JPWO2014087950A1 - Energy acquisition and nuclide conversion methods - Google Patents
Energy acquisition and nuclide conversion methods Download PDFInfo
- Publication number
- JPWO2014087950A1 JPWO2014087950A1 JP2014551082A JP2014551082A JPWO2014087950A1 JP WO2014087950 A1 JPWO2014087950 A1 JP WO2014087950A1 JP 2014551082 A JP2014551082 A JP 2014551082A JP 2014551082 A JP2014551082 A JP 2014551082A JP WO2014087950 A1 JPWO2014087950 A1 JP WO2014087950A1
- Authority
- JP
- Japan
- Prior art keywords
- nucleus
- nucleons
- nuclei
- theory
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/30—Processing
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C1/00—Reactor types
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C1/00—Reactor types
- G21C1/30—Subcritical reactors ; Experimental reactors other than swimming-pool reactors or zero-energy reactors
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C19/00—Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
- G21C19/42—Reprocessing of irradiated fuel
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C7/00—Control of nuclear reaction
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21G—CONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
- G21G1/00—Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
- G21G1/04—Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
- G21G1/10—Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by bombardment with electrically charged particles
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21G—CONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
- G21G7/00—Conversion of chemical elements not provided for in other groups of this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
【課題】エネルギーを高効率かつ安全に獲得、放射性汚染物質を高能率に除染、あるいは希少金属類を安価に生成する。【解決手段】元素の原子核が、陽子、中性子およびα胞同士の結合機能を有する第三の核子A0で構成されているという「三核子論」により、物質の原子核を構成する第三の核子A0の数の制御を行うことで、原子番号3以上の元素からなる物質からのエネルギーの獲得、単独または複数の物質に対する核種変換や核合成を行う。【選択図】図5[PROBLEMS] To obtain energy efficiently and safely, to efficiently decontaminate radioactive pollutants, or to generate rare metals at low cost. According to a “trinucleon theory” in which an element nucleus is composed of a third nucleon A0 having a function of binding protons, neutrons, and α vesicles, a third nucleon A0 constituting a nucleus of a substance is formed. By controlling the number, the acquisition of energy from a substance composed of an element having an atomic number of 3 or more, nuclide conversion or nuclear synthesis for a single substance or a plurality of substances is performed. [Selection] Figure 5
Description
本発明は、物質から該物質(母核)に内在するエネルギーや、該物質より原子番号の小さな物質(新物質子核)、あるいは複数の物質から該物質より原子番号が大きな物質を、高効率に獲得する技術に関するものである。 In the present invention, the energy inherent in the substance (mother nucleus) from the substance, the substance having a smaller atomic number than the substance (new material nucleus), or the substance having a larger atomic number than the substance from a plurality of substances is highly efficient. It is related to the technology acquired.
私たち人類は、産業革命以降エネルギーを大量に使うようになり、そのエネルギー確保のため、多量の石炭、石油等の化石燃料が使われてきた。その結果、近年化石燃料に起因するといわれるCO2の排出による地球温暖化の問題が発生してきた。We humans have been using large amounts of energy since the Industrial Revolution, and large amounts of fossil fuels such as coal and oil have been used to secure the energy. As a result, the problem of global warming due to CO 2 emission, which is said to be caused by fossil fuels, has occurred in recent years.
一方、エネルギー消費は、経済発展とともにますます増加傾向にあり、エネルギー源である化石燃料の枯渇も危惧されている。 On the other hand, energy consumption is increasing with economic development, and there is a fear that the fossil fuel, which is an energy source, is depleted.
クリーンなエネルギーとして風力、太陽光、バイオ等の自然エネルギーの活用も行われているが、いずれの方法もその獲得エネルギーは小規模であり急増するエネルギー需要に対応できる状態ではない。 Natural energy such as wind power, solar power, biotechnology, etc. is also used as clean energy, but none of the methods is capable of responding to rapidly increasing energy demand.
そこで、CO2を排出しない原子炉による原子力発電はその重要性を増大し、この原子炉によるエネルギー需要への対応が、原子炉事故や放射能汚染など安全性の課題を指摘されているにもかかわらず、大容量のエネルギー獲得手段として実施されてきた。Therefore, nuclear power generation using nuclear reactors that do not emit CO 2 has increased in importance, and responding to energy demands from this nuclear reactor has been pointed out as safety issues such as nuclear accidents and radioactive contamination. Regardless, it has been implemented as a means of acquiring large amounts of energy.
原子炉とは、核燃料として例えば核分裂しにくいウラン238が95〜97%を占める中に、核分裂しやすいウラン235を3〜5%混ぜた物質を使い、制御棒と呼ばれる中性子吸収材で、核分裂連鎖反応を制御しながら持続させ、高エネルギーを得る装置である。核燃料物質としては、ウランの他、プルトニウム、トリウム等がある。
核分裂の反応は式(1)などで示されている。ウラン235(235 92U)が中性子(N0)を吸収することで、バリウム(137 56Ba)とクリプトン(97 36Kr)に分裂するとともに、中性子(N0)と220MeVのエネルギー(Q)を得ているなどとされている。
235 92U+N0→137 56Ba+97 36Kr+2N0+Q ・・・(1)
なお、元素記号XのMz ZXの各記号については、以下のとおりである。
X:元素記号、Z:原子番号、Mz:原子核質量
A nuclear reactor is a neutron absorber called a control rod that uses 95% to 97% of uranium 238, which is difficult to fission, as a nuclear fuel. It is a device that keeps the reaction controlled and obtains high energy. Nuclear fuel materials include plutonium and thorium in addition to uranium.
The fission reaction is represented by equation (1) and the like. As uranium 235 ( 235 92 U) absorbs neutrons (N 0 ), it splits into barium ( 137 56 Ba) and krypton ( 97 36 Kr), and neutrons (N 0 ) and 220 MeV energy (Q). It is said that it has gained.
235 92 U + N 0 → 137 56 Ba + 97 36 Kr + 2N 0 + Q (1)
In addition, each symbol of Mz Z X of the element symbol X is as follows.
X: Element symbol, Z: Atomic number, Mz: Nuclear mass
また、鉄鋼に使われるマンガン、ニッケル、モリブデンや、触媒に使われる白金やパラジウム、磁石に使われるネオジム、ジスプロシウムなどは、材料の特性を著しく向上させる金属であるが、その埋蔵地域が偏在しており希少金属といわれて、その市場価格も上昇するので、特性を向上させる代替金属の開発も行われている。 Manganese, nickel, and molybdenum used in steel, platinum and palladium used in catalysts, neodymium and dysprosium used in magnets, etc. are metals that significantly improve the properties of the material. Because it is said to be a rare metal and its market price rises, alternative metals with improved properties are being developed.
原子炉における核分裂連鎖反応は中性子の照射量を制御することで、核分裂連鎖反応を制御するとともに安全性も保持していると言われているが、この制御を誤ると連鎖反応の暴発となり、いわゆる原子炉事故が発生する。原子炉事故による放射能汚染も発生する危険がある。 It is said that the fission chain reaction in a nuclear reactor controls the fission chain reaction by controlling the amount of neutron irradiation, while maintaining safety. A nuclear accident occurs. There is also a risk of radioactive contamination from the nuclear reactor accident.
また、原子炉での使用済み燃料は、一部プルトニウムなど燃料としての再利用もあるが、最終的には、放射性廃棄物として安全に処理する必要があり、膨大な処理費用がかかるとともに、廃棄物処理場所の確保も問題となっている。 In addition, spent fuel in the reactor may be partially reused as fuel such as plutonium, but ultimately it must be treated safely as radioactive waste, which entails enormous disposal costs and disposal. Securing a material processing place is also a problem.
2011年3月には、東日本大震災の津波の影響で、福島第一原発では原子炉の冷却能力が低下して、核燃料棒が高温となりメルトダウンするという事故が発生した。さらに、原子炉建屋の水素爆発によりセシウム等の放射性物質が多量に放出されたため、放射線物質汚染への対応も大きな問題となっている。 In March 2011, due to the tsunami of the Great East Japan Earthquake, the Fukushima Daiichi nuclear power plant experienced a disaster that caused the reactor's cooling capacity to drop, causing nuclear fuel rods to become hot and melt down. Furthermore, since a large amount of radioactive materials such as cesium was released by the hydrogen explosion in the reactor building, the response to radioactive material contamination is also a big problem.
また、希少金属といわれるマンガン、ニッケル、モリブデン、白金、パラジウムやネオジム、ジスプロシウム等の、特性を著しく向上させる金属の代替金属の研究開発が広く行われているが、高効率な生成方法はまだ実現されているとは言えない。 In addition, although research and development of alternative metals for metals that significantly improve properties such as manganese, nickel, molybdenum, platinum, palladium, neodymium, and dysprosium, which are said to be rare metals, have been widely carried out, high-efficiency production methods have yet to be realized It cannot be said that it has been done.
本発明は、上述の課題に鑑みてなされたものであり、原子炉事故や廃棄物処理による放射能汚染などの恐れのない核エネルギーの獲得や、安全で経済的な放射性廃棄物処理とともに、希少金属などの獲得を目的とする。 The present invention has been made in view of the above-mentioned problems, and is rare in addition to the acquisition of nuclear energy without fear of nuclear accidents or radioactive contamination due to waste treatment, and safe and economical radioactive waste treatment. The purpose is to acquire metals.
従来、「原子核の性質を知ろうとする場合、まず問題にしなければならない基本的な量は、原子核質量である」と言われている。
通説の原子核の質量表式は、原子核は陽子と中性子で構成されているという「二核子論」を前提に作られている。その既存表式は実験式の類にすぎず、原子番号Zが既知の原子について、実験で得られた核の質量実測値Mzから原子番号Zに相当する数の陽子の質量を差し引いて、残りの質量(Mz−Z)が全て中性子によるものとして中性子の数を決定し、帰納的に質量表式を作成している。したがって、中性子の数を描像的・理論的に決定しているわけではない。
なお、湯川の予言したπ粒子は仮想粒子であり、非特許文献8で示すように、既存の物理学理論による解釈では、π粒子は原子核の質量として寄与(反映)していない。Conventionally, it has been said that "the basic quantity that must first be a problem when trying to know the nature of a nucleus is the nuclear mass".
The usual mass formula for nuclei is based on the “binucleon theory” that nuclei are composed of protons and neutrons. The existing expression is only a kind of empirical formula. For an atom whose atomic number Z is known, the mass of protons corresponding to the atomic number Z is subtracted from the measured mass value Mz of the nucleus obtained in the experiment, and the rest The mass (Mz-Z) is determined to be all due to neutrons, and the number of neutrons is determined, and a mass expression is recursively created. Therefore, the number of neutrons is not determined pictorially or theoretically.
Note that the π particle predicted by Yukawa is a virtual particle, and as shown in Non-Patent Document 8, the π particle does not contribute (reflect) as the mass of the nucleus in the interpretation based on the existing physics theory.
発明者の一人新井は以前から、原子核が陽子(以下P+と称す)と中性子(以下N0と称す)およびπ*粒子で構成されているという「三核子論」を提唱してきた(非特許文献1〜非特許文献6)。
近年になって、非特許文献9で述べているように、「最近の研究では、パイ粒子の導入が不可欠なこと、およびパイ粒子が核内で重要な役割を果たしていること」を強調しており、本発明で主張するπ*粒子の実在を正当化している。
本発明においては、新井の提唱する、核を結合する役を担っているπ*粒子は仮想ではなく実在するので、A0=a0+ε(結合ポテンシャルエネルギー)で与えられる第三の核子A0(以下A0と称す)として、以下「三核子論」について描像的に説明する。
なお、a0は、第三の核子A0が核内で他の核子(陽子と中性子)と結合するときに、結合ポテンシャルエネルギーεを差し引いた後の実質量粒子である。Inventor Arai, the inventor, has long advocated “trinucleon theory” in which the nucleus is composed of protons (hereinafter referred to as P + ), neutrons (hereinafter referred to as N 0 ), and π * particles (non-patented). Literature 1 to Non-Patent Literature 6).
In recent years, as stated in Non-Patent Document 9, it is emphasized that the introduction of pi particles is indispensable in recent research and that pi particles play an important role in the nucleus. And justifies the existence of the π * particles claimed in the present invention.
In the present invention, the π * particle that is responsible for bonding nuclei proposed by Arai is real rather than virtual, so the third nucleon A 0 given by A 0 = a 0 + ε (binding potential energy) (hereinafter referred to as a 0) as below imaged manner described "Sankakuko theory".
Note that a 0 is a substantial amount of particles after subtracting the binding potential energy ε when the third nucleon A 0 is bonded to other nucleons (protons and neutrons) in the nucleus.
「二核子論」では、原子核がP+とN0で構成されているとの理解に対して、新井の「三核子論」は、原子核構成の一方をP+とし、他方をバリオンとするものである。バリオン構成物はN0およびA0とし、各元素は、P+1個の原子番号Zが1の水素原子核をスタートとして、原子番号Zの増加すなわちP+の1個ずつの増加にともなって、バリオンが最低エネルギーレベル(すなわちN0単体)から順に一個ずつ組み合わせていく。In the “two-nucleon theory”, Arai's “trinucleon theory” is to understand that the nucleus is composed of P + and N 0 , and one of the atomic structure is P + and the other is a baryon. It is. The baryon constituents are N 0 and A 0, and each element starts with a P + 1 hydrogen nucleus having an atomic number Z of 1, and as the atomic number Z increases, that is, P + increases one by one, Baryons are combined one by one in order from the lowest energy level (ie, N 0 alone).
そのバリオンは1個のN0とnA個のA0およびnQ個分の振動エネルギーεbとで構成される複合粒子であり、バリオンの質量表式は(2)のとおりである。
mBi=mN+nAmA+nQεb ・・・(2)
ここで、mBi:バリオン質量、mN:N0質量、nA:A0個数、mA:A0質量、
nQ:εb個数、εb:振動エネルギー
図1に、バリオン(フリー状態)の空間構造を示す。The baryon is a composite particle composed of one N 0 , n A A 0 and n Q vibrational energy ε b, and the mass expression of the baryon is as shown in (2).
m Bi = m N + n A m A + n Q ε b (2)
Here, m Bi : baryon mass, m N : N 0 mass, n A : A 0 number, m A : A 0 mass,
n Q: ε b number, ε b: vibrational energy
FIG. 1 shows the space structure of a baryon (free state).
なお、バリオン中で顕在質量として存在していた振動エネルギーnQεbは、原子核の中ではP+とN0との結合エネルギーとして潜在化している。
ここで、最大のZ数はバリオン総数である[Z]=137であり、全てのZについてA0総数nZ *とεb総個数nQ *の値を特定している(表1および表2で後述する)。
なお、全137種のバリオンの特性については、非特許文献6で示した。Note that the vibrational energy n Q ε b existing as an apparent mass in the baryon is latent as a binding energy between P + and N 0 in the nucleus.
Here, the maximum number of Z is [Z] = 137 which is the total number of baryons, and the values of the total number of A 0 n Z * and the total number of ε b n Q * are specified for all Z (Table 1 and Table 1). 2).
The characteristics of all 137 types of baryons are shown in Non-Patent Document 6.
新井の「三核子論」は、原子番号3以上の物質の場合、「二核子論」における核子であるP+とN0の他に第三の核子A0で構成されているとするものである。Arai's “Trinucleon Theory” means that in the case of a substance with atomic number 3 or more, it is composed of the third nucleon A 0 in addition to P + and N 0 which are nucleons in the “binucleon theory”. is there.
さて、水素とヘリウムを除く物質の原子核は、原則としてα胞の結合体(αクラスター)で構成されている。α胞とは2個のP+と2個のN0からなるα核を中心に保有する単位構造である。厳密には、原子番号(Z=陽子の数)が偶数の場合(以下α+胞と称す)であり、奇数の場合には、1個の陽子・中性子結合体(1個のP+と1個のN0で構成、以下α−胞と称す)が存在する。The nuclei of substances other than hydrogen and helium are, in principle, composed of α-spore conjugates (α clusters). An α vesicle is a unit structure mainly held by an α nucleus composed of two P + and two N 0 . Strictly speaking, this is the case where the atomic number (Z = the number of protons) is an even number (hereinafter referred to as α + cell), and in the case of an odd number, one proton / neutron combination (one P + and 1). Are composed of N 0 , hereinafter referred to as α - cells).
α核、正確にはα+核とは、一般概念と同様に、2個のP+と2個のN0とで構成されるものであるが、「三核子論」におけるα+核の空間構造は、自・公転するP+とN0の混合体であり、P+同士は電気的反発ゆえに、それらの公転軌道同士は外接していないが、2個のN0は中性であるため、それらの公転軌道同士は外接している。したがって、P+数2個とN0数2個の描像は基本的な形として、図2となる。これはHe(ヘリウム)核である。The α nucleus, more precisely the α + nucleus, is composed of two P + and two N 0 as in the general concept, but the space of the α + nucleus in the “trinucleon theory”. The structure is a mixture of self-revolving P + and N 0 , and P + is electrically repulsive, so their revolving orbits are not circumscribed, but the two N 0 are neutral. These revolving trajectories are circumscribed. Therefore, the image of the P + number 2 and the N 0 number 2 is shown in FIG. 2 as a basic form. This is a He (helium) nucleus.
そして、原子番号Z=4の元素であるベリリウム9 4Beの原子核は、P+4個と最低エネルギーレベルより数えて4番目までのバリオンで構成され、2つのα胞を持つ。2個ある第三の核子A0は、この2つのα胞を結合しており、2個のα胞のA0公転軌道が外接しあって結合したαクラスター構造を形成しているとするものである。1つのA0公転軌道上には、A0公転軌道半径およびA0半径の寸法上、1〜4個のA0が存在できる。その空間(幾何学的)構造は、図3のようになる。And the nucleus of beryllium 9 4 Be, which is an element with atomic number Z = 4, is composed of P + 4 and baryons up to the fourth from the lowest energy level, and has two α vesicles. Two third nucleons A 0 are connected to the two α vesicles, and the A 0 revolution orbits of the two α vesicles are circumscribed to form an α cluster structure. It is. On one A 0 orbit, A 0 orbit radius and A 0 radius on dimensions, can be present 1-4 A 0. The spatial (geometric) structure is as shown in FIG.
A0は、図3に示すように、α核をその周転円内に包含(内包)する構成となって、α胞を形成する。かつ、A0は複数のα胞を結合する役割を担っており、各々公転しているP+またはN0とA0とが断続的に重なり合うことで、εaなる両者間の結合ポテンシャルエネルギー(潜在)を消費させて、A0=a0+εaとみなし、実寸作図により最適値として、a0[0・2](140MeV)+εa[1/2・(−1)](40MeV)と同定した。なお、[0・2](140MeV)は実在のπ粒子[0・2](140MeV)に置換できるので、以降、A0[1/2・1]=π0[0・2]+εa[1/2・(−1)]として取り扱うことにする。そこで、図3のA0は質量をmπ(π粒子質量)として描いてある。As shown in FIG. 3, A 0 is configured to include (enclose) α nuclei in the circle of rotation, and form α vesicles. In addition, A 0 plays a role of binding a plurality of α vesicles, and the revolving P + or N 0 and A 0 are intermittently overlapped, whereby the binding potential energy between both ε a ( (Latent) is consumed, and A 0 = a 0 + ε a is considered, and as an optimum value by actual drawing, a 0 [0 · 2] (140 MeV) + ε a [1/2 · (−1)] (40 MeV) Identified. [0 · 2] (140 MeV) can be replaced by existing π particles [0 · 2] (140 MeV), and hence A 0 [1/2 · 1] = π 0 [0 · 2] + ε a [ ½ · (−1)]. Therefore, A 0 in FIG. 3 is drawn with the mass as m π (π particle mass).
図3では、各核子の公転半径はar =(h/2π)/mcで与えられ、核子半径はas=ar/√2として与え、実寸比で描写してある。h:プランク定数、m:核子質量、c:光速度である。この計算には、P+、N0、A0とも一般に測定された質量を適用している。
すなわち、核子P+やN0とA0との質量比が、このような原子核の空間的構造を創り上げているといえる。In FIG. 3, the revolution radius of each nucleon is given by a r = (h / 2π) / mc, the nucleon radius is given as a s = a r / √2, and they are drawn in actual size ratios. h: Planck's constant, m: nucleon mass, c: speed of light. In this calculation, masses generally measured for P + , N 0 , and A 0 are applied.
That is, it can be said that the mass ratio of the nucleon P + or N 0 and A 0 creates such a spatial structure of the nucleus.
このように、A0によって複数のα胞を結合した構造が、一般に言うαクラスターに相当する。αクラスター構造の一例を、酸素17 8O(6個のA0を持つ)について図4に示す。Thus, a structure in which a plurality of α vesicles are bound by A 0 corresponds to a generally referred to α cluster. An example of an α-cluster structure is shown in FIG. 4 for oxygen 17 8 O (having 6 A 0 ).
以上のように、発明者の一人新井がこれまで提唱してきた「三核子論」は、瞬時に崩壊しない原子核は、Z個のP+と同じZ個のN0と、そしてnZ *個のA0の三種の核子で構成され、第三の核子A0が、各元素の原子核において、α胞を結合する役割を担っている、とするものである。
最近の研究で例えば、板垣らが「中性子の果たす“糊”の効果とαクラスターの結合形態」(非特許文献7)としてその研究成果を発表しているが、新井の提唱への確証ともなっている。As described above, the “trinucleon theory” that Arai, the inventor of the inventor has proposed so far, is that the number of nuclei that do not decay instantaneously is the same number of Z N 0 as Z P + , and n Z * it is composed of three kinds of nucleons of a 0, the third nucleon a 0 is one in which the nuclei of the elements plays a role in binding the α cells, to.
In a recent study, for example, Itagaki et al. Published their research results as “the effect of“ glue ”played by neutrons and α-cluster binding form” (Non-Patent Document 7), but this also proved to Arai's proposal. Yes.
また、新井は「三核子論」による原子核質量について、以下であることも提唱してきた。すなわち、瞬時に核変換しない元素(以下、安定元素と称す)はZ数(原子番号)に対応してnZ *(A0の総数)が決められており、この安定元素の原子核質量MZ *は、式(3)で求められる。
MZ *=Z(mP+mN)+nZ *mA ・・・(3)
ここで、mx=(Aπ+B)〔Z〕me
ただし、X〔A・B〕、〔Z〕=137
P+〔3・4〕、N0〔3・4〕、A0〔1/2・1〕
mP:P+質量、mN:N0質量、mA:A0質量、me:電子質量
In addition, Arai has also proposed that the nuclear mass according to "Trinucleon theory" is as follows. That is, an element that does not instantaneously transmutate (hereinafter referred to as a stable element) has an n Z * (total number of A 0 ) corresponding to the Z number (atomic number), and the nuclear mass M Z of this stable element. * Is determined by equation (3).
M Z * = Z (m P + m N) + n Z * m A ··· (3)
Where m x = (Aπ + B) [Z] m e
However, X [A · B], [Z] = 137
P + [3.4], N 0 [3.4], A 0 [1/2 · 1]
m P : P + mass, m N : N 0 mass, m A : A 0 mass, me : electron mass
(3)式で算出した原子核質量MZ *は、表1、表2および図5で示すように、これまで一般に測定された安定元素の原子核質量(MZ)と精度よく一致している。この事実は(3)式が理論的根拠を持った原子核質量表式として認められる資格を有するといえる。
すなわち、表1、表2および図5は数少ない原子核に関する定量的なデータを理論的に説明する貴重な検証結果といえる。なお、表1および表2には、バリオンの質量表式(2)から求めたεb総個数nQ *も記載した。As shown in Table 1, Table 2, and FIG. 5, the nuclear mass M Z * calculated by the equation (3) is in good agreement with the nuclear mass (M Z ) of a stable element generally measured so far. This fact can be said that the formula (3) is qualified as a nuclear mass formula with a theoretical basis.
That is, Table 1, Table 2, and FIG. 5 can be said to be valuable verification results that theoretically explain quantitative data regarding few nuclei. In Tables 1 and 2, the total number of ε b n Q * obtained from the mass expression (2) of baryons is also shown.
以下にこれまで述べてきた「三核子論」をベースとした本発明について述べる。
本発明の重要なポイントは、発明者の一人新井の提示した原子核質量式(3)をベースとして、物質の原子核でα胞を結合する機能を持つA0の数を制御することである。The present invention based on the “trinucleon theory” described so far will be described below.
An important point of the present invention is to control the number of A 0 having the function of binding α vesicles in the nucleus of a substance based on the nuclear mass formula (3) presented by Arai, the inventor of the inventor.
ここで、A0について述べる。
原子炉のイニシエータで使われている方法で、α粒子をベリリウムに照射すると、式(4)のように発生粒子はN0(中性子)であると判断されている。この反応は、既存概念の「二核子論」で理解されているので、発生粒子はN0となっている。
9 4Be+4 2α→12 6C+N0 ・・・(4)
Here, A0 will be described.
When α particles are irradiated onto beryllium by the method used in the reactor initiator, the generated particles are determined to be N 0 (neutrons) as shown in equation (4). Since this reaction is understood by the existing “binucleon theory”, the generated particles are N 0 .
9 4 Be + 4 2 α → 12 6 C + N 0 (4)
しかし、発明者は「三核子論」によって、発生粒子はN0ではなく4A0+A0*であることの認識に至った。すなわち、ベリリウムにα粒子を照射しても、α粒子は+電荷であり、ベリリウム中のα胞も+電荷であり、照射により分離するのは、N0ではなく、式(5)のように4A0+A0*なのである。
9 4Be+4 2α→12 6C+4A0+A0* ・・・(5)
However, the inventor has come to the recognition that the generated particles are not N 0 but 4A 0 + A 0 * by “trinucleon theory”. That is, even when irradiated with α particles in beryllium is α particles + charge is α cells also positive charge in beryllium, to separate the irradiation, the N 0 rather, as in equation (5) 4A 0 + A 0 * .
9 4 Be + 4 2 α → 12 6 C + 4A 0 + A 0 * (5)
すなわち、「三核子論」ではN0は式(6)、式(7)で表せる。これらの式から、一般概念(「二核子論」)の1個のN0の放出は、4個のA0からなる{4A0}(四極子体)と1個のA0*の和とみなすことができるのである。なお、( )内はエネルギーを示す。
N0〔3・4〕=4A0〔1/2・1〕+A0*〔1・0〕・・・(6)
(940MeV) (180MeV) (220MeV)
A0*〔1・0〕=A0〔1/2・1〕+εb〔1/2・(−1)〕・・(7)
(40MeV)
That is, in the “trinucleon theory”, N 0 can be expressed by the equations (6) and (7). From these equations, the release of general concept one N 0 (the "Nikakuko theory") is comprised of four A 0 {4A 0} (quadrupole bodies) and one and the sum of A 0 * It can be considered. In addition, () shows energy.
N 0 [3 • 4] = 4A 0 [1/2 • 1] + A 0 * [1 • 0] (6)
(940MeV) (180MeV) (220MeV)
A 0 * [1 · 0] = A 0 [1/2 · 1] + ε b [1/2 · (−1)] ·· (7)
(40MeV)
A0はα胞中の公転軌道上ではπ0なる粒子で、εaなる結合力のもとに、α核中のP+とN0を拘束しつつ自・公転軌道運動している。
このA0を公転軌道上から外す(剥離する)ためには、該A0を公転軌道から突き飛ばすと同時に入射弾となる粒子も公転軌道に捉えられてはならない。したがって、照射粒子はA0と同じエネルギーレベルではなく、A0よりも高いエネルギーレベルのA0*である。A 0 is a particle of π 0 on the revolution orbit in the α vesicle, and is moving along its own orbital motion while constraining P + and N 0 in the α nucleus under the binding force of ε a .
This A 0 to disengage from the orbit (peeling) should not be particles as the same time the incident bullet when thrust away the A 0 from orbit trapped in orbit. Therefore, the irradiation particles are not at the same energy level as A 0, it is A 0 * of higher energy level than A 0.
その照射粒子A0*の特性については、以下のように決定する。
一個のA0除去のため照射する粒子のエネルギー試算値は、式(8)となる。
π[0・2]+εa[1/2・(−1)]+εb[1/2・(−1)] =A0* [1・0] ・・・(8)
140MeV 40MeV 40MeV 220MeV
(π粒子質量)(結合エネルギー)(振動エネルギー)
The characteristics of the irradiated particle A 0 * are determined as follows.
The estimated energy value of the particles irradiated for the removal of one A 0 is expressed by Equation (8).
π [0 · 2] + ε a [1/2 · (−1)] + ε b [1/2 · (−1)] = A 0 * [1 · 0] (8)
140MeV 40MeV 40MeV 220MeV
(Π particle mass) (binding energy) (vibration energy)
なお、A0はπ0粒子にエネルギーεa=40MeVを付加したものである。A 0 is obtained by adding energy ε a = 40 MeV to π 0 particles.
本発明はこれまで述べたように、原子核質量表式を基にしたA0の数の制御によって、様々な物質に対して、母核の分離、核種変換および核の合成を行うものである。The present invention as has been described so far, by controlling the number of A 0 based on a nucleus Mass formula, for different materials, separation of the mother nucleus, and performs nuclide and synthesis of nuclei.
「三核子論」による本発明によれば、核のZ数変化において、P+あるいはN0の単独放出はありえず、放出されるのはα核(4 2He核、その塊)、e−の他はA0のみである。特性としてZ数の増大とともに、nZ0 *>nZ1 *+nZ2 *(ただしZ0=Z1+Z2)なので、Z0なる母核がZ1とZ2の2つの子核(安定な)に分離するときは、母核(Z0)が2つの子核(Z1とZ2)に分離されると同時に、{nZ0 *−(nZ1 *+nZ2 *)}個のA0が放出されるとともに、エネルギーの放出が行われる。According to the present invention based on the “trinucleon theory”, there is no single release of P + or N 0 in the change of the Z number of the nucleus, and the release is the α nucleus ( 4 2 He nucleus, its mass), e− other is the only a 0. As the number of Z increases as n Z0 * > n Z1 * + n Z2 * (where Z 0 = Z 1 + Z 2 ), the parent nucleus of Z 0 is two child nuclei of Z 1 and Z 2 (stable) When the mother nucleus (Z 0 ) is separated into two child nuclei (Z 1 and Z 2 ), {n Z0 * − (n Z1 * + n Z2 *) } A 0 As it is released, energy is released.
本発明による母核の分離は、母核を目標核として高速のA0*を照射して、原子核質量式から求めたna個のA0を剥離し、ともに安定な第1子核と第2子核に分離するとともに、nb個のα粒子、na個のA0およびncεのエネルギーを獲得することができる。このA0とεは照射A0*として活用できる。
その反応は、式(9)のとおりである。
M0 z0Xn0 Q0−naA0 → M1 z1Xn1 Q1 +M2 z2Xn2 Q2 +nbα+ncε ・・・(9)
ここで、Z0=Z1+ Z2+2nb、na= n0−(n1+n2)、 nb={ Z0−(Z1+Z2)} /2、nc=Q0−(Q1+Q2)
ここで、元素記号XのMZ* ZXnZ*nQ *の各記号については、以下のとおりである。
X:元素記号、Z:原子番号、Mz*:原子核質量、nz*:A0総数、nQ *:εb総個数
In the separation of the mother nucleus according to the present invention, high-speed A 0 * is irradiated with the mother nucleus as a target nucleus, and the n a 0 obtained from the nuclear mass formula are separated, and both the first and second stable nucleuses are separated from each other. While separating into two nuclei, energy of n b α particles, n a A 0 and n c ε can be obtained. These A 0 and ε can be used as irradiation A 0 * .
The reaction is as shown in formula (9).
M0 z0 X n0 Q0 -n a A 0 → M1 z1 X n1 Q1 + M2 z2 X n2 Q2 + N b α + n c ε (9)
Here, Z0 = Z1 + Z2 + 2n b, n a = n0- (n1 + n2), n b = {Z0- (Z1 + Z2)} / 2, n c = Q0- (Q1 + Q2)
Here, the MZ * Z X nZ * n Q * each symbol of element symbol X, are as follows.
X: element symbol, Z: atomic number, Mz *: nuclear mass, n z *: A 0 Total, n Q *: ε b the total number
本発明による核種変換は、母核を標的として高速のA0*を照射することで、原子核質量式から求めたna個のA0を剥離し、母核の原子番号より小さな原子番号の安定な子核を得ることができる。この反応は式(10)で、いわゆる崩壊回数k回のβ+decayと呼ばれる現象である。
z0Xn0−naA0 → z1Xn1 ・・・(10)
ここで、na=n0−n1 、Z1=Z0−k
また、原子核質量式から求めた数のA0を低速で照射することで、母核中にA0を付加し、母核の原子番号より大きな原子番号の安定な子核を得ることができる。この反応は式(11)で、いわゆる崩壊回数k回のβ−decayと呼ばれる現象である。
z0Xn0+naA0 → z1Xn1 ・・・(11)
ここで、na=n1−n0 、Z1=Z0+k
Nuclide according to the invention, the nucleus by irradiating a high-speed A 0 * as a target, separating the n a number of A 0 obtained from nuclei mass expression, stability of the smaller atomic number than the atomic number of the nucleus You can get a nucleus. This reaction is a phenomenon called β + decay, which is the so-called decay number k times in equation (10).
z0 X n0 -n a A 0 → z1 X n1 ··· (10)
Where n a = n0−n1, Z1 = Z0−k
Further, by irradiating the number of A 0 obtained from nuclei mass expression at low speed, by adding A 0 in the mother nucleus, it is possible to obtain a stable Kokaku of atomic number greater than atomic number of nucleus. This reaction is a phenomenon called β - decay of the so-called decay number k times in equation (11).
z0 X n0 + n a A 0 → z1 X n1 ··· (11)
Where n a = n1−n0, Z1 = Z0 + k
本発明による核の合成は、一方の核を目標核として、他方の核および原子核質量式から求めた数のA0を低速で照射することで、安定な核の合成が可能となる。なお、照射する核は、両方の核のうち、質量の小さい核を選択するのが望ましい。
その反応は、式(12)のとおりである。
z1Xn1+ z2Xn2 + naA0 → z3Xn3 ・・・(12)
ここで、na=n3−(n1+n2)、Z3=Z1+Z2
Synthesis of nuclei by the present invention, one of the nuclear as the target nucleus, the number of A 0 obtained from the other nuclear and nuclear mass formula by irradiating at a low speed, it is possible to synthesize stable nuclei. In addition, as for the nucleus to irradiate, it is desirable to select a nucleus with a small mass among both nuclei.
The reaction is as shown in Formula (12).
z1 X n1 + z2 X n2 + n a A 0 → z3 X n3 ··· (12)
Where n a = n3− (n1 + n2), Z3 = Z1 + Z2
原子番号が3以上の物質の原子核に内在するエネルギーを活用するため、エネルギーを、小型の装置で安価に獲得できる。 Since the energy inherent in the nucleus of a substance having an atomic number of 3 or more is utilized, the energy can be obtained at low cost with a small device.
CO2排出や粉塵排出など地球環境汚染のないエネルギー獲得が可能となる。Energy acquisition without global environmental pollution such as CO 2 emissions and dust emissions becomes possible.
母核を非放射性の子核に分離するため、放射能汚染の恐れが無いエネルギーの獲得ができる。 Since the mother nucleus is separated into non-radioactive nuclei, energy can be acquired without fear of radioactive contamination.
原子炉での廃棄物である使用済み燃料に対して、本発明の核分離により長寿命放射性物質の廃棄物を非放射性物質に変換することができる。 With respect to spent fuel, which is a waste in a nuclear reactor, a long-lived radioactive material waste can be converted into a non-radioactive material by the nuclear separation of the present invention.
本発明の核種変換や核合成により、金、白金、ジスプロシウム、バナジウムなどの希少金属類を安価に生成することができる。 By the nuclide conversion and nucleosynthesis of the present invention, rare metals such as gold, platinum, dysprosium and vanadium can be produced at low cost.
本発明の実施例として、エネルギー獲得、放射性元素の除染、希少金属類の生成などの方法について以下に述べる。 As examples of the present invention, methods such as energy acquisition, decontamination of radioactive elements, and generation of rare metals will be described below.
まず、核分離反応によるエネルギー獲得の具体的な方法を述べる。原子核に内在するエネルギーを獲得する際に重要なことは、エネルギー獲得の際に、放射性の子核を放出することを避けることである。
地球内部に特に多量に存在している14Siと26Fe(8Oは除く)は、重元素の核分裂子核であると考えると、天然核分裂の際に安定元素として子核に生み出される確率が高い元素と考えることができる。
したがって、母核候補としては、安定元素であるSiやFe、あるいはSiとFeの組み合わせを子核として産み落とすものを選択的に考える。本発明の参考例として、以下のプロセスが好適である。First, a specific method for obtaining energy by a nuclear separation reaction is described. The key to acquiring the energy inherent in the nucleus is to avoid releasing radioactive nuclei during the energy acquisition.
Considering that 14 Si and 26 Fe (excluding 8 O), which are present in large quantities inside the earth, are fission nuclei of heavy elements, there is a probability that they will be generated in the nucleus as stable elements during natural fission. It can be considered as a high element.
Therefore, as the mother nucleus candidates, those that produce a stable element Si or Fe or a combination of Si and Fe as child nuclei are selectively considered. The following process is suitable as a reference example of the present invention.
Ni、ZrあるいはTeなどの母核に高速のA0*を照射し、母核のα胞を結合している原子核質量式から求めた数のA0を剥ぎ取ることで、式(13)〜式(16)で示すように、25εb、38εb、58εb、13εbのエネルギー獲得が可能となる。また、剥ぎ取ったA0も獲得エネルギーの一部とみなせる。なお、(16)式中の4 2He0 0はα核である。
65 28Ni46 69−16A0→231 14Si15 22 +25εb ・・・(13)
95 40Zr79 116−22A0→31 14Si15 22 + 60 26Fe42 56 +38εb ・・・(14)
127 52Te 119 170−35A0→260 26Fe42 56 +58εb ・・・(15)
65 28Ni46 69 −4A0→60 26Fe42 56+4 2He0 0 +13εb ・・・(16)
ここで、元素記号XのMZ* ZXnZ*nQ *の各記号については、以下のとおりである。
X:元素記号、Z:原子番号、Mz*:原子核質量、nz*:A0総数、nQ *:εb総個数
By irradiating a mother nucleus such as Ni, Zr, or Te with high-speed A 0 * and stripping off the number of A 0 determined from the nuclear mass equation that binds the α vesicle of the mother nucleus, as shown in equation (16), 25ε b, 38ε b, 58ε b, it is possible to energy acquisition 13ε b. In addition, it can be regarded as a part of the stripped A 0 also won energy. In the formula (16), 4 2 He 0 0 is an α nucleus.
65 28 Ni 46 69 -16A 0 → 2 31 14 Si 15 22 + 25ε b (13)
95 40 Zr 79 116 -22A 0 → 31 14 Si 15 22 + 60 26 Fe 42 56 + 38ε b (14)
127 52 Te 119 170 -35A 0 → 2 60 26 Fe 42 56 + 58ε b (15)
65 28 Ni 46 69 -4A 0 → 60 26 Fe 42 56 + 4 2 He 0 0 + 13ε b (16)
Here, the MZ * Z X nZ * n Q * each symbol of element symbol X, are as follows.
X: element symbol, Z: atomic number, Mz *: nuclear mass, n z *: A 0 Total, n Q *: ε b the total number
また、放射性元素の除染における本発明の参考例として、最も代表的な長寿命放射性物質セシウム137 55Csについて、その除染プロセスを述べる。In addition, as a reference example of the present invention in the decontamination of radioactive elements, the decontamination process of the most typical long-lived radioactive substance cesium 137 55 Cs will be described.
「三核子論」による本発明の核分離手法は、αクラスター構造論の範疇において、α胞を結合している最適なA0群配位状態と質量レベル(すなわち、質量スペクトルの安定ライン上にあること)を乱して(ズラして)やることが、すなわち、自発的にして静的な核分離を促すことに他ならないのである。なお、静的な核分離とは、非放射性の子核(安定核)のみを生み出すことであり、安全である。In the category of α cluster structure theory, the nuclear separation method of the present invention based on the “trinucleon theory” is based on the optimal A 0 group coordination state and mass level (ie, on the stable line of the mass spectrum). Doing things in a mess is nothing but voluntary and encouraging static nuclear separation. Static nuclear separation means that only non-radioactive nuclei (stable nuclei) are produced, which is safe.
したがって、137 55Csに高速のA0*を照射し、137 55Csの母核のα胞を結合している45個のA0を剥ぎ取ることで、式(17)で示すように、長寿命放射性核を非放射性の安定核である60 26Fe42 56および67 29Cu48 75に核変換することで、除染することが可能となる。また、この除染プロセスによって、45個のA0と75εbのエネルギー獲得も可能となり、生成したFeとCuも別途産業利用できる。
137 55Cs135 206−45A0 → 60 26Fe42 56+67 29Cu48 75+75εb・・・(17)
Therefore, by irradiating 137 55 Cs with high-speed A 0 * and stripping 45 A 0s that bind α vesicles of the parent nucleus of 137 55 Cs, as shown in equation (17), long Decontamination can be achieved by transmuting lifetime radioactive nuclei into 60 26 Fe 42 56 and 67 29 Cu 48 75 which are non-radioactive stable nuclei. Further, this decontamination process, energy winning 45 of A 0 and 75Ipushiron b also becomes possible, resulting Fe and Cu can also be used separately industries.
137 55 Cs 135 206 -45A 0 → 60 26 Fe 42 56 + 67 29 Cu 48 75 + 75ε b (17)
次に、核種変換によって希少金属類を安価に生成する方法を述べる。
核種変換の本発明の参考例としては、水銀を標的核として、高速のA0*を照射し、水銀核中の4個のA0を剥ぎ取ることで、式(18)に示すように、安定な金を生成することができる。
202 80Hg220 −4A0 → 201 79Au216 + e+ ・・・(18)
Next, a method for producing rare metals at low cost by nuclide conversion will be described.
As a reference example of the present invention for nuclide conversion, mercury is used as a target nucleus, irradiation with high-speed A 0 * and stripping of four A 0 in the mercury nucleus, as shown in formula (18), Stable gold can be produced.
202 80 Hg 220 -4A 0 → 201 79 Au 216 + e + (18)
別の実施例としては、鉛を標的核として、高速のA0*を照射し、鉛核中の12個のA0を剥ぎ取ることで、式(19)に示すように、安定な金を生成することができる。
208 82Pb228 −12A0 → 201 79Au216 +4 2He0+e+ ・・・(19)
As another example, the lead as a target nucleus is irradiated with high-speed A 0 *, by stripping the twelve A 0 in Namarikaku, as shown in equation (19), a stable gold Can be generated.
208 82 Pb 228 -12A 0 → 201 79 Au 216 + 4 2 He 0 + e + ··· (19)
次に、核合成によって希少金属類を安価に生成する方法を述べる。
核合成の本発明の参考例としては、ヨウ素を標的核、鉄を入射核とし照射するとともに、52個のA0を低速で照射し付加することで、式(20)に示すように安定な金を生成することが出来る。
129 53I122 +60 26Fe42 +52A0 → 199 79Au216 ・・・(20)
Next, a method for producing rare metals at low cost by nuclear synthesis will be described.
As a reference example of the present invention of the nuclear synthesis target nucleic iodine, as well as iron and the incident nuclear radiation, by adding irradiated with 52 pieces of A 0 at a low speed, as shown in equation (20) stable Gold can be generated.
129 53 I 122 + 60 26 Fe 42 + 52A 0 → 199 79 Au 216 (20)
別の核合成の実施例としては、クリプトンを標的核、亜鉛を入射核とし照射するとともに、48個のA0を低速で照射し付加することで、式(21)に示すように、安定な希少金属ジスプロシウムを生成することが出来る。
84 36Kr65 + 70 30Zn50 +48A0 → 163 66Dy163 ・・・(21)
As examples of other nuclear synthesis, krypton target nuclei, with and irradiates zinc incident nuclei, by adding irradiated with 48 A 0 at a low speed, as shown in equation (21), stable Rare metal dysprosium can be produced.
84 36 Kr 65 + 70 30 Zn 50 + 48A 0 → 163 66 Dy 163 (21)
以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形
および置換を加えることができる。The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.
1 陽子(P+)
2 中性子(N0)
3 核子A0
4 P+公転軌道
5 N0公転軌道
6 A0公転軌道
7 α胞
1 Proton (P + )
2 Neutrons (N 0 )
3 Nucleon A 0
4 P + revolution orbit 5 N 0 revolution orbit 6 A 0 revolution orbit 7 α cell
Claims (5)
Wherein the control of the number of nucleons A 0, performs control based on the total number of nucleons A 0 of the calculation result by nuclear Mass expression of the elements, method according to claims 1 to 4.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012268891 | 2012-12-08 | ||
JP2012268891 | 2012-12-08 | ||
PCT/JP2013/082297 WO2014087950A1 (en) | 2012-12-08 | 2013-11-29 | Energy acquisition and nucleotide transformation method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2014087950A1 true JPWO2014087950A1 (en) | 2017-01-05 |
Family
ID=50883368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014551082A Pending JPWO2014087950A1 (en) | 2012-12-08 | 2013-11-29 | Energy acquisition and nuclide conversion methods |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2014087950A1 (en) |
WO (1) | WO2014087950A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7405743B2 (en) * | 2017-09-14 | 2023-12-26 | オーストラリアン ニュークリア サイエンス アンド テクノロジー オーガニゼーション | Irradiation method and system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000002799A (en) * | 1998-06-18 | 2000-01-07 | Shuichi Iida | Device for utilizing rare elementary particle group.reverse particle group |
-
2013
- 2013-11-29 WO PCT/JP2013/082297 patent/WO2014087950A1/en active Application Filing
- 2013-11-29 JP JP2014551082A patent/JPWO2014087950A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2014087950A1 (en) | 2014-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Choppin et al. | Radiochemistry and nuclear chemistry | |
JP4936906B2 (en) | Nuclear system | |
De Sanctis et al. | Energy from nuclear fission | |
King | Physics of energy sources | |
JP6802284B2 (en) | A method for producing radioactive isotopes in a fast neutron reactor and a fast neutron reactor using the method | |
WO2014087950A1 (en) | Energy acquisition and nucleotide transformation method | |
Meulenberg | Femto-atoms and transmutation | |
Yuferov et al. | Features of molecular plasma SNF after heating and ionization | |
CN1421037A (en) | Power from fission of spent nuclear waster | |
ITGE20120004A1 (en) | NUCLEAR REACTOR WORKING WITH A NUCLEAR FUEL CONTAINING ATOMES OF ELEMENTS HAVING LOW ATOMIC NUMBER AND LOW NUMBER OF MASS | |
Hylton et al. | Strategies for Managing Unique Waste Streams Resulting from Heavy Isotope Production and Advanced Fuel Cycle Development Programs at ORNL | |
Dikiy et al. | Sorption properties of magnesium-potassium phosphate matrix | |
JP6106892B2 (en) | Radioactive waste disposal method | |
Tsyganov | Nuclear Fusion Processes in a Conductive Crystal Medium | |
JP6020952B1 (en) | Method for processing long-lived fission products | |
Alam et al. | Simulation of Transmutation β by Decay Energetics | |
Mane et al. | Atomic batteries: a compact and long life power source | |
Michrowski et al. | Advanced transmutation process and its application for the decontamination of radioactive nuclear wastes | |
SE541134C2 (en) | Method for conversion of nuclear energy into heat and device therefor | |
Williams | Efficient Synthesis of Resilient Nuclear Waste Forms | |
D'Auria et al. | Introduction to nuclear physics | |
Shlenskii et al. | APPLICATIONS OF FUSION-FISSION HYBRID SYSTEMS FOR NUCLEAR FUEL CYCLE | |
Gao et al. | Radioactive Waste Generation in Pyro-SFR Nuclear Fuel Cycle | |
JP2022027352A (en) | DETOXIFICATION OF URANIUM FISSION RADIOACTIVE ELEMENTS THROUGH PROMOTION OF β-DECAY | |
Yuan | Recent Nuclear Structure Study through Large Scale Shell Model, from Light to Heavy Nuclei |