JPWO2014025049A1 - Solid support-supported iron group solid solution type alloy composite and catalyst using the same - Google Patents

Solid support-supported iron group solid solution type alloy composite and catalyst using the same Download PDF

Info

Publication number
JPWO2014025049A1
JPWO2014025049A1 JP2014529587A JP2014529587A JPWO2014025049A1 JP WO2014025049 A1 JPWO2014025049 A1 JP WO2014025049A1 JP 2014529587 A JP2014529587 A JP 2014529587A JP 2014529587 A JP2014529587 A JP 2014529587A JP WO2014025049 A1 JPWO2014025049 A1 JP WO2014025049A1
Authority
JP
Japan
Prior art keywords
iron group
group metal
metal
catalyst
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014529587A
Other languages
Japanese (ja)
Other versions
JP6230126B2 (en
Inventor
山内 美穂
美穂 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Publication of JPWO2014025049A1 publication Critical patent/JPWO2014025049A1/en
Application granted granted Critical
Publication of JP6230126B2 publication Critical patent/JP6230126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/862Iron and chromium
    • B01J35/23
    • B01J35/30
    • B01J35/393
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本発明は固体担体及び前記固体担体に担持された鉄族金属系合金粒子を含む複合体に関する。鉄族金属系合金粒子は、例えば、(a)Fe、Co及びNiから成る鉄族金属群から選ばれる2種又は3種の鉄族金属からなる鉄族金属系合金粒子(前記2種又は3種の鉄族金属が固溶体型合金である)、又は(c)Fe、Co及びNiから成る鉄族金属群から選ばれる1種、2種又は3種の鉄族金属、並びにCr、Mn、Cu、Mo、Ru、Rh、Pd、Ag、Ir、Pt及びAuから成る遷移金属群から選ばれる1種又は2種以上の遷移金属からなる鉄族金属系合金粒子(前記1種、2種又は3種の鉄族金属及び1種又は2種以上の遷移金属が固溶体型合金である)である。本発明は、燃料電池の電極用触媒として触媒特性が改善された触媒、及びフィッシャー・トロプシュ反応用触媒としてCO転化率や炭素数およびオレフィン選択性が改善された触媒を提供する。The present invention relates to a composite comprising a solid support and iron group metal alloy particles supported on the solid support. The iron group metal alloy particles are, for example, (a) iron group metal alloy particles composed of two or three kinds of iron group metals selected from the iron group metal group consisting of Fe, Co and Ni (the above two or three). (C) one, two or three iron group metals selected from the group of iron group metals consisting of Fe, Co and Ni, and Cr, Mn, Cu , Mo, Ru, Rh, Pd, Ag, Ir, Pt, and an iron group metal alloy particle composed of two or more transition metals selected from the group of transition metals consisting of Au, Ru, Rh, Pd, Ag, Ir, Pt and Au A certain iron group metal and one or more transition metals are solid solution type alloys). The present invention provides a catalyst with improved catalytic properties as a catalyst for fuel cell electrodes, and a catalyst with improved CO conversion, carbon number and olefin selectivity as a Fischer-Tropsch reaction catalyst.

Description

本発明は、固体担体担持鉄族固溶体型合金複合体及びそれを用いた触媒に関する。   The present invention relates to a solid support-supported iron group solid solution type alloy composite and a catalyst using the same.

燃料電池は、燃料と酸化剤(主に酸素)を電気的に接続された2つの電極にそれぞれ供給し、電気化学的に燃料を酸化することで、化学エネルギーを直接電気エネルギーに変換する。そのため燃料電池は高いエネルギー変換効率を示す。燃料電池は、通常、電解質膜を一対の電極で挟持した膜・電極接合体を基本構造とする。電解質膜としてアニオン伝導性固体高分子電解質膜を用いたアルカリ燃料電池とプロトン伝導性固体高分子電解質膜を用いたプロトン燃料電池がある。   A fuel cell supplies fuel and an oxidant (mainly oxygen) to two electrically connected electrodes, respectively, and oxidizes the fuel electrochemically to directly convert chemical energy into electrical energy. Therefore, the fuel cell exhibits high energy conversion efficiency. A fuel cell generally has a basic structure of a membrane / electrode assembly in which an electrolyte membrane is sandwiched between a pair of electrodes. There are alkaline fuel cells using an anion conductive solid polymer electrolyte membrane as an electrolyte membrane and proton fuel cells using a proton conductive solid polymer electrolyte membrane.

アルカリ燃料電池では、水素を燃料とした場合、燃料極(アノード)では式(1)の反応が進行し、酸素極(カソード)では式(2)の反応が進行する。全反応は式(3)で示される。
燃料極:H2 + 2OH- → 2H2O + 2e- …(1)
酸素極:(1/2)O2 + H2O + 2e- → 2OH- …(2)
全反応:H2 + (1/2)O2 → H2O …(3)
In the alkaline fuel cell, when hydrogen is used as the fuel, the reaction of the formula (1) proceeds at the fuel electrode (anode), and the reaction of the formula (2) proceeds at the oxygen electrode (cathode). The total reaction is shown by formula (3).
Fuel electrode: H 2 + 2OH → 2H 2 O + 2e (1)
Oxygen electrode: (1/2) O 2 + H 2 O + 2e → 2OH (2)
Total reaction: H 2 + (1/2) O 2 → H 2 O (3)

式(1)で生じる電子は、外部回路を経由し、外部の負荷で仕事をした後、酸素極に到達する。式(2)で生じた水酸化物イオンは、固体高分子電解質膜内を酸素極側から燃料極側に移動する。式(1)で生成した水は、主としてガス拡散層を通り、外部へと排出されるか、又は、固体高分子電解質膜内を燃料極から酸素極へと透過し、酸素極において式(2)の反応に供される。   The electrons generated in the equation (1) reach the oxygen electrode after working with an external load via an external circuit. The hydroxide ions generated in the formula (2) move from the oxygen electrode side to the fuel electrode side in the solid polymer electrolyte membrane. The water produced by the formula (1) mainly passes through the gas diffusion layer and is discharged to the outside, or permeates the solid polymer electrolyte membrane from the fuel electrode to the oxygen electrode, and the formula (2 ).

水素以外の有機化合物、例えば、アルコール類を燃料とする燃料電池も知られている。直接メタノール燃料電池が代表例である。直接メタノール燃料電池はその名前の通り、燃料改質器でメタノールから水素を作らずに、メタノールを燃料極で直接反応させる。直接メタノール燃料電池の電池反応を示す。
燃料極: CH3OH + H2O → CO2 + 6H+ + 6e-
酸素極: 3/2O2 + 6H+ + 6e- → 3H2O
全反応: CH3OH + 3/2O2 → CO2 + 2H2O
直接メタノール燃料電池においては、メタノールが燃料極で直接酸化され、反応生成物として、燃料極では二酸化炭素、酸素極では水が生成する。
Fuel cells that use organic compounds other than hydrogen, for example, alcohols as fuel, are also known. A direct methanol fuel cell is a typical example. As its name suggests, direct methanol fuel cells react methanol directly at the fuel electrode without producing hydrogen from methanol in the fuel reformer. The cell reaction of a direct methanol fuel cell is shown.
Anode: CH 3 OH + H 2 O → CO 2 + 6H + + 6e -
Oxygen electrode: 3 / 2O 2 + 6H + + 6e - → 3H 2 O
Total reaction: CH 3 OH + 3 / 2O 2 → CO 2 + 2H 2 O
In a direct methanol fuel cell, methanol is directly oxidized at the fuel electrode, and carbon dioxide is produced at the fuel electrode and water is produced at the oxygen electrode as reaction products.

上記のように燃料電池における電極反応は、燃料極及び酸素極のいずれにおいても反応を促進させるための触媒を用いる。燃料電池の電極反応用触媒としては、白金等の貴金属が主に用いられている。しかし、白金に代表される貴金属触媒は埋蔵量に制限があり、価格も相対的に高い。   As described above, the electrode reaction in the fuel cell uses a catalyst for promoting the reaction in both the fuel electrode and the oxygen electrode. As a catalyst for electrode reaction of a fuel cell, a noble metal such as platinum is mainly used. However, noble metal catalysts represented by platinum have limited reserves and are relatively expensive.

燃料電池をさらに普及させるためには、貴金属触媒に代わる新たな触媒の提供が不可欠である。貴金属触媒に代わる新たな触媒の材料の候補として鉄族金属が挙げられる。例えば、白金を主成分とし、さらにニッケル及び鉄を含む燃料電池用触媒が知られている(特許文献1)。   In order to further popularize fuel cells, it is essential to provide a new catalyst that replaces the noble metal catalyst. A candidate for a new catalyst material that can replace the noble metal catalyst is an iron group metal. For example, a fuel cell catalyst containing platinum as a main component and further containing nickel and iron is known (Patent Document 1).

ところで、燃料電池の電極用触媒以外の触媒として、鉄族金属を用いる触媒が知られている。軟質オレフィンの製造を目的としたフィッシャー・トロプシュ(Fischer−Tropsch)反応用の触媒である(特許文献2)   By the way, a catalyst using an iron group metal is known as a catalyst other than a catalyst for an electrode of a fuel cell. A catalyst for Fischer-Tropsch reaction for the purpose of producing soft olefins (Patent Document 2)

特表2007−504624号公報Special table 2007-504624 特開2006−297286号公報JP 2006-297286 A

燃料電池の電極用触媒に関しては、鉄族金属のみからなる実用に供し得るレベルの触媒性能を有する燃料電池用触媒は知られていない。鉄族金属は安価であるが、鉄族金属のみからなる触媒または鉄族金属を主成分とする触媒は、貴金属触媒に比べて性能が低い。そこで本発明の第一の目的は、燃料電池の電極用触媒として触媒特性が改善された、鉄族金属のみからなる触媒または鉄族金属を主成分とする触媒を提供することである。   Regarding a fuel cell electrode catalyst, there is no known fuel cell catalyst composed of only an iron group metal and having a catalytic performance level that can be put to practical use. An iron group metal is inexpensive, but a catalyst made only of an iron group metal or a catalyst mainly composed of an iron group metal has lower performance than a noble metal catalyst. Accordingly, a first object of the present invention is to provide a catalyst made of only an iron group metal or a catalyst containing an iron group metal as a main component, which has improved catalyst characteristics as a catalyst for an electrode of a fuel cell.

フィッシャー・トロプシュ反応用の鉄族金属を用いる触媒に関しては、従来の触媒ではCO(一酸化炭素)の転化率が低いという問題があった。そこで本発明の第二の目的は、フィッシャー・トロプシュ反応用触媒としてCO(一酸化炭素)転化率が改善された、鉄族金属のみからなる触媒または鉄族金属を主成分とする触媒を提供することである。   Regarding the catalyst using the iron group metal for the Fischer-Tropsch reaction, the conventional catalyst has a problem that the conversion rate of CO (carbon monoxide) is low. Accordingly, a second object of the present invention is to provide a catalyst composed of only an iron group metal or a catalyst mainly composed of an iron group metal, which has an improved CO (carbon monoxide) conversion rate as a Fischer-Tropsch reaction catalyst. That is.

上記本発明の目的を達成するために本発明者らは以下のように考えた。金属触媒の特性を制御するには、基質との吸着特性を最適化することが重要である。母体金属の化学反応性を改善する一つの方法として、合金化する方法がある。異種の金属が化学的に相互作用すると、新たなエネルギー(バンド)状態とフェルミエネルギー(化学ポテンシャル)が形成される。また、遷移金属の場合は、d-バンドの重心(d-バンドセンター)の位置によって触媒特性が大きく変化すると考えられており、d-バンドの位置を目的反応に適合させることで高活性触媒を得られる可能性がある。また、成分金属が均一に固溶化させるとは、効率的に金属間の化学的相互作用を増進させる上で重要である。   In order to achieve the object of the present invention, the present inventors considered as follows. In order to control the properties of the metal catalyst, it is important to optimize the adsorption properties with the substrate. One method for improving the chemical reactivity of the base metal is to form an alloy. When different metals interact chemically, a new energy (band) state and Fermi energy (chemical potential) are formed. In the case of transition metals, it is thought that the catalytic properties change greatly depending on the position of the center of gravity of the d-band (d-band center). By adapting the position of the d-band to the target reaction, a highly active catalyst can be obtained. May be obtained. In addition, it is important for the component metals to be solid-dissolved uniformly in order to efficiently promote chemical interaction between the metals.

本発明においては、上記観点から、成分金属が原子レベルで固溶した鉄族合金を製造できる技術を開発し、得られた合金が、燃料電池の電極用触媒及びフィッシャー・トロプシュ反応用触媒として、触媒反応活性および反応選択性が改善されたものであることを見いだして本発明を完成させた。   In the present invention, from the above viewpoint, a technique capable of producing an iron group alloy in which component metals are dissolved at an atomic level is developed, and the obtained alloy is used as a fuel cell electrode catalyst and a Fischer-Tropsch reaction catalyst. The present invention was completed by finding that the catalytic reaction activity and reaction selectivity were improved.

[1]
固体担体及び前記固体担体に担持された下記(a)〜(d)のいずれか1つの鉄族金属系合金粒子を含む複合体。
(a)Fe、Co及びNiから成る鉄族金属群から選ばれる2種又は3種の鉄族金属からなる鉄族金属系合金粒子、但し、前記鉄族金属系合金は、前記2種又は3種の鉄族金属が固溶体型合金である、
(b)Fe、Co及びNiから成る鉄族金属群から選ばれる2種又は3種の鉄族金属を含有する鉄族金属系合金粒子、但し、前記鉄族金属系合金は、少なくとも前記2種又は3種の鉄族金属が固溶体型合金である、
(c)Fe、Co及びNiから成る鉄族金属群から選ばれる1種、2種又は3種の鉄族金属、並びにCr、Mn、Cu、Mo、Ru、Rh、Pd、Ag、Ir、Pt及びAuから成る遷移金属群から選ばれる1種又は2種以上の遷移金属からなる鉄族金属系合金粒子、但し、前記鉄族金属系合金は、前記1種、2種又は3種の鉄族金属及び1種又は2種以上の遷移金属が固溶体型合金である、
(d)Fe、Co及びNiから成る鉄族金属群から選ばれる1種、2種又は3種の鉄族金属、並びにCr、Mn、Cu、Mo、Ru、Rh、Pd、Ag、Ir、Pt及びAuから成る遷移金属群から選ばれる1種又は2種以上の遷移金属を含有する鉄族金属系合金粒子、但し、前記鉄族金属系合金は、少なくとも前記1種、2種又は3種の鉄族金属及び1種又は2種以上の遷移金属が固溶体型合金である、
[2]
前記鉄族金属系合金粒子は、合金一粒子の体積16.7nm3中に異種金属原子に結合した鉄族金属原子が少なくとも1個存在する、但し、異種金属原子は、前記鉄族金属原子とは異なる鉄族金属原子であるか、前記遷移金属原子であるか、または前記鉄族金属原子とは異なる鉄族金属原子及び前記遷移金属原子以外の金属原子である、[1]に記載の複合体。
[3]
前記鉄族金属系合金粒子は、一粒子の体積が16.7 nm3以上10,466.7 nm3以下である合金粒子である、[1]または[2]に記載の複合体。
[4]
前記固体担体は、炭素系材料または無機材料であり、直径が1nmから10μmの範囲の粒子を含有する[1]〜[3]のいずれか1項に記載の複合体。
[5]
[1]〜[4]のいずれか1項に記載の複合体を含む、固体酸化物アルカリ燃料電池用触媒。
[6]
前記固体担体が、導電性材料からなる[5]に記載の固体酸化物アルカリ燃料電池用触媒。
[7]
前記導電性材料が炭素系材料であり、炭素系材料が、活性炭、カーボンブラック、カーボンナノチューブ、又は多孔質炭素材料である[6]に記載の固体酸化物アルカリ燃料電池用触媒。
[8]
[1]〜[4]のいずれか1項に記載の複合体(但し、前記鉄族金属系合金粒子がFe及びCoからなる鉄族金属系合金粒子である複合体は除く)を含む、フィッシャー・トロプシュ反応触媒。
[9]
鉄族金属含有化合物(但し、鉄族金属はFe、Co及びNiから成る鉄族金属群から選ばれる)及び遷移金属含有化合物(但し、遷移金属はCr、Mn、Cu、Mo、Ru、Rh、Pd、Ag、Ir、Pt及びAuから成る遷移金属群から選ばれる)から成る群から選ばれる少なくとも2種の金属含有化合物、保護ポリマー、溶媒及び固体担体を混合して混合物を調製する工程(1)、
得られた混合物に、前記金属含有化合物に含まれる金属イオンに対する還元剤を添加して、鉄族金属及び遷移金属から成る群から選ばれる少なくとも2種の金属及び固体担体を含有する前駆体粒子を調製する工程(2)、及び
前記前駆体粒子を水素含有雰囲気下で加熱して、前記前駆体粒子を還元して、鉄族金属及び遷移金属から成る群から選ばれる少なくとも2種の金属合金粒子が固体担体上に担持した複合体を得る工程(3)を含む、製造方法。
[10]
工程(1)で用いる少なくとも2種の化合物が、2種又は3種の鉄族金属含有化合物であるか、1種又は2種以上の鉄族金属含有化合物及び1種又は2種以上の遷移金属含有化合物である、[9]に記載の製造方法。
[11]
前記工程(3)は、得られる鉄族ナノ合金粒子が、16.7 nm3以上10466.7 nm3以下の体積を有する結晶子サイズを有する条件で実施される、[9]または[10]に記載の製造方法。
[12]
前記工程(3)における水素含有雰囲気の水素含有率は10vol%超100vol%以下の範囲である[9]〜[11]のいずれか1項に記載の製造方法。
[13]
前記工程(3)における加熱は、200℃〜1,000℃の範囲である[9]〜[12]のいずれか1項に記載の製造方法。
[14]
前記工程(2)で得られる鉄族金属を含有する前駆体粒子は、鉄酸化物、コバルト酸化物及びニッケル酸化物の少なくとも1種を含有する粒子である[9]〜[13]のいずれか1項に記載の製造方法。
[15]
水および溶媒に鉄族金属含有化合物及び遷移金属含有化合物と同様な溶解度もち、金属錯体原料と相互作用して錯形成を伴うこともある保護ポリマーを用いる[9]〜[14]のいずれか1項に記載の製造方法。
[16]
工程(2)における還元は、0〜200℃の範囲で行う。還元剤の酸化還元電位は、成分金属のよりも卑である、[9]〜[15]のいずれか1項に記載の製造方法。
[1]
A composite comprising a solid support and any one of the following iron group metal alloy particles supported on the solid support (a) to (d).
(a) Iron group metal alloy particles composed of two or three kinds of iron group metals selected from the iron group metal group consisting of Fe, Co and Ni, provided that the iron group metal alloys are the above-described two or three A kind of iron group metal is a solid solution type alloy,
(b) Iron group metal alloy particles containing two or three kinds of iron group metals selected from the group consisting of iron group metals consisting of Fe, Co and Ni, provided that the iron group metal alloys are at least the two kinds Or three kinds of iron group metals are solid solution type alloys,
(c) One, two or three iron group metals selected from the iron group metal group consisting of Fe, Co and Ni, and Cr, Mn, Cu, Mo, Ru, Rh, Pd, Ag, Ir, Pt And an iron group metal alloy particle composed of one or more transition metals selected from the group of transition metals consisting of Au, wherein the iron group metal alloy is the one, two or three iron groups The metal and one or more transition metals are solid solution type alloys,
(d) One, two or three types of iron group metals selected from the group of iron group metals consisting of Fe, Co and Ni, and Cr, Mn, Cu, Mo, Ru, Rh, Pd, Ag, Ir, Pt And an iron group metal alloy particle containing one or more transition metals selected from the group of transition metals consisting of Au, wherein the iron group metal alloy is at least one of the above-mentioned one, two or three kinds The iron group metal and one or more transition metals are solid solution type alloys,
[2]
The iron group metal-based alloy particle has at least one iron group metal atom bonded to a different metal atom in a volume of 16.7 nm 3 of one alloy particle, provided that the different metal atom is the iron group metal atom. The complex according to [1], which is a different iron group metal atom, the transition metal atom, or an iron group metal atom different from the iron group metal atom and a metal atom other than the transition metal atom .
[3]
The composite according to [1] or [2], wherein the iron group metal-based alloy particle is an alloy particle having a volume of one particle of 16.7 nm 3 or more and 10,466.7 nm 3 or less.
[4]
The composite according to any one of [1] to [3], wherein the solid support is a carbon-based material or an inorganic material, and includes particles having a diameter in a range of 1 nm to 10 μm.
[5]
The catalyst for solid oxide alkaline fuel cells containing the composite_body | complex of any one of [1]-[4].
[6]
The solid oxide alkaline fuel cell catalyst according to [5], wherein the solid support is made of a conductive material.
[7]
The catalyst for a solid oxide alkaline fuel cell according to [6], wherein the conductive material is a carbon-based material, and the carbon-based material is activated carbon, carbon black, carbon nanotube, or a porous carbon material.
[8]
[1] to [4] A Fischer containing the composite according to any one of the above (excluding the composite in which the iron group metal alloy particles are iron group metal alloy particles made of Fe and Co).・ Tropsch reaction catalyst.
[9]
Iron group metal-containing compounds (where the iron group metal is selected from the group of iron group metals consisting of Fe, Co and Ni) and transition metal-containing compounds (where the transition metals are Cr, Mn, Cu, Mo, Ru, Rh, A step of preparing a mixture by mixing at least two metal-containing compounds selected from the group consisting of Pd, Ag, Ir, Pt and Au (selected from the group of transition metals consisting of Au), a protective polymer, a solvent and a solid support (1 ),
By adding a reducing agent for metal ions contained in the metal-containing compound to the obtained mixture, precursor particles containing at least two kinds of metals selected from the group consisting of iron group metals and transition metals and a solid support are obtained. Step (2) of preparing, and heating the precursor particles in a hydrogen-containing atmosphere to reduce the precursor particles, so that at least two metal alloy particles selected from the group consisting of iron group metals and transition metals A production method comprising a step (3) of obtaining a composite supported on a solid support.
[10]
The at least two compounds used in step (1) are two or three iron group metal-containing compounds, or one or more iron group metal-containing compounds and one or more transition metals. The production method according to [9], which is a contained compound.
[11]
The production according to [9] or [10], wherein the step (3) is performed under the condition that the obtained iron group nanoalloy particles have a crystallite size having a volume of 16.7 nm 3 or more and 10466.7 nm 3 or less. Method.
[12]
The production method according to any one of [9] to [11], wherein the hydrogen content of the hydrogen-containing atmosphere in the step (3) is in the range of more than 10 vol% and 100 vol% or less.
[13]
The heating in the step (3) is the production method according to any one of [9] to [12], which is in a range of 200 ° C to 1,000 ° C.
[14]
The precursor particles containing an iron group metal obtained in the step (2) are particles containing at least one of iron oxide, cobalt oxide and nickel oxide. 2. The production method according to item 1.
[15]
Any one of [9] to [14], wherein a protective polymer having the same solubility as that of the iron group metal-containing compound and the transition metal-containing compound in water and a solvent and interacting with the metal complex raw material and sometimes accompanied with complex formation is used. The production method according to item.
[16]
The reduction in step (2) is performed in the range of 0 to 200 ° C. The production method according to any one of [9] to [15], wherein the redox potential of the reducing agent is lower than that of the component metal.

本発明によれば、燃料電池の電極用触媒として触媒特性が改善された、鉄族金属のみからなる触媒または鉄族金属を主成分とする触媒を提供することができる複合物及びこの複合物を用いるアルカリ燃料電池用触媒を提供することができる。さらに、本発明によれば、フィッシャー・トロプシュ反応用触媒としてCO(一酸化炭素)転化率およびオレフィンへの選択率が改善された、鉄族金属のみからなる触媒または鉄族金属を主成分とする触媒を提供することができる複合物及びこの複合物を用いるフィッシャー・トロプシュ反応用触媒を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the composite which can provide the catalyst which consists of an iron group metal only, or the catalyst which has an iron group metal as a main component with improved catalyst characteristics as an electrode catalyst of a fuel cell, and this composite The alkaline fuel cell catalyst to be used can be provided. Furthermore, according to the present invention, as a catalyst for the Fischer-Tropsch reaction, a catalyst composed of only an iron group metal or an iron group metal having improved CO (carbon monoxide) conversion rate and selectivity to an olefin is a main component. A composite capable of providing a catalyst and a catalyst for a Fischer-Tropsch reaction using the composite can be provided.

(a)に参考例1で得られた従来(含浸)法(900℃加熱処理後)調製品、および(b)に実施例1-1で得られた本発明(900℃加熱処理後)により調製されたFe 系合金ナノ合金担持触媒のTEM 像を示す。According to (a) the conventional (impregnation) method (after 900 ° C. heat treatment) prepared in Reference Example 1, and (b) the present invention (after 900 ° C. heat treatment) obtained in Example 1-1. A TEM image of the prepared Fe-based alloy nanoalloy supported catalyst is shown. 実施例1-1〜4で得られたFexCoyNi(1-x-y)/Cの粉末XRDパターンを示す。The powder XRD pattern of FexCoyNi (1-xy) / C obtained in Examples 1-1 to 4 is shown. 実施例1-2で得られたFe50Co50/C 前駆体(a)とナノ合金触媒(b)のSTEM-EDS(元素マップ)像を示す。Shows a STEM-EDS (elemental map) image of Fe 50 Co 50 / C precursor obtained in Example 1-2 (a) and the nano-alloy catalyst (b). 二成分系ナノ合金(RT〜1000℃、10K/min、10min Keep、N2)のTEM像(試験例4)を示す。1 shows a TEM image (Test Example 4) of a binary nanoalloy (RT to 1000 ° C., 10 K / min, 10 min Keep, N 2 ). 金属ナノ粒子のTEM像(試験例4)を示す。3 shows a TEM image (Test Example 4) of metal nanoparticles. FexCoyNi(100-x-y)/C をアノード触媒に用いた、ダイレクトグリコール無機アルカリ電池発電特性(試験例5)を示す。The direct glycol inorganic alkaline battery power generation characteristics (Test Example 5) using FexCoyNi (100-xy) / C as the anode catalyst are shown. 実施例2-1で作製したFe33Co33Ni33/C. Co50Ni50/C, Fe50Co50/C, Fe50Ni50/Cの粉末XRDパターン(全体像)を示す。The powder XRD pattern (overall image) of Fe33Co33Ni33 / C. Co50Ni50 / C, Fe50Co50 / C, and Fe50Ni50 / C produced in Example 2-1 is shown. 実施例2-1で作製した表1のFe33Co33Ni33/CのSTEM-HAADFとEDSによる元素マッピングとその一次元分析の結果を示す。(粒子内に双晶や積層欠陥が存在。粒子は酸化被膜に覆われている。ナノ粒子中で各元素は均質に固溶しており、相分離は見られない。)The element mapping by STEM-HAADF and EDS of Fe33Co33Ni33 / C of Table 1 produced in Example 2-1 and the result of the one-dimensional analysis are shown. (There are twins and stacking faults in the particles. The particles are covered with an oxide film. Each element is homogeneously dissolved in the nanoparticles and no phase separation is observed.) 実施例2-1で作製した表1のCo50Ni50/CのSTEM-HAADFとEDSによる元素マッピングとその一次元分析の結果を示す。The element mapping by STEM-HAADF and EDS of Co50Ni50 / C of Table 1 produced in Example 2-1 and the result of the one-dimensional analysis are shown. 実施例2-1で作製した表1のFe50Co50/CのSTEM-HAADFとEDSによる元素マッピングとその一次元分析の結果を示す。The element mapping by STEM-HAADF and EDS of Fe50Co50 / C of Table 1 produced in Example 2-1 and the result of the one-dimensional analysis are shown. 実施例2-1で作製した表1のFe50Ni50/CのSTEM-HAADFとEDSによる元素マッピングとその一次元分析の結果を示す。The element mapping by STEM-HAADF and EDS of Fe50Ni50 / C of Table 1 produced in Example 2-1 and the result of the one-dimensional analysis are shown. 実施例2-7で得られたエチレングリコールの電気化学的酸化の実験結果を示す。The experimental result of the electrochemical oxidation of ethylene glycol obtained in Example 2-7 is shown. 実施例2-8で得られたダイレクトグリコールアルカリ形燃料電池特性に関する実験結果を示す。The experimental result regarding the direct glycol alkaline fuel cell characteristic obtained in Example 2-8 is shown. 実施例3で用いたFT反応で得られる生成物分布を確率的に予測するASF分布(FT反応におけるASFモデル)を示す。2 shows an ASF distribution (an ASF model in an FT reaction) that probabilistically predicts the product distribution obtained by the FT reaction used in Example 3. 実施例3で得られたFe50Co50/Al2O3上での16時間後のFT反応における生成物分布を示す。The product distribution in the FT reaction after 16 hours on Fe50Co50 / Al2O3 obtained in Example 3 is shown. 実施例3 で得られたFe50Co50/Al2O3上でのFT反応におけるC3-C5化合物におけるオレフィン及びパラフィン選択率を示す。The olefin and paraffin selectivity in the C3-C5 compound in the FT reaction on Fe50Co50 / Al2O3 obtained in Example 3 is shown.

[鉄族金属系合金粒子を含む複合体]
本発明は、固体担体及び前記固体担体に担持された下記(a)〜(d)のいずれか1つの鉄族金属系合金粒子を含む複合体に関する。
[Composite containing iron group metal alloy particles]
The present invention relates to a composite comprising a solid support and any one of the following iron group metal-based alloy particles carried by the solid support (a) to (d).

(a)の鉄族金属系合金粒子
(a)の鉄族金属系合金粒子は、Fe、Co及びNiから成る鉄族金属群から選ばれる2種又は3種の鉄族金属からなる鉄族金属系合金粒子である。但し、前記鉄族金属系合金は、前記2種又は3種の鉄族金属が固溶体型合金である。本願明細書において、鉄族金属群とはFe、Co及びNiから成る群を意味する。Fe、Co及びNiは、原子%で表示して(本明細書においては特に断らない限り、合金組成に関しての%は原子%を意味する)、それぞれ0〜99%の範囲で含有する。但し、Fe、Co及びNiの合計は100原子%であり、Fe、Co及びNiの少なくとも2種は、0.1原子%を超える量の含有量である。Fe、C及びNiは、原子%で表示して、好ましくはそれぞれ0.01〜99.99%の範囲、より好ましくはそれぞれ1〜99%の範囲、さらに好ましくはそれぞれ5〜95%の範囲、一層好ましくはそれぞれ10〜90%の範囲、さらに一層好ましくはそれぞれ20〜80%の範囲、尚一層好ましくはそれぞれ30〜70%の範囲で含有する。
(a) Iron group metal alloy particles
The iron group metal alloy particles (a) are iron group metal alloy particles composed of two or three kinds of iron group metals selected from the iron group metal group composed of Fe, Co, and Ni. However, the iron group metal alloy is a solid solution type alloy of the two or three kinds of iron group metals. In the present specification, the iron group metal group means a group consisting of Fe, Co and Ni. Fe, Co, and Ni are expressed in atomic% (in the present specification, unless otherwise specified,% with respect to the alloy composition means atomic%), and are contained in the range of 0 to 99%. However, the total of Fe, Co, and Ni is 100 atomic%, and at least two of Fe, Co, and Ni have a content exceeding 0.1 atomic%. Fe, C and Ni are expressed in atomic%, preferably each in the range of 0.01 to 99.99%, more preferably in the range of 1 to 99%, still more preferably in the range of 5 to 95%, and still more preferably each. It is contained in the range of 10 to 90%, still more preferably in the range of 20 to 80%, and still more preferably in the range of 30 to 70%.

より具体的には、(a)の鉄族金属系合金粒子は、Fe-Co、Fe-Ni、Co-Ni、及びFe-Co-Niの4種類の合金粒子からなる。   More specifically, the iron group metal alloy particles (a) are composed of four types of alloy particles of Fe—Co, Fe—Ni, Co—Ni, and Fe—Co—Ni.

Fe-Coにおいては、Fe:Co原子%比は、0.1〜99.9:99.9〜0.1の範囲、好ましくは1〜99:99〜1の範囲、より好ましくは10〜90:90〜10の範囲、さらに好ましくは20〜80:80〜20の範囲、一層好ましくは30〜70:70〜30の範囲、さらに一層好ましくは40〜60:60〜40の範囲、尚一層好ましくは45〜55:55〜45の範囲である。但し、燃料電池の電極用触媒として用いる場合には、生成物分布や電力密度および電流効率を考慮して、Fe:Co原子%比は適宜決定できる。   In Fe-Co, the Fe: Co atomic% ratio is in the range of 0.1-99.9: 99.9-0.1, preferably in the range of 1-99: 99-1, more preferably in the range of 10-90: 90-10, Preferably in the range 20-80: 80-20, more preferably in the range 30-70: 70-30, even more preferably in the range 40-60: 60-40, even more preferably 45-55: 55-45. Range. However, when used as an electrode catalyst for a fuel cell, the Fe: Co atomic% ratio can be appropriately determined in consideration of product distribution, power density, and current efficiency.

Fe-Niにおいては、Fe:Ni原子%比は、0.1〜99.9:99.9〜0.1の範囲、好ましくは1〜99:99〜1の範囲、より好ましくは10〜90:90〜10の範囲、さらに好ましくは20〜80:80〜20の範囲、一層好ましくは30〜70:70〜30の範囲、さらに一層好ましくは40〜60:60〜40の範囲、尚一層好ましくは45〜55:55〜45の範囲である。但し、燃料電池の電極用触媒として用いる場合には、生成物分布,電力密度,電流効率および寿命を考慮して、Fe:Ni原子%比は適宜決定できる。フィッシャー・トロプシュ反応用触媒として用いる場合には、原料の転化率や生成物の選択率や収率を考慮して、Fe:Ni原子%比は適宜決定できる。   In Fe-Ni, the Fe: Ni atomic% ratio is in the range of 0.1-99.9: 99.9-0.1, preferably in the range of 1-99: 99-1, more preferably in the range of 10-90: 90-10, Preferably in the range 20-80: 80-20, more preferably in the range 30-70: 70-30, even more preferably in the range 40-60: 60-40, even more preferably 45-55: 55-45. Range. However, when used as an electrode catalyst for a fuel cell, the Fe: Ni atomic% ratio can be appropriately determined in consideration of product distribution, power density, current efficiency, and life. When used as a Fischer-Tropsch reaction catalyst, the Fe: Ni atomic% ratio can be appropriately determined in consideration of the conversion rate of raw materials, the selectivity of products, and the yield.

Co-Niにおいては、Co:Ni原子%比は、0.1〜99.9:99.9〜0.1の範囲、好ましくは1〜99:99〜1の範囲、より好ましくは10〜90:90〜10の範囲、さらに好ましくは20〜80:80〜20の範囲、一層好ましくは30〜70:70〜30の範囲、さらに一層好ましくは40〜60:60〜40の範囲、尚一層好ましくは45〜55:55〜45の範囲である。但し、燃料電池の電極用触媒として用いる場合には、生成物分布,電力密度,電流効率および寿命を考慮して、Co:Ni原子%比は適宜決定できる。フィッシャー・トロプシュ反応用触媒として用いる場合には、原料の転化率や生成物の選択率や収率を考慮して、Co:Ni原子%比は適宜決定できる。   In Co-Ni, the Co: Ni atomic% ratio is in the range of 0.1-99.9: 99.9-0.1, preferably in the range of 1-99: 99-1, more preferably in the range of 10-90: 90-10, Preferably in the range 20-80: 80-20, more preferably in the range 30-70: 70-30, even more preferably in the range 40-60: 60-40, even more preferably 45-55: 55-45. Range. However, when used as a catalyst for an electrode of a fuel cell, the Co: Ni atomic% ratio can be appropriately determined in consideration of product distribution, power density, current efficiency, and lifetime. When used as a Fischer-Tropsch reaction catalyst, the Co: Ni atomic% ratio can be appropriately determined in consideration of the conversion rate of raw materials, the selectivity of products, and the yield.

Fe-Co-Niにおいては、Fe:Co:Ni原子%比は、Feを1としたときにCoは0.01〜999の範囲とすることができ、Niは0.01〜999の範囲とすることができる。但し、3つの元素の合計は100原子%とする。例えば、Feを1としたときにCoが0.5、Niが0.5の場合、Fe:Co:Ni原子%比は、50:25:25となる。Feを1としたときにCoは、好ましくは0.05〜99.95の範囲、より好ましくは0.1〜99.9の範囲、さらに好ましくは0.5〜99.5の範囲とすることができる。Feを1としたときにNiは、好ましくは0.05〜99.95の範囲、より好ましくは0.1〜99.9の範囲、さらに好ましくは0.5〜99.9の範囲とすることができる。但し、燃料電池の電極用触媒として用いる場合には、生成物分布、電力密度、電流効率および寿命
を考慮して、Fe:Co:Ni原子%比は適宜決定できる。フィッシャー・トロプシュ反応用触媒として用いる場合には、原料の転化率や生成物の選択率や収率を考慮して、Fe:Co:Ni原子%比は適宜決定できる。
In Fe-Co-Ni, the Fe: Co: Ni atomic% ratio is such that when Fe is 1, Co can be in the range of 0.01 to 999, and Ni can be in the range of 0.01 to 999. . However, the total of the three elements is 100 atomic%. For example, when Co is 0.5 and Ni is 0.5 when Fe is 1, the Fe: Co: Ni atomic% ratio is 50:25:25. When Fe is 1, Co is preferably in the range of 0.05 to 99.95, more preferably in the range of 0.1 to 99.9, and still more preferably in the range of 0.5 to 99.5. When Fe is 1, Ni can be preferably in the range of 0.05 to 99.95, more preferably in the range of 0.1 to 99.9, and still more preferably in the range of 0.5 to 99.9. However, when used as an electrode catalyst for a fuel cell, the Fe: Co: Ni atomic% ratio can be appropriately determined in consideration of product distribution, power density, current efficiency, and lifetime. When used as a Fischer-Tropsch reaction catalyst, the Fe: Co: Ni atomic% ratio can be appropriately determined in consideration of the conversion rate of raw materials, the selectivity of products, and the yield.

(b)の鉄族金属系合金粒子
(b)の鉄族金属系合金粒子は、Fe、Co及びNiから成る鉄族金属群から選ばれる2種又は3種の鉄族金属を含有する鉄族金属系合金粒子である。但し、前記鉄族金属系合金は、少なくとも前記2種又は3種の鉄族金属が固溶体型合金である。
(b)の鉄族金属系合金粒子は、Fe、Co及びNiから成る鉄族金属群から選ばれる2種又は3種の鉄族金属を含有することに加えて、後述する(c)及び(d)の鉄族金属系合金粒子に含有される遷移金属以外の追加成分を、(b)の鉄族金属系合金粒子の触媒性能に影響を及ぼさない範囲で含有することもできる。そのような追加成分の例として、例えば、Al, Zn, V, W, Ta, Y, Re, Biなどを挙げることができる。但し、前記追加成分の含有量は、特に制限はないが、(b)の鉄族金属系合金粒子の触媒性能に影響を及ぼさない範囲であることを考慮すると、1%未満、好ましくは0.5%未満であることが適当である。尚、Fe、Co及びNiから成る鉄族金属群から選ばれる2種又は3種の鉄族金属からなる部分については(a)の鉄族金属系合金粒子の鉄族金属系合金と同様である。
(b) Iron group metal alloy particles
The iron group metal alloy particles (b) are iron group metal alloy particles containing two or three iron group metals selected from the iron group metal group consisting of Fe, Co, and Ni. However, the iron group metal-based alloy is a solid solution type alloy in which at least the two or three kinds of iron group metals are used.
In addition to containing two or three types of iron group metals selected from the iron group metal group consisting of Fe, Co, and Ni, the iron group metal-based alloy particles of (b) are described later (c) and ( Additional components other than the transition metal contained in the iron group metal alloy particles of d) may be contained within a range that does not affect the catalyst performance of the iron group metal alloy particles of (b). Examples of such additional components include Al, Zn, V, W, Ta, Y, Re, and Bi. However, the content of the additional component is not particularly limited, but considering that it does not affect the catalytic performance of the iron group metal alloy particles of (b), it is less than 1%, preferably 0.5%. It is suitable that it is less than. In addition, about the part which consists of 2 or 3 types of iron group metals chosen from the iron group metal group which consists of Fe, Co, and Ni, it is the same as that of the iron group metal alloy of the iron group metal alloy particle of (a). .

(c)の鉄族金属系合金粒子
(c)の鉄族金属系合金粒子は、Fe、Co及びNiから成る鉄族金属群から選ばれる1種、2種又は3種の鉄族金属、並びにCr、Mn、Cu、Mo、Ru、Rh、Pd、Ag、Ir、Pt及びAuから成る遷移金属群から選ばれる1種又は2種以上の遷移金属からなる鉄族金属系合金粒子である。本願明細書において、遷移金属群とは、Cr、Mn、Cu、Mo、Ru、Rh、Pd、Ag、Ir、Pt及びAuから成る群を意味する。但し、前記鉄族金属系合金は、前記1種、2種又は3種の鉄族金属及び1種又は2種以上の遷移金属が固溶体型合金である。
(c) Iron group metal alloy particles
The iron group metal-based alloy particles of (c) are one, two or three types of iron group metals selected from the iron group metal group consisting of Fe, Co and Ni, and Cr, Mn, Cu, Mo, Ru, These are iron group metal alloy particles made of one or more transition metals selected from the group of transition metals consisting of Rh, Pd, Ag, Ir, Pt and Au. In the present specification, the transition metal group means a group consisting of Cr, Mn, Cu, Mo, Ru, Rh, Pd, Ag, Ir, Pt and Au. However, the said iron group metal-type alloy is a solid solution type alloy in which the said 1 type, 2 types, or 3 types of iron group metals and 1 type, or 2 or more types of transition metals are.

(c)の鉄族金属系合金粒子は、1種、2種又は3種の鉄族金属、並びに1種又は2種以上の遷移金属からなる鉄族金属系合金粒子である。例えば、鉄族金属であるFe、Co及びNiのいずれか1種と1種又は2種以上の遷移金属からなる鉄族金属系合金粒子、Fe及びCo、Fe及びNi、又はCo及びNiと1種又は2種以上の遷移金属からなる鉄族金属系合金粒子、Fe、Co及びNiと1種又は2種以上の遷移金属からなる鉄族金属系合金粒子である。鉄族金属及び遷移金属の含有量は、それぞれ0.1〜99.9%の範囲である。但し、鉄族金属及び遷移金属の合計は100原子%である。鉄族金属及び遷移金属の含有量は、原子%で表示して、好ましくはそれぞれ1〜99%の範囲、より好ましくはそれぞれ5〜95%の範囲、さらに好ましくはそれぞれ10〜90%の範囲、一層好ましくはそれぞれ20〜80%の範囲、さらに一層好ましくはそれぞれ30〜70%の範囲、尚一層好ましくはそれぞれ40〜60%の範囲である。但し、鉄族金属及び遷移金属の種類に応じて、燃料電池の電極用触媒として用いる場合には、生成物分布、電力密度、電流効率および寿命を考慮して、鉄族金属及び遷移金属の原子%比は適宜決定できる。同様に、フィッシャー・トロプシュ反応用触媒として用いる場合には、原料の転化率や生成物の選択率や収率を考慮して、鉄族金属及び遷移金属の原子%比は適宜決定できる。   The iron group metal alloy particle (c) is an iron group metal alloy particle composed of one, two or three kinds of iron group metals and one or more kinds of transition metals. For example, any one of iron group metals Fe, Co, and Ni and iron group metal alloy particles composed of one or more transition metals, Fe and Co, Fe and Ni, or Co and Ni and 1 These are iron group metal alloy particles composed of seeds or two or more transition metals, and iron group metal alloy particles composed of Fe, Co, and Ni and one or more transition metals. The contents of the iron group metal and the transition metal are each in the range of 0.1 to 99.9%. However, the total of iron group metals and transition metals is 100 atomic%. The content of the iron group metal and the transition metal, expressed in atomic%, is preferably in the range of 1 to 99%, more preferably in the range of 5 to 95%, and still more preferably in the range of 10 to 90%. More preferably each is in the range of 20-80%, still more preferably in the range of 30-70%, still more preferably in the range of 40-60%. However, depending on the type of iron group metal and transition metal, when used as a catalyst for fuel cell electrodes, the atoms of the iron group metal and transition metal are considered in consideration of product distribution, power density, current efficiency and life. The% ratio can be determined as appropriate. Similarly, when used as a Fischer-Tropsch reaction catalyst, the atomic% ratio of the iron group metal and the transition metal can be appropriately determined in consideration of the conversion rate of the raw material, the selectivity of the product, and the yield.

(c)の鉄族金属系合金粒子において2種又は3種の鉄族金属を含有する場合には、(a)の鉄族金属系合金粒子における鉄族金属の組合せや含有比を参照できる。2種以上の遷移金属を含有する場合には、合金の結晶構造や固溶状態およびその触媒特性を考慮して、遷移金属の組合せや含有比を適宜決定することができる。   When the iron group metal alloy particles of (c) contain two or three kinds of iron group metals, the combination and content ratio of iron group metals in the iron group metal alloy particles of (a) can be referred to. When two or more transition metals are contained, the transition metal combination and content ratio can be appropriately determined in consideration of the crystal structure and solid solution state of the alloy and its catalytic properties.

(d)の鉄族金属系合金粒子
(d)の鉄族金属系合金粒子は、Fe、Co及びNiから成る鉄族金属群から選ばれる1種、2種又は3種の鉄族金属、並びにCr、Mn、Cu、Mo、Ru、Rh、Pd、Ag、Ir、Pt及びAuから成る遷移金属群から選ばれる1種又は2種以上の遷移金属を含有する鉄族金属系合金粒子である。但し、前記鉄族金属系合金は、少なくとも前記1種、2種又は3種の鉄族金属及び1種又は2種以上の遷移金属が固溶体型合金である。
(d)の鉄族金属系合金粒子は、鉄族金属群から選ばれる2種又は3種の鉄族金属及び遷移金属群から選ばれる1種又は2種以上の遷移金属を含有することに加えて、上記鉄族金属及び遷移金属以外の追加成分を、(d)の鉄族金属系合金粒子の触媒性能に影響を及ぼさない範囲で含有することもできる。そのような追加成分の例として、例えば、Al, Zn, V, W, Ta, Y, Re, Bi等を挙げることができる。但し、前記追加成分の含有量は、特に制限はないが、(d)の鉄族金属系合金粒子の触媒性能に影響を及ぼさない範囲であることを考慮すると、1%未満、好ましくは0.5%未満であることが適当である。尚、鉄族金属群から選ばれる2種又は3種の鉄族金属及び遷移金属群から選ばれる1種又は2種以上の遷移金属からなる部分については(c)の鉄族金属系合金粒子の鉄族金属系合金と同様である。
(d) Iron group metal alloy particles
The iron group metal alloy particles of (d) are one, two or three iron group metals selected from the iron group metal group consisting of Fe, Co and Ni, and Cr, Mn, Cu, Mo, Ru, These are iron group metal alloy particles containing one or more transition metals selected from the group of transition metals consisting of Rh, Pd, Ag, Ir, Pt and Au. However, the iron group metal alloy is a solid solution type alloy in which at least one, two or three kinds of iron group metals and one or more kinds of transition metals are used.
The iron group metal alloy particles of (d) contain one or more transition metals selected from the two or three types of iron group metals selected from the iron group metal group and the transition metal group. In addition, an additional component other than the iron group metal and the transition metal can be contained in a range that does not affect the catalyst performance of the iron group metal alloy particles of (d). Examples of such additional components include Al, Zn, V, W, Ta, Y, Re, Bi, and the like. However, the content of the additional component is not particularly limited, but considering that it does not affect the catalytic performance of the iron group metal alloy particles of (d), it is less than 1%, preferably 0.5%. It is suitable that it is less than. In addition, about the part which consists of 2 or 3 types of iron group metals chosen from an iron group metal group, and 1 type or 2 or more types of transition metals chosen from a transition metal group, the iron group metal alloy particle of (c) This is the same as the iron group metal alloy.

<固溶体型合金>
(a)の鉄族金属系合金粒子においては、2種又は3種の鉄族金属が固溶体型合金である。(b)の鉄族金属系合金粒子においては、少なくとも2種又は3種の鉄族金属が固溶体型合金であり、追加成分も含めて鉄族金属とともに固溶体型合金であることもできる。(c)の鉄族金属系合金粒子においては、1種、2種又は3種の鉄族金属及び1種又は2種以上の遷移金属が固溶体型合金である。(d)の鉄族金属系合金粒子においては、少なくとも1種、2種又は3種の鉄族金属及び1種又は2種以上の遷移金属が固溶体型合金であり、追加成分も含めて鉄族金属とともに固溶体型合金であることもできる。
<Solid solution type alloy>
In the iron group metal alloy particles (a), two or three iron group metals are solid solution type alloys. In the iron group metal alloy particles of (b), at least two or three kinds of iron group metals are solid solution type alloys, and may be a solid solution type alloy together with the iron group metals including additional components. In the iron group metal alloy particles (c), one, two or three iron group metals and one or more transition metals are solid solution type alloys. In the iron group metal alloy particles of (d), at least one, two or three kinds of iron group metals and one or more kinds of transition metals are solid solution type alloys, and iron groups including additional components are included. It can be a solid solution type alloy together with a metal.

本発明において、固溶体型合金とは、合金を構成する金属原子が、合金粒子中において均一に存在する合金であることを意味する。さらに、本発明の成分金属が原子レベルで固溶した鉄族合金触媒は、ナノレベルの小粒径の鉄族合金粒子とすることで、上記触媒反応活性および反応選択性の改善がより高まることにも基づく。尚、ここで原子レベルとは、合金一粒子の体積16.7nm3中に異種金属原子に結合した鉄族金属原子が少なくとも1個存在することを意味する。In the present invention, the solid solution type alloy means that the metal atoms constituting the alloy are present uniformly in the alloy particles. Furthermore, the iron group alloy catalyst in which the component metals of the present invention are dissolved at the atomic level is made to be an iron group alloy particle having a small particle size at the nano level, thereby further improving the catalytic reaction activity and reaction selectivity. Also based on. Here, the atomic level means that at least one iron group metal atom bonded to a different metal atom exists in a volume of 16.7 nm 3 of one alloy particle.

但し、異種金属原子は、前記鉄族金属原子とは異なる鉄族金属原子であるか、前記遷移金属原子であるか、または前記鉄族金属原子とは異なる鉄族金属原子及び前記遷移金属原子以外の追加成分の金属原子である。即ち、(a)の鉄族金属系合金粒子においては、異種金属原子は、前記鉄族金属原子とは異なる鉄族金属原子である。(b)の鉄族金属系合金粒子においては、異種金属原子は、前記鉄族金属原子とは異なる鉄族金属原子であるか、又は追加成分の金属原子である。(c)の鉄族金属系合金粒子においては、異種金属原子は、前記鉄族金属原子とは異なる鉄族金属原子 又は遷移金属原子である。(d)の鉄族金属系合金粒子においては、異種金属原子は、前記鉄族金属原子とは異なる鉄族金属原子若しくは遷移金属原子であるか、又は追加成分の金属原子である。   However, the different metal atom is an iron group metal atom different from the iron group metal atom, the transition metal atom, or an iron group metal atom different from the iron group metal atom and the transition metal atom. Is an additional component metal atom. That is, in the iron group metal-based alloy particle (a), the different metal atom is an iron group metal atom different from the iron group metal atom. In the iron group metal alloy particles of (b), the different metal atom is an iron group metal atom different from the iron group metal atom or an additional component metal atom. In the iron group metal alloy particles of (c), the different metal atom is an iron group metal atom or a transition metal atom different from the iron group metal atom. In the iron group metal alloy particles of (d), the different metal atom is an iron group metal atom or transition metal atom different from the iron group metal atom, or is an additional component metal atom.

固溶体型合金の粒子は、合金一粒子の体積16.7nm3中に存在する異種金属原子に結合した鉄族金属原子の個数が合金組成に比例した割合で存在することが望ましい。In the solid solution type alloy particles, it is desirable that the number of iron group metal atoms bonded to different metal atoms present in a volume of 16.7 nm 3 of one alloy particle is in proportion to the alloy composition.

前記鉄族金属系合金粒子は、一粒子の体積が16.7nm3以上10,466.7nm3以下である合金粒子であることが、高活性の触媒として利用できるという観点から好ましい。一粒子の体積は、好ましくは20nm3以上5,000nm3以下、より好ましくは50nm3以上1,000nm3以下、さらに好ましくは50nm3以上1,000nm3以下であることが高活性の触媒として利用できるという観点から好ましい。尚、本発明の複合体においては、上記範囲に含まれる体積を有する合金粒子を少なくとも10質量%以上含む合金粒子を固体担体上に担持したものであればよい。上記範囲に含まれる体積を有する合金粒子の固体担体上への担持量は、好ましくは30質量%以上、より好ましくは50質量%以上、さらに好ましくは70質量%以上、一層好ましくは90質量%以上である。The iron group metal alloy particles are preferably alloy particles having a particle volume of 16.7 nm 3 or more and 10,466.7 nm 3 or less from the viewpoint that they can be used as a highly active catalyst. Viewpoint volume one particle is preferably 20 nm 3 or more 5,000 nm 3 or less, more preferably 50 nm 3 or more 1,000 nm 3 or less, still more preferably used as a catalyst is highly active is at 50 nm 3 or more 1,000 nm 3 or less To preferred. In the composite of the present invention, any alloy particles containing at least 10% by mass or more of alloy particles having a volume within the above range may be supported on a solid support. The loading amount of the alloy particles having a volume within the above range on the solid support is preferably 30% by mass or more, more preferably 50% by mass or more, further preferably 70% by mass or more, and more preferably 90% by mass or more. It is.

固体担体
本発明の複合体は、固体担体及び前記固体担体に担持された(a)〜(d)のいずれか1つの鉄族金属系合金粒子を含むものである。前記固体担体は、本発明の複合体が各種触媒として使用される場合に好適な活性や耐久性等を発揮できる材料の中から適宜選択することができる。本発明の複合体に用いられる固体担体は、少なくとも一部が多孔質材料からなるものであることが好ましく、多孔質材料の表面に鉄族金属系合金粒子が担持されることが適当である。したがって、本発明の複合体に用いられる固体担体は、少なくとも鉄族金属系合金粒子が担持される部分の表面が多孔質材料からなることが適当であり、固体担体全体が多孔質材料からなっていても、あるいは非多孔質材料からなる支持体の表面に多孔質材料が被覆されたものであっても良い。また、支持体が別の多孔質材料からなっていても良い。
Solid Support The composite of the present invention comprises a solid support and any one of the iron group metal alloy particles (a) to (d) supported on the solid support. The solid carrier can be appropriately selected from materials that can exhibit suitable activity and durability when the composite of the present invention is used as various catalysts. The solid support used in the composite of the present invention is preferably at least partially made of a porous material, and it is appropriate that iron group metal alloy particles are supported on the surface of the porous material. Therefore, it is appropriate for the solid support used in the composite of the present invention that at least the surface of the portion on which the iron group metal alloy particles are supported is made of a porous material, and the entire solid support is made of a porous material. Alternatively, the surface of a support made of a non-porous material may be coated with a porous material. The support may be made of another porous material.

本発明の複合体に用いられる固体担体は、少なくとも一部が、例えば、炭素系材料又は無機材料からなることができる。炭素系材料としては活性炭やカーボンナノチューブ等を挙げることができる。無機材料としては無機酸化物材料を挙げることができる。無機酸化物材料としては、例えば、シリカ、アルミナ、シリカ−アルミナ、ゼオライト、チタニア、ジルコニア等を挙げることができる。固体担体は表面積が大きいことが好ましく、例えば、比表面積500〜2000m2/gの範囲であることが好ましい。The solid support used in the composite of the present invention can be at least partially made of, for example, a carbon-based material or an inorganic material. Examples of the carbon-based material include activated carbon and carbon nanotubes. An inorganic oxide material can be mentioned as an inorganic material. Examples of the inorganic oxide material include silica, alumina, silica-alumina, zeolite, titania, zirconia and the like. The solid support preferably has a large surface area, for example, a specific surface area of 500 to 2000 m 2 / g is preferable.

固体担体の形状、形態は、特に制限されないが、例えば、粉体状、粒子状、顆粒状、ペレット状、ハニカム状などを呈することができる。粉体状、粒子状、顆粒状、ペレット状の担体は、例えば、前記の多孔質材料の担体材料のみからなることができる。それに対してハニカム構造の担体は、非多孔質材料、例えば、コージエライト等からなる支持体の表面に前記の多孔質材料の担体材料が被覆されたものであっても良い。また、前述のように支持体は、別の多孔質材料からなっていても良い。   The shape and form of the solid carrier are not particularly limited, and can be, for example, powder, particle, granule, pellet, honeycomb or the like. The carrier in the form of powder, particles, granules, or pellets can be composed of, for example, only the above-mentioned porous material carrier material. On the other hand, the carrier having a honeycomb structure may be a non-porous material, for example, a surface of a support made of cordierite or the like and coated with the porous material carrier material. Further, as described above, the support may be made of another porous material.

固体担体の形状が、例えば、粉体状、粒子状又は顆粒状の場合、固体担体は、直径が1nmから10μmの範囲の粒子を含有することが適当であり、直径が10nmから10μmの範囲の粒子を含有することが好ましく、直径が10nmから500μmの範囲の粒子を含有することがより好ましい。固体担体の粒子径は、本発明の複合体の用途に応じて適宜選択することができる。   When the shape of the solid carrier is, for example, powder, particle or granule, the solid carrier suitably contains particles having a diameter in the range of 1 nm to 10 μm, and the diameter is in the range of 10 nm to 10 μm. It is preferable to contain particles, and it is more preferable to contain particles having a diameter in the range of 10 nm to 500 μm. The particle size of the solid support can be appropriately selected according to the use of the composite of the present invention.

固体担体上への鉄族金属系合金粒子の担持量は、鉄族金属系合金粒子の種類、固体担体の種類、複合体の用途等を考慮して適宜決定することができる。例えば、質量比で、固体担体100に対して、鉄族金属系合金粒子の担持量を0.01〜50の範囲にすることができる。複合体の単位質量当たりの活性が高く、かつ鉄族金属系合金粒子の単位質量当たりの活性も高かいという観点からは、固体担体100に対して、鉄族金属系合金粒子の担持量を0.1〜30の範囲にすることが好ましく、0.5〜15の範囲にすることがより好ましく、1〜10の範囲にすることがさらに好ましい。但し、この範囲に限定される意図ではない。   The amount of iron group metal alloy particles supported on the solid support can be appropriately determined in consideration of the type of iron group metal alloy particles, the type of solid support, the use of the composite, and the like. For example, the supported amount of the iron group metal alloy particles with respect to the solid support 100 can be in the range of 0.01 to 50 by mass ratio. From the viewpoint of high activity per unit mass of the composite and high activity per unit mass of the iron group metal alloy particles, the amount of iron group metal alloy particles supported on the solid support 100 is 0.1. It is preferably in the range of -30, more preferably in the range of 0.5-15, and even more preferably in the range of 1-10. However, it is not intended to be limited to this range.

[複合体の製造方法]
本発明の複合体は、工程(1)〜(3)を含む方法により製造することができる。
本発明では、合金粒子の粒径を制御するためには、鉄族金属イオン及び/又は遷移金属イオンと粒子凝集の抑制剤として水溶性ポリマーを混合させた溶液を用いる。鉄族金属イオン及び/又は遷移金属イオンがポリマーと相互作用することで、同種金属間における凝集が抑制されると期待される。この混合溶液に還元剤を加えて一度金属に還元し、それをそのまま、あるいは再酸化することにより、鉄族金属およびその酸化物及び/又は遷移金属あるいは遷移金属酸化物と水溶性ポリマーが混合したナノ合金前駆体を作製する。前駆体中でも金属イオンが原子レベルでの固溶(混合)は維持される。更に、前駆体を水素雰囲気下で加熱することで、構成金属イオンを同時に還元することが可能となり、成分金属が原子レベルで固溶し、かつ、粒子径が制御されたナノ合金触媒(例えば、1−50nm)を作製できる。
[Production method of composite]
The composite of the present invention can be produced by a method including steps (1) to (3).
In the present invention, in order to control the particle size of the alloy particles, a solution in which a water-soluble polymer is mixed as an inhibitor of the aggregation of iron group metal ions and / or transition metal ions and particles is used. It is expected that the iron group metal ions and / or transition metal ions interact with the polymer to suppress aggregation between the same type of metals. A reducing agent was added to this mixed solution to reduce it to a metal once, and it was re-oxidized as it was, thereby mixing the iron group metal and its oxide and / or transition metal or transition metal oxide with a water-soluble polymer. A nanoalloy precursor is prepared. Even in the precursor, solid solution (mixing) of metal ions at the atomic level is maintained. Furthermore, by heating the precursor in a hydrogen atmosphere, it becomes possible to simultaneously reduce the constituent metal ions, the component metal is dissolved at the atomic level, and the nano-alloy catalyst whose particle size is controlled (for example, 1-50 nm) can be produced.

工程(1)
工程(1)は、鉄族金属含有化合物及び遷移金属含有化合物から成る群から選ばれる少なくとも2種の金属含有化合物、保護ポリマー、溶媒及び固体担体を混合して混合物を調製する工程である。但し、鉄族金属はFe、Co及びNiから成る鉄族金属群から選ばれ、遷移金属はCr、Mn、Cu、Mo、Ru、Rh、Pd、Ag、Ir、Pt及びAuから成る遷移金属群から選ばれる。工程(1)で用いる少なくとも2種の化合物は、2種又は3種の鉄族金属含有化合物であるか、1種又は2種以上の鉄族金属含有化合物及び1種又は2種以上の遷移金属含有化合物である。
Process (1)
Step (1) is a step of preparing a mixture by mixing at least two metal-containing compounds selected from the group consisting of an iron group metal-containing compound and a transition metal-containing compound, a protective polymer, a solvent, and a solid support. However, the iron group metal is selected from the iron group metal group consisting of Fe, Co and Ni, and the transition metal group is composed of Cr, Mn, Cu, Mo, Ru, Rh, Pd, Ag, Ir, Pt and Au. Chosen from. The at least two compounds used in step (1) are two or three iron group metal-containing compounds, or one or more iron group metal-containing compounds and one or more transition metals. Containing compounds.

鉄族金属含有化合物は、鉄族金属を含有する化合物であれば、特に制限はない。工程(1)に用いる溶媒に対する溶解性に優れたものであることが適当である。そのような化合物としては、鉄族金属の塩化塩、硫酸塩、硝酸塩、およびそれらの水和物などの無機鉄族金属含有化合物、さらには、鉄族金属を含む錯体を挙げることができる。鉄族金属が鉄の場合は、例えば、塩化鉄、硫酸鉄、硝酸鉄、およびそれらの水和物などの無機鉄含有化合物、さらには、鉄を含む錯体を挙げることができる。鉄を含む錯体としては、例えば、酢酸鉄、鉄アセチルアセトナト、テトラクロロ鉄(II)酸テトラエチルアンモニウム、テトラクロロ鉄(III)酸テトラエチルアンモニウム、ビス(スルフィド)テトラニトロシルに鉄(2-)ナトリウム八水和物、トリス(スルフィド)ヘプタニトロシル四鉄酸(1-)アンモニウム一水和物、ヘキサアンミン鉄(II)臭化物、テトラキス(チオフェノラト)鉄(II)酸テトラフェニルホスホニウム、テトラキス(2,3,5,6-テトラメチルフェノラト)鉄(III)酸テトラエチルアンモニウム、ヘキサシアノ鉄(II)酸カリウム、ヘキサシアノ鉄(III)酸カリウム、ペンタシアノアンミン鉄(II)酸ナトリウム三水和物、ペンタシアノアンミン鉄(III)酸ナトリウム三水和物、ペンタシアノニトロシル鉄(III)酸ナトリウム二水和物、ペンタシアノニトロ鉄(II)酸カリウム一水和物、テトラシアノ(エチレンジアミン)鉄(II)酸ナトリウム三水和物等を挙げることかできる。但し、これらの化合物は例示であって、これらの限定される意図ではない。   The iron group metal-containing compound is not particularly limited as long as it is a compound containing an iron group metal. Appropriate solubility in the solvent used in step (1) is appropriate. Examples of such compounds include inorganic iron group metal-containing compounds such as iron group metal chlorides, sulfates, nitrates, and hydrates thereof, and complexes containing iron group metals. When the iron group metal is iron, examples thereof include inorganic iron-containing compounds such as iron chloride, iron sulfate, iron nitrate, and hydrates thereof, and also complexes containing iron. Examples of the complex containing iron include iron acetate, iron acetylacetonate, tetraethylammonium tetrachloroiron (II), tetraethylammonium tetrachloroiron (III), bis (sulfide) tetranitrosyl and iron (2-) sodium. Octahydrate, tris (sulfide) heptanitrosyltetraferrate (1-) ammonium monohydrate, hexaammineiron (II) bromide, tetrakis (thiophenolato) iron (II) acid tetraphenylphosphonium, tetrakis (2,3 , 5,6-tetramethylphenolato) tetraethylammonium iron (III), potassium hexacyanoferrate (II), potassium hexacyanoferrate (III), pentacyanoammineferrate sodium trihydrate, pentacyano Sodium ammine iron (III) trihydrate, sodium pentacyanonitrosyl iron (III) dihydrate, pentacyanonitroiron (II) Examples include potassium acid monohydrate, sodium tetracyano (ethylenediamine) iron (II) acid trihydrate, and the like. However, these compounds are illustrative and are not intended to be limiting.

鉄族金属がニッケルの場合は、例えば、塩化ニッケル、硝酸ニッケルおよびそれらの水和物などの無機ニッケル含有化合物、さらには、ニッケルを含む錯体を挙げることができる。ニッケルを含む錯体としては、例えば、酢酸ニッケル、ニッケルアセチルアセトナト、テトラクロロニッケル(II)酸テトラエチルアンモニウム、テトラブロモニッケル(II)酸テトラエチルアンモニウム、ヘキサアンミンニッケル(II)塩化物、ジニトロテトラアンミンニッケル(II)、テトラシアノニッケル(II)酸カリウム一水和物、ヘキサニトロニッケル(II)酸カリウムバリウム、トリス(エチレンジアミン)ニッケル(II)硫酸塩、ビス(エチレンジアミン)ジアクアニッケル硝酸塩、エチレンジアミンテトラアクアニッケル(II)硫酸塩一水和物、ジニトロ(エチレンジアミン)ニッケル(II)、ビス(N,N-ジメチルエチレンジアミン)ニッケル(II)過塩素酸、ビス(2,3-ジメチル-2,3-ジアミノブタン)ニッケル(II)ヨウ化物、ビス(ペルクロラト)テトラピリジンニッケル(II)、アセチルアセトナト(ニトラト)(N,N,N'、N'-テトラメチルエチレンジアミン)ニッケル(II)等を挙げることかできる。但し、これらの化合物は例示であって、これらの限定される意図ではない。   When the iron group metal is nickel, for example, inorganic nickel-containing compounds such as nickel chloride, nickel nitrate and hydrates thereof, and further a complex containing nickel can be given. Examples of the complex containing nickel include nickel acetate, nickel acetylacetonate, tetraethylammonium tetrachloronickel (II), tetraethylammonium tetrabromonickel (II), hexaamminenickel (II) chloride, dinitrotetraamminenickel ( II), potassium tetracyanonickel (II) monohydrate, potassium barium hexanitronickel (II), tris (ethylenediamine) nickel (II) sulfate, bis (ethylenediamine) diaquanickel nitrate, ethylenediaminetetraaquanickel (II) Sulfate monohydrate, dinitro (ethylenediamine) nickel (II), bis (N, N-dimethylethylenediamine) nickel (II) perchloric acid, bis (2,3-dimethyl-2,3-diaminobutane ) Nickel (II) iodide, bis (perchlorato) tetrapyridine nickel ( II), acetylacetonato (nitrato) (N, N, N ′, N′-tetramethylethylenediamine) nickel (II) and the like. However, these compounds are illustrative and are not intended to be limiting.

鉄族金属がコバルトの場合は、例えば、塩化コバルト、硫酸コバルト、硝酸コバルトおよびそれらの水和物などの無機コバルト含有化合物、さらには、コバルトを含む錯体を挙げることができる。コバルトを含む錯体としては、例えば、酢酸コバルト(II)四水和物、アセチルアセトン酸コバルト、ヘキサシアノコバルト(III)酸カリウム、(エチレンジアミンテトラアセタト)コバルト(III)酸カルシウム五水和物、クロロ(エチレンジアミンテトラアセタト)コバルト(III)酸カリウム、ジクロロビス(エチレンジアミン)コバルト(III)塩化物、カルボナトテトラアンミンコバルト(III)塩化物、トリス(エチレンジアミン)コバルト(III)塩化物三水和物、エチレンジアミンテトラニトロコバルト(III)酸カリウム、ジアンミンビス(オキサラト)コバルト(III)酸カリウム、チオシアン酸コバルト(II)三水和物、ヘキサアンミンコバルト(II)塩化物、ペンタアンミンニトロコバルト(III)塩化物、過塩素酸コバルト(II)六水和物等を挙げることができる。ただし、これらの化合物は例示であって、これらの限定される意図ではない。   When the iron group metal is cobalt, examples thereof include inorganic cobalt-containing compounds such as cobalt chloride, cobalt sulfate, cobalt nitrate and hydrates thereof, and complexes containing cobalt. Examples of the complex containing cobalt include cobalt acetate (II) tetrahydrate, cobalt acetylacetonate, potassium hexacyanocobalt (III), calcium (ethylenediaminetetraacetato) cobalt (III), pentachlorohydrate (chloro ( Ethylenediaminetetraacetato) cobalt (III) potassium, dichlorobis (ethylenediamine) cobalt (III) chloride, carbonatotetraamminecobalt (III) chloride, tris (ethylenediamine) cobalt (III) chloride trihydrate, ethylenediaminetetra Nitrocobalt (III) potassium, diamminebis (oxalato) cobalt (III) potassium, cobalt thiocyanate (II) trihydrate, hexaammine cobalt (II) chloride, pentaammine nitrocobalt (III) chloride, Cobalt (II) perchlorate Mention may be made of a hydrate and the like. However, these compounds are illustrative and are not intended to be limiting.

遷移金属含有化合物は、遷移金属を含有する化合物であれば、特に制限はない。工程(1)に用いる溶媒に対する溶解性に優れたものであることが適当である。そのような化合物としては、遷移金属の塩化塩、硫酸塩、硝酸塩、およびそれらの水和物などの無機遷移金属含有化合物、さらには、遷移金属を含む錯体を挙げることができる。遷移金属を含む錯体としては、例えば、酢酸クロム(III)一水和物、シュウ酸クロム(III)六水和物、ヘキサアンミンクロム(III)塩化物、硫酸クロム(III)アンモニウム十二水和物、テトラクロロマンガン(II)酸アンモニウム二水和物、ペンタクロロマンガン(II)酸カリウム、ヘキサシアノマンガン(III)酸カリウム、酢酸銅(II)一水和物、ペンタニトロ銅(II)酸カリウム、テトラクロロ銅(II)酸アンモニウム、二モリブデン酸カリウム、ペンタクロロオキソモリブデン(V)酸アンモニウム、三モリブデン酸ナトリウム七水和物、トリス(アセチルアセトナト)ルテニウム(III)、ヘキサシアノルテニウム(II)酸カリウム三水和物、トリス(オキサラト)ルテニウム(III)酸カリウム、ヘキサシアノロジウム(III)酸カリウム、ヘキサアンミンロジウム(III)塩化物、トリス(オキサラト)ロジウム(III)酸カリウム、テトラクロロパラジウム(IV)酸ナトリウム、ヘキサクロロパラジウム(IV)酸カリウム、テトラアンミンパラジウム(II)塩化物一水和物、ジアンミン銀(I)硫酸塩、酢酸銀(I)、ジシアノ銀(I)酸カリウム、ヘキサクロロイリジウム(IV)酸カリウム、ヘキサアンミンイリジウム(III)塩化物、硫酸カリウムイリジウム(III)十二水和物、テトラアンミン白金(II)塩化物一水和物、テトラクロロ白金(II)酸アンモニウム、ヘキサクロロ白金(IV)酸アンモニウム、テトラクロロ金(III)酸カリウム二水和物、ジシアノ金(I)酸カリウム、テトラシアノ金(III)酸カリウム等を挙げることができる。ただし、これらの化合物は例示であって、これらの限定される意図ではない。   The transition metal-containing compound is not particularly limited as long as it is a compound containing a transition metal. Appropriate solubility in the solvent used in step (1) is appropriate. Examples of such compounds include inorganic transition metal-containing compounds such as transition metal chlorides, sulfates, nitrates, and hydrates thereof, and complexes containing transition metals. Examples of the complex containing a transition metal include chromium (III) acetate monohydrate, chromium (III) oxalate hexahydrate, hexaammine chromium (III) chloride, and chromium (III) ammonium dodecahydrate. , Ammonium tetrachloromanganese (II) dihydrate, potassium pentachloromanganese (II), potassium hexacyanomanganese (III), copper acetate (II) monohydrate, potassium pentanitrocopper (II), Ammonium tetrachlorocopper (II), potassium dimolybdate, ammonium pentachlorooxomolybdate (V), sodium trimolybdate heptahydrate, tris (acetylacetonato) ruthenium (III), hexacyanoruthenium (II) acid Potassium trihydrate, potassium tris (oxalato) ruthenium (III), potassium hexacyanorhodium (III), Oxaammine rhodium (III) chloride, potassium tris (oxalato) rhodium (III), sodium tetrachloropalladium (IV), potassium hexachloropalladium (IV), tetraamminepalladium (II) chloride monohydrate, diammine Silver (I) sulfate, silver acetate (I), potassium dicyanosilver (I), potassium hexachloroiridium (IV), hexaammineiridium (III) chloride, potassium iridium sulfate (III) dodecahydrate, Tetraammineplatinum (II) chloride monohydrate, ammonium tetrachloroplatinum (II), ammonium hexachloroplatinum (IV), potassium tetrachlorogold (III) dihydrate, potassium dicyanogold (I), Examples include potassium tetracyanoaurate (III). However, these compounds are illustrative and are not intended to be limiting.

保護ポリマーは、前記鉄族金属含有化合物及び/又は遷移金属含有化合物に対して親和性を示し、さらに溶媒に対しても可溶性を示す、前記鉄族金属含有化合物及び/又は遷移金属含有化合物などの金属含有化合物に対して親和性を有する官能基部分、例えば極性官能基を有するポリマーであることが適当であり、水溶性のポリマーであることが好ましい。前記保護ポリマーとしては、例えば、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)、ポリエチレングリコール(PEG)、ポリビニルエーテル、ポリアクリレート、ポリ(メルカプトメチレンスリレン-N-ビニル-2-ピロリドン)、ポリアクリロニトリルなどを挙げることかできる。さらに、PVPのような環状アミド構造を有するポリマーが好適である。保護ポリマーは、水および溶媒に対する溶解度が、鉄族金属含有化合物及び遷移金属含有化合物と同等であり、金属錯体原料と相互作用して錯形成を伴うことがある物質であり得る。   The protective polymer exhibits affinity for the iron group metal-containing compound and / or transition metal-containing compound, and further exhibits solubility in a solvent, such as the iron group metal-containing compound and / or transition metal-containing compound. A polymer having a functional group moiety having an affinity for the metal-containing compound, for example, a polymer having a polar functional group, is suitable, and a water-soluble polymer is preferred. Examples of the protective polymer include polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyethylene glycol (PEG), polyvinyl ether, polyacrylate, poly (mercaptomethylenethrylene-N-vinyl-2-pyrrolidone), polyacrylonitrile. And so on. Furthermore, a polymer having a cyclic amide structure such as PVP is preferable. The protective polymer has a solubility in water and a solvent that is equivalent to that of the iron group metal-containing compound and the transition metal-containing compound, and may be a substance that interacts with the metal complex raw material and may be complexed.

保護ポリマーの役割は、主に、工程(2)及(3)ので生成する前駆体粒子及び/又は合金粒子間の凝集を防止することと、生成する前駆体粒子及び/又は合金粒子のサイズを制御することである。前駆体粒子及び/又は合金ナノ粒子は、平均粒子径は、例えば、1〜200000nm、望ましくは1〜5000nmであり、好ましくは1〜1000nmであり、より好ましくは1〜200nmであり、さらに好ましくは1〜100nmであり、さらに一層好ましくは1〜50nmであり、より一層好ましくは1〜20nmであり、さらにより一層好ましくは1〜10nmであり、最も好ましくは、平均粒子径は1〜4nmの範囲である。そのためこの粒子径を維持するために、各ナノ粒子を凝集等から保護する手段を用いることが好ましく、そのための手段として保護ポリマーを用いる。さらに、合金の粒子径は、金属と保護ポリマーの比率を調整することによって制御することが出来る。例えば、溶媒中における保護ポリマーの量を相対的に増やすと、析出する前駆体粒子及び/又は合金粒子の粒径は小さくなる。この現象を利用すれば前駆体粒子及び/又は合金粒子の粒径を制御できる。尚、析出する合金粒子の粒径は、鉄族金属含有化合物及び/又は遷移金属含有化合物の濃度を調整することでも調整できる。   The role of the protective polymer is mainly to prevent aggregation between the precursor particles and / or alloy particles produced in the steps (2) and (3), and to reduce the size of the precursor particles and / or alloy particles produced. Is to control. The average particle diameter of the precursor particles and / or alloy nanoparticles is, for example, 1 to 200000 nm, desirably 1 to 5000 nm, preferably 1 to 1000 nm, more preferably 1 to 200 nm, and still more preferably. 1-100 nm, even more preferably 1-50 nm, even more preferably 1-20 nm, even more preferably 1-10 nm, and most preferably the average particle size is in the range of 1-4 nm. It is. Therefore, in order to maintain this particle diameter, it is preferable to use a means for protecting each nanoparticle from aggregation or the like, and a protective polymer is used as a means therefor. Furthermore, the particle size of the alloy can be controlled by adjusting the ratio of metal to protective polymer. For example, when the amount of the protective polymer in the solvent is relatively increased, the particle size of the precipitated precursor particles and / or alloy particles is reduced. By utilizing this phenomenon, the particle size of the precursor particles and / or alloy particles can be controlled. In addition, the particle size of the alloy particle to precipitate can be adjusted also by adjusting the density | concentration of an iron group metal containing compound and / or a transition metal containing compound.

前記溶媒は、鉄族金属含有化合物及び/又は遷移金属含有化合物及び保護ポリマーを溶解できる溶媒である。ここで溶解とは、鉄族金属含有化合物及び/又は遷移金属含有化合物及び保護ポリマーが溶媒に溶けている状態であり、溶液が透明になることが好ましい。溶媒として、水及び/又は有機溶媒、その混合溶媒を用いることができる。有機溶媒は、水に親和性のある有機溶媒または極性部位を有する有機溶媒であることが、鉄族金属含有化合物及び/又は遷移金属含有化合物及び保護ポリマーに対する溶解性に優れるという観点から好ましい。溶媒は、水及び水に親和性のある有機溶媒の混合溶媒であることもできる。有機溶媒としては、鉄族金属含有化合物及び/又は遷移金属含有化合物及び保護ポリマーの種類等に応じて適宜選択するとよく、例えばエタノール、プロパノールやエチレングリコール、トリエチレングリコール、グリセリンなどの多価アルコールを用いることができる。水と有機溶媒の混合溶媒を用いる場合にも、鉄族金属含有化合物及び/又は遷移金属含有化合物及び保護ポリマーの溶解性等を考慮して、有機溶媒の種類や有機溶媒と水との混合比を適宜調整できる。   The solvent is a solvent capable of dissolving the iron group metal-containing compound and / or the transition metal-containing compound and the protective polymer. Here, dissolution is a state in which the iron group metal-containing compound and / or the transition metal-containing compound and the protective polymer are dissolved in a solvent, and the solution is preferably transparent. As the solvent, water and / or an organic solvent or a mixed solvent thereof can be used. The organic solvent is preferably an organic solvent having an affinity for water or an organic solvent having a polar site from the viewpoint of excellent solubility in an iron group metal-containing compound and / or transition metal-containing compound and a protective polymer. The solvent can also be a mixed solvent of water and an organic solvent having an affinity for water. The organic solvent may be appropriately selected according to the type of the iron group metal-containing compound and / or transition metal-containing compound and the protective polymer. For example, polyhydric alcohols such as ethanol, propanol, ethylene glycol, triethylene glycol, and glycerin may be used. Can be used. Even when using a mixed solvent of water and an organic solvent, considering the solubility of the iron group metal-containing compound and / or transition metal-containing compound and the protective polymer, the type of organic solvent and the mixing ratio of the organic solvent and water Can be adjusted as appropriate.

前記鉄族金属含有化合物及び/又は遷移金属含有化合物及び保護ポリマーの溶媒中での存在状態は、特に制限はなく、分散及び/又は溶解した状態であることができる。分散した状態は分散液であり、溶解した状態は溶解液である。尚、固体担体は、溶媒中で分散した状態になる。溶解の際には混合物を加熱することもできる。分散と溶解が併存する場合も含まれる。前記鉄族金属含有化合物及び/又は遷移金属含有化合物及び保護ポリマーが分散状態にあるか、溶解状態にあるか、両者の併存状態にあるかは、前記鉄族金属含有化合物及び/又は遷移金属含有化合物及び保護ポリマーの種類並びに溶媒、さらには、溶媒中の前記鉄族金属含有化合物及び/又は遷移金属含有化合物及び保護ポリマーの濃度により変化する。溶媒中の前記鉄族金属含有化合物及び/又は遷移金属含有化合物及び保護ポリマーの濃度は、それぞれ前駆体の組成や粒子径等を考慮して決められる。分散液または溶解液中の保護ポリマーの濃度、鉄族金属イオンの濃度及び/又は遷移金属イオンの濃度は、例えば、保護ポリマーが1×10-7〜10mol/Lの範囲、鉄族金属イオンが1×10-10〜10mol/Lの範囲、及び遷移金属イオンが1×10-10〜10mol/Lの範囲であることができる。The presence state of the iron group metal-containing compound and / or transition metal-containing compound and the protective polymer in the solvent is not particularly limited, and may be in a dispersed and / or dissolved state. The dispersed state is a dispersion, and the dissolved state is a solution. Note that the solid carrier is dispersed in a solvent. The mixture can also be heated during dissolution. This includes cases where dispersion and dissolution coexist. Whether the iron group metal-containing compound and / or the transition metal-containing compound and the protective polymer are in a dispersed state, a dissolved state, or a coexistence state of both, the iron group metal-containing compound and / or the transition metal is contained. It varies depending on the type of the compound and the protective polymer, the solvent, and the concentration of the iron group metal-containing compound and / or transition metal-containing compound and the protective polymer in the solvent. The concentrations of the iron group metal-containing compound and / or transition metal-containing compound and the protective polymer in the solvent are determined in consideration of the composition of the precursor, the particle diameter, and the like. The concentration of the protective polymer, the concentration of the iron group metal ion and / or the concentration of the transition metal ion in the dispersion or solution is, for example, in the range of 1 × 10 −7 to 10 mol / L for the protective polymer, range of 1 × 10 -10 ~10mol / L, and transition metal ions can be in the range of 1 × 10 -10 ~10mol / L.

分散液または溶解液の調製は、上記溶媒に保護ポリマー並びに鉄族金属含有化合物及び/又は遷移金属含有化合物を加えて、溶解または分散することで行うことができる。保護ポリマー並びに鉄族金属含有化合物及び/又は遷移金属含有化合物の添加順序には制限はない。保護ポリマーを分散または溶解した溶液と鉄族金属含有化合物を溶解した溶液及び遷移金属含有化合物を溶解した溶液を、適宜混合することで調製することもできる。固体担体は、このようにして得られた分散液または溶解液に添加混合して混合物を調製することができる他、溶媒に保護ポリマー並びに鉄族金属含有化合物及び/又は遷移金属含有化合物を加える際に、固体担体も添加して混合物を調製することもできる。   The dispersion or solution can be prepared by adding a protective polymer and an iron group metal-containing compound and / or a transition metal-containing compound to the above solvent and dissolving or dispersing it. There is no restriction | limiting in the addition order of a protective polymer and an iron group metal containing compound and / or a transition metal containing compound. It can also be prepared by appropriately mixing a solution in which the protective polymer is dispersed or dissolved, a solution in which the iron group metal-containing compound is dissolved, and a solution in which the transition metal-containing compound is dissolved. The solid carrier can be added to and mixed with the dispersion or solution thus obtained to prepare a mixture, and when the protective polymer and the iron group metal-containing compound and / or transition metal-containing compound are added to the solvent. In addition, a mixture can be prepared by adding a solid carrier.

前記鉄族金属含有化合物、遷移金属含有化合物及び保護ポリマーの溶媒への分散または溶解の操作は、常温または加温または冷却下で行うことができる。さらに、前記溶媒への分散または溶解の操作は、静置した状態で行っても、攪拌した状態で行ってもよい。さらに、固体担体を添加しての混合物の調製も常温または加温または冷却下で行うことができる。   The operation of dispersing or dissolving the iron group metal-containing compound, transition metal-containing compound and protective polymer in a solvent can be carried out at room temperature or under heating or cooling. Furthermore, the operation of dispersion or dissolution in the solvent may be performed in a stationary state or in a stirred state. Furthermore, the mixture can be prepared by adding a solid carrier at room temperature or under heating or cooling.

工程(2)
工程(2)は、工程(1)で得られた混合物に、前記金属含有化合物に含まれる金属イオンに対する還元剤を添加して、鉄族金属、又は鉄族金属及び遷移金属を含有する担持前駆体粒子を調製する工程である。
Process (2)
In step (2), a reducing agent for the metal ions contained in the metal-containing compound is added to the mixture obtained in step (1), so that the supported precursor containing iron group metal or iron group metal and transition metal is added. This is a process for preparing body particles.

還元剤は、酸化還元電位が、還元対象である金属の酸化還元電位よりも卑である物質から選択される。具体的には還元剤としては、標準還元電位が室温における水素(0eV)よりも負である化合物を用いることが、鉄族金属イオンを金属に還元する力が強いという観点から適当である。そのような還元剤としては、例えば、MBH4,MEt3BH(M=Na, K), 水素化シアノホウ素ナトリウム NaBH3CN、水素化ホウ素リチウム LiBH4、水素化トリエチルホウ素リチウム LiBHEt3、ボラン錯体 BH3・L(Lは配位子、例えば、THF(テトラヒドロフラン)、SMe2(ジメチルスルフィド))、トリエチルシラン Et3SiH、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム (Sodium Bis(2-methoxyethoxy)Alminium Hydride; Red-Al)などを挙げることができる。但し、これらの還元剤の中には、水と爆発的に反応して危険であるため水溶液中で使用できないものもあるので注意を要する。その場合は、溶媒として水以外の溶媒(例えば、テトラヒドロフラン、N,N-ジメチルホルムアミド、ジメチルスルホキサイド等のアプロトニックな極性溶媒)を使用することが適当である。The reducing agent is selected from substances whose oxidation-reduction potential is lower than the oxidation-reduction potential of the metal to be reduced. Specifically, as the reducing agent, it is appropriate to use a compound whose standard reduction potential is more negative than hydrogen (0 eV) at room temperature from the viewpoint of strong ability to reduce iron group metal ions to metals. Examples of such a reducing agent include MBH 4 , MEt 3 BH (M = Na, K), sodium cyanoborohydride NaBH 3 CN, lithium borohydride LiBH 4 , lithium triethylborohydride LiBHEt 3 , and borane complex. BH 3 · L (L is a ligand, such as THF (tetrahydrofuran), SMe 2 (dimethyl sulfide)), triethylsilane Et 3 SiH, sodium bis (2-methoxyethoxy) aluminum hydride (Sodium Bis (2-methoxyethoxy ) Alminium Hydride; Red-Al). However, some of these reducing agents are dangerous because they react explosively with water and cannot be used in an aqueous solution. In that case, it is appropriate to use a solvent other than water (for example, an aprotic polar solvent such as tetrahydrofuran, N, N-dimethylformamide, dimethylsulfoxide) as the solvent.

還元剤の使用量は、金属原料に含まれる鉄族金属及び/又は遷移金属の物質量等を考慮して適宜決定され、例えば、還元すべき鉄族金属及び/又は遷移金属イオンの合計量の当量から200倍当量以下の範囲とすることができる。好ましくは鉄族金属及び/又は遷移金属イオンの合計量の当量から50倍当量以下の範囲とする   The amount of reducing agent used is appropriately determined in consideration of the amount of iron group metal and / or transition metal contained in the metal raw material, for example, the total amount of iron group metal and / or transition metal ions to be reduced. It can be in the range of equivalent to 200 times equivalent or less. Preferably, it is in the range of the equivalent of the total amount of iron group metal and / or transition metal ion to 50 times equivalent or less

還元剤の添加方法は、特に制限はされないが、例えば、粉末状又は顆粒状の還元剤を前記混合物に添加することができる。あるいは、前記工程(1)で用いた溶媒に例えば、粉末状又は顆粒状の還元剤を溶解及び/又は分散し、溶解及び/又は分散液を前記混合物に添加することもできる。使用する溶媒は、還元剤に対して不活性な物であることが、還元効率の観点から好ましい。   The method for adding the reducing agent is not particularly limited, but, for example, a powdery or granular reducing agent can be added to the mixture. Alternatively, for example, a powdery or granular reducing agent may be dissolved and / or dispersed in the solvent used in the step (1), and the dissolved and / or dispersed liquid may be added to the mixture. The solvent used is preferably inert to the reducing agent from the viewpoint of reduction efficiency.

上記還元剤で鉄族金属及び/又は遷移金属イオンを還元することで、前駆体粒子が調製される。上記還元剤での還元の温度は、還元により調製されるべき合金の結晶構造を考慮して決定され、例えば、0〜200℃の範囲とすることが適当である。好ましくは25〜160℃の範囲とすることがきる。   Precursor particles are prepared by reducing iron group metal and / or transition metal ions with the reducing agent. The reduction temperature with the reducing agent is determined in consideration of the crystal structure of the alloy to be prepared by reduction, and is suitably in the range of 0 to 200 ° C., for example. Preferably it can be set as the range of 25-160 degreeC.

工程(2)において、得られる前記鉄族金属及び/又は遷移金属を含有する前駆体粒子は、鉄族金属酸化物及び/又は遷移金属酸化物を含有する粒子であるか、または鉄族金属合金又は鉄族金属及び遷移金属合金、並びに鉄族金属酸化物又は鉄族金属酸化物及び遷移金属酸化物を含有する粒子である。前駆体粒子の作製時の還元により鉄族金属及び/又は遷移金属イオンは、還元剤の量が過剰であればその分、金属(合金)にまで還元されることがある。しかし、金属を含む前駆体粒子は、酸素を含む雰囲気に晒されることで、酸化される。従って、合成直後の前駆体粒子は金属(合金)の含有量は比較的高く、時間の経過と共にその量は低下する。鉄族金属合金又は鉄族金属及び遷移金属合金、並びに鉄族金属酸化物又は鉄族金属酸化物及び遷移金属酸化物の割合(合金:酸化物)は、還元条件により変化するが、例えば、1:0.1〜100:0.1〜100の範囲であることができる。但し、この範囲に制限される意図ではない。   In the step (2), the obtained precursor particles containing an iron group metal and / or transition metal are particles containing an iron group metal oxide and / or a transition metal oxide, or an iron group metal alloy. Alternatively, it is a particle containing an iron group metal and a transition metal alloy, and an iron group metal oxide or an iron group metal oxide and a transition metal oxide. When the amount of the reducing agent is excessive, the iron group metal and / or the transition metal ion may be reduced to the metal (alloy) correspondingly by the reduction during the preparation of the precursor particles. However, the precursor particles containing metal are oxidized by being exposed to an atmosphere containing oxygen. Therefore, the precursor particles immediately after the synthesis have a relatively high metal (alloy) content, and the amount thereof decreases with time. The ratio of iron group metal alloy or iron group metal and transition metal alloy, and iron group metal oxide or iron group metal oxide and transition metal oxide (alloy: oxide) varies depending on the reduction conditions. : 0.1-100: It can be in the range of 0.1-100. However, it is not intended to be limited to this range.

前記前駆体粒子における鉄族金属の割合、又は鉄族金属及び遷移金属の割合は、目的とする合金粒子の組成に応じて、原料の組成比を調整することで適宜決定できる。工程(2)で得られる鉄族金属を含有する前駆体粒子は、例えば、鉄酸化物、コバルト酸化物及びニッケル酸化物の少なくとも1種を含有する粒子であることができる。   The ratio of the iron group metal or the ratio of the iron group metal and the transition metal in the precursor particles can be appropriately determined by adjusting the composition ratio of the raw materials according to the composition of the target alloy particles. The precursor particles containing the iron group metal obtained in the step (2) can be, for example, particles containing at least one of iron oxide, cobalt oxide, and nickel oxide.

工程(2)における反応生成物は、反応終了後、工程(3)に供する前に適宜有機溶媒等を用いて洗浄することもできる。例えば、有機溶媒としてアセトンとジエチルエーテルの混合溶液を用い、この溶液を固相と液相に分離が起こるまで加えた後、遠心分離して固相を回収する。次いで回収された固相を水に分散させ、この分散物に、アセトンを加えて再び固相と液相を分離させ、遠心分離することで洗浄済み試料を得ることができる。この操作により、固体担体に担持された金属からなる複合体をNaやホウ酸などの不純物から分離することができる。   The reaction product in the step (2) can be appropriately washed with an organic solvent or the like after completion of the reaction and before being subjected to the step (3). For example, a mixed solution of acetone and diethyl ether is used as an organic solvent, and this solution is added to the solid phase and the liquid phase until separation occurs, and then centrifuged to recover the solid phase. Next, the recovered solid phase is dispersed in water, and acetone is added to the dispersion to separate the solid phase and the liquid phase again, followed by centrifugation to obtain a washed sample. By this operation, the complex composed of the metal supported on the solid support can be separated from impurities such as Na and boric acid.

工程(3)
工程(3)は、前記前駆体粒子を水素含有雰囲気下で加熱して、前記前駆体粒子を還元し、かつ16.7 nm3以上10466.7 nm3以下の体積を有する合金粒子が固体担体上に担持した複合体を得る工程である。
Process (3)
In step (3), the precursor particles are heated in a hydrogen-containing atmosphere to reduce the precursor particles, and alloy particles having a volume of 16.7 nm 3 or more and 10466.7 nm 3 or less are supported on a solid support. This is a step of obtaining a complex.

前記水素雰囲気での加熱処理は、上記工程(2)で得られた前駆体粒子から溶媒を除去した後に、または溶媒とともに、所定の温度及び水素圧力にて行うことができる。温度は、例えば、200℃〜1000℃の範囲であり、水素圧力は0.01Pa〜100MPaの範囲であることができる。水素雰囲気加熱処理の条件は、好ましくは300〜950℃の範囲で、かつ水素圧0.01MPa〜5MPaの範囲である。水素雰囲気加熱処理の条件は、より好ましくは400〜900℃の範囲で、かつ水素圧0.1MPa〜3MPaの範囲である。加熱温度は、より好ましくは500〜900℃の範囲である。処理時間は、温度及び圧力に応じて適宜設定することができ、例えば、0.05〜10時間の範囲とすることができる。但し、この範囲に限定される意図ではない。水素含有雰囲気の水素含有率は、例えば、1vol%超100vol%以下の範囲であることができ、水素以外にアルゴンや窒素などの不活性ガスを含有することができる。   The heat treatment in the hydrogen atmosphere can be performed at a predetermined temperature and hydrogen pressure after removing the solvent from the precursor particles obtained in the step (2) or together with the solvent. The temperature can be in the range of 200 ° C. to 1000 ° C., for example, and the hydrogen pressure can be in the range of 0.01 Pa to 100 MPa. The conditions for the hydrogen atmosphere heat treatment are preferably in the range of 300 to 950 ° C. and the hydrogen pressure in the range of 0.01 MPa to 5 MPa. The conditions of the hydrogen atmosphere heat treatment are more preferably in the range of 400 to 900 ° C. and the hydrogen pressure in the range of 0.1 MPa to 3 MPa. The heating temperature is more preferably in the range of 500 to 900 ° C. The treatment time can be appropriately set according to the temperature and pressure, and can be, for example, in the range of 0.05 to 10 hours. However, it is not intended to be limited to this range. The hydrogen content of the hydrogen-containing atmosphere can be, for example, in the range of more than 1 vol% and not more than 100 vol%, and can contain an inert gas such as argon or nitrogen in addition to hydrogen.

工程(3)における水素雰囲気加熱処理は、得られる鉄族ナノ合金粒子が、16.7 nm3以上10466.7 nm3以下の体積を有する結晶子サイズを有する条件で実施されることが好ましい。200℃〜1000℃の範囲の温度及び0.01Pa〜100MPaの範囲の水素圧力から条件を選択することで、上記体積範囲を有する結晶子サイズを有する合金粒子を得ることができる。The hydrogen atmosphere heat treatment in the step (3) is preferably performed under the condition that the obtained iron group nanoalloy particles have a crystallite size having a volume of 16.7 nm 3 or more and 10466.7 nm 3 or less. By selecting conditions from a temperature in the range of 200 ° C. to 1000 ° C. and a hydrogen pressure in the range of 0.01 Pa to 100 MPa, alloy particles having a crystallite size having the above volume range can be obtained.

[アルカリ燃料電池用触媒]
本発明の複合体は、固体酸化物アルカリ燃料電池用の触媒として利用できる。アルカリ燃料電池は、例えば、前述のように燃料として水素を用いる燃料電池であることができる。さらにアルカリ燃料電池は、例えば、燃料としてグリコールを用いる燃料電池(アルカリ系直接エチレングリコール燃料電池)であることができる。燃料としてグリコールを用いるサイクルでは、グリコールからシュウ酸を生成し、二酸化炭素まで酸化しない選択的酸化触媒が好ましく、本発明の複合体には、そのような選択的酸化活性を示す触媒が含まれている。
[Alkaline fuel cell catalyst]
The composite of the present invention can be used as a catalyst for a solid oxide alkaline fuel cell. The alkaline fuel cell can be, for example, a fuel cell that uses hydrogen as a fuel as described above. Furthermore, the alkaline fuel cell can be, for example, a fuel cell using a glycol as a fuel (an alkaline direct ethylene glycol fuel cell). In a cycle using glycol as a fuel, a selective oxidation catalyst that generates oxalic acid from glycol and does not oxidize to carbon dioxide is preferable, and the complex of the present invention includes a catalyst exhibiting such selective oxidation activity. Yes.

〔燃料電池用アノード〕
本発明は、上記本発明の複合体とアニオン伝導性材料を含むアノード用組成物からなる層を基板表面に有する燃料電池用アノードを包含する。
[Anode for fuel cell]
The present invention includes an anode for a fuel cell having a layer comprising an anode composition containing the composite of the present invention and an anion conductive material on a substrate surface.

アノード用組成物に用いるイオン伝導性材料は、カソードにおいて、電気化学反応によって発生する水酸化物イオンを固体高分子電解質に伝導させるためのイオン伝導性媒体としての機能を有すると共に、上記本発明の複合体からなる触媒粒子を導電性多孔質基材に電極触媒層として結着させる結着剤としての機能を有する。このイオン伝導性材料としては、固体高分子電解質あるいは固体酸化物電解質と同じ素材からなるものを用いることができ、例えば、フレミヨン(旭硝子) として知られている。触媒粒子の結着性にすぐれるのみならず、イオン伝導性にすぐれる。但し、本発明において用いることができるイオン伝導性材料は、固体高分子電解質に限定されるものではない。   The ion-conducting material used for the anode composition has a function as an ion-conducting medium for conducting hydroxide ions generated by an electrochemical reaction to the solid polymer electrolyte at the cathode. It has a function as a binder that binds the catalyst particles made of the composite to the conductive porous substrate as an electrode catalyst layer. As the ion conductive material, a material made of the same material as the solid polymer electrolyte or the solid oxide electrolyte can be used. For example, Flemillon (Asahi Glass) is known. Not only is the catalyst particles excellent in binding properties but also ion conductivity. However, the ion conductive material that can be used in the present invention is not limited to the solid polymer electrolyte.

本発明によれば、電極触媒層において、イオン伝導性材料の質量に対する前記触媒粒子の質量の比( 以下、触媒粒子/ポリマー質量比ということがある。)は、例えば、3/1〜20/1の範囲にあり、好ましくは、4/1〜18/1の範囲にあることができる。   According to the present invention, in the electrode catalyst layer, the ratio of the mass of the catalyst particles to the mass of the ion conductive material (hereinafter sometimes referred to as catalyst particle / polymer mass ratio) is, for example, 3/1 to 20 /. 1 and preferably in the range of 4/1 to 18/1.

本発明においては、電極触媒層は、触媒粒子の結着剤として、イオン伝導性材料に加えて、他の樹脂を少量含有してもよい。他の樹脂としては、例えば、プロトン伝導性を有しないフッ素樹脂等を挙げることができ、より具体的には、例えば、ポリフッ化ビニリデン、四フッ化エチレン−六フッ化プロピレン共重合体、ポリ四フッ化エチレン等を挙げることができる。結着剤におけるその樹脂の割合は、結着剤中、30重量%以下であることが好ましく、特に、10重量%以下であることが好ましい。   In the present invention, the electrode catalyst layer may contain a small amount of other resins in addition to the ion conductive material as a binder for the catalyst particles. Examples of other resins include fluorine resins that do not have proton conductivity, and more specifically, for example, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, polytetrafluoroethylene. Mention may be made of ethylene fluoride. The proportion of the resin in the binder is preferably 30% by weight or less, and particularly preferably 10% by weight or less in the binder.

また、導電性多孔質基材としては、 多孔性炭素粉や導電性高分子等の繊維からなるペーパー、不織布、織布、編物、導電性多孔質膜等を挙げることができる。   Examples of the conductive porous substrate include papers, nonwoven fabrics, woven fabrics, knitted fabrics, and conductive porous membranes made of fibers such as porous carbon powder and conductive polymer.

〔燃料電池用膜電極接合体〕
さらに本発明は、高分子電解質膜を挟んで上記本発明のアノードとカソードを積層した、燃料電池用膜電極接合体を包含する。
[Membrane electrode assembly for fuel cells]
The present invention further includes a membrane electrode assembly for a fuel cell in which the anode and the cathode of the present invention are laminated with a polymer electrolyte membrane interposed therebetween.

本発明において、カソードは、電極触媒を結着剤と共に電極触媒層として導電性多孔質基材に結着、担持させてなるものであり、その構成は特に限定されるものではない。電極触媒層は、例えば、白金微粒子を担持させたカーボンブラック粉末と共に、導電助剤としてのカーボンブラック粉末、これらをまとめるための結着剤及び電気化学反応によって発生するイオンの伝導体となるイオン伝導性材料等を適宜に含有する。   In the present invention, the cathode is formed by binding and supporting an electrode catalyst together with a binder as an electrode catalyst layer on a conductive porous substrate, and its configuration is not particularly limited. The electrode catalyst layer is, for example, a carbon black powder carrying platinum fine particles, a carbon black powder as a conductive auxiliary agent, a binder for bringing them together, and an ion conductor that becomes a conductor of ions generated by an electrochemical reaction. Suitably contains a functional material or the like.

一例を挙げれば、カソードは、例えば、白金微粒子を担持させたカーボンブラック粉末と、必要に応じて、導電助剤としてのカーボンブラックとを適宜の結着剤を用いてペーストとし、これを前述したような導電性多孔質基材に塗布し、加熱、乾燥させることによって得ることができる。   For example, the cathode may be a paste using, for example, carbon black powder supporting platinum fine particles and, if necessary, carbon black as a conductive aid using a suitable binder, and this is described above. It can obtain by apply | coating to such an electroconductive porous base material, heating and drying.

また、カソードとアノードを構成するそれぞれの導電性多孔質基材は、所謂フラッディングを防止するために、電極触媒を担持させる側に導電性撥水層を有することができる。   In addition, each conductive porous substrate constituting the cathode and the anode can have a conductive water repellent layer on the side on which the electrode catalyst is supported in order to prevent so-called flooding.

〔燃料電池〕
さらに本発明は、上記本発明の燃料電池用膜電極接合体を含む燃料電池を包含する。
〔Fuel cell〕
Furthermore, the present invention includes a fuel cell including the fuel cell membrane electrode assembly of the present invention.

本発明による燃料電池の作動温度は、通常、0℃以上であり、好ましくは、15〜200℃の範囲であり、より好ましくは、30〜100℃の範囲である。作動温度が高すぎるときは、用いる材料の劣化や剥離等が起こるおそれがある。
The operating temperature of the fuel cell according to the present invention is usually 0 ° C. or higher, preferably in the range of 15 to 200 ° C., and more preferably in the range of 30 to 100 ° C. When the operating temperature is too high, the material used may be deteriorated or peeled off.

アルカリ系直接エチレングリコール燃料電池においては、燃料極(アノード)に本発明の複合体を触媒として用いることができる。但し、電極用の触媒として用いることから固体担体は、導電性材料、例えば、炭素系材料(例えば、活性炭、カーボンブラック、カーボンナノチューブ、多孔質炭素材料など)であることが好ましい。本発明の複合体は実施例に示すように、エチレングリコール酸化反応(EOR)活性が示す。本燃料電池での反応は以下のとおりである。
燃料極: HOCH2CH2OH + 8 OH- →(COOH)2 + 6 H2O + 8 e-
酸素極: 2 O2 + 4 H2O + 8 e- →8 OH-
全反応: HOCH2CH2OH + 2 O2 →(COOH)2 + 2 H2O
In an alkaline direct ethylene glycol fuel cell, the composite of the present invention can be used as a catalyst for the fuel electrode (anode). However, since it is used as a catalyst for electrodes, the solid support is preferably a conductive material, for example, a carbon-based material (for example, activated carbon, carbon black, carbon nanotube, porous carbon material, etc.). As shown in the Examples, the complex of the present invention exhibits ethylene glycol oxidation reaction (EOR) activity. The reaction in this fuel cell is as follows.
Fuel electrode: HOCH 2 CH 2 OH + 8 OH - → (COOH) 2 + 6 H 2 O + 8 e -
Oxygen electrode: 2 O 2 + 4 H 2 O + 8 e - → 8 OH -
Total reaction: HOCH 2 CH 2 OH + 2 O 2 → (COOH) 2 + 2 H 2 O

本発明の複合体を燃料極(アノード)用触媒として用いることで、アルカリ系直接エチレングリコール燃料電池を構成できる。さらにエチレングリコールを燃料として使用する燃料電池からの排出物であるシュウ酸を、例えば、光触媒によってエチレングリコールに還元することで、燃料の再利用が可能な燃料電池を提供することができる。   By using the composite of the present invention as a fuel electrode (anode) catalyst, an alkaline direct ethylene glycol fuel cell can be constructed. Furthermore, by reducing oxalic acid, which is an emission from a fuel cell that uses ethylene glycol as a fuel, to ethylene glycol using, for example, a photocatalyst, a fuel cell capable of reusing the fuel can be provided.

[フィッシャー・トロプシュ反応触媒]
本発明の複合体は、フィッシャー・トロプシュ(FT)反応用の触媒として利用できる。但し、FT反応用触媒に関しては、本発明の複合体から、前記鉄族金属系合金粒子がFe及びCoからなる鉄族金属系合金粒子である複合体は除く。
[Fischer-Tropsch reaction catalyst]
The composite of the present invention can be used as a catalyst for a Fischer-Tropsch (FT) reaction. However, regarding the FT reaction catalyst, the composite in which the iron group metal alloy particles are iron group metal alloy particles made of Fe and Co are excluded from the composite of the present invention.

FT反応は合成ガス(一酸化炭素と水素を主成分とする混合ガス)から炭化水素を合成する方法である。FT反応としては、本発明の複合体を触媒として用い、合成ガス(CO+H2)から直鎖の飽和又は不飽和炭化水素を生成する反応が挙げられる。このときの反応式は以下の通りである。
nCO + (2n+1)H2 → Cn2n+2 + nH2
nCO + 2nH2 → Cn2n + nH2
The FT reaction is a method of synthesizing hydrocarbons from synthesis gas (a mixed gas containing carbon monoxide and hydrogen as main components). Examples of the FT reaction include a reaction in which a linear saturated or unsaturated hydrocarbon is produced from synthesis gas (CO + H 2 ) using the complex of the present invention as a catalyst. The reaction formula at this time is as follows.
nCO + (2n + 1) H 2 → C n H 2n + 2 + nH 2 O
nCO + 2nH 2 → C n H 2n + nH 2 O

本発明の複合体からなるFT反応用触媒は、FT反応によるエチレン、プロピレン、ブテン等の炭素原子数2〜4の軽質オレフィンの製造へ適用した場合に、CO転化率が高く、目的物を効率よく得られるものである。また、本発明の複合体からなるFT反応用触媒は、特にプロピレンの製造に好適である。FT反応における圧力は、例えば、常圧〜10MPaの範囲、好ましくは0.5〜5MPaの範囲とすることができ、温度は、200〜450℃の範囲、好ましくは200〜350℃の範囲とすることができる。   The catalyst for FT reaction comprising the composite of the present invention has a high CO conversion rate and makes the target product efficient when applied to the production of light olefins having 2 to 4 carbon atoms such as ethylene, propylene and butene by the FT reaction. It can be obtained well. The FT reaction catalyst comprising the composite of the present invention is particularly suitable for the production of propylene. The pressure in the FT reaction can be, for example, in the range of normal pressure to 10 MPa, preferably in the range of 0.5 to 5 MPa, and the temperature is in the range of 200 to 450 ° C., preferably in the range of 200 to 350 ° C. be able to.

以下、本発明を実施例によりさらに詳細に説明する。但し、本発明は、実施例に記載の範囲に限定される意図ではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not intended to be limited to the scope described in the examples.

[実施例1-1]Fe33Co33Ni33/C50wt%
0.0747g の酢酸鉄(II)、0.0706g の酢酸コバルト(II)、0.0996g の酢酸ニッケル(II)四水和物、0.0515g のポリエチレングリコール(以下PEG と表記する)および0.0692g のバルカン(登録商標)を200ml のトリエチレングリコール(以下、TEGと表記する)に混合した。混合溶液を80℃まで加熱した後、0.75g のNaBH4 を加えて5 分間撹拌したのち放冷した。反応混合物にアセトン:ジエチルエーテル=2:1 の混合溶液を黒色層と無色透明の溶液層に分離が起こるまで加えた後、遠心分離して黒色の試料を得た。得られた黒色沈殿を水に分散させた。この混合物に、アセトンを加えて再び黒色試料と無色透明な溶液を分離させ、遠心分離する作業を3 回繰り返して黒色試料を得た。
[Example 1-1] Fe 33 Co 33 Ni 33 / C50wt%
0.0747 g of iron (II) acetate, 0.0706 g of cobalt (II) acetate, 0.0996 g of nickel (II) acetate tetrahydrate, 0.0515 g of polyethylene glycol (hereinafter referred to as PEG) and 0.0692 g of vulcan (registered) (Trademark) was mixed with 200 ml of triethylene glycol (hereinafter referred to as TEG). The mixed solution was heated to 80 ° C., 0.75 g of NaBH 4 was added, and the mixture was stirred for 5 minutes and then allowed to cool. A mixed solution of acetone: diethyl ether = 2: 1 was added to the reaction mixture until separation occurred between the black layer and the colorless and transparent solution layer, and then centrifuged to obtain a black sample. The resulting black precipitate was dispersed in water. Acetone was added to this mixture to separate the black sample from the colorless and transparent solution, and the operation of centrifuging was repeated three times to obtain a black sample.

この試料を触媒前駆体と呼ぶ。触媒前駆体を真空デシケータ内にて乾燥させた。乾燥させた触媒前駆体を粉砕して粉末とした。500mg の前駆体粉末を石英ボートに移し、5%H2-Ar ガスを流通させた状態で700℃まで昇温して触媒を作成した。This sample is called a catalyst precursor. The catalyst precursor was dried in a vacuum desiccator. The dried catalyst precursor was pulverized into a powder. 500 mg of the precursor powder was transferred to a quartz boat, and a catalyst was prepared by raising the temperature to 700 ° C. while 5% H 2 —Ar gas was circulated.

TEM 測定より、バルカン(登録商標)に担持されたFe-Co-Ni ナノ粒子の粒径は35.6nm であることがわかった。粉末XRD 測定より、作製した触媒中のナノ粒子はbcc 構造をとることがわかった、ICP−AES 測定より、触媒中に金属が49wt%含まれ、Fe:Co:Ni=34:34:32 であることが明らかとかった。   From the TEM measurement, it was found that the particle size of Fe-Co-Ni nanoparticles supported on Vulcan (registered trademark) was 35.6 nm. From the powder XRD measurement, it was found that the nanoparticles in the prepared catalyst had a bcc structure. From the ICP-AES measurement, the catalyst contained 49 wt% of metal, and Fe: Co: Ni = 34: 34: 32 It was clear that there was.

[実施例1-2]Fe50Co50/C50wt%
0.5611g の酢酸鉄(II)、0.5333g の酢酸コバルト(II)、2.6337g のPEG および0.3460g のバルカン(登録商標)を200ml のTEG に混合した。混合溶液を80℃まで加熱した後、2.2895g のNaBH4 を加えて8 分間撹拌したのち放冷した。反応混合物にアセトン:ジエチルエーテル=2:1 の混合溶液を黒色層と無色透明の溶液層に分離が起こるまで加えた後、遠心分離して黒色の試料を得た。得られた黒色沈殿を水に分散させた。この混合物に、アセトンを加えて再び黒色試料と無色透明な溶液を分離させ、遠心分離する作業を3 回繰り返して黒色試料を得た。この試料を触媒前駆体と呼ぶ。触媒前駆体を真空デシケータ内にて乾燥させた。
[Example 1-2] Fe 50 Co 50 / C50wt%
0.5611 g of iron (II) acetate, 0.5333 g of cobalt (II) acetate, 2.6337 g of PEG and 0.3460 g of Vulcan® were mixed in 200 ml of TEG. After heating the mixed solution to 80 ° C., 2.2895 g of NaBH 4 was added and stirred for 8 minutes, and then allowed to cool. A mixed solution of acetone: diethyl ether = 2: 1 was added to the reaction mixture until separation occurred between the black layer and the colorless and transparent solution layer, and then centrifuged to obtain a black sample. The resulting black precipitate was dispersed in water. Acetone was added to this mixture to separate the black sample from the colorless and transparent solution, and the operation of centrifuging was repeated three times to obtain a black sample. This sample is called a catalyst precursor. The catalyst precursor was dried in a vacuum desiccator.

乾燥させた触媒前駆体を粉砕して粉末とした。500mg の前駆体粉末を石英ボートに移し、5%H2-Ar ガスを流通させた状態で700℃まで昇温して触媒を作成した。The dried catalyst precursor was pulverized into a powder. 500 mg of the precursor powder was transferred to a quartz boat, and a catalyst was prepared by raising the temperature to 700 ° C. while 5% H 2 —Ar gas was circulated.

TEM 測定より、バルカン(登録商標)に担持されたFe-Co ナノ粒子の粒径は24nm であることがわかった。粉末XRD 測定より、作製した触媒中のナノ粒子はbcc 構造をとることがわかった、ICP−AES 測定より、触媒中に金属が47wt%含まれ、Fe:Co=51:49 であることが明らかとかった。   From the TEM measurement, it was found that the particle size of Fe-Co nanoparticles supported on Vulcan (registered trademark) was 24 nm. From the powder XRD measurement, it was found that the nanoparticles in the prepared catalyst had a bcc structure. From the ICP-AES measurement, it was clear that the catalyst contained 47 wt% of metal and Fe: Co = 51: 49. I did.

[実施例1-3]Co50Ni50/C50wt%
0.5335g の酢酸コバルト(II)、0.7471g の酢酸ニッケル(II)四水和物、2.6378gのPEG および0.3458g のバルカン(登録商標)を200ml のTEG に混合した。混合溶液を80℃まで加熱した後、2.31g のNaBH4 を加えて10 分間撹拌したのち放冷した。反応混合物にアセトン:ジエチルエーテル=2:1 の混合溶液を黒色層と無色透明の溶液層に分離が起こるまで加えた後、遠心分離して黒色の試料を得た。得られた黒色沈殿を水に分散させた。この混合物に、アセトンを加えて再び黒色試料と無色透明な溶液を分離させ、遠心分離する作業を3 回繰り返して黒色試料を得た。この試料を触媒前駆体と呼ぶ。触媒前駆体を真空デシケータ内にて乾燥させた。
[Example 1-3] Co 50 Ni 50 / C50wt%
0.5335 g cobalt (II) acetate, 0.7471 g nickel (II) acetate tetrahydrate, 2.6378 g PEG and 0.3458 g Vulcan® were mixed in 200 ml TEG. The mixed solution was heated to 80 ° C., 2.31 g of NaBH 4 was added, and the mixture was stirred for 10 minutes and then allowed to cool. A mixed solution of acetone: diethyl ether = 2: 1 was added to the reaction mixture until separation occurred between the black layer and the colorless and transparent solution layer, and then centrifuged to obtain a black sample. The resulting black precipitate was dispersed in water. Acetone was added to this mixture to separate the black sample from the colorless and transparent solution, and the operation of centrifuging was repeated three times to obtain a black sample. This sample is called a catalyst precursor. The catalyst precursor was dried in a vacuum desiccator.

乾燥させた触媒前駆体を粉砕して粉末とした。500mg の前駆体粉末を石英ボートに移し、5%H2-Ar ガスを流通させた状態で700℃まで昇温して触媒を作成した。The dried catalyst precursor was pulverized into a powder. 500 mg of the precursor powder was transferred to a quartz boat, and a catalyst was prepared by raising the temperature to 700 ° C. while 5% H 2 —Ar gas was circulated.

TEM 測定より、バルカン(登録商標)に担持されたCo-Ni ナノ粒子の粒径は13nm であることがわかった。粉末XRD 測定より、作製した触媒中のナノ粒子はbcc 構造をとることがわかった、ICP−AES 測定より、触媒中に金属が42wt%含まれ、Co:Ni=48:52 であることが明らかとかった。   From the TEM measurement, it was found that the particle diameter of the Co-Ni nanoparticles supported on Vulcan (registered trademark) was 13 nm. From the powder XRD measurement, it was found that the nanoparticles in the prepared catalyst had a bcc structure. From the ICP-AES measurement, it was clear that the catalyst contained 42 wt% of metal and Co: Ni = 48: 52. I did.

[実施例1-4]Fe50Ni50/C50wt%
0.5612g の酢酸鉄(II)、0.7471g の酢酸ニッケル(II)四水和物、2.6368g のPEGおよび0.71g のバルカン(登録商標)を200ml のTEG に混合した。混合溶液を80℃まで加熱した後、2.4037g のNaBH4 を加えて7 分間撹拌したのち放冷した。反応混合物にアセトン:ジエチルエーテル=2:1 の混合溶液を黒色層と無色透明の溶液層に分離が起こるまで加えた後、遠心分離して黒色の試料を得た。得られた黒色沈殿を水に分散させた。この混合物に、アセトンを加えて再び黒色試料と無色透明な溶液を分離させ、遠心分離する作業を3 回繰り返して黒色試料を得た。この試料を触媒前駆体と呼ぶ。触媒前駆体を真空デシケータ内にて乾燥させた。
[Example 1-4] Fe50Ni50 / C50wt%
0.5612 g of iron (II) acetate, 0.7471 g of nickel (II) acetate tetrahydrate, 2.6368 g of PEG and 0.71 g of Vulcan® were mixed into 200 ml of TEG. After heating the mixed solution to 80 ° C., 2.4037 g of NaBH 4 was added and stirred for 7 minutes, and then allowed to cool. A mixed solution of acetone: diethyl ether = 2: 1 was added to the reaction mixture until separation occurred between the black layer and the colorless and transparent solution layer, and then centrifuged to obtain a black sample. The resulting black precipitate was dispersed in water. Acetone was added to this mixture to separate the black sample from the colorless and transparent solution, and the operation of centrifuging was repeated three times to obtain a black sample. This sample is called a catalyst precursor. The catalyst precursor was dried in a vacuum desiccator.

乾燥させた触媒前駆体を粉砕して粉末とした。500mg の前駆体粉末を石英ボートに移し、5%H2-Ar ガスを流通させた状態で700℃まで昇温して触媒を作成した。The dried catalyst precursor was pulverized into a powder. 500 mg of the precursor powder was transferred to a quartz boat, and a catalyst was prepared by raising the temperature to 700 ° C. while 5% H 2 —Ar gas was circulated.

TEM 測定より、バルカン(登録商標)に担持されたFe-Ni ナノ粒子の粒径は22 nm であることがわかった。粉末XRD 測定より、作製した触媒中のナノ粒子はbcc 構造をとることがわかった、ICP−AES 測定より、触媒中に金属が44wt%含まれ、Fe:Ni=50:50 であることが明らかとかった。   From the TEM measurement, it was found that the particle size of Fe-Ni nanoparticles supported on Vulcan (registered trademark) was 22 nm. From the powder XRD measurement, it was found that the nanoparticles in the prepared catalyst had a bcc structure. From the ICP-AES measurement, it was clear that the catalyst contained 44 wt% of metal and Fe: Ni = 50: 50. It was.

[実施例1-5]
Fe25Co75/C20wt%
0.135g の酢酸鉄(II)、0.4g の酢酸コバルト(II)、1.33g のポリエチレングリコール(以下PEG と表記する)および0.71g のバルカン(登録商標)を200ml のトリエチレングリコール(以下、TEG と表記する)に混合した。混合溶液を120℃まで加熱した後、1.1gのNaBH4 を加えて5 分間撹拌したのち放冷した。反応混合物にアセトン:ジエチルエーテル=2:1 の混合溶液を黒色層と無色透明の溶液層に分離が起こるまで加えた後、遠心分離して黒色の試料を得た。得られた黒色沈殿を水に分散させた。この混合物に、アセトンを加えて再び黒色試料と無色透明な溶液を分離させ、遠心分離する作業を3 回繰り返して黒色試料をえた。この試料を触媒前駆体と呼ぶ。触媒前駆体を真空デシケータ内にて乾燥させた。
[Example 1-5]
Fe 25 Co 75 / C20wt%
0.135 g of iron (II) acetate, 0.4 g of cobalt (II) acetate, 1.33 g of polyethylene glycol (hereinafter referred to as PEG) and 0.71 g of Vulcan (registered trademark) in 200 ml of triethylene glycol (hereinafter referred to as TEG) Mixed). After heating the mixed solution to 120 ° C., 1.1 g of NaBH 4 was added and stirred for 5 minutes, and then allowed to cool. A mixed solution of acetone: diethyl ether = 2: 1 was added to the reaction mixture until separation occurred between the black layer and the colorless and transparent solution layer, and then centrifuged to obtain a black sample. The resulting black precipitate was dispersed in water. Acetone was added to this mixture to separate the black sample from the colorless and transparent solution, and the operation of centrifuging was repeated three times to obtain a black sample. This sample is called a catalyst precursor. The catalyst precursor was dried in a vacuum desiccator.

乾燥させた触媒前駆体を粉砕して粉末とした。500mg の前駆体粉末を石英ボートに移し、5%H2-Ar ガスを流通させた状態で700℃まで昇温して触媒を作成した。The dried catalyst precursor was pulverized into a powder. 500 mg of the precursor powder was transferred to a quartz boat, and a catalyst was prepared by raising the temperature to 700 ° C. while 5% H 2 —Ar gas was circulated.

TEM 測定より、バルカン(登録商標)に担持されたFe-Co ナノ粒子の粒径は17±8nm であることがわかった。粉末XRD 測定より、作製した触媒中のナノ粒子はbcc 構造をとることがわかった、ICP−AES測定より、触媒中に金属が14.1wt%含まれ、Fe:Co=22:78 であることが明らかとかった。   From the TEM measurement, it was found that the particle size of Fe-Co nanoparticles supported on Vulcan (registered trademark) was 17 ± 8 nm. From the powder XRD measurement, it was found that the nanoparticles in the prepared catalyst had a bcc structure. From the ICP-AES measurement, the catalyst contained 14.1 wt% of metal and Fe: Co = 22: 78. It was clear.

[実施例1-6]Fe60Co40/C20wt%
0.26g の鉄(III)アセチルアセトナト、0.27g の酢酸コバルト(II)、1.33g のPEGおよび0.71g のバルカン(登録商標)を200ml のTEG に混合した。混合溶液を80℃まで加熱した後、1.1gのNaBH4を加えて5 分間撹拌したのち放冷した。反応混合物にアセトン:ジエチルエーテル=2:1 の混合溶液を黒色層と無色透明の溶液層に分離が起こるまで加えた後、遠心分離して黒色の試料を得た。得られた黒色沈殿を水に分散させた。この混合物に、アセトンを加えて再び黒色試料と無色透明な溶液を分離させ、遠心分離する作業を3 回繰り返して黒色試料をえた。この試料を触媒前駆体と呼ぶ。触媒前駆体を真空デシケータ内にて乾燥させた。
[Example 1-6] Fe 60 Co 40 / C20wt%
0.26 g iron (III) acetylacetonate, 0.27 g cobalt (II) acetate, 1.33 g PEG and 0.71 g Vulcan® were mixed in 200 ml TEG. The mixed solution was heated to 80 ° C., 1.1 g of NaBH 4 was added, and the mixture was stirred for 5 minutes and then allowed to cool. A mixed solution of acetone: diethyl ether = 2: 1 was added to the reaction mixture until separation occurred between the black layer and the colorless and transparent solution layer, and then centrifuged to obtain a black sample. The resulting black precipitate was dispersed in water. Acetone was added to this mixture to separate the black sample from the colorless and transparent solution, and the operation of centrifuging was repeated three times to obtain a black sample. This sample is called a catalyst precursor. The catalyst precursor was dried in a vacuum desiccator.

乾燥させた触媒前駆体を粉砕して粉末とした。500mg の前駆体粉末を石英ボートに移し、5%H2-Ar ガスを流通させた状態で700℃まで昇温して触媒を作成した。   The dried catalyst precursor was pulverized into a powder. 500 mg of the precursor powder was transferred to a quartz boat, and a catalyst was prepared by raising the temperature to 700 ° C. in a state where 5% H 2 -Ar gas was circulated.

TEM 測定より、バルカン(登録商標)に担持されたFe-Co ナノ粒子の粒径は24±14nm であることがわかった。粉末XRD 測定より、作製した触媒中のナノ粒子はbcc 構造をとることがわかった、ICP−AES 測定より、触媒中に金属が12.7wt%含まれ、Fe:Co=55:45 であることが明らかとかった。   From the TEM measurement, it was found that the particle size of Fe-Co nanoparticles supported on Vulcan (registered trademark) was 24 ± 14 nm. From the powder XRD measurement, it was found that the nanoparticles in the prepared catalyst had a bcc structure. From the ICP-AES measurement, the catalyst contained 12.7 wt% of metal and Fe: Co = 55: 45. It was clear.

[実施例1-7]Fe75Co25/C20wt%
0.39g の酢酸鉄(II)、0.13g の酢酸コバルト(II)、1.33g のPEG および0.71gのバルカン(登録商標)を200ml のTEG に混合した。混合溶液を120℃まで加熱した後、1.1gのNaBH4 を加えて5 分間撹拌したのち放冷した。反応混合物にアセトン:ジエチルエーテル=2:1 の混合溶液を黒色層と無色透明の溶液層に分離が起こるまで加えた後、遠心分離して黒色の試料を得た。得られた黒色沈殿を水に分散させた。この混合物に、アセトンを加えて再び黒色試料と無色透明な溶液を分離させ、遠心分離する作業を3 回繰り返して黒色試料をえた。
[Example 1-7] Fe 75 Co 25 / C20 wt%
0.39 g of iron (II) acetate, 0.13 g of cobalt (II) acetate, 1.33 g of PEG and 0.71 g of Vulcan® were mixed into 200 ml of TEG. After heating the mixed solution to 120 ° C., 1.1 g of NaBH 4 was added and stirred for 5 minutes, and then allowed to cool. A mixed solution of acetone: diethyl ether = 2: 1 was added to the reaction mixture until separation occurred between the black layer and the colorless and transparent solution layer, and then centrifuged to obtain a black sample. The resulting black precipitate was dispersed in water. Acetone was added to this mixture to separate the black sample from the colorless and transparent solution, and the operation of centrifuging was repeated three times to obtain a black sample.

この試料を触媒前駆体と呼ぶ。触媒前駆体を真空デシケータ内にて乾燥させた。乾燥させた触媒前駆体を粉砕して粉末とした。500mg の前駆体粉末を石英ボートに移し、5%H2-Ar ガスを流通させた状態で700℃まで昇温して触媒を作成した。This sample is called a catalyst precursor. The catalyst precursor was dried in a vacuum desiccator. The dried catalyst precursor was pulverized into a powder. 500 mg of the precursor powder was transferred to a quartz boat, and a catalyst was prepared by raising the temperature to 700 ° C. while 5% H 2 —Ar gas was circulated.

TEM 測定より、バルカン(登録商標)に担持されたナノ粒子の粒径は18±9nm であることがわかった。粉末XRD 測定より、作製した触媒中のFe ナノ粒子はbcc 構造をとり、ICP−AES 測定より、触媒中に金属が22wt%含まれ、Fe:Co=72:28 であることが明らかとかった。   From the TEM measurement, it was found that the particle size of the nanoparticles supported on Vulcan (registered trademark) was 18 ± 9 nm. From the powder XRD measurement, the Fe nanoparticles in the prepared catalyst have a bcc structure. From the ICP-AES measurement, it was clear that the catalyst contained 22 wt% of metal and Fe: Co = 72: 28. .

[参考例1] Co/C50wt%
1.06g の酢酸コバルト(II)、1.33g のPEG をおよび0.71g のバルカン(登録商標)を200ml のTEG に混合した。混合溶液を120℃まで加熱した後、1.1gのNaBH4 を加えて5 分間撹拌したのち放冷した。反応混合物にアセトン:ジエチルエーテル=2:1 の混合溶液を黒色層と無色透明の溶液層に分離が起こるまで加えた後、遠心分離して黒色の試料を得た。得られた黒色沈殿を水に分散させた。この混合物に、アセトンを加えて再び黒色試料と無色透明な溶液を分離させ、遠心分離する作業を3 回繰り返して黒色試料をえた。この試料を触媒前駆体と呼ぶ。触媒前駆体を真空デシケータ内にて乾燥させた。
[Reference Example 1] Co / C50wt%
1.06 g of cobalt (II) acetate, 1.33 g of PEG and 0.71 g of Vulcan® were mixed into 200 ml of TEG. After heating the mixed solution to 120 ° C., 1.1 g of NaBH 4 was added and stirred for 5 minutes, and then allowed to cool. A mixed solution of acetone: diethyl ether = 2: 1 was added to the reaction mixture until separation occurred between the black layer and the colorless and transparent solution layer, and then centrifuged to obtain a black sample. The resulting black precipitate was dispersed in water. Acetone was added to this mixture to separate the black sample from the colorless and transparent solution, and the operation of centrifuging was repeated three times to obtain a black sample. This sample is called a catalyst precursor. The catalyst precursor was dried in a vacuum desiccator.

乾燥させた触媒前駆体を粉砕して粉末とした。500mg の前駆体粉末を石英ボートに移し、5%H2-Ar ガスを流通させた状態で800℃まで昇温して触媒を作製した。The dried catalyst precursor was pulverized into a powder. 500 mg of the precursor powder was transferred to a quartz boat and heated to 800 ° C. in a state where 5% H 2 —Ar gas was circulated to prepare a catalyst.

TEM 測定より、バルカン(登録商標)に担持されたCo ナノ粒子の粒径は39.5nm であることがわかった。粉末XRD 測定より、作製した触媒中のナノ粒子はfcc 構造をとることがわかった、ICP−AES 測定より、触媒中にCo が48.2wt%含まれていることが明らかとかった。   From the TEM measurement, it was found that the particle size of the Co nanoparticles supported on Vulcan (registered trademark) was 39.5 nm. From the powder XRD measurement, it was found that the nanoparticles in the prepared catalyst had an fcc structure. From the ICP-AES measurement, it was clear that the catalyst contained 48.2 wt% Co.

[参考例2]Fe/C35wt%
0.14g の酢酸鉄(II)、0.35gのPEGを200ml のTEG に混合した。混合溶液を80℃まで加熱した後、0.08g のバルカン(登録商標)を混合し撹拌した。0.3gのNaBH4 を加えて5 分間撹拌したのち放冷した。反応混合物にアセトン:ジエチルエーテル=1:0 の混合溶液を黒色層と無色透明の溶液層に分離が起こるまで加えた後、遠心分離して黒色の試料を得た。得られた黒色沈殿を水に分散させた。この混合物に、アセトンを加えて再び黒色試料と無色透明な溶液を分離させ、遠心分離する作業を3 回繰り返して黒色試料をえた。この試料を触媒前駆体と呼ぶ。触媒前駆体を真空デシケータ内にて乾燥させた。
[Reference Example 2] Fe / C35wt%
0.14 g of iron (II) acetate and 0.35 g of PEG were mixed in 200 ml of TEG. After heating the mixed solution to 80 ° C., 0.08 g of Vulcan (registered trademark) was mixed and stirred. After adding 0.3 g of NaBH 4 and stirring for 5 minutes, the mixture was allowed to cool. To the reaction mixture, a mixed solution of acetone: diethyl ether = 1: 0 was added to the black layer and the colorless and transparent solution layer until separation occurred, followed by centrifugation to obtain a black sample. The resulting black precipitate was dispersed in water. Acetone was added to this mixture to separate the black sample from the colorless and transparent solution, and the operation of centrifuging was repeated three times to obtain a black sample. This sample is called a catalyst precursor. The catalyst precursor was dried in a vacuum desiccator.

乾燥させた触媒前駆体を粉砕して粉末とした。500mg の前駆体粉末を石英ボートに移し、5%H2-Ar ガスを流通させた状態で800℃まで昇温して触媒を作成した。The dried catalyst precursor was pulverized into a powder. 500 mg of the precursor powder was transferred to a quartz boat and heated to 800 ° C. in a state where 5% H 2 —Ar gas was circulated to prepare a catalyst.

TEM 測定より、バルカン(登録商標)に担持されたFe ナノ粒子の粒径は28.1±12.3nmであることがわかった。粉末XRD 測定より、作製した触媒中のFe ナノ粒子はbcc 構造とfcc構造をとり、ICP−AES 測定より、触媒中にFe が28.5wt%含まれることが明らかとかった。   From the TEM measurement, it was found that the particle size of Fe nanoparticles supported on Vulcan (registered trademark) was 28.1 ± 12.3 nm. From the powder XRD measurement, the Fe nanoparticles in the prepared catalyst have a bcc structure and an fcc structure, and from the ICP-AES measurement, it is clear that the catalyst contains 28.5 wt% Fe.

[参考例3]Ni/C50wt%
3.9g の酢酸ニッケル(II)四水和物、7gのPEGを200ml のTEG に混合した。混合溶液を80℃まで加熱した後、0.9g のバルカン(登録商標)を混合し撹拌した。6gのNaBH4 を加えて5 分間撹拌したのち放冷した。反応混合物にアセトン:ジエチルエーテル=1:0 の混合溶液を黒色層と無色透明の溶液層に分離が起こるまで加えた後、遠心分離して黒色の試料を得た。得られた黒色沈殿を水に分散させた。この混合物に、アセトンを加えて再び黒色試料と無色透明な溶液を分離させ、遠心分離する作業を3 回繰り返して黒色試料をえた。この試料を触媒前駆体と呼ぶ。触媒前駆体を真空デシケータ内にて乾燥させた。
[Reference Example 3] Ni / C50wt%
3.9 g of nickel (II) acetate tetrahydrate, 7 g of PEG were mixed into 200 ml of TEG. After heating the mixed solution to 80 ° C., 0.9 g of Vulcan (registered trademark) was mixed and stirred. 6 g of NaBH 4 was added and stirred for 5 minutes, and then allowed to cool. A mixed solution of acetone: diethyl ether = 1: 0 was added to the reaction mixture until separation occurred between the black layer and the colorless and transparent solution layer, followed by centrifugation to obtain a black sample. The resulting black precipitate was dispersed in water. Acetone was added to this mixture to separate the black sample from the colorless and transparent solution, and the operation of centrifuging was repeated three times to obtain a black sample. This sample is called a catalyst precursor. The catalyst precursor was dried in a vacuum desiccator.

乾燥させた触媒前駆体を粉砕して粉末とした。500mg の前駆体粉末を石英ボートに移し、5%H2-Ar ガスを流通させた状態で800℃まで昇温して触媒を作成した。The dried catalyst precursor was pulverized into a powder. 500 mg of the precursor powder was transferred to a quartz boat and heated to 800 ° C. in a state where 5% H 2 —Ar gas was circulated to prepare a catalyst.

TEM 測定より、バルカン(登録商標)に担持されたNiナノ粒子の粒径は37.0±11.5nmであることがわかった。粉末XRD 測定より、作製した触媒中のNi ナノ粒子はfcc構造をとり、ICP−AES 測定より、触媒中にNi が46.3wt%含まれることが明らかとかった。   From the TEM measurement, it was found that the particle size of the Ni nanoparticles supported on Vulcan (registered trademark) was 37.0 ± 11.5 nm. From the powder XRD measurement, the Ni nanoparticles in the prepared catalyst had an fcc structure, and from the ICP-AES measurement, it was clear that 46.3 wt% of Ni was contained in the catalyst.

[試験例1]
図1の(a)に参考例1で得られた従来(含浸)法(900℃加熱処理後)調製品、および(b)に実施例1-1で得られた本発明(900℃加熱処理後)により調製されたFe 系合金ナノ合金担持触媒のTEM 像を示す。
[Test Example 1]
Fig. 1 (a) shows the conventional (impregnation) method (after 900 ° C heat treatment) preparation obtained in Reference Example 1, and (b) shows the present invention obtained in Example 1-1 (900 ° C heat treatment). The TEM image of the Fe-based alloy nanoalloy-supported catalyst prepared in the latter step is shown.

[試験例2]
図2に、実施例1-1〜4で得られたFexCoyNi(1-x-y)/Cの粉末XRDパターンを示す。
[Test Example 2]
FIG. 2 shows the powder XRD patterns of FexCoyNi (1-xy) / C obtained in Examples 1-1 to 4.

[試験例3]
図3に、実施例1-2で得られたFe50Co50/C 前駆体(a)とナノ合金触媒(b)のSTEM-EDS(元素マップ)像を示す。鉄とコバルトが16.7nm3 内に分散していることが分かる。
[Test Example 3]
FIG. 3 shows an STEM-EDS (element map) image of the Fe 50 Co 50 / C precursor (a) and the nanoalloy catalyst (b) obtained in Example 1-2. It can be seen that iron and cobalt are dispersed within 16.7 nm 3 .

[試験例4]
FexCoyNi(100-x-y)/C のTEM 像およびTEM-EDS による金属組成分析結果
図4に二成分系ナノ合金(RT〜1000℃、10K/min、10min Keep、N2)のTEM像を示す。図5に金属ナノ粒子のTEM像を示す。
[Test Example 4]
TEM image of FexCoyNi (100-xy) / C and metal composition analysis result by TEM-EDS FIG. 4 shows a TEM image of the binary nanoalloy (RT to 1000 ° C., 10 K / min, 10 min Keep, N 2 ). FIG. 5 shows a TEM image of the metal nanoparticles.

[試験例5]
FexCoyNi(100-x-y)/C をアノード触媒に用いた、ダイレクトグリコール無機アルカリ電池発電特性を図6に示す。組成により出力特性が変化している。
[Test Example 5]
FIG. 6 shows the power generation characteristics of a direct glycol inorganic alkaline battery using FexCoyNi (100-xy) / C as an anode catalyst. The output characteristics change depending on the composition.

[実施例2-1]Fe-Co-Niナノ合金触媒の調製
(1)A重量/gの(2)金属塩原料A、(3)B重量/gの(4)金属塩原料B、(5)C重量/gの(6)金属塩原料C、(7)D重量/gの(8)保護剤Dおよび(9)E重量/gの(10)担体Eを(11)F容量/mlの(12)溶媒Fに混合した。
混合溶液を(13)温度/℃まで加熱した後、(14)重量/gのNaBH4を加えて(15)時間撹拌したのち放冷した。反応混合物にアセトン:ジエチルエーテル=組成(16): (17)の混合溶液を黒色層と無色透明の溶液層に分離が起こるまで加えた後、遠心分離して黒色の試料を得た。得られた黒色沈殿を水に分散させた。この混合物に、アセトンおよびジエチルエーテルを加えて再び黒色試料と無色透明な溶液を分離させ、遠心分離して黒色試料を得た。この試料を触媒前駆体と呼ぶ。触媒前駆体を真空デシケータ内にて乾燥させた。
乾燥させた触媒前駆体を粉砕して粉末とした。(18)重量/gの前駆体粉末を石英ボートに移し、5%H2-Arガスを流通させた状態で(19)温度/℃で(20)時間/分間前駆体を焼成して触媒を作製した。
TEM測定より、担持されたナノ粒子の粒径は(21)直径/nmであることがわかった。ICP−AES測定より、触媒中に金属が(22)金属担持量/ wt%含まれ、Fe:Co:Ni=組成(23):(24):(25)であることが明らかとかった。(1)〜(25)の各説明は表1に示す。活性炭(Vulcan)以外の担体材料としてγ-Al2O3を担体とする複合体も合成した。
[Example 2-1] Preparation of Fe-Co-Ni nanoalloy catalyst
(1) A weight / g (2) Metal salt raw material A, (3) B weight / g (4) Metal salt raw material B, (5) C weight / g (6) Metal salt raw material C, (7 D) weight / g of (8) protective agent D and (9) E weight / g of (10) carrier E were mixed with (11) F volume / ml of (12) solvent F.
The mixed solution was heated to (13) temperature / ° C., (14) weight / g NaBH 4 was added, and the mixture was stirred for (15) hours and then allowed to cool. A mixed solution of acetone: diethyl ether = composition (16): (17) was added to the reaction mixture until separation occurred between the black layer and the colorless and transparent solution layer, followed by centrifugation to obtain a black sample. The resulting black precipitate was dispersed in water. Acetone and diethyl ether were added to the mixture to again separate the black sample from the colorless and transparent solution, and centrifuged to obtain a black sample. This sample is called a catalyst precursor. The catalyst precursor was dried in a vacuum desiccator.
The dried catalyst precursor was pulverized into a powder. (18) Transfer the weight / g of precursor powder to a quartz boat and sinter the precursor at (19) temperature / ° C for (20) hours / minute with 5% H 2 -Ar gas flowing. Produced.
From the TEM measurement, it was found that the particle size of the supported nanoparticles was (21) diameter / nm. From the ICP-AES measurement, it was found that the metal contained (22) metal loading / wt% in the catalyst, and Fe: Co: Ni = composition (23) :( 24) :( 25). Each description of (1) to (25) is shown in Table 1. A composite using γ-Al2O3 as a support material other than activated carbon (Vulcan) was also synthesized.

[実施例2-2]Fe-Co-Crナノ合金触媒の調製
実施例2-1同様の方法でFe-Co-Crナノ合金触媒を調製した。(1)〜(25)の各説明は表2に記載した。
[Example 2-2] Preparation of Fe-Co-Cr nanoalloy catalyst An Fe-Co-Cr nanoalloy catalyst was prepared in the same manner as in Example 2-1. Each explanation of (1) to (25) is shown in Table 2.

[実施例2-3]Fe-Crナノ合金触媒の調製
実施例2-1同様の方法でFe-Crナノ合金触媒を調製した。但し、実施例2-1の(1)〜(4)が表3の(1)〜(4)に相当し、(7)〜(25)が表3の(5)〜(22)に相当する。
[Example 2-3] Preparation of Fe-Cr nanoalloy catalyst An Fe-Cr nanoalloy catalyst was prepared in the same manner as in Example 2-1. However, (1) to (4) in Example 2-1 correspond to (1) to (4) in Table 3, and (7) to (25) correspond to (5) to (22) in Table 3. To do.

[実施例2-4]Fe-Mnナノ合金触媒の調製
実施例2-1同様の方法でFe- Mnナノ合金触媒を調製した。但し、実施例2-1の(1)〜(4)が表4の(1)〜(4)に相当し、(7)〜(25)が表4の(5)〜(22)に相当する。
[Example 2-4] Preparation of Fe-Mn nanoalloy catalyst An Fe-Mn nanoalloy catalyst was prepared in the same manner as in Example 2-1. However, (1) to (4) in Example 2-1 correspond to (1) to (4) in Table 4, and (7) to (25) correspond to (5) to (22) in Table 4. To do.

[実施例2-5] Fe-Co-Ni/Cの粉末XRDパターン
BRUKER社製D8ADVANCEを使いCu Kα線により実施例2-1で作製した表1のFe33Co33Ni33/C(=FeCoNi/C)、Co50Ni50/C(=CoNi/C)、Fe50Co50/C(=FeCo/C)、Fe50Ni50/C(=FeNi/C)の粉末XRDパターンを測定した(図7)。尚、Co/C、 Fe/C、Ni/Cは参考例1〜3で得られた試料である。 XRDパターンの全体像を図7に示す。全てのナノ合金触媒に於いて、単一の結晶相からの回折パターンが得られたことから、全てのサンプルは固溶体型構造であることが示唆された。
[Example 2-5] Powder XRD pattern of Fe-Co-Ni / C
Fe33Co33Ni33 / C (= FeCoNi / C), Co50Ni50 / C (= CoNi / C), and Fe50Co50 / C (= FeCo / C) in Table 1 prepared in Example 2-1 using BRUKER D8ADVANCE with Cu Kα line The powder XRD pattern of Fe50Ni50 / C (= FeNi / C) was measured (FIG. 7). Co / C, Fe / C, and Ni / C are samples obtained in Reference Examples 1 to 3. An overall image of the XRD pattern is shown in FIG. For all nanoalloy catalysts, diffraction patterns from a single crystalline phase were obtained, suggesting that all samples had a solid solution structure.

[実施例2-6]STEM-EDSによる元素マッピング測定とその一次元解析
JEM-ARM 200FとCEOS Cs correctorを用い、加速電圧120 kVにおいて、実施例2-1で作製した表1のFe33Co33Ni33/C(=FeCoNi/C)、Co50Ni50/C(=CoNi/C)、Fe50Co50/C(=FeCo/C)、Fe50Ni50/C(=FeNi/C)のSTEM-HAADFとEDSによる元素マッピングとその一次元分析をおこなった。元素マッピングの1点1点の間隔はx軸y軸方向とも0.773 nm であり、線分析の1点1点の間隔は0.2-0.5 nm 前後である。結果を図8〜11に示す。得られたTEM写真から、いずれのナノ合金も測定した分解能の範囲でナノ合金の構成元素は粒子全体に均一に分布しており、16.7nm3 の体積内に構成分子が存在していることを示している。また、元素からの特性X線の計数をBF STEM像上にしめした直線上で計測するとどの位置においても全ての構成元素について同様であることがわかった。このことから、ナノ合金内で構成元素が均一に分布していることが明らかとなった。
[Example 2-6] Element mapping measurement by STEM-EDS and its one-dimensional analysis
Using JEM-ARM 200F and CEOS Cs corrector at an acceleration voltage of 120 kV, Fe33Co33Ni33 / C (= FeCoNi / C), Co50Ni50 / C (= CoNi / C) and Fe50Co50 / Elemental mapping of C (= FeCo / C) and Fe50Ni50 / C (= FeNi / C) by STEM-HAADF and EDS and their one-dimensional analysis were performed. The distance between each point of element mapping is 0.773 nm in both the x-axis and y-axis directions, and the distance between each point of line analysis is around 0.2-0.5 nm. The results are shown in FIGS. From the obtained TEM photograph, the constituent elements of the nano-alloy in the range of resolution measured any nano alloys are uniformly distributed throughout the particle, that constituent molecules is present in the volume of 16.7 nm 3 Show. Further, when the characteristic X-ray counts from the elements were measured on a straight line plotted on the BF STEM image, it was found that the same was true for all constituent elements at any position. This revealed that the constituent elements were uniformly distributed in the nanoalloy.

[実施例2-7] Fe-Co-Ni/C上でのエチレングリコールの電気化学的酸化
実施例2-1で作製した表1のFe33Co33Ni33/C(=FeCoNi/C)、Co50Ni50/C(=CoNi/C)、Fe50Co50/C(=FeCo/C)、又はFe50Ni50/C(=FeNi/C)の触媒に50 mgにエチレングリコールを700 mg程加え、黒色懸濁液を調製した。この黒色懸濁液をカーボンフェルトに染み込ませて電極触媒を調製した。
続いて、Nafion膜を隔壁として挟持した反応セルの一方にエチレングリコールを30 wt%、含んだKOH(20 wt%)水溶液を50 mL程加え、先に調製した電極触媒をステンレス製のクリップでホールドした電極を作用極とし、Hg/HgO参照電極とともに溶液に導入した。もう一方のセルへは、KOH(20 wt%)水溶液を50 mL程加えPt線を対極として導入した。反応溶液を1時間程N2バブリングを行い、系中をN2置換した。N2バブリング後のガスクロマトグラフィ分析により、反応開始前の初期状態のセル中の気相成分の分析を行った。さらに作用極および対極側のセルの溶液を50 mL程採取し、脱イオン水450 mLで希釈した試料を、島津製作所製液体クロマトグラフ(LC-20AD)で分析し、反応開始前の溶液成分を分析した。続いて、1.0 V vs. RHEの電圧を印可しながら125分程定電位での電極酸化を行った。電圧印可後は、作用極側の反応溶液中の気相成分をGC分析することにより分析した。また、電圧印可後の反応溶液50 mLを前述のLC-20ADで分析し、溶液成分の分析を行い、初期状態からの差分により、電圧印可にともない生成した各種成分量を算出した。
検討を行った結果を図12に示す。Fe-Co-Ni/C触媒上ではその金属組成により、生成物に違いがあることがわかった。さらにそれらは印可電圧に大きく依存することが明らかとなった。また、FeCoNi/Cを用いた場合には最もシュウ酸の選択性(ca. 16%)が高いことが確認された。尚、Co/C、 Fe/C、Ni/Cは参考例1〜3で得られた試料についての結果である。
[Example 2-7] Electrochemical oxidation of ethylene glycol on Fe-Co-Ni / C Fe33Co33Ni33 / C (= FeCoNi / C) and Co50Ni50 / C (= About 700 mg of ethylene glycol was added to 50 mg of a catalyst of CoNi / C), Fe50Co50 / C (= FeCo / C), or Fe50Ni50 / C (= FeNi / C) to prepare a black suspension. The black suspension was soaked in carbon felt to prepare an electrode catalyst.
Subsequently, about 50 mL of KOH (20 wt%) aqueous solution containing 30 wt% ethylene glycol and 30 wt% ethylene glycol was added to one of the reaction cells sandwiched with the Nafion membrane as a partition, and the previously prepared electrode catalyst was held with a stainless steel clip. The prepared electrode was used as a working electrode and introduced into the solution together with the Hg / HgO reference electrode. About 50 mL of KOH (20 wt%) aqueous solution was added to the other cell, and the Pt line was used as a counter electrode. The reaction solution was bubbled with N 2 for about 1 hour to replace the system with N 2 . The gas phase components in the cell in the initial state before the start of the reaction were analyzed by gas chromatography analysis after N 2 bubbling. Further, about 50 mL of the cell solution on the working electrode and counter electrode side is collected, and the sample diluted with 450 mL of deionized water is analyzed with a liquid chromatograph (LC-20AD) manufactured by Shimadzu Corporation. analyzed. Subsequently, electrode oxidation was performed at a constant potential for about 125 minutes while applying a voltage of 1.0 V vs. RHE. After applying the voltage, the gas phase component in the reaction solution on the working electrode side was analyzed by GC analysis. In addition, 50 mL of the reaction solution after voltage application was analyzed with the LC-20AD described above, the solution components were analyzed, and the amounts of various components generated with voltage application were calculated from the difference from the initial state.
The results of the examination are shown in FIG. It was found that the product was different on the Fe-Co-Ni / C catalyst due to its metal composition. Furthermore, it became clear that they depended greatly on the applied voltage. In addition, when FeCoNi / C was used, it was confirmed that oxalic acid had the highest selectivity (ca. 16%). Co / C, Fe / C, and Ni / C are the results for the samples obtained in Reference Examples 1 to 3.

[実施例2-8] Fe-Co-Ni/Cを用いたダイレクトグリコールアルカリ形燃料電池特性
Fe33Co33Ni33/C(=FeCoNi/C)、Co50Ni50/C(=CoNi/C)、Fe50Co50/C(=FeCo/C)、又はFe50Ni50/C(=FeNi/C)触媒とNaxCoO2電解質粉末を混合し、Heガスを流通させた状態で400 ℃で1時間加熱し焼結体を作製した。その後、焼結体とNaxCoO2加圧成型ペレットを同時に、湿潤H2ガス流通下で300 ℃で30分間加熱することにより、アノード電極およびNaxCoO2電解質ペレットを作製した。カソード電極には、P50Tカーボンペーパー上に、NaxCoO2電解質粉末とVulcan XC-72Rカーボン粉末を重量比2:1で混合した粉末を9.44 mg/cm2塗布したものを使用した。アノードおよびカソード電極はそれぞれ直径5 mmφのものを使用した。作製したアノード電極触媒と電解質ペレット、およびカソード電極をElectroChem社製燃料電池評価用セルに設置し、燃料電池特性評価を行った。アノード電極側に、エチレングリコール10 wt%および水酸化カリウム10 wt%を含有した水溶液を充填し、カソード電極側に70 ℃の湿潤O2ガスを200 ml/minで流通させ、評価セルを70 ℃に保持した。電流-電圧特性はSolartron社製Electrochemical Test System 1280Cにより測定した。開回路電圧測定の結果、0.6-0.7 (V) の起電力を確認した。電流-電圧特性測定の結果を図13に示す。電力密度はFe50Co50/C上で最大で46.0 (mW/cm2)を示すことを確認した。尚、Co/C、 Fe/C、Ni/Cは参考例1〜3で得られた試料についての結果である。
[Example 2-8] Characteristics of direct glycol alkaline fuel cell using Fe-Co-Ni / C
Fe33Co33Ni33 / C (= FeCoNi / C), Co50Ni50 / C (= CoNi / C), Fe50Co50 / C (= FeCo / C), or Fe50Ni50 / C (= FeNi / C) catalyst mixed with Na x CoO 2 electrolyte powder Then, the sintered body was produced by heating at 400 ° C. for 1 hour in a state where He gas was circulated. Thereafter, the sintered body and Na x CoO 2 pressure-molded pellets were simultaneously heated at 300 ° C. for 30 minutes under a flow of wet H 2 gas to produce anode electrodes and Na x CoO 2 electrolyte pellets. As the cathode electrode, P50T carbon paper coated with 9.44 mg / cm 2 of a powder obtained by mixing Na x CoO 2 electrolyte powder and Vulcan XC-72R carbon powder in a weight ratio of 2: 1 was used. Anode and cathode electrodes each having a diameter of 5 mmφ were used. The prepared anode electrode catalyst, electrolyte pellet, and cathode electrode were installed in a fuel cell evaluation cell manufactured by ElectroChem, and the fuel cell characteristics were evaluated. The anode electrode side was filled with an aqueous solution containing 10 wt% ethylene glycol and 10 wt% potassium hydroxide, 70 ° C wet O 2 gas was circulated at 200 ml / min on the cathode electrode side, and the evaluation cell was 70 ° C Held on. The current-voltage characteristics were measured with a Solartron Electrochemical Test System 1280C. As a result of open circuit voltage measurement, an electromotive force of 0.6-0.7 (V) was confirmed. The result of the current-voltage characteristic measurement is shown in FIG. It was confirmed that the power density showed a maximum of 46.0 (mW / cm 2 ) on Fe50Co50 / C. Co / C, Fe / C, and Ni / C are the results for the samples obtained in Reference Examples 1 to 3.

[実施例3]
実施例2-1にて作製したFe50Co50/Al2O3を用いてFT反応を行った。
反応装置は日本ベル製BEL-REAを使用した。Al2O3担持FeCo触媒0.5 gを直径1.0cmの反応管に充填した。前処理はH2を400℃,0.1 MPa, 50 sccm条件下で5時間行った。引き続き,H2/CO (=1)を260℃,1.0 MPa, 37 sccm条件下で16時間処理を行い,次にH2/CO (=1)を300℃,0.1 MPa, 50 sccm条件下で5時間処理を行った。その後,H2/CO (=1)を300℃,1.0 MPa, 37 sccm条件下で16時間FT反応を行った。CO転化率と低級炭化水素の選択率は,BEL-REAに接続したガスクロマトグラフィー装置によって求めた。長鎖炭化水素の選択率は,反応管の後にトルエンのトラップを置き,反応終了後これをガスクロマトグラフィーによって生成物を帰属した。
[Example 3]
FT reaction was performed using Fe50Co50 / Al2O3 prepared in Example 2-1.
The reaction device used was BEL-REA manufactured by Nippon Bell. A reaction tube having a diameter of 1.0 cm was filled with 0.5 g of an Al 2 O 3 supported FeCo catalyst. Pretreatment was performed for 5 hours under conditions of H 2 at 400 ° C, 0.1 MPa, 50 sccm. Subsequently, H 2 / CO (= 1) was treated at 260 ° C, 1.0 MPa, 37 sccm for 16 hours, and then H 2 / CO (= 1) was treated at 300 ° C, 0.1 MPa, 50 sccm. The treatment was performed for 5 hours. After that, FT reaction was performed for 16 hours under the conditions of H 2 / CO (= 1) at 300 ° C, 1.0 MPa, 37 sccm. CO conversion and lower hydrocarbon selectivity were determined using a gas chromatograph connected to BEL-REA. For the selectivity of long-chain hydrocarbons, a toluene trap was placed after the reaction tube, and after completion of the reaction, the product was assigned by gas chromatography.

反応結果を表5に示す。この反応条件ではCO転化率は15%とそれほど大きくないが、プロピレンへの選択率は24%とFT反応で得られる生成物分布を確率的に予測するASF分布(図14)におけるC3化合物の生成確率18%と比較して非常に大きくなっている。また、表5、図15および図16に示すように生成物におけるオレフィン選択率が高いことがわかった。FeとCoが原子レベルで固溶された触媒におけるFT 反応活性は通常の触媒とは異なると考えられる。   The reaction results are shown in Table 5. Under these reaction conditions, the CO conversion rate is not so high at 15%, but the selectivity to propylene is 24%, and the formation of C3 compounds in the ASF distribution (Fig. 14) that probabilistically predicts the product distribution obtained by FT reaction. The probability is very large compared with 18%. Further, as shown in Table 5, FIG. 15 and FIG. 16, it was found that the olefin selectivity in the product was high. The FT reaction activity in a catalyst in which Fe and Co are dissolved at the atomic level is considered to be different from that of a normal catalyst.

本発明は、燃料電池用電極触媒やフィッシャー・トロプシュ反応用触媒に有用な金属合金複合体に関連する分野に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful in fields related to metal alloy composites useful for fuel cell electrode catalysts and Fischer-Tropsch reaction catalysts.

Claims (16)

固体担体及び前記固体担体に担持された下記(a)〜(d)のいずれか1つの鉄族金属系合金粒子を含む複合体。
(a)Fe、Co及びNiから成る鉄族金属群から選ばれる2種又は3種の鉄族金属からなる鉄族金属系合金粒子、但し、前記鉄族金属系合金は、前記2種又は3種の鉄族金属が固溶体型合金である、
(b)Fe、Co及びNiから成る鉄族金属群から選ばれる2種又は3種の鉄族金属を含有する鉄族金属系合金粒子、但し、前記鉄族金属系合金は、少なくとも前記2種又は3種の鉄族金属が固溶体型合金である、
(c)Fe、Co及びNiから成る鉄族金属群から選ばれる1種、2種又は3種の鉄族金属、並びにCr、Mn、Cu、Mo、Ru、Rh、Pd、Ag、Ir、Pt及びAuから成る遷移金属群から選ばれる1種又は2種以上の遷移金属からなる鉄族金属系合金粒子、但し、前記鉄族金属系合金は、前記1種、2種又は3種の鉄族金属及び1種又は2種以上の遷移金属が固溶体型合金である、
(d)Fe、Co及びNiから成る鉄族金属群から選ばれる1種、2種又は3種の鉄族金属、並びにCr、Mn、Cu、Mo、Ru、Rh、Pd、Ag、Ir、Pt及びAuから成る遷移金属群から選ばれる1種又は2種以上の遷移金属を含有する鉄族金属系合金粒子、但し、前記鉄族金属系合金は、少なくとも前記1種、2種又は3種の鉄族金属及び1種又は2種以上の遷移金属が固溶体型合金である、
A composite comprising a solid support and any one of the following iron group metal alloy particles supported on the solid support (a) to (d).
(a) Iron group metal alloy particles composed of two or three kinds of iron group metals selected from the iron group metal group consisting of Fe, Co and Ni, provided that the iron group metal alloys are the above-described two or three A kind of iron group metal is a solid solution type alloy,
(b) Iron group metal alloy particles containing two or three kinds of iron group metals selected from the group consisting of iron group metals consisting of Fe, Co and Ni, provided that the iron group metal alloys are at least the two kinds Or three kinds of iron group metals are solid solution type alloys,
(c) One, two or three iron group metals selected from the iron group metal group consisting of Fe, Co and Ni, and Cr, Mn, Cu, Mo, Ru, Rh, Pd, Ag, Ir, Pt And an iron group metal alloy particle composed of one or more transition metals selected from the group of transition metals consisting of Au, wherein the iron group metal alloy is the one, two or three iron groups The metal and one or more transition metals are solid solution type alloys,
(d) One, two or three types of iron group metals selected from the group of iron group metals consisting of Fe, Co and Ni, and Cr, Mn, Cu, Mo, Ru, Rh, Pd, Ag, Ir, Pt And an iron group metal alloy particle containing one or more transition metals selected from the group of transition metals consisting of Au, wherein the iron group metal alloy is at least one of the above-mentioned one, two or three kinds The iron group metal and one or more transition metals are solid solution type alloys,
前記鉄族金属系合金粒子は、合金一粒子の体積16.7nm3中に異種金属原子に結合した鉄族金属原子が少なくとも1個存在する、但し、異種金属原子は、前記鉄族金属原子とは異なる鉄族金属原子であるか、前記遷移金属原子であるか、または前記鉄族金属原子とは異なる鉄族金属原子及び前記遷移金属原子以外の金属原子である、請求項1に記載の複合体。The iron group metal-based alloy particle has at least one iron group metal atom bonded to a different metal atom in a volume of 16.7 nm 3 of one alloy particle, provided that the different metal atom is the iron group metal atom. The composite according to claim 1, which is a different iron group metal atom, the transition metal atom, or an iron group metal atom different from the iron group metal atom and a metal atom other than the transition metal atom. . 前記鉄族金属系合金粒子は、一粒子の体積が16.7 nm3以上10,466.7 nm3以下である合金粒子である、請求項1または2に記載の複合体。The composite according to claim 1, wherein the iron group metal-based alloy particles are alloy particles having a volume of one particle of 16.7 nm 3 or more and 10,466.7 nm 3 or less. 前記固体担体は、炭素系材料または無機材料であり、直径が1nmから10μmの範囲の粒子を含有する請求項1〜3のいずれか1項に記載の複合体。 The composite according to any one of claims 1 to 3, wherein the solid support is a carbon-based material or an inorganic material, and contains particles having a diameter in the range of 1 nm to 10 µm. 請求項1〜4のいずれか1項に記載の複合体を含む、固体酸化物アルカリ燃料電池用触媒。 The catalyst for solid oxide alkaline fuel cells containing the composite_body | complex of any one of Claims 1-4. 前記固体担体が、導電性材料からなる請求項5に記載の固体酸化物アルカリ燃料電池用触媒。 The catalyst for a solid oxide alkaline fuel cell according to claim 5, wherein the solid support is made of a conductive material. 前記導電性材料が炭素系材料であり、炭素系材料が、活性炭、カーボンブラック、カーボンナノチューブ、又は多孔質炭素材料である請求項6に記載の固体酸化物アルカリ燃料電池用触媒。 The catalyst for a solid oxide alkaline fuel cell according to claim 6, wherein the conductive material is a carbon-based material, and the carbon-based material is activated carbon, carbon black, carbon nanotube, or a porous carbon material. 請求項1〜4のいずれか1項に記載の複合体(但し、前記鉄族金属系合金粒子がFe及びCoからなる鉄族金属系合金粒子である複合体は除く)を含む、フィッシャー・トロプシュ反応触媒。 A Fischer-Tropsch containing the composite according to any one of claims 1 to 4 (excluding the composite in which the iron group metal alloy particles are iron group metal alloy particles composed of Fe and Co). Reaction catalyst. 鉄族金属含有化合物(但し、鉄族金属はFe、Co及びNiから成る鉄族金属群から選ばれる)及び遷移金属含有化合物(但し、遷移金属はCr、Mn、Cu、Mo、Ru、Rh、Pd、Ag、Ir、Pt及びAuから成る遷移金属群から選ばれる)から成る群から選ばれる少なくとも2種の金属含有化合物、保護ポリマー、溶媒及び固体担体を混合して混合物を調製する工程(1)、
得られた混合物に、前記金属含有化合物に含まれる金属イオンに対する還元剤を添加して、鉄族金属及び遷移金属から成る群から選ばれる少なくとも2種の金属及び固体担体を含有する前駆体粒子を調製する工程(2)、及び
前記前駆体粒子を水素含有雰囲気下で加熱して、前記前駆体粒子を還元して、鉄族金属及び遷移金属から成る群から選ばれる少なくとも2種の金属合金粒子が固体担体上に担持した複合体を得る工程(3)を含む、製造方法。
Iron group metal-containing compounds (where the iron group metal is selected from the group of iron group metals consisting of Fe, Co and Ni) and transition metal-containing compounds (where the transition metals are Cr, Mn, Cu, Mo, Ru, Rh, A step of preparing a mixture by mixing at least two metal-containing compounds selected from the group consisting of Pd, Ag, Ir, Pt and Au (selected from the group of transition metals consisting of Au), a protective polymer, a solvent and a solid support (1 ),
By adding a reducing agent for metal ions contained in the metal-containing compound to the obtained mixture, precursor particles containing at least two kinds of metals selected from the group consisting of iron group metals and transition metals and a solid support are obtained. Step (2) of preparing, and heating the precursor particles in a hydrogen-containing atmosphere to reduce the precursor particles, so that at least two metal alloy particles selected from the group consisting of iron group metals and transition metals A production method comprising a step (3) of obtaining a composite supported on a solid support.
工程(1)で用いる少なくとも2種の化合物が、2種又は3種の鉄族金属含有化合物であるか、1種又は2種以上の鉄族金属含有化合物及び1種又は2種以上の遷移金属含有化合物である、請求項9に記載の製造方法。 The at least two compounds used in step (1) are two or three iron group metal-containing compounds, or one or more iron group metal-containing compounds and one or more transition metals. The manufacturing method of Claim 9 which is a containing compound. 前記工程(3)は、得られる鉄族ナノ合金粒子が、16.7 nm3以上10466.7 nm3以下の体積を有する結晶子サイズを有する条件で実施される、請求項9または10に記載の製造方法。The method according to claim 9 or 10, wherein the step (3) is performed under a condition that the obtained iron group nanoalloy particles have a crystallite size having a volume of 16.7 nm 3 or more and 10466.7 nm 3 or less. 前記工程(3)における水素含有雰囲気の水素含有率は10vol%超100vol%以下の範囲である請求項9〜11のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 9 to 11, wherein the hydrogen content of the hydrogen-containing atmosphere in the step (3) is in the range of more than 10 vol% and not more than 100 vol%. 前記工程(3)における加熱は、200℃〜1,000℃の範囲である請求項9〜12のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 9 to 12, wherein the heating in the step (3) is in a range of 200 ° C to 1,000 ° C. 前記工程(2)で得られる鉄族金属を含有する前駆体粒子は、鉄酸化物、コバルト酸化物及びニッケル酸化物の少なくとも1種を含有する粒子である請求項9〜13のいずれか1項に記載の製造方法。 The precursor particles containing an iron group metal obtained in the step (2) are particles containing at least one of iron oxide, cobalt oxide and nickel oxide. The manufacturing method as described in. 保護ポリマーは、水および溶媒に対する溶解度が、鉄族金属含有化合物及び遷移金属含有化合物と同等であり、金属錯体原料と相互作用して錯形成を伴うことがある物質である請求項9〜14のいずれか1項に記載の製造方法。 The protective polymer is a substance having a solubility in water and a solvent equivalent to those of the iron group metal-containing compound and the transition metal-containing compound, and may be complexed by interacting with the metal complex raw material. The manufacturing method of any one of Claims. 工程(2)における還元は、0〜200℃の範囲で行う。還元剤の酸化還元電位は、成分金属のよりも卑である、請求項9〜15のいずれか1項に記載の製造方法。 The reduction in step (2) is performed in the range of 0 to 200 ° C. The manufacturing method according to any one of claims 9 to 15, wherein the redox potential of the reducing agent is lower than that of the component metal.
JP2014529587A 2012-08-10 2013-08-09 Solid support-supported iron group solid solution type alloy composite and catalyst using the same Active JP6230126B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261681741P 2012-08-10 2012-08-10
US61/681,741 2012-08-10
PCT/JP2013/071735 WO2014025049A1 (en) 2012-08-10 2013-08-09 Solid carrier-supported iron group solid solution-type alloy composite and catalyst using same

Publications (2)

Publication Number Publication Date
JPWO2014025049A1 true JPWO2014025049A1 (en) 2016-07-25
JP6230126B2 JP6230126B2 (en) 2017-11-15

Family

ID=50068265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014529587A Active JP6230126B2 (en) 2012-08-10 2013-08-09 Solid support-supported iron group solid solution type alloy composite and catalyst using the same

Country Status (2)

Country Link
JP (1) JP6230126B2 (en)
WO (1) WO2014025049A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9622483B2 (en) 2014-02-19 2017-04-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
EP4230774A1 (en) * 2020-10-14 2023-08-23 University of Tsukuba Electrode, method for producing same, water electrolyzer, and fuel cell
CN113451588A (en) * 2021-06-29 2021-09-28 深圳大学 Symbiotic fuel cell anode and preparation method and application thereof
CN113559879B (en) * 2021-07-27 2022-09-20 大连理工大学 Low-temperature synthesis method and application of corrosion-resistant high-entropy alloy nano-catalyst
CN115939424B (en) * 2022-11-25 2024-04-19 大连理工大学 Supported sub-nanometer iron-sulfur cluster catalyst, preparation method and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504232A (en) * 2002-10-21 2006-02-02 イディア ラボ ソシエタ ア レスポンサビリタ リミタータ Platinum-free electrode catalyst material
JP2008288006A (en) * 2007-05-17 2008-11-27 Kyushu Institute Of Technology Catalyst for ethanol fuel cell electrode, membrane-electrode assembly for ethanol fuel cell, and ethanol fuel cell
WO2010122811A1 (en) * 2009-04-24 2010-10-28 独立行政法人科学技術振興機構 Fine solid solution alloy particles and method for producing same
JP2012164608A (en) * 2011-02-09 2012-08-30 Toyota Motor Corp ELECTRODE CATALYST CONTAINING Fe, Co, AND Ni, AND METHOD FOR MANUFACTURING THE SAME
JP2013056289A (en) * 2011-09-07 2013-03-28 National Institute Of Advanced Industrial Science & Technology Catalyst for generating hydrogen and method for generating hydrogen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504232A (en) * 2002-10-21 2006-02-02 イディア ラボ ソシエタ ア レスポンサビリタ リミタータ Platinum-free electrode catalyst material
JP2008288006A (en) * 2007-05-17 2008-11-27 Kyushu Institute Of Technology Catalyst for ethanol fuel cell electrode, membrane-electrode assembly for ethanol fuel cell, and ethanol fuel cell
WO2010122811A1 (en) * 2009-04-24 2010-10-28 独立行政法人科学技術振興機構 Fine solid solution alloy particles and method for producing same
JP2012164608A (en) * 2011-02-09 2012-08-30 Toyota Motor Corp ELECTRODE CATALYST CONTAINING Fe, Co, AND Ni, AND METHOD FOR MANUFACTURING THE SAME
JP2013056289A (en) * 2011-09-07 2013-03-28 National Institute Of Advanced Industrial Science & Technology Catalyst for generating hydrogen and method for generating hydrogen

Also Published As

Publication number Publication date
WO2014025049A1 (en) 2014-02-13
JP6230126B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
Hu et al. Porosity-induced high selectivity for CO2 electroreduction to CO on Fe-doped ZIF-derived carbon catalysts
Li et al. Controllable increase of boron content in B-Pd interstitial nanoalloy to boost the oxygen reduction activity of palladium
CA2627312C (en) Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof
Wu et al. Ultrafine Pt nanoparticles and amorphous nickel supported on 3D mesoporous carbon derived from Cu-metal–organic framework for efficient methanol oxidation and nitrophenol reduction
Xue et al. Structural regulation of PdCu2 nanoparticles and their electrocatalytic performance for ethanol oxidation
Singh et al. Synergistic catalysis over bimetallic alloy nanoparticles
JP5443691B2 (en) Palladium-cobalt particles as oxygen reduction electrocatalysts
JP4401059B2 (en) Process for preparing anode catalyst for fuel cell and anode catalyst prepared using the process
US20070031722A1 (en) Electrocatalysts having platinum monolayers on palladium, palladium alloy, and gold alloy nanoparticle cores, and uses thereof
JP2008525638A (en) Metal deposition on palladium and palladium alloy particles induced by hydrogen absorption
Er et al. Novel carbon nanotube supported Co@ Ag@ Pd formic acid electrooxidation catalysts prepared via sodium borohydride sequential reduction method
Wang et al. High-Loading Pt–Co/C Catalyst with Enhanced Durability toward the Oxygen Reduction Reaction through Surface Au Modification
Douk et al. An environmentally friendly one-pot synthesis method by the ultrasound assistance for the decoration of ultrasmall Pd-Ag NPs on graphene as high active anode catalyst towards ethanol oxidation
JP6230126B2 (en) Solid support-supported iron group solid solution type alloy composite and catalyst using the same
El-Nagar et al. Propitious dendritic Cu2O–Pt nanostructured anodes for direct formic acid fuel cells
Gao et al. Evidence of the strong metal support interaction in a palladium-ceria hybrid electrocatalyst for enhancement of the hydrogen evolution reaction
JP5531125B1 (en) Catalyst for polymer electrolyte fuel cell and method for producing the same
Kang et al. Highly active and durable ordered intermetallic PdFe electrocatalyst for formic acid electrooxidation reaction
JP3870282B2 (en) Dispersed and stabilized liquid containing catalyst nanoparticles
Fu et al. 3D robust carbon aerogels immobilized with Pd3Pb nanoparticles for oxygen reduction catalysis
Mondal et al. Selective methodology for developing PtCo NPs and performance screening for energy efficient electro-catalysis in direct ethanol fuel cell
Sharma et al. Graphene-manganite-Pd hybrids as highly active and stable electrocatalysts for methanol oxidation and oxygen reduction
JP5015489B2 (en) Fuel cell electrode catalyst and fuel cell
Parkash Incorporation of Pt–Cr nanoparticles into highly porous MOF-5 as efficient oxygen reduction electrocatalysts
KR101688524B1 (en) Electrode catalyst for fuel cell, membrane electrode assembly and fuel cell including the same, and method of preparing electrode catalyst for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171012

R150 Certificate of patent or registration of utility model

Ref document number: 6230126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250