JPWO2014080444A1 - Electrostatic actuators and variable capacitance devices - Google Patents

Electrostatic actuators and variable capacitance devices Download PDF

Info

Publication number
JPWO2014080444A1
JPWO2014080444A1 JP2014548347A JP2014548347A JPWO2014080444A1 JP WO2014080444 A1 JPWO2014080444 A1 JP WO2014080444A1 JP 2014548347 A JP2014548347 A JP 2014548347A JP 2014548347 A JP2014548347 A JP 2014548347A JP WO2014080444 A1 JPWO2014080444 A1 JP WO2014080444A1
Authority
JP
Japan
Prior art keywords
movable
substrate
movable beam
swinging
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014548347A
Other languages
Japanese (ja)
Other versions
JP5869695B2 (en
Inventor
甲二 埴原
甲二 埴原
哲郎 杉田
哲郎 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Pioneer Micro Technology Corp
Original Assignee
Pioneer Corp
Pioneer Micro Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp, Pioneer Micro Technology Corp filed Critical Pioneer Corp
Application granted granted Critical
Publication of JP5869695B2 publication Critical patent/JP5869695B2/en
Publication of JPWO2014080444A1 publication Critical patent/JPWO2014080444A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0002Arrangements for avoiding sticking of the flexible or moving parts
    • B81B3/0016Arrangements for avoiding sticking of the flexible or moving parts not provided for in groups B81B3/0005 - B81B3/0013
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0221Variable capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0181See-saws

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Micromachines (AREA)
  • Manipulator (AREA)

Abstract

簡易な構成で、他方部分が基板に近づいた方向に揺動した揺動梁を、一方部分が基板に近づく方向に確実に揺動させることができる静電アクチュエーター等を提供する。シリコン基板2上の支持部21によりシーソー状に揺動可能に支持され、静電気力により揺動する揺動梁部22と、支持部21に対する揺動梁部22の外側部分22aにシリコン基板2側で対向して外側部分22aとの間に静電気力を生じさせると共に、支持部21側とは反対側の端部が、外側部分22aの端部と接続され、支持部21側の端部が、シリコン基板2に対して固定された可動梁25とを備えた。Provided is an electrostatic actuator or the like capable of reliably swinging a swinging beam swinging in a direction in which the other part approaches the substrate with a simple configuration in a direction in which the other part approaches the substrate. On the silicon substrate 2 side, a swinging beam part 22 supported by a support part 21 on the silicon substrate 2 so as to be swingable in a seesaw shape and swinging by electrostatic force, and an outer portion 22a of the swinging beam part 22 with respect to the support part 21 And an electrostatic force is generated between the outer portion 22a and the end portion on the opposite side to the support portion 21 side, and the end portion on the support portion 21 side is connected to the end portion of the outer portion 22a. And a movable beam 25 fixed to the silicon substrate 2.

Description

本発明は、静電気力により揺動する揺動梁を有する静電アクチュエーターおよびこれを備えた可変容量デバイスに関するものである。   The present invention relates to an electrostatic actuator having an oscillating beam that oscillates by an electrostatic force, and a variable capacitance device including the same.

従来、シグナル線と、シグナル線の上方でこれと対向する電極と、から成る可変容量の電極を駆動して、静電容量を可変させる静電型アクチュエーターが知られている。この静電型アクチュエーターは、絶縁層を介して可変容量の電極に繋がった可動側の上部電極と、上部電極に対向する固定側の下部電極とを備えている。上部電極の可変容量側とは反対側の端部は、ばね構造部によりアンカーに接続されている(特許文献1参照)。また、MEMS(Micro Electro Mechanical Systems)スイッチにおける静電型アクチュエーターとして、基板上でシーソー状に揺動する内側作動部材を備え、スイッチ接触機能を持つ外側作動部材をシーソー状に揺動させるものが知られている。このMEMSスイッチでは、内側作動部材の両端に設けられた第1加圧棒および第2加圧棒により、外側作動部材の両端部を上方から加圧することで、外側作動部材を内側作動部材の揺動動作に連動して揺動させるようになっている(特許文献2参照)。   2. Description of the Related Art Conventionally, there is known an electrostatic actuator that changes a capacitance by driving a variable capacitance electrode including a signal line and an electrode facing the signal line above the signal line. This electrostatic actuator includes a movable upper electrode connected to a variable capacitance electrode through an insulating layer, and a fixed lower electrode facing the upper electrode. The end of the upper electrode opposite to the variable capacitance side is connected to the anchor by a spring structure (see Patent Document 1). In addition, as an electrostatic actuator in a MEMS (Micro Electro Mechanical Systems) switch, there is an electrostatic actuator that includes an inner working member that swings like a seesaw on a substrate, and an outer working member that has a switch contact function swings like a seesaw. It has been. In this MEMS switch, the first and second pressure rods provided at both ends of the inner working member are used to press both ends of the outer working member from above so that the outer working member is rocked by the inner working member. It is designed to swing in conjunction with the movement (see Patent Document 2).

特開2008−278634号公報JP 2008-278634 A 特開2006−173132号公報JP 2006-173132 A

ところで、可変容量(可変容量素子)にRF(Radio Frequency)電圧を印加した状態で可変容量をスイッチングするホットスイッチング時には、RF電圧に起因して、シグナル線(固定容量電極)と電極(可動容量電極)との間に強い静電気力が生じるため、静電型アクチュエーターの上部電極が下部電極に貼り付いてしまう(スティッキング)場合があった。これに対し、可変容量の電極を駆動する静電型アクチュエーターとして、シーソー状に揺動する上記の内側作動部材(揺動梁)を備えることが考えられる。この場合、内側作動部材の可変容量側の部分(他方部分)が下部電極と接触した状態において、内側作動部材の可変容量側とは反対側の部分(一方部分)と下部電極(固定駆動電極)との間に電圧差を与えることで、両者間に生じた静電気力を、内側作動部材の他方部分を下部電極から引き離す力として作用させることができる。しかしながら、内側作動部材の他方部分が下部電極に接触した状態では、内側作動部材の一方部分と下部電極との間が大きく離れていることから、内側作動部材の一方部分と下部電極との間に同じ電圧差を与えても静電気力が小さくなるため、両者間により大きな電圧差を与えるか、両者の対向面積を大きくする必要がある。   By the way, at the time of hot switching in which a variable capacitor is switched with an RF (Radio Frequency) voltage applied to a variable capacitor (variable capacitor), a signal line (fixed capacitor electrode) and an electrode (movable capacitor electrode) are caused by the RF voltage. ), An electrostatic force is generated between the upper electrode and the lower electrode of the electrostatic actuator (sticking). On the other hand, it is conceivable to provide the inner working member (swinging beam) that swings like a seesaw as an electrostatic actuator that drives a variable capacitance electrode. In this case, in the state where the variable capacity side portion (the other portion) of the inner working member is in contact with the lower electrode, the portion (one portion) opposite to the variable capacity side of the inner working member and the lower electrode (fixed drive electrode) By applying a voltage difference between them, the electrostatic force generated between them can be made to act as a force that separates the other part of the inner working member from the lower electrode. However, in the state where the other part of the inner working member is in contact with the lower electrode, the distance between the one part of the inner working member and the lower electrode is greatly separated, so that there is a gap between the one part of the inner working member and the lower electrode. Even if the same voltage difference is given, the electrostatic force becomes small, so it is necessary to give a larger voltage difference between them or to increase the opposing area between them.

本発明は、簡易な構成で、他方部分が基板に近づいた方向に揺動した揺動梁を、一方部分が基板に近づく方向に確実に揺動させることができる静電アクチュエーターおよびこれを備えた可変容量デバイスを提供することを課題としている。   The present invention is provided with an electrostatic actuator capable of reliably swinging a swinging beam swinging in a direction in which the other part approaches the substrate, in a direction in which the other part approaches the substrate, with a simple configuration. An object is to provide a variable capacitance device.

本発明の静電アクチュエーターは、基板上の支持部によりシーソー状に揺動可能に支持され、静電気力により揺動する揺動梁と、支持部に対する揺動梁の一方部分に基板側で対向して一方部分との間に静電気力を生じさせると共に、支持部側とは反対側の端部が、一方部分の端部と接続され、支持部側の端部が、基板に対して固定された可動梁と、を備えたことを特徴とする。   The electrostatic actuator of the present invention is supported by a support portion on a substrate so as to be able to swing in a seesaw shape, and is opposed to a swing beam swinging by electrostatic force and one portion of the swing beam with respect to the support portion on the substrate side. In addition, an electrostatic force is generated between one part and the end opposite to the support part side is connected to the end part of one part, and the end part on the support part side is fixed to the substrate. And a movable beam.

この構成によれば、揺動梁の一方部分に基板側で対向すると共に一方部分の端部と接続された可動梁を備えたことで、揺動梁の他方部分が基板に近づく方向に揺動した状態においても、揺動梁の一方部分と可動梁との距離が大きくなることがないため、揺動梁の一方部分と可動梁との間に強い静電気力を生じさせることができる。また、可動梁の支持部側の端部が基板に対して固定されていることで、揺動梁の一方部分と可動梁との間に生じた静電気力が、一方部分が基板に近づく方向に揺動梁が揺動するように作用する。したがって、揺動梁の一方部分と可動梁との間に大きな電位差を与えずとも、また、揺動梁の一方部分と可動梁との対向面積を大きくせずとも、簡易な構成(駆動電圧小、チップ面積小)で、他方部分が基板に近づいた方向に揺動した揺動梁を、一方部分が基板に近づく方向に確実に揺動させることができる。   According to this configuration, since the movable beam connected to the one end portion of the swing beam on the substrate side and connected to the end portion of the one portion is swung in the direction in which the other portion of the swing beam approaches the substrate. Even in this state, since the distance between the one part of the oscillating beam and the movable beam does not increase, a strong electrostatic force can be generated between the one part of the oscillating beam and the movable beam. In addition, since the end of the movable beam on the support portion side is fixed to the substrate, the electrostatic force generated between one part of the swinging beam and the movable beam is in a direction in which the first part approaches the substrate. The swing beam acts to swing. Therefore, a simple configuration (low drive voltage) can be achieved without applying a large potential difference between one part of the oscillating beam and the movable beam and without increasing the opposing area between the one part of the oscillating beam and the movable beam. With the small chip area), the swinging beam swinging in the direction in which the other part approaches the substrate can be reliably swung in the direction in which one part approaches the substrate.

この場合、可動梁と対向するように基板上に設けられ、可動梁との間に静電気力を生じさせる固定駆動電極を、さらに備えたことが好ましい。   In this case, it is preferable to further include a fixed drive electrode provided on the substrate so as to face the movable beam and generating an electrostatic force between the movable beam and the movable beam.

この構成によれば、支持部に対する揺動梁の他方部分が基板に近づく方向に揺動した状態においても、揺動梁の一方部分と固定駆動電極との距離に比べ、可動梁と固定駆動電極との距離が大きくなることがないため、可動梁と固定駆動電極との間に強い静電気力を生じさせることができる。そして、可動梁と固定駆動電極との間に生じた静電気力も、一方部分が基板に近づく方向に揺動梁が揺動するように作用する。したがって、他方部分が基板に近づいた方向に揺動した揺動梁を、より効率的に、一方部分が基板に近づく方向に揺動させることができる。   According to this configuration, even when the other portion of the swing beam with respect to the support portion swings in the direction approaching the substrate, the movable beam and the fixed drive electrode are compared with the distance between the one portion of the swing beam and the fixed drive electrode. Therefore, a strong electrostatic force can be generated between the movable beam and the fixed drive electrode. The electrostatic force generated between the movable beam and the fixed drive electrode also acts so that the oscillating beam oscillates in a direction in which one portion approaches the substrate. Therefore, the swinging beam that swings in the direction in which the other part approaches the substrate can be more efficiently swung in the direction in which the one part approaches the substrate.

この場合、一方部分が基板から離れる方向に揺動梁が揺動する際、可動梁が弾性を持って変形し、当該変形の復元力が、一方部分が基板に近づく方向に揺動梁が揺動するように作用することが好ましい。   In this case, when the swinging beam swings in a direction in which one part is away from the substrate, the movable beam is deformed with elasticity, and the restoring force of the deformation causes the swinging beam to swing in a direction in which one part approaches the substrate. It is preferable to act so as to move.

この構成によれば、揺動梁の一方部分と可動梁との間に生じた静電気力だけでなく、可動梁の変形の復元力によっても、一方部分が基板に近づく方向に揺動させることができる。したがって、一方部分が基板に近づく方向に揺動梁を揺動させる力を、より強くすることができる。   According to this configuration, not only the electrostatic force generated between one part of the oscillating beam and the movable beam, but also the one part can be oscillated in the direction approaching the substrate not only by the restoring force of the deformation of the movable beam. it can. Therefore, the force for swinging the swing beam in the direction in which one portion approaches the substrate can be further increased.

この場合、揺動梁および可動梁は、それぞれ全体が導電体で構成されていることが好ましい。   In this case, it is preferable that the oscillating beam and the movable beam are each made of a conductor.

この場合、揺動梁および可動梁の少なくとも一方は、主体を為す絶縁体部と、絶縁体部の基板側の面および基板側とは反対側の面の少なくとも一方に形成された導電体層と、を有することが好ましい。   In this case, at least one of the oscillating beam and the movable beam includes an insulator portion that is a main body, and a conductor layer formed on at least one of the substrate-side surface and the substrate-side surface of the insulator portion. It is preferable to have.

本発明の他の静電アクチュエーターは、基板上の支持部によりシーソー状に揺動可能に支持され、静電気力により揺動する揺動梁と、支持部に対する揺動梁の一方部分に基板側で対向すると共に、支持部側とは反対側の端部が、一方部分の端部と接続され、支持部側の端部が、基板に対して固定された可動梁と、可動梁と対向するように基板上に設けられ、可動梁との間に静電気力を生じさせる固定駆動電極と、を備えたことを特徴とする。   Another electrostatic actuator of the present invention is supported by a support portion on a substrate so as to be swingable in a seesaw shape. The swing beam swings by electrostatic force, and one portion of the swing beam with respect to the support portion is provided on the substrate side. The end opposite to the support side is connected to the end of one part, and the end on the support side is opposed to the movable beam fixed to the substrate and the movable beam. And a fixed drive electrode that is provided on the substrate and generates an electrostatic force between the movable beam and the movable beam.

この構成によれば、揺動梁の一方部分に基板側で対向する可動梁を備えたことで、揺動梁の他方部分が基板に近づく方向に揺動した状態においても、揺動梁の一方部分と固定駆動電極との距離に比べ、可動梁と固定駆動電極との距離が大きくなることがないため、可動梁と固定駆動電極との間に強い静電気力を生じさせることができる。また、可動梁の端部が一方部分の端部と接続されていることで、可動梁と固定駆動電極との間に生じた静電気力が、一方部分が基板に近づく方向に揺動梁が揺動するように作用する。したがって、揺動梁の一方部分と可動梁との間に大きな電位差を与えずとも、また、揺動梁の一方部分と可動梁との対向面積を大きくせずとも、簡易な構成で、他方部分が基板に近づいた方向に揺動した揺動梁を、一方部分が基板に近づく方向に確実に揺動させることができる。   According to this configuration, by providing the movable beam opposed to the substrate side in one part of the oscillating beam, even when the other part of the oscillating beam is oscillated in the direction approaching the substrate, Since the distance between the movable beam and the fixed drive electrode does not increase compared to the distance between the portion and the fixed drive electrode, a strong electrostatic force can be generated between the movable beam and the fixed drive electrode. In addition, since the end of the movable beam is connected to the end of one part, the electrostatic force generated between the movable beam and the fixed drive electrode causes the swinging beam to swing in the direction in which one part approaches the substrate. Act to move. Therefore, without applying a large potential difference between one part of the oscillating beam and the movable beam, and without increasing the facing area between the one part of the oscillating beam and the movable beam, the other part The rocking beam swung in the direction approaching the substrate can be reliably swung in the direction in which one portion approaches the substrate.

本発明の他の静電アクチュエーターは、基板上の支持部によりシーソー状に揺動可能に支持され、静電気力により揺動する揺動梁と、支持部に対する揺動梁の一方部分と基板との間に設けられると共に、相互に折り返し構造を為して連なった複数の可動梁を有する可動部と、を備え、複数の可動梁のうち最も揺動梁側に設けられた揺動梁側可動梁は、支持部側とは反対側の端部が、一方部分の端部と接続され、複数の可動梁のうち最も基板側に設けられた基板側可動梁は、折り返し部側とは反対側の端部が、基板に対して固定され、相互に対向する複数の可動梁相互間、および揺動梁側可動梁と揺動梁側可動梁に対向する一方部分との間の少なくとも1つの間に静電気力が生じることを特徴とする。   Another electrostatic actuator of the present invention is supported by a support portion on a substrate so as to be able to swing in a seesaw shape, and swings by an electrostatic force, one portion of the swing beam with respect to the support portion, and the substrate. And a movable part having a plurality of movable beams connected in a folded structure to each other, the movable beam side movable beam provided on the most movable beam side among the plurality of movable beams The end on the opposite side to the support side is connected to the end of one part, and the substrate side movable beam provided on the most substrate side among the plurality of movable beams is on the side opposite to the folded portion side. The end portion is fixed to the substrate and is between at least one of a plurality of movable beams facing each other and between the movable beam side movable beam and one portion facing the movable beam side movable beam. It is characterized by generating electrostatic force.

この構成によれば、揺動梁の一方部分と基板との間に複数の可動梁を設けたことで、支持部に対する揺動梁の他方部分が基板に近づく方向に揺動した状態においても、揺動梁の一方部分と固定駆動電極との距離に比べ、揺動梁の一方部分と揺動梁側可動梁との距離や可動梁相互間の距離が大きくなることがないため、揺動梁の一方部分と当該可動梁との間に強い静電気力を生じさせることができる。また、基板側可動梁の端部が基板に対して固定されていることで、揺動梁の一方部分と揺動梁側可動梁との間に生じた静電気力、あるいは可動梁相互間に生じた静電気力により、一方部分が基板に近づく方向に揺動させることができる。したがって、簡易な構成で、他方部分が基板に近づいた方向に揺動した揺動梁を、一方部分が基板に近づく方向に確実に揺動させることができる。   According to this configuration, by providing a plurality of movable beams between the one part of the oscillating beam and the substrate, even when the other part of the oscillating beam with respect to the support unit oscillates in a direction approaching the substrate, Compared to the distance between one part of the oscillating beam and the fixed drive electrode, the distance between the one part of the oscillating beam and the movable beam side movable beam and the distance between the movable beams do not increase. A strong electrostatic force can be generated between one of the portions and the movable beam. In addition, since the end of the substrate side movable beam is fixed to the substrate, an electrostatic force generated between one part of the oscillating beam and the movable beam side movable beam or between the movable beams is generated. Due to the electrostatic force, one portion can be swung in a direction approaching the substrate. Therefore, with a simple configuration, the swinging beam that swings in the direction in which the other part approaches the substrate can be reliably swung in the direction in which one part approaches the substrate.

本発明の他の静電アクチュエーターは、基板上の支持部によりシーソー状に揺動可能に支持され、静電気力により揺動する揺動梁と、支持部に対する揺動梁の一方部分と基板との間に設けられると共に、相互に折り返し構造を為して連なった複数の可動梁を有する可動部と、複数の可動梁のうち最も基板側に設けられた基板側可動梁と対向するように設けられ、基板側可動梁との間に静電気力を生じさせる固定駆動電極と、を備え、複数の可動梁のうち最も揺動梁側に設けられた揺動梁側可動梁は、支持部側とは反対側の端部が、一方部分の端部と接続され、基板側可動梁は、折り返し部側とは反対側の端部が、基板に対して固定されていることを特徴とする。   Another electrostatic actuator of the present invention is supported by a support portion on a substrate so as to be able to swing in a seesaw shape, and swings by an electrostatic force, one portion of the swing beam with respect to the support portion, and the substrate. And a movable part having a plurality of movable beams connected in a folded structure and a substrate-side movable beam provided on the most substrate side among the plurality of movable beams. A fixed drive electrode that generates an electrostatic force between the movable beam and the substrate side movable beam, and the movable beam side movable beam provided on the most movable beam side among the plurality of movable beams is the support portion side. The opposite end is connected to the end of one portion, and the substrate-side movable beam has an end opposite to the folded-back portion fixed to the substrate.

この構成によれば、揺動梁の一方部分と基板との間に複数の可動梁を備えたことで、揺動梁の他方部分が基板に近づく方向に揺動した状態においても、揺動梁の一方部分と固定駆動電極との距離に比べ、基板側可動梁と固定駆動電極との距離が大きくなることがないため、基板側可動梁と固定駆動電極との間に強い静電気力を生じさせることができる。また、揺動梁側可動梁の端部が一方部分の端部と接続されていることで、基板側可動梁と固定駆動電極との間に生じた静電気力が、一方部分が基板に近づく方向に揺動梁が揺動するように作用する。したがって、揺動梁の一方部分と可動梁との間に大きな電位差を与えずとも、また、揺動梁の一方部分と可動梁との対向面積を大きくせずとも、簡易な構成で、他方部分が基板に近づいた方向に揺動した揺動梁を、一方部分が基板に近づく方向に確実に揺動させることができる。   According to this configuration, since the plurality of movable beams are provided between the one part of the oscillating beam and the substrate, the oscillating beam can be used even when the other part of the oscillating beam is oscillated in the direction approaching the substrate. Compared with the distance between one part of the substrate and the fixed drive electrode, the distance between the substrate-side movable beam and the fixed drive electrode does not increase, so a strong electrostatic force is generated between the substrate-side movable beam and the fixed drive electrode. be able to. In addition, since the end of the movable beam-side movable beam is connected to the end of one portion, the electrostatic force generated between the substrate-side movable beam and the fixed drive electrode is in a direction in which the first portion approaches the substrate. The swing beam acts to swing. Therefore, without applying a large potential difference between one part of the oscillating beam and the movable beam, and without increasing the facing area between the one part of the oscillating beam and the movable beam, the other part The rocking beam swung in the direction approaching the substrate can be reliably swung in the direction in which one portion approaches the substrate.

本発明の可変容量デバイスは、上記の静電アクチュエーターと、固定容量電極と、固定容量電極に対向すると共に、支持部に対する揺動梁の他方部分の端部に設けられた可動容量電極と、を有し、静電容量を可変する可変容量素子と、を備えたことを特徴とする。   A variable capacitance device according to the present invention includes the electrostatic actuator, a fixed capacitance electrode, and a movable capacitance electrode facing the fixed capacitance electrode and provided at the end of the other portion of the swing beam with respect to the support portion. And a variable capacitance element that varies the capacitance.

可変容量素子の固定容量電極と可動容量電極との間に静電気力が発生した場合には、その静電気力は、端部に可動容量電極が設けられた揺動梁の他方部分が基板に近づく方向に揺動するように作用するため、揺動梁の他方部分がこれに対向する基板上の電極等に貼り付いてしまうおそれがある。
これに対し、本構成によれば、簡易な構成で、他方部分が基板に近づいた方向に揺動した揺動梁を、一方部分が基板に近づく方向に確実に揺動させることができる静電アクチュエーターを備えたことで、可変容量素子の固定容量電極と可動容量電極との間に静電気力が発生した場合にも、確実に、一方部分が基板に近づく方向に揺動梁を揺動させることができる。したがって、揺動梁の他方部分がこれに対向する基板上の電極等に貼り付いてしまうことを効果的に防止することができる。
なお、揺動梁の他方部分の端部に設けられた可動容量電極とは、揺動梁の他方部分の端部が可動容量電極となっているもの、および、揺動梁の他方部分とは別体に形成された可動容量電極が、該他方部分の端部に連なっているものの双方を含む概念である。
When an electrostatic force is generated between the fixed capacitance electrode and the movable capacitance electrode of the variable capacitance element, the electrostatic force is in the direction in which the other part of the oscillating beam provided with the movable capacitance electrode at the end approaches the substrate. Therefore, there is a possibility that the other part of the rocking beam may stick to an electrode or the like on the substrate facing the rocking beam.
On the other hand, according to the present configuration, an electrostatic beam capable of reliably swinging the swinging beam swinging in the direction in which the other part approaches the substrate with a simple structure in the direction in which one part approaches the substrate. By providing an actuator, even when an electrostatic force is generated between the fixed capacitor electrode and the movable capacitor electrode of the variable capacitor, it is possible to reliably swing the swing beam so that one part approaches the substrate. Can do. Therefore, it is possible to effectively prevent the other part of the oscillating beam from adhering to the electrode on the substrate opposed to the other part.
The movable capacitive electrode provided at the end of the other part of the oscillating beam means that the end of the other part of the oscillating beam is a movable capacitive electrode and the other part of the oscillating beam. It is a concept that includes both movable capacitive electrodes formed separately and connected to the end of the other portion.

この場合、静電アクチュエーターは、可変容量素子に電圧を印加した状態で、揺動梁の揺動動作を行うことが好ましい。   In this case, the electrostatic actuator preferably performs the swinging motion of the swinging beam in a state where a voltage is applied to the variable capacitance element.

この構成によれば、可変容量素子に電圧を印加した状態で、揺動梁の揺動動作を行って可変容量素子をスイッチング(ホットスイッチング)させる場合には、可変容量素子の固定容量電極と可動容量電極との間に静電気力が発生するが、この場合にも、揺動梁の他方部分がこれに対向する電極等に貼り付いてしまうことを効果的に防止することができる。したがって、揺動梁がスティッキングすることなく、ホットスイッチングを良好に行うことができる。   According to this configuration, when the variable capacitive element is switched (hot switching) by performing the swinging motion of the swing beam while a voltage is applied to the variable capacitive element, the variable capacitive element is movable with the fixed capacitive electrode. Although an electrostatic force is generated between the capacitor electrode and the capacitor electrode, in this case as well, it is possible to effectively prevent the other part of the oscillating beam from adhering to the electrode or the like facing the other part. Therefore, hot switching can be performed satisfactorily without the oscillating beam sticking.

第1実施形態に係る静電アクチュエーターを備えた可変容量コンデンサーの断面図である。It is sectional drawing of the variable capacitor provided with the electrostatic actuator which concerns on 1st Embodiment. 可変容量コンデンサーにおける静電アクチュエーターの揺動動作を示す図である。It is a figure which shows rocking | fluctuation operation | movement of the electrostatic actuator in a variable capacitor. 静電アクチュエーターに対する電位供給パターンを示す図である。It is a figure which shows the electric potential supply pattern with respect to an electrostatic actuator. 静電アクチュエーターに対する電位供給パターンの別の例を示す図である。It is a figure which shows another example of the electric potential supply pattern with respect to an electrostatic actuator. 静電アクチュエーターの変形例を示す図である。It is a figure which shows the modification of an electrostatic actuator. 静電アクチュエーターにおける可動梁の変形例を示す図である。It is a figure which shows the modification of the movable beam in an electrostatic actuator. 第2実施形態に係る静電アクチュエーターの断面図である。It is sectional drawing of the electrostatic actuator which concerns on 2nd Embodiment.

以下、添付の図面を参照して、本発明の一実施形態に係る静電アクチュエーターおよびこれを備えた可変容量デバイスについて説明する。本実施形態では、可変容量デバイスとして、可変容量コンデンサーを例示する。この可変容量コンデンサーは、MEMSデバイスであり、半導体集積回路作製技術を用いて、シリコン基板などの半導体基板上に、電子回路および機械構造を作り込むことで構成されている。   Hereinafter, an electrostatic actuator and a variable capacitance device including the same according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the present embodiment, a variable capacitor is exemplified as the variable capacitance device. This variable capacitor is a MEMS device, and is configured by forming an electronic circuit and a mechanical structure on a semiconductor substrate such as a silicon substrate using a semiconductor integrated circuit manufacturing technique.

図1および図2に示すように、可変容量コンデンサー1は、シリコン基板2と、シリコン基板2上に設けられた可変容量素子3と、シリコン基板2上に設けられ、可変容量素子3の左右両側に連なる一対の静電アクチュエーター4とを備えている。この可変容量コンデンサー1においては、可変容量素子3にRF電圧が印加された状態で、静電アクチュエーター4を駆動源として可変容量素子3を駆動し、静電容量を可変する、いわゆるホットスイッチングが行われる。   As shown in FIGS. 1 and 2, the variable capacitor 1 includes a silicon substrate 2, a variable capacitor 3 provided on the silicon substrate 2, and both left and right sides of the variable capacitor 3 provided on the silicon substrate 2. And a pair of electrostatic actuators 4. In this variable capacitor 1, so-called hot switching is performed in which the variable capacitor 3 is driven by using the electrostatic actuator 4 as a drive source in a state where an RF voltage is applied to the variable capacitor 3, thereby changing the capacitance. Is called.

シリコン基板2の表面には、例えばSiO(シリコン酸化膜)から成る絶縁層5が形成されており、この絶縁層5上に、可変容量素子3および一対の静電アクチュエーター4が設けられている。An insulating layer 5 made of, for example, SiO 2 (silicon oxide film) is formed on the surface of the silicon substrate 2, and the variable capacitance element 3 and a pair of electrostatic actuators 4 are provided on the insulating layer 5. .

可変容量素子3は、シリコン基板2上に設けられた固定容量電極10と、固定容量電極10に対向する可動容量電極部13とを備えている。可動容量電極部13は、一対の静電アクチュエーター4が共有する両持ち梁20の中間部により構成されている。すなわち、両持ち梁20は、中間部の可動容量電極部13と、絶縁体6を介して可動容量電極部13の両外側に設けられた揺動梁部22とで構成されている。そして、後述する両持ち梁20の変形(揺動梁部22の揺動動作)に伴って、可動容量電極部13が固定容量電極10に対して離接することで、可変容量素子3における静電容量が変動するようになっている。   The variable capacitance element 3 includes a fixed capacitance electrode 10 provided on the silicon substrate 2 and a movable capacitance electrode portion 13 facing the fixed capacitance electrode 10. The movable capacitive electrode portion 13 is constituted by an intermediate portion of a doubly supported beam 20 shared by a pair of electrostatic actuators 4. That is, the doubly-supported beam 20 includes an intermediate movable capacitive electrode portion 13 and oscillating beam portions 22 provided on both outer sides of the movable capacitive electrode portion 13 via the insulator 6. Then, along with the deformation of the doubly-supported beam 20 described later (the swinging motion of the swinging beam portion 22), the movable capacitive electrode portion 13 is brought into and out of contact with the fixed capacitive electrode 10 so that the electrostatic capacitance in the variable capacitive element 3 is The capacity is changed.

固定容量電極10は、ポリシリコンなどの導電体から成る、第1固定容量電極11および第2固定容量電極12で構成されている。ここでは、第1固定容量電極11は、RF信号が流れる電極であり、第2固定容量電極12は、例えばグランド接続される電極である。可変容量素子3は、第1固定容量電極11と可動容量電極部13との間に、静電容量C1を有し、第2固定容量電極12と可動容量電極部13との間に、静電容量C2を有する。これらの静電容量C1および静電容量C2は、可動容量電極部13と第1固定容量電極11や第2固定容量電極12との距離の変動に伴って変動する。そして、可変容量素子3における静電容量は、第1固定容量電極11と第2固定容量電極12との間に直列接続された静電容量C1および静電容量C2から構成される。   The fixed capacitance electrode 10 includes a first fixed capacitance electrode 11 and a second fixed capacitance electrode 12 made of a conductor such as polysilicon. Here, the first fixed capacitance electrode 11 is an electrode through which an RF signal flows, and the second fixed capacitance electrode 12 is an electrode connected to ground, for example. The variable capacitance element 3 has a capacitance C <b> 1 between the first fixed capacitance electrode 11 and the movable capacitance electrode portion 13, and between the second fixed capacitance electrode 12 and the movable capacitance electrode portion 13. It has a capacity C2. The electrostatic capacitance C1 and the electrostatic capacitance C2 change with the change in the distance between the movable capacitance electrode portion 13 and the first fixed capacitance electrode 11 and the second fixed capacitance electrode 12. The electrostatic capacitance in the variable capacitance element 3 includes an electrostatic capacitance C1 and an electrostatic capacitance C2 connected in series between the first fixed capacitance electrode 11 and the second fixed capacitance electrode 12.

可動容量電極部13と第1固定容量電極11や第2固定容量電極12との距離が変動して、可変容量素子3における静電容量が変動すると、RF信号が流れる第1固定容量電極11の電位が変化し、それに応じたRF電圧が、第1固定容量電極11および第2固定容量電極12から出力される。
なお、本実施形態では、固定容量電極10を、第1固定容量電極11および第2固定容量電極12で構成したが、これを単一の電極で構成してもよい。この場は、例えば、固定容量電極10をグランド接続される電極とし、可動容量電極部13をRF信号が流れる電極とする。
When the distance between the movable capacitive electrode section 13 and the first fixed capacitive electrode 11 or the second fixed capacitive electrode 12 varies and the capacitance of the variable capacitive element 3 varies, the first fixed capacitive electrode 11 through which the RF signal flows is changed. The potential changes, and an RF voltage corresponding to the potential is output from the first fixed capacitor electrode 11 and the second fixed capacitor electrode 12.
In the present embodiment, the fixed capacitance electrode 10 is constituted by the first fixed capacitance electrode 11 and the second fixed capacitance electrode 12, but it may be constituted by a single electrode. In this field, for example, the fixed capacitance electrode 10 is used as an electrode connected to the ground, and the movable capacitance electrode portion 13 is used as an electrode through which an RF signal flows.

第1固定容量電極11および第2固定容量電極12の各表面は、例えばSiOで構成された絶縁膜14で覆われている。絶縁膜14は、可動容量電極部13と第1固定容量電極11や第2固定容量電極12とが近づいたときの最大容量値を決定している。すなわち、可動容量電極部13は、絶縁膜14と接触するまで下方に変位する。Each surface of the first fixed capacitance electrode 11 and the second fixed capacitance electrode 12 is covered with an insulating film 14 made of, for example, SiO 2 . The insulating film 14 determines the maximum capacitance value when the movable capacitance electrode portion 13 approaches the first fixed capacitance electrode 11 and the second fixed capacitance electrode 12. That is, the movable capacitance electrode portion 13 is displaced downward until it comes into contact with the insulating film 14.

静電アクチュエーター4は、シリコン基板2上に突設した支持部21と、支持部21により左右略中間部が支持された揺動梁部22と、支持部21に対する揺動梁部22の左右外側(可変容量素子3側とは反対側)となる外側部分22a(一方部分)に対向するようにシリコン基板2上に設けられた外側固定駆動電極23と、支持部21に対する揺動梁部22の左右内側(可変容量素子3側)となる内側部分22b(他方部分)に対向するようにシリコン基板2上に設けられた内側固定駆動電極24と、揺動梁部22の外側部分22aと外側固定駆動電極23との間にそれぞれ間隙を存して設けられた可動梁25とを備えている。   The electrostatic actuator 4 includes a support portion 21 projecting on the silicon substrate 2, a swinging beam portion 22 whose left and right substantially intermediate portions are supported by the support portion 21, and left and right outer sides of the swinging beam portion 22 with respect to the support portion 21. The outer fixed drive electrode 23 provided on the silicon substrate 2 so as to face the outer portion 22a (one portion) which is the opposite side of the variable capacitance element 3 side, and the swing beam portion 22 with respect to the support portion 21 An inner fixed drive electrode 24 provided on the silicon substrate 2 so as to face the inner portion 22b (the other portion) which is the left and right inner side (the variable capacitance element 3 side), and the outer portion 22a and the outer fixed portion of the oscillating beam portion 22. A movable beam 25 provided with a gap between each electrode and the drive electrode 23 is provided.

一方の静電アクチュエーター4の揺動梁部22は、他方の静電アクチュエーター4の揺動梁部22と共に、ポリシリコン等の導電体で一体に形成されており、両持ち梁20を構成している。すなわち、各静電アクチュエーター4における揺動梁部22の内側部分22bの先端が相互に連続している。また、両持ち梁20は、左右の静電アクチュエーター4の各支持部21により、左右両端から全体の略1/4長さ内側の位置で、それぞれ支持されている。上述したように、両持ち梁20の中間部、すなわち、各揺動梁部22の内側部分22bにおける支持部21側の端部が、可変容量素子3における可動容量電極部13として機能している。   The swing beam portion 22 of one electrostatic actuator 4 is integrally formed with a conductor such as polysilicon together with the swing beam portion 22 of the other electrostatic actuator 4 and constitutes a doubly supported beam 20. Yes. That is, the tips of the inner portions 22b of the oscillating beam 22 in each electrostatic actuator 4 are continuous with each other. In addition, the doubly supported beam 20 is supported by the support portions 21 of the left and right electrostatic actuators 4 at positions that are approximately ¼ length inside from the left and right ends, respectively. As described above, the intermediate portion of the both-end supported beam 20, that is, the end portion on the support portion 21 side in the inner portion 22 b of each oscillating beam portion 22 functions as the movable capacitive electrode portion 13 in the variable capacitance element 3. .

さらに、両持ち梁20を構成する各揺動梁部22は、支持部21により、シーソー状に揺動可能に支持されている。上述したように、揺動梁部22において、支持部21よりも可変容量素子3側とは反対側の部分を、外側部分22aと呼び、支持部21よりも可変容量素子3側の部分を、内側部分22bと呼ぶ。   Further, each oscillating beam portion 22 constituting the both-end supported beam 20 is supported by the support portion 21 so as to be able to oscillate in a seesaw shape. As described above, in the oscillating beam portion 22, the portion on the side opposite to the variable capacitance element 3 side from the support portion 21 is called an outer portion 22 a, and the portion on the variable capacitance element 3 side from the support portion 21 is Called the inner portion 22b.

内側固定駆動電極24は、ポリシリコン等の導電体で構成されており、揺動梁部22の内側部分22bとの間に静電気力を発生させる。また、内側固定駆動電極24の表面には、内側絶縁膜26が形成されている。内側固定駆動電極24と揺動梁部22の内側部分22bとの間に電圧が印加されると、その間に静電気力が発生する。これにより、内側部分22bがシリコン基板2に近づく方向(プルイン方向)に揺動梁部22が揺動し、内側部分22bが内側絶縁膜26と接触する。これに伴って、内側部分22bの端部である可動容量電極部13が、第1固定容量電極11または第2固定容量電極12に近づいて絶縁膜14と接触する(プルイン)。   The inner fixed drive electrode 24 is made of a conductor such as polysilicon, and generates an electrostatic force between the inner fixed drive electrode 24 and the inner portion 22 b of the swing beam portion 22. An inner insulating film 26 is formed on the surface of the inner fixed drive electrode 24. When a voltage is applied between the inner fixed drive electrode 24 and the inner portion 22b of the swinging beam portion 22, an electrostatic force is generated therebetween. As a result, the swinging beam portion 22 swings in the direction in which the inner portion 22 b approaches the silicon substrate 2 (pull-in direction), and the inner portion 22 b comes into contact with the inner insulating film 26. Along with this, the movable capacitance electrode portion 13 which is the end portion of the inner portion 22b approaches the first fixed capacitance electrode 11 or the second fixed capacitance electrode 12 and comes into contact with the insulating film 14 (pull-in).

一方、外側固定駆動電極23は、ポリシリコン等の導電体で構成されており、可動梁25との間に静電気力を発生させる。また、外側固定駆動電極23の外側端部表面には、外側絶縁膜27が形成されている。外側固定駆動電極23と可動梁25との間に電圧が印加されると、その間に静電気力が発生する。これにより、外側部分22aがシリコン基板2に近づく方向(プルアウト方向)に揺動梁部22が揺動し、可動梁25の外側端部が外側絶縁膜27と接触する。これに伴って、可動容量電極部13が、第1固定容量電極11または第2固定容量電極12から離れる(プルアウト)。なお、後述するように、可動容量電極部13のプルアウト時には、揺動梁部22の外側部分22aと可動梁25との間に生じる静電気力によっても、揺動梁部22がプルアウト方向に揺動する。   On the other hand, the outer fixed drive electrode 23 is made of a conductor such as polysilicon and generates an electrostatic force between the outer fixed drive electrode 23 and the movable beam 25. An outer insulating film 27 is formed on the outer end surface of the outer fixed driving electrode 23. When a voltage is applied between the outer fixed drive electrode 23 and the movable beam 25, an electrostatic force is generated therebetween. As a result, the swinging beam portion 22 swings in the direction in which the outer portion 22 a approaches the silicon substrate 2 (pull-out direction), and the outer end portion of the movable beam 25 contacts the outer insulating film 27. Along with this, the movable capacitance electrode portion 13 moves away from the first fixed capacitance electrode 11 or the second fixed capacitance electrode 12 (pull out). As will be described later, when the movable capacitive electrode portion 13 is pulled out, the oscillating beam portion 22 swings in the pull-out direction due to electrostatic force generated between the outer portion 22a of the oscillating beam portion 22 and the movable beam 25. To do.

また、各揺動梁部22は、プルイン方向に揺動する際、或いは、プルアウト方向に揺動する際、上側(シリコン基板2側とは反対側)に凸となる円弧状に僅かに弾性変形する(図2(b)(c)参照)。   Each swinging beam portion 22 is slightly elastically deformed into an arc shape protruding upward (on the opposite side to the silicon substrate 2 side) when swinging in the pull-in direction or swinging in the pull-out direction. (See FIGS. 2B and 2C).

支持部21は、揺動梁部22の揺動に伴って、撓うように弾性変形する。すなわち、揺動梁部22がプルイン方向に揺動すると、上端部が内側(可変容量素子3側)へ僅かに湾曲し、反対に、各揺動梁部22がプルアウト方向に揺動すると、上端部が外側(可変容量素子3側とは反対側)へ僅かに湾曲する。   The support portion 21 is elastically deformed so as to bend as the swing beam portion 22 swings. That is, when the oscillating beam portion 22 oscillates in the pull-in direction, the upper end portion slightly curves inward (on the variable capacitance element 3 side). The portion is slightly curved outward (on the opposite side to the variable capacitance element 3 side).

また、上述したように、揺動梁部22が揺動する際に揺動梁部22が変形できるよう、支持部21の左右の幅Dは、揺動梁部22(両持ち梁20)の厚さTの1.5倍未満(D<1.5×T)であることが好ましい。
なお、本実施形態では、支持部21は、揺動梁部22(両持ち梁20)とは別の材料(絶縁体)で構成したが、これに限定されるものではなく、揺動梁部22と同じ材料で構成してもよい。
Further, as described above, the left and right widths D of the support portion 21 are set so that the swing beam portion 22 can be deformed when the swing beam portion 22 swings. The thickness is preferably less than 1.5 times the thickness T (D <1.5 × T).
In the present embodiment, the support portion 21 is made of a material (insulator) different from the swing beam portion 22 (both supported beams 20), but is not limited thereto, and the swing beam portion is not limited thereto. The same material as 22 may be used.

可動梁25は、ポリシリコン等の導電体で構成されており、揺動梁部22の外側部分22aにシリコン基板2側で対向し、外側部分22aとの間に静電気力を生じさせる。また、可動梁25の外側端部(支持部21側とは反対側の端部)は、絶縁体で構成された接続部28により、揺動梁部22の外側部分22aの端部と接続されている。一方、可動梁25の内側端部(支持部21側の端部)は、支持部21の外側に近接してシリコン基板2上に設けられたアンカー29に接続されている。すなわち、可動梁25の支持部21側の端部は、アンカー29を介してシリコン基板2に固定されている。   The movable beam 25 is made of a conductor such as polysilicon, and faces the outer portion 22a of the oscillating beam portion 22 on the silicon substrate 2 side, and generates an electrostatic force between the outer portion 22a. Further, the outer end of the movable beam 25 (the end opposite to the support portion 21) is connected to the end of the outer portion 22a of the swinging beam portion 22 by a connecting portion 28 made of an insulator. ing. On the other hand, the inner end portion (the end portion on the support portion 21 side) of the movable beam 25 is connected to an anchor 29 provided on the silicon substrate 2 in proximity to the outside of the support portion 21. That is, the end of the movable beam 25 on the support portion 21 side is fixed to the silicon substrate 2 via the anchor 29.

可動梁25は、揺動梁部22がプルイン方向に揺動すると、アンカー29に接続された内側端部を中心にして、上方に揺動する。また、可動梁25は、下側に凸となる円弧状に僅かに弾性変形する。このとき、揺動梁部22の外側部分22aと可動梁25とは、左右略中間部が最も離間した状態となる。また、可動梁25と外側固定駆動電極23とは、内側から外側に向かって徐々に広がった状態となる。この状態で、揺動梁部22の外側部分22aと可動梁25との間、および可動梁25と外側固定駆動電極23との間に静電気力が生じると、可動梁25が、揺動梁部22の外側部分22aを引き寄せつつ、外側固定駆動電極23に対して内側からファスナー状に閉じるようにして、外側固定駆動電極23に引き寄せられる。これにより、揺動梁部22がプルアウト方向に揺動する。   When the swinging beam portion 22 swings in the pull-in direction, the movable beam 25 swings upward about the inner end connected to the anchor 29. In addition, the movable beam 25 is slightly elastically deformed into an arc shape that protrudes downward. At this time, the outer portion 22a of the oscillating beam portion 22 and the movable beam 25 are in a state where the left and right substantially intermediate portions are most separated. In addition, the movable beam 25 and the outer fixed drive electrode 23 are gradually spread from the inside toward the outside. In this state, when an electrostatic force is generated between the outer portion 22a of the oscillating beam portion 22 and the movable beam 25 and between the movable beam 25 and the outer fixed drive electrode 23, the movable beam 25 is moved to the oscillating beam portion. The outer fixed drive electrode 23 is attracted to the outer fixed drive electrode 23 so as to be closed like a fastener from the inner side while pulling the outer portion 22 a of the outer cover 22. Thereby, the swinging beam portion 22 swings in the pull-out direction.

可動梁25は、揺動梁部22がプルアウト方向に揺動する際、アンカー29に接続された内側端部を中心にして下方に揺動し、その外側端部が外側絶縁膜27と接触する。このとき、可動梁25は、上側に凸となる円弧状に僅かに弾性変形する。   When the oscillating beam portion 22 oscillates in the pull-out direction, the movable beam 25 oscillates downward about the inner end connected to the anchor 29, and the outer end contacts the outer insulating film 27. . At this time, the movable beam 25 is slightly elastically deformed into an arc shape protruding upward.

図3A(a)に示すように、揺動梁部22および外側固定駆動電極23は、それぞれグランド端子に接続されており、グランド電位(Vgnd)が供給される。一方、内側固定駆動電極24は、電源回路31に接続されており、プルイン電位(Vin)およびグランド電位が選択的に供給される。可動梁25は、電源回路32に接続されており、プルアウト電位(Vout)およびグランド電位が選択的に供給される。なお、プルイン電位とプルアウト電位とは、同じであっても異なっていてもよい。As shown in FIG. 3A (a), the oscillating beam portion 22 and the outer fixed drive electrode 23 are each connected to a ground terminal and supplied with a ground potential (V gnd ). On the other hand, the inner fixed drive electrode 24 is connected to the power supply circuit 31 and is selectively supplied with a pull-in potential (V in ) and a ground potential. The movable beam 25 is connected to a power supply circuit 32, and is selectively supplied with a pull-out potential (V out ) and a ground potential. Note that the pull-in potential and the pull-out potential may be the same or different.

図3A(b)に示すように、このように構成された静電アクチュエーター4は、定常状態では、内側固定駆動電極24および可動梁25にグランド電位が供給される。このとき、揺動梁部22の内側部分22bと内側固定駆動電極24との間、揺動梁部22の外側部分22aと可動梁25との間、および可動梁25と外側固定駆動電極23との間のいずれにも、静電気力は発生しないため、揺動梁部22および可動梁25は、シリコン基板2表面と平行となっている(図2(a)参照)。なお、当然ではあるが、定常状態では、揺動梁部22、外側固定駆動電極23、内側固定駆動電極24および可動梁25が同電位となればよく、これらにグランド電位以外の電位が供給されてもよい。   As shown in FIG. 3A (b), the electrostatic actuator 4 configured in this manner is supplied with a ground potential to the inner fixed drive electrode 24 and the movable beam 25 in a steady state. At this time, between the inner portion 22b of the swing beam portion 22 and the inner fixed drive electrode 24, between the outer portion 22a of the swing beam portion 22 and the movable beam 25, and between the movable beam 25 and the outer fixed drive electrode 23, Since no electrostatic force is generated in between, the oscillating beam portion 22 and the movable beam 25 are parallel to the surface of the silicon substrate 2 (see FIG. 2A). Needless to say, in a steady state, the swing beam portion 22, the outer fixed drive electrode 23, the inner fixed drive electrode 24, and the movable beam 25 may be at the same potential, and a potential other than the ground potential is supplied to them. May be.

定常状態において、内側固定駆動電極24にプルイン電位が供給されると、プルイン状態となる。すなわち、揺動梁部22の内側部分22bと内側固定駆動電極24との間に静電気力が生じ、揺動梁部22がプルイン方向に揺動する(図2(b)参照)。   When a pull-in potential is supplied to the inner fixed drive electrode 24 in the steady state, the pull-in state is established. That is, an electrostatic force is generated between the inner portion 22b of the swing beam portion 22 and the inner fixed drive electrode 24, and the swing beam portion 22 swings in the pull-in direction (see FIG. 2B).

プルイン状態において、内側固定駆動電極24にグランド電位が供給されると共に、可動梁25にプルアウト電位が供給されると、プルアウト状態となる。すなわち、揺動梁部22の内側部分22bと内側固定駆動電極24との間に生じた静電気力が解除されると共に、揺動梁部22の外側部分22aと可動梁25との間、および可動梁25と外側固定駆動電極23との間に静電気力が生じ、揺動梁部22がプルアウト方向に揺動する(図2(c)参照)。   In the pull-in state, when the ground potential is supplied to the inner fixed drive electrode 24 and the pull-out potential is supplied to the movable beam 25, the pull-out state is established. That is, the electrostatic force generated between the inner portion 22b of the oscillating beam portion 22 and the inner fixed drive electrode 24 is released, and the outer portion 22a of the oscillating beam portion 22 and the movable beam 25 are movable and movable. An electrostatic force is generated between the beam 25 and the outer fixed drive electrode 23, and the swing beam portion 22 swings in the pull-out direction (see FIG. 2C).

そして、プルアウト状態において、内側固定駆動電極24および可動梁25にグランド電位が供給されると、揺動梁部22の外側部分22aと可動梁25との間、および可動梁25と外側固定駆動電極23との間の静電気力が解除される。そして、揺動梁部22および可動梁25の復元力(バネ力)により、揺動梁部22および可動梁25がシリコン基板2表面と平行となり、定常状態へ戻る(図2(c)参照)。   When the ground potential is supplied to the inner fixed drive electrode 24 and the movable beam 25 in the pull-out state, the movable beam 25 and the outer fixed drive electrode are interposed between the outer portion 22a of the swing beam portion 22 and the movable beam 25. The electrostatic force between the two is released. Then, due to the restoring force (spring force) of the oscillating beam 22 and the movable beam 25, the oscillating beam 22 and the movable beam 25 become parallel to the surface of the silicon substrate 2 and return to a steady state (see FIG. 2C). .

このように、外側固定駆動電極23と可動梁25とに対しては、常に同じ電位が供給されることが好ましい。なお、電位の供給パターンとしては、これに限定されるものではなく、例えば、図3A(c)に示したように、上記とは逆パターンであってもよい。   Thus, it is preferable that the same potential is always supplied to the outer fixed drive electrode 23 and the movable beam 25. Note that the potential supply pattern is not limited to this, and for example, as shown in FIG. 3A (c), a reverse pattern may be used.

上記のプルイン状態では、定常状態に比べ、揺動梁部22の外側部分22aと外側固定駆動電極23との間が離れているため、可動梁25を設けない場合には、外側固定駆動電極23に同じプルアウト電位が供給されたとしても、弱い静電気力しか得ることができない。これに対し、本実施形態の静電アクチュエーター4によれば、外側端部において、揺動梁部22の外側部分22aの端部と接続された可動梁25を設けたことで、プルイン状態においても、揺動梁部22の外側部分22aと可動梁25との距離が大きくなることがないため、揺動梁部22の外側部分22aと可動梁25との間に強い静電気力を生じさせることができる。特に、接続部28近傍においては、揺動梁部22の外側部分22aと可動梁25との距離が短いため、強い静電気力を生じさせることができる。同様に、揺動梁部22の外側部分22aと外側固定駆動電極23との距離に比べ、可動梁25と外側固定駆動電極23との距離が大きくなることもないため、可動梁25と外側固定駆動電極23との間に強い静電気力を生じさせることができる。すなわち、揺動梁部22がプルアウト方向に揺動する力(プルアウト力)を強くすることができる。したがって、プルアウト電位を大きくせずとも、また、揺動梁部22の外側部分22aと可動梁25との対向面積を大きくせずとも、簡易な構成で、プルイン状態にある揺動梁部22を、プルアウト方向に確実に揺動させることができる。   In the pull-in state described above, the outer portion 22a of the oscillating beam portion 22 and the outer fixed drive electrode 23 are separated from each other as compared with the steady state. Therefore, when the movable beam 25 is not provided, the outer fixed drive electrode 23 is provided. Even if the same pull-out potential is supplied, only a weak electrostatic force can be obtained. On the other hand, according to the electrostatic actuator 4 of the present embodiment, the movable beam 25 connected to the end portion of the outer portion 22a of the swing beam portion 22 is provided at the outer end portion. Since the distance between the outer portion 22a of the oscillating beam portion 22 and the movable beam 25 does not increase, a strong electrostatic force can be generated between the outer portion 22a of the oscillating beam portion 22 and the movable beam 25. it can. In particular, in the vicinity of the connection portion 28, a strong electrostatic force can be generated because the distance between the outer portion 22a of the swinging beam portion 22 and the movable beam 25 is short. Similarly, since the distance between the movable beam 25 and the outer fixed drive electrode 23 does not become larger than the distance between the outer portion 22a of the oscillating beam portion 22 and the outer fixed drive electrode 23, the movable beam 25 and the outer fixed drive electrode 23 are fixed. A strong electrostatic force can be generated between the drive electrodes 23. That is, the force (pull-out force) by which the oscillating beam portion 22 swings in the pull-out direction can be increased. Therefore, the swinging beam portion 22 in the pull-in state can be formed with a simple configuration without increasing the pull-out potential and without increasing the facing area between the outer portion 22a of the swinging beam portion 22 and the movable beam 25. It can be reliably swung in the pull-out direction.

可変容量素子3をホットスイッチングさせる場合、可変容量素子3の固定容量電極10と可動容量電極部13との間の静電気力に打ち勝つように、揺動梁部22をプルアウト方向に揺動させる力を強くする必要があるが、本実施形態の静電アクチュエーター4では、上記のように、揺動梁部22がプルアウト方向に揺動する力を強くすることができるため、揺動梁部22をプルアウト方向に確実に揺動させることができる。したがって、揺動梁部22の内側部分22bが内側固定駆動電極24に貼り付いてしまうことなく、良好にホットスイッチングを行うことができる。   When the variable capacitance element 3 is hot-switched, a force for swinging the oscillating beam portion 22 in the pull-out direction so as to overcome the electrostatic force between the fixed capacitance electrode 10 and the movable capacitance electrode portion 13 of the variable capacitance element 3 is used. Although it is necessary to increase the strength, in the electrostatic actuator 4 of the present embodiment, as described above, the force by which the swing beam portion 22 swings in the pull-out direction can be increased, so that the swing beam portion 22 is pulled out. It can be reliably swung in the direction. Therefore, hot switching can be performed satisfactorily without the inner portion 22 b of the swing beam portion 22 sticking to the inner fixed drive electrode 24.

また、揺動梁部22の外側部分22aと可動梁25との間に生じた静電気力、および可動梁25と外側固定駆動電極23との間に生じた静電気力だけでなく、可動梁25の変形の復元力(バネ力)も、揺動梁部22がプルアウト方向に揺動する方向に作用する。したがって、揺動梁部22がプルアウト方向に揺動する力をより強くすることができる。   Further, not only the electrostatic force generated between the outer portion 22 a of the swinging beam portion 22 and the movable beam 25 and the electrostatic force generated between the movable beam 25 and the outer fixed drive electrode 23, but also the movable beam 25. The deformation restoring force (spring force) also acts in the direction in which the oscillating beam portion 22 oscillates in the pull-out direction. Therefore, the force with which the oscillating beam 22 oscillates in the pull-out direction can be further increased.

本実施形態では、揺動梁部22をプルアウト方向に揺動させるために、揺動梁部22の外側部分22aと可動梁25との間、および可動梁25と外側固定駆動電極23との間に静電気力を生じさせる構成について説明したが、揺動梁部22の外側部分22aと可動梁25との間には静電気力を生じさせず、可動梁25と外側固定駆動電極23との間のみに静電気力を生じさせる構成であってもよい。   In the present embodiment, in order to oscillate the oscillating beam portion 22 in the pull-out direction, between the outer portion 22a of the oscillating beam portion 22 and the movable beam 25 and between the movable beam 25 and the outer fixed drive electrode 23. However, the electrostatic force is not generated between the outer portion 22 a of the oscillating beam portion 22 and the movable beam 25, and only between the movable beam 25 and the outer fixed drive electrode 23. It may be configured to generate an electrostatic force.

図3Bにその電位供給パターンの一例を示す。図3Aに示した電位供給パターンとの相違点として、外側固定駆動電極23と可動梁25との接続が逆になる。すなわち、外側固定駆動電極23を電源回路32に接続し、可動梁25をグランド端子に接続する(図3B(a)参照)。そして、プルイン状態において、内側固定駆動電極24にグランド電位が供給されると共に、外側固定駆動電極23にプルアウト電位が供給されると、プルアウト状態となる(図(3B(b)参照)。すなわち、揺動梁部22の内側部分22bと内側固定駆動電極24との間に生じた静電気力が解除されると共に、可動梁25と外側固定駆動電極23との間に静電気力が生じ、揺動梁部22がプルアウト方向に揺動する。本構成においても、電位の供給パターンとしては、これに限定されるものではなく、例えば、図3B(c)に示したように、上記とは逆パターンであってもよい。   FIG. 3B shows an example of the potential supply pattern. As a difference from the potential supply pattern shown in FIG. 3A, the connection between the outer fixed drive electrode 23 and the movable beam 25 is reversed. That is, the outer fixed drive electrode 23 is connected to the power supply circuit 32, and the movable beam 25 is connected to the ground terminal (see FIG. 3B (a)). In the pull-in state, when the ground potential is supplied to the inner fixed drive electrode 24 and the pull-out potential is supplied to the outer fixed drive electrode 23, the pull-out state is entered (see FIG. 3B (b)). The electrostatic force generated between the inner portion 22b of the oscillating beam portion 22 and the inner fixed drive electrode 24 is released, and the electrostatic force is generated between the movable beam 25 and the outer fixed drive electrode 23. The portion 22 swings in the pull-out direction In this configuration as well, the potential supply pattern is not limited to this, and for example, as shown in FIG. There may be.

また、本実施形態では、静電アクチュエーター4が、外側固定駆動電極23を備えた構成であったが、図4に示すように、外側固定駆動電極23を備えていない構成であってもよい。この場合、可動梁25の揺動梁部22側には、梁間絶縁膜33を形成する。この梁間絶縁膜33は、揺動梁部22の外側部分22aの可動梁25側に形成してもよい。図4(b)のプルイン状態において、揺動梁部22の外側部分22aと可動梁25との間に静電気力を生じさせると、その静電気力により、揺動梁部22の外側部分22aと可動梁25とが中間部分において接触する(図4(c)参照)。揺動梁部22の外側部分22aと可動梁25とが接触し、一体化されることで、バネとして硬くなる。すなわち、一般的に、自由端に集中荷重を受ける片持ち梁の場合、そのバネ定数は、厚さの3乗に比例する。これにより、十分なプルアウト力が得られ、揺動梁部22がプルアウト方向に揺動する(図4(d)参照)。もちろん、外側固定駆動電極23を備えた場合においても、外側固定駆動電極23と可動梁25との間に静電気力を生じさせない場合には、同様の効果を得ることができる。   Further, in the present embodiment, the electrostatic actuator 4 is configured to include the outer fixed drive electrode 23, but may be configured to not include the outer fixed drive electrode 23 as illustrated in FIG. In this case, an inter-beam insulating film 33 is formed on the movable beam 25 on the oscillating beam portion 22 side. The inter-beam insulating film 33 may be formed on the movable beam 25 side of the outer portion 22 a of the oscillating beam portion 22. In the pull-in state of FIG. 4B, when an electrostatic force is generated between the outer portion 22a of the oscillating beam portion 22 and the movable beam 25, the outer portion 22a of the oscillating beam portion 22 is movable by the electrostatic force. The beam 25 comes into contact with the intermediate portion (see FIG. 4C). The outer portion 22a of the oscillating beam portion 22 and the movable beam 25 come into contact with each other and are integrated to be hard as a spring. That is, generally, in the case of a cantilever beam that receives a concentrated load at the free end, the spring constant is proportional to the cube of the thickness. As a result, a sufficient pull-out force is obtained, and the swing beam portion 22 swings in the pull-out direction (see FIG. 4D). Of course, even when the outer fixed drive electrode 23 is provided, the same effect can be obtained when no electrostatic force is generated between the outer fixed drive electrode 23 and the movable beam 25.

なお、本実施形態では、揺動梁部22および可動梁25は、それぞれ全体が導電体で構成されているが、揺動梁部22および可動梁25の少なくとも一方を、絶縁体部と導電体層とで構成してもよい。例えば、図5に示すように、可動梁25を、主体を為す絶縁体部25aと、絶縁体部25aの下側(シリコン基板2側)に形成された下側導電体層25bと、絶縁体部25aの上側(揺動梁部22側)に形成された上側導電体層25cとで構成してもよい。図示省略したが、揺動梁部22もこれと同様に構成することができる。   In the present embodiment, the oscillating beam portion 22 and the movable beam 25 are all made of a conductor, but at least one of the oscillating beam portion 22 and the movable beam 25 is replaced with an insulator portion and a conductor. You may comprise with a layer. For example, as shown in FIG. 5, the movable beam 25 includes an insulator portion 25 a that forms the main body, a lower conductor layer 25 b that is formed on the lower side (silicon substrate 2 side) of the insulator portion 25 a, and an insulator. You may comprise by the upper side conductor layer 25c formed in the upper side (oscillating beam part 22 side) of the part 25a. Although not shown, the oscillating beam portion 22 can be configured in the same manner.

さらに、下側導電体層25bと上側導電体層25cとを、ビアを介して相互に接続してもよい。また、絶縁体部25aに対し、下側導電体層25bおよび上側導電体層25cのいずれか一方のみを設けてもよい。もっとも、導電体層の内部応力に起因する可動梁25の反りを防止するためには、下側導電体層25bおよび上側導電体層25cの双方を設けることが好ましい。これらの変形例は、揺動梁部22についても同様に適用される。   Further, the lower conductor layer 25b and the upper conductor layer 25c may be connected to each other through vias. Further, only one of the lower conductor layer 25b and the upper conductor layer 25c may be provided for the insulator portion 25a. However, in order to prevent the warp of the movable beam 25 due to the internal stress of the conductor layer, it is preferable to provide both the lower conductor layer 25b and the upper conductor layer 25c. These modifications are similarly applied to the oscillating beam portion 22.

次に、本発明の第2実施形態に係る静電アクチュエーターについて説明する。第2実施形態の静電アクチュエーターは、上記の第1実施形態と略同様の構成であるが、可動梁が2本設けられている点で相違する。以下、第1実施形態と異なる点を中心に説明する。なお、本実施形態において、第1実施形態と同様の構成部分については同じ符号を付し、詳細な説明を省略する。また、第1実施形態と同様の構成部分について適用される変形例は、本実施形態についても同様に適用可能である。   Next, an electrostatic actuator according to a second embodiment of the present invention will be described. The electrostatic actuator of the second embodiment has substantially the same configuration as that of the first embodiment, but differs in that two movable beams are provided. Hereinafter, a description will be given focusing on differences from the first embodiment. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. Moreover, the modification applied about the component similar to 1st Embodiment is applicable similarly to this embodiment.

図6に示すように、第2実施形態の静電アクチュエーター4は、第1実施形態の静電アクチュエーター4(図1参照)と同様に、支持部21と、揺動梁部22と、外側固定駆動電極23、内側固定駆動電極24とを備えている。さらに、揺動梁部22の外側部分22aと外側固定駆動電極23との間には、第1可動梁41および第2可動梁42から成る可動部40を備えている。また、アンカー29は、支持部21から外側に離間してシリコン基板2上に設けられている。また、外側絶縁膜27は、外側固定駆動電極23の内側端部表面に形成されている。   As shown in FIG. 6, the electrostatic actuator 4 of the second embodiment is similar to the electrostatic actuator 4 of the first embodiment (see FIG. 1). A drive electrode 23 and an inner fixed drive electrode 24 are provided. Further, a movable portion 40 including a first movable beam 41 and a second movable beam 42 is provided between the outer portion 22 a of the oscillating beam portion 22 and the outer fixed drive electrode 23. The anchor 29 is provided on the silicon substrate 2 so as to be separated from the support portion 21 to the outside. The outer insulating film 27 is formed on the inner end surface of the outer fixed drive electrode 23.

揺動梁部22側に設けられた第1可動梁41は、揺動梁部22の外側部分22aに対向して外側部分22aとの間に静電気力を生じさせる。また、第1可動梁41の外側端部(支持部21側とは反対側の端部)は、接続部28により、揺動梁部22の外側部分22aの端部と接続されている。   The first movable beam 41 provided on the side of the oscillating beam 22 is opposed to the outer portion 22a of the oscillating beam 22 and generates an electrostatic force with the outer portion 22a. Further, the outer end of the first movable beam 41 (the end opposite to the support portion 21 side) is connected to the end of the outer portion 22 a of the swinging beam portion 22 by the connection portion 28.

一方、外側固定駆動電極23側に設けられた第2可動梁42は、第1可動梁41との折り返し部(後述する連結部53)とは反対側(外側)の端部が、アンカー29を介して、シリコン基板2に対して固定されている。   On the other hand, the second movable beam 42 provided on the outer fixed drive electrode 23 side has the anchor 29 at the end (outer side) opposite to the folded portion (a connecting portion 53 described later) with the first movable beam 41. And fixed to the silicon substrate 2.

そして、第1可動梁41および第2可動梁42は、相互に折り返し構造を為して連なっている。すなわち、第1可動梁41と第2可動梁42とは、相互に対向すると共に、内側(可変容量素子3側とは反対側)の端部において、絶縁体で構成された連結部53を介して互いに連結(接続)されている。   The first movable beam 41 and the second movable beam 42 are connected in a folded structure. That is, the first movable beam 41 and the second movable beam 42 are opposed to each other, and the end portion on the inner side (the side opposite to the variable capacitance element 3 side) is connected via the connecting portion 53 made of an insulator. Are connected (connected) to each other.

また、第1実施形態と同様に、両持ち梁20(揺動梁部22)はグランド端子に接続され、内側固定駆動電極24は電源回路31に接続されている。一方、外側固定駆動電極23は、第1実施形態とは異なり、電源回路32に接続されてプルアウト電位およびグランド電位が選択的に供給される。また、第1可動梁41も、電源回路32に接続されてプルアウト電位およびグランド電位が選択的に供給される。第2可動梁42は、グランド端子に接続され、グランド電位が供給される。   Similarly to the first embodiment, the both-end supported beam 20 (the swinging beam portion 22) is connected to the ground terminal, and the inner fixed drive electrode 24 is connected to the power supply circuit 31. On the other hand, unlike the first embodiment, the outer fixed drive electrode 23 is connected to the power supply circuit 32 and is selectively supplied with a pull-out potential and a ground potential. The first movable beam 41 is also connected to the power supply circuit 32 and selectively supplied with a pull-out potential and a ground potential. The second movable beam 42 is connected to a ground terminal and supplied with a ground potential.

そして、第1実施形態と同様に、定常状態において、内側固定駆動電極24にプルイン電位が供給されると、揺動梁部22がプルイン方向に揺動する。プルイン状態において、内側固定駆動電極24にグランド電位が供給されると共に、第1可動梁41および外側固定駆動電極23にプルアウト電位が供給されると、揺動梁部22の内側部分22bと内側固定駆動電極24との間に生じた静電気力が解除されると共に、揺動梁部22の外側部分22aと第1可動梁41との間、第1可動梁41と第2可動梁42との間、および第2可動梁42と外側固定駆動電極23との間に静電気力が生じ、揺動梁部22がプルアウト方向に揺動する。つまり、これらの静電気力は、揺動梁部22がプルアウト方向に揺動するように作用する。   As in the first embodiment, when a pull-in potential is supplied to the inner fixed drive electrode 24 in a steady state, the swing beam portion 22 swings in the pull-in direction. In the pull-in state, when the ground potential is supplied to the inner fixed drive electrode 24 and the pull-out potential is supplied to the first movable beam 41 and the outer fixed drive electrode 23, the inner portion 22b of the swinging beam portion 22 and the inner fixed portion are fixed. The electrostatic force generated between the drive electrode 24 is released, and the outer portion 22a of the oscillating beam 22 and the first movable beam 41, and between the first movable beam 41 and the second movable beam 42. In addition, an electrostatic force is generated between the second movable beam 42 and the outer fixed drive electrode 23, and the swinging beam portion 22 swings in the pull-out direction. That is, these electrostatic forces act so that the oscillating beam portion 22 oscillates in the pull-out direction.

このように構成された第2実施形態の静電アクチュエーター4においても、第1実施形態と同様に、外側端部において、揺動梁部22の外側部分22aの端部と接続された第1可動梁41を設けたことで、プルイン状態においても、揺動梁部22の外側部分22aと第1可動梁41との距離が大きくなることがないため、揺動梁部22の外側部分22aと第1可動梁41との間に強い静電気力を生じさせることができる。また、第2可動梁42と外側固定駆動電極23との距離が大きくなることもないため、第2可動梁42と外側固定駆動電極23との間に強い静電気力を生じさせることができる。そして、揺動梁部22の外側部分22aと第1可動梁41との間に生じた静電気力、第2可動梁42と外側固定駆動電極23との間に生じた静電気力、さらには、第1可動梁41と第2可動梁42との間に生じた静電気力が、揺動梁部22がプルアウト方向に揺動するように作用する。したがって、簡易な構成で、プルイン状態にある揺動梁部22を、プルアウト方向に確実に揺動させることができる。   Also in the electrostatic actuator 4 of the second embodiment configured as described above, the first movable member connected to the end portion of the outer portion 22a of the swinging beam portion 22 at the outer end portion as in the first embodiment. By providing the beam 41, the distance between the outer portion 22a of the oscillating beam portion 22 and the first movable beam 41 does not increase even in the pull-in state. A strong electrostatic force can be generated between the first movable beam 41 and the first movable beam 41. In addition, since the distance between the second movable beam 42 and the outer fixed drive electrode 23 does not increase, a strong electrostatic force can be generated between the second movable beam 42 and the outer fixed drive electrode 23. The electrostatic force generated between the outer portion 22a of the oscillating beam 22 and the first movable beam 41, the electrostatic force generated between the second movable beam 42 and the outer fixed drive electrode 23, The electrostatic force generated between the first movable beam 41 and the second movable beam 42 acts so that the oscillating beam portion 22 oscillates in the pull-out direction. Therefore, the swinging beam portion 22 in the pull-in state can be reliably swung in the pull-out direction with a simple configuration.

なお、第2実施形態では、可動部40を、2本の可動梁で構成したが、3本以上の可動梁を、相互に折り返し構造を為すように連ねて構成してもよい。また、以上の第1および第2実施形態においては、可変容量デバイスとして、可変容量コンデンサー1を例示したが、可変容量素子3を用いた可変容量型のスイッチなどに本発明を適用してもよい。   In the second embodiment, the movable portion 40 is configured by two movable beams. However, three or more movable beams may be configured so as to form a folded structure. In the first and second embodiments described above, the variable capacitor 1 is exemplified as the variable capacitor. However, the present invention may be applied to a variable capacitor switch using the variable capacitor 3 or the like. .

1:可変容量コンデンサー、2:シリコン基板、4、静電アクチュエーター、21:支持部、22:揺動梁部、22a:外側部分、25:可動梁   1: variable capacitor, 2: silicon substrate, 4, electrostatic actuator, 21: support portion, 22: swinging beam portion, 22a: outer portion, 25: movable beam

Claims (10)

基板上の支持部によりシーソー状に揺動可能に支持され、静電気力により揺動する揺動梁と、
前記支持部に対する前記揺動梁の一方部分に前記基板側で対向して前記一方部分との間に静電気力を生じさせると共に、前記支持部側とは反対側の端部が、前記一方部分の端部と接続され、前記支持部側の端部が、前記基板に対して固定された可動梁と、
を備えたことを特徴とする静電アクチュエーター。
A swing beam supported by a support portion on the substrate so as to be swingable in a seesaw shape and swinging by electrostatic force;
An electrostatic force is generated between the one portion of the swinging beam with respect to the support portion and the one portion facing the substrate portion, and an end portion on the opposite side to the support portion side is formed on the one portion. A movable beam connected to an end portion, and an end portion on the support portion side fixed to the substrate;
An electrostatic actuator comprising:
前記可動梁と対向するように前記基板上に設けられ、前記可動梁との間に静電気力を生じさせる固定駆動電極を、さらに備えたことを特徴とする請求項1に記載の静電アクチュエーター。   The electrostatic actuator according to claim 1, further comprising a fixed drive electrode provided on the substrate so as to face the movable beam and generating an electrostatic force between the movable beam and the movable beam. 前記一方部分が前記基板から離れる方向に前記揺動梁が揺動する際、前記可動梁が弾性を持って変形し、当該変形の復元力が、前記一方部分が前記基板に近づく方向に前記揺動梁が揺動するように作用することを特徴とする請求項1または2に記載の静電アクチュエーター。   When the swinging beam swings in a direction in which the one part moves away from the substrate, the movable beam deforms with elasticity, and the restoring force of the deformation causes the swinging beam in the direction in which the one part approaches the substrate. The electrostatic actuator according to claim 1, wherein the moving beam acts to swing. 前記揺動梁および前記可動梁は、それぞれ全体が導電体で構成されていることを特徴とする請求項1ないし3のいずれかに記載の静電アクチュエーター。   4. The electrostatic actuator according to claim 1, wherein the swing beam and the movable beam are each made of a conductor. 前記揺動梁および前記可動梁の少なくとも一方は、
主体を為す絶縁体部と、
前記絶縁体部の前記基板側の面および前記基板側とは反対側の面の少なくとも一方に形成された導電体層と、
を有することを特徴とする請求項1ないし3のいずれかに記載の静電アクチュエーター。
At least one of the rocking beam and the movable beam is
An insulator part for the main body;
A conductor layer formed on at least one of the substrate-side surface and the substrate-side surface of the insulator portion;
The electrostatic actuator according to claim 1, wherein the electrostatic actuator is provided.
基板上の支持部によりシーソー状に揺動可能に支持され、静電気力により揺動する揺動梁と、
前記支持部に対する前記揺動梁の一方部分に前記基板側で対向すると共に、前記支持部側とは反対側の端部が、前記一方部分の端部と接続され、前記支持部側の端部が、前記基板に対して固定された可動梁と、
前記可動梁と対向するように前記基板上に設けられ、前記可動梁との間に静電気力を生じさせる固定駆動電極と、
を備えたことを特徴とする静電アクチュエーター。
A swing beam supported by a support portion on the substrate so as to be swingable in a seesaw shape and swinging by electrostatic force;
The one end portion of the swing beam with respect to the support portion is opposed to the substrate side, and the end portion on the opposite side to the support portion side is connected to the end portion of the one portion, and the end portion on the support portion side Is a movable beam fixed to the substrate;
A fixed drive electrode provided on the substrate so as to face the movable beam and generating an electrostatic force between the movable beam;
An electrostatic actuator comprising:
基板上の支持部によりシーソー状に揺動可能に支持され、静電気力により揺動する揺動梁と、
前記支持部に対する前記揺動梁の一方部分と前記基板との間に設けられると共に、相互に折り返し構造を為して連なった複数の可動梁を有する可動部と、を備え、
前記複数の可動梁のうち最も前記揺動梁側に設けられた揺動梁側可動梁は、前記支持部側とは反対側の端部が、前記一方部分の端部と接続され、
前記複数の可動梁のうち最も前記基板側に設けられた基板側可動梁は、折り返し部側とは反対側の端部が、前記基板に対して固定され、
相互に対向する前記複数の可動梁相互間、および前記揺動梁側可動梁と前記揺動梁側可動梁に対向する前記一方部分との間の少なくとも1つの間に静電気力が生じることを特徴とする静電アクチュエーター。
A swing beam supported by a support portion on the substrate so as to be swingable in a seesaw shape and swinging by electrostatic force;
A movable portion that is provided between one portion of the oscillating beam with respect to the support portion and the substrate, and has a plurality of movable beams connected to each other in a folded structure;
Of the plurality of movable beams, the oscillating beam side movable beam provided on the most oscillating beam side is connected to the end of the one portion at the end opposite to the support portion side,
Of the plurality of movable beams, the substrate-side movable beam provided on the most substrate side has an end opposite to the folded portion side fixed to the substrate,
An electrostatic force is generated between the plurality of movable beams facing each other and between at least one of the movable beam side movable beam and the one portion facing the movable beam side movable beam. An electrostatic actuator.
基板上の支持部によりシーソー状に揺動可能に支持され、静電気力により揺動する揺動梁と、
前記支持部に対する前記揺動梁の一方部分と前記基板との間に設けられると共に、相互に折り返し構造を為して連なった複数の可動梁を有する可動部と、
前記複数の可動梁のうち最も前記基板側に設けられた基板側可動梁と対向するように設けられ、前記基板側可動梁との間に静電気力を生じさせる固定駆動電極と、を備え、
前記複数の可動梁のうち最も前記揺動梁側に設けられた揺動梁側可動梁は、前記支持部側とは反対側の端部が、前記一方部分の端部と接続され、
前記基板側可動梁は、折り返し部側とは反対側の端部が、前記基板に対して固定されていることを特徴とする静電アクチュエーター。
A swing beam supported by a support portion on the substrate so as to be swingable in a seesaw shape and swinging by electrostatic force;
A movable part provided between one part of the swing beam with respect to the support part and the substrate, and having a plurality of movable beams connected in a folded structure to each other;
A fixed drive electrode that is provided so as to face the substrate-side movable beam provided on the most substrate side among the plurality of movable beams, and generates an electrostatic force between the substrate-side movable beam, and
Of the plurality of movable beams, the oscillating beam side movable beam provided on the most oscillating beam side is connected to the end of the one portion at the end opposite to the support portion side,
The electrostatic actuator according to claim 1, wherein the substrate-side movable beam has an end opposite to the folded portion side fixed to the substrate.
請求項1ないし8のいずれかに記載の静電アクチュエーターと、
固定容量電極と、前記固定容量電極に対向すると共に、前記支持部に対する前記揺動梁の他方部分の端部に設けられた可動容量電極と、を有し、静電容量を可変する可変容量素子と、
を備えたことを特徴とする可変容量デバイス。
An electrostatic actuator according to any one of claims 1 to 8,
A variable capacitance element having a fixed capacitance electrode and a movable capacitance electrode facing the fixed capacitance electrode and provided at an end portion of the other portion of the swing beam with respect to the support portion, wherein the capacitance is variable When,
A variable capacity device comprising:
前記静電アクチュエーターは、前記可変容量素子に電圧を印加した状態で、前記揺動梁の揺動動作を行うことを特徴とする請求項9に記載の可変容量デバイス。   The variable capacitance device according to claim 9, wherein the electrostatic actuator performs a swinging motion of the swinging beam in a state where a voltage is applied to the variable capacitive element.
JP2014548347A 2012-11-26 2012-11-26 Electrostatic actuators and variable capacitance devices Active JP5869695B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/007570 WO2014080444A1 (en) 2012-11-26 2012-11-26 Electrostatic actuator and variable capacitance device

Publications (2)

Publication Number Publication Date
JP5869695B2 JP5869695B2 (en) 2016-02-24
JPWO2014080444A1 true JPWO2014080444A1 (en) 2017-01-05

Family

ID=50775652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014548347A Active JP5869695B2 (en) 2012-11-26 2012-11-26 Electrostatic actuators and variable capacitance devices

Country Status (2)

Country Link
JP (1) JP5869695B2 (en)
WO (1) WO2014080444A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4137872B2 (en) * 2004-03-31 2008-08-20 シャープ株式会社 Electrostatic actuator, micro switch, micro optical switch, micro optical switch system, communication device, and manufacturing method of electrostatic actuator
JP2007233065A (en) * 2006-03-01 2007-09-13 Ricoh Co Ltd Light deflector, manufacturing method therefor, and optical projector
JP5318135B2 (en) * 2011-03-16 2013-10-16 株式会社東芝 Electrostatic actuator

Also Published As

Publication number Publication date
JP5869695B2 (en) 2016-02-24
WO2014080444A1 (en) 2014-05-30

Similar Documents

Publication Publication Date Title
JP5259188B2 (en) Spring structure for MEMS devices
JP5083977B2 (en) ELECTROMECHANICAL ELEMENT, ITS DRIVING METHOD, AND ELECTRIC DEVICE USING THE SAME
JP4645227B2 (en) Vibrator structure and manufacturing method thereof
JP2008278634A (en) Electrostatic type actuator
JP5588663B2 (en) Micro electromechanical system switch
KR100492004B1 (en) Radio frequency device using microelectronicmechanical system technology
JP4355717B2 (en) RF-MEMS switch including comb structured actuator
JP4887466B2 (en) MEMS switch and communication apparatus using the same
JP2004111360A (en) Switch
JP2009171737A (en) Actuator and electronic equipment using the same
JP2007035641A (en) Rf mems switch
JP4231062B2 (en) MEMS element
JP5869695B2 (en) Electrostatic actuators and variable capacitance devices
Chiou et al. Extending the traveling range with a cascade electrostatic comb-drive actuator
WO2013168191A1 (en) Electrostatic actuator and variable-capacity device
JP2007259691A (en) Electrostatic drive method of mems, electrostatic actuator, and microswitch
US20170278646A1 (en) Switching apparatus and electronic apparatus
Ya et al. Design and analysis of a low-voltage electrostatic actuated RF CMOS-MEMS switch
JP2013051297A (en) Variable capacitance device
US20070116406A1 (en) Switch
JP2010284748A (en) Electric component
JP6038362B2 (en) Electrostatic actuators and variable capacitance devices
JP5869694B2 (en) Electrostatic actuator, variable capacitance device, and driving method of electrostatic actuator
JP2016144261A (en) Electrostatic actuator and switch
JP2006210265A (en) Electromechanical switch

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160107

R150 Certificate of patent or registration of utility model

Ref document number: 5869695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250