JPWO2014132767A1 - Distance image sensor - Google Patents

Distance image sensor Download PDF

Info

Publication number
JPWO2014132767A1
JPWO2014132767A1 JP2015502836A JP2015502836A JPWO2014132767A1 JP WO2014132767 A1 JPWO2014132767 A1 JP WO2014132767A1 JP 2015502836 A JP2015502836 A JP 2015502836A JP 2015502836 A JP2015502836 A JP 2015502836A JP WO2014132767 A1 JPWO2014132767 A1 JP WO2014132767A1
Authority
JP
Japan
Prior art keywords
light
light receiving
amount
frame data
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015502836A
Other languages
Japanese (ja)
Other versions
JP6025081B2 (en
Inventor
幸弘 鵜飼
幸弘 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNOLOGY HUB INC.
Original Assignee
TECHNOLOGY HUB INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNOLOGY HUB INC. filed Critical TECHNOLOGY HUB INC.
Application granted granted Critical
Publication of JP6025081B2 publication Critical patent/JP6025081B2/en
Publication of JPWO2014132767A1 publication Critical patent/JPWO2014132767A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • G01S7/4914Circuits for detection, sampling, integration or read-out of detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本発明は、受光量が受光素子ごとに順次に取得される方式であっても距離を測定できる距離画像センサである。クロック信号生成部は、受光素子の各々において、照射部による照射光(L1)と、測定対象からの反射光(L2)との位相差の算出に用いられる受光量(A(T0)〜A(T3))についての受光期間(T0〜T3)の始期および終期の各々と同期して変化するクロック信号(CLK)を生成する。受光量取得部は、クロック信号(CLK)に基づいて受光量を順次に取得してフレームデータを取得するステップを複数回繰り返して複数のフレームデータを取得することで、当該複数のフレームデータにおける受光素子の各々の受光量を、それぞれ受光量(A(T0)〜A(T3))に相当させる。距離算出部は、当該複数のフレームデータに基づいて当該位相差を算出して、照射部から測定対象までの距離を算出する。The present invention is a distance image sensor capable of measuring a distance even when the amount of received light is sequentially acquired for each light receiving element. In each of the light receiving elements, the clock signal generation unit is configured to receive the received light amount (A (T0) to A ( A clock signal (CLK) that changes in synchronization with the start and end of the light receiving period (T0 to T3) for T3)) is generated. The received light amount acquisition unit sequentially acquires the received light amount based on the clock signal (CLK) and acquires the frame data by repeating the step of acquiring the frame data a plurality of times, thereby acquiring the plurality of frame data. The amount of light received by each element corresponds to the amount of light received (A (T0) to A (T3)). The distance calculation unit calculates the phase difference based on the plurality of frame data, and calculates the distance from the irradiation unit to the measurement target.

Description

本発明は、距離画像センサに関する。   The present invention relates to a distance image sensor.

非特許文献1では、距離画像を取得するための画像センサが記載されている。ここでいう距離画像とは、測定対象の奥行き(距離)が示された画像のことである。非特許文献1では、測定対象へと照射光を照射し、測定対象で反射した反射光をCCD(Charge-Coupled-Device)イメージセンサで受光する。そして、照射光と反射光との位相差(或いは時間差、以下同様)に基づいて、光源から測定対象までの距離を測定する。このような位相差に基づく距離測定方法はTOF(Time-of-flight)法と呼ばれる。   Non-Patent Document 1 describes an image sensor for acquiring a distance image. The distance image here is an image showing the depth (distance) of the measurement target. In Non-Patent Document 1, irradiation light is irradiated onto a measurement object, and reflected light reflected by the measurement object is received by a CCD (Charge-Coupled-Device) image sensor. Then, the distance from the light source to the measurement object is measured based on the phase difference (or time difference, hereinafter the same) between the irradiation light and the reflected light. A distance measurement method based on such a phase difference is called a TOF (Time-of-flight) method.

また非特許文献1では、CCDイメージセンサにおいて複数のPoly-Siゲートを形成し、当該ゲートに印加する電圧を順次に切り替えることで、受光領域を変化させる。これにより、距離測定に必要な受光信号を得ている。   In Non-Patent Document 1, a light receiving area is changed by forming a plurality of Poly-Si gates in a CCD image sensor and sequentially switching voltages applied to the gates. As a result, a received light signal necessary for distance measurement is obtained.

なお本発明に関連する技術として特許文献1〜4および非特許文献2〜4を掲示する。   Patent Documents 1 to 4 and Non-Patent Documents 2 to 4 are posted as techniques related to the present invention.

特開2012−29130号公報JP2012-29130A 特開2012−37526号公報JP 2012-37526 A 特開2011−128024号公報JP 2011-128024 A 特開2012−93131号公報JP 2012-93131 A

橋本裕介、外4名、「周囲光消去型距離画像センサ」、パナソニック電工技報、第57巻、第2号、p.4-9Yusuke Hashimoto, 4 others, “Ambient Light Erasing Range Image Sensor”, Panasonic Electric Works Technical Report, Vol.57, No.2, p.4-9 橋本裕介、外5名、「面積復調方式による高感度距離画像センサ」、パナソニック電工技報、第59巻、第3号、p.45-50Yusuke Hashimoto, 5 others, “High-sensitivity range image sensor by area demodulation method”, Panasonic Electric Works Technical Report, Vol. 59, No. 3, p. 45-50 エイチ・キム(H. Kim)、外2名、「A NOVEL WITH A SINGLE CARRIER MODULATION PHOTODETECTOR」、APCOT (Asia-Pacific Conference on Transducers and Micro-Nano Technology) 2008、開催時期:22-25, June 2008H. Kim, 2 others, “A NOVEL WITH A SINGLE CARRIER MODULATION PHOTODETECTOR”, APCOT (Asia-Pacific Conference on Transducers and Micro-Nano Technology) 2008, Date: 22-25, June 2008 宮川良平、外1名、「電荷により時系列演算を行なうスマートイメージセンサ」、テレビジョン学会技術報告、1995年11月、第19巻、第65号、pp.37-41Ryohei Miyagawa, 1 other, “Smart Image Sensor that Performs Time-Series Operations by Electric Charge”, Television Society Technical Report, November 1995, Vol. 19, No. 65, pp. 37-41

しかしながら非特許文献1では、Poly-Siゲートを形成し、当該ゲートに印加する電圧を順次に切り替える特殊な構造が必要であり、製造コストの増大を招く。   However, Non-Patent Document 1 requires a special structure in which a Poly-Si gate is formed and the voltage applied to the gate is sequentially switched, resulting in an increase in manufacturing cost.

また非特許文献1ではCCDイメージセンサが採用されている。CCDイメージセンサでは、その構造上、全ての受光素子の受光信号を同時に取得するグローバルシャッター方式が一般的に採用される。   In Non-Patent Document 1, a CCD image sensor is employed. In general, a CCD image sensor employs a global shutter system that simultaneously obtains light reception signals of all light receiving elements.

一方で、CMOS(Complementary-Metal-Oxide-Semiconductor)イメージセンサのように、受光素子の受光信号が順次に取得されるローリングシャッター方式に対しては、非特許文献1の技術をそのまま適用することが難しい。   On the other hand, the technique of Non-Patent Document 1 can be applied as it is to a rolling shutter system in which the light reception signals of the light receiving elements are sequentially acquired, such as a CMOS (Complementary-Metal-Oxide-Semiconductor) image sensor. difficult.

そこで、本発明は、受光量が受光素子ごとに順次に取得される方式であっても距離を測定できる距離画像センサを提供することを目的とする。   Accordingly, an object of the present invention is to provide a distance image sensor capable of measuring a distance even in a system in which the amount of received light is sequentially acquired for each light receiving element.

本発明にかかる距離画像センサの第1の態様は、ある変調周期で照射光の強度を変調させながら、前記照射光を測定対象へと照射する照射部と、測定対象からの反射光を受光する複数の受光素子と、前記受光素子の各々において前記照射光と前記反射光との位相差の算出に用いられる複数の受光量を得るための複数の受光期間の始期および終期の各々と同期して変化するクロック信号を生成するクロック生成部と、前記クロック信号に基づいて前記受光素子の受光量を順次に取得してフレームデータを取得するステップを複数回繰り返して複数のフレームデータを取得することで、前記複数のフレームデータにおける同じ前記受光素子での複数の受光量が、それぞれ前記複数の受光期間における受光量に相当する受光量取得部と、前記複数のフレームデータに基づいて前記位相差を算出して、前記照射部から前記測定対象までの距離を算出する距離算出部とを備える。   The first aspect of the distance image sensor according to the present invention is configured to receive the reflected light from the measurement target and the irradiation unit that irradiates the measurement target with the irradiation light while modulating the intensity of the irradiation light at a certain modulation period. A plurality of light receiving elements and each of the light receiving elements in synchronization with each of the start and end of a plurality of light receiving periods for obtaining a plurality of light receiving amounts used for calculating a phase difference between the irradiation light and the reflected light. A clock generation unit that generates a changing clock signal, and a step of acquiring frame data by sequentially acquiring the amount of light received by the light receiving element based on the clock signal to acquire a plurality of frame data by repeating a plurality of times. A plurality of received light amounts at the same light receiving element in the plurality of frame data, each of which corresponds to a received light amount in the plurality of light receiving periods; It calculates the phase difference on the basis of the frame data, and a distance calculation unit that calculates a distance from the irradiation portion to the measurement target.

本発明にかかる距離画像センサの第2の態様は、第1の態様にかかる距離画像センサであって、前記複数の受光期間が4つの受光期間であり、前記4つの受光期間の始期がそれぞれ前記変調周期の4分の1周期ずつずれる。   A second aspect of the distance image sensor according to the present invention is the distance image sensor according to the first aspect, wherein the plurality of light reception periods are four light reception periods, and the start periods of the four light reception periods are respectively It shifts by a quarter of the modulation period.

本発明にかかる距離画像センサの第3の態様は、第1又は第2の態様にかかる距離画像センサであって、前記変調周期は前記クロック信号の周期の偶数倍であり、前記複数のフレームデータは第1から第4のフレームデータであり、前記受光素子の各々の前記受光量は、前記第1のフレームデータにおいては前記クロック信号の偶数番目および奇数番目のいずれか一方の立ち上がりを契機として取得され、前記第2のフレームデータにおいては前記クロック信号の他方の立ち上がりを契機として取得され、前記第3のフレームデータにおいては前記クロック信号の偶数番目および奇数番目のいずれか一方の立ち下がりを契機として取得され、前記第4のフレームデータにおいては前記クロック信号の他方の立ち下がりを契機として取得される。   A third aspect of the distance image sensor according to the present invention is the distance image sensor according to the first or second aspect, wherein the modulation period is an even multiple of the period of the clock signal, and the plurality of frame data Is the first to fourth frame data, and the amount of received light of each of the light receiving elements is acquired in response to the rising edge of either the even or odd number of the clock signal in the first frame data. In the second frame data, the second frame data is acquired with the other rising edge of the clock signal as an opportunity, and in the third frame data, either the even-numbered or odd-numbered falling edge of the clock signal is used as an opportunity. Acquired in the fourth frame data, triggered by the other falling edge of the clock signal.

本発明にかかる距離画像センサの第4の態様は、第3の態様にかかる距離画像センサであって、前記受光量取得部は、前記受光素子の前記受光量を、前記クロック信号の立ち上がり毎に所定の順番で順次に取得して、前記第1および前記第2のフレームデータを取得し、前記受光素子の前記受光量を、前記クロック信号の立ち下がり毎に前記順番で順次に取得して、前記第3および前記第4のフレームデータを取得する。   A fourth aspect of the distance image sensor according to the present invention is the distance image sensor according to the third aspect, wherein the received light amount acquisition unit determines the received light amount of the light receiving element at each rising edge of the clock signal. Obtaining the first and second frame data sequentially in a predetermined order, obtaining the received light amount of the light receiving element sequentially in the order at each falling edge of the clock signal, The third and fourth frame data are acquired.

本発明にかかる距離画像センサの第5の態様は、第1又は第2の態様にかかる距離画像センサであって、前記複数のフレームデータのうち一のフレーデータにおける前記受光素子の前記受光量のいずれもが、前記複数の受光期間のうち一の受光期間における受光量に相当する。   A fifth aspect of the distance image sensor according to the present invention is the distance image sensor according to the first or second aspect, wherein the received light amount of the light receiving element in one frame data among the plurality of frame data. All correspond to the amount of light received in one light receiving period among the plurality of light receiving periods.

本発明にかかる距離画像センサの第6の態様は、第5の態様にかかる距離画像センサであって、前記変調周期は前記クロック信号の周期の偶数倍であり、前記複数のフレームデータは第1から第4のフレームデータであり、前記受光量取得部は、前記クロック信号の奇数番目の立ち上がりの各々を契機として前記受光素子の前記受光量を順次に取得して、前記第1のフレームデータを取得し、前記クロック信号の偶数番目の立ち上がりの各々を契機として前記受光素子の前記受光量を順次に取得して、前記第2のフレームデータを取得し、前記クロック信号の奇数番目の立ち下がりの各々を契機として前記受光素子の前記受光量を順次に取得して、前記第3のフレームデータを取得し、前記クロック信号の偶数番目の立ち下がりの各々を契機として前記受光素子の前記受光量を順次に取得して、前記第4のフレームデータを取得する。   A sixth aspect of the distance image sensor according to the present invention is the distance image sensor according to the fifth aspect, wherein the modulation period is an even multiple of the period of the clock signal, and the plurality of frame data are the first frame data. To the fourth frame data, and the received light amount acquisition unit sequentially acquires the received light amount of the light receiving element in response to each of odd-numbered rising edges of the clock signal, and obtains the first frame data. And sequentially acquiring the amount of received light of the light receiving element in response to each of the even-numbered rising edges of the clock signal to acquire the second frame data, and the odd-numbered falling edges of the clock signal. In response to each, the received light amount of the light receiving element is sequentially acquired, the third frame data is acquired, and each even-numbered falling edge of the clock signal is triggered. The amount of light received by the light receiving element are sequentially acquired and to acquire the fourth frame data.

本発明にかかる距離画像センサの第7の態様は、第1の態様にかかる距離画像センサであって、前記照射部は、前記照射光の強度をパルス状に変調し、前記複数の受光期間は、前記照射光の強度が立ち上がる時点から立ち下がる時点までの第1期間、および、前記第1期間と同じ長さを有し、前記照射光の強度が立ち下がる時点から立ち上がる時点までの第2期間である。   A seventh aspect of the distance image sensor according to the present invention is the distance image sensor according to the first aspect, wherein the irradiation unit modulates the intensity of the irradiation light in a pulse shape, and the plurality of light receiving periods are A first period from the time when the intensity of the irradiation light rises to a time when the intensity falls, and a second period from the time when the intensity of the irradiation light rises to the time when the intensity of the irradiation light falls. It is.

本発明にかかる距離画像センサの第8の態様は、第7の態様にかかる距離画像センサであって、前記複数のフレームデータは第1および第2のフレームデータであり、前記受光量取得部は、前記クロック信号に基づいて、前記受光素子の前記第1期間における前記受光量を順次に取得して前記第1のフレームデータを取得し、前記クロック信号に基づいて、前記受光素子の前記第2期間における前記受光量を順次に取得して前記第2のフレームデータを取得する。   An eighth aspect of the distance image sensor according to the present invention is the distance image sensor according to the seventh aspect, wherein the plurality of frame data are first and second frame data, and the received light amount acquisition unit is Then, based on the clock signal, the light receiving amount of the light receiving element in the first period is sequentially obtained to obtain the first frame data, and on the basis of the clock signal, the second light receiving element is obtained. The second frame data is acquired by sequentially acquiring the received light amount in the period.

本発明にかかる距離画像センサの第9の態様は、第5、第6又は第8の態様にかかる距離画像センサであって、前記測定対象についての動きベクトルを検出する動きベクトル検出部と、前記動きベクトルに基づいて、前記複数のフレームデータにおいて前記受光素子を互いに対応させる動き補償部を更に備える。   A ninth aspect of the distance image sensor according to the present invention is the distance image sensor according to the fifth, sixth, or eighth aspect, wherein a motion vector detection unit that detects a motion vector for the measurement target; A motion compensation unit that associates the light receiving elements with each other in the plurality of frame data based on a motion vector is further provided.

本発明にかかる距離画像センサの第10の態様は、第9の態様にかかる距離画像センサであって、前記照射部は直流成分の第2照射光を出力し、前記動きベクトル検出部は、前記第2照射光を出力した状態において前記受光素子が受光する受光量を順次に取得して得られる少なくとも2つの動きベクトル用フレームデータを用いて、前記動きベクトルを検出する。   A distance image sensor according to a tenth aspect of the distance image sensor according to the present invention is the distance image sensor according to the ninth aspect, wherein the irradiation unit outputs a second irradiation light of a DC component, and the motion vector detection unit is The motion vector is detected by using at least two motion vector frame data obtained by sequentially acquiring the amount of light received by the light receiving element in the state in which the second irradiation light is output.

本発明にかかる距離画像センサの第11の態様は、第9の態様にかかる距離画像センサであって、前記受光素子の相互間に設けられて、色に対応した光を受光する複数のカメラ用受光素子を更に備え、前記受光量取得部は、前記受光素子の前記受光量および前記カメラ用受光素子の受光量を順次に取得して、前記複数のフレームデータを取得し、前記動きベクトル検出部は、前記複数のフレームデータにおける前記カメラ用受光素子の受光量に基づいて、前記動きベクトルを検出する。   An eleventh aspect of the distance image sensor according to the present invention is the distance image sensor according to the ninth aspect, wherein the distance image sensor is provided between the light receiving elements and receives a light corresponding to a color. The light receiving element further includes a light receiving element, the light receiving amount acquiring unit sequentially acquires the light receiving amount of the light receiving element and the light receiving amount of the camera light receiving element, acquires the plurality of frame data, and the motion vector detecting unit Detects the motion vector based on the amount of light received by the camera light receiving element in the plurality of frame data.

本発明にかかる距離画像センサの第12の態様は、第1から第11のいずれか一つの態様にかかる距離画像センサであって、前記受光素子の相互間に設けられて、色に対応した光を受光する複数のカメラ用受光素子と、前記受光素子の前記受光量に係数を掛けた値を、前記カメラ用受光素子の受光量から減算する補正を行う補正部とを更に備える。   A twelfth aspect of the distance image sensor according to the present invention is the distance image sensor according to any one of the first to eleventh aspects, wherein the distance image sensor is provided between the light receiving elements and corresponds to a color. And a correction unit that performs correction to subtract a value obtained by multiplying the received light amount of the light receiving element by a coefficient from the received light amount of the camera light receiving element.

本発明にかかる距離画像センサの第13の態様は、第12の態様にかかる距離画像センサであって、前記補正に用いられる前記受光素子は、前記受光素子のうち、前記補正の対象となる前記カメラ用受光素子に最も近い位置に設けられる。   A thirteenth aspect of the distance image sensor according to the present invention is the distance image sensor according to the twelfth aspect, wherein the light receiving element used for the correction is the correction target among the light receiving elements. It is provided at a position closest to the camera light receiving element.

本発明にかかる距離画像センサの第14の態様は、第12または第13の態様にかかる距離画像センサであって、前記照射光は赤外光であり、前記カメラ用受光素子の各々は赤、青および緑のいずれかに対応した光をそれぞれ受光し、前記補正部は、前記赤に対応した前記カメラ用受光素子の受光量のみに対して前記補正を行う。   A fourteenth aspect of the distance image sensor according to the present invention is the distance image sensor according to the twelfth or thirteenth aspect, wherein the irradiation light is infrared light, and each of the camera light receiving elements is red, The light corresponding to either blue or green is received, and the correction unit performs the correction only on the amount of light received by the camera light receiving element corresponding to the red.

本発明にかかる距離画像センサの第15の態様は、第1から第14のいずれか一つの態様にかかる距離画像センサであって、前記照射部が前記照射光を照射しない状態で取得される前記受光素子の受光量を周囲光とし、前記受光素子の前記受光量から、前記周囲光を減算して出力するキャリブレーション部と、前記キャリブレーション部からの前記受光量をアナログデータからデジタルデータへと変換する変換部とを更に備える。   A fifteenth aspect of the distance image sensor according to the present invention is the distance image sensor according to any one of the first to fourteenth aspects, wherein the irradiation unit is acquired in a state where the irradiation light is not irradiated. A calibration unit that outputs the amount of light received by the light receiving element as ambient light, subtracts the ambient light from the amount of light received by the light receiving element, and outputs the amount of light received from the calibration unit from analog data to digital data. And a conversion unit for converting.

本発明にかかる距離画像センサの第16の態様は、第1から第15のいずれか一つの態様にかかる距離画像センサであって、前記受光素子の各々は、受光した光の強度に応じて電流を流すフォトディテクタと、前記電流が流れ込む複数のコンデンサと、前記フォトディテクタと前記複数のコンデンサとの接続関係を変更するスイッチとを備え、前記受光量取得部は、前記受光素子の各々に接続された前記コンデンサに充電された電圧を前記受光量として取得する。   A sixteenth aspect of the distance image sensor according to the present invention is the distance image sensor according to any one of the first to fifteenth aspects, wherein each of the light receiving elements has a current corresponding to the intensity of received light. And a plurality of capacitors through which the current flows, and a switch that changes a connection relationship between the photodetector and the plurality of capacitors, and the received light amount acquisition unit is connected to each of the light receiving elements. The voltage charged in the capacitor is acquired as the amount of received light.

本発明にかかる距離画像センサの第17の態様は、第16の態様にかかる距離画像センサであって、前記スイッチを制御して、前記照射光が小さいほど、前記複数のコンデンサのうち前記フォトディテクタに接続されるコンデンサの合成静電容量を低減させるスイッチ制御部を更に備える。   A seventeenth aspect of the distance image sensor according to the present invention is the distance image sensor according to the sixteenth aspect, wherein the switch is controlled so that the smaller the irradiation light is, the more the condenser detects the light detector. It further includes a switch control unit that reduces the combined capacitance of the connected capacitors.

本発明にかかる距離画像センサの第18の態様は、第3から第6のいずれか一つの態様にかかる距離画像センサであって、前記変調周期は前記クロック信号の周期の2倍であり、前記距離算出部は、前記受光素子の前記第1から前記第4のフレームデータにおける前記受光量A(T0),A(T2),A(T3),A(T1)と、前記照射光と前記反射光との位相差φとの関係式、φ=tan−1[{A(T3)−A(T1)}/{A(T0)−A(T2)}]に基づいて、前記照射部から前記測定対象までの距離を算出する。An eighteenth aspect of the distance image sensor according to the present invention is the distance image sensor according to any one of the third to sixth aspects, wherein the modulation period is twice the period of the clock signal, The distance calculation unit includes the received light amounts A (T0), A (T2), A (T3), A (T1), the irradiation light, and the reflection in the first to fourth frame data of the light receiving element. Based on the relational expression with respect to the phase difference φ with respect to light, φ = tan −1 [{A (T3) −A (T1)} / {A (T0) −A (T2)}] Calculate the distance to the measurement object.

本発明にかかる距離画像センサの第19の態様は、第3から第6のいずれか一つの態様にかかる距離画像センサであって、前記変調周期は前記クロック信号の周期の2N(Nは2以上の整数)倍であり、前記距離算出部は、互いに隣り合うN個の前記受光素子の前記第1のフレームデータにおける前記受光量の和A(T0)と、前記N個の前記受光素子の前記第2のフレームデータにおける前記受光量の和A(T2)と、前記N個の前記受光素子の前記第3のフレームデータにおける前記受光量の和A(T3)と、前記N個の前記受光素子の前記第4のフレームデータにおける前記受光量の和A(T1)と、前記照射光および前記反射光の位相差φとの関係式、φ=tan−1[{A(T3)−A(T1)}/{A(T0)−A(T2)}]に基づいて、前記照射部から前記測定対象までの距離を算出する。A nineteenth aspect of the distance image sensor according to the present invention is the distance image sensor according to any one of the third to sixth aspects, wherein the modulation cycle is 2N of the clock signal cycle (N is 2 or more). The distance calculation unit calculates the sum A (T0) of the received light amounts in the first frame data of the N light receiving elements adjacent to each other and the N light receiving elements. The sum A (T2) of the received light amounts in the second frame data, the sum A (T3) of the received light amounts in the third frame data of the N light receiving elements, and the N light receiving elements. The relational expression between the received light amount sum A (T1) in the fourth frame data and the phase difference φ between the irradiation light and the reflected light, φ = tan −1 [{A (T3) −A (T1 )} / {A (T0) -A (T2)}] Based on, to calculate the distance from the irradiation portion to the measurement target.

本発明にかかる距離画像センサの第1および第2の態様によれば、クロック信号に基づいて受光量を順次に取得してフレームデータを取得する方式(例えばグローバルシャッタ方式)であっても、距離画像を得ることができる。   According to the first and second aspects of the distance image sensor according to the present invention, even in the method of acquiring the frame data by sequentially acquiring the received light amount based on the clock signal (for example, the global shutter method), the distance An image can be obtained.

本発明にかかる距離画像センサの第3の態様について、まず変調周期がクロック周期の2倍である場合について説明する。このとき、偶数番目の立ち上がりを始期とするクロック周期は、例えば変調周期の前半の半周期(期間T0)に相当し、奇数番目の立ち上がりを始期とするクロック周期は、変調周期の後半の半周期(期間T2)に相当する。   Regarding the third aspect of the distance image sensor according to the present invention, a case where the modulation period is twice the clock period will be described first. At this time, the clock cycle starting from the even-numbered rise corresponds to, for example, the first half of the modulation cycle (period T0), and the clock cycle starting from the odd-numbered rise is the half of the second half of the modulation cycle. This corresponds to (period T2).

しかも、第1および第2のフレームデータにおいて一の受光素子の受光量はそれぞれ偶数番目および奇数番目の立ち上がりを契機として取得される。したがって、一の受光素子の第1のフレームデータにおける受光量が期間T0における受光量A(T0)に相当すれば、一の受光素子の第2のフレームデータにおける受光量は期間T2における受光量A(T2)に相当する。   In addition, the received light amount of one light receiving element in the first and second frame data is acquired with the even-numbered and odd-numbered rises as triggers, respectively. Therefore, if the amount of received light in the first frame data of one light receiving element corresponds to the amount of received light A (T0) in period T0, the amount of received light in the second frame data of one light receiving element is the amount of received light A in period T2. This corresponds to (T2).

また例えばクロック信号の立ち上がりと、この次の立ち下がりとの間の期間が、変調周期の4分の1周期に相当すれば、クロック信号の立ち下がりを始期とするクロック周期は、期間T0,T2のいずれかに対して変調周期の4分の1周期ずれる。   Further, for example, if the period between the rising edge of the clock signal and the next falling edge corresponds to one quarter of the modulation period, the clock period starting from the falling edge of the clock signal is the period T0, T2. Is shifted by one quarter of the modulation period.

そして、変調周期がクロック信号の2倍である。よって偶数番目の立ち下がりを始期とするクロック周期は、例えば期間T0,T2の一方(例えば期間T0)に対して変調周期の4分の1ずれた半周期(期間T3)に相当し、奇数番目の立ち下がりを始期とするクロック周期は、期間T0,T2の他方(例えば期間T2)に対して変調周期の4分の1ずれた半周期(期間T1)に相当する。   The modulation period is twice that of the clock signal. Therefore, the clock cycle starting from the even-numbered fall corresponds to a half cycle (period T3) shifted by a quarter of the modulation period with respect to one of the periods T0 and T2 (for example, period T0). The clock cycle starting from the falling edge corresponds to a half cycle (period T1) shifted by a quarter of the modulation period with respect to the other of the periods T0 and T2 (for example, the period T2).

しかも、第3および第4のフレームデータにおいて一の受光素子の受光量はそれぞれ偶数番目および奇数番目の立ち下がりを契機として取得される。したがって、一の受光素子の第3のフレームデータにおける受光量は例えば期間T3における受光量A(T3)に相当し、一の受光素子の第4のフレームデータにおける受光量は例えば期間T1における受光量A(T1)に相当する。   In addition, in the third and fourth frame data, the received light amount of one light receiving element is acquired with the even-numbered and odd-numbered falling as a trigger, respectively. Therefore, the amount of received light in the third frame data of one light receiving element corresponds to, for example, the amount of received light A (T3) in the period T3, and the amount of received light in the fourth frame data of one light receiving element is, for example, the amount of received light in the period T1. This corresponds to A (T1).

したがって、これらの受光量を用いて例えば以下の式を用いて照射光と反射光との間の位相差φを算出することができる。   Therefore, the phase difference φ between the irradiated light and the reflected light can be calculated using these received light amounts using, for example, the following equation.

φ=tan−1[{A(T3)−A(T1)}/{A(T0)−A(T2)}]φ = tan −1 [{A (T3) −A (T1)} / {A (T0) −A (T2)}]

換言すれば、距離測定に適した受光量を取得することができる。   In other words, it is possible to acquire a received light amount suitable for distance measurement.

変調周期がクロック信号の周期の2N(Nは2以上の整数)倍である場合、N個の受光素子を一つの仮想受光素子とみなせば、第1から第4のフレームデータにおいて当該仮想受光素子の受光量A(T0),A(T2),A(T3),A(T1)を得ることができる。この点は第7の実施の形態で詳述される。   When the modulation period is 2N (N is an integer of 2 or more) times the period of the clock signal, if N light receiving elements are regarded as one virtual light receiving element, the virtual light receiving element in the first to fourth frame data Light receiving amounts A (T0), A (T2), A (T3), and A (T1) can be obtained. This point will be described in detail in the seventh embodiment.

本発明にかかる距離画像センサの第4の態様によれば、クロック信号の立ち上がり毎に受光量を取得するので、例えばクロック信号の立ち上がりを一つ飛ばしで受光量を取得する場合に比して、短い期間で第1および第2のフレームデータを取得できる。同様に、比較的短い期間で第3および第4のフレームデータを取得できる。   According to the fourth aspect of the distance image sensor according to the present invention, the amount of received light is acquired every time the clock signal rises. For example, compared to the case where the amount of received light is acquired by skipping one rising edge of the clock signal, The first and second frame data can be acquired in a short period. Similarly, the third and fourth frame data can be acquired in a relatively short period.

本発明にかかる距離画像センサの第5の態様によれば、一のフレーデータにおける受光素子の受光量のいずれもが一の受光期間における受光量に相当する。よって、フレームデータごとにそれぞれ複数の受光期間における受光量に対応させることができる。したがって、動き補償に適した受光量を得ることができる。   According to the fifth aspect of the distance image sensor of the present invention, any light reception amount of the light receiving element in one frame data corresponds to the light reception amount in one light reception period. Therefore, it is possible to correspond to the amount of received light in a plurality of light receiving periods for each frame data. Therefore, a received light amount suitable for motion compensation can be obtained.

本発明にかかる距離画像センサの第6の態様によれば、例えば第1のフレームデータにおける受光素子の全ての受光量は受光量A(T0)に相当し、第2のフレームデータにおける受光素子の全ての受光量は受光量A(T2)に相当し、第3のフレームデータにおける受光素子の全ての受光量は受光量A(T3)に相当し、第4のフレームデータにおける受光素子の全ての受光量は受光量A(T1)に相当する。   According to the sixth aspect of the distance image sensor of the present invention, for example, the total amount of light received by the light receiving elements in the first frame data corresponds to the amount of received light A (T0), and the light receiving elements in the second frame data. All the received light amounts correspond to the received light amount A (T2), all the received light amounts of the light receiving elements in the third frame data correspond to the received light amount A (T3), and all the received light elements in the fourth frame data. The amount of received light corresponds to the amount of received light A (T1).

以上のように、フレームデータごとに受光量A(T0)〜A(T3)に対応させることができる。したがって次に述べるように、動き補償に適した受光量を得ることができる。即ち、第1のフレームデータにおける一の受光素子が、動きベクトルに基づいて、第2のフレームデータにおけるどの受光素子と対応しても、受光量A(T0),A(T2)を取得できる。同様に受光量A(T1),A(T3)も取得できる。   As described above, it is possible to correspond to the received light amounts A (T0) to A (T3) for each frame data. Therefore, as described below, it is possible to obtain an amount of received light suitable for motion compensation. That is, the received light amounts A (T0) and A (T2) can be acquired regardless of which light receiving element in the second frame data corresponds to one light receiving element in the first frame data. Similarly, the received light amounts A (T1) and A (T3) can be acquired.

本発明にかかる距離画像センサの第7の態様によれば、各受光素子について、第1期間の受光量と第2期間の受光量とを、第1および第2のフレームデータにおいて得ることができる。   According to the seventh aspect of the distance image sensor of the present invention, for each light receiving element, the amount of light received in the first period and the amount of light received in the second period can be obtained in the first and second frame data. .

したがって、これらの受光量を用いて例えば以下の式を用いて照射光と反射光との間の時間差ttを、受光素子ごとに算出することができる。以下では、第1期間の期間長さ、第1期間および第2期間の受光量を、それぞれΔT’,A(T0’),A(T1’)で示す。   Therefore, the time difference tt between the irradiation light and the reflected light can be calculated for each light receiving element by using these received light amounts, for example, using the following equation. Hereinafter, the period length of the first period, and the amount of light received in the first period and the second period are denoted by ΔT ′, A (T0 ′), and A (T1 ′), respectively.

tt=ΔT’・A(T1’)/{A(T0’)+A(T1’)}   tt = ΔT ′ · A (T1 ′) / {A (T0 ′) + A (T1 ′)}

以上のように第7の態様によれば、距離測定に適した受光量を取得することができる。   As described above, according to the seventh aspect, it is possible to acquire a received light amount suitable for distance measurement.

本発明にかかる距離画像センサの第8の態様によれば、動き補償に適した受光量を得ることができる。   According to the eighth aspect of the distance image sensor of the present invention, it is possible to obtain a received light amount suitable for motion compensation.

本発明にかかる距離画像センサの第9の態様によれば動き補償を行なうことができる。   According to the ninth aspect of the distance image sensor of the present invention, motion compensation can be performed.

本発明にかかる距離画像センサの第10の態様によれば、直流成分の第2照射光を用いて動きベクトルを検出するので、変調成分の照射光を用いて動きベクトルを検出する場合に比して、検出精度が高い。   According to the tenth aspect of the distance image sensor of the present invention, since the motion vector is detected using the second irradiation light of the DC component, it is compared with the case where the motion vector is detected using the irradiation light of the modulation component. Detection accuracy is high.

本発明にかかる距離画像センサの第11の態様によれば、複数のフレームデータにおいて色に対応する受光量が存在するので、自然画の画像データの作成に資する。しかも動きベクトルを検出するためのみに用いられる動きベクトル用フレームデータを取得する必要がない。よって、動きベクトル用フレームデータを更に取得する場合に比して、必要なデータ量を低減できる。   According to the eleventh aspect of the distance image sensor of the present invention, there is a received light amount corresponding to a color in a plurality of frame data, which contributes to creation of image data of a natural image. In addition, it is not necessary to acquire motion vector frame data used only for detecting a motion vector. Therefore, the required data amount can be reduced as compared with the case of further acquiring motion vector frame data.

本発明にかかる距離画像センサの第12の態様によれば、照射光と同じ波長の光を除去するフィルタをカメラ用受光素子に設ける場合に比して、製造コストを低減できる。   According to the twelfth aspect of the distance image sensor of the present invention, the manufacturing cost can be reduced as compared with the case where a filter for removing light having the same wavelength as the irradiation light is provided in the light receiving element for a camera.

本発明にかかる距離画像センサの第13の態様によれば、補正の精度を向上できる。   According to the thirteenth aspect of the distance image sensor of the present invention, the correction accuracy can be improved.

本発明にかかる距離画像センサの第14の態様によれば、照射光と同じ波長の光を最も受光しやすい赤に対応したカメラ用受光素子のみ補正を行なう。よって演算処理を低減しつつも、他のカメラ用受光素子のみを補正する場合に比して、より実際の色に近い画像データを得ることができる。   According to the fourteenth aspect of the distance image sensor of the present invention, only the light receiving element for a camera corresponding to red that is most likely to receive light having the same wavelength as the irradiated light is corrected. Accordingly, it is possible to obtain image data closer to the actual color as compared with the case where only the other light receiving elements for cameras are corrected, while reducing the arithmetic processing.

本発明にかかる距離画像センサの第15の態様によれば、変換部に入力される受光量のS/N比を向上することができる。   According to the fifteenth aspect of the distance image sensor of the present invention, it is possible to improve the S / N ratio of the received light amount input to the conversion unit.

本発明にかかる距離画像センサの第16の態様によれば、フォトディテクタに接続されるコンデンサの合成静電容量を変化させることができる。よって、受光量における感度を調整できる。   According to the sixteenth aspect of the distance image sensor of the present invention, the combined electrostatic capacitance of the capacitor connected to the photodetector can be changed. Therefore, the sensitivity in the amount of received light can be adjusted.

本発明にかかる距離画像センサの第17の態様によれば、照射光の光量が小さいときに受光素子の感度を向上することができる。よって照射光の光量が小さくても適切に受光量を取得できる。   According to the seventeenth aspect of the distance image sensor of the present invention, the sensitivity of the light receiving element can be improved when the amount of irradiation light is small. Therefore, the amount of received light can be appropriately acquired even if the amount of irradiation light is small.

本発明にかかる距離画像センサの第18の態様によれば、距離を測定できる。   According to the eighteenth aspect of the distance image sensor of the present invention, the distance can be measured.

本発明にかかる距離画像センサの第19の態様によれば、照射装置の性能によらずにクロック信号の周期を短くできるので、第1から第4のフレームデータを取得する期間を短くすることができる。しかも、N個の受光素子の受光量の和を用いている。これにより、N個の受光素子を一つの仮想受光素子と把握して、当該一つの仮想受光素子ごとに距離を算出することができる。   According to the nineteenth aspect of the distance image sensor of the present invention, since the cycle of the clock signal can be shortened regardless of the performance of the irradiation apparatus, the period for acquiring the first to fourth frame data can be shortened. it can. In addition, the sum of the amounts of light received by the N light receiving elements is used. Thereby, N light receiving elements can be grasped as one virtual light receiving element, and a distance can be calculated for each virtual light receiving element.

この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。   The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.

距離画像センサの概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of a distance image sensor. 受光素子の配列の一例を示す模式的な図である。It is a schematic diagram which shows an example of the arrangement | sequence of a light receiving element. 照射光と反射光との一例を示す模式的な図である。It is a schematic diagram which shows an example of irradiated light and reflected light. クロック信号と照射光との一例を示す模式的な図である。It is a schematic diagram which shows an example of a clock signal and irradiation light. クロック信号と受光量の取得タイミングの一例を示す模式的な図である。It is a schematic diagram which shows an example of the acquisition timing of a clock signal and light reception amount. 第1のフレームデータの一例を示す模式的な図である。It is a schematic diagram which shows an example of 1st frame data. クロック信号と受光量の取得タイミングの一例を示す模式的な図である。It is a schematic diagram which shows an example of the acquisition timing of a clock signal and light reception amount. 第2のフレームデータの一例を示す模式的な図である。It is a schematic diagram which shows an example of 2nd frame data. クロック信号と受光量の取得タイミングの一例を示す模式的な図である。It is a schematic diagram which shows an example of the acquisition timing of a clock signal and light reception amount. 第3のフレームデータの一例を示す模式的な図である。It is a schematic diagram which shows an example of 3rd frame data. クロック信号と受光量の取得タイミングの一例を示す模式的な図である。It is a schematic diagram which shows an example of the acquisition timing of a clock signal and light reception amount. 第4のフレームデータの一例を示す模式的な図である。It is a schematic diagram which shows an example of 4th frame data. クロック信号と照射光と一の受光素子で受光される反射光との一例を示す模式的な図である。It is a schematic diagram which shows an example of a clock signal, irradiation light, and the reflected light received by one light receiving element. クロック信号と照射光と一の受光素子で受光される反射光との一例を示す模式的な図である。It is a schematic diagram which shows an example of a clock signal, irradiation light, and the reflected light received by one light receiving element. クロック信号と受光量の取得タイミングの一例を示す模式的な図である。It is a schematic diagram which shows an example of the acquisition timing of a clock signal and light reception amount. クロック信号と照射光と一の受光素子で受光される反射光との一例を示す模式的な図である。It is a schematic diagram which shows an example of a clock signal, irradiation light, and the reflected light received by one light receiving element. 照射光と反射光との一例を示す模式的な図である。It is a schematic diagram which shows an example of irradiated light and reflected light. クロック信号と照射光との一例を示す模式的な図である。It is a schematic diagram which shows an example of a clock signal and irradiation light. クロック信号と受光量の取得タイミングの一例を示す模式的な図である。It is a schematic diagram which shows an example of the acquisition timing of a clock signal and light reception amount. 第1のフレームデータの一例を示す模式的な図である。It is a schematic diagram which shows an example of 1st frame data. クロック信号と受光量の取得タイミングの一例を示す模式的な図である。It is a schematic diagram which shows an example of the acquisition timing of a clock signal and light reception amount. 第2のフレームデータの一例を示す模式的な図である。It is a schematic diagram which shows an example of 2nd frame data. 受光素子の配列の一例を示す模式的な図である。It is a schematic diagram which shows an example of the arrangement | sequence of a light receiving element. 測定対象の一例を示す模式的な図である。It is a schematic diagram which shows an example of a measuring object. 測定対象の一例を示す模式的な図である。It is a schematic diagram which shows an example of a measuring object. 距離画像センサの概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of a distance image sensor. 動き補償部の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of a motion compensation part. 測定対象の一例を示す模式的な図である。It is a schematic diagram which shows an example of a measuring object. 測定対象の一例を示す模式的な図である。It is a schematic diagram which shows an example of a measuring object. 複数のフレームデータと動きベクトルの一例を示す模式的な図である。It is a schematic diagram which shows an example of several frame data and a motion vector. 距離画像センサの概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of a distance image sensor. 距離画像センサの概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of a distance image sensor. 距離画像センサの概念的な外観の一例を示す正面図である。It is a front view which shows an example of a conceptual external appearance of a distance image sensor. 距離画像センサの概念的な外観の一例を示す側面図である。It is a side view which shows an example of the conceptual external appearance of a distance image sensor. 受光素子Pkの概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of the light receiving element Pk. 距離画像センサの概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of a distance image sensor. クロック信号と照射光との一例を示す模式的な図である。It is a schematic diagram which shows an example of a clock signal and irradiation light. クロック信号と受光量の取得タイミングの一例を示す模式的な図である。It is a schematic diagram which shows an example of the acquisition timing of a clock signal and light reception amount. クロック信号と受光量の取得タイミングの一例を示す模式的な図である。It is a schematic diagram which shows an example of the acquisition timing of a clock signal and light reception amount. クロック信号と受光量の取得タイミングの一例を示す模式的な図である。It is a schematic diagram which shows an example of the acquisition timing of a clock signal and light reception amount.

第1の実施の形態.
図1は、第1の実施の形態にかかる距離画像センサの概念的な構成の一例を示すブロック図である。本距離画像センサは、受光装置1と、制御演算装置2と、照射装置3とを備える。
First embodiment.
FIG. 1 is a block diagram illustrating an example of a conceptual configuration of the distance image sensor according to the first embodiment. The distance image sensor includes a light receiving device 1, a control arithmetic device 2, and an irradiation device 3.

照射装置3は照射光L1の強度を調整(変調)しながら、この照射光L1を測定対象へと照射する。照射装置3は例えば近赤外光を出力する発光ダイオード(LED)である。強度は後述のように制御演算装置2によって制御される。   The irradiation device 3 irradiates the measurement target with the irradiation light L1 while adjusting (modulating) the intensity of the irradiation light L1. The irradiation device 3 is, for example, a light emitting diode (LED) that outputs near infrared light. The intensity is controlled by the control arithmetic unit 2 as will be described later.

受光装置1は受光素子群11と受光量取得部10とを備える。受光素子群11は図2に例示するように複数の受光素子P1,P2,P3,・・・を備える。受光素子P1,P2,P3,・・・の各々は、測定対象で反射された光を反射光L2として受光する。かかる受光素子群11はCMOSセンサ(例えば非特許文献3)に用いられ、より詳細には例えばSMPD(Single-Carrier-Modulation-Photo-Detector)で採用される。特にSMPDは、高感度、高速動作、広いダイナミックレンジ、広い分光特性、製造容易性、低消費電力といった特性を有しているので、好適である。   The light receiving device 1 includes a light receiving element group 11 and a received light amount acquisition unit 10. The light receiving element group 11 includes a plurality of light receiving elements P1, P2, P3,... As illustrated in FIG. Each of the light receiving elements P1, P2, P3,... Receives the light reflected by the measurement object as reflected light L2. Such a light receiving element group 11 is used in a CMOS sensor (for example, Non-Patent Document 3), and more specifically, for example, employed in SMPD (Single-Carrier-Modulation-Photo-Detector). In particular, SMPD is suitable because it has characteristics such as high sensitivity, high speed operation, wide dynamic range, wide spectral characteristics, manufacturability, and low power consumption.

受光素子P1,P2,P3,・・・は2次元に配列されており、図2の例示ではマトリックス状に配列される。以下では、受光素子P1,P2,P3,・・・を代表して受光素子Pkとも呼ぶ。   The light receiving elements P1, P2, P3,... Are two-dimensionally arranged, and in the example of FIG. Hereinafter, the light receiving elements P1, P2, P3,...

例えば受光素子Pkはフォトディテクタ11aと増幅回路11bとを有する。フォトディテクタ11aは測定対象からの反射光L2を受光し、これを電荷に変換して電荷蓄積部(不図示)に蓄積する。増幅回路11bは蓄積された電荷を電圧に変換、増幅する。これにより、受光素子Pkで受光される受光量は電圧として出力されることとなる。   For example, the light receiving element Pk includes a photodetector 11a and an amplifier circuit 11b. The photodetector 11a receives the reflected light L2 from the measurement object, converts it into a charge, and stores it in a charge storage section (not shown). The amplifier circuit 11b converts and amplifies the accumulated charge into a voltage. As a result, the amount of light received by the light receiving element Pk is output as a voltage.

受光量取得部10は受光素子Pkの各々の受光量を順次に取得する。例えば第1行目の受光素子が第1列目から最終列目まで順次に選択されて、その受光量が取得され、その後に第2行目の受光素子が第1列目から最終列目まで順次に選択されてその受光量が取得される。以後、同様にして、第3行目から最終行目までの受光素子が順次に選択されて、その受光量が取得される。かかる取得順序はいわゆるローリングシャッター方式の撮像装置において適用される。   The received light amount acquisition unit 10 sequentially acquires the received light amount of each light receiving element Pk. For example, the light receiving elements in the first row are sequentially selected from the first column to the last column, the amount of received light is acquired, and then the light receiving elements in the second row from the first column to the last column. The received light amount is acquired by selecting sequentially. Thereafter, similarly, the light receiving elements from the third row to the last row are sequentially selected, and the amount of received light is acquired. Such an acquisition order is applied to a so-called rolling shutter type imaging apparatus.

このような順次の取得を実行すべく、受光量取得部10は例えばタイミング制御部12と行デコーダ13と列デコーダ14と相関二重サンプル部15と増幅部16とAD変換部17とを備える(図1)。タイミング制御部12は制御演算装置2からクロック信号CLKを受け取る。タイミング制御部12はクロック信号CLKに基づいて、受光素子Pkを順次に選択すべく、行デコーダ13および列デコーダ14へとそれぞれ選択タイミングを通知する。行デコーダ13は選択タイミングに基づいて受光素子Pkを行ごとに適宜に選択し、列デコーダ14は選択タイミングに基づいて受光素子Pkを列ごとに適宜に選択する。   In order to execute such sequential acquisition, the received light amount acquisition unit 10 includes, for example, a timing control unit 12, a row decoder 13, a column decoder 14, a correlated double sample unit 15, an amplification unit 16, and an AD conversion unit 17 ( FIG. 1). The timing control unit 12 receives the clock signal CLK from the control arithmetic device 2. Based on the clock signal CLK, the timing controller 12 notifies the selection timing to the row decoder 13 and the column decoder 14 in order to sequentially select the light receiving elements Pk. The row decoder 13 appropriately selects the light receiving elements Pk for each row based on the selection timing, and the column decoder 14 appropriately selects the light receiving elements Pk for each column based on the selection timing.

選択された受光素子Pkの受光量は相関二重サンプル部15に出力される。相関二重サンプル部15は公知のように受光量のノイズを抑えて当該受光量を増幅部16へと出力する。増幅部16は入力された受光量を増幅してAD変換部17へと出力する。AD変換部17は入力された受光量をアナログデータからデジタルデータに変換して、制御演算装置2へと出力する。   The received light amount of the selected light receiving element Pk is output to the correlated double sample unit 15. As is known, the correlated double sample unit 15 suppresses the noise of the received light amount and outputs the received light amount to the amplifying unit 16. The amplifying unit 16 amplifies the received amount of received light and outputs it to the AD converting unit 17. The AD conversion unit 17 converts the received light reception amount from analog data to digital data and outputs it to the control arithmetic unit 2.

制御演算装置2は記録部23を有しており、各受光素子Pkの受光量はフレームデータとして記録部23に記録される。   The control arithmetic device 2 has a recording unit 23, and the amount of light received by each light receiving element Pk is recorded in the recording unit 23 as frame data.

制御演算装置2は、照射装置3の照射光L1の変調と、受光装置1における受光素子Pkの受光量の取得タイミングとを制御する。これによって、以下に詳述するように、照射装置3から測定対象までの距離を算出するのに適した受光量を、受光素子Pkごとに取得する。以下では、まず受光装置1から測定対象までの距離を算出する方法を説明し、その後に照射光L1の変調と受光素子Pkの受光量の取得タイミングについて説明する。   The control arithmetic device 2 controls the modulation of the irradiation light L1 of the irradiation device 3 and the acquisition timing of the received light amount of the light receiving element Pk in the light receiving device 1. As a result, as will be described in detail below, a light reception amount suitable for calculating the distance from the irradiation device 3 to the measurement target is acquired for each light receiving element Pk. In the following, a method for calculating the distance from the light receiving device 1 to the measurement target will be described first, and then the timing for obtaining the modulation of the irradiation light L1 and the amount of light received by the light receiving element Pk will be described.

<距離算出>
照射装置3から出力された照射光L1は測定対象で反射し、反射光L2として受光装置1で受光される。よって照射装置3から測定対象までの距離が長いほど、照射光L1が照射されてから反射光L2として受光されるまでの期間が長い。換言すると、当該距離が長いほど照射光L1の位相と反射光L2の位相との位相差φが大きい。逆に言えば、当該位相差φを算出することで照射装置3から測定対象までの距離を算出することができる。このような位相差φに基づく距離の算出方法は、いわゆるTOF法と呼ばれる。
<Distance calculation>
The irradiation light L1 output from the irradiation device 3 is reflected by the measurement object, and is received by the light receiving device 1 as reflected light L2. Therefore, the longer the distance from the irradiation device 3 to the measurement target, the longer the period from when the irradiation light L1 is irradiated until it is received as the reflected light L2. In other words, the longer the distance, the larger the phase difference φ between the phase of the irradiation light L1 and the phase of the reflected light L2. In other words, the distance from the irradiation device 3 to the measurement target can be calculated by calculating the phase difference φ. Such a distance calculation method based on the phase difference φ is called a so-called TOF method.

さて各受光素子Pkにおいて位相差φを算出するためには、周知のように、各受光素子Pkにおいて複数の受光期間での受光量が必要となる。かかる複数の受光期間は変調周期に応じて決まっている。以下では具体例を挙げるべく、位相差の算出方法の一例として非特許文献1について説明する。   In order to calculate the phase difference φ in each light receiving element Pk, as is well known, the amount of light received in a plurality of light receiving periods is required in each light receiving element Pk. The plurality of light receiving periods are determined according to the modulation period. In the following, Non-Patent Document 1 will be described as an example of a method for calculating a phase difference so as to give a specific example.

非特許文献1では、照射光L1の強度は時間に対して周期的に変調される。例えば図3に示すように照射光L1の強度は正弦波状に変調される。なお図3の例示では、照射光L1の最小値はゼロよりも大きい値を採る。ただしこれに限らず、当該最小値はほぼゼロであっても構わない。   In Non-Patent Document 1, the intensity of the irradiation light L1 is periodically modulated with respect to time. For example, as shown in FIG. 3, the intensity of the irradiation light L1 is modulated in a sine wave shape. In the illustration of FIG. 3, the minimum value of the irradiation light L1 takes a value larger than zero. However, the present invention is not limited to this, and the minimum value may be substantially zero.

また以下では、照射光L1の周期を変調周期Tと呼ぶ。図3の例示では、変調周期Tの開始時点は照射光L1の強度が最大値を採る時点である。   Hereinafter, the period of the irradiation light L1 is referred to as a modulation period T. In the illustration of FIG. 3, the start time of the modulation period T is the time when the intensity of the irradiation light L1 takes the maximum value.

このような照射光L1が測定対象に照射され、当該測定対象で反射して反射光L2として受光素子Pkに入射する。よって図3に示すように受光素子Pkで受光した反射光L2の位相は照射光L1に対して遅れる。この位相差φは非特許文献1で記載されるように、以下の関係式で算出することができる。   Such irradiation light L1 is irradiated onto the measurement target, reflected by the measurement target, and incident on the light receiving element Pk as reflected light L2. Therefore, as shown in FIG. 3, the phase of the reflected light L2 received by the light receiving element Pk is delayed with respect to the irradiation light L1. As described in Non-Patent Document 1, this phase difference φ can be calculated by the following relational expression.

φ=tan−1[{A(T3)-A(T1)}/{A(T0)-A(T2)}] ・・・(1)φ = tan −1 [{A (T3) -A (T1)} / {A (T0) -A (T2)}] (1)

ここで、T0,T2は変調周期Tに対する半周期であり、図3の例示において期間T0の開始時点は照射光L1の強度が最大値を採る時点であり、期間T2の開始時点は照射光L1が最小値を取る時点である。T3,T1はそれぞれ期間T0,T2に対して変調周期Tの4分の1(=T/4)ずらした期間である。A(t)は期間tにおける反射光L2の強度の積分値(即ち期間tにおける受光量)である。   Here, T0 and T2 are half periods with respect to the modulation period T. In the example of FIG. 3, the start time of the period T0 is the time when the intensity of the irradiation light L1 takes the maximum value, and the start time of the period T2 is the irradiation light L1. Is the time when takes the minimum value. T3 and T1 are periods shifted by a quarter (= T / 4) of the modulation period T with respect to the periods T0 and T2, respectively. A (t) is an integral value of the intensity of the reflected light L2 in the period t (that is, the amount of light received in the period t).

したがって、受光素子Pkごとに位相差の算出に必要な受光量(ここではA(T0)〜A(T3))を得ることができれば、受光素子Pkごとに位相差φを算出することができる。ひいては受光素子Pkごとに照射装置3から測定対象までの距離を算出することができる。そこで受光素子Pkごとに位相差の算出に必要な受光量を得るべく、制御演算装置2は照射装置3の変調と受光装置1での受光量の取得タイミングとを関連付けて制御する。以下に詳述する。   Therefore, if the amount of received light necessary for calculating the phase difference for each light receiving element Pk (here, A (T0) to A (T3)) can be obtained, the phase difference φ can be calculated for each light receiving element Pk. As a result, the distance from the irradiation device 3 to the measurement target can be calculated for each light receiving element Pk. Therefore, in order to obtain the amount of received light necessary for calculating the phase difference for each light receiving element Pk, the control calculation device 2 controls the modulation of the irradiation device 3 and the acquisition timing of the received light amount in the light receiving device 1 in association with each other. This will be described in detail below.

<照射装置の変調と受光量の取得>
図1を参照して制御演算装置2はクロック生成部21と照射光制御部22とを備える。なおここでは、制御演算装置2はマイクロコンピュータと記憶装置を含んで構成される。マイクロコンピュータは、プログラムに記述された各処理ステップ(換言すれば手順)を実行する。上記記憶装置は、例えばROM(Read-Only-Memory)、RAM(Random-Access-Memory)、書き換え可能な不揮発性メモリ(EPROM(Erasable-Programmable-ROM)等)、ハードディスク装置などの各種記憶装置の1つまたは複数で構成可能である。当該記憶装置は、各種の情報やデータ等を格納し、またマイクロコンピュータが実行するプログラムを格納し、また、プログラムを実行するための作業領域を提供する。なおマイクロコンピュータは、プログラムに記述された各処理ステップに対応する各種手段として機能するとも把握でき、あるいは、各処理ステップに対応する各種機能を実現するとも把握できる。また、制御演算装置2はこれに限らず、制御演算装置2によって実行される各種手順、あるいは実現される各種手段または各種機能の一部または全部をハードウェアで実現しても構わない。
<Modulation of irradiation device and acquisition of received light amount>
Referring to FIG. 1, the control arithmetic device 2 includes a clock generation unit 21 and an irradiation light control unit 22. Here, the control arithmetic unit 2 includes a microcomputer and a storage device. The microcomputer executes each processing step (in other words, a procedure) described in the program. The storage device is, for example, a ROM (Read-Only-Memory), a RAM (Random-Access-Memory), a rewritable nonvolatile memory (EPROM (Erasable-Programmable-ROM), etc.), and various storage devices such as a hard disk device. One or more can be configured. The storage device stores various information, data, and the like, stores a program executed by the microcomputer, and provides a work area for executing the program. It can be understood that the microcomputer functions as various means corresponding to each processing step described in the program, or can realize that various functions corresponding to each processing step are realized. The control arithmetic device 2 is not limited to this, and various procedures executed by the control arithmetic device 2 or various means or various functions realized may be realized in hardware or in part by hardware.

クロック生成部21はクロック信号CLKを生成する。クロック信号CLKは位相差の算出に必要な複数の受光量を得るための複数の受光期間(例えば期間T0〜T3)の始期および終期の各々と同期して変化する。かかるクロック信号CLKは受光装置1および照射光制御部22へと出力される。ここでは一例としてクロック信号CLKの活性期間と非活性期間とは互いに等しい。換言すればクロック信号CLKのデューティは50%である。   The clock generation unit 21 generates a clock signal CLK. The clock signal CLK changes in synchronization with each of the start and end of a plurality of light receiving periods (for example, periods T0 to T3) for obtaining a plurality of light receiving amounts necessary for calculating the phase difference. The clock signal CLK is output to the light receiving device 1 and the irradiation light control unit 22. Here, as an example, the active period and the inactive period of the clock signal CLK are equal to each other. In other words, the duty of the clock signal CLK is 50%.

照射光制御部22は、例えばクロック信号CLKの周期の2倍の変調周期Tで、照射光L1の強度を変調すべく、照射装置3を制御する。これにより、クロック信号CLKは距離算出に必要な受光量についての受光期間(期間T0〜T3)の始期および終期の各々と同期して変化することとなる。また例えば照射光制御部22はクロック信号CLKに基づいて正弦波の電圧を生成し、これを照射装置3へと出力する。照射装置3は当該電圧の大きさに応じた強度を有する照射光L1を発光する。これにより、照射光L1は図4に示すように変調周期Tの正弦波状の形状を有することとなる。   The irradiation light control unit 22 controls the irradiation device 3 so as to modulate the intensity of the irradiation light L1 with a modulation period T that is twice the period of the clock signal CLK, for example. As a result, the clock signal CLK changes in synchronization with the start and end of the light receiving period (periods T0 to T3) for the amount of light received necessary for distance calculation. Further, for example, the irradiation light control unit 22 generates a sine wave voltage based on the clock signal CLK, and outputs it to the irradiation device 3. The irradiation device 3 emits irradiation light L1 having an intensity corresponding to the magnitude of the voltage. As a result, the irradiation light L1 has a sinusoidal shape with a modulation period T as shown in FIG.

受光量取得部10は、クロック信号CLKに基づいて受光素子Pkの受光量を所定の順番で順次に取得してフレームデータを生成するステップを繰り返し行なって、複数のフレームデータを取得することで、当該複数のフレームデータにおける同じ受光素子Pkでの受光量を、それぞれ位相差の算出に必要な複数の受光期間における受光量に相当させる。ここでは一例として、第1から第4のフレームデータを取得する。以下に詳述する。   The received light amount acquisition unit 10 repeatedly acquires the received light amount of the light receiving element Pk in a predetermined order based on the clock signal CLK and repeats the step of generating frame data, thereby acquiring a plurality of frame data. The amount of light received by the same light receiving element Pk in the plurality of frame data is made to correspond to the amount of light received in a plurality of light receiving periods necessary for calculating the phase difference. Here, as an example, the first to fourth frame data are acquired. This will be described in detail below.

図5に示すように例えば受光量取得部10は、クロック信号CLKの立ち上がりの各々を契機として、受光素子Pkの各々の受光量を、所定の順番で順次に取得する。ただし、ここでいう受光量とはクロック信号CLKの一周期(即ち変調周期Tの半周期)における受光量である。より詳細には、クロック信号CLKの立ち上がりを契機として受光素子Pkが受光量に応じた電荷の蓄積を開始し、次の立ち上がりまでに蓄積された電荷の総量が受光量として取得される。このような受光時間は、いわゆる撮像装置における露光時間と同じであり、周知の技術によって制御される。例えばフォトディテクタ11aからの電流が流れ込む不図示の電荷蓄積部と、フォトディテクタ11aと電荷蓄積部との間の導通を制御するスイッチとを設け、当該スイッチのオン期間(受光時間)を制御すればよい。   As illustrated in FIG. 5, for example, the received light amount acquisition unit 10 sequentially acquires the received light amounts of the light receiving elements Pk sequentially in a predetermined order with each rising edge of the clock signal CLK. However, the amount of light received here is the amount of light received in one cycle of the clock signal CLK (that is, a half cycle of the modulation cycle T). More specifically, the light receiving element Pk starts accumulating charges according to the amount of received light at the rise of the clock signal CLK, and the total amount of charges accumulated until the next rise is acquired as the amount of received light. Such a light receiving time is the same as an exposure time in a so-called imaging apparatus, and is controlled by a known technique. For example, a charge storage unit (not shown) into which a current from the photodetector 11a flows and a switch for controlling conduction between the photodetector 11a and the charge storage unit may be provided to control an on period (light reception time) of the switch.

図5の例示では、まずクロック信号の立ち上がりUE1を契機として第1行第1列目の受光素子P1の受光量が取得される。そして、立ち上がりUE1の次の立ち上がりUE2を契機として、第1行第2列目の受光素子P2の受光量が取得される。以後、同様にしてクロック信号CLKの立ち上がりを契機として受光素子Pkの受光量が順次に取得され、最終行最終列目の受光素子の受光量が取得されることで、図6に示すフレームデータFD1が取得される。図5,6で付記されたT0,T2については後に述べる。   In the example of FIG. 5, first, the amount of light received by the light receiving element P1 in the first row and first column is acquired in response to the rising edge UE1 of the clock signal. Then, the amount of light received by the light receiving element P2 in the first row and the second column is acquired at the next rising UE2 after the rising UE1. Thereafter, similarly, the amount of light received by the light receiving element Pk is sequentially acquired in response to the rising edge of the clock signal CLK, and the amount of light received by the light receiving element in the last row and last column is acquired, whereby the frame data FD1 shown in FIG. Is acquired. T0 and T2 added in FIGS. 5 and 6 will be described later.

続いて図7に示すように、クロック信号CLKの立ち上がりの各々を契機として、受光素子Pkの各々の受光量を、フレームデータFD1と同じ順番で順次に取得してフレームデータFD2を取得する(図8も参照)。ただし、立ち上がりUE1を1番目の立ち上がりと定義すると、フレームデータFD2においては、図7に示すように、偶数番目の立ち上がりUE2nを契機として、最初の受光素子P1の受光量を取得する。この技術的意義については後に詳述する。   Subsequently, as shown in FIG. 7, with each rising edge of the clock signal CLK, the received light amounts of the light receiving elements Pk are sequentially acquired in the same order as the frame data FD1 to acquire the frame data FD2 (FIG. 7). (See also 8). However, if the rising UE1 is defined as the first rising, in the frame data FD2, as shown in FIG. 7, the received light amount of the first light receiving element P1 is acquired with the even-numbered rising UE2n as a trigger. This technical significance will be described in detail later.

なお図2の例示では、受光素子Pkの個数は(2n−2)個である。よって、フレームデータFD1において最後の受光素子P2n−2の受光量を取得する契機となる立ち上がりUE2n−2は、偶数番目の立ち上がりである。よってこの次の立ち上がりUE2n−1は奇数番目の立ち上がりである。したがってこの一例では、立ち上がりUE2n−1を契機とはせずに、図7に示すように、その次の立ち上がりUE2nを契機として受光素子P1の受光量を取得する。   In the example of FIG. 2, the number of light receiving elements Pk is (2n−2). Therefore, the rising UE2n-2 that triggers the acquisition of the amount of light received by the last light receiving element P2n-2 in the frame data FD1 is the even-numbered rising. Therefore, the next rising edge UE2n-1 is an odd-numbered rising edge. Therefore, in this example, the amount of light received by the light receiving element P1 is acquired with the next rising UE2n as a trigger, as shown in FIG. 7, without being triggered by the rising UE2n-1.

一方で、仮に受光素子Pkの個数が奇数個であれば、フレームデータFD1において最後の受光素子の受光量を取得する契機となる立ち上がりは奇数番目の立ち上がりである。よってその直後のクロック信号CLKの立ち上がり(偶数番目の立ち上がり)を契機として、フレームデータFD2における最初の受光素子P1の受光量を取得しても良い。   On the other hand, if the number of light receiving elements Pk is an odd number, the rise that triggers the acquisition of the received light amount of the last light receiving element in the frame data FD1 is the odd number rise. Therefore, the light receiving amount of the first light receiving element P1 in the frame data FD2 may be acquired with the rising edge of the clock signal CLK immediately after that (even-numbered rising edge) as a trigger.

続いて、図9に示すように、クロック信号CLKの立ち下がりの各々を契機として、受光素子Pkの各々の受光量を、フレームデータFD1と同じ順番で順次に取得する。図9の例示では、立ち下りDE1を契機として、最初の受光素子P1の受光量を取得する。この立ち下がりDE1は、フレームデータFD2を取得し終わった直後の立ち下がりであってもよい。またここでいう受光量もクロック信号CLKの一周期における受光量である。より詳細には、クロック信号CLKの立ち下がりを契機として受光素子Pkが受光量に応じた電荷の蓄積を開始する。そして次の立ち下がりまでに蓄積された電荷の総量が受光量として取得される。このような受光時間も、いわゆる撮像装置における露光時間と同じであり、周知の技術によって制御される。   Subsequently, as shown in FIG. 9, the received light amounts of the light receiving elements Pk are sequentially acquired in the same order as the frame data FD1, triggered by each falling edge of the clock signal CLK. In the example of FIG. 9, the received light amount of the first light receiving element P <b> 1 is acquired with the falling DE <b> 1 as a trigger. This falling DE1 may be a falling immediately after the acquisition of the frame data FD2. The amount of light received here is also the amount of light received in one cycle of the clock signal CLK. More specifically, the light receiving element Pk starts accumulating charges according to the amount of received light when the clock signal CLK falls. Then, the total amount of charges accumulated until the next fall is acquired as the received light amount. Such a light receiving time is also the same as an exposure time in a so-called imaging device, and is controlled by a known technique.

そして、立ち下がりDE1の次の立ち下がりDE2を契機として、第1行第2列目の受光素子P2の受光量が取得される。以後、同様にしてクロック信号CLKの立ち下がりの各々を契機として受光素子Pkの各々の受光量が順次に取得され、最終行最終列目の受光素子の受光量が取得されることで、フレームデータFD3が取得される(図10も参照)。   Then, the amount of light received by the light receiving element P2 in the first row and the second column is acquired in response to the next falling DE2 after the falling DE1. Thereafter, in the same manner, each light receiving amount of the light receiving element Pk is sequentially acquired with each falling edge of the clock signal CLK, and the light receiving amount of the light receiving element in the last row and the last column is acquired, whereby frame data FD3 is acquired (see also FIG. 10).

続いて、図11に示すように、クロック信号CLKの立ち下がりの各々を契機として、受光素子Pkの各々の受光量を、フレームデータFD1と同じ順番で順次に取得してフレームデータFD4を取得する(図12も参照)。ただし、立ち下がりDE1を1番目の立ち下がりと定義すると、フレームデータFD4においては、図11に示すように、偶数番目の立ち下がりDE2nを契機として、最初の受光素子P1の受光量を取得する。この技術的意義についても後に詳述する。   Subsequently, as shown in FIG. 11, each received light amount of the light receiving element Pk is sequentially acquired in the same order as the frame data FD1 in response to each falling edge of the clock signal CLK, thereby acquiring the frame data FD4. (See also FIG. 12). However, if the falling edge DE1 is defined as the first falling edge, in the frame data FD4, as shown in FIG. 11, the received light amount of the first light receiving element P1 is acquired with the even-numbered falling edge DE2n as a trigger. This technical significance will also be described in detail later.

なお図2の例示では、受光素子Pkの個数は2n−2個である。よって、フレームデータFD3において最後の受光素子P2n−2の受光量を取得する契機となる立ち下がりDE2n−2は、偶数番目の立ち下がりである。よってこの次の立ち下がりDE2n−1は奇数番目の立ち下がりである。したがってこの一例では、立ち下がりDE2n−1を契機とはせずに、図11に示すように、その次の立ち下がりDE2nを契機として受光素子P1の受光量を取得する。   In the illustration of FIG. 2, the number of light receiving elements Pk is 2n−2. Therefore, the falling DE2n-2 that triggers the acquisition of the amount of light received by the last light receiving element P2n-2 in the frame data FD3 is the even-numbered falling. Therefore, the next falling edge DE2n-1 is an odd-numbered falling edge. Therefore, in this example, the amount of light received by the light receiving element P1 is acquired with the next falling DE2n as a trigger, as shown in FIG. 11, without being triggered by the falling DE2n-1.

一方で、仮に受光素子Pkの個数が奇数個であれば、フレームデータFD3において最後の受光素子の受光量を取得する契機となる立ち下がりは奇数番目の立ち下がりである。よってその直後のクロック信号CLKの立ち下がり(偶数番目の立ち下がり)を契機として、フレームデータFD4における最初の受光素子P1の受光量を取得しても良い。   On the other hand, if the number of light receiving elements Pk is an odd number, the falling that triggers the acquisition of the light receiving amount of the last light receiving element in the frame data FD3 is the odd numbered falling. Therefore, the amount of light received by the first light receiving element P1 in the frame data FD4 may be acquired in response to the fall of the clock signal CLK immediately after that (even-numbered fall).

次に、このような手順によって取得される受光量を、受光素子Pkの一つに着目して考察する。まず受光素子P1について説明し、他の受光素子についてはその後に説明する。図13は、クロック信号CLKと照射光L1と受光素子P1で受光される反射光L2との模式的な一例を示している。   Next, the amount of light received by such a procedure will be considered by focusing on one of the light receiving elements Pk. First, the light receiving element P1 will be described, and the other light receiving elements will be described later. FIG. 13 shows a schematic example of the clock signal CLK, the irradiation light L1, and the reflected light L2 received by the light receiving element P1.

図13の例示では、クロック信号CLKの立ち上がりUE1の時点において、照射光L1の強度が最大値を採る。しかも変調周期Tはクロック周期の2倍であるので、立ち上がりUE1を始期とする一周期は、期間T0(即ち、変調周期Tの前半の半周期)に相当する。したがって、立ち上がりUE1を契機として取得される受光素子P1の受光量は、期間T0における反射光L2の積分値(受光量A(T0))とみなすことができる。つまり、受光素子P1のフレームデータFD1における受光量を受光量A(T0)とみなすことができる。これを示すべく図5,6では、受光素子P1に対応して符号T0が括弧書きで付記されている。   In the illustration of FIG. 13, the intensity of the irradiation light L1 takes the maximum value at the time of the rising edge UE1 of the clock signal CLK. Moreover, since the modulation period T is twice the clock period, one period starting from the rising UE1 corresponds to the period T0 (that is, the first half period of the modulation period T). Therefore, the amount of light received by the light receiving element P1 acquired with the rising UE1 as a trigger can be regarded as an integrated value (light reception amount A (T0)) of the reflected light L2 in the period T0. That is, the received light amount in the frame data FD1 of the light receiving element P1 can be regarded as the received light amount A (T0). In order to show this, in FIGS. 5 and 6, the symbol T0 is appended in parentheses corresponding to the light receiving element P1.

また図13を参照して、1番目の立ち上がりUE1を始期とする一周期が期間T0に相当するので、偶数番目の立ち上がりUE2nを始期とするクロック周期は期間T2(即ち、変調周期Tの後半の半周期)に相当する。したがって、立ち上がりUE2nを契機として取得される受光素子P1の受光量は、期間T2における反射光L2の積分値(受光量A(T2))とみなすことができる。つまり、受光素子P1のフレームデータFD2における受光量を受光量A(T2)とみなすことができる。これを示すべく図7,8では、受光素子P1に対応して符号T2が括弧書きで付記されている。   Referring to FIG. 13, since one cycle starting from the first rising UE1 corresponds to the period T0, the clock cycle starting from the even-numbered rising UE2n is the period T2 (that is, the second half of the modulation period T). Half a cycle). Therefore, the amount of light received by the light receiving element P1 acquired with the rising UE2n as a trigger can be regarded as an integrated value (light reception amount A (T2)) of the reflected light L2 in the period T2. That is, the amount of received light in the frame data FD2 of the light receiving element P1 can be regarded as the amount of received light A (T2). In order to show this, in FIGS. 7 and 8, the symbol T2 is appended in parentheses corresponding to the light receiving element P1.

またクロック信号CLKの活性期間と非活性期間とは互いに等しい。よって活性期間および非活性期間のいずれもが変調周期Tの4分の1である。よってクロック信号CLKの立ち下がりDE1を始期とする一周期は、期間T1,T3のいずれか一方(図13の例示では期間T3)に相当する。したがって図13の例示では、立ち下がりDE1を契機として取得される受光素子P1の受光量は、期間T3における反射光L2の積分値(受光量A(T3))とみなすことができる。つまり、受光素子P1のフレームデータFD3における受光量を受光量A(T3)とみなすことができる。これを示すべく図9,10では、受光素子P1に対応して符号T3が括弧書きで付記されている。   The active period and the inactive period of the clock signal CLK are equal to each other. Therefore, both the active period and the inactive period are a quarter of the modulation period T. Therefore, one cycle starting from the falling DE1 of the clock signal CLK corresponds to one of the periods T1 and T3 (period T3 in the example of FIG. 13). Therefore, in the illustration of FIG. 13, the amount of light received by the light receiving element P1 acquired with the falling DE1 as an opportunity can be regarded as the integrated value of the reflected light L2 (the amount of received light A (T3)) in the period T3. That is, the amount of received light in the frame data FD3 of the light receiving element P1 can be regarded as the amount of received light A (T3). In order to show this, in FIGS. 9 and 10, the symbol T3 is appended in parentheses corresponding to the light receiving element P1.

また1番目の立ち下がりDE1を始期とする一周期が期間T1,T3の一方に相当するので、偶数番目の立ち下がりDE2nを始期とするクロック周期は期間T1,T3の他方(図13の例示では、期間T1)に相当する。したがって図13の例示では、立ち下がりDE2nを契機として取得される受光素子P1の受光量は、期間T1おける反射光L2の積分値(受光量A(T1))とみなすことができる。つまり、受光素子P1のフレームデータFD4における受光量を受光量A(T1)とみなすことができる。これを示すべく図11,12では、受光素子P1に対応して符号T1が括弧書きで付記されている。   Also, since one cycle starting from the first falling DE1 corresponds to one of the periods T1 and T3, the clock cycle starting from the even-numbered falling DE2n is the other of the periods T1 and T3 (in the example of FIG. 13). Corresponds to the period T1). Therefore, in the illustration of FIG. 13, the amount of light received by the light receiving element P1 acquired with the falling DE2n as an opportunity can be regarded as the integrated value of the reflected light L2 (light reception amount A (T1)) in the period T1. That is, the received light amount in the frame data FD4 of the light receiving element P1 can be regarded as the received light amount A (T1). In order to show this, in FIGS. 11 and 12, the symbol T1 is attached in parentheses corresponding to the light receiving element P1.

以上のように、受光素子P1のフレームデータFD1〜FD4の受光量により、受光量A(T0)〜A(T3)を取得することができる。したがって、式(1)に基づいて受光素子P1において位相差φを算出でき、位相差φに基づいて測定対象(ただし受光素子P1で受光される部分)の距離を算出することができる。   As described above, the received light amounts A (T0) to A (T3) can be acquired based on the received light amounts of the frame data FD1 to FD4 of the light receiving element P1. Therefore, the phase difference φ can be calculated in the light receiving element P1 based on the formula (1), and the distance of the measurement target (however, the portion received by the light receiving element P1) can be calculated based on the phase difference φ.

また他の受光素子Pkにおいても、受光量A(T0)〜A(T3)を取得することができる。これは、フレームデータFD1〜FD4の各々において、同じ順番で受光素子Pkが取得されるからである。図5〜12には、受光素子Pkと対応する期間が括弧書きの符号で示されている。例えば受光素子P2に着目すれば、フレームデータFD1において受光量A(T2)が取得され、フレームデータFD2において受光量A(T0)が取得され、フレームデータFD3において受光量A(T1)が取得され、フレームデータFD4において受光量A(T3)が取得される。   Also in other light receiving elements Pk, the received light amounts A (T0) to A (T3) can be acquired. This is because the light receiving elements Pk are acquired in the same order in each of the frame data FD1 to FD4. 5 to 12, the period corresponding to the light receiving element Pk is indicated by the parenthesized reference numerals. For example, focusing on the light receiving element P2, the received light amount A (T2) is acquired in the frame data FD1, the received light amount A (T0) is acquired in the frame data FD2, and the received light amount A (T1) is acquired in the frame data FD3. The received light amount A (T3) is acquired in the frame data FD4.

したがって、他の受光素子Pkにおいても距離測定のために適した受光量A(T0)〜A(T3)を取得することができる。   Therefore, it is possible to obtain the received light amounts A (T0) to A (T3) suitable for distance measurement also in the other light receiving elements Pk.

また図1の例示では、制御演算装置2は距離算出部24を備えている。距離算出部24は記録部23に記録されたフレームデータFD1〜FD4を用いて、受光素子Pkごとに式(1)から位相差φを算出し、当該位相差φに基づいて距離を算出する。これにより、距離を示す画像データを得ることができる。かかる画像データは例えば不図示の表示部に出力されて、当該表示部で表示される。   In the illustration of FIG. 1, the control arithmetic device 2 includes a distance calculation unit 24. The distance calculation unit 24 uses the frame data FD1 to FD4 recorded in the recording unit 23 to calculate the phase difference φ from the equation (1) for each light receiving element Pk, and calculates the distance based on the phase difference φ. Thereby, image data indicating the distance can be obtained. For example, the image data is output to a display unit (not shown) and displayed on the display unit.

なお上述の例では、クロック信号CLKの立ち上がり及び立ち下がりの各々を契機として受光量が取得された。しかしながら、必ずしもこれに限らない。例えばクロック信号CLKの周期が変調周期Tの4分の1である場合、受光量を次のようにして取得しても構わない。   In the above-described example, the received light amount is acquired at each rising edge and falling edge of the clock signal CLK. However, this is not necessarily the case. For example, when the cycle of the clock signal CLK is ¼ of the modulation cycle T, the received light amount may be acquired as follows.

即ち、図14に例示するように、クロック信号CLKの奇数番目の立ち上がりの各々を契機として、クロック信号CLKの2周期における受光量を、受光素子Pkごとに所定の順番で順次に取得してフレームデータFD1を生成する。ここで、フレームデータFD1における最初の受光素子P1の受光量を取得する契機となる立ち上がりを1番目の立ち上がりと定義する。   That is, as illustrated in FIG. 14, with each odd-numbered rising edge of the clock signal CLK as an opportunity, the received light amount in two cycles of the clock signal CLK is sequentially acquired in a predetermined order for each light receiving element Pk. Data FD1 is generated. Here, the rise that triggers the acquisition of the amount of light received by the first light receiving element P1 in the frame data FD1 is defined as the first rise.

そして、このフレームデータFD1の生成後に、クロック信号CLKの(4m−1)(mは自然数)番目の立ち上がりUE4m−1を契機として最初の受光素子P1の受光量を取得し、続けて奇数番目の立ち上がりの各々を契機として受光素子Pkの受光量を所定の順番で順次に取得して、フレームデータFD2を生成する。   Then, after the generation of the frame data FD1, the received light amount of the first light receiving element P1 is acquired with the (4m-1) (m is a natural number) rise UE4m-1 of the clock signal CLK as an opportunity, and then the odd number The amount of light received by the light receiving element Pk is sequentially acquired in a predetermined order with each rising edge as a trigger to generate frame data FD2.

続いて、このフレームデータFD2の生成後に、クロック信号CLKの(4m’−2)(m’は自然数)番目の立ち上がりU4m’−2を契機として最初の受光素子P1の受光量を取得し、続けて偶数番目の立ち上がりを契機として受光素子Pkの受光量を所定の順番で順次に取得して、フレームデータFD3を取得する。   Subsequently, after the generation of the frame data FD2, the received light amount of the first light receiving element P1 is obtained with the (4m'-2) (m 'is a natural number) rise U4m'-2 of the clock signal CLK as a trigger. In response to the even-numbered rise, the received light amount of the light receiving element Pk is sequentially acquired in a predetermined order, and the frame data FD3 is acquired.

続いて、このフレームデータFD3の取得後に、クロック信号CLKの4m’’(m’’は自然数)番目の立ち上がりUE4m’’を契機として最初の受光素子P1の受光量を取得し、続けて受光素子Pkの受光量を所定の順番で順次に取得して、フレームデータFD4を取得する。   Subsequently, after the acquisition of the frame data FD3, the amount of light received by the first light receiving element P1 is acquired with the 4m ″ (m ″ is a natural number) th rising UE4m ″ of the clock signal CLK, and then the light receiving element. The amount of received light Pk is sequentially acquired in a predetermined order to acquire frame data FD4.

さて立ち上がりUE1を始期とする2周期は受光期間T0に相当し、立ち上がりUE4m−1を始期とする2周期は受光期間T2に相当し、立ち上がりUE4m’−2を始期とする2周期は受光期間T3に相当し、立ち上がりUE4m’’を始期とする2周期は受光期間T1に相当する。これは次の説明からも理解できる。即ち、1番目から4番目の立ち上がりUE1〜UE4を始期とする2周期は図14から理解できるように、それぞれ受光期間T0,T3,T2,T1に相当する。周期的に考えると、1番目、5番目、・・・、4M−3(Mは自然数)番目の立ち上がりを始期とする2周期は受光期間T0に相当し、2番目、6番目、・・・、4M−2番目の立ち上がりを始期とする2周期は受光期間T3に相当し、3番目、7番目、・・・、4M−1番目の立ち上がりを始期とする2周期は受光期間T2に相当し、4M番目の立ち上がりを始期とする2周期は受光期間T1に相当する。   The two cycles starting from the rising UE1 correspond to the light receiving period T0, the two cycles starting from the rising UE4m-1 correspond to the light receiving period T2, and the two cycles starting from the rising UE4m′-2 are the light receiving period T3. And two periods starting from the rising UE 4m ″ correspond to the light receiving period T1. This can be understood from the following explanation. That is, the two periods starting from the first to fourth rising UE1 to UE4 correspond to the light receiving periods T0, T3, T2, and T1, respectively, as can be understood from FIG. Considering periodically, two periods starting from the first, fifth,..., 4M-3 (M is a natural number) start correspond to the light receiving period T0, and the second, sixth,. The 2 cycles starting from the 4M-2th rise correspond to the light receiving period T3, and the 2nd cycle starting from the 3rd, 7th,..., 4M-1 start corresponds to the light receiving period T2. Two cycles starting from the 4Mth rise correspond to the light receiving period T1.

したがってかかる取得方法によっても、フレームデータFD1〜FD4における最初の受光素子P1の受光量はそれぞれ受光量A(T0),A(T2),A(T3),A(T1)相当する。   Therefore, even with such an acquisition method, the received light amount of the first light receiving element P1 in the frame data FD1 to FD4 corresponds to the received light amount A (T0), A (T2), A (T3), and A (T1), respectively.

またフレームデータFD1〜FD4において同じ順番で受光量が取得されるので、他の受光素子PkについてもフレームデータFD1〜FD4から受光量A(T0)〜A(T3)を得ることができる。   Since the received light amounts are acquired in the same order in the frame data FD1 to FD4, the received light amounts A (T0) to A (T3) can be obtained from the frame data FD1 to FD4 for the other light receiving elements Pk.

またこの場合、クロック信号CLKの立ち下がりは用いられない。よって、クロック信号CLKのデューティは50%に限らず任意である。   In this case, the falling edge of the clock signal CLK is not used. Therefore, the duty of the clock signal CLK is not limited to 50% and is arbitrary.

また上述の例では、例えばフレームデータFD1では2種類の受光量A(T0),A(T2)が取得され、他のフレームデータFD2〜FD4の各々でも2種類の受光量が取得される。しかしながら、複数のフレームデータの各々において、位相差の算出に必要な受光量の1種類が取得されても構わない。ただし、各フレームデータにおける種類は互いに異なる。例えばフレームデータFD1の全ての受光素子Pkにおいて受光量A(T0)が取得され、フレームデータFD2の全ての受光素子Pkにおいて受光量A(T2)が取得され、フレームデータFD3の全ての受光素子Pkにおいて受光量A(T3)が取得され、フレームデータFD4の全ての受光素子Pkにおいて受光量A(T1)が取得されても良い。以下に図15を参照してその一例について詳細に説明する。   In the above example, for example, two types of received light amounts A (T0) and A (T2) are acquired in the frame data FD1, and two types of received light amounts are acquired in each of the other frame data FD2 to FD4. However, in each of the plurality of frame data, one kind of received light amount necessary for calculating the phase difference may be acquired. However, the types in each frame data are different from each other. For example, the received light amount A (T0) is acquired in all the light receiving elements Pk of the frame data FD1, the received light amount A (T2) is acquired in all the light receiving elements Pk of the frame data FD2, and all the light receiving elements Pk of the frame data FD3. The light reception amount A (T3) may be acquired in step S1, and the light reception amount A (T1) may be acquired in all the light receiving elements Pk of the frame data FD4. Hereinafter, an example thereof will be described in detail with reference to FIG.

即ち、受光量取得部10は、クロック信号CLKの奇数番目の立ち上がりUE1,UE3,・・・,UE2m−1の各々を契機として、受光素子Pkの各々の受光量を順次に取得して、フレームデータFD1を取得する。次に、受光量取得部10はクロック信号の偶数番目の立ち上がりUE2m,UE2m+2,・・・,UE4m−2の各々を契機として、受光素子Pkの各々の受光量を順次に取得して、フレームデータFD2を取得する。次に、受光量取得部10は、クロック信号CLKの奇数番目の立ち下がりDE1,DE3,・・・,DE2m−1の各々を契機として、受光素子Pkの各々の受光量を順次に取得して、フレームデータFD3を取得し、続いてクロック信号の偶数番目の立ち下がりDE2m,DE2m+2,・・・,DE4m−2の各々を契機として、受光素子Pkの受光量の各々を順次に取得して、フレームデータFD4を取得する。   That is, the received light amount acquisition unit 10 sequentially acquires the received light amounts of the light receiving elements Pk in response to the odd-numbered rising edges UE1, UE3,. Data FD1 is acquired. Next, the received light amount acquisition unit 10 sequentially acquires each received light amount of the light receiving element Pk with each of the even-numbered rising edges UE2m, UE2m + 2,..., UE4m-2 of the clock signal as frame data. Obtain FD2. Next, the received light amount acquisition unit 10 sequentially acquires the received light amounts of the light receiving elements Pk in response to the odd-numbered falling edges DE1, DE3,..., DE2m-1 of the clock signal CLK. , Frame data FD3 is acquired, and then each received light amount of the light receiving element Pk is sequentially acquired with each of the even-numbered falling edges DE2m, DE2m + 2,. Frame data FD4 is acquired.

これにより、図15の例示では、フレームデータFD1において任意の受光素子Pkの受光量は受光量A(T0)に相当し、フレームデータFD2において任意の受光素子Pkの受光量は受光量A(T2)に相当し、フレームデータFD3において任意の受光素子Pkの受光量は受光量A(T3)に相当し、フレームデータFD4において任意の受光素子Pkの受光量は受光量A(T1)に相当する。したがって、かかる取得方法によっても、受光素子Pkごとに受光量A(T0)〜A(T3)を得ることができる。   Accordingly, in the illustration of FIG. 15, the received light amount of any light receiving element Pk in the frame data FD1 corresponds to the received light amount A (T0), and the received light amount of any light receiving element Pk in the frame data FD2 is the received light amount A (T2). In the frame data FD3, the received light amount of an arbitrary light receiving element Pk corresponds to the received light amount A (T3), and in the frame data FD4, the received light amount of the arbitrary light receiving element Pk corresponds to the received light amount A (T1). . Therefore, the received light amounts A (T0) to A (T3) can be obtained for each light receiving element Pk also by such an acquisition method.

受光素子Pkの受光量は要するに次を満足するように取得されれば良い。第1に、一の受光素子Pkの受光量は、フレームデータFD1において、クロック信号CLKの偶数番目および奇数番目のいずれか一方の立ち上がりを契機として取得され、フレームデータFD2において、クロック信号CLKの他方の立ち上がりを契機として取得される。これにより、フレームデータFD1における一の受光素子Pkの受光量は、受光量A(T0),A(T2)の一方に相当し、フレームデータFD2における一の受光素子Pkの受光量は、受光量A(T0),A(T2)の他方に相当する。   In short, the amount of light received by the light receiving element Pk may be acquired so as to satisfy the following. First, the amount of light received by one light receiving element Pk is acquired in the frame data FD1 when one of the even-numbered and odd-numbered rising edges of the clock signal CLK is triggered, and in the frame data FD2, the other of the clock signal CLK is obtained. Acquired at the start of As a result, the received light amount of one light receiving element Pk in the frame data FD1 corresponds to one of the received light amounts A (T0) and A (T2), and the received light amount of one light receiving element Pk in the frame data FD2 is the received light amount. This corresponds to the other of A (T0) and A (T2).

第2に、一の受光素子Pkは、フレームデータFD3において、クロック信号CLKの偶数番目および奇数番目の一方の立ち下がりを契機として取得され、フレームデータFD4において、クロック信号CLKの他方の立ち下がりを契機として取得される。これにより、フレームデータFD3における一の受光素子Pkの受光量は、受光量A(T3),A(T1)の一方に相当し、フレームデータFD4における一の受光素子Pkの受光量は、受光量A(T3),A(T1)の他方に相当する。   Second, one light receiving element Pk is acquired in response to one of the even-numbered and odd-numbered falling edges of the clock signal CLK in the frame data FD3, and the other falling edge of the clock signal CLK in the frame data FD4. Acquired as an opportunity. As a result, the received light amount of one light receiving element Pk in the frame data FD3 corresponds to one of the received light amounts A (T3) and A (T1), and the received light amount of one light receiving element Pk in the frame data FD4 is the received light amount. It corresponds to the other of A (T3) and A (T1).

したがって、フレームデータFD1〜FD4によって、一の受光素子Pkについての受光量A(T0)〜A(T3)を得ることができる。他の受光素子Pkについても同様である。   Therefore, the received light amounts A (T0) to A (T3) for one light receiving element Pk can be obtained from the frame data FD1 to FD4. The same applies to the other light receiving elements Pk.

なお図5〜図12を参照して説明した取得方法によれば、クロック信号の立ち上がりごとに、および立ち下がりごとに、受光量が取得される。よって図15の取得方法に比べて早期に各フレームデータを得ることができる。   In addition, according to the acquisition method demonstrated with reference to FIGS. 5-12, light reception amount is acquired for every rising of a clock signal, and for every falling. Therefore, each frame data can be obtained earlier than the acquisition method of FIG.

一方、図15を参照して説明した取得方法によれば、動き補償に適した受光量を得ることができる。この点については第3の実施の形態で詳述する。   On the other hand, according to the acquisition method described with reference to FIG. 15, it is possible to obtain a received light amount suitable for motion compensation. This point will be described in detail in the third embodiment.

また上述の例では非特許文献1の算出方法を例示した。以下では特許文献4の算出方法も例示する。特許文献4では、この位相差φは以下の関係式で算出することができる。   In the above example, the calculation method of Non-Patent Document 1 is illustrated. Below, the calculation method of patent document 4 is also illustrated. In Patent Document 4, this phase difference φ can be calculated by the following relational expression.

φ=tan−1[{A(t0)-A(t2)}/{A(t1)-A(t3)}] ・・・(2)φ = tan −1 [{A (t0) -A (t2)} / {A (t1) -A (t3)}] (2)

ここで図16に示すように、期間t0〜t3の始期は期間T0〜T3と同様に変調周期Tの4分の1ずつずれるものの、期間t0〜t3は期間T0〜T3と異なって変調周期Tに対する4分の1周期である。図16の例示では期間t0の開始時点は照射光L1の強度が平均値を採る時点である。   Here, as shown in FIG. 16, the start of the periods t0 to t3 is shifted by a quarter of the modulation period T as in the periods T0 to T3. However, the periods t0 to t3 are different from the periods T0 to T3, and the modulation period T Is a quarter cycle. In the illustration of FIG. 16, the start time of the period t0 is a time when the intensity of the irradiation light L1 takes an average value.

式(2)を採用する場合、期間t0〜t3における受光量A(t0)〜A(t3)を受光素子Pkごとに得ることができれば、受光素子Pk毎に距離を算出することができる。   When formula (2) is employed, if the received light amounts A (t0) to A (t3) in the periods t0 to t3 can be obtained for each light receiving element Pk, the distance can be calculated for each light receiving element Pk.

クロック信号CLKは位相差の算出に必要な受光量についての受光期間(期間t0〜t3)の始期および終期の各々と同期して変化する。例えば図16に示すように、変調周期Tをクロック信号CLKの周期の4倍に設定する。図16ではクロック信号CLKは期間t0〜t3の境界の各々で立ち上がる。なお、図16では受光素子P1で受光される反射光L2についても示している。   The clock signal CLK changes in synchronization with each of the start and end of the light receiving period (periods t0 to t3) for the amount of light received necessary for calculating the phase difference. For example, as shown in FIG. 16, the modulation period T is set to four times the period of the clock signal CLK. In FIG. 16, the clock signal CLK rises at each of the boundaries between periods t0 to t3. FIG. 16 also shows the reflected light L2 received by the light receiving element P1.

受光量取得部10は、クロック信号CLKに基づいて受光素子Pkの受光量を順次に取得してフレームデータFD1〜FD4を取得することで、フレームデータFD1〜FD4の受光素子Pkの受光量を、受光量A(t0)〜A(t3)に相当させる。   The received light amount acquisition unit 10 sequentially acquires the received light amount of the light receiving element Pk based on the clock signal CLK and acquires the frame data FD1 to FD4, thereby obtaining the received light amount of the light receiving element Pk of the frame data FD1 to FD4. The amount of received light is set to correspond to A (t0) to A (t3).

例えばクロック信号CLKの立ち上がり毎に、受光素子Pkの受光量(ここではクロック信号CLKの1周期分の受光量)を所定の順番で順次に取得してフレームデータFD1を取得する。ここで、フレームデータFD1における最初の受光素子P1の受光量を取得する契機となるクロック信号CLKの立ち上がりを1番目の立ち上がりUE1と定義する。   For example, every time the clock signal CLK rises, the amount of light received by the light receiving element Pk (here, the amount of light received for one period of the clock signal CLK) is sequentially obtained in a predetermined order to obtain the frame data FD1. Here, the rising edge of the clock signal CLK that triggers the acquisition of the amount of light received by the first light receiving element P1 in the frame data FD1 is defined as the first rising edge UE1.

このフレームデータFD1の取得後に、クロック信号CLKの立ち上がり毎に受光素子Pkの受光量を同じ順番で順次に取得してフレームデータFD2を取得する。ただし、フレームデータFD2における最初の受光素子P1の受光量は、クロック信号CLKの(4m−1)番目の立ち上がりUE4m−1を契機として取得される。   After acquiring the frame data FD1, the received light amount of the light receiving element Pk is sequentially acquired in the same order every time the clock signal CLK rises to acquire the frame data FD2. However, the amount of light received by the first light receiving element P1 in the frame data FD2 is acquired in response to the (4m-1) th rising UE4m-1 of the clock signal CLK.

次に、クロック信号CLKの立ち上がり毎に、受光素子Pkを同じ順番で順次に取得して、フレームデータFD3を取得し、その後、同様にしてフレームデータFD4を取得する。ただし、フレームデータFD3,FD4における最初の受光素子P1の受光量はそれぞれ(4m’−2)番目の立ち上がりUE4m’−2及び4m’’番目の立ち上がりUE4m’’を契機として取得される。   Next, every time the clock signal CLK rises, the light receiving elements Pk are sequentially acquired in the same order to acquire the frame data FD3, and then the frame data FD4 is acquired in the same manner. However, the received light amount of the first light receiving element P1 in the frame data FD3 and FD4 is acquired with the (4m′−2) th rising UE4m′−2 and the 4m ″ th rising UE4m ″ as a trigger, respectively.

さてここでは1番目の立ち上がりUE1を始期とする1周期は受光期間t0に相当し、立ち上がりUE4m−1を始期とする1周期は受光期間t1に相当し、立ち上がりUE4m’−2を始期とする1周期は受光期間t3に相当し、立ち上がりUE4m’’を始期とする1周期は受光期間t3に相当する。よってかかる取得方法によれば、フレームデータFD1〜FD4における受光素子P1の受光量はそれぞれ受光量A(t0)〜A(t3)に相当する。   Here, one cycle starting from the first rising UE1 corresponds to the light receiving period t0, one cycle starting from the rising UE4m-1 corresponds to the light receiving period t1, and 1 starting from the rising UE4m′-2. The period corresponds to the light receiving period t3, and one period starting from the rising UE4m ″ corresponds to the light receiving period t3. Therefore, according to this acquisition method, the received light amount of the light receiving element P1 in the frame data FD1 to FD4 corresponds to the received light amounts A (t0) to A (t3), respectively.

またフレームデータFD1〜FD4において同じ順番で受光量が取得されるので、他の受光素子PkについてもフレームデータFD1〜FD4から受光量A(T0)〜A(T3)を得ることができる。   Since the received light amounts are acquired in the same order in the frame data FD1 to FD4, the received light amounts A (T0) to A (T3) can be obtained from the frame data FD1 to FD4 for the other light receiving elements Pk.

またクロック信号CLKの立ち上がりを契機として受光量を取得しているものの、立ち下りを契機としてもよく、また図4〜図11を参照したようにクロック信号CLKの立ち上がり及び立ち下がりの各々を契機として受光量を取得しても良い。ただしこの場合、クロック信号CLKの半周期における受光量が取得される。   Although the amount of received light is acquired in response to the rising edge of the clock signal CLK, it may be triggered in response to the falling edge, and each of the rising edge and falling edge of the clock signal CLK as shown in FIGS. The amount of received light may be acquired. However, in this case, the amount of light received in the half cycle of the clock signal CLK is acquired.

また上述の例では、フレームデータFD1〜FD4をこの順に取得している。しかしながらフレームデータFD1〜FD4の取得順序は任意である。例えばフレームデータFD1を取得した後に、フレームデータFD4を取得し、その後、フレームデータFD2,FD3をこの順で取得しても構わない。   In the above example, the frame data FD1 to FD4 are acquired in this order. However, the acquisition order of the frame data FD1 to FD4 is arbitrary. For example, after acquiring the frame data FD1, the frame data FD4 may be acquired, and then the frame data FD2 and FD3 may be acquired in this order.

また各フレームデータFD1〜FD4は異なる時間帯で取得される。よって受光素子Pkの各々における受光量A(T0),A(T2),A(T3),A(T1)の相互間には時間差が生じる(例えば図13も参照)。この時間差は短いことが望ましい。なぜなら、仮に測定対象が動いていれば、例えば受光素子P1はフレームデータFD1〜FD4において異なる測定対象によって反射された反射光L2を受光することになるからである。よって当該時間差が小さいほど、受光素子P1は同じ測定対象からの反射光L2を受光できる。   The frame data FD1 to FD4 are acquired in different time zones. Therefore, there is a time difference between the received light amounts A (T0), A (T2), A (T3), and A (T1) in each of the light receiving elements Pk (see also FIG. 13 for example). It is desirable that this time difference is short. This is because, for example, if the measurement object is moving, the light receiving element P1 receives reflected light L2 reflected by different measurement objects in the frame data FD1 to FD4. Therefore, as the time difference is smaller, the light receiving element P1 can receive the reflected light L2 from the same measurement object.

さてこの時間差は、各フレームデータFD1〜FD4を取得するのに要する時間(受光素子Pkの個数とクロック周期との積)、換言すれば1秒間に取得されるフレームデータの枚数(フレームレート)に依存する。そして当該時間差を低減すべく、フレームレートは大きいことが望ましい。例えばフレームレートは30枚/秒よりも大きいことが望ましい。   This time difference is the time required to acquire each frame data FD1 to FD4 (the product of the number of light receiving elements Pk and the clock cycle), in other words, the number of frame data acquired per second (frame rate). Dependent. In order to reduce the time difference, it is desirable that the frame rate is large. For example, the frame rate is desirably larger than 30 frames / second.

上述の例では非特許文献1の算出方法と、特許文献4の算出方法とについて示した。ここでは、別の算出方法についても説明する。   In the above-described example, the calculation method of Non-Patent Document 1 and the calculation method of Patent Document 4 are shown. Here, another calculation method is also described.

ここでは照射光L1の強度は、図17に示すように、矩形波状(パルス状)に変調される。反射光L2は、図17に示すように照射光L1よりも遅れる。より具体的には、反射光L2は、測定対象までの距離に応じた時間(以下、時間差と呼ぶ)ttだけ、遅れる。よって、この時間差ttを算出することで、測定対象までの距離を算出することができる。そこで、この時間差ttを算出することを企図する。   Here, the intensity of the irradiation light L1 is modulated in a rectangular wave shape (pulse shape) as shown in FIG. The reflected light L2 is delayed from the irradiation light L1 as shown in FIG. More specifically, the reflected light L2 is delayed by a time (hereinafter referred to as a time difference) tt corresponding to the distance to the measurement target. Therefore, by calculating this time difference tt, the distance to the measurement object can be calculated. Therefore, it is intended to calculate this time difference tt.

ここでは、時間差ttを算出するために、期間T0’,T1’における受光量A(T0’),A(T1’)を用いる。期間T0’は照射光L1が立ち上がる時点から立ち下がる時点までの期間であり、期間T1’は、例えば期間T0’と同じ期間長さΔT’を有し、期間T0’に続く期間である。   Here, in order to calculate the time difference tt, the received light amounts A (T0 ') and A (T1') in the periods T0 'and T1' are used. The period T0 'is a period from the time when the irradiation light L1 rises to the time when it falls, and the period T1' is a period following the period T0 ', for example, having the same period length ΔT' as the period T0 '.

図17から理解できるように、受光量A(T1’)は時間差ttに応じた値を採り、時間差ttが長いほど大きな値を採る。また受光量A(T0’),A(T1’)の和は、変調周期T(=期間T0’,T1’の和)に応じた値を採る。図17において幾何学的に考慮すれば、時間差ttと期間長さΔT’との比は、受光量A(T1’)と、受光量A(T0’),A(T1’)の和との比と等しいこととなる。よって、以下の式を用いて、時間差ttを算出することができる。   As can be understood from FIG. 17, the received light amount A (T1 ') takes a value corresponding to the time difference tt, and takes a larger value as the time difference tt is longer. The sum of the received light amounts A (T0 ') and A (T1') takes a value corresponding to the modulation period T (= sum of periods T0 'and T1'). If geometrical consideration is given in FIG. 17, the ratio between the time difference tt and the period length ΔT ′ is the difference between the received light amount A (T1 ′) and the sum of the received light amounts A (T0 ′) and A (T1 ′). Will be equal to the ratio. Therefore, the time difference tt can be calculated using the following equation.

tt=ΔT’・A(T1’)/{A(T0’)+A(T1’)} ・・・(3)   tt = ΔT ′ · A (T1 ′) / {A (T0 ′) + A (T1 ′)} (3)

時間差ttは、照射光L1が、照射装置3から測定対象で反射して受光装置1に到達するのに要する時間である。よって、例えば測定対象から受光装置1までの距離と、測定対象から照射装置3までの距離とが互いに等しいと仮定すると、この距離Rは、光速cを用いて次式で算出される。   The time difference tt is the time required for the irradiation light L1 to reach the light receiving device 1 after being reflected from the irradiation device 3 by the measurement target. Therefore, for example, assuming that the distance from the measurement target to the light receiving device 1 and the distance from the measurement target to the irradiation device 3 are equal to each other, the distance R is calculated by the following equation using the speed of light c.

R=c・tt/2 ・・・(4)   R = c · tt / 2 (4)

以上のようにして測定対象までの距離が算出できる。ここでは、受光素子ごとにこの算出方法を採用すべく、受光素子Pkごとに受光量A(T0’),A(T1’)を得ることを企図する。例えば照射光L1の強度を、図18に示すように、パルス状且つ周期的に変調させる。照射光L1の変調周期は期間T0’,T1’の和である。   The distance to the measurement object can be calculated as described above. Here, in order to employ this calculation method for each light receiving element, it is intended to obtain the received light amounts A (T0 ′) and A (T1 ′) for each light receiving element Pk. For example, the intensity of the irradiation light L1 is modulated in a pulsed manner and periodically as shown in FIG. The modulation period of the irradiation light L1 is the sum of the periods T0 'and T1'.

クロック信号CLKのクロック周期は例えば変調周期の半値と同じに設定される。より詳細には、例えばクロック信号CLKは、期間T0’の始期および期間T1’の始期の各々において立ち上がる。   The clock cycle of the clock signal CLK is set to be the same as the half value of the modulation cycle, for example. More specifically, for example, the clock signal CLK rises at each of the start of the period T0 'and the start of the period T1'.

図19に示すように例えば受光量取得部10は、クロック信号CLKの立ち上がりの各々を契機として、受光素子Pkの各々の受光量を、所定の順番で順次に取得する。ただし、ここでいう受光量とは、クロック信号CLKの1周期における受光量である。このような受光時間は、いわゆる撮像装置における露光時間と同じであり、周知の技術によって制御される。   As illustrated in FIG. 19, for example, the received light amount acquisition unit 10 sequentially acquires the received light amounts of the light receiving elements Pk sequentially in a predetermined order with each rising edge of the clock signal CLK. However, the amount of light received here is the amount of light received in one cycle of the clock signal CLK. Such a light receiving time is the same as an exposure time in a so-called imaging apparatus, and is controlled by a known technique.

図19の例示では、まずクロック信号の立ち上がりUE1’を契機として第1行第1列目の受光素子P1の受光量が取得される。そして、立ち上がりUE1’の次の立ち上がりUE2’を契機として、第1行第2列目の受光素子P2の受光量が取得される。以後、同様にしてクロック信号CLKの立ち上がりを契機として受光素子Pkの受光量が順次に取得され、最終行最終列目の受光素子の受光量が取得されることで、図20に示すフレームデータFD1’が取得される。   In the example of FIG. 19, first, the amount of light received by the light receiving element P <b> 1 in the first row and first column is acquired in response to the rising edge UE <b> 1 ′ of the clock signal. Then, the amount of light received by the light receiving element P2 in the first row and the second column is acquired with the next rising UE2 'after the rising UE1'. Thereafter, similarly, when the rising edge of the clock signal CLK is triggered, the light receiving amount of the light receiving element Pk is sequentially acquired, and the light receiving amount of the light receiving element in the last row and the last column is acquired, whereby the frame data FD1 shown in FIG. 'Is acquired.

続いて図21に示すように、クロック信号CLKの立ち上がりの各々を契機として、受光素子Pkの各々の受光量を、フレームデータFD1’と同じ順番で順次に取得してフレームデータFD2’を取得する(図22も参照)。ただし、立ち上がりUE1’を1番目の立ち上がりと定義すると、フレームデータFD2’においては、図21に示すように、偶数番目の立ち上がりUE2n’を契機として、最初の受光素子P1の受光量を取得する。   Subsequently, as shown in FIG. 21, the light reception amounts of the light receiving elements Pk are sequentially acquired in the same order as the frame data FD1 ′ with each rising edge of the clock signal CLK as a trigger to acquire the frame data FD2 ′. (See also FIG. 22). However, if the rising UE1 'is defined as the first rising, as shown in FIG. 21, the received light amount of the first light receiving element P1 is acquired in the frame data FD2' triggered by the even-numbered rising UE2n '.

なお図2の例示では、受光素子Pkの個数は(2n−2)個である。よって、フレームデータFD1’において最後の受光素子P2n−2の受光量を取得する契機となる立ち上がりUE2n−2’は、偶数番目の立ち上がりである。よって、この次の立ち上がりUE2n−1’は奇数番目の立ち上がりである。したがってこの一例では、立ち上がりUE2n−1’を契機とはせずに、図21に示すように、その次の立ち上がりUE2n’を契機として受光素子P1の受光量を取得する。   In the example of FIG. 2, the number of light receiving elements Pk is (2n−2). Therefore, the rising UE2n-2 ′ that is an opportunity to acquire the amount of light received by the last light receiving element P2n-2 in the frame data FD1 ′ is the even-numbered rising. Therefore, this next rising edge UE2n-1 'is an odd-numbered rising edge. Therefore, in this example, the amount of light received by the light receiving element P1 is acquired with the next rising UE2n 'as a trigger, as shown in FIG. 21, without being triggered by the rising UE2n-1'.

一方で、仮に受光素子Pkの個数が奇数個であれば、フレームデータFD1’において最後の受光素子の受光量を取得する契機となる立ち上がりは奇数番目の立ち上がりである。よってその直後のクロック信号CLKの立ち上がり(偶数番目の立ち上がり)を契機として、フレームデータFD2’における最初の受光素子P1の受光量を取得しても良い。   On the other hand, if the number of light receiving elements Pk is an odd number, the rise that triggers the acquisition of the amount of light received by the last light receiving element in the frame data FD1 'is the odd number rise. Therefore, the received light amount of the first light receiving element P1 in the frame data FD2 'may be acquired with the rising edge (even-numbered rising edge) of the clock signal CLK immediately after that.

さてここでは1番目の立ち上がりUE1’を始期とする1周期は受光期間T0’に相当し、立ち上がりUE2n’を始期とする1周期は受光期間T1’に相当する。よってかかる取得方法によれば、フレームデータFD1’,FD2’における受光素子P1の受光量はそれぞれ受光量A(T0’),A(T1’)に相当する。   Here, one cycle starting from the first rising UE1 'corresponds to the light receiving period T0', and one cycle starting from the rising UE2n 'corresponds to the light receiving period T1'. Therefore, according to this acquisition method, the received light amount of the light receiving element P1 in the frame data FD1 'and FD2' corresponds to the received light amounts A (T0 ') and A (T1'), respectively.

またフレームデータFD1’,FD2’において同じ順番で受光量が取得されるので、他の受光素子PkについてもフレームデータFD1’,FD2’から受光量A(T0’),A(T1’)を得ることができる。したがって、他の受光素子Pkにおいても距離測定のために適した受光量A(T0’),A(T1’)を取得することができる。   Since the received light amounts are acquired in the same order in the frame data FD1 ′ and FD2 ′, the received light amounts A (T0 ′) and A (T1 ′) are obtained from the frame data FD1 ′ and FD2 ′ for the other light receiving elements Pk. be able to. Accordingly, it is possible to obtain the received light amounts A (T0 ′) and A (T1 ′) suitable for distance measurement also in the other light receiving elements Pk.

なお図20および図22に示すように、フレームデータFD1’,FD2’には、受光量A(T0’),A(T1’)が混在している。しかるにこれは必須要件ではない。フレームデータFD1’,FD2’には、それぞれ1種類の受光量が含まれてもよい。即ち、フレームデータFD1’に受光量A(T0’),A(T1’)の一方のみが含まれ、フレームデータFD2’に受光量A(T0’),A(T1’)の他方のみが含まれるように、各受光素子Pkの受光量を取得しても良い。   As shown in FIGS. 20 and 22, the received light amounts A (T0 ') and A (T1') are mixed in the frame data FD1 'and FD2'. However, this is not a requirement. Each of the frame data FD1 'and FD2' may include one type of received light amount. That is, the frame data FD1 ′ includes only one of the received light amounts A (T0 ′) and A (T1 ′), and the frame data FD2 ′ includes only the other of the received light amounts A (T0 ′) and A (T1 ′). As described above, the amount of light received by each light receiving element Pk may be acquired.

例えば、図19において、奇数番目のクロック信号CLKの立ち上がりに起因して、受光素子Pkの受光量を順次に取得することで、フレームデータFD1’において、受光素子Pkの全てについて受光量A(T0’)を取得することができる。同様に、図21において、偶数番目のクロック信号CLKの立ち上がりに起因して、受光素子Pkの受光量を順次に取得することで、フレームデータFD2’において、受光素子Pkの全てについて受光量A(T1’)を取得することができる。この取得方法は、第3の実施の形態で説明するように、動き補償に適した方法である。   For example, in FIG. 19, by sequentially acquiring the light reception amount of the light receiving element Pk due to the rise of the odd-numbered clock signal CLK, the light reception amount A (T0) for all the light receiving elements Pk in the frame data FD1 ′. ') Can get. Similarly, in FIG. 21, the light reception amount of the light receiving element Pk is sequentially obtained due to the rising of the even-numbered clock signal CLK, so that the light reception amount A ( T1 ′) can be obtained. As described in the third embodiment, this acquisition method is a method suitable for motion compensation.

第2の実施の形態.
第2の実施の形態にかかる距離画像センサの概念的な構成の一例は図1と同一である。ただし受光素子群11は、複数のカメラ用受光素子(以下、受光素子PPとも呼ぶ)を更に備える。受光素子PPは受光素子Pkの相互間に配列されて、色に対応する光を受光する。受光素子PPとしては、例えば赤に対応する光を受光する受光素子PRと、青に対応する光を受光する受光素子PBと、緑に対応する光を受光する受光素子PGとが挙げられる。
Second embodiment.
An example of a conceptual configuration of the distance image sensor according to the second embodiment is the same as that in FIG. However, the light receiving element group 11 further includes a plurality of light receiving elements for cameras (hereinafter also referred to as light receiving elements PP). The light receiving elements PP are arranged between the light receiving elements Pk and receive light corresponding to colors. Examples of the light receiving element PP include a light receiving element PR that receives light corresponding to red, a light receiving element PB that receives light corresponding to blue, and a light receiving element PG that receives light corresponding to green.

各受光素子Pk,PPが受光する光の選択は、各受光素子Pk,PPに設けられるフィルタによって実現される。即ち、受光素子PR,PB,PGにはそれぞれ赤色、青色および緑色に対応する波長の光を通過させるフィルタが設けられる。なお、受光素子Pkにも照射光L1(例えば赤外光)に対応する波長の光を通過させるフィルタが設けられてもよく、ここでは当該フィルタが設けられるものとする。   Selection of light received by each light receiving element Pk, PP is realized by a filter provided in each light receiving element Pk, PP. That is, the light receiving elements PR, PB, and PG are provided with filters that allow light having wavelengths corresponding to red, blue, and green to pass through. Note that a filter that allows light having a wavelength corresponding to the irradiation light L1 (for example, infrared light) to pass therethrough may be provided in the light receiving element Pk. Here, the filter is provided.

第2の実施の形態では、色に対応するカメラ用受光素子PPが設けられるので、受光素子群11は映像あるいは画像(以下、自然画と呼ぶ)をも撮ることができる。   In the second embodiment, since the camera light receiving element PP corresponding to the color is provided, the light receiving element group 11 can also take an image or an image (hereinafter referred to as a natural image).

これらの受光素子Pkおよびカメラ用受光素子PPは2次元に配列される。例えば図23に示すように、マトリックス状に配列された4つの受光素子により一つの画素(図23では画素PX1,PX2)を形成し、当該画素の複数がマトリックス状に配列される。図23の例示では、2種類の画素PX1,PX2が各行および各列において交互に配列されている。画素PX1は受光素子Pk,PR,PG,PBによって形成され、画素PX2は受光素子PR,PG,PBによって形成される。つまり、画素PX2は従来の画素と同じ構成を有し、画素PX1は受光素子Pkを含んだ新たな構成を有する。   These light receiving elements Pk and camera light receiving elements PP are two-dimensionally arranged. For example, as shown in FIG. 23, one pixel (pixels PX1 and PX2 in FIG. 23) is formed by four light receiving elements arranged in a matrix, and a plurality of the pixels are arranged in a matrix. In the illustration of FIG. 23, two types of pixels PX1 and PX2 are alternately arranged in each row and each column. The pixel PX1 is formed by the light receiving elements Pk, PR, PG, and PB, and the pixel PX2 is formed by the light receiving elements PR, PG, and PB. That is, the pixel PX2 has the same configuration as the conventional pixel, and the pixel PX1 has a new configuration including the light receiving element Pk.

例えば画素PX1は、受光素子PR,PBと2つの受光素子PGとを含む画素PX2に対して、一つの受光素子PGを受光素子Pkに置き換えたものである。これによって、各画素PX1において色に対応する3つの光を取得しつつも、距離測定用の反射光L2も取得することができる。   For example, the pixel PX1 is obtained by replacing one light receiving element PG with the light receiving element Pk with respect to the pixel PX2 including the light receiving elements PR and PB and the two light receiving elements PG. As a result, it is possible to acquire the reflected light L2 for distance measurement while acquiring the three lights corresponding to the colors in each pixel PX1.

図23の例示では、受光素子Pkを含まない画素PX1と受光素子Pkを含んだ画素PX2との両方が設けられる。これによって、画素PX1のみが設けられる構造に比して、自然画の解像度を向上することができる。   In the example of FIG. 23, both the pixel PX1 not including the light receiving element Pk and the pixel PX2 including the light receiving element Pk are provided. Thereby, the resolution of the natural image can be improved as compared with the structure in which only the pixel PX1 is provided.

また青の視感度が他の色に比べて小さいことに鑑みて、画素PX2において受光素子PBを受光素子Pkに置き換えたもの画素PX1として採用してもよい。この場合、青色の光を受光すべく、画素PX2が設けられることが必須である。   In view of the fact that the blue visibility is lower than that of other colors, the pixel PX1 may be employed as the pixel PX1 in which the light receiving element PB is replaced with the light receiving element Pk. In this case, it is essential that the pixel PX2 is provided to receive blue light.

次に、受光素子PP,Pkの受光量を取得するタイミングの一例について説明する。なお受光量取得部10は、受光素子Pkの受光量を取得せずに受光素子PPの受光量のみを取得して自然画の画像データを取得し、また受光素子PPの受光量を取得せずに受光素子Pkの受光量のみを取得して距離の画像データを取得しても良いものの、ここでは、受光素子PP,Pkの受光量を同時期に取得して第1から第4のフレームデータを取得する。   Next, an example of timing for acquiring the light reception amounts of the light receiving elements PP and Pk will be described. The received light amount acquisition unit 10 acquires only the received light amount of the light receiving element PP without acquiring the received light amount of the light receiving element Pk, acquires the image data of the natural image, and does not acquire the received light amount of the light receiving element PP. Although the distance image data may be acquired by acquiring only the received light amount of the light receiving element Pk, the first to fourth frame data are acquired at the same time here. To get.

例えば受光素子PP,Pkの受光量は、受光する光の区別によらず、第1の実施の形態と同様にして取得される。第1の実施の形態で述べた手法のいずれかを採用してもよいものの、例えばクロック信号CLKの立ち上がりの各々を契機として、第1行目の受光素子を第1列目から最終列目まで順次に選択してその受光量を取得し、次に第2行目の受光素子を同様に順次に選択してその受光量を取得する。以後、同様にして受光素子を順次に選択してその受光量を取得し、フレームデータFD1を取得する。   For example, the amount of light received by the light receiving elements PP and Pk is acquired in the same manner as in the first embodiment, regardless of the distinction between the light received. Although any of the methods described in the first embodiment may be employed, the light receiving elements in the first row are moved from the first column to the last column, for example, triggered by each rising edge of the clock signal CLK. The light receiving amount is acquired by selecting sequentially, and then the light receiving elements in the second row are sequentially selected in the same manner to acquire the received light amount. Thereafter, similarly, the light receiving elements are sequentially selected to obtain the received light amount, and the frame data FD1 is obtained.

ただし、受光素子PPが受光する受光期間は受光素子Pkとは異なって、クロック信号CLKの一周期に限らない。例えば受光素子PPの各々は、その受光量が取得された直後に当該受光量を初期化するとともに、次のフレームデータにおいて受光量が取得されるまで、反射光L2を受光し続けても良い。   However, unlike the light receiving element Pk, the light receiving period in which the light receiving element PP receives light is not limited to one cycle of the clock signal CLK. For example, each of the light receiving elements PP may initialize the received light amount immediately after the received light amount is acquired, and may continue to receive the reflected light L2 until the received light amount is acquired in the next frame data.

フレームデータFD2も第1の実施の形態と同様にして取得される。偶数番目の立ち上がりを契機として、フレームデータFD2における最初の受光素子の受光量を取得する。以後、フレームデータFD1と同様の順番でクロック信号CLKの立ち上がりごとに順次に受光素子の受光量を取得する。   The frame data FD2 is also acquired in the same manner as in the first embodiment. In response to the even-numbered rise, the amount of light received by the first light receiving element in the frame data FD2 is acquired. Thereafter, the amount of light received by the light receiving element is sequentially obtained every time the clock signal CLK rises in the same order as the frame data FD1.

フレームデータFD3,FD4の取得は第1の実施の形態と、上述の説明とにより明らかであるので、繰り返しの説明を避ける。   Since the acquisition of the frame data FD3 and FD4 is obvious from the first embodiment and the above description, repeated description is avoided.

第2の実施の形態によっても、受光素子PkのフレームデータFD1〜FD4における受光量は、受光量A(T0)〜A(T3)に相当する。これは、各フレームデータFD1〜FD4において最初の受光素子の受光量を取得する契機となる条件を第1の実施の形態と同様に設定し、しかも同じ順番で受光量が取得されるからである。以下に具体例を説明する。   Also in the second embodiment, the amount of received light in the frame data FD1 to FD4 of the light receiving element Pk corresponds to the amount of received light A (T0) to A (T3). This is because, in each of the frame data FD1 to FD4, the conditions that trigger the acquisition of the light reception amount of the first light receiving element are set in the same manner as in the first embodiment, and the light reception amounts are acquired in the same order. . A specific example will be described below.

例えば図23において、第2行第1列目の受光素子P1に着目し、また簡単のために受光素子群11において第10列までの受光素子が配列されると仮定する。ここでは、最初の受光素子PR(第1行第1列目の受光素子)の受光量がクロック信号CLKの1番目の立ち上がりUE1を契機とした取得される。すると、フレームデータFD1における受光素子P1の受光量は11番目の立ち上がりを契機として取得される。奇数番目の立ち上がりが契機となるので、この受光量は受光量A(T0)に相当する。   For example, in FIG. 23, attention is paid to the light receiving element P1 in the second row and the first column, and for the sake of simplicity, it is assumed that the light receiving elements up to the tenth column are arranged in the light receiving element group 11. Here, the amount of light received by the first light receiving element PR (light receiving element in the first row and first column) is acquired in response to the first rising edge UE1 of the clock signal CLK. Then, the amount of light received by the light receiving element P1 in the frame data FD1 is acquired at the 11th rise. Since the odd-numbered rise is a trigger, this received light amount corresponds to the received light amount A (T0).

フレームデータFD2の最初の受光素子PRの受光量は偶数番目の立ち上がりを契機として取得され。しかもフレームデータFD2においてもフレームデータFD1と同じ順番で受光素子の受光量が取得される。よって11番目の受光素子P1の受光量は、偶数番目の立ち上がりを契機として取得される。偶数番目の立ち上がりが契機となるので、この受光量は受光量A(T2)に相当する。   The amount of light received by the first light receiving element PR in the frame data FD2 is acquired in response to the even-numbered rise. In addition, the received light amount of the light receiving element is acquired in the same order as the frame data FD1 in the frame data FD2. Therefore, the amount of light received by the eleventh light receiving element P1 is acquired in response to the even-numbered rise. Since the even-numbered rise is a trigger, this received light amount corresponds to the received light amount A (T2).

フレームデータFD3,FD4における受光素子P1の受光量がそれぞれ受光量A(T3),A(T1)に相当することについても、同様にして説明できるので繰り返しの説明を避ける。また他の受光素子Pkについても同様であるので繰り返しの説明を避ける。   The fact that the amount of light received by the light receiving element P1 in the frame data FD3 and FD4 corresponds to the amount of received light A (T3) and A (T1) can be explained in the same way, and thus repeated explanation is avoided. The same applies to the other light receiving elements Pk, so that repeated description is avoided.

したがって、第2の実施の形態でも第1の実施の形態と同様に距離測定の算出に必要な受光量A(T0)〜A(T3)を取得することができる。   Therefore, similarly to the first embodiment, the second embodiment can obtain the received light amounts A (T0) to A (T3) necessary for the calculation of the distance measurement.

ただし、距離算出部24は受光素子PPと区別して受光素子Pkの受光量を記録部23から読み出す必要がある。これは例えば次のようにして実行できる。即ち、受光素子群11における受光素子PP,Pkの配置を予め記録部23に記録しておく。そして距離算出部24が記録部23から当該配置を読み出して当該配置を参照することで、記録部23から適切に受光素子Pkの受光量を読み出せばよい。   However, the distance calculation unit 24 needs to read the amount of light received by the light receiving element Pk from the recording unit 23 in distinction from the light receiving element PP. This can be performed, for example, as follows. That is, the arrangement of the light receiving elements PP and Pk in the light receiving element group 11 is recorded in the recording unit 23 in advance. Then, the distance calculation unit 24 reads the arrangement from the recording unit 23 and refers to the arrangement, so that the received light amount of the light receiving element Pk can be appropriately read from the recording unit 23.

また第2の実施の形態によれば、色に対応する受光素子PPの受光量も取得されて記録部23に記録される。よって、記録部23の受光量を用いて自然画の画像データを生成することができる。生成された自然画の画像データは図示しない表示装置に表示される。受光素子Pkと区別して受光素子PPの受光量を読み出すことは、受光素子Pkの読み出しと同様にして実行されればよい。   Further, according to the second embodiment, the amount of light received by the light receiving element PP corresponding to the color is also acquired and recorded in the recording unit 23. Therefore, natural image data can be generated using the amount of light received by the recording unit 23. The generated natural image data is displayed on a display device (not shown). Reading the amount of light received by the light receiving element PP separately from the light receiving element Pk may be performed in the same manner as the reading of the light receiving element Pk.

第3の実施の形態.
第1の実施の形態で説明したように、フレームデータFD1〜FD4における受光素子Pkの受光量には時間差が生じる(例えば図13も参照)。よって測定対象が動いていると、フレームデータFD1〜FD4において受光素子Pkは測定対象の異なる部分からの反射光L2を受光することとなる。例えば図24に例示するように、フレームデータFD1において、ある受光素子Pxが測定対象のある部分(図24では人の腕の一部)からの反射光L2を受光する。そして、当該部分が動くことによって、図25に示すように、フレームデータFD2では、その受光素子Pxが他の部分(図25では人の後ろに配置された構造物の一部)からの反射光L2を受光することになる。このような現象は距離測定の精度の低下を招く。なお図24,25では、模式的に測定対象の移動量を大きく示しているものの、実際には短期間で各フレームデータを取得することで当該移動量は小さくなる。
Third embodiment.
As described in the first embodiment, there is a time difference in the amount of light received by the light receiving element Pk in the frame data FD1 to FD4 (see, for example, FIG. 13). Therefore, when the measurement target is moving, the light receiving element Pk receives the reflected light L2 from a different part of the measurement target in the frame data FD1 to FD4. For example, as illustrated in FIG. 24, in the frame data FD1, a certain light receiving element Px receives reflected light L2 from a part to be measured (a part of a person's arm in FIG. 24). As the part moves, as shown in FIG. 25, in the frame data FD2, the light receiving element Px is reflected from another part (a part of the structure arranged behind the person in FIG. 25). L2 is received. Such a phenomenon causes a decrease in the accuracy of distance measurement. In FIGS. 24 and 25, although the movement amount of the measurement object is schematically shown, the movement amount is actually reduced by acquiring each frame data in a short period of time.

第3の実施の形態では、フレームデータの取得期間の短縮化とは別の手法で、測定対象の動きに起因する誤差を低減することを目的とする。   In the third embodiment, an object is to reduce an error caused by the movement of the measurement target by a method different from the shortening of the acquisition period of the frame data.

図26に例示する距離画像センサは、図1の距離画像センサと比較して、動き補償部26を更に備えている。動き補償部26は、図27に例示するように、動きベクトル検出部261と、対応部262とを備える。   The distance image sensor illustrated in FIG. 26 further includes a motion compensation unit 26 as compared with the distance image sensor of FIG. As illustrated in FIG. 27, the motion compensation unit 26 includes a motion vector detection unit 261 and a corresponding unit 262.

また受光量取得部10は、第1の実施の形態において説明したように、一つのフレームデータにおける受光素子Pkの受光量のいずれもが、位相差の算出に要する複数の受光量のうち1種類の受光量に相当するように、受光素子Pkの受光量を取得する。例えば図15を参照して説明したように受光素子Pkの受光量を順次に取得する。即ち、受光量取得部10は、クロック信号CLKの奇数番目の立ち上がりを契機として受光量を取得してフレームデータFD1を取得し、クロック信号CLKの偶数番目の立ち上がりを契機として受光量を取得してフレームデータFD2を取得し、クロック信号CLKの奇数番目の立ち下がりを契機として受光量を取得してフレームデータFD3を取得し、クロック信号CLKの偶数番目の立ち下がりを契機として受光量を取得してフレームデータFD4を取得する。この技術的意義については後の説明によって明らかとなる。   Further, as described in the first embodiment, the received light amount acquisition unit 10 has one of the received light amounts of the light receiving elements Pk in one frame data among a plurality of received light amounts required for calculating the phase difference. The amount of light received by the light receiving element Pk is acquired so as to correspond to the amount of received light. For example, as described with reference to FIG. 15, the amount of light received by the light receiving element Pk is sequentially acquired. In other words, the received light amount acquisition unit 10 acquires the received light amount with the odd-numbered rise of the clock signal CLK as a trigger, acquires the frame data FD1, and acquires the received light amount with the even-numbered rise of the clock signal CLK as a trigger. The frame data FD2 is acquired, the amount of received light is acquired with the odd-numbered falling edge of the clock signal CLK as a trigger, the frame data FD3 is acquired, and the light reception amount is acquired with the even-numbered falling edge of the clock signal CLK as a trigger. Frame data FD4 is acquired. The technical significance of this will become clear from the following explanation.

動きベクトル検出部261は測定対象についての動きベクトルを検出する。動きベクトルとは、異なるフレームデータ間において所定のブロック(複数の受光素子でそれぞれ得られる複数の受光量(複数の受光素子の出力信号)で構成されるブロック)がどこからどこへ動いたのかを示すベクトルである。かかる動きベクトルは、公知の手法により、例えば輝度データ(いわゆるYデータ)を用いて検出することができる。一方で、受光素子Pkでは変調された反射光L2を受光するので、受光素子Pkの受光量は厳密には輝度データに相当しない。しかしながら、照射光L1の直流成分を変調成分に比して大きくすることで、受光素子Pkで受光される受光量を動き検出で用いられる輝度データとみなしても誤差は小さい。   The motion vector detection unit 261 detects a motion vector for the measurement target. A motion vector indicates from where to where a predetermined block (a block composed of a plurality of light receiving amounts (output signals of a plurality of light receiving elements) obtained by a plurality of light receiving elements) moves between different frame data. Is a vector. Such a motion vector can be detected by a known method, for example, using luminance data (so-called Y data). On the other hand, since the light receiving element Pk receives the modulated reflected light L2, the amount of light received by the light receiving element Pk does not strictly correspond to luminance data. However, the error is small even if the received light amount received by the light receiving element Pk is regarded as luminance data used for motion detection by increasing the direct current component of the irradiation light L1 as compared with the modulation component.

よって、動きベクトル検出部261はフレームデータFD1〜FD4の各々の受光量を用いて公知の手法により、動きベクトルを検出する。例えば動きベクトル検出部261はフレームデータFD1〜FD4の間において類似度の高いブロックを探索して、フレームデータ間の動きベクトルをブロックごとに検出する。かかる動きベクトルの検出としては公知の技術を採用すればよいので、その詳細な説明は省略する。   Therefore, the motion vector detection unit 261 detects a motion vector by a known method using the received light amounts of the frame data FD1 to FD4. For example, the motion vector detection unit 261 searches for a block having high similarity between the frame data FD1 to FD4, and detects a motion vector between the frame data for each block. A known technique may be employed for detecting the motion vector, and a detailed description thereof will be omitted.

対応部262は、動きベクトルに基づいて、フレームデータFD1〜FD4において、測定対象の同じ位置からの反射光L2を受光する受光素子Pkの受光量を、互いに対応させる。つまり、動きベクトルに基づいて各フレームデータFD1〜FD4から一つずつ受光量を対応させる。   The correspondence unit 262 associates the received light amounts of the light receiving elements Pk that receive the reflected light L2 from the same position of the measurement target with each other in the frame data FD1 to FD4 based on the motion vector. That is, the received light amount is made to correspond to each of the frame data FD1 to FD4 based on the motion vector.

例えば図24,25がそれぞれフレームデータFD1,FD2と対応する図面であるとして説明する。図24の例示では、フレームデータFD1において受光素子Pxは測定対象のある部分(腕の一部)からの反射光L2を受光する。そして図25を参照して、フレームデータFD2においては受光素子Pyが当該部分からの反射光L2を受光する。このとき動きベクトル検出部261は、この動きを示す動きベクトル(つまり受光素子Pxを始点し、受光素子Pyを終点とするベクトル)を検出することになる。そして対応部262は当該動きベクトルに基づいて、フレームデータFD1の受光素子Pxの受光量と、フレームデータFD2の受光素子Pyの受光量とを対応させる。   For example, description will be made assuming that FIGS. 24 and 25 correspond to the frame data FD1 and FD2, respectively. In the illustration of FIG. 24, in the frame data FD1, the light receiving element Px receives reflected light L2 from a portion (a part of an arm) to be measured. Referring to FIG. 25, in frame data FD2, light receiving element Py receives reflected light L2 from the portion. At this time, the motion vector detecting unit 261 detects a motion vector indicating this motion (that is, a vector starting from the light receiving element Px and ending at the light receiving element Py). Then, the correspondence unit 262 associates the received light amount of the light receiving element Px of the frame data FD1 with the received light amount of the light receiving element Py of the frame data FD2 based on the motion vector.

図28,29はそれぞれフレームデータFD3,FD4と対応する図面である。図28の例示では、フレームデータFD3において受光素子Pzが当該部分からの反射光L2を受光し、図29の例示ではフレームデータFD4において受光素子Pwが当該部分からの反射光L2を受光する。このとき動きベクトル検出部261は、フレームデータFD2,FD3間において受光素子Pyを始点とし、受光素子Pzを終点とする動きベクトルを検出することになる。対応部262はこの動きベクトルに基づいて、フレームデータFD2の受光素子Pyの受光量と、フレームデータFD3の受光素子Pzの受光量とを対応させる。同様にして、対応部262はフレームデータFD3の受光素子Pzの受光量と、フレームデータFD4の受光素子Pwの受光量とを対応させる。   28 and 29 are drawings corresponding to the frame data FD3 and FD4, respectively. In the illustration of FIG. 28, the light receiving element Pz receives the reflected light L2 from the portion in the frame data FD3, and in the illustration of FIG. 29, the light receiving element Pw receives the reflected light L2 from the portion in the frame data FD4. At this time, the motion vector detection unit 261 detects a motion vector having the light receiving element Py as the starting point and the light receiving element Pz as the end point between the frame data FD2 and FD3. Based on this motion vector, the correspondence unit 262 associates the received light amount of the light receiving element Py of the frame data FD2 with the received light amount of the light receiving element Pz of the frame data FD3. Similarly, the correspondence unit 262 associates the amount of light received by the light receiving element Pz of the frame data FD3 with the amount of light received by the light receiving element Pw of the frame data FD4.

以上のように、フレームデータFD1の受光素子PxとフレームデータFD2の受光素子PyとフレームデータFD3の受光素子PzとフレームデータFD4の受光素子Pwとが互いに対応付けられる。   As described above, the light receiving element Px of the frame data FD1, the light receiving element Py of the frame data FD2, the light receiving element Pz of the frame data FD3, and the light receiving element Pw of the frame data FD4 are associated with each other.

さて第3の実施の形態では、一つのフレームデータにおける受光素子Pkの受光量のいずれもが、位相差の算出に要する複数の受光量のうち1種類の受光量に相当する。例えば図15に例示するように受光量を取得する。これにより、フレームデータFD1の任意の受光素子Pkの受光量は受光量A(T0)に相当し、フレームデータFD2の任意の受光素子Pkの受光量は受光量A(T2)に相当し、フレームデータFD3の任意の受光素子Pkの受光量は受光量A(T3)に相当し、フレームデータFD4の任意の受光素子Pkの受光生は受光量A(T1)に相当する。   In the third embodiment, each of the light reception amounts of the light receiving element Pk in one frame data corresponds to one type of light reception amount among a plurality of light reception amounts required for calculating the phase difference. For example, the amount of received light is acquired as illustrated in FIG. Thus, the received light amount of an arbitrary light receiving element Pk in the frame data FD1 corresponds to the received light amount A (T0), and the received light amount of the arbitrary light receiving element Pk in the frame data FD2 corresponds to the received light amount A (T2). The received light amount of an arbitrary light receiving element Pk in the data FD3 corresponds to the received light amount A (T3), and the received light amount of the arbitrary light receiving element Pk in the frame data FD4 corresponds to the received light amount A (T1).

したがって、各フレームデータFD1〜FD4においてどの受光素子Pkが対応しようとも、対応する4つの受光素子の受光量はそれぞれ受光量A(T0)〜A(T3)に相当する。よって、互いに対応する4つの受光素子の受光量を用いて、式(1)に基づいて位相差φを算出することができる。上述の例では、フレームデータFD1の受光素子Pxの受光量A(T0)と、フレームデータFD2の受光素子Pyの受光量A(T2)と、フレームデータFD3の受光素子Pzの受光量A(T3)と、フレームデータFD4の受光素子Pwの受光量A(T1)とを用いて式(1)により位相差φを算出し、当該位相差φに基づいて距離を算出する。   Therefore, regardless of which light receiving element Pk corresponds to each frame data FD1 to FD4, the light receiving amounts of the corresponding four light receiving elements correspond to the light receiving amounts A (T0) to A (T3), respectively. Therefore, the phase difference φ can be calculated based on Expression (1) using the received light amounts of the four light receiving elements corresponding to each other. In the above example, the received light amount A (T0) of the light receiving element Px of the frame data FD1, the received light amount A (T2) of the light receiving element Py of the frame data FD2, and the received light amount A (T3) of the light receiving element Pz of the frame data FD3. ) And the received light amount A (T1) of the light receiving element Pw of the frame data FD4, the phase difference φ is calculated by the equation (1), and the distance is calculated based on the phase difference φ.

なおここで算出される距離は、互いに対応する受光素子Px,Py,Pz,Pwのうち、基準となるフレームデータの受光素子での距離である。この基準となるフレームデータはフレームデータFD1〜FD4のうちいずれか一つを採用すればよく、例えばフレームデータFD1である。そして、基準となるフレームデータFD1の他の受光素子も上述のようにして適宜にフレームデータFD2〜FD4の受光素子と対応づけられ、その4つの受光素子の受光量を用いて、当該他の受光素子での距離が算出される。   The distance calculated here is the distance at the light receiving element of the reference frame data among the light receiving elements Px, Py, Pz, Pw corresponding to each other. Any one of the frame data FD1 to FD4 may be used as the reference frame data, for example, the frame data FD1. The other light receiving elements of the frame data FD1 serving as the reference are also associated with the light receiving elements of the frame data FD2 to FD4 as appropriate as described above, and the other light receiving elements are used by using the received light amounts of the four light receiving elements. The distance at the element is calculated.

以上のようにして、第3の実施の形態では動き補償をしながら距離を算出することができる。   As described above, in the third embodiment, the distance can be calculated while performing motion compensation.

また上述の例では式(1)を用いたものの、式(2)を用いてもよい。この場合、例えばフレームデータFD1の全ての受光素子Pkが受光量A(t0)に相当し、フレームデータFD2の全ての受光素子Pkが受光量A(t1)に相当し、フレームデータFD3の全ての受光素子Pkが受光量A(t2)に相当し、フレームデータFD4の全ての受光素子Pkが受光量A(t3)に相当するように、受光素子Pkの受光量を取得すればよい。例えば図16のクロック信号CLKと照射光L1とを用いる場合、(4M−3)番目の立ち上がりを契機として受光量を順次に取得してフレームデータFD1を取得することで、フレームデータFD1の全ての受光素子Pkの受光量が受光量A(t0)に相当する。同様にしてフレームデータFD2〜FD4がそれぞれ受光量A(t1)〜A(t3)となるように受光量を取得できる。   In the above example, equation (1) is used, but equation (2) may be used. In this case, for example, all the light receiving elements Pk in the frame data FD1 correspond to the received light amount A (t0), all the light receiving elements Pk in the frame data FD2 correspond to the received light amount A (t1), and all the frame data FD3 The light receiving amount of the light receiving element Pk may be acquired so that the light receiving element Pk corresponds to the light receiving amount A (t2) and all the light receiving elements Pk in the frame data FD4 correspond to the light receiving amount A (t3). For example, when the clock signal CLK and the irradiation light L1 of FIG. 16 are used, all the frame data FD1 are acquired by sequentially acquiring the received light amount with the (4M-3) th rise as a trigger and acquiring the frame data FD1. The amount of light received by the light receiving element Pk corresponds to the amount of received light A (t0). Similarly, the received light amount can be acquired so that the frame data FD2 to FD4 become the received light amounts A (t1) to A (t3), respectively.

また式(3)および式(4)を用いてもよい。この場合、第1の実施の形態で述べたように、例えばフレームデータFD1’の全ての受光素子Pkが受光量A(T0’)に相当し、フレームデータFD2’の全ての受光素子Pkが受光量A(T1’)に相当するように、受光素子Pkの受光量を取得すればよい。   Moreover, you may use Formula (3) and Formula (4). In this case, as described in the first embodiment, for example, all the light receiving elements Pk of the frame data FD1 ′ correspond to the received light amount A (T0 ′), and all the light receiving elements Pk of the frame data FD2 ′ receive light. What is necessary is just to acquire the light reception amount of the light receiving element Pk so that it may correspond to quantity A (T1 ').

<動きベクトルのその他の検出方法1>
動きベクトル検出部261は例えば次のようにして動きベクトルを検出しても良い。即ち、動きベクトルを検出するためのフレームデータMFD1,MFD2を、フレームデータFD1〜FD4とは別に取得し(例えば図30も参照)、フレームデータMFD1,MFD2に基づいて動きベクトルを検出しても良い。以下に詳述する。
<Other motion vector detection methods 1>
The motion vector detection unit 261 may detect a motion vector as follows, for example. That is, the frame data MFD1 and MFD2 for detecting the motion vector may be acquired separately from the frame data FD1 to FD4 (see, for example, FIG. 30), and the motion vector may be detected based on the frame data MFD1 and MFD2. . This will be described in detail below.

フレームデータMFD1,MFD2は、フレームデータFD1〜FD4とは異なって、照射装置3が直流成分の照射光L1を照射した状態で取得される。このとき受光素子Pkでは直流成分の反射光L2が受光されるので、その受光量は、動きベクトルの検出に用いられる輝度データと等価となる。よって変調された照射光L1を用いて動きベクトルを検出する場合に比して、動きベクトルの検出精度を向上することができる。   Unlike the frame data FD1 to FD4, the frame data MFD1 and MFD2 are acquired in a state where the irradiation device 3 irradiates the irradiation light L1 of the DC component. At this time, since the reflected light L2 of the direct current component is received by the light receiving element Pk, the amount of received light is equivalent to the luminance data used for detecting the motion vector. Therefore, the motion vector detection accuracy can be improved as compared with the case where the motion vector is detected using the modulated irradiation light L1.

図30の例示では、フレームデータFD1〜FD4の取得に先立ってフレームデータMFD1を取得し、フレームデータFD1〜FD4の取得の後にフレームデータMFD2を取得する。この場合の具体的な動作について以下に説明する。   In the example of FIG. 30, the frame data MFD1 is acquired prior to the acquisition of the frame data FD1 to FD4, and the frame data MFD2 is acquired after the acquisition of the frame data FD1 to FD4. A specific operation in this case will be described below.

制御演算装置2はフレームデータFD1〜FD4の取得に先立って、照射装置3から直流成分の照射光L1を照射させる。これは例えば照射光制御部22が一定の電圧を照射装置3へと印加することによって実現される。   Prior to the acquisition of the frame data FD1 to FD4, the control arithmetic device 2 irradiates the irradiation light L1 of the direct current component from the irradiation device 3. This is realized, for example, when the irradiation light control unit 22 applies a constant voltage to the irradiation device 3.

さらに制御演算装置2はクロック信号CLKを出力する。受光量取得部10は、直流成分の照射光L1を出力した状態において、クロック信号CLKに基づいて受光素子Pkの受光量を取得して、フレームデータMFD1を取得する。なお受光素子Pkの受光量はクロック信号CLKの一周期の受光量に限らない。   Further, the control arithmetic unit 2 outputs a clock signal CLK. The received light amount acquisition unit 10 acquires the received light amount of the light receiving element Pk based on the clock signal CLK in a state where the irradiation light L1 of the DC component is output, and acquires the frame data MFD1. The amount of light received by the light receiving element Pk is not limited to the amount of light received in one cycle of the clock signal CLK.

そしてフレームデータMFD1の取得後に、第1の実施の形態と同様にして、フレームデータFD1〜FD4を取得する。   Then, after acquiring the frame data MFD1, the frame data FD1 to FD4 are acquired in the same manner as in the first embodiment.

次に、フレームデータMFD2を取得すべく、再び照射装置3に直流成分の照射光L1を出力させ、その状態で受光量取得部10が受光量を順次に取得してフレームデータMFD2を取得する。   Next, in order to acquire the frame data MFD2, the irradiation device 3 outputs the irradiation light L1 of the direct current component again, and in this state, the received light amount acquisition unit 10 sequentially acquires the received light amount and acquires the frame data MFD2.

動きベクトル検出部261は、フレームデータMFD1,MFD2に基づいて公知の手法により動きベクトルを検出する。そして動きベクトル検出部261は検出された動きベクトルをフレームデータFD1〜FD4においても適用する。つまり、この動きベクトルで表される動きのとおりに、フレームデータFD1〜FD4でも測定対象が動くと仮定する。またここでは、フレームデータMFD1,MFD2,FD1〜FD4が互いに等期間で取得されると仮定する。よって、フレームデータMFD1,MFD2,FD1〜FD4の相互間の動きベクトルは、検出された動きベクトルの大きさを5で除算することで算出される。例えば図30では、フレームデータMFD1における受光素子Paを始点とし、フレームデータMFD2における受光素子Pfを終点とする動きベクトルが検出される。そして、この動きベクトルの大きさを5で除算することで、各フレームデータ間の動きベクトルMVを算出する。   The motion vector detection unit 261 detects a motion vector by a known method based on the frame data MFD1 and MFD2. The motion vector detection unit 261 also applies the detected motion vector to the frame data FD1 to FD4. That is, it is assumed that the measurement object moves also in the frame data FD1 to FD4 according to the motion represented by the motion vector. Here, it is assumed that the frame data MFD1, MFD2, FD1 to FD4 are acquired at equal intervals. Therefore, the motion vector between the frame data MFD1, MFD2, FD1 to FD4 is calculated by dividing the magnitude of the detected motion vector by 5. For example, in FIG. 30, a motion vector starting from the light receiving element Pa in the frame data MFD1 and starting from the light receiving element Pf in the frame data MFD2 is detected. Then, the motion vector MV between the frame data is calculated by dividing the magnitude of this motion vector by 5.

対応部262は、算出された動きベクトルMVに基づいて、フレームデータFD1〜FD4において受光素子を対応させる。例えばフレームデータMFD1の受光素子Paを始点とした動きベクトルMVで示されるフレームデータFD1の受光素子Pbを、受光素子Paと対応させる。同様に、フレームデータFD1の受光素子Pbを始点とした動きベクトルMVで示されるフレームデータFD2の受光素子Pcを、受光素子Pbと対応させる。以下同様にして、フレームデータFD1の受光素子PbとフレームデータFD2の受光素子PcとフレームデータFD3の受光素子PdとフレームデータFD4の受光素子Peとが互いに対応する。   The correspondence unit 262 associates the light receiving elements in the frame data FD1 to FD4 based on the calculated motion vector MV. For example, the light receiving element Pb of the frame data FD1 indicated by the motion vector MV starting from the light receiving element Pa of the frame data MFD1 is associated with the light receiving element Pa. Similarly, the light receiving element Pc of the frame data FD2 indicated by the motion vector MV starting from the light receiving element Pb of the frame data FD1 is associated with the light receiving element Pb. Similarly, the light receiving element Pb of the frame data FD1, the light receiving element Pc of the frame data FD2, the light receiving element Pd of the frame data FD3, and the light receiving element Pe of the frame data FD4 correspond to each other.

なお図30の例示では、等間隔でフレームデータMFD1,MFD2,FD1〜FD4が取得されているが、互いに異なる間隔で取得されても構わない。この場合、フレームデータMFD1,MFD2で検出された動きベクトルに対して、それぞれ間隔に応じた重み付けを行なうことで動きベクトルを算出すればよい。   In the example of FIG. 30, the frame data MFD1, MFD2, FD1 to FD4 are acquired at equal intervals, but may be acquired at different intervals. In this case, the motion vectors may be calculated by weighting the motion vectors detected in the frame data MFD1 and MFD2 according to the intervals.

また必ずしも2つのフレームデータMFD1,MFD2のみを用いる必要は無い。例えばフレームデータFD1〜FD4の相互間において動きベクトルの検出のためのフレームデータ(以下、動きベクトル用フレームと呼ぶ)を取得しても良い。そして、例えばフレームデータFD1の前の動きベクトル用フレームと、フレームデータFD1,FD2の間の動きベクトル用フレームとを用いて動きベクトルを検出し、これをフレームデータFD1,FD2間の動きベクトルとして採用してもよい。その他のフレームデータ間の動きベクトルについても同様である。   Further, it is not always necessary to use only the two frame data MFD1 and MFD2. For example, frame data for detecting a motion vector (hereinafter referred to as a motion vector frame) may be acquired between the frame data FD1 to FD4. For example, a motion vector is detected using a motion vector frame before the frame data FD1 and a motion vector frame between the frame data FD1 and FD2, and this is used as a motion vector between the frame data FD1 and FD2. May be. The same applies to the motion vectors between other frame data.

<動きベクトルのその他の検出方法2>
受光素子群11が第2の実施の形態のようにカメラ用受光素子PPを備えている場合、動きベクトル検出部261は受光素子PPの受光量に基づいて動きベクトルを検出しても良い。
<Other motion vector detection method 2>
When the light receiving element group 11 includes the camera light receiving element PP as in the second embodiment, the motion vector detecting unit 261 may detect a motion vector based on the amount of light received by the light receiving element PP.

即ち、受光量取得部10は受光素子Pkの受光量およびカメラ用受光素子PPの受光量を順次に取得して、第1から前記第4のフレームデータFD1〜FD4を取得する。かかる取得方法は例えば第2の実施の形態で説明した通りである。   That is, the received light amount acquisition unit 10 sequentially acquires the received light amount of the light receiving element Pk and the received light amount of the camera light receiving element PP, and acquires the first to fourth frame data FD1 to FD4. Such an acquisition method is, for example, as described in the second embodiment.

そして、動きベクトル検出部261は、第1から第4のフレームデータFD1〜FD4における受光素子PPの受光量に基づいて、動きベクトルを検出する。例えば動きベクトル検出部261はフレームデータFD1〜FD4において画素PX1,PX2ごとに輝度データを算出する。そして、輝度データに基づいて公知の手法により動きベクトルを算出する。なお画素PX1についての動きベクトルを、受光素子Pkの動きベクトルとして用いればよい。一方で画素PX2は受光素子Pkを有しておらず、画素PX2についての動きベクトルは必要ではない。よって画素PX2は必ずしも用いる必要はない。   Then, the motion vector detection unit 261 detects a motion vector based on the amount of light received by the light receiving element PP in the first to fourth frame data FD1 to FD4. For example, the motion vector detection unit 261 calculates luminance data for each of the pixels PX1 and PX2 in the frame data FD1 to FD4. Then, a motion vector is calculated by a known method based on the luminance data. Note that the motion vector for the pixel PX1 may be used as the motion vector of the light receiving element Pk. On the other hand, the pixel PX2 does not have the light receiving element Pk, and a motion vector for the pixel PX2 is not necessary. Therefore, the pixel PX2 is not necessarily used.

そして対応部262が動きベクトルに基づいてフレームデータFD1〜FD4において画素PX1(より詳細には受光素子Pk)を対応させる。   Then, the correspondence unit 262 associates the pixel PX1 (more specifically, the light receiving element Pk) in the frame data FD1 to FD4 based on the motion vector.

これによれば、動きベクトル用フレームを取得する必要がない。よって受光素子Pkによる動きベクトル用フレームを更に取得する場合に比して、動き補償のためのデータ量を低減することができる。他方、照射装置3を光源として得られるフレームデータに基づいて動きベクトルを検出する上述の検出方法によれば、暗い環境でも動きベクトルを検出できる。   According to this, it is not necessary to acquire a motion vector frame. Therefore, the amount of data for motion compensation can be reduced as compared with the case of further acquiring a motion vector frame by the light receiving element Pk. On the other hand, according to the above-described detection method for detecting a motion vector based on frame data obtained using the irradiation device 3 as a light source, the motion vector can be detected even in a dark environment.

第4の実施の形態.
図31に示すように、第4の実施の形態にかかる距離画像センサは図1と比較して補正部25を更に備えている。また受光素子群11には、第2の実施の形態と同様に受光素子Pkのみならずカメラ用受光素子PPが設けられる。補正部25は受光素子Pkの受光量に正の係数を掛けた値を、受光素子PPの受光量から減算する補正を行なう。以下、補正部25の意義について詳述するに当たって、まず受光素子PPで受光される光について述べる。
Fourth embodiment.
As shown in FIG. 31, the distance image sensor according to the fourth embodiment further includes a correction unit 25 as compared with FIG. The light receiving element group 11 is provided with not only the light receiving element Pk but also a camera light receiving element PP as in the second embodiment. The correction unit 25 performs correction by subtracting a value obtained by multiplying the light reception amount of the light receiving element Pk by a positive coefficient from the light reception amount of the light receiving element PP. In the following, the light received by the light receiving element PP will be described first before describing the significance of the correction unit 25 in detail.

例えば受光素子PPに設けられるフィルタは、通過させるべき色に対応した波長の光を通過させ、その他の帯域の光を遮断する。例えば図23の受光素子PRに設けられるフィルタは赤色の波長の光を通過させ、その他の帯域の光を遮断する。よって受光素子PRでは主として赤色の波長の光が受光される。しかしながら実際には、当該フィルタは他の帯域の光を完全に遮断できるとは限らない。したがって、例えば照射光L1と同じ波長の光(以下、距離測定用光と呼ぶ)が受光素子PPでもある程度受光され得る。この距離測定用光は受光素子PPにおいて受光すべきものではないので、受光素子PPの受光量のうち距離測定用光の受光量の低減が望まれる。   For example, a filter provided in the light receiving element PP allows light having a wavelength corresponding to a color to pass therethrough and blocks light in other bands. For example, a filter provided in the light receiving element PR in FIG. 23 allows light of red wavelength to pass and blocks light in other bands. Therefore, the light receiving element PR mainly receives light having a red wavelength. However, in practice, the filter cannot always completely block light in other bands. Therefore, for example, light having the same wavelength as the irradiation light L1 (hereinafter referred to as distance measurement light) can be received to some extent by the light receiving element PP. Since the distance measuring light should not be received by the light receiving element PP, it is desired to reduce the light receiving amount of the distance measuring light out of the light receiving amount of the light receiving element PP.

そこで、受光素子PPで受光される距離測定用光の量を、受光素子Pkで受光される受光量から推定することを考慮する。   Therefore, it is considered to estimate the amount of distance measurement light received by the light receiving element PP from the amount of light received by the light receiving element Pk.

さて受光素子Pkに設けられるフィルタは距離測定用光を通過させる。ただし実際には、当該フィルタは距離測定用光をなんら低減することなく通過させるとは限らない。どの程度の割合で距離測定用光が通過するかは、フィルタの特性から了知することができる。例えば当該距離測定用光が受光素子Pkのフィルタに入射されることで、その強度がk1(0<k1≦1)倍となると定義すると、受光素子Pkのフィルタに入射する距離測定用光の量は、受光素子Pkの受光量Pkkから値k2を除算した値(Pkk/k2)で算出される。   Now, the filter provided in the light receiving element Pk allows the distance measuring light to pass therethrough. However, in practice, the filter does not always pass the distance measurement light without reducing it. It can be understood from the characteristics of the filter at what rate the distance measurement light passes. For example, if the distance measurement light is incident on the filter of the light receiving element Pk and the intensity thereof is defined as k1 (0 <k1 ≦ 1) times, the amount of distance measurement light incident on the filter of the light receiving element Pk Is calculated by a value (Pkk / k2) obtained by dividing the light receiving amount Pkk of the light receiving element Pk by the value k2.

そして、この距離測定用光が受光素子PPのフィルタにも入射されると仮定する。また距離測定用光がどの程度の割合で受光素子PPのフィルタを通過するかは、受光素子PPのフィルタの特性から了知することができる。例えば当該距離測定用光が受光素子PPのフィルタに入射されることで、その強度がk2(0<k2<k1)倍となると定義する。この場合、受光素子PPで受光される距離測定用光の量は、受光素子PPのフィルタに入射する量(Pkk/k1)に値k2を乗算した値(Pkk・k2/k1)で算出することができる。   Then, it is assumed that this distance measuring light is also incident on the filter of the light receiving element PP. It can be known from the characteristics of the filter of the light receiving element PP how much the distance measurement light passes through the filter of the light receiving element PP. For example, when the distance measuring light is incident on the filter of the light receiving element PP, the intensity thereof is defined to be k2 (0 <k2 <k1) times. In this case, the amount of distance measuring light received by the light receiving element PP is calculated by a value (Pkk · k2 / k1) obtained by multiplying the amount (Pkk / k1) incident on the filter of the light receiving element PP by the value k2. Can do.

以上のように、受光素子PPで受光される距離測定用光の量を、受光素子Pkの受光量に基づいて推定することができる。   As described above, the amount of distance measurement light received by the light receiving element PP can be estimated based on the amount of light received by the light receiving element Pk.

そこで、補正部25は受光素子Pkの受光量に所定の係数を乗算した値を、受光素子PPの受光量から減算することで、受光素子PPの受光量に含まれる距離測定用光を低減するのである。また所定の係数として(k2/k1)を採用すれば、理論的には受光素子PPの受光量に含まれる距離測定用光を最も低減できる。   Therefore, the correction unit 25 reduces the distance measurement light included in the light reception amount of the light receiving element PP by subtracting the value obtained by multiplying the light reception amount of the light receiving element Pk by a predetermined coefficient from the light reception amount of the light receiving element PP. It is. If (k2 / k1) is employed as the predetermined coefficient, theoretically, the distance measurement light included in the light receiving amount of the light receiving element PP can be reduced most.

なお上述の補正では、受光素子Pk,PPのフィルタに同じ量の距離測定用光が入射されると仮定している。よって、上記補正に採用する受光素子Pkの受光量は、補正の対象となる受光素子PPに最も近い位置に配置される受光素子Pkの受光量を採用することが望ましい。例えば図23において、一の画素PX1に属する受光素子PRの受光量を、当該一の画素PX1に属する受光素子Pkの受光量に基づいて補正する。これにより、受光素子PPの受光量に含まれる距離測定用光を精度よく低減することができる。   In the above correction, it is assumed that the same amount of distance measuring light is incident on the filters of the light receiving elements Pk and PP. Therefore, it is desirable that the amount of light received by the light receiving element Pk used for the correction is the amount of light received by the light receiving element Pk disposed at the position closest to the light receiving element PP to be corrected. For example, in FIG. 23, the received light amount of the light receiving element PR belonging to one pixel PX1 is corrected based on the received light amount of the light receiving element Pk belonging to the one pixel PX1. Thereby, the distance measurement light included in the amount of light received by the light receiving element PP can be accurately reduced.

なお受光素子PPに対してどの受光素子Pkを用いるかは例えば次のようにして補正部25が選択することができる。即ち、例えば受光素子PPに対応して用いる受光素子Pkを予め記録部23に記録し、補正部25が当該記録部23を参照することで、受光素子PPに対して受光素子Pkを用いて補正を行う。   Note that the light receiving element Pk to be used for the light receiving element PP can be selected by the correction unit 25 as follows, for example. That is, for example, the light receiving element Pk used corresponding to the light receiving element PP is recorded in the recording unit 23 in advance, and the correction unit 25 refers to the recording unit 23 so that the light receiving element PP is corrected using the light receiving element Pk. I do.

また測定対象の距離の画像データの取得と自然画の画像データの取得とが同時には行なわれない場合、自然画の撮像に際して照射装置3による照射を行う必要はない。よって制御演算装置2は照射装置3に照射光L1を出力させずにクロック信号CLKを受光装置1へと出力して、自然画を撮像しても良い。このとき受光素子Pkには、照射装置3を光源とした距離測定用光ではなく、自然界に存在する距離測定用光が受光される。このような場合でも、上述のように補正を行なうことで、より実際の色に近い画像データを得ることができる。   Further, when the acquisition of the image data of the distance to be measured and the acquisition of the image data of the natural image are not performed at the same time, it is not necessary to perform the irradiation by the irradiation device 3 when capturing the natural image. Therefore, the control arithmetic device 2 may output the clock signal CLK to the light receiving device 1 without outputting the irradiation light L1 to the irradiation device 3, and may capture a natural image. At this time, the light receiving element Pk receives distance measuring light existing in the natural world, not distance measuring light using the irradiation device 3 as a light source. Even in such a case, image data closer to the actual color can be obtained by performing the correction as described above.

また自然界の距離測定用光が全ての受光素子Pkにほぼ均一に入射されると把握して次のように補正しても良い。即ち、補正部25は一の受光素子Pkの受光量に基づいて、全ての受光素子PPの受光量を補正しても良い。或いは複数の受光素子Pkの受光量の平均に基づいて、全ての受光素子PPの受光量を補正しても良い。   Further, it may be understood that the natural distance measuring light is incident almost uniformly on all the light receiving elements Pk, and the correction may be made as follows. That is, the correction unit 25 may correct the light reception amounts of all the light receiving elements PP based on the light reception amount of one light receiving element Pk. Alternatively, the received light amounts of all the light receiving elements PP may be corrected based on the average of the received light amounts of the plurality of light receiving elements Pk.

また受光素子PR,PG,PBの受光量の全てが補正されても構わない。或いは、照射光L1として赤外光(例えば近赤外光)を採用する場合には、受光素子PPのうち、最も赤外光の波長に近い波長の光(ここでは赤の光)を受光する受光素子PRの受光量のみに対して補正を行なっても良い。通常、フィルタは通過帯域から離れるにしたがって光の通過量は低減するので、最も赤外光を受光しやすい受光素子PRのみを補正対象とするのである。これにより、演算処理を低減しつつも、より実際の色に近い画像データを取得することができる。   Further, all of the amounts of light received by the light receiving elements PR, PG, and PB may be corrected. Alternatively, when infrared light (for example, near infrared light) is employed as the irradiation light L1, light having a wavelength closest to the wavelength of infrared light (here, red light) is received from the light receiving element PP. You may correct | amend only with respect to the light reception amount of the light receiving element PR. Usually, since the amount of light passing through the filter decreases as it moves away from the passband, only the light receiving element PR that is most likely to receive infrared light is the correction target. Thereby, it is possible to obtain image data closer to the actual color while reducing the arithmetic processing.

なお、このような補正対象の制限は、例えば各受光素子PPに対応した補正の要否の情報を予め記録部23(或いは受光装置1に設けた不図示の記録部)に記録し、補正部25が当該情報を参照して補正を行なうことで実現できる。   Note that such a restriction on the correction target is achieved by, for example, previously recording information on the necessity of correction corresponding to each light receiving element PP in the recording unit 23 (or a recording unit (not shown) provided in the light receiving device 1). 25 can be realized by referring to the information and performing correction.

第5の実施の形態.
図1においてAD変換部17に入力される受光量は受光素子Pk(或いは更に受光素子PP)の受光量である。しかしながら、受光素子Pkの受光量には、照射装置3を光源とした反射光L2のみならず、実際には他の光(以下、周囲光と呼ぶ)もわずかに含まれる。このような周囲光はノイズとして把握される。よってこれに起因してAD変換部17に入力される受光量のSN比(対雑音信号比)が低下する。そこで第5の実施の形態では、AD変換部17に入力される受光量のSN比を増大させることを目的とする。
Fifth embodiment.
In FIG. 1, the amount of light received input to the AD conversion unit 17 is the amount of light received by the light receiving element Pk (or further, the light receiving element PP). However, the amount of light received by the light receiving element Pk includes not only the reflected light L2 using the irradiation device 3 as a light source but also a small amount of other light (hereinafter referred to as ambient light). Such ambient light is recognized as noise. Therefore, the SN ratio (to noise signal ratio) of the amount of received light input to the AD conversion unit 17 is reduced due to this. Therefore, the fifth embodiment aims to increase the SN ratio of the received light amount input to the AD conversion unit 17.

図32の距離画像センサは、図1の距離画像センサと比較して、キャリブレーション部18を更に備える。キャリブレーション部18はAD変換部17よりも列デコーダ14側に配置されて、受光素子Pkの受光量を取得する。図32の例示ではキャリブレーション部18は、相関二重サンプル部15とAD変換部17との間に設けられる。   The distance image sensor of FIG. 32 further includes a calibration unit 18 as compared with the distance image sensor of FIG. The calibration unit 18 is arranged closer to the column decoder 14 than the AD conversion unit 17 and acquires the amount of light received by the light receiving element Pk. In the example of FIG. 32, the calibration unit 18 is provided between the correlated double sample unit 15 and the AD conversion unit 17.

キャリブレーション部18は、照射装置3が照射光L1を照射しない状態で、受光素子Pkの各々から受光量を取得し、これを周囲光として記録する。より詳細には例えば制御演算装置2は、距離測定に用いられるフレームデータFD1〜FD4の取得に先立って、次の動作を行なう。即ち、制御演算装置2は照射装置3に照射光L1を照射させずにクロック信号CLKを受光装置1へと送信しつつ、周囲光を取得する動作である旨をキャリブレーション部18に通知する。当該通知を受け取ったキャリブレーション部18は、自身に入力される受光素子Pkごとの受光量をそれぞれ周囲光として記録し、周囲光が記録されるフレームデータを取得する。かかる周囲光は例えば受光装置1の記録部(不図示)に記録される。   The calibration unit 18 acquires the amount of received light from each of the light receiving elements Pk in a state where the irradiation device 3 does not irradiate the irradiation light L1, and records this as ambient light. More specifically, for example, the control arithmetic device 2 performs the following operation prior to acquisition of the frame data FD1 to FD4 used for distance measurement. That is, the control arithmetic device 2 notifies the calibration unit 18 that the operation is to acquire ambient light while transmitting the clock signal CLK to the light receiving device 1 without irradiating the irradiation device 3 with the irradiation light L1. Receiving the notification, the calibration unit 18 records the received light amount for each light receiving element Pk input to itself as ambient light, and acquires frame data in which the ambient light is recorded. Such ambient light is recorded in, for example, a recording unit (not shown) of the light receiving device 1.

次に、制御演算装置2は第1または第2の実施の形態と同様にして、照射装置3に照射光L1を照射させつつ、受光装置1にクロック信号CLKを出力する。さらに制御演算装置2は距離測定用の受光量の取得動作である旨をキャリブレーション部18に通知する。   Next, similarly to the first or second embodiment, the control arithmetic device 2 outputs the clock signal CLK to the light receiving device 1 while irradiating the irradiation device 3 with the irradiation light L1. Furthermore, the control arithmetic unit 2 notifies the calibration unit 18 that the operation is to acquire the received light amount for distance measurement.

キャリブレーション部18は、照射光L1を照射した状態で取得された受光素子Pkの受光量に対して、その受光素子Pkの周囲光を減算し、減算後の受光量を受光素子Pkの受光量としてAD変換部17へと出力する。AD変換部17は、キャリブレーション部18から入力される受光量をアナログデータからデジタルデータへと変換する。   The calibration unit 18 subtracts the ambient light of the light receiving element Pk from the light receiving amount of the light receiving element Pk acquired in the state irradiated with the irradiation light L1, and the received light amount after subtraction is the light receiving amount of the light receiving element Pk. Is output to the AD converter 17. The AD conversion unit 17 converts the amount of received light input from the calibration unit 18 from analog data to digital data.

以上のようにキャリブレーション部18によって、受光素子Pkの受光量から周囲光が低減されることとなる。したがってAD変換部17に入力される受光量のSN比を向上することができる。これにより、アナログ/デジタル変換の精度を向上することができる。   As described above, the calibration unit 18 reduces the ambient light from the amount of light received by the light receiving element Pk. Therefore, the SN ratio of the received light amount input to the AD conversion unit 17 can be improved. Thereby, the accuracy of analog / digital conversion can be improved.

変形例.
図33の例示では、距離画像センサは反射率が既知である反射物4を更に備えている。
Modified example.
In the illustration of FIG. 33, the distance image sensor further includes a reflector 4 whose reflectance is known.

反射物4は受光素子群11に対して固定の位置関係で設けられており、受光素子群11によって撮像可能な位置に設けられる。例えば図33,34の例示では、距離画像センサは、受光装置1と照射装置3とが取り付けられた筐体5を有する。筐体5は例えば受光装置1が設けられる本体51と、本体51から延在する延在部52とを備え、反射物4が延在部52上に設けられている。どの受光素子Pkが反射物4の光を受光するかは、反射物4と受光素子群11との固定された相対位置によって予め決定される。   The reflector 4 is provided in a fixed positional relationship with respect to the light receiving element group 11 and is provided at a position where it can be imaged by the light receiving element group 11. For example, in the illustration of FIGS. 33 and 34, the distance image sensor includes a housing 5 to which the light receiving device 1 and the irradiation device 3 are attached. The housing 5 includes, for example, a main body 51 on which the light receiving device 1 is provided, and an extending portion 52 extending from the main body 51, and the reflector 4 is provided on the extending portion 52. Which light receiving element Pk receives the light of the reflector 4 is determined in advance by the fixed relative position between the reflector 4 and the light receiving element group 11.

また反射物4の反射率および反射物4の光を受光する受光素子Pkは、予め受光装置1に設けた記録部(不図示)に記録される。キャリブレーション部18は、照射装置3が照射光L1を照射した状態での反射物4からの反射光L2を用いて周囲光を算出する。即ち、キャリブレーション部18は反射物4からの反射光L2を受光する受光素子の受光量と、反射物4の反射率とから反射物4に入射される光量を検出する。かかる光量は当該受光量から反射率を除算することで算出できる。そして、当該光量から照射光L1の光量を減算することで周囲光を算出する。   Further, the reflectance of the reflector 4 and the light receiving element Pk that receives the light of the reflector 4 are recorded in a recording unit (not shown) provided in the light receiving device 1 in advance. The calibration unit 18 calculates ambient light using the reflected light L2 from the reflector 4 in a state where the irradiation device 3 has irradiated the irradiation light L1. That is, the calibration unit 18 detects the amount of light incident on the reflector 4 from the amount of light received by the light receiving element that receives the reflected light L <b> 2 from the reflector 4 and the reflectance of the reflector 4. This amount of light can be calculated by dividing the reflectance from the amount of received light. Then, the ambient light is calculated by subtracting the light amount of the irradiation light L1 from the light amount.

そして、キャリブレーション部18は各受光素子Pkの受光量から当該周囲光を減算して、AD変換部17へと出力する。   The calibration unit 18 subtracts the ambient light from the amount of light received by each light receiving element Pk and outputs the result to the AD conversion unit 17.

第6の実施の形態.
第6の実施の形態では、図35に示すように、受光素子Pkの各々がフォトディテクタ11aと、複数のコンデンサ11cと、スイッチ11dとを備える。フォトディテクタ11aは受光した光の強度に応じて電流を流す。なお図35では、フォトディテクタ11aを等価的に電流源として示している。
Sixth embodiment.
In the sixth embodiment, as shown in FIG. 35, each of the light receiving elements Pk includes a photodetector 11a, a plurality of capacitors 11c, and a switch 11d. The photodetector 11a passes a current according to the intensity of the received light. In FIG. 35, the photodetector 11a is equivalently shown as a current source.

複数のコンデンサ11cはスイッチ11dを介してフォトディテクタ11aに接続されている。フォトディテクタ11aからの電流はスイッチ11dを介してコンデンサ11cに流れ込む。これにより、コンデンサ11cには受光量に応じた電圧が充電されることとなる。したがって受光量取得部10はコンデンサ11cに充電される電圧を受光量として取得する。   The plurality of capacitors 11c are connected to the photodetector 11a via the switch 11d. The current from the photodetector 11a flows into the capacitor 11c through the switch 11d. As a result, the capacitor 11c is charged with a voltage corresponding to the amount of received light. Therefore, the received light amount acquisition unit 10 acquires the voltage charged in the capacitor 11c as the received light amount.

またスイッチ11dはフォトディテクタ11aと複数のコンデンサ11cとの接続関係を変更する。これにより、フォトディテクタ11aに接続されるコンデンサ11cの合成静電容量を異ならせることができる。   The switch 11d changes the connection relationship between the photodetector 11a and the plurality of capacitors 11c. Thereby, the synthetic | combination electrostatic capacitance of the capacitor | condenser 11c connected to the photodetector 11a can be varied.

図35の例示では、複数のコンデンサ11cとして4つのコンデンサが例示されており、その4つのコンデンサ11cのそれぞれに対応してスイッチ11dが設けられている。より詳細には、互い対応するコンデンサ11cとスイッチ11dとが直列に接続され、その直列接続体の4つが互いに並列接続される。そして、この並列接続体がフォトディテクタ11aと直列に接続される。   In the illustration of FIG. 35, four capacitors are illustrated as the plurality of capacitors 11c, and a switch 11d is provided corresponding to each of the four capacitors 11c. More specifically, the capacitor 11c and the switch 11d corresponding to each other are connected in series, and four of the series connection bodies are connected in parallel to each other. And this parallel connection body is connected in series with the photodetector 11a.

よって、例えば4つのスイッチ11dが全てオンしたときに、フォトディテクタ11aに接続されるコンデンサ11cの合成静電容量は、3つのスイッチ11dがオンしたときにフォトディテクタ11aに接続されるコンデンサ11cの合成静電容量と相違する。   Thus, for example, when all four switches 11d are turned on, the combined capacitance of the capacitor 11c connected to the photodetector 11a is equal to the combined capacitance of the capacitor 11c connected to the photodetector 11a when the three switches 11d are turned on. It differs from capacity.

フォトディテクタ11aと導通するコンデンサ11cの合成静電容量は、受光素子Pkの感度に影響を与える。例えば合成静電容量が小さければ、少しの電流でコンデンサ11cに充電される電圧が増大する。よってフォトディテクタ11aが受け取る光が小さくても比較的大きい電圧値として検出できる。ただし、コンデンサ11cの電圧の上限値は予め決まっているので、検出可能な受光量の範囲は小さくなる。つまりダイナミックレンジは低減する。   The combined electrostatic capacitance of the capacitor 11c that is electrically connected to the photodetector 11a affects the sensitivity of the light receiving element Pk. For example, if the synthetic capacitance is small, the voltage charged in the capacitor 11c with a little current increases. Therefore, even if the light received by the photodetector 11a is small, it can be detected as a relatively large voltage value. However, since the upper limit value of the voltage of the capacitor 11c is determined in advance, the range of the amount of received light that can be detected becomes small. That is, the dynamic range is reduced.

上述の構造によれば、スイッチ11dの制御によって、受光素子Pkの感度とダイナミックレンジを調整することができる。よって、例えば周囲光または照射装置3が出力する照射光L1の強度に応じて適切なコンデンサ11cを選択することができる。   According to the above-described structure, the sensitivity and dynamic range of the light receiving element Pk can be adjusted by controlling the switch 11d. Therefore, for example, an appropriate capacitor 11c can be selected according to the intensity of the ambient light or the irradiation light L1 output from the irradiation device 3.

また、受光素子PPも同様の構造を有していても良い。この場合、受光素子PPと受光素子Pkとの各々において、つまり自然画および距離の画像データの取得の各々において、最適なコンデンサ11cを選択することができる。   Further, the light receiving element PP may have a similar structure. In this case, the optimum capacitor 11c can be selected in each of the light receiving element PP and the light receiving element Pk, that is, in each acquisition of natural image and distance image data.

なおコンデンサ11cの静電容量は互いに異なっていてもよい。これによって、フォトディテクタ11aと導通するコンデンサ11cの合成静電容量の種類を増大させることができる。例えばコンデンサ11cの静電容量が互いに等しければ、どの3つのスイッチをオンさせても、合成静電容量は同じ値を採る。一方、コンデンサ11cの静電容量が互いに異なっていれば、オンする3つのスイッチを異ならせれば、合成静電容量が異なる値を採る。これによれば、感度およびダイナミックレンジを細かく調整できる。   The capacitances of the capacitor 11c may be different from each other. As a result, the type of combined capacitance of the capacitor 11c that is electrically connected to the photodetector 11a can be increased. For example, if the capacitances of the capacitors 11c are equal to each other, the composite capacitance takes the same value no matter which three switches are turned on. On the other hand, if the capacitances of the capacitors 11c are different from each other, the combined capacitances take different values if the three switches to be turned on are different. According to this, the sensitivity and the dynamic range can be finely adjusted.

以下、このような受光素子群11に採用される受光装置1の一例について詳述する。図36の例示では、受光装置1は、図1の受光装置1と比較して、スイッチ11dを制御するスイッチ制御部19を更に備える。スイッチ制御部19は照射光L1の光量(直流成分)が大きいほど、受光素子Pkにおいてフォトディテクタ11aと導通するコンデンサ11cの合成静電容量が大きくなるようにスイッチ11dを制御する。これは例えば次のようにして実現できる。即ち、照射光L1の光量と、導通させるべきスイッチ11dとの関係を記録部に記録し、制御演算装置2が照射光L1の光量をスイッチ制御部19へと通知し、スイッチ制御部19が当該光量と当該関係とに基づいてスイッチ11dを制御すればよい。   Hereinafter, an example of the light receiving device 1 employed in the light receiving element group 11 will be described in detail. In the illustration of FIG. 36, the light receiving device 1 further includes a switch control unit 19 that controls the switch 11d as compared with the light receiving device 1 of FIG. The switch control unit 19 controls the switch 11d so that the combined capacitance of the capacitor 11c that is electrically connected to the photodetector 11a in the light receiving element Pk increases as the light amount (DC component) of the irradiation light L1 increases. This can be realized, for example, as follows. That is, the relationship between the light amount of the irradiation light L1 and the switch 11d to be conducted is recorded in the recording unit, the control arithmetic device 2 notifies the switch control unit 19 of the light amount of the irradiation light L1, and the switch control unit 19 The switch 11d may be controlled based on the amount of light and the relationship.

これにより、照射光L1の光量が小さいときに受光素子Pkの感度を向上することができる。よって照射光L1の光量が小さくても適切に受光量を取得できる。   Thereby, when the light quantity of the irradiation light L1 is small, the sensitivity of the light receiving element Pk can be improved. Therefore, the amount of received light can be appropriately acquired even when the amount of the irradiation light L1 is small.

なお、反射物4とカメラ用受光素子PPとの両方が設けられる場合、反射物4からの光を受光するカメラ用受光素子PPの受光量に基づいて周囲光の光量を算出できる。例えば受光素子PPの受光量から輝度データを算出し、反射物4の反射率を除算することで周囲光の光量が算出される。この場合、周囲光の光量が小さいほど、受光素子PPにおいてフォトディテクタ11aと接続されるコンデンサ11cの合成静電容量が低減するように、スイッチ11dを制御しても良い。これにより、周囲光が小さいときに受光素子PPの感度を向上することができ、適切に受光量を取得できる。   If both the reflector 4 and the camera light receiving element PP are provided, the amount of ambient light can be calculated based on the amount of light received by the camera light receiving element PP that receives light from the reflector 4. For example, luminance data is calculated from the amount of light received by the light receiving element PP, and the amount of ambient light is calculated by dividing the reflectance of the reflector 4. In this case, the switch 11d may be controlled so that the combined capacitance of the capacitor 11c connected to the photodetector 11a in the light receiving element PP decreases as the amount of ambient light decreases. Thereby, when ambient light is small, the sensitivity of the light receiving element PP can be improved, and the amount of received light can be acquired appropriately.

第7の実施の形態.
第1の実施の形態では、変調周期Tはクロック信号CLKの周期の2倍であるとして説明した。ただし2倍に限らず、変調周期Tはクロック信号CLKの周期の偶数倍であればよい。
Seventh embodiment.
In the first embodiment, the modulation period T has been described as being twice the period of the clock signal CLK. However, the modulation period T is not limited to twice, and may be an even number multiple of the period of the clock signal CLK.

例えば変調周期Tが図37に示すようにクロック信号CLKの周期の4倍である場合について説明する。この場合、変調周期Tの半周期である期間T0,T2は、クロック信号CLKの周期の2倍となる。   For example, the case where the modulation period T is four times the period of the clock signal CLK as shown in FIG. 37 will be described. In this case, periods T0 and T2, which are half periods of the modulation period T, are twice the period of the clock signal CLK.

受光素子Pkの受光量を取得するタイミングは第1の実施の形態の説明と同様であり、フレームデータFD1〜FD4を取得し、これが記録部23に書き込まれる。ただし、ここではクロック信号CLKの2周期が変調周期Tの半周期に相当する。よって受光素子PkのフレームデータFD1〜FD4における受光量は期間T0〜T4における受光量には相当しない。そこで、後に詳述するように、複数の受光素子を一つの受光素子(以下、仮想受光素子と称す)とみなし、当該仮想受光素子の受光量を期間T0〜T4における受光量とみなす。   The timing for acquiring the amount of light received by the light receiving element Pk is the same as in the description of the first embodiment, and the frame data FD1 to FD4 are acquired and written in the recording unit 23. However, here, two cycles of the clock signal CLK correspond to a half cycle of the modulation cycle T. Therefore, the amount of received light in the frame data FD1 to FD4 of the light receiving element Pk does not correspond to the amount of received light in the periods T0 to T4. Therefore, as will be described in detail later, a plurality of light receiving elements are regarded as one light receiving element (hereinafter referred to as a virtual light receiving element), and the amount of light received by the virtual light receiving element is regarded as the amount of light received in the periods T0 to T4.

受光素子Pkの受光量の取得タイミングについて図38を参照して具体的に説明する。取得タイミングは第1の実施の形態と同様であるので、例えばクロック信号CLKの立ち上がりの各々を契機として、受光素子Pkの受光量の各々が所定の順番で順次に取得されて、フレームデータFD1を取得する。   The acquisition timing of the amount of light received by the light receiving element Pk will be specifically described with reference to FIG. Since the acquisition timing is the same as in the first embodiment, for example, triggered by each rising edge of the clock signal CLK, the received light amounts of the light receiving elements Pk are sequentially acquired in a predetermined order to obtain the frame data FD1. get.

ただし、ここではクロック信号CLKの2周期が変調周期Tの半周期と一致する。よって図38の例示では、受光素子P1の受光量は期間T0の半分の前半の期間における受光量と一致し、受光素子P2の受光量は期間T0の後半の期間における受光量と一致する。同様に、受光素子P3,P4の受光量はそれぞれ期間T2の前半および後半の期間における受光量と一致する。他の受光素子Pkについても同様である。   However, here, two cycles of the clock signal CLK coincide with a half cycle of the modulation cycle T. Therefore, in the illustration of FIG. 38, the light receiving amount of the light receiving element P1 matches the light receiving amount in the first half of the period T0, and the light receiving amount of the light receiving element P2 matches the light receiving amount in the latter half of the period T0. Similarly, the amount of light received by the light receiving elements P3 and P4 is equal to the amount of light received in the first half and the second half of the period T2, respectively. The same applies to the other light receiving elements Pk.

そこで、受光素子P2m−1(mは自然数、以下同様)と、受光素子P2mとの一組を一つの受光素子(以下、仮想受光素子と呼ぶ)IPmとみなし、仮想受光素子IPmの受光量を受光素子P2m−1,P2mの受光量の和として算出する。これにより、例えば仮想受光素子IP1の受光量を期間T0における受光量A(T0)とみなすことができる。   Therefore, a pair of the light receiving element P2m-1 (m is a natural number, the same applies hereinafter) and the light receiving element P2m is regarded as one light receiving element (hereinafter referred to as a virtual light receiving element) IPm, and the amount of light received by the virtual light receiving element IPm is defined as Calculated as the sum of the amounts of light received by the light receiving elements P2m-1, P2m. Thereby, for example, the received light amount of the virtual light receiving element IP1 can be regarded as the received light amount A (T0) in the period T0.

フレームデータFD2においては、図39に示すように、仮想受光素子IP1の受光量は受光量A(T2)に相当する。同様にして、フレームデータFD3,FD4においては、仮想受光素子IP1の受光量はA(T3),A(T1)にそれぞれ相当する。   In the frame data FD2, as shown in FIG. 39, the received light amount of the virtual light receiving element IP1 corresponds to the received light amount A (T2). Similarly, in the frame data FD3 and FD4, the received light amount of the virtual light receiving element IP1 corresponds to A (T3) and A (T1), respectively.

そして、距離算出部24は、仮想受光素子IPmのフレームデータFD1〜FD4における受光量に基づいて、式(1)を用いて位相差φを算出し、位相差φに基づいて距離を算出する。   Then, the distance calculation unit 24 calculates the phase difference φ using the equation (1) based on the amount of received light in the frame data FD1 to FD4 of the virtual light receiving element IPm, and calculates the distance based on the phase difference φ.

これにより、仮想受光素子IPmごとに距離が算出される。よって第1の実施の形態に比して解像度が低減する。これにより、距離データを平均化することができる。   Thereby, the distance is calculated for each virtual light receiving element IPm. Therefore, the resolution is reduced as compared with the first embodiment. Thereby, distance data can be averaged.

しかも第7の実施の形態によれば、変調周期Tを短くすることなく、クロック信号CLKの周期を短くすることができる。よって照射装置3の性能(つまり変調周期Tの下限)に制限されることなく、クロック信号CLKを短くすることができる。そして第1の実施の形態でも述べたように、受光素子Pkの受光量A(T0),A(T2),A(T3),A(T1)の相互間の時間差は、受光素子Pkの個数とクロック信号CLKの周期とに依存するところ、クロック信号CLKの周期を短くできるので、当該時間差を短くすることができる。   Moreover, according to the seventh embodiment, the cycle of the clock signal CLK can be shortened without shortening the modulation cycle T. Therefore, the clock signal CLK can be shortened without being limited by the performance of the irradiation device 3 (that is, the lower limit of the modulation period T). As described in the first embodiment, the time difference between the received light amounts A (T0), A (T2), A (T3), and A (T1) of the light receiving element Pk is the number of light receiving elements Pk. And the period of the clock signal CLK, the period of the clock signal CLK can be shortened, so that the time difference can be shortened.

なお変調周期Tはクロック信号CLKの2N(Nは自然数)倍である場合、フレームデータFD1において互いに隣り合うN個の受光素子Pkの受光量の和が受光量A(T0),A(T2)の一方に相当し、フレームデータFD2において互いに隣り合うN個の受光素子Pkの受光量の和が受光量A(T0),A(T2)の他方に相当し、フレームデータFD3において互いに隣り合うN個の受光素子Pkの受光量の和が受光量A(T3),A(T1)の一方に相当し、フレームデータFD4において互いに隣り合うN個の受光素子Pkの受光量の和が受光量A(T3),A(T1)の他方に相当する。よってこれらN個の受光素子Pkを一つの仮想受光素子IPとみなすことができる。   When the modulation period T is 2N (N is a natural number) times the clock signal CLK, the sum of the received light amounts of the N light receiving elements Pk adjacent to each other in the frame data FD1 is the received light amount A (T0), A (T2). Of the N light receiving elements Pk adjacent to each other in the frame data FD2 corresponds to the other of the received light amounts A (T0) and A (T2), and N adjacent to each other in the frame data FD3. The sum of the light receiving amounts of the light receiving elements Pk corresponds to one of the light receiving amounts A (T3) and A (T1), and the sum of the light receiving amounts of the N light receiving elements Pk adjacent to each other in the frame data FD4 is the light receiving amount A. It corresponds to the other of (T3) and A (T1). Therefore, these N light receiving elements Pk can be regarded as one virtual light receiving element IP.

なお第1から第7の実施の形態をそれぞれ適宜に組み合わせても良い。   The first to seventh embodiments may be appropriately combined.

上述の例では、受光素子Pkの受光量を順次に取得してフレームデータを取得するステップを繰り返し行なうことで、複数のフレームデータを取得した。ここでは当該ステップを繰り返す動作を行なわない。これに替えて、一つの受光素子Pkについて、連続する複数の受光期間の受光量を取得するステップを、受光素子Pk毎に順次に繰り返して行なう。以下、式(3)および式(4)を用いる算出方法を例に挙げて具体的に説明する。   In the above-described example, a plurality of frame data are acquired by repeatedly performing the step of acquiring the frame data by sequentially acquiring the amount of light received by the light receiving element Pk. Here, the operation of repeating the step is not performed. Instead of this, the step of acquiring the received light amount of a plurality of continuous light receiving periods for one light receiving element Pk is sequentially repeated for each light receiving element Pk. Hereinafter, the calculation method using Formula (3) and Formula (4) will be described in detail as an example.

照射光L1は図18に示すように矩形波状かつ周期的に変調される。クロック信号CLKは例えば図18に示すように期間T0’,T1’の始期の各々にて立ち上がる。   The irradiation light L1 is modulated in a rectangular wave shape and periodically as shown in FIG. For example, as shown in FIG. 18, the clock signal CLK rises at the beginning of periods T0 'and T1'.

受光量取得部10は、例えばクロック信号CLKの立ち上がり毎に、受光素子Pkの受光量を取得する。ただし、クロック信号CLKの立ち上がりと、その次の立ち上がりとにおいて、いずれも同じ受光素子Pkの受光量を取得する。   The received light amount acquisition unit 10 acquires the received light amount of the light receiving element Pk, for example, every time the clock signal CLK rises. However, the received light amount of the same light receiving element Pk is acquired at both the rising edge of the clock signal CLK and the subsequent rising edge.

例えば図40に示すように、1番目の立ち上がりUE1’を契機として受光素子P1の受光量を取得し、2番目の立ち上がりUE2’を契機として受光素子P1の受光量を取得する。つまり、受光素子P1に対して連続して受光量を取得することで、受光素子P1についての受光量A(T0’),A(T1’)を連続して取得する。次に、クロック信号CLKの3番目の立ち上がりUE3’、および、4番目の立ち上がりUE4’をそれぞれ契機として、受光素子P2の受光量A(T0’),A(T1’)を取得し、以後、同様にして、順次に受光素子Pkの受光量A(T0’),A(T1’)を取得する。   For example, as shown in FIG. 40, the amount of light received by the light receiving element P1 is acquired at the first rising UE1 ', and the amount of light received by the light receiving element P1 is acquired at the second rising UE2'. That is, by continuously acquiring the received light amount for the light receiving element P1, the received light amounts A (T0 ') and A (T1') for the light receiving element P1 are continuously acquired. Next, the light reception amounts A (T0 ′) and A (T1 ′) of the light receiving element P2 are acquired at the third rising UE3 ′ and the fourth rising UE4 ′ of the clock signal CLK, respectively. Similarly, the received light amounts A (T0 ′) and A (T1 ′) of the light receiving element Pk are sequentially obtained.

これによっても、受光素子Pkごとに、式(3)および式(4)の距離算出に適した受光量を得ることができる。   This also makes it possible to obtain an amount of received light that is suitable for the distance calculation of Expression (3) and Expression (4) for each light receiving element Pk.

なお、受光素子Pkについての受光量A(T0’),A(T1’)を連続的に取得するには、例えば次の手順が考えられる。すなわち、まず期間T0’の終期において受光量(例えばコンデンサの電圧値、以下同様)を読み出して、受光量A(T0’)を取得する。そして受光量を初期化する(コンデンサを放電する)。この初期化には所定時間(例えばコンデンサの放電時間)を要する。そして再び受光量の蓄積(コンデンサへの充電)を開始し、期間T1’の終期において当該受光量を読み出して、受光量A(T10’)を取得する。   For example, the following procedure is conceivable in order to continuously obtain the received light amounts A (T0 ′) and A (T1 ′) for the light receiving element Pk. That is, first, at the end of the period T0 ', the amount of received light (for example, the voltage value of the capacitor, and so on) is read to obtain the amount of received light A (T0'). Then, the received light amount is initialized (the capacitor is discharged). This initialization requires a predetermined time (for example, capacitor discharge time). Then, the accumulation of the received light amount (charging of the capacitor) is started again, and the received light amount is read at the end of the period T1 'to obtain the received light amount A (T10').

しかしながら、この手順によれば、初期化に要する時間がタイムラグとして発生することになり、受光量A(T1’)に誤差が生じ得る。   However, according to this procedure, the time required for initialization occurs as a time lag, and an error may occur in the amount of received light A (T1 ').

そこで、期間T0’における受光量A(T0’)と、期間T0’,T1’の全体における受光量A(T10’)とを取得しても良い。例えば、期間T0’の終期において受光量を読み出す。これにより、期間T0’における受光量A(T0’)が取得される。そして、受光量を初期化(リセット)することなく、引き続き、受光量の蓄積が行なわれる。そして期間T1’の終期において受光量を読み出す。これにより、期間T0’,T1’の全体における受光量A(T10’)が取得される。そして、受光量A(T10’)から受光量A(T0’)を減算することで、受光量A(T1’)を算出することができる。これによれば、初期化に起因する誤差を低減することができ、より高い精度で距離測定を行なうことができる。   Therefore, the received light amount A (T0 ') in the period T0' and the received light amount A (T10 ') in the entire periods T0' and T1 'may be acquired. For example, the amount of received light is read at the end of the period T0 '. Thereby, the received light amount A (T0 ') in the period T0' is acquired. Then, the received light amount is continuously accumulated without initializing (resetting) the received light amount. Then, the amount of received light is read at the end of the period T1 '. Thereby, the received light amount A (T10 ') in the entire period T0', T1 'is acquired. The received light amount A (T1 ') can be calculated by subtracting the received light amount A (T0') from the received light amount A (T10 '). According to this, an error caused by initialization can be reduced, and distance measurement can be performed with higher accuracy.

この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。   Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.

1 受光装置
3 照射装置
10 受光量取得部
17 AD変換部
18 キャリブレーション部
21 クロック生成部
25 補正部
26 動き補償部
Pk 受光素子
PP カメラ用受光素子
DESCRIPTION OF SYMBOLS 1 Light receiving device 3 Irradiation device 10 Received light quantity acquisition part 17 AD conversion part 18 Calibration part 21 Clock generation part 25 Correction part 26 Motion compensation part Pk Light receiving element PP Camera light receiving element

本発明にかかる距離画像センサの第1の態様は、ある変調周期で照射光の強度を変調させながら、前記照射光を測定対象へと照射する照射部と、測定対象からの反射光を受光する複数の受光素子と、前記受光素子の各々において前記照射光と前記反射光との位相差の算出に用いられる複数の受光量を得るための複数の受光期間の始期および終期の各々と同期して変化するクロック信号を生成するクロック生成部と、ローリングシャッタ方式により前記クロック信号に基づいて前記受光素子の受光量を順次に取得してフレームデータを取得するステップを複数回繰り返して複数のフレームデータを取得することで、前記複数のフレームデータにおける同じ前記受光素子での複数の受光量が、それぞれ前記複数の受光期間における受光量に相当する受光量取得部と、前記複数のフレームデータに基づいて前記位相差を算出して、前記照射部から前記測定対象までの距離を算出する距離算出部とを備え、前記変調周期は前記クロック信号の周期の2n(nは自然数)倍であり、前記複数のフレームデータは第1から第4のフレームデータであり、前記受光量取得部は、前記第1工程から前記第4工程を所定の順序で実行し、前記第1工程では、前記クロック信号の(2r−1+k・n)(rは自然数、k=0,1,2・・)番目の立ち上がりごとに前記受光量を順に取得して前記第1のフレームデータを取得し、前記第2工程では、前記クロック信号の(2s+k・n)(sは自然数)番目の立ち上がりごとに前記受光量を順に取得して前記第2のフレームデータを取得し、前記第3工程では、前記クロック信号の(2t−1+k・n)(tは自然数)番目の立ち下りごとに前記受光量を順に取得して前記第3のフレームデータを取得し、前記第4工程では、前記クロック信号の(2u+k・n)(uは自然数)番目の立ち下りごとに前記受光量を順に取得して前記第4のフレームデータを取得するThe first aspect of the distance image sensor according to the present invention is configured to receive the reflected light from the measurement target and the irradiation unit that irradiates the measurement target with the irradiation light while modulating the intensity of the irradiation light at a certain modulation period. A plurality of light receiving elements and each of the light receiving elements in synchronization with each of the start and end of a plurality of light receiving periods for obtaining a plurality of light receiving amounts used for calculating a phase difference between the irradiation light and the reflected light. A clock generation unit that generates a changing clock signal, and a step of acquiring the frame data by sequentially acquiring the received light amount of the light receiving element based on the clock signal by a rolling shutter method, a plurality of frame data is obtained by repeating a plurality of times. By acquiring, the plurality of received light amounts at the same light receiving element in the plurality of frame data correspond to the received light amounts in the plurality of light receiving periods, respectively. And received light amount acquisition unit, wherein the plurality of by calculating the phase difference based on the frame data, a distance calculation unit for calculating a distance from the irradiation portion to the measurement target, the modulation period of the clock signal 2n (n is a natural number) times the cycle, the plurality of frame data is first to fourth frame data, and the received light amount acquisition unit performs the first to fourth steps in a predetermined order. In the first step, the received light amount is sequentially acquired at every (2r−1 + k · n) (r is a natural number, k = 0, 1, 2,...) Th rise of the clock signal. 1 frame data is acquired, and in the second step, the received light amount is sequentially acquired at every (2s + k · n) (s is a natural number) rise of the clock signal to acquire the second frame data. , The third step Obtains the third frame data by sequentially obtaining the received light amount at every (2t-1 + k · n) (t is a natural number) falling edge of the clock signal. In the fourth step, The fourth frame data is acquired by sequentially acquiring the received light amount at each (2u + k · n) (u is a natural number) falling edge of the signal .

本発明にかかる距離画像センサの第2の態様は、第1の態様にかかる距離画像センサであって、前記受光量取得部は、前記受光素子の前記受光量を、前記クロック信号の立ち上がり毎に所定の順番で順次に取得して、前記第1および前記第2のフレームデータを取得し、前記受光素子の前記受光量を、前記クロック信号の立ち下がり毎に前記順番で順次に取得して、前記第3および前記第4のフレームデータを取得するA second aspect of the distance image sensor according to the present invention is the distance image sensor according to the first aspect, wherein the received light amount acquisition unit determines the received light amount of the light receiving element at each rising edge of the clock signal. Obtaining the first and second frame data sequentially in a predetermined order, obtaining the received light amount of the light receiving element sequentially in the order at each falling edge of the clock signal, The third and fourth frame data are acquired .

本発明にかかる距離画像センサの第3の態様は、ある変調周期で照射光の強度を変調させながら、前記照射光を測定対象へと照射する照射部と、測定対象からの反射光を受光する複数の受光素子と、前記受光素子の各々において前記照射光と前記反射光との位相差の算出に用いられる複数の受光量を得るための複数の受光期間の始期および終期の各々と同期して変化するクロック信号を生成するクロック生成部と、ローリングシャッタ方式により前記クロック信号に基づいて前記受光素子の受光量を順次に取得してフレームデータを取得するステップを複数回繰り返して複数のフレームデータを取得することで、前記複数のフレームデータにおける同じ前記受光素子での複数の受光量が、それぞれ前記複数の受光期間における受光量に相当する受光量取得部と、前記複数のフレームデータに基づいて前記位相差を算出して、前記照射部から前記測定対象までの距離を算出する距離算出部と
を備え、前記複数のフレームデータのうち一のフレームデータにおける前記受光素子の前記受光量のいずれもが、前記複数の受光期間のうち一の受光期間における受光量に相当し、前記変調周期は前記クロック信号の周期の2n(nは自然数)倍であり、前記複数のフレームデータは第1から第4のフレームデータであり、前記受光量取得部は、第1工程から第4工程を所定の実行順序で実行し、前記第1工程においては、前記クロック信号の(2r−1+2・k・n)(rは自然数、k=0,1,2・・)番目の立ち上がりごとに、前記受光素子の前記受光量を順次に取得して、前記第1のフレームデータを取得し、前記第2工程では、前記クロック信号の(2s+2・k・n)(sは自然数)番目の立ち上がりごとに前記受光量を順に取得して前記第2のフレームデータを取得し、前記第3工程では、前記クロック信号の(2t−1+2・k・n)(tは自然数)番目の立ち下りごとに前記受光量を順に取得して前記第3のフレームデータを取得し、前記第4工程では、前記クロック信号の(2u+2・k・n)(uは自然数)番目の立ち下りごとに前記受光量を順に取得して前記第4のフレームデータを取得する
The third aspect of the distance image sensor according to the present invention is configured to receive the reflected light from the measurement target and the irradiation unit that irradiates the measurement target with the irradiation light while modulating the intensity of the irradiation light at a certain modulation period. A plurality of light receiving elements and each of the light receiving elements in synchronization with each of the start and end of a plurality of light receiving periods for obtaining a plurality of light receiving amounts used for calculating a phase difference between the irradiation light and the reflected light. A clock generation unit that generates a changing clock signal, and a step of acquiring the frame data by sequentially acquiring the received light amount of the light receiving element based on the clock signal by a rolling shutter method, a plurality of frame data is obtained by repeating a plurality of times. By acquiring, the plurality of received light amounts at the same light receiving element in the plurality of frame data correspond to the received light amounts in the plurality of light receiving periods, respectively. A light receiving amount obtaining section calculates the phase difference based on the plurality of frame data, a distance calculation unit for calculating a distance from the irradiation portion to the measurement object
Each of the received light amounts of the light receiving element in one frame data of the plurality of frame data corresponds to a received light amount in one light receiving period of the plurality of light receiving periods, and the modulation period is The period of the clock signal is 2n (n is a natural number) times, the plurality of frame data is first to fourth frame data, and the received light amount acquisition unit performs the first to fourth steps in a predetermined manner In the first step, each time the (2r-1 + 2 · k · n) (r is a natural number, k = 0, 1, 2,...) Th rise of the clock signal, The received light amount is sequentially acquired to acquire the first frame data, and in the second step, the received light amount at every (2s + 2 · k · n) (s is a natural number) rise of the clock signal. In order The second frame data is acquired, and in the third step, the received light amount is sequentially acquired at every (2t-1 + 2 · k · n) (t is a natural number) fall of the clock signal. The third frame data is acquired, and in the fourth step, the received light amount is sequentially acquired at every (2u + 2 · k · n) (u is a natural number) falling edge of the clock signal. Get frame data .

本発明にかかる距離画像センサの第4の態様は、第1から第3のいずれか一つの態様にかかる距離画像センサであって、前記複数の受光期間が4つの受光期間であり、前記4つの受光期間の始期がそれぞれ前記変調周期の4分の1周期ずつずれるA fourth aspect of the distance image sensor according to the present invention is the distance image sensor according to any one of the first to third aspects, wherein the plurality of light receiving periods are four light receiving periods. The start of each light receiving period is shifted by a quarter of the modulation period .

本発明にかかる距離画像センサの第5の態様は、第1から第4のいずれか一つの態様にかかる距離画像センサであって、前記変調周期は前記クロック信号の周期の2倍であり、前記距離算出部は、前記受光素子の前記第1から前記第4のフレームデータにおける前記受光量A(T0),A(T2),A(T3),A(T1)と、前記照射光と前記反射光との位相差φとの関係式、φ=tan −1 [{A(T0)−A(T2)}/{A(T3)−A(T1)}]に基づいて、前記照射部から前記測定対象までの距離を算出するA fifth aspect of the distance image sensor according to the present invention is the distance image sensor according to any one of the first to fourth aspects, wherein the modulation period is twice the period of the clock signal, The distance calculation unit includes the received light amounts A (T0), A (T2), A (T3), A (T1) in the first to fourth frame data of the light receiving element, the irradiation light, and the Based on the relational expression with respect to the phase difference φ with respect to the reflected light, φ = tan −1 [{A (T0) −A (T2)} / {A (T3) −A (T1)}], from the irradiation unit The distance to the measurement object is calculated .

本発明にかかる距離画像センサの第6の態様は、第1から第4のいずれか一つの態様にかかる距離画像センサであって、前記変調周期は前記クロック信号の周期の2N(Nは2以上の整数)倍であり、前記距離算出部は、互いに隣り合うN個の前記受光素子の前記第1のフレームデータにおける前記受光量の和A(T0)と、前記N個の前記受光素子の前記第2のフレームデータにおける前記受光量の和A(T2)と、前記N個の前記受光素子の前記第3のフレームデータにおける前記受光量の和A(T3)と、前記N個の前記受光素子の前記第4のフレームデータにおける前記受光量の和A(T1)と、前記照射光および前記反射光の位相差φとの関係式、φ=tan −1 [{A(T0)−A(T2)}/{A(T3)−A(T1)}]に基づいて、前記照射部から前記測定対象までの距離を算出するA sixth aspect of the distance image sensor according to the present invention is the distance image sensor according to any one of the first to fourth aspects, wherein the modulation period is 2N (N is 2) of the period of the clock signal. The distance calculation unit calculates the sum A (T0) of the received light amounts in the first frame data of the N light receiving elements adjacent to each other and the N light receiving elements. The received light amount sum A (T2) in the second frame data, the received light amount sum A (T3) in the third frame data of the N light receiving elements, and the N received light amounts. The relational expression between the sum A (T1) of the received light amount in the fourth frame data of the element and the phase difference φ between the irradiation light and the reflected light, φ = tan −1 [{A (T0) −A ( T2)} / {A (T3) -A (T1)}] Zui and calculates the distance from the irradiation portion to the measurement target.

本発明にかかる距離画像センサの第7の態様は、ある変調周期で照射光の強度を変調させながら、前記照射光を測定対象へと照射する照射部と、測定対象からの反射光を受光する複数の受光素子と、前記受光素子の各々において前記照射光と前記反射光との位相差の算出に用いられる複数の受光量を得るための複数の受光期間の始期および終期の各々と同期して変化するクロック信号を生成するクロック生成部と、ローリングシャッタ方式により前記クロック信号に基づいて前記受光素子の受光量を順次に取得してフレームデータを取得するステップを複数回繰り返して複数のフレームデータを取得することで、前記複数のフレームデータにおける同じ前記受光素子での複数の受光量が、それぞれ前記複数の受光期間における受光量に相当する受光量取得部と、前記複数のフレームデータに基づいて前記位相差を算出して、前記照射部から前記測定対象までの距離を算出する距離算出部と
を備え、前記照射部は、前記照射光の強度をパルス状に変調し、前記複数の受光期間は、前記照射光の強度が立ち上がる時点から立ち下がる時点までの第1期間、および、前記照射光の強度が立ち下がる時点から立ち上がる時点までの第2期間であり、前記複数のフレームデータは第1および第2のフレームデータであり、前記受光量取得部は、前記クロック信号に基づいて、前記受光素子の前記第1期間における前記受光量を順次に取得して前記第1のフレームデータを取得し、前記クロック信号に基づいて、前記受光素子の前記第2期間における前記受光量を順次に取得して前記第2のフレームデータを取得する
According to a seventh aspect of the distance image sensor of the present invention, the irradiation unit that irradiates the measurement target with the irradiation light while modulating the intensity of the irradiation light with a certain modulation period, and the reflected light from the measurement target are received. A plurality of light receiving elements and each of the light receiving elements in synchronization with each of the start and end of a plurality of light receiving periods for obtaining a plurality of light receiving amounts used for calculating a phase difference between the irradiation light and the reflected light. A clock generation unit that generates a changing clock signal, and a step of acquiring the frame data by sequentially acquiring the received light amount of the light receiving element based on the clock signal by a rolling shutter method, a plurality of frame data is obtained by repeating a plurality of times. By acquiring, the plurality of received light amounts at the same light receiving element in the plurality of frame data correspond to the received light amounts in the plurality of light receiving periods, respectively. A light receiving amount obtaining section calculates the phase difference based on the plurality of frame data, a distance calculation unit for calculating a distance from the irradiation portion to the measurement object
The irradiation unit modulates the intensity of the irradiation light in a pulse shape, and the plurality of light receiving periods are a first period from a time point when the intensity of the irradiation light rises to a time point when the intensity falls, and the irradiation light Is a second period from the time when the intensity of the light falls to the time when it rises, the plurality of frame data is first and second frame data, and the received light amount acquisition unit is configured to receive the light reception based on the clock signal. The light reception amount of the light receiving element in the first period is sequentially acquired to acquire the first frame data, and the light reception light amount of the light receiving element in the second period is sequentially acquired based on the clock signal. To obtain the second frame data .

本発明にかかる距離画像センサの第の態様は、第3又は第7の態様にかかる距離画像センサであって、前記測定対象についての動きベクトルを検出する動きベクトル検出部と、前記動きベクトルに基づいて、前記複数のフレームデータにおいて前記受光素子を互いに対応させる動き補償部を更に備える。 An eighth aspect of the distance image sensor according to the present invention is the distance image sensor according to the third or seventh aspect, wherein a motion vector detection unit that detects a motion vector for the measurement target, and the motion vector And a motion compensation unit that associates the light receiving elements with each other in the plurality of frame data.

本発明にかかる距離画像センサの第の態様は、第の態様にかかる距離画像センサであって、前記照射部は直流成分の第2照射光を出力し、前記動きベクトル検出部は、前記第2照射光を出力した状態において前記受光素子が受光する受光量を順次に取得して得られる少なくとも2つの動きベクトル用フレームデータを用いて、前記動きベクトルを検出する。 A ninth aspect of the distance image sensor according to the present invention is the distance image sensor according to the eighth aspect, wherein the irradiation unit outputs second irradiation light of a DC component, and the motion vector detection unit is The motion vector is detected by using at least two motion vector frame data obtained by sequentially acquiring the amount of light received by the light receiving element in the state in which the second irradiation light is output.

本発明にかかる距離画像センサの第10の態様は、第の態様にかかる距離画像センサであって、前記受光素子の相互間に設けられて、色に対応した光を受光する複数のカメラ用受光素子を更に備え、前記受光量取得部は、前記受光素子の前記受光量および前記カメラ用受光素子の受光量を順次に取得して、前記複数のフレームデータを取得し、前記動きベクトル検出部は、前記複数のフレームデータにおける前記カメラ用受光素子の受光量に基づいて、前記動きベクトルを検出する。 A tenth aspect of the distance image sensor according to the present invention is the distance image sensor according to the eighth aspect, wherein the distance image sensor is provided between the light receiving elements and receives a light corresponding to a color. The light receiving element further includes a light receiving element, the light receiving amount acquiring unit sequentially acquires the light receiving amount of the light receiving element and the light receiving amount of the camera light receiving element, acquires the plurality of frame data, and the motion vector detecting unit Detects the motion vector based on the amount of light received by the camera light receiving element in the plurality of frame data.

本発明にかかる距離画像センサの第11の態様は、第1から第10のいずれか一つの態様にかかる距離画像センサであって、前記受光素子の相互間に設けられて、色に対応した光を受光する複数のカメラ用受光素子と、前記受光素子の前記受光量に係数を掛けた値を、前記カメラ用受光素子の受光量から減算する補正を行う補正部とを更に備える。 An eleventh aspect of the distance image sensor according to the present invention is the distance image sensor according to any one of the first to tenth aspects, wherein the distance image sensor is provided between the light receiving elements and corresponds to the color. And a correction unit that performs correction to subtract a value obtained by multiplying the received light amount of the light receiving element by a coefficient from the received light amount of the camera light receiving element.

本発明にかかる距離画像センサの第12の態様は、第11の態様にかかる距離画像センサであって、前記補正に用いられる前記受光素子は、前記受光素子のうち、前記補正の対象となる前記カメラ用受光素子に最も近い位置に設けられる。 A twelfth aspect of the distance image sensor according to the present invention is the distance image sensor according to the eleventh aspect, wherein the light receiving element used for the correction is the correction target among the light receiving elements. It is provided at a position closest to the camera light receiving element.

本発明にかかる距離画像センサの第13の態様は、第11または第12の態様にかかる距離画像センサであって、前記照射光は赤外光であり、前記カメラ用受光素子の各々は赤、青および緑のいずれかに対応した光をそれぞれ受光し、前記補正部は、前記赤に対応した前記カメラ用受光素子の受光量のみに対して前記補正を行う。 A thirteenth aspect of the distance image sensor according to the present invention is the distance image sensor according to the eleventh or twelfth aspect, wherein the irradiation light is infrared light, and each of the camera light receiving elements is red, The light corresponding to either blue or green is received, and the correction unit performs the correction only on the amount of light received by the camera light receiving element corresponding to the red.

本発明にかかる距離画像センサの第14の態様は、第1から第13のいずれか一つの態様にかかる距離画像センサであって、前記照射部が前記照射光を照射しない状態で取得される前記受光素子の受光量を周囲光とし、前記受光素子の前記受光量から、前記周囲光を減算して出力するキャリブレーション部と、前記キャリブレーション部からの前記受光量をアナログデータからデジタルデータへと変換する変換部とを更に備える。 A fourteenth aspect of the distance image sensor according to the present invention is the distance image sensor according to any one of the first to thirteenth aspects, wherein the irradiation unit is acquired in a state where the irradiation light is not irradiated. A calibration unit that outputs the amount of light received by the light receiving element as ambient light, subtracts the ambient light from the amount of light received by the light receiving element, and outputs the amount of light received from the calibration unit from analog data to digital data. And a conversion unit for converting.

本発明にかかる距離画像センサの第15の態様は、第1から第14のいずれか一つの態様にかかる距離画像センサであって、前記受光素子の各々は、受光した光の強度に応じて電流を流すフォトディテクタと、前記電流が流れ込む複数のコンデンサと、前記フォトディテクタと前記複数のコンデンサとの接続関係を変更するスイッチとを備え、前記受光量取得部は、前記受光素子の各々に接続された前記コンデンサに充電された電圧を前記受光量として取得する。 A fifteenth aspect of the distance image sensor according to the present invention is the distance image sensor according to any one of the first to fourteenth aspects, wherein each of the light receiving elements has a current corresponding to the intensity of received light. And a plurality of capacitors through which the current flows, and a switch that changes a connection relationship between the photodetector and the plurality of capacitors, and the received light amount acquisition unit is connected to each of the light receiving elements. The voltage charged in the capacitor is acquired as the amount of received light.

本発明にかかる距離画像センサの第16の態様は、第15の態様にかかる距離画像センサであって、前記スイッチを制御して、前記照射光が小さいほど、前記複数のコンデンサのうち前記フォトディテクタに接続されるコンデンサの合成静電容量を低減させるスイッチ制御部を更に備える。 A sixteenth aspect of the distance image sensor according to the present invention is the distance image sensor according to the fifteenth aspect, wherein the switch is controlled so that the smaller the irradiation light is, the more the condenser detects the light detector. It further includes a switch control unit that reduces the combined capacitance of the connected capacitors.

本発明にかかる距離画像センサの第1および第の態様によれば、クロック信号に基づいて受光量を順次に取得してフレームデータを取得する方式(例えばグローバルシャッタ方式)であっても、距離画像を得ることができる。 According to the first and fourth aspects of the distance image sensor according to the present invention, even in the method of acquiring the frame data by sequentially acquiring the received light amount based on the clock signal (for example, the global shutter method), the distance An image can be obtained.

しかも、まず変調周期がクロック周期の2倍である場合について説明する。このとき、偶数番目の立ち上がりを始期とするクロック周期は、例えば変調周期の前半の半周期(期間T0)に相当し、奇数番目の立ち上がりを始期とするクロック周期は、変調周期の後半の半周期(期間T2)に相当する。 Moreover, the case where the modulation period is twice the clock period will be described first. At this time, the clock cycle starting from the even-numbered rise corresponds to, for example, the first half of the modulation cycle (period T0), and the clock cycle starting from the odd-numbered rise is the half of the second half of the modulation cycle. This corresponds to (period T2).

本発明にかかる距離画像センサの第の態様によれば、クロック信号の立ち上がり毎に受光量を取得するので、例えばクロック信号の立ち上がりを一つ飛ばしで受光量を取得する場合に比して、短い期間で第1および第2のフレームデータを取得できる。同様に、比較的短い期間で第3および第4のフレームデータを取得できる。 According to the second aspect of the distance image sensor according to the present invention, the amount of received light is obtained every time the clock signal rises. For example, compared to the case where the amount of received light is obtained by skipping one rise of the clock signal, The first and second frame data can be acquired in a short period. Similarly, the third and fourth frame data can be acquired in a relatively short period.

本発明にかかる距離画像センサの第の態様によれば、一のフレーデータにおける受光素子の受光量のいずれもが一の受光期間における受光量に相当する。よって、フレームデータごとにそれぞれ複数の受光期間における受光量に対応させることができる。したがって、動き補償に適した受光量を得ることができる。
本発明にかかる距離画像センサの第5の態様によれば、距離を測定できる。
本発明にかかる距離画像センサの第6の態様によれば、照射装置の性能によらずにクロック信号の周期を短くできるので、第1から第4のフレームデータを取得する期間を短くすることができる。しかも、N個の受光素子の受光量の和を用いている。これにより、N個の受光素子を一つの仮想受光素子と把握して、当該一つの仮想受光素子ごとに距離を算出することができる。
According to the 3rd aspect of the distance image sensor concerning this invention, all of the light reception amount of the light receiving element in one frame data are equivalent to the light reception amount in one light reception period. Therefore, it is possible to correspond to the amount of received light in a plurality of light receiving periods for each frame data. Therefore, a received light amount suitable for motion compensation can be obtained.
According to the fifth aspect of the distance image sensor of the present invention, the distance can be measured.
According to the sixth aspect of the distance image sensor according to the present invention, since the cycle of the clock signal can be shortened regardless of the performance of the irradiation apparatus, the period for acquiring the first to fourth frame data can be shortened. it can. In addition, the sum of the amounts of light received by the N light receiving elements is used. Thereby, N light receiving elements can be grasped as one virtual light receiving element, and a distance can be calculated for each virtual light receiving element.

本発明にかかる距離画像センサの第の態様によれば、例えば第1のフレームデータにおける受光素子の全ての受光量は受光量A(T0)に相当し、第2のフレームデータにおける受光素子の全ての受光量は受光量A(T2)に相当し、第3のフレームデータにおける受光素子の全ての受光量は受光量A(T3)に相当し、第4のフレームデータにおける受光素子の全ての受光量は受光量A(T1)に相当する。 According to the seventh aspect of the distance image sensor of the present invention, for example, all the light receiving amounts of the light receiving elements in the first frame data correspond to the light receiving amount A (T0), and the light receiving elements in the second frame data All the received light amounts correspond to the received light amount A (T2), all the received light amounts of the light receiving elements in the third frame data correspond to the received light amount A (T3), and all the received light elements in the fourth frame data. The amount of received light corresponds to the amount of received light A (T1).

本発明にかかる距離画像センサの第の態様によれば動き補償を行なうことができる。 According to the eighth aspect of the distance image sensor of the present invention, motion compensation can be performed.

本発明にかかる距離画像センサの第の態様によれば、直流成分の第2照射光を用いて動きベクトルを検出するので、変調成分の照射光を用いて動きベクトルを検出する場合に比して、検出精度が高い。 According to the ninth aspect of the distance image sensor of the present invention, since the motion vector is detected using the second irradiation light of the DC component, it is compared with the case where the motion vector is detected using the irradiation light of the modulation component. Detection accuracy is high.

本発明にかかる距離画像センサの第10の態様によれば、複数のフレームデータにおいて色に対応する受光量が存在するので、自然画の画像データの作成に資する。しかも動きベクトルを検出するためのみに用いられる動きベクトル用フレームデータを取得する必要がない。よって、動きベクトル用フレームデータを更に取得する場合に比して、必要なデータ量を低減できる。 According to the tenth aspect of the distance image sensor of the present invention, since the received light amount corresponding to the color exists in the plurality of frame data, it contributes to creation of image data of a natural image. In addition, it is not necessary to acquire motion vector frame data used only for detecting a motion vector. Therefore, the required data amount can be reduced as compared with the case of further acquiring motion vector frame data.

本発明にかかる距離画像センサの第11の態様によれば、照射光と同じ波長の光を除去するフィルタをカメラ用受光素子に設ける場合に比して、製造コストを低減できる。 According to the eleventh aspect of the distance image sensor of the present invention, the manufacturing cost can be reduced as compared with the case where a filter that removes light having the same wavelength as the irradiation light is provided in the camera light receiving element.

本発明にかかる距離画像センサの第12の態様によれば、補正の精度を向上できる。 According to the twelfth aspect of the distance image sensor of the present invention, the correction accuracy can be improved.

本発明にかかる距離画像センサの第13の態様によれば、照射光と同じ波長の光を最も受光しやすい赤に対応したカメラ用受光素子のみ補正を行なう。よって演算処理を低減しつつも、他のカメラ用受光素子のみを補正する場合に比して、より実際の色に近い画像データを得ることができる。 According to the thirteenth aspect of the distance image sensor according to the present invention, only the light receiving element for a camera corresponding to red that is most likely to receive light having the same wavelength as the irradiated light is corrected. Accordingly, it is possible to obtain image data closer to the actual color as compared with the case where only the other light receiving elements for cameras are corrected, while reducing the arithmetic processing.

本発明にかかる距離画像センサの第14の態様によれば、変換部に入力される受光量のS/N比を向上することができる。 According to the fourteenth aspect of the distance image sensor of the present invention, the S / N ratio of the received light amount input to the conversion unit can be improved.

本発明にかかる距離画像センサの第15の態様によれば、フォトディテクタに接続されるコンデンサの合成静電容量を変化させることができる。よって、受光量における感度を調整できる。 According to the fifteenth aspect of the distance image sensor of the present invention, the combined capacitance of the capacitor connected to the photodetector can be changed. Therefore, the sensitivity in the amount of received light can be adjusted.

本発明にかかる距離画像センサの第16の態様によれば、照射光の光量が小さいときに受光素子の感度を向上することができる。よって照射光の光量が小さくても適切に受光量を取得できる。 According to the sixteenth aspect of the distance image sensor of the present invention, the sensitivity of the light receiving element can be improved when the amount of irradiation light is small. Therefore, the amount of received light can be appropriately acquired even if the amount of irradiation light is small.

本発明にかかる距離画像センサの第の態様は、ある変調周期で照射光の強度を変調させながら、前記照射光を測定対象へと照射する照射部と、測定対象からの反射光を受光する複数の受光素子と、前記受光素子の各々において前記照射光と前記反射光との位相差の算出に用いられる複数の受光量を得るための複数の受光期間の始期および終期の各々と同期して変化するクロック信号を生成するクロック生成部と、ローリングシャッタ方式により前記クロック信号に基づいて前記受光素子の受光量を順次に取得してフレームデータを取得するステップを複数回繰り返して複数のフレームデータを取得することで、前記複数のフレームデータにおける同じ前記受光素子での複数の受光量が、それぞれ前記複数の受光期間における受光量に相当する受光量取得部と、前記複数のフレームデータに基づいて前記位相差を算出して、前記照射部から前記測定対象までの距離を算出する距離算出部と
を備え、前記複数のフレームデータのうち一のフレームデータにおける前記受光素子の前記受光量のいずれもが、前記複数の受光期間のうち一の受光期間における受光量に相当し、前記変調周期は前記クロック信号の周期の2n(nは自然数)倍であり、前記複数のフレームデータは第1から第4のフレームデータであり、前記受光量取得部は、第1工程から第4工程を所定の実行順序で実行し、前記第1工程においては、前記クロック信号の(2r−1+2・k・n)(rは自然数、k=0,1,2・・)番目の立ち上がりごとに、前記受光素子の前記受光量を順次に取得して、前記第1のフレームデータを取得し、前記第2工程では、前記クロック信号の(2s+2・k・n)(sは自然数)番目の立ち上がりごとに前記受光量を順に取得して前記第2のフレームデータを取得し、前記第3工程では、前記クロック信号の(2t−1+2・k・n)(tは自然数)番目の立ち下りごとに前記受光量を順に取得して前記第3のフレームデータを取得し、前記第4工程では、前記クロック信号の(2u+2・k・n)(uは自然数)番目の立ち下りごとに前記受光量を順に取得して前記第4のフレームデータを取得する。
The first aspect of the distance image sensor according to the present invention is configured to receive the reflected light from the measurement target and the irradiation unit that irradiates the measurement target with the irradiation light while modulating the intensity of the irradiation light at a certain modulation period. A plurality of light receiving elements and each of the light receiving elements in synchronization with each of the start and end of a plurality of light receiving periods for obtaining a plurality of light receiving amounts used for calculating a phase difference between the irradiation light and the reflected light. A clock generation unit that generates a changing clock signal, and a step of acquiring the frame data by sequentially acquiring the received light amount of the light receiving element based on the clock signal by a rolling shutter method, a plurality of frame data is obtained by repeating a plurality of times. By acquiring, the plurality of received light amounts at the same light receiving element in the plurality of frame data correspond to the received light amounts in the plurality of light receiving periods, respectively. A received light amount acquisition unit; and a distance calculation unit that calculates the phase difference based on the plurality of frame data and calculates a distance from the irradiation unit to the measurement target; and one of the plurality of frame data Each of the light receiving amounts of the light receiving elements in the frame data corresponds to a light receiving amount in one light receiving period among the plurality of light receiving periods, and the modulation period is 2n (n is a natural number) of the period of the clock signal. The plurality of frame data is first to fourth frame data, and the received light amount acquisition unit executes the first to fourth steps in a predetermined execution order. In the first step, , Sequentially obtaining the received light amount of the light receiving element at every rising edge of the clock signal (2r-1 + 2 · k · n) (r is a natural number, k = 0, 1, 2,...) First In the second step, the received light amount is sequentially acquired at every (2s + 2 · k · n) (s is a natural number) rise of the clock signal to obtain the second frame data, In the third step, the received light amount is sequentially acquired at every (2t-1 + 2 · k · n) (t is a natural number) falling edge of the clock signal, and the third frame data is acquired. In the fourth step, the received light amount is sequentially obtained at every (2u + 2 · k · n) (u is a natural number) falling edge of the clock signal to obtain the fourth frame data.

本発明にかかる距離画像センサの第の態様は、第の態様にかかる距離画像センサであって、前記複数の受光期間が4つの受光期間であり、前記4つの受光期間の始期がそれぞれ前記変調周期の4分の1周期ずつずれる。 A second aspect of the distance image sensor according to the present invention is the distance image sensor according to the first aspect, wherein the plurality of light reception periods are four light reception periods, and the start periods of the four light reception periods are respectively It shifts by a quarter of the modulation period.

本発明にかかる距離画像センサの第の態様は、第1または第2の態様にかかる距離画像センサであって、前記変調周期は前記クロック信号の周期の2倍であり、前記距離算出部は、前記受光素子の前記第1から前記第4のフレームデータにおける前記受光量A(T0),A(T2),A(T3),A(T1)と、前記照射光と前記反射光との位相差φとの関係式、φ=tan−1[{A(T0)−A(T2)}/{A(T3)−A(T1)}]に基づいて、前記照射部から前記測定対象までの距離を算出する。 A third aspect of the distance image sensor according to the present invention is the distance image sensor according to the first or second aspect, wherein the modulation period is twice the period of the clock signal, and the distance calculator The received light amounts A (T0), A (T2), A (T3), A (T1) in the first to fourth frame data of the light receiving element, and the positions of the irradiation light and the reflected light Based on the relational expression with the phase difference φ, φ = tan −1 [{A (T0) −A (T2)} / {A (T3) −A (T1)}], from the irradiation unit to the measurement target Calculate the distance.

本発明にかかる距離画像センサの第の態様は、第1または第2の態様にかかる距離画像センサであって、前記変調周期は前記クロック信号の周期の2N(Nは2以上の整数)倍であり、前記距離算出部は、互いに隣り合うN個の前記受光素子の前記第1のフレームデータにおける前記受光量の和A(T0)と、前記N個の前記受光素子の前記第2のフレームデータにおける前記受光量の和A(T2)と、前記N個の前記受光素子の前記第3のフレームデータにおける前記受光量の和A(T3)と、前記N個の前記受光素子の前記第4のフレームデータにおける前記受光量の和A(T1)と、前記照射光および前記反射光の位相差φとの関係式、φ=tan−1[{A(T0)−A(T2)}/{A(T3)−A(T1)}]に基づいて、前記照射部から前記測定対象までの距離を算出する。 A fourth aspect of the distance image sensor according to the present invention is the distance image sensor according to the first or second aspect, wherein the modulation period is 2N (N is an integer of 2 or more) times the period of the clock signal. The distance calculation unit includes the sum A (T0) of the received light amounts in the first frame data of the N light receiving elements adjacent to each other and the second frame of the N light receiving elements. The sum A (T2) of the received light amounts in the data, the sum A (T3) of the received light amounts in the third frame data of the N light receiving elements, and the fourth of the N light receiving elements. The relational expression between the sum A (T1) of the received light amounts in the frame data and the phase difference φ between the irradiated light and the reflected light, φ = tan −1 [{A (T0) −A (T2)} / { A (T3) -A (T1)}] It calculates the distance from the irradiation portion to the measurement target.

本発明にかかる距離画像センサの第の態様は、ある変調周期で照射光の強度を変調させながら、前記照射光を測定対象へと照射する照射部と、測定対象からの反射光を受光する複数の受光素子と、前記受光素子の各々において前記照射光と前記反射光との位相差の算出に用いられる複数の受光量を得るための複数の受光期間の始期および終期の各々と同期して変化するクロック信号を生成するクロック生成部と、ローリングシャッタ方式により前記クロック信号に基づいて前記受光素子の受光量を順次に取得してフレームデータを取得するステップを複数回繰り返して複数のフレームデータを取得することで、前記複数のフレームデータにおける同じ前記受光素子での複数の受光量が、それぞれ前記複数の受光期間における受光量に相当する受光量取得部と、前記複数のフレームデータに基づいて前記位相差を算出して、前記照射部から前記測定対象までの距離を算出する距離算出部と
を備え、前記照射部は、前記照射光の強度をパルス状に変調し、前記複数の受光期間は、前記照射光の強度が立ち上がる時点から立ち下がる時点までの第1期間、および、前記照射光の強度が立ち下がる時点から立ち上がる時点までの第2期間であり、前記複数のフレームデータは第1および第2のフレームデータであり、前記受光量取得部は、前記クロック信号に基づいて、前記受光素子の前記第1期間における前記受光量を順次に取得して前記第1のフレームデータを取得し、前記クロック信号に基づいて、前記受光素子の前記第2期間における前記受光量を順次に取得して前記第2のフレームデータを取得する。
According to a fifth aspect of the distance image sensor of the present invention, the irradiation unit that irradiates the measurement target with the irradiation light while modulating the intensity of the irradiation light with a certain modulation period, and the reflected light from the measurement target are received. A plurality of light receiving elements and each of the light receiving elements in synchronization with each of the start and end of a plurality of light receiving periods for obtaining a plurality of light receiving amounts used for calculating a phase difference between the irradiation light and the reflected light. A clock generation unit that generates a changing clock signal, and a step of acquiring the frame data by sequentially acquiring the received light amount of the light receiving element based on the clock signal by a rolling shutter method, a plurality of frame data is obtained by repeating a plurality of times. By acquiring, the plurality of received light amounts at the same light receiving element in the plurality of frame data correspond to the received light amounts in the plurality of light receiving periods, respectively. A received light amount acquisition unit; and a distance calculation unit that calculates the phase difference based on the plurality of frame data and calculates a distance from the irradiation unit to the measurement target, the irradiation unit including the irradiation light The plurality of light receiving periods are a first period from the time when the intensity of the irradiated light rises to a time when it falls, and the time from when the intensity of the irradiated light falls to the time when it rises In the second period, the plurality of frame data are first and second frame data, and the received light amount acquisition unit calculates the received light amount of the light receiving element in the first period based on the clock signal. The first frame data is acquired sequentially, the received light amount of the light receiving element in the second period is sequentially acquired based on the clock signal, and the second frame data is acquired. To get the Mudeta.

本発明にかかる距離画像センサの第の態様は、第1又は第5の態様にかかる距離画像センサであって、前記測定対象についての動きベクトルを検出する動きベクトル検出部と、前記動きベクトルに基づいて、前記複数のフレームデータにおいて前記受光素子を互いに対応させる動き補償部を更に備える。 A sixth aspect of the distance image sensor according to the present invention is the distance image sensor according to the first or fifth aspect, wherein a motion vector detection unit that detects a motion vector for the measurement target, and the motion vector And a motion compensation unit that associates the light receiving elements with each other in the plurality of frame data.

本発明にかかる距離画像センサの第の態様は、第の態様にかかる距離画像センサであって、前記照射部は直流成分の第2照射光を出力し、前記動きベクトル検出部は、前記第2照射光を出力した状態において前記受光素子が受光する受光量を順次に取得して得られる少なくとも2つの動きベクトル用フレームデータを用いて、前記動きベクトルを検出する。 A seventh aspect of the distance image sensor according to the present invention is the distance image sensor according to the sixth aspect, wherein the irradiation unit outputs second irradiation light of a DC component, and the motion vector detection unit is The motion vector is detected by using at least two motion vector frame data obtained by sequentially acquiring the amount of light received by the light receiving element in the state in which the second irradiation light is output.

本発明にかかる距離画像センサの第の態様は、第の態様にかかる距離画像センサであって、前記受光素子の相互間に設けられて、色に対応した光を受光する複数のカメラ用受光素子を更に備え、前記受光量取得部は、前記受光素子の前記受光量および前記カメラ用受光素子の受光量を順次に取得して、前記複数のフレームデータを取得し、前記動きベクトル検出部は、前記複数のフレームデータにおける前記カメラ用受光素子の受光量に基づいて、前記動きベクトルを検出する。 An eighth aspect of the distance image sensor according to the present invention is the distance image sensor according to the sixth aspect, wherein the distance image sensor is provided between the light receiving elements and receives a light corresponding to a color. The light receiving element further includes a light receiving element, the light receiving amount acquiring unit sequentially acquires the light receiving amount of the light receiving element and the light receiving amount of the camera light receiving element, acquires the plurality of frame data, and the motion vector detecting unit Detects the motion vector based on the amount of light received by the camera light receiving element in the plurality of frame data.

本発明にかかる距離画像センサの第の態様は、第1から第のいずれか一つの態様にかかる距離画像センサであって、前記受光素子の相互間に設けられて、色に対応した光を受光する複数のカメラ用受光素子と、前記受光素子の前記受光量に係数を掛けた値を、前記カメラ用受光素子の受光量から減算する補正を行う補正部とを更に備える。 A ninth aspect of the distance image sensor according to the present invention is the distance image sensor according to any one of the first to eighth aspects, wherein the distance image sensor is provided between the light receiving elements and corresponds to the color. And a correction unit that performs correction to subtract a value obtained by multiplying the received light amount of the light receiving element by a coefficient from the received light amount of the camera light receiving element.

本発明にかかる距離画像センサの第10の態様は、第の態様にかかる距離画像センサであって、前記補正に用いられる前記受光素子は、前記受光素子のうち、前記補正の対象となる前記カメラ用受光素子に最も近い位置に設けられる。 A tenth aspect of the distance image sensor according to the present invention is the distance image sensor according to the ninth aspect, wherein the light receiving element used for the correction is the correction target among the light receiving elements. It is provided at a position closest to the camera light receiving element.

本発明にかかる距離画像センサの第11の態様は、第または第10の態様にかかる距離画像センサであって、前記照射光は赤外光であり、前記カメラ用受光素子の各々は赤、青および緑のいずれかに対応した光をそれぞれ受光し、前記補正部は、前記赤に対応した前記カメラ用受光素子の受光量のみに対して前記補正を行う。 An eleventh aspect of the distance image sensor according to the present invention is the distance image sensor according to the ninth or tenth aspect, wherein the irradiation light is infrared light, and each of the camera light receiving elements is red, The light corresponding to either blue or green is received, and the correction unit performs the correction only on the amount of light received by the camera light receiving element corresponding to the red.

本発明にかかる距離画像センサの第12の態様は、第1から第11のいずれか一つの態様にかかる距離画像センサであって、前記照射部が前記照射光を照射しない状態で取得される前記受光素子の受光量を周囲光とし、前記受光素子の前記受光量から、前記周囲光を減算して出力するキャリブレーション部と、前記キャリブレーション部からの前記受光量をアナログデータからデジタルデータへと変換する変換部とを更に備える。 A twelfth aspect of the distance image sensor according to the present invention is the distance image sensor according to any one of the first to eleventh aspects, wherein the irradiation unit is acquired in a state where the irradiation light is not irradiated. A calibration unit that outputs the amount of light received by the light receiving element as ambient light, subtracts the ambient light from the amount of light received by the light receiving element, and outputs the amount of light received from the calibration unit from analog data to digital data. And a conversion unit for converting.

本発明にかかる距離画像センサの第13の態様は、第1から第12のいずれか一つの態様にかかる距離画像センサであって、前記受光素子の各々は、受光した光の強度に応じて電流を流すフォトディテクタと、前記電流が流れ込む複数のコンデンサと、前記フォトディテクタと前記複数のコンデンサとの接続関係を変更するスイッチとを備え、前記受光量取得部は、前記受光素子の各々に接続された前記コンデンサに充電された電圧を前記受光量として取得する。 A thirteenth aspect of the distance image sensor according to the present invention is the distance image sensor according to any one of the first to twelfth aspects, wherein each of the light receiving elements has a current corresponding to the intensity of the received light. And a plurality of capacitors through which the current flows, and a switch that changes a connection relationship between the photodetector and the plurality of capacitors, and the received light amount acquisition unit is connected to each of the light receiving elements. The voltage charged in the capacitor is acquired as the amount of received light.

本発明にかかる距離画像センサの第14の態様は、第13の態様にかかる距離画像センサであって、前記スイッチを制御して、前記照射光が小さいほど、前記複数のコンデンサのうち前記フォトディテクタに接続されるコンデンサの合成静電容量を低減させるスイッチ制御部を更に備える。 A fourteenth aspect of the distance image sensor according to the present invention is the distance image sensor according to the thirteenth aspect, wherein the switch is controlled so that the smaller the irradiation light is, the more the condenser detects the photodetector. It further includes a switch control unit that reduces the combined capacitance of the connected capacitors.

本発明にかかる距離画像センサの第1および第の態様によれば、クロック信号に基づいて受光量を順次に取得してフレームデータを取得する方式(例えばグローバルシャッタ方式)であっても、距離画像を得ることができる。 According to the first and second aspects of the distance image sensor according to the present invention, even in the method of acquiring the frame data by sequentially acquiring the received light amount based on the clock signal (for example, the global shutter method), the distance An image can be obtained.

本発明にかかる距離画像センサの第の態様によれば、一のフレーデータにおける受光素子の受光量のいずれもが一の受光期間における受光量に相当する。よって、フレームデータごとにそれぞれ複数の受光期間における受光量に対応させることができる。したがって、動き補償に適した受光量を得ることができる。
本発明にかかる距離画像センサの第の態様によれば、距離を測定できる。
本発明にかかる距離画像センサの第の態様によれば、照射装置の性能によらずにクロック信号の周期を短くできるので、第1から第4のフレームデータを取得する期間を短くすることができる。しかも、N個の受光素子の受光量の和を用いている。これにより、N個の受光素子を一つの仮想受光素子と把握して、当該一つの仮想受光素子ごとに距離を算出することができる。
According to a first aspect of such a range image sensor in the present invention, it corresponds to the amount of light received in the light receiving period for any of one amount of light received by the light receiving element in one frame data. Therefore, it is possible to correspond to the amount of received light in a plurality of light receiving periods for each frame data. Therefore, a received light amount suitable for motion compensation can be obtained.
According to the third aspect of the distance image sensor of the present invention, the distance can be measured.
According to the 4th aspect of the distance image sensor concerning this invention, since the period of a clock signal can be shortened irrespective of the performance of an irradiation apparatus, the period which acquires the 1st-4th frame data can be shortened. it can. In addition, the sum of the amounts of light received by the N light receiving elements is used. Thereby, N light receiving elements can be grasped as one virtual light receiving element, and a distance can be calculated for each virtual light receiving element.

本発明にかかる距離画像センサの第の態様によれば、例えば第1のフレームデータにおける受光素子の全ての受光量は受光量A(T0)に相当し、第2のフレームデータにおける受光素子の全ての受光量は受光量A(T2)に相当し、第3のフレームデータにおける受光素子の全ての受光量は受光量A(T3)に相当し、第4のフレームデータにおける受光素子の全ての受光量は受光量A(T1)に相当する。 According to the fifth aspect of the distance image sensor of the present invention, for example, all the received light amounts of the light receiving elements in the first frame data correspond to the received light amount A (T0), and the light receiving elements in the second frame data All the received light amounts correspond to the received light amount A (T2), all the received light amounts of the light receiving elements in the third frame data correspond to the received light amount A (T3), and all the received light elements in the fourth frame data. The amount of received light corresponds to the amount of received light A (T1).

本発明にかかる距離画像センサの第の態様によれば動き補償を行なうことができる。 According to the sixth aspect of the distance image sensor of the present invention, motion compensation can be performed.

本発明にかかる距離画像センサの第の態様によれば、直流成分の第2照射光を用いて動きベクトルを検出するので、変調成分の照射光を用いて動きベクトルを検出する場合に比して、検出精度が高い。 According to the seventh aspect of the distance image sensor of the present invention, since the motion vector is detected using the second irradiation light of the DC component, it is compared with the case where the motion vector is detected using the irradiation light of the modulation component. Detection accuracy is high.

本発明にかかる距離画像センサの第の態様によれば、複数のフレームデータにおいて色に対応する受光量が存在するので、自然画の画像データの作成に資する。しかも動きベクトルを検出するためのみに用いられる動きベクトル用フレームデータを取得する必要がない。よって、動きベクトル用フレームデータを更に取得する場合に比して、必要なデータ量を低減できる。 According to the eighth aspect of the distance image sensor of the present invention, there is a received light amount corresponding to a color in a plurality of frame data, which contributes to the creation of natural image data. In addition, it is not necessary to acquire motion vector frame data used only for detecting a motion vector. Therefore, the required data amount can be reduced as compared with the case of further acquiring motion vector frame data.

本発明にかかる距離画像センサの第の態様によれば、照射光と同じ波長の光を除去するフィルタをカメラ用受光素子に設ける場合に比して、製造コストを低減できる。 According to the ninth aspect of the distance image sensor of the present invention, the manufacturing cost can be reduced as compared with the case where a filter for removing light having the same wavelength as the irradiation light is provided in the camera light receiving element.

本発明にかかる距離画像センサの第10の態様によれば、補正の精度を向上できる。 According to the tenth aspect of the distance image sensor of the present invention, the correction accuracy can be improved.

本発明にかかる距離画像センサの第11の態様によれば、照射光と同じ波長の光を最も受光しやすい赤に対応したカメラ用受光素子のみ補正を行なう。よって演算処理を低減しつつも、他のカメラ用受光素子のみを補正する場合に比して、より実際の色に近い画像データを得ることができる。 According to the eleventh aspect of the distance image sensor of the present invention, only the light receiving element for a camera corresponding to red that is most likely to receive light having the same wavelength as the irradiated light is corrected. Accordingly, it is possible to obtain image data closer to the actual color as compared with the case where only the other light receiving elements for cameras are corrected, while reducing the arithmetic processing.

本発明にかかる距離画像センサの第12の態様によれば、変換部に入力される受光量のS/N比を向上することができる。 According to the twelfth aspect of the distance image sensor of the present invention, it is possible to improve the S / N ratio of the received light amount input to the conversion unit.

本発明にかかる距離画像センサの第13の態様によれば、フォトディテクタに接続されるコンデンサの合成静電容量を変化させることができる。よって、受光量における感度を調整できる。 According to the thirteenth aspect of the distance image sensor of the present invention, the combined electrostatic capacitance of the capacitor connected to the photodetector can be changed. Therefore, the sensitivity in the amount of received light can be adjusted.

本発明にかかる距離画像センサの第14の態様によれば、照射光の光量が小さいときに受光素子の感度を向上することができる。よって照射光の光量が小さくても適切に受光量を取得できる。 According to the fourteenth aspect of the distance image sensor of the present invention, the sensitivity of the light receiving element can be improved when the amount of irradiation light is small. Therefore, the amount of received light can be appropriately acquired even if the amount of irradiation light is small.

Claims (19)

ある変調周期で照射光の強度を変調させながら、前記照射光を測定対象へと照射する照射部と、
測定対象からの反射光を受光する複数の受光素子と、
前記受光素子の各々において前記照射光と前記反射光との位相差の算出に用いられる複数の受光量を得るための複数の受光期間の始期および終期の各々と同期して変化するクロック信号を生成するクロック生成部と、
前記クロック信号に基づいて前記受光素子の受光量を順次に取得してフレームデータを取得するステップを複数回繰り返して複数のフレームデータを取得することで、前記複数のフレームデータにおける同じ前記受光素子での複数の受光量が、それぞれ前記複数の受光期間における受光量に相当する受光量取得部と、
前記複数のフレームデータに基づいて前記位相差を算出して、前記照射部から前記測定対象までの距離を算出する距離算出部と
を備える、距離画像センサ。
An irradiation unit that irradiates the measurement object with the irradiation light while modulating the intensity of the irradiation light with a certain modulation period;
A plurality of light receiving elements for receiving reflected light from the measurement object;
Generates a clock signal that changes in synchronization with each of the start and end of a plurality of light receiving periods for obtaining a plurality of light receiving amounts used for calculating a phase difference between the irradiation light and the reflected light in each of the light receiving elements. A clock generator to
The step of obtaining the frame data by sequentially obtaining the received light amount of the light receiving element based on the clock signal is repeated a plurality of times to obtain a plurality of frame data, thereby obtaining the same light receiving element in the plurality of frame data. A plurality of received light amounts each of which corresponds to a received light amount in the plurality of received light periods,
A distance image sensor comprising: a distance calculation unit that calculates the phase difference based on the plurality of frame data and calculates a distance from the irradiation unit to the measurement target.
前記複数の受光期間が4つの受光期間であり、
前記4つの受光期間の始期がそれぞれ前記変調周期の4分の1周期ずつずれる、請求項1に記載の距離画像センサ。
The plurality of light receiving periods are four light receiving periods;
The range image sensor according to claim 1, wherein start times of the four light receiving periods are shifted by a quarter of the modulation period.
前記変調周期は前記クロック信号の周期の偶数倍であり、
前記複数のフレームデータは第1から第4のフレームデータであり、
前記受光素子の各々の前記受光量は、
前記第1のフレームデータにおいては前記クロック信号の偶数番目および奇数番目のいずれか一方の立ち上がりを契機として取得され、
前記第2のフレームデータにおいては前記クロック信号の他方の立ち上がりを契機として取得され、
前記第3のフレームデータにおいては前記クロック信号の偶数番目および奇数番目のいずれか一方の立ち下がりを契機として取得され、
前記第4のフレームデータにおいては前記クロック信号の他方の立ち下がりを契機として取得される、請求項1または2に記載の距離画像センサ。
The modulation period is an even multiple of the period of the clock signal;
The plurality of frame data are first to fourth frame data;
The amount of light received by each of the light receiving elements is:
In the first frame data, it is obtained in response to the rising of either the even or odd number of the clock signal,
In the second frame data is obtained triggered by the other rising edge of the clock signal,
In the third frame data, it is obtained in response to the fall of either the even or odd number of the clock signal,
3. The distance image sensor according to claim 1, wherein the fourth frame data is acquired in response to the other falling edge of the clock signal.
前記受光量取得部は、
前記受光素子の前記受光量を、前記クロック信号の立ち上がり毎に所定の順番で順次に取得して、前記第1および前記第2のフレームデータを取得し、
前記受光素子の前記受光量を、前記クロック信号の立ち下がり毎に前記順番で順次に取得して、前記第3および前記第4のフレームデータを取得する、請求項3に記載の距離画像センサ。
The received light amount acquisition unit
The light receiving amount of the light receiving element is sequentially acquired in a predetermined order every time the clock signal rises, and the first and second frame data are acquired,
4. The distance image sensor according to claim 3, wherein the received light amount of the light receiving element is sequentially acquired in the order at each falling edge of the clock signal to acquire the third and fourth frame data.
前記複数のフレームデータのうち一のフレーデータにおける前記受光素子の前記受光量のいずれもが、前記複数の受光期間のうち一の受光期間における受光量に相当する、請求項1または2に記載の距離画像センサ。   3. The light receiving amount of the light receiving element in one frame data among the plurality of frame data corresponds to a light receiving amount in one light receiving period of the plurality of light receiving periods. Distance image sensor. 前記変調周期は前記クロック信号の周期の偶数倍であり、
前記複数のフレームデータは第1から第4のフレームデータであり、
前記受光量取得部は、
前記クロック信号の奇数番目の立ち上がりの各々を契機として前記受光素子の前記受光量を順次に取得して、前記第1のフレームデータを取得し、
前記クロック信号の偶数番目の立ち上がりの各々を契機として前記受光素子の前記受光量を順次に取得して、前記第2のフレームデータを取得し、
前記クロック信号の奇数番目の立ち下がりの各々を契機として前記受光素子の前記受光量を順次に取得して、前記第3のフレームデータを取得し、
前記クロック信号の偶数番目の立ち下がりの各々を契機として前記受光素子の前記受光量を順次に取得して、前記第4のフレームデータを取得する、請求項5に記載の距離画像センサ。
The modulation period is an even multiple of the period of the clock signal;
The plurality of frame data are first to fourth frame data;
The received light amount acquisition unit
Triggered by each of the odd-numbered rising edges of the clock signal to sequentially obtain the amount of light received by the light receiving element, to obtain the first frame data,
Triggered by each of the even-numbered rising edges of the clock signal to sequentially obtain the amount of light received by the light receiving element, to obtain the second frame data,
Sequentially acquiring the amount of received light of the light receiving element triggered by each odd-numbered falling edge of the clock signal to obtain the third frame data;
6. The distance image sensor according to claim 5, wherein the fourth frame data is acquired by sequentially acquiring the received light amount of the light receiving element in response to each of the even-numbered falling edges of the clock signal.
前記照射部は、前記照射光の強度をパルス状に変調し、
前記複数の受光期間は、前記照射光の強度が立ち上がる時点から立ち下がる時点までの第1期間、および、前記照射光の強度が立ち下がる時点から立ち上がる時点までの第2期間である、請求項1に記載の距離画像センサ。
The irradiation unit modulates the intensity of the irradiation light into a pulse shape,
The plurality of light receiving periods are a first period from a time point when the intensity of the irradiation light rises to a time point when it falls, and a second period from a time point when the intensity of the irradiation light falls to a time point when it rises. The distance image sensor described in 1.
前記複数のフレームデータは第1および第2のフレームデータであり、
前記受光量取得部は、
前記クロック信号に基づいて、前記受光素子の前記第1期間における前記受光量を順次に取得して前記第1のフレームデータを取得し、
前記クロック信号に基づいて、前記受光素子の前記第2期間における前記受光量を順次に取得して前記第2のフレームデータを取得する、請求項7に記載の距離画像センサ。
The plurality of frame data are first and second frame data;
The received light amount acquisition unit
Based on the clock signal, sequentially obtain the amount of light received in the first period of the light receiving element to obtain the first frame data,
The distance image sensor according to claim 7, wherein the second frame data is acquired by sequentially acquiring the received light amount of the light receiving element in the second period based on the clock signal.
前記測定対象についての動きベクトルを検出する動きベクトル検出部と、
前記動きベクトルに基づいて、前記複数のフレームデータにおいて前記受光素子を互いに対応させる動き補償部を更に備える、請求項5、6又は8に記載の距離画像センサ。
A motion vector detection unit for detecting a motion vector for the measurement object;
The distance image sensor according to claim 5, further comprising a motion compensation unit that associates the light receiving elements with each other in the plurality of frame data based on the motion vector.
前記照射部は直流成分の第2照射光を出力し、
前記動きベクトル検出部は、前記第2照射光を出力した状態において前記受光素子が受光する受光量を順次に取得して得られる少なくとも2つの動きベクトル用フレームデータを用いて、前記動きベクトルを検出する、請求項9に記載の距離画像センサ。
The irradiation unit outputs a second irradiation light of a direct current component,
The motion vector detection unit detects the motion vector using at least two motion vector frame data obtained by sequentially acquiring the amount of light received by the light receiving element in a state where the second irradiation light is output. The range image sensor according to claim 9.
前記受光素子の相互間に設けられて、色に対応した光を受光する複数のカメラ用受光素子を更に備え、
前記受光量取得部は、前記受光素子の前記受光量および前記カメラ用受光素子の受光量を順次に取得して、前記複数のフレームデータを取得し、
前記動きベクトル検出部は、前記複数のフレームデータにおける前記カメラ用受光素子の受光量に基づいて、前記動きベクトルを検出する、請求項9に記載の距離画像センサ。
A plurality of camera light-receiving elements that are provided between the light-receiving elements and receive light corresponding to colors;
The received light amount acquisition unit sequentially acquires the received light amount of the light receiving element and the received light amount of the camera light receiving element, and acquires the plurality of frame data,
The distance image sensor according to claim 9, wherein the motion vector detection unit detects the motion vector based on an amount of light received by the camera light receiving element in the plurality of frame data.
前記受光素子の相互間に設けられて、色に対応した光を受光する複数のカメラ用受光素子と、
前記受光素子の前記受光量に係数を掛けた値を、前記カメラ用受光素子の受光量から減算する補正を行う補正部と
を更に備える、請求項1から11のいずれか一つに記載の距離画像センサ。
A plurality of light receiving elements for a camera that are provided between the light receiving elements and receive light corresponding to a color;
The distance according to claim 1, further comprising: a correction unit that performs correction by subtracting a value obtained by multiplying the light reception amount of the light receiving element by a coefficient from the light reception amount of the camera light receiving element. Image sensor.
前記補正に用いられる前記受光素子は、前記受光素子のうち、前記補正の対象となる前記カメラ用受光素子に最も近い位置に設けられる、請求項12に記載の距離画像センサ。   The distance image sensor according to claim 12, wherein the light receiving element used for the correction is provided at a position closest to the camera light receiving element to be corrected among the light receiving elements. 前記照射光は赤外光であり、
前記カメラ用受光素子の各々は赤、青および緑のいずれかに対応した光をそれぞれ受光し、
前記補正部は、前記赤に対応した前記カメラ用受光素子の受光量のみに対して前記補正を行う、請求項12または13に記載の距離画像センサ。
The irradiation light is infrared light,
Each of the camera light receiving elements receives light corresponding to any of red, blue and green,
The distance image sensor according to claim 12 or 13, wherein the correction unit performs the correction only on the received light amount of the camera light receiving element corresponding to the red.
前記照射部が前記照射光を照射しない状態で取得される前記受光素子の受光量を周囲光とし、前記受光素子の前記受光量から、前記周囲光を減算して出力するキャリブレーション部と、
前記キャリブレーション部からの前記受光量をアナログデータからデジタルデータへと変換する変換部と
を更に備える、請求項1から14のいずれか一つに記載の距離画像センサ。
A calibration unit for subtracting the ambient light from the received light amount of the light receiving element, and outputting the received light amount of the light receiving element obtained in a state where the irradiation unit does not irradiate the irradiation light; and
The distance image sensor according to claim 1, further comprising a conversion unit that converts the amount of received light from the calibration unit from analog data to digital data.
前記受光素子の各々は、
受光した光の強度に応じて電流を流すフォトディテクタと、
前記電流が流れ込む複数のコンデンサと、
前記フォトディテクタと前記複数のコンデンサとの接続関係を変更するスイッチと
を備え、
前記受光量取得部は、前記受光素子の各々に接続された前記コンデンサに充電された電圧を前記受光量として取得する、請求項1から15のいずれか一つに記載の距離画像センサ。
Each of the light receiving elements is
A photodetector that passes a current according to the intensity of the received light;
A plurality of capacitors through which the current flows;
A switch for changing a connection relationship between the photodetector and the plurality of capacitors;
The distance image sensor according to any one of claims 1 to 15, wherein the received light amount acquisition unit acquires a voltage charged in the capacitor connected to each of the light receiving elements as the received light amount.
前記スイッチを制御して、前記照射光が小さいほど、前記複数のコンデンサのうち前記フォトディテクタに接続されるコンデンサの合成静電容量を低減させるスイッチ制御部を更に備える、請求項16に記載の距離画像センサ。   The distance image according to claim 16, further comprising a switch control unit that controls the switch to reduce a combined capacitance of a capacitor connected to the photodetector among the plurality of capacitors as the irradiation light is small. Sensor. 前記変調周期は前記クロック信号の周期の2倍であり、
前記距離算出部は、
前記受光素子の前記第1から前記第4のフレームデータにおける前記受光量A(T0),A(T2),A(T3),A(T1)と、前記照射光と前記反射光との位相差φとの関係式、
φ=tan−1[{A(T0)−A(T2)}/{A(T3)−A(T1)}]
に基づいて、前記照射部から前記測定対象までの距離を算出する、請求項3から6のいずれか一つに記載の距離画像センサ。
The modulation period is twice the period of the clock signal;
The distance calculation unit
Phase difference between the received light amounts A (T0), A (T2), A (T3), and A (T1) in the first to fourth frame data of the light receiving element, and the irradiated light and the reflected light Relational expression with φ,
φ = tan −1 [{A (T0) −A (T2)} / {A (T3) −A (T1)}]
The distance image sensor according to any one of claims 3 to 6, wherein a distance from the irradiation unit to the measurement target is calculated on the basis of the distance.
前記変調周期は前記クロック信号の周期の2N(Nは2以上の整数)倍であり、
前記距離算出部は、
互いに隣り合うN個の前記受光素子の前記第1のフレームデータにおける前記受光量の和A(T0)と、前記N個の前記受光素子の前記第2のフレームデータにおける前記受光量の和A(T2)と、前記N個の前記受光素子の前記第3のフレームデータにおける前記受光量の和A(T3)と、前記N個の前記受光素子の前記第4のフレームデータにおける前記受光量の和A(T1)と、前記照射光および前記反射光の位相差φとの関係式、
φ=tan−1[{A(T0)−A(T2)}/{A(T3)−A(T1)}]
に基づいて、前記照射部から前記測定対象までの距離を算出する、請求項3から6のいずれか一つに記載の距離画像センサ。
The modulation period is 2N (N is an integer of 2 or more) times the period of the clock signal,
The distance calculation unit
The sum A (T0) of the received light amounts in the first frame data of the N light receiving elements adjacent to each other, and the sum A (T) of the received light amounts in the second frame data of the N light receiving elements. T2), the sum A (T3) of the received light amounts in the third frame data of the N light receiving elements, and the sum of the received light amounts in the fourth frame data of the N light receiving elements. A relational expression between A (T1) and the phase difference φ between the irradiated light and the reflected light,
φ = tan −1 [{A (T0) −A (T2)} / {A (T3) −A (T1)}]
The distance image sensor according to any one of claims 3 to 6, wherein a distance from the irradiation unit to the measurement target is calculated on the basis of the distance.
JP2015502836A 2013-02-28 2014-02-06 Distance image sensor Active JP6025081B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013038225 2013-02-28
JP2013038225 2013-02-28
PCT/JP2014/052749 WO2014132767A1 (en) 2013-02-28 2014-02-06 Range image sensor

Publications (2)

Publication Number Publication Date
JP6025081B2 JP6025081B2 (en) 2016-11-16
JPWO2014132767A1 true JPWO2014132767A1 (en) 2017-02-02

Family

ID=51428041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015502836A Active JP6025081B2 (en) 2013-02-28 2014-02-06 Distance image sensor

Country Status (2)

Country Link
JP (1) JP6025081B2 (en)
WO (1) WO2014132767A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6539990B2 (en) * 2014-11-14 2019-07-10 株式会社デンソー Optical flight type distance measuring device
JP6424581B2 (en) * 2014-11-21 2018-11-21 株式会社デンソー Optical flight type distance measuring device
WO2016075945A1 (en) * 2014-11-14 2016-05-19 株式会社デンソー Optical time-of-flight range-finding device
JP2017150893A (en) * 2016-02-23 2017-08-31 ソニー株式会社 Ranging module, ranging system, and control method of ranging module
EP3579021B1 (en) * 2017-02-06 2021-03-03 Panasonic Intellectual Property Management Co., Ltd. Three-dimensional motion acquisition device and three-dimensional motion acquisition method
WO2018142878A1 (en) * 2017-02-06 2018-08-09 パナソニックIpマネジメント株式会社 Three-dimensional motion acquisition device and three-dimensional motion acquisition method
JP2020148706A (en) * 2019-03-15 2020-09-17 オムロン株式会社 Floodlight device, tof sensor having the same, and distance image generating device
JP7401211B2 (en) 2019-06-25 2023-12-19 ファナック株式会社 Distance measuring device with external light illuminance measurement function and method for measuring external light illuminance
US20230360240A1 (en) * 2020-11-05 2023-11-09 Sony Group Corporation Information processing device, information processing method, and information processing program

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039716A (en) * 2000-07-25 2002-02-06 Olympus Optical Co Ltd Depth map input device
JP2006084429A (en) * 2004-09-17 2006-03-30 Matsushita Electric Works Ltd Depth map sensor
JP2008241259A (en) * 2007-03-23 2008-10-09 Fujifilm Corp Distance measuring device and distance measuring method
JP2008241257A (en) * 2007-03-23 2008-10-09 Fujifilm Corp Range finder and range finding method
JP2008249430A (en) * 2007-03-29 2008-10-16 Nippon Hoso Kyokai <Nhk> Two-dimensional information detecting method and its device
JP2009063303A (en) * 2007-09-04 2009-03-26 Fujifilm Corp Ranging method and device
JP2010002326A (en) * 2008-06-20 2010-01-07 Stanley Electric Co Ltd Movement vector detector
JP2010032425A (en) * 2008-07-30 2010-02-12 National Univ Corp Shizuoka Univ Distance image sensor and method of forming imaging signal by time-of-flight method
JP2010175435A (en) * 2009-01-30 2010-08-12 Nippon Hoso Kyokai <Nhk> Three-dimensional information detecting apparatus and three-dimensional information detecting method
US20110129123A1 (en) * 2009-11-27 2011-06-02 Ilia Ovsiannikov Image sensors for sensing object distance information
JP2011128024A (en) * 2009-12-17 2011-06-30 Sharp Corp Three-dimensional imaging device
JP2011145109A (en) * 2010-01-12 2011-07-28 Topcon Corp Electro-optical distance measuring device
JP2012029130A (en) * 2010-07-26 2012-02-09 Konica Minolta Opto Inc Imaging device and image input device
JP2013050310A (en) * 2011-08-30 2013-03-14 Stanley Electric Co Ltd Distance image generation device
JP2013093847A (en) * 2011-10-25 2013-05-16 Samsung Electronics Co Ltd Three-dimensional image acquisition apparatus and method of calculating depth information in the three-dimensional image acquisition apparatus

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039716A (en) * 2000-07-25 2002-02-06 Olympus Optical Co Ltd Depth map input device
JP2006084429A (en) * 2004-09-17 2006-03-30 Matsushita Electric Works Ltd Depth map sensor
JP2008241259A (en) * 2007-03-23 2008-10-09 Fujifilm Corp Distance measuring device and distance measuring method
JP2008241257A (en) * 2007-03-23 2008-10-09 Fujifilm Corp Range finder and range finding method
JP2008249430A (en) * 2007-03-29 2008-10-16 Nippon Hoso Kyokai <Nhk> Two-dimensional information detecting method and its device
JP2009063303A (en) * 2007-09-04 2009-03-26 Fujifilm Corp Ranging method and device
JP2010002326A (en) * 2008-06-20 2010-01-07 Stanley Electric Co Ltd Movement vector detector
JP2010032425A (en) * 2008-07-30 2010-02-12 National Univ Corp Shizuoka Univ Distance image sensor and method of forming imaging signal by time-of-flight method
JP2010175435A (en) * 2009-01-30 2010-08-12 Nippon Hoso Kyokai <Nhk> Three-dimensional information detecting apparatus and three-dimensional information detecting method
US20110129123A1 (en) * 2009-11-27 2011-06-02 Ilia Ovsiannikov Image sensors for sensing object distance information
JP2011128024A (en) * 2009-12-17 2011-06-30 Sharp Corp Three-dimensional imaging device
JP2011145109A (en) * 2010-01-12 2011-07-28 Topcon Corp Electro-optical distance measuring device
JP2012029130A (en) * 2010-07-26 2012-02-09 Konica Minolta Opto Inc Imaging device and image input device
JP2013050310A (en) * 2011-08-30 2013-03-14 Stanley Electric Co Ltd Distance image generation device
JP2013093847A (en) * 2011-10-25 2013-05-16 Samsung Electronics Co Ltd Three-dimensional image acquisition apparatus and method of calculating depth information in the three-dimensional image acquisition apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHOJI KAWAHITO, ET AL.: ""Active Pixel Circuits for CMOS Time-of-Flight Range Image Sensors"", PROCEEDINGS OF SPIE, vol. 5302, JPN6008010753, 19 January 2004 (2004-01-19), pages 69 - 78, ISSN: 0003159456 *

Also Published As

Publication number Publication date
WO2014132767A1 (en) 2014-09-04
JP6025081B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6025081B2 (en) Distance image sensor
US10422879B2 (en) Time-of-flight distance measuring device
US11769775B2 (en) Distance-measuring imaging device, distance measuring method of distance-measuring imaging device, and solid-state imaging device
KR102413660B1 (en) Correction of depth images from t-o-f 3d camera with electronic-rolling-shutter for light modulation changes taking place during light integration
US10545239B2 (en) Distance-measuring imaging device and solid-state imaging device
CN107710015B (en) Distance measuring device and distance image synthesizing method
US20180259647A1 (en) Imaging device and solid-state imaging element used in same
US8610043B2 (en) Proximity sensor having an array of single photon avalanche diodes and circuitry for switching off illumination source and associated method, computer readable medium and firmware
US20180227475A1 (en) Imaging device, and solid-state imaging element used for same
US9270895B2 (en) Methods and apparatus for true high dynamic range imaging
JP6480712B2 (en) Imaging apparatus and control method thereof
US10116883B2 (en) System and methods for depth imaging using conventional CCD image sensors
JPWO2017098725A1 (en) Solid-state imaging device, distance measuring device, and distance measuring method
US20170223251A1 (en) Image capturing apparatus, image capturing method, and control method
WO2017022219A1 (en) Solid state image pickup device driving method
WO2014207992A1 (en) Distance measurement and imaging device and measurement method for same
KR20190029615A (en) Image pickup apparatus and control method of image pickup apparatus
KR102194237B1 (en) Method and apparatus for generating depth image
JP6539990B2 (en) Optical flight type distance measuring device
US20160266347A1 (en) Imaging apparatus and method, and program
JP5271643B2 (en) Control method and system for optical time-of-flight range image sensor
JP6245901B2 (en) Distance measuring device
JP2016099233A (en) Light flight distance measuring device
JP5520562B2 (en) Three-dimensional shape measuring system and three-dimensional shape measuring method
KR20220141006A (en) Image photographing apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160929

R150 Certificate of patent or registration of utility model

Ref document number: 6025081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250