to C 12 hydrocarbon group or -R d1 (OCH 2 CH 2 ) m R d2- (R d1 may have an amide group or a carbamate group which may be formed with an oxygen atom of (OCH 2 CH 2 ) m . C 1 -C 12 hydrocarbon group, R d2 is a divalent C 1 -C 6 hydrocarbon group optionally having an amide group, and m is an integer in the range of 1 kDa to 40 kDa in terms of molecular weight.) And a biologically active substance having a functional group that reacts with the maleimide group of the cyclic acetylene compound represented by the formula (III-1) to react with the above-described formula (III). A method for producing a cyclic acetylene compound, comprising synthesizing a cyclic acetylene compound represented by the formula:
請求項1に記載の[18F]Fで標識されたPEG化生物活性物質の体内動態をポジトロン断層法(PET)によってリアルタイムに非侵襲的かつ定量的に解析する方法。A method for non-invasively and quantitatively analyzing the pharmacokinetics of a PEGylated bioactive substance labeled with [ 18 F] F according to claim 1 in real time by positron tomography (PET). 請求項3に記載の蛍光標識されたPEG化生物活性物質の体内動態を蛍光検出法によってリアルタイムに非侵襲的かつ定量的に解析する方法。   A method for noninvasively and quantitatively analyzing the pharmacokinetics of the fluorescently labeled PEGylated bioactive substance according to claim 3 in real time by a fluorescence detection method.
JP2015508736A 2013-03-28 2014-03-27 Method for producing PEGylated bioactive substance labeled with [18F] F or fluorescent dye, and pharmacokinetic analysis thereof Expired - Fee Related JP6245707B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013070277 2013-03-28
JP2013070277 2013-03-28
PCT/JP2014/059034 WO2014157584A1 (en) 2013-03-28 2014-03-27 Method for producing [18f]f- or fluorescent dye-labeled pegylated bioactive substance, and analysis of in vivo kinetics thereof

Publications (2)

Publication Number Publication Date
JPWO2014157584A1 true JPWO2014157584A1 (en) 2017-02-16
JP6245707B2 JP6245707B2 (en) 2017-12-13

Family

ID=51624540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015508736A Expired - Fee Related JP6245707B2 (en) 2013-03-28 2014-03-27 Method for producing PEGylated bioactive substance labeled with [18F] F or fluorescent dye, and pharmacokinetic analysis thereof

Country Status (2)

Country Link
JP (1) JP6245707B2 (en)
WO (1) WO2014157584A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6848743B2 (en) 2017-07-24 2021-03-24 信越化学工業株式会社 Method for producing and purifying polyalkylene glycol derivative
US20210355275A1 (en) * 2018-09-28 2021-11-18 Zeon Corporation Polyether compound and gas separation membrane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102643420A (en) * 2012-05-09 2012-08-22 中国科学院过程工程研究所 Poly alkyl ether compound with strange end group and double functional groups and application thereof
WO2014084378A1 (en) * 2012-11-29 2014-06-05 国立大学法人 東京大学 Anticancer drug comprising cyclic rgd sequence-containing peptide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104529711B (en) * 2007-11-21 2020-02-07 乔治亚大学研究基金公司 Alkynes and methods of reacting alkynes with 1, 3-dipole-functional compounds
JP5977229B2 (en) * 2010-05-05 2016-08-24 プロリンクス リミテッド ライアビリティ カンパニー Sustained release from macromolecular conjugates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102643420A (en) * 2012-05-09 2012-08-22 中国科学院过程工程研究所 Poly alkyl ether compound with strange end group and double functional groups and application thereof
WO2014084378A1 (en) * 2012-11-29 2014-06-05 国立大学法人 東京大学 Anticancer drug comprising cyclic rgd sequence-containing peptide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KALME SACHIN ET.AL: "F-18 Labeling Protocol of Peptides Based on Chemically Orthogonal Strain-Promoted Cycloaddtion under", BIOCONJUGATE CHEMISTRY, vol. 23, JPN6017032367, 2012, pages 1680 - 1686, XP055043362, ISSN: 0003627916, DOI: 10.1021/bc3002425 *
REDOUAN MAHOU AND CHRISTINE WANDREY: "Versatile Route to Synthesize Heterobifunctional Poly(ethylene glycol) of Variable Functionality for", POLYMERS, vol. 4, JPN7017002799, 2012, pages 561 - 589, ISSN: 0003627915 *

Also Published As

Publication number Publication date
JP6245707B2 (en) 2017-12-13
WO2014157584A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
US7115249B2 (en) Solid-phase electrophilic fluorination
EP1572601B1 (en) Solid-phase preparation of 18 f-labelled amino acids
US10201625B2 (en) Radiolabelled octreotate analogues as PET tracers
US20080274052A1 (en) Radioflorination methods
JP2006523658A (en) Radiofluorination of biologically active vectors
US20120238740A1 (en) Non-polar and polar leaving groups
JP6245707B2 (en) Method for producing PEGylated bioactive substance labeled with [18F] F or fluorescent dye, and pharmacokinetic analysis thereof
US20230106083A1 (en) Silicon-fluoride heteroaromatic systems for applications in positron emission tomography (pet) molecular imaging
US8247534B2 (en) Synthesis of radiofluorinated peptide using microwave activation technology
US8629299B2 (en) Radiofluorinated compounds and their preparation
US8795631B2 (en) Radiofluorination
KR20200132878A (en) Branched monodisperse polyethylene glycol, intermediate and manufacturing method thereof
US8241606B2 (en) Synthesis of a radiofluorinated peptide using photolabile protecting groups
JP2004529989A (en) Protected tyrosine derivatives, process for their preparation and their use for the preparation of O- (2- [18F] -fluoroethyl) -L-tyrosine
MX2013006050A (en) Preparation of pet precursor.
KR102084472B1 (en) Development of radioisotope labeled nucleotide structure and its labeling method to various aptamers
TWI410398B (en) Bifunctional compound with amino group and n2s2 ligand and method for preparing thereof
KR20120066550A (en) Apopep-1 labeled with f-18 for positron emission tomography imaging of apoptotic cell, preparation and application thereof
JP4989241B2 (en) [18F] labeled compound and method for producing the same, and [18F] labeled liposome and [18F] labeled liposome preparation
Behrens Oxidative coupling of ortho-aminophenols and anilines for the application of labeling proteins with fluorine-18

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171110

R150 Certificate of patent or registration of utility model

Ref document number: 6245707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees