JPWO2014014035A1 - Pyrophosphate ester compound, bisphosphate ester compound and catalyst - Google Patents

Pyrophosphate ester compound, bisphosphate ester compound and catalyst Download PDF

Info

Publication number
JPWO2014014035A1
JPWO2014014035A1 JP2014525854A JP2014525854A JPWO2014014035A1 JP WO2014014035 A1 JPWO2014014035 A1 JP WO2014014035A1 JP 2014525854 A JP2014525854 A JP 2014525854A JP 2014525854 A JP2014525854 A JP 2014525854A JP WO2014014035 A1 JPWO2014014035 A1 JP WO2014014035A1
Authority
JP
Japan
Prior art keywords
group
nmr
compound
ppm
mhz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014525854A
Other languages
Japanese (ja)
Other versions
JP6168665B2 (en
Inventor
石原 一彰
一彰 石原
彰 坂倉
彰 坂倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Publication of JPWO2014014035A1 publication Critical patent/JPWO2014014035A1/en
Application granted granted Critical
Publication of JP6168665B2 publication Critical patent/JP6168665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0257Phosphorus acids or phosphorus acid esters
    • B01J31/0258Phosphoric acid mono-, di- or triesters ((RO)(R'O)2P=O), i.e. R= C, R'= C, H
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/14Preparation of carboxylic acid amides by formation of carboxamide groups together with reactions not involving the carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/56Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by isomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/12Esters of phosphoric acids with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65746Esters of oxyacids of phosphorus the molecule containing more than one cyclic phosphorus atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/34Other additions, e.g. Monsanto-type carbonylations, addition to 1,2-C=X or 1,2-C-X triplebonds, additions to 1,4-C=C-C=X or 1,4-C=-C-X triple bonds with X, e.g. O, S, NH/N
    • B01J2231/3411,2-additions, e.g. aldol or Knoevenagel condensations
    • B01J2231/346Mannich type reactions, i.e. nucleophilic addition of C-H acidic compounds, their R3Si- or metal complex analogues to aldimines or ketimines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0261Complexes comprising ligands with non-tetrahedral chirality
    • B01J2531/0266Axially chiral or atropisomeric ligands, e.g. bulky biaryls such as donor-substituted binaphthalenes, e.g. "BINAP" or "BINOL"
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/67Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/68Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/73Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom of a carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/20Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being part of nitro or nitroso groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本発明は、式(1)で表される新規なピロリン酸エステル化合物や式(2)で表されるビスリン酸エステル化合物に関するものである。式中、Rは、アリール基、有機シリル基又はハロゲン原子である。こうした化合物は、従来のリン酸エステル化合物に比べて酸性度が高いため、カルボニル化合物やイミン化合物などを十分活性化することができる。また、金属の配位子としても有用性が期待される。【化1】The present invention relates to a novel pyrophosphate ester compound represented by the formula (1) and a bisphosphate ester compound represented by the formula (2). In the formula, R is an aryl group, an organic silyl group, or a halogen atom. Since these compounds have higher acidity than conventional phosphate ester compounds, carbonyl compounds and imine compounds can be sufficiently activated. It is also expected to be useful as a metal ligand. [Chemical 1]

Description

本発明は、新規なピロリン酸エステル化合物、ビスリン酸エステル化合物及び触媒に関する。   The present invention relates to a novel pyrophosphate ester compound, a bisphosphate ester compound and a catalyst.

近年、リン酸エステル化合物をブレンステッド酸触媒として用いる反応が報告されている。例えば、特許文献1では、リン酸エステル化合物である3,3’−ジアリール−1,1’−ビナフチル−2,2’−ジイル ハイドロジェンホスフェートを、マンニッヒ反応やヒドロホスホリル化反応、アザ ディールスアルダー反応などの触媒として利用している。   In recent years, reactions using phosphate ester compounds as Bronsted acid catalysts have been reported. For example, in Patent Document 1, 3,3′-diaryl-1,1′-binaphthyl-2,2′-diyl hydrogen phosphate, which is a phosphate ester compound, is converted into Mannich reaction, hydrophosphorylation reaction, aza diels alder reaction. It is used as a catalyst.

国際公開第2004/096753号International Publication No. 2004/096753

しかしながら、これまでに知られているリン酸エステル化合物は、酸性度があまり高くなかったため、例えばアルデヒドやケトンなどのカルボニル化合物を十分活性化することができなかった。そのため、基質一般性が十分とはいえなかった。   However, since the phosphoric acid ester compounds known so far have not been so acidic, carbonyl compounds such as aldehydes and ketones cannot be activated sufficiently. Therefore, it cannot be said that the generality of the substrate is sufficient.

本発明はこのような課題を解決するためになされたものであり、新規なピロリン酸エステル化合物やビスリン酸エステル化合物を提供することを主目的とする。   The present invention has been made to solve such problems, and has as its main object to provide a novel pyrophosphate ester compound and a bisphosphate ester compound.

本発明者らは、3,3’位に置換基を有するBINOL誘導体(BINOLは1,1’−ビ−2−ナフトールの略)に対して、水素化ナトリウム及び塩化ジアリルリン酸を反応させた後、アリル保護基を除去することにより、新規なビスリン酸エステル化合物を得た。また、このビスリン酸エステル化合物を塩化オキサリルと反応させることにより、新規なピロリン酸エステル化合物を得た。このようにして得られた新規なピロリン酸エステル化合物やビスリン酸エステル化合物を触媒として分子内エン反応やマンニッヒ反応を行ったところ、従来のリン酸エステル化合物を触媒とした場合に比べて活性が高いことを確認し、本発明を完成するに至った。   The present inventors reacted sodium hydride and diallyl phosphate with a BINOL derivative having a substituent at the 3,3 ′ position (BINOL is an abbreviation for 1,1′-bi-2-naphthol). By removing the allyl protecting group, a novel bisphosphate compound was obtained. Moreover, the novel pyrophosphate ester compound was obtained by making this bisphosphate ester compound react with oxalyl chloride. When the intramolecular ene reaction or Mannich reaction was carried out using the novel pyrophosphate ester compound or bisphosphate ester compound thus obtained as a catalyst, the activity was higher than in the case where a conventional phosphate ester compound was used as the catalyst. This was confirmed and the present invention was completed.

本発明のピロリン酸エステル化合物は、式(1)で表されるものである。但し、式(1)中、Rは、アリール基、有機シリル基又はハロゲン原子である。   The pyrophosphate ester compound of the present invention is represented by the formula (1). However, in Formula (1), R is an aryl group, an organic silyl group, or a halogen atom.

本発明のビスリン酸エステル化合物は、式(2)で表されるものである。但し、式(2)中、Rは、アリール基、有機シリル基又はハロゲン原子である。   The bisphosphate compound of the present invention is represented by the formula (2). However, in Formula (2), R is an aryl group, an organic silyl group, or a halogen atom.

本発明の新規なピロリン酸エステル化合物やビスリン酸エステル化合物は、分子内に複数のリン酸水酸基を有するため、従来のリン酸エステル化合物に比べて酸性度が高い。そのため、カルボニル化合物やイミン化合物などを活性化する能力が高い。また、配位子としても有用性が期待される。更に、ビナフチル骨格を有するため、キラルなピロリン酸エステル化合物やビスリン酸エステル化合物とすることもできる。   Since the novel pyrophosphate ester compound and bisphosphate ester compound of the present invention have a plurality of phosphate hydroxyl groups in the molecule, the acidity is higher than that of conventional phosphate ester compounds. Therefore, the ability to activate carbonyl compounds and imine compounds is high. In addition, it is expected to be useful as a ligand. Furthermore, since it has a binaphthyl skeleton, it can be a chiral pyrophosphate ester compound or bisphosphate ester compound.

本発明のピロリン酸エステル化合物は、上記式(1)で表されるものであり、Rは、アリール基、有機シリル基又はハロゲン原子である。また、本発明のビスリン酸エステル化合物は、上記式(2)で表されるものであり、Rは、アリール基、有機シリル基又はハロゲン原子である。   The pyrophosphate ester compound of the present invention is represented by the above formula (1), and R is an aryl group, an organic silyl group or a halogen atom. The bisphosphate compound of the present invention is represented by the above formula (2), and R is an aryl group, an organic silyl group, or a halogen atom.

ここで、アリール基としては、例えば、フェニル基やナフチル基、アントラセニル基などが挙げられる。ナフチル基は、1−ナフチル基でもよいし、2−ナフチル基でもよい。アントラセニル基は、1−アントラセニル基でもよいし、2−アントラセニル基でもよいし、9−アントラセニル基でもよい。また、フェニル基やナフチル基、アントラセニル基は、少なくとも1つの水素原子が置換基で置換されていてもよい。置換基としては、例えば、アリール基、アルキル基、シクロアルキル基、アルコキシ基、ペルフルオロアルキル基、ニトロ基、シアノ基、ハロゲン原子などが挙げられる。その場合、アリール基としては、フェニル基やナフチル基、アントラセニル基などのほか、これらの少なくとも1つの水素原子がアルキル基、アルコキシ基、ペルフルオロアルキル基、ニトロ基、シアノ基、ハロゲン原子などで置換されていてもよい。アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基などが挙げられる。シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。アルコキシ基としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブチトキシ基、tert−ブトキシ基などが挙げられる。ペルフルオロアルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基などが挙げられる。ハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子などが挙げられる。   Here, examples of the aryl group include a phenyl group, a naphthyl group, and an anthracenyl group. The naphthyl group may be a 1-naphthyl group or a 2-naphthyl group. The anthracenyl group may be a 1-anthracenyl group, a 2-anthracenyl group, or a 9-anthracenyl group. In the phenyl group, naphthyl group, and anthracenyl group, at least one hydrogen atom may be substituted with a substituent. Examples of the substituent include an aryl group, an alkyl group, a cycloalkyl group, an alkoxy group, a perfluoroalkyl group, a nitro group, a cyano group, and a halogen atom. In that case, as the aryl group, in addition to a phenyl group, a naphthyl group, an anthracenyl group, etc., at least one of these hydrogen atoms is substituted with an alkyl group, an alkoxy group, a perfluoroalkyl group, a nitro group, a cyano group, a halogen atom, or the like. It may be. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group. Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group. Examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, and a tert-butoxy group. Examples of the perfluoroalkyl group include a trifluoromethyl group and a pentafluoroethyl group. Examples of the halogen atom include a chlorine atom, a bromine atom, and an iodine atom.

このようなアリール基としては、特に、2−ナフチル基、3,5−ジフェニルフェニル基又は3,5−ビス(2−ナフチル)フェニル基が好ましい。   As such an aryl group, a 2-naphthyl group, a 3,5-diphenylphenyl group, or a 3,5-bis (2-naphthyl) phenyl group is particularly preferable.

有機シリル基としては、例えば、トリアルキルシリル基、トリアリールシリル基、アルキルジアリールシリル基、アリールジアルキルシリル基、トリス(トリアルキルシリル)シリル基、トリス(トリアリールシリル)シリル基などが挙げられる。トリアルキルシリル基は、3つのアルキル基がすべて同じでもよいし、2つが同じでもよいし、すべて異なっていてもよい。トリアリールシリル基は、3つのアリール基がすべて同じでもよいし、2つが同じでもよいし、すべて異なっていてもよい。アルキルジアリールシリル基は、2つのアリール基が同じでもよいし異なっていてもよい。アリールジアルキルシリル基は、2つのアルキル基が同じでもよいし異なっていてもよい。トリアルキルシリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジエチルイソプロピルシリル基、ジメチルイソプロピルシリル基、ジ−tert−ブチルメチルシリル基、イソプロピルジメチルシリル基、tert−ブチルジメチルシリル基などが挙げられる。トリアリールシリル基としては、例えばトリフェニルシリル基などが挙げられる。アルキルジアリールシリル基としては、例えば、ジフェニルメチルシリル基、tert−ブチルジフェニルシリル基などが挙げられる。アリールジアルキルシリル基としては、例えば、ジメチルフェニルシリル基などが挙げられる。トリス(トリアルキルシリル)シリル基としては、例えば、トリス(トリメチルシリル)シリル基などが挙げられる。トリス(トリアリールシリル)シリル基としては、例えば、トリス(トリフェニルシリル)シリル基などが挙げられる。   Examples of the organic silyl group include a trialkylsilyl group, a triarylsilyl group, an alkyldiarylsilyl group, an aryldialkylsilyl group, a tris (trialkylsilyl) silyl group, and a tris (triarylsilyl) silyl group. In the trialkylsilyl group, all three alkyl groups may be the same, two may be the same, or all may be different. In the triarylsilyl group, all three aryl groups may be the same, two may be the same, or all may be different. In the alkyldiarylsilyl group, two aryl groups may be the same or different. In the aryldialkylsilyl group, two alkyl groups may be the same or different. Examples of the trialkylsilyl group include trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, diethylisopropylsilyl group, dimethylisopropylsilyl group, di-tert-butylmethylsilyl group, isopropyldimethylsilyl group, tert-butyldimethylsilyl group. Group and the like. Examples of the triarylsilyl group include a triphenylsilyl group. Examples of the alkyldiarylsilyl group include a diphenylmethylsilyl group and a tert-butyldiphenylsilyl group. Examples of the aryldialkylsilyl group include a dimethylphenylsilyl group. Examples of the tris (trialkylsilyl) silyl group include a tris (trimethylsilyl) silyl group. Examples of the tris (triarylsilyl) silyl group include a tris (triphenylsilyl) silyl group.

ハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子などが挙げられる。   Examples of the halogen atom include a chlorine atom, a bromine atom, and an iodine atom.

本発明のピロリン酸エステル化合物やビスリン酸エステル化合物の製法は、特に限定されるものではないが、一例を以下に示す。すなわち、ビスリン酸エステル化合物は、例えば、3,3’位に置換基R(Rは前出のとおり)を有するBINOL誘導体に対して、水素化ナトリウム及び塩化ジアリルリン酸を反応させた後、アリル保護基を除去することにより、得ることができる。また、ピロリン酸エステル化合物は、例えば、上述したビスリン酸エステル化合物を塩化オキサリルと反応させることにより、得ることができる。   Although the manufacturing method of the pyrophosphate ester compound and bisphosphate ester compound of the present invention is not particularly limited, an example is shown below. That is, for example, a bisphosphate compound is prepared by reacting a BINOL derivative having a substituent R (R is as described above) at the 3,3′-position with sodium hydride and diallyl chloride and then protecting allyl. It can be obtained by removing the group. The pyrophosphate ester compound can be obtained, for example, by reacting the bisphosphate ester compound described above with oxalyl chloride.

本発明のピロリン酸エステル化合物やビスリン酸エステル化合物の用途は、特に限定されるものではないが、反応触媒や配位子などが挙げられる。例えば、6−オクテナール誘導体(シトロネラールなど)の分子内エン反応の触媒やマンニッヒ反応の触媒、フリーデル−クラフツ反応の触媒として用いることができる。また、BINOL骨格はC2対称を持つため、キラルなピロリン酸エステル化合物やキラルなビスリン酸エステル化合物を容易に得ることができる。こうしたキラルな化合物は、不斉合成反応の触媒として用いることが期待される。なお、ビスリン酸エステル化合物は、ピロリン酸エステル化合物の合成中間体としても有用である。   The use of the pyrophosphate ester compound or bisphosphate ester compound of the present invention is not particularly limited, and examples thereof include reaction catalysts and ligands. For example, it can be used as a catalyst for intramolecular ene reaction of 6-octenal derivatives (such as citronellal), a Mannich reaction catalyst, and a Friedel-Crafts reaction catalyst. Further, since the BINOL skeleton has C2 symmetry, a chiral pyrophosphate ester compound or a chiral bisphosphate ester compound can be easily obtained. Such chiral compounds are expected to be used as catalysts for asymmetric synthesis reactions. The bisphosphate compound is also useful as a synthesis intermediate for pyrophosphate compounds.

1.ビスリン酸エステル化合物の合成
ビスリン酸エステル化合物を下記のスキーム1にしたがって合成した。以下の実施例1〜3にその詳細を示す。
1. Synthesis of Bisphosphate Compound A bisphosphate compound was synthesized according to Scheme 1 below. The details are shown in Examples 1 to 3 below.

[実施例1]
(R)−3,3’−ジフェニルBINOL(4.4g,10mmol)のTHF(50mL)溶液に0℃にて60%水素化ナトリウム鉱油分散物(0.89g,22mmol)を加え、30分間撹拌した。この溶液に塩化ジアリルリン酸(7.8g,40mmol)を加え、室温にて2時間撹拌した。反応混合物に水を加え、ジクロロメタンで抽出した後、有機層を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。この溶液を濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(シリカゲル,ヘキサン−酢酸エチル=20:1→5:1)で精製し、BINOLビスリン酸アリルエステル(6.6g,87%)を得た。そのスペクトルデータは、以下のとおり。31P NMR (160MHz, CDCl3) δ-6.0 ppm.
[Example 1]
60% sodium hydride mineral oil dispersion (0.89 g, 22 mmol) was added to a solution of (R) -3,3′-diphenylBINOL (4.4 g, 10 mmol) in THF (50 mL) at 0 ° C. and stirred for 30 minutes. did. To this solution was added diallyl phosphoric acid chloride (7.8 g, 40 mmol), and the mixture was stirred at room temperature for 2 hours. Water was added to the reaction mixture and the mixture was extracted with dichloromethane. The organic layer was washed with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. The crude product obtained by concentrating this solution was purified by silica gel column chromatography (silica gel, hexane-ethyl acetate = 20: 1 → 5: 1), and BINOL bisphosphate allyl ester (6.6 g, 87%) Got. The spectrum data is as follows. 31 P NMR (160MHz, CDCl 3 ) δ-6.0 ppm.

次に、BINOLビスリン酸アリルエステル(5.4g,7.1mmol)およびピロリジン(1.3mL,15.7mmol)のDMF(72mL)溶液に、Pd(PPh34(3.3g,2.9mmol)を加え、0℃にて4時間撹拌した。反応混合物に塩酸を加え、ジクロロメタンで抽出した後、有機層を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。この溶液を濃縮して得られた粗生成物をAmberlite IR−120(H form)に通した。次いで、DOWEX(Na form)に吸着させて洗浄した後、濃塩酸−THF(1:5)で溶出させた。溶媒を減圧濃縮した後、ジクロロメタンに溶解して水で洗浄した。ジクロロメタンを減圧濃縮することにより、目的とするBINOLビスリン酸エステル(化合物B1,4.2g,98%)を得た。このビスリン酸エステルの構造は、NMRスペクトルおよびマススペクトルを測定することにより確定した。そのスペクトルデータは、以下のとおり。1H NMR (400 MHz, THF-d8) δ7.31 (t, J = 7.3 Hz, 2H), 7.36-7.43 (m, 6H), 7.47 (t, J = 6.9 Hz, 2H), 7.54 (d, J = 8.2 Hz, 2H), 7.69 (d, J = 6.9 Hz, 4H), 7.82 (d, J = 8.2 Hz, 2H), 8.02 (s, 2H)ppm; 13C NMR (100 MHz, THF-d8) δ125.5 (2C), 125.9 (2C), 126.2 (2C), 126.9 (2C), 127.5 (2C), 128.1 (4C), 128.6 (2C), 130.6 (4C), 131.6 (2C), 132.2 (2C), 133.0 (2C), 136.3 (2C), 139.1 (2C), 146.9 (2C)ppm; 31P NMR (160 MHz, THF-d8) δ-0.2 ppm; HRMS (FAB, negative mode) calcd for C32H23O8P2[M-H]- 597.0868, found 597.0826.Next, to a DMF (72 mL) solution of BINOL bisphosphate allyl ester (5.4 g, 7.1 mmol) and pyrrolidine (1.3 mL, 15.7 mmol), Pd (PPh 3 ) 4 (3.3 g, 2.9 mmol) was added. ) And stirred at 0 ° C. for 4 hours. After adding hydrochloric acid to the reaction mixture and extracting with dichloromethane, the organic layer was washed with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. The crude product obtained by concentrating this solution was passed through Amberlite IR-120 (H form). Next, after adsorbing on DOWEX (Na form) and washing, it was eluted with concentrated hydrochloric acid-THF (1: 5). The solvent was concentrated under reduced pressure, then dissolved in dichloromethane and washed with water. Dichloromethane was concentrated under reduced pressure to obtain the desired BINOL bisphosphate (Compound B1, 4.2 g, 98%). The structure of this bisphosphate was determined by measuring the NMR spectrum and mass spectrum. The spectrum data is as follows. 1 H NMR (400 MHz, THF-d 8 ) δ7.31 (t, J = 7.3 Hz, 2H), 7.36-7.43 (m, 6H), 7.47 (t, J = 6.9 Hz, 2H), 7.54 (d , J = 8.2 Hz, 2H), 7.69 (d, J = 6.9 Hz, 4H), 7.82 (d, J = 8.2 Hz, 2H), 8.02 (s, 2H) ppm; 13 C NMR (100 MHz, THF- d 8 ) δ125.5 (2C), 125.9 (2C), 126.2 (2C), 126.9 (2C), 127.5 (2C), 128.1 (4C), 128.6 (2C), 130.6 (4C), 131.6 (2C), 132.2 (2C), 133.0 (2C), 136.3 (2C), 139.1 (2C), 146.9 (2C) ppm; 31 P NMR (160 MHz, THF-d 8 ) δ-0.2 ppm; HRMS (FAB, negative mode) calcd for C 32 H 23 O 8 P 2 [MH] - 597.0868, found 597.0826.

[実施例2]
実施例1で用いた(R)−3,3’−ジフェニルBINOLの代わりに、(R)−3,3’−ビス[4−(2,4,6−トリメチルフェニル)フェニル]BINOLを用いた以外は、実施例1と同様にしてビスリン酸エステル化合物(化合物B2)を得た。そのスペクトルデータは、以下のとおり。1H NMR (400 MHz, THF-d8) δ2.05 (s, 12H), 2.28 (s,6H), 6.90 (s, 4H), 7.16 (d, J = 8.2 Hz, 4H), 7.40 (dd, J = 6.9, 7.8 Hz, 2H), 7.47 (dd, J = 6.9, 7.8 Hz, 2H), 7.55 (d, J = 7.8 Hz, 2H), 7.72 (d, J = 8.2 Hz, 4H), 7.99 (d, J = 7.8 Hz, 2H), 8.10 (s, 2H)ppm; 13C NMR (100 MHz, THF-d8) δ20.6 (4C), 20.7 (2C), 125.2 (2C), 125.8 (2C), 126.1 (2C), 126.8 (2C), 128.2 (4C), 128.4(2C), 129.0 (4C), 130.8 (4C), 131.1 (2C), 132.1 (2C), 133.0 (2C), 136.0 (4C), 136.3 (2C), 136.4 (2C), 137.1 (2C), 139.4 (2C), 140.5 (2C), 147.1 (2C)ppm; 31P NMR (160 MHz, THF-d8) δ-1.3 ppm; HRMS (FAB, negative mode) calcd for C50H43O8P2[M-H]- 833.2433, found 833.2427.
[Example 2]
Instead of (R) -3,3′-diphenyl BINOL used in Example 1, (R) -3,3′-bis [4- (2,4,6-trimethylphenyl) phenyl] BINOL was used. Except for the above, a bisphosphate compound (Compound B2) was obtained in the same manner as in Example 1. The spectrum data is as follows. 1 H NMR (400 MHz, THF-d 8 ) δ2.05 (s, 12H), 2.28 (s, 6H), 6.90 (s, 4H), 7.16 (d, J = 8.2 Hz, 4H), 7.40 (dd , J = 6.9, 7.8 Hz, 2H), 7.47 (dd, J = 6.9, 7.8 Hz, 2H), 7.55 (d, J = 7.8 Hz, 2H), 7.72 (d, J = 8.2 Hz, 4H), 7.99 (d, J = 7.8 Hz, 2H), 8.10 (s, 2H) ppm; 13 C NMR (100 MHz, THF-d 8 ) δ20.6 (4C), 20.7 (2C), 125.2 (2C), 125.8 ( 2C), 126.1 (2C), 126.8 (2C), 128.2 (4C), 128.4 (2C), 129.0 (4C), 130.8 (4C), 131.1 (2C), 132.1 (2C), 133.0 (2C), 136.0 ( 4C), 136.3 (2C), 136.4 (2C), 137.1 (2C), 139.4 (2C), 140.5 (2C), 147.1 (2C) ppm; 31 P NMR (160 MHz, THF-d 8 ) δ-1.3 ppm ; HRMS (FAB, negative mode) calcd for C 50 H 43 O 8 P 2 [MH] - 833.2433, found 833.2427.

[実施例3]
実施例1で用いた(R)−3,3’−ジフェニルBINOLの代わりに、(R)−3,3’−ビス[3,5−ビス(トリフルオロメチル)フェニル]BINOLを用いた以外は、実施例1と同様にしてビスリン酸エステル化合物(化合物B3)を得た。そのスペクトルデータは、以下のとおり。1H NMR (400 MHz, THF-d8) δ7.46-7.61 (m, 6H), 8.02 (s,2H), 8.07 (d, J = 7.8 Hz, 2H), 8.23 (s, 2H), 8.30 (s, 4H)ppm; 13C NMR (100 MHz,THF-d8) δ121.2 (2C), 124.1 (d, J = 270.8 Hz, 4C), 125.3 (2C), 126.0 (2C), 126.4 (2C), 127.9 (2C), 128.7 (2C), 131.1 (4C), 131.2 (d, J = 32.4 Hz, 4C), 131.9 (2C), 132.1 (2C), 132.8 (2C), 133.4 (2C), 141.0 (2C), 146.1 (2C)ppm; 31P NMR (160 MHz, THF-d8) δ-0.4 ppm; HRMS (FAB, negative mode)) calcd for C36H19F12O8P2[M-H]- 869.0364, found 869.0379.
[Example 3]
Except for using (R) -3,3′-bis [3,5-bis (trifluoromethyl) phenyl] BINOL instead of (R) -3,3′-diphenyl BINOL used in Example 1. In the same manner as in Example 1, a bisphosphate compound (Compound B3) was obtained. The spectrum data is as follows. 1 H NMR (400 MHz, THF-d 8 ) δ7.46-7.61 (m, 6H), 8.02 (s, 2H), 8.07 (d, J = 7.8 Hz, 2H), 8.23 (s, 2H), 8.30 (s, 4H) ppm; 13 C NMR (100 MHz, THF-d 8 ) δ121.2 (2C), 124.1 (d, J = 270.8 Hz, 4C), 125.3 (2C), 126.0 (2C), 126.4 ( 2C), 127.9 (2C), 128.7 (2C), 131.1 (4C), 131.2 (d, J = 32.4 Hz, 4C), 131.9 (2C), 132.1 (2C), 132.8 (2C), 133.4 (2C), 141.0 (2C), 146.1 (2C) ppm; 31 P NMR (160 MHz, THF-d 8 ) δ-0.4 ppm; HRMS (FAB, negative mode)) calcd for C 36 H 19 F 12 O 8 P 2 (MH ] - 869.0364, found 869.0379.

[追加実施例]
更に、下記のビスリン酸エステル化合物B4〜B12も合成した。このうち、化合物B4〜B10は、実施例1で用いた(R)−3,3’−ジフェニルBINOLの代わりに、化合物B4〜B10に対応するBINOLを用いた以外は、実施例1と同様にして合成した。化合物B11,B12は、下記式に示す別法にしたがって合成した。
[Additional Examples]
Furthermore, the following bisphosphate ester compounds B4 to B12 were also synthesized. Of these, compounds B4 to B10 were the same as Example 1 except that BINOL corresponding to compounds B4 to B10 was used instead of (R) -3,3′-diphenylBINOL used in Example 1. And synthesized. Compounds B11 and B12 were synthesized according to another method shown in the following formula.

化合物B11,B12の合成手順を以下に説明する。1段階目の反応は、実施例1に準じて行った。但し、ここでは3,3’位の置換基が嵩高いため、リン酸基は1つしか導入されなかった。2段階目以降の反応は以下のようにして行った。1段階目の反応生成物のTHF溶液に対して、トリエチルアミン(4当量)を加え、0℃まで冷却し、三塩化リン(1.2当量)を加えた後、室温まで昇温し、10分間撹拌した。この混合溶液を再び0℃まで冷却しアリルアルコール(4当量)を加え、室温まで昇温し、30分間撹拌した。水を加えて反応を停止し、酢酸エチルで通常の分液操作を行い、有機層を減圧留去して得られた粗生成物に対して、ジクロロメタンを加えた。この溶液にTBHP(2当量)のノナン溶液を0℃で加え、室温まで昇温し、30分間撹拌した。チオ硫酸ナトリウムを加えて反応を停止し、酢酸エチルで通常の分液操作を行った。フラッシュカラムクロマトグラフィ−(ヘキサン:酢酸エチル=5:1〜3:1)で生成し、目的のビスリン酸エステル化合物B11,B12を表記の収率で得た。   The synthesis procedure of compounds B11 and B12 will be described below. The first stage reaction was carried out according to Example 1. However, since the substituent at the 3,3′-position is bulky, only one phosphate group was introduced. The reaction after the second stage was performed as follows. To the THF solution of the first stage reaction product, triethylamine (4 equivalents) is added, cooled to 0 ° C., phosphorus trichloride (1.2 equivalents) is added, and then the temperature is raised to room temperature for 10 minutes. Stir. The mixed solution was cooled again to 0 ° C., allyl alcohol (4 equivalents) was added, the temperature was raised to room temperature, and the mixture was stirred for 30 minutes. Water was added to stop the reaction, normal separation operation was performed with ethyl acetate, and dichloromethane was added to the crude product obtained by distilling off the organic layer under reduced pressure. To this solution, a nonane solution of TBHP (2 equivalents) was added at 0 ° C., the temperature was raised to room temperature, and the mixture was stirred for 30 minutes. Sodium thiosulfate was added to stop the reaction, and a normal liquid separation operation was performed with ethyl acetate. The product was produced by flash column chromatography (hexane: ethyl acetate = 5: 1 to 3: 1), and the desired bisphosphate compounds B11 and B12 were obtained in the indicated yield.

化合物B4〜B12のスペクトルデータは、以下のとおり。   The spectrum data of compounds B4 to B12 are as follows.

化合物B4:1H NMR(400 MHz, THF-d8) δ 7.42-7.51 (m, 8H), 7.62 (d, J = 5.2 Hz, 2H), 7.86-7.94(m, 8H), 8.01 (d, J = 5.2 Hz, 2H), 8.15 (s, 2H), 8.23 (s, 2H) ppm; 13C NMR (100 MHz, THF-d8) δ 126.1 (2C), 126.2 (2C), 126.3 (4C), 126.7 (2C), 127.3 (2C), 127.8 (2C), 128.2 (2C), 128.9 (2C), 129.1 (2C), 129.3 (2C), 129.9 (2C), 132.3 (2C), 132.6 (2C), 133.5 (2C), 133.7 (2C), 134.5 (2C), 136.5 (2C), 137.2 (2C) , 147.6 (2C) ppm; 31P NMR (160 MHz, THF-d8) δ -0.4 ppm.Compound B4: 1 H NMR (400 MHz, THF-d 8 ) δ 7.42-7.51 (m, 8H), 7.62 (d, J = 5.2 Hz, 2H), 7.86-7.94 (m, 8H), 8.01 (d, J = 5.2 Hz, 2H), 8.15 (s, 2H), 8.23 (s, 2H) ppm; 13 C NMR (100 MHz, THF-d 8 ) δ 126.1 (2C), 126.2 (2C), 126.3 (4C) , 126.7 (2C), 127.3 (2C), 127.8 (2C), 128.2 (2C), 128.9 (2C), 129.1 (2C), 129.3 (2C), 129.9 (2C), 132.3 (2C), 132.6 (2C) , 133.5 (2C), 133.7 (2C), 134.5 (2C), 136.5 (2C), 137.2 (2C), 147.6 (2C) ppm; 31 P NMR (160 MHz, THF-d 8 ) δ -0.4 ppm.

化合物B5:1H NMR (400 MHz, THF-d8) δ 7.32 (t, J = 7.3, 4H), 7.38-7.49 (m, 12H), 7.56 (d, J = 8.2, 2H), 7.81 (d, J = 6.9 Hz, 8H), 7.87 (s, 2H), 8.01-8.03 (m, 6H), 8.23 (s, 2H) ppm; 13C NMR (100 MHz, THF-d8) δ 125.7 (2C), 126.1 (2C), 126.5 (2C), 126.7 (2C), 127.6 (2C), 128.0 (4C), 128.2 (8C), 129.0 (4C), 129.1 (2C), 129.5 (8C), 132.5 (2C), 132.7 (2C), 133.6 (2C), 136.4 (2C), 140.4 (2C), 142.3 (4C), 142.4 (4C), 147.4 (2C) ppm; 31P NMR (160 MHz, THF-d8) δ 0.02 ppm.Compound B5: 1 H NMR (400 MHz, THF-d 8 ) δ 7.32 (t, J = 7.3, 4H), 7.38-7.49 (m, 12H), 7.56 (d, J = 8.2, 2H), 7.81 (d , J = 6.9 Hz, 8H), 7.87 (s, 2H), 8.01-8.03 (m, 6H), 8.23 (s, 2H) ppm; 13 C NMR (100 MHz, THF-d 8 ) δ 125.7 (2C) , 126.1 (2C), 126.5 (2C), 126.7 (2C), 127.6 (2C), 128.0 (4C), 128.2 (8C), 129.0 (4C), 129.1 (2C), 129.5 (8C), 132.5 (2C) , 132.7 (2C), 133.6 (2C), 136.4 (2C), 140.4 (2C), 142.3 (4C), 142.4 (4C), 147.4 (2C) ppm; 31 P NMR (160 MHz, THF-d 8 ) δ 0.02 ppm.

化合物B6:1H NMR (400 MHz, THF-d8) δ 7.48-7.51 (m, 14H), 7.62 (d, J = 8.2 Hz, 2H), 7.89 (d, J = 7.3 Hz, 4H), 8.00-8.06 (m, 12H), 8.19 (s, 2H), 8.21 (s, 4H), 8.31 (s, 2H), 8.36 (s, 4H) ppm; 13C NMR (100 MHz, THF-d8) δ 126.0 (2C), 126.1 (2C), 126.4 (8C), 126.6 (4C), 126.8 (4C), 127.5 (2C), 128.2 (4C), 128.9 (6C), 129.0 (6C), 129.2 (4C), 132.4 (2C), 132.6 (2C), 133.5 (2C), 133.7 (4C), 134.8 (4C), 136.2 (2C), 139.5 (4C), 140.4 (2C), 142.1 (4C), 147.3 (2C) ppm; 31P NMR (160 MHz, THF-d8) δ 0.2 ppm.Compound B6: 1 H NMR (400 MHz, THF-d 8 ) δ 7.48-7.51 (m, 14H), 7.62 (d, J = 8.2 Hz, 2H), 7.89 (d, J = 7.3 Hz, 4H), 8.00 -8.06 (m, 12H), 8.19 (s, 2H), 8.21 (s, 4H), 8.31 (s, 2H), 8.36 (s, 4H) ppm; 13 C NMR (100 MHz, THF-d 8 ) δ 126.0 (2C), 126.1 (2C), 126.4 (8C), 126.6 (4C), 126.8 (4C), 127.5 (2C), 128.2 (4C), 128.9 (6C), 129.0 (6C), 129.2 (4C), 132.4 (2C), 132.6 (2C), 133.5 (2C), 133.7 (4C), 134.8 (4C), 136.2 (2C), 139.5 (4C), 140.4 (2C), 142.1 (4C), 147.3 (2C) ppm ; 31 P NMR (160 MHz, THF-d 8 ) δ 0.2 ppm.

化合物B7:1H NMR (400 MHz, THF-d8) δ 2.37 (s, 24H), 6.99 (s, 4H), 7.38-7.48 (m, 12H), 7.57 (d, J = 5.4 Hz, 2H), 7.78 (s, 2H), 7.94 (s, 4H), 8.01 (d, J = 5.2 Hz, 2H), 8.18 (s, 2H) ppm; 13C NMR (100 MHz, THF-d8) δ 21.4 (8C), 125.6 (2C), 126.0 (10C), 126.3 (2C), 126.6 (2C), 127.3 (2C), 128.7 (4C), 128.9 (2C), 129.4 (4C), 132.3 (2C), 132.6 (2C), 133.5 (2C), 136.6 (2C), 138.6 (8C), 140.2 (2C), 142.3 (4C), 142.4 (4C), 147.4 (2C) ppm; 31P NMR (160 MHz, THF-d8) δ -0.5 ppm.Compound B7: 1 H NMR (400 MHz, THF-d 8 ) δ 2.37 (s, 24H), 6.99 (s, 4H), 7.38-7.48 (m, 12H), 7.57 (d, J = 5.4 Hz, 2H) , 7.78 (s, 2H), 7.94 (s, 4H), 8.01 (d, J = 5.2 Hz, 2H), 8.18 (s, 2H) ppm; 13 C NMR (100 MHz, THF-d 8 ) δ 21.4 ( 8C), 125.6 (2C), 126.0 (10C), 126.3 (2C), 126.6 (2C), 127.3 (2C), 128.7 (4C), 128.9 (2C), 129.4 (4C), 132.3 (2C), 132.6 ( 2C), 133.5 (2C), 136.6 (2C), 138.6 (8C), 140.2 (2C), 142.3 (4C), 142.4 (4C), 147.4 (2C) ppm; 31 P NMR (160 MHz, THF-d 8 ) δ -0.5 ppm.

化合物B8:1H NMR (400 MHz, THF-d8) δ 7.20 (t, J = 5.4 Hz, 8H), 7.40 (t, J = 4.7 Hz, 2H), 7.48 (t, J = 4.3 Hz, 2H), 7.55 (d, J = 5.2 Hz, 2H), 7.82- 7.85 (m, 10H), 7.99 (s, 4H), 8.02 (d, J = 5.2 Hz, 2H), 8.23 (s, 2H) ppm; 13C NMR (100 MHz, THF-d8) δ 116.1 (d, 8C), 125.3 (2C), 126.0 (2C), 126.5 (d, 4C), 127.5 (2C), 128.8 (4C), 128.9 (2C), 129.9 (d, 8C), 132.3 (2C), 132.6 (2C), 133.5 (2C), 136.5 (2C), 138.5 (4C), 140.4 (2C), 141.1 (4C), 147.3 (2C), 162.2 (2C), 164.7 (2C) ppm; 31P NMR (160 MHz, THF-d8) δ 0.3 ppm.Compound B8: 1 H NMR (400 MHz, THF-d 8 ) δ 7.20 (t, J = 5.4 Hz, 8H), 7.40 (t, J = 4.7 Hz, 2H), 7.48 (t, J = 4.3 Hz, 2H ), 7.55 (d, J = 5.2 Hz, 2H), 7.82-7.85 (m, 10H), 7.99 (s, 4H), 8.02 (d, J = 5.2 Hz, 2H), 8.23 (s, 2H) ppm; 13 C NMR (100 MHz, THF-d 8 ) δ 116.1 (d, 8C), 125.3 (2C), 126.0 (2C), 126.5 (d, 4C), 127.5 (2C), 128.8 (4C), 128.9 (2C ), 129.9 (d, 8C), 132.3 (2C), 132.6 (2C), 133.5 (2C), 136.5 (2C), 138.5 (4C), 140.4 (2C), 141.1 (4C), 147.3 (2C), 162.2 (2C), 164.7 (2C) ppm; 31 P NMR (160 MHz, THF-d 8 ) δ 0.3 ppm.

化合物B9:1H NMR (400 MHz, THF-d8) δ 7.42 (t, J = 5.2 Hz, 2H), 7.52 (t, J = 4.6 Hz, 2H), 7.60 (d, J = 5.2 Hz, 2H), 8.05 (d, J = 5.2 Hz, 2H), 8.06 (s, 4H), 8.12 (s, 2H), 8.20 (s, 4H), 8.32 (s, 2H), 8.46 (s, 8H) ppm; 31P NMR (160 MHz, THF-d8) δ -0.7 ppm.Compound B9: 1 H NMR (400 MHz, THF-d 8 ) δ 7.42 (t, J = 5.2 Hz, 2H), 7.52 (t, J = 4.6 Hz, 2H), 7.60 (d, J = 5.2 Hz, 2H ), 8.05 (d, J = 5.2 Hz, 2H), 8.06 (s, 4H), 8.12 (s, 2H), 8.20 (s, 4H), 8.32 (s, 2H), 8.46 (s, 8H) ppm; 31 P NMR (160 MHz, THF-d 8 ) δ -0.7 ppm.

化合物B10:1H NMR (400 MHz, THF-d8) δ 7.31 (t, J = 4.0 Hz, 2H), 7.40-7.45 (m, 6H), 7.49 (t, J = 4.3 Hz, 2H), 7.58 (d, J = 5.2 Hz, 2H), 7.70-7.73 (m, 8H), 7.82 (d, J = 5.2 Hz, 4H), 8.00 (d, J = 5.2 Hz, 2H), 8.10 (s, 2H) ppm; 13C NMR (100 MHz, THF-d8) δ 125.9 (2C), 126.3 (2C), 126.6 (2C), 127.0 (4C), 127.3 (2C), 127.6 (4C), 127.9 (2C), 128.9 (2C), 129.4 (4C), 131.4 (4C), 132.0 (2C), 132.6 (2C), 133.3 (2C), 136.2 (2C), 138.5 (2C), 140.6 (2C), 141.7 (2C), 147.2 (2C) ppm; 31P NMR (160 MHz, THF-d8) δ 0.1 ppm.Compound B10: 1 H NMR (400 MHz, THF-d 8 ) δ 7.31 (t, J = 4.0 Hz, 2H), 7.40-7.45 (m, 6H), 7.49 (t, J = 4.3 Hz, 2H), 7.58 (d, J = 5.2 Hz, 2H), 7.70-7.73 (m, 8H), 7.82 (d, J = 5.2 Hz, 4H), 8.00 (d, J = 5.2 Hz, 2H), 8.10 (s, 2H) ppm; 13 C NMR (100 MHz, THF-d 8 ) δ 125.9 (2C), 126.3 (2C), 126.6 (2C), 127.0 (4C), 127.3 (2C), 127.6 (4C), 127.9 (2C), 128.9 (2C), 129.4 (4C), 131.4 (4C), 132.0 (2C), 132.6 (2C), 133.3 (2C), 136.2 (2C), 138.5 (2C), 140.6 (2C), 141.7 (2C), 147.2 (2C) ppm; 31 P NMR (160 MHz, THF-d 8 ) δ 0.1 ppm.

化合物B11:1H NMR (400 MHz, THF-d8) δ 7.34-7.46 (m, 22H), 7.55 (d, J = 5.0 Hz, 2H), 7.59-7.63 (m, 16H), 7.72 (d, J = 4.9 Hz, 4H), 7.96 (d, J = 5.2 Hz, 2H), 8.04 (s, 2H) ppm; 13C NMR (100 MHz, THF-d8) δ 125.7 (2C), 126.2 (2C), 126.6 (2C), 127.3 (2C), 128.6 (12C), 128.9 (2C), 130.2 (6C), 130.5 (4C), 131.7 (2C), 132.5 (2C), 133.4 (4C), 135.3 (6C), 136.6 (2C), 136.6 (4C), 137.2 (12C), 140.7 (2C), 147.3 (2C) ppm; 31P NMR (160 MHz, THF-d8) δ -0.6 ppm.Compound B11: 1 H NMR (400 MHz, THF-d 8 ) δ 7.34-7.46 (m, 22H), 7.55 (d, J = 5.0 Hz, 2H), 7.59-7.63 (m, 16H), 7.72 (d, J = 4.9 Hz, 4H), 7.96 (d, J = 5.2 Hz, 2H), 8.04 (s, 2H) ppm; 13 C NMR (100 MHz, THF-d 8 ) δ 125.7 (2C), 126.2 (2C) , 126.6 (2C), 127.3 (2C), 128.6 (12C), 128.9 (2C), 130.2 (6C), 130.5 (4C), 131.7 (2C), 132.5 (2C), 133.4 (4C), 135.3 (6C) , 136.6 (2C), 136.6 (4C), 137.2 (12C), 140.7 (2C), 147.3 (2C) ppm; 31 P NMR (160 MHz, THF-d 8 ) δ -0.6 ppm.

化合物B12:1H NMR (400 MHz, THF-d8) δ 1.65-1.89 (m, 6H), 2.11-2.16 (m, 2H), 2.75-2.96 (m, 8H), 7.26 (s, 2H), 7.31 (t, J = 4.3 Hz, 4H), 7.43 (t, J = 4.3 Hz, 8H), 7.76-7.81 (m, 14H) ppm; 13C NMR (100 MHz, THF-d8) δ 23.8, (2C), 24.1 (2C), 28.1 (2C), 30.4 (2C), 125.2 (2C), 127.9 (4C), 128.1 (8C), 128.8 (4C), 129.4 (8C), 130.8 (2C), 132.7 (2C), 133.9 (2C), 135.1 (2C), 137.1 (2C), 140.9 (2C), 142.0 (4C), 142.5 (4C), 146.2 (2C) ppm; 31P NMR (160 MHz, THF-d8) δ 0.3 ppm.Compound B12: 1 H NMR (400 MHz, THF-d 8 ) δ 1.65-1.89 (m, 6H), 2.11-2.16 (m, 2H), 2.75-2.96 (m, 8H), 7.26 (s, 2H), 7.31 (t, J = 4.3 Hz, 4H), 7.43 (t, J = 4.3 Hz, 8H), 7.76-7.81 (m, 14H) ppm; 13 C NMR (100 MHz, THF-d 8 ) δ 23.8, ( 2C), 24.1 (2C), 28.1 (2C), 30.4 (2C), 125.2 (2C), 127.9 (4C), 128.1 (8C), 128.8 (4C), 129.4 (8C), 130.8 (2C), 132.7 ( 2C), 133.9 (2C), 135.1 (2C), 137.1 (2C), 140.9 (2C), 142.0 (4C), 142.5 (4C), 146.2 (2C) ppm; 31 P NMR (160 MHz, THF-d 8 ) δ 0.3 ppm.

2.ピロリン酸エステル化合物の合成
ピロリン酸エステル化合物を下記のスキーム2にしたがって合成した。以下の実施例4〜6にその詳細を示す。
2. Synthesis of Pyrophosphate Compound A pyrophosphate compound was synthesized according to Scheme 2 below. The details are shown in Examples 4 to 6 below.

[実施例4]
BINOLビスリン酸エステル(化合物B1,62mg,0.10mmol)およびDMF(0.010mL)のジクロロメタン(1.0mL)溶液に塩化オキサリル(0.030mL,0.35mmol)を室温にて加えた後、速やかに40℃に昇温して30分間撹拌した。反応混合物を減圧濃縮することにより、目的とするBINOLピロリン酸エステル(化合物A1,5.9mg,100%)を得た。このピロリン酸エステルの構造は、NMRスペクトルおよびマススペクトルを測定することにより確定した。スペクトルデータは以下のとおり。1H NMR (400 MHz, CDCl3) δ7.02-7.20 (m, 8H), 7.30-7.40 (m, 6H), 7.52 (t, J = 7.8 Hz, 2H), 7.94-8.02 (m, 2H), 7.98 (s, 2H)ppm; 13C NMR (100 MHz, CDCl3) δ125.0 (2C), 125.3 (2C), 126.4 (2C), 127.2 (2C), 128.1 (4C), 128.3 (2C), 129.6 (2C), 131.6 (2C), 131.7 (2C), 132.8 (2C), 137.8 (2C), 144.8 (2C), 164.2(2C)ppm; 31P NMR (160 MHz, CDCl3) δ-21.2 ppm; HRMS (FAB, negative mode) calcd for C32H21O7P2[M-H]- 579.0763, found 579.0772.
[Example 4]
After adding oxalyl chloride (0.030 mL, 0.35 mmol) to a solution of BINOL bisphosphate (Compound B 1,62 mg, 0.10 mmol) and DMF (0.010 mL) in dichloromethane (1.0 mL) at room temperature, The mixture was heated to 40 ° C. and stirred for 30 minutes. The reaction mixture was concentrated under reduced pressure to obtain the desired BINOL pyrophosphate ester (Compound A1, 5.9 mg, 100%). The structure of this pyrophosphate ester was determined by measuring NMR spectrum and mass spectrum. The spectrum data is as follows. 1 H NMR (400 MHz, CDCl 3 ) δ7.02-7.20 (m, 8H), 7.30-7.40 (m, 6H), 7.52 (t, J = 7.8 Hz, 2H), 7.94-8.02 (m, 2H) , 7.98 (s, 2H) ppm; 13 C NMR (100 MHz, CDCl 3 ) δ125.0 (2C), 125.3 (2C), 126.4 (2C), 127.2 (2C), 128.1 (4C), 128.3 (2C) , 129.6 (2C), 131.6 (2C), 131.7 (2C), 132.8 (2C), 137.8 (2C), 144.8 (2C), 164.2 (2C) ppm; 31 P NMR (160 MHz, CDCl 3 ) δ-21.2 ppm; HRMS (FAB, negative mode ) calcd for C 32 H 21 O 7 P 2 [MH] - 579.0763, found 579.0772.

[実施例5]
実施例4で用いた化合物B1の代わりに、化合物B2を用いた以外は、実施例4と同様にしてピロリン酸エステル化合物(化合物A2)を得た。そのスペクトルデータは、以下のとおり。1H NMR (400 MHz, CDCl3) δ 2.02 (s, 12H), 2.32 (s, 6H), 6.93 (s, 4H), 7.10 (d, J = 8.5 Hz, 4H), 7.15 (d, J = 8.7 Hz, 2H), 7.36 (dd, J = 8.2, 8.3 Hz, 2H), 7.50-7.63 (m, 6H), 8.06 (d, J = 8.2 Hz, 2H), 8.15 (s, 2H) ppm; 13C NMR (100 MHz, CDCl3) δ 20.8 (4C), 21.1 (2C), 125.2 (4C), 126.6 (2C), 127.3 (2C), 128.1 (4C), 128.3 (2C), 129.2 (4C), 129.5 (4C), 131.4 (2C), 131.7 (2C), 132.8 (2C), 134.4 (2C), 135.9 (6C), 136.5 (2C), 138.8 (2C), 140.1 (2C), 145.1 (2C) ppm; 31P NMR(160 MHz, CDCl3) δ -21.7 ppm; HRMS (FAB, negative mode) calcd for C50H41O7P2[M-H]- 815.2328, found 815.2347.
[Example 5]
A pyrophosphate ester compound (Compound A2) was obtained in the same manner as in Example 4 except that Compound B2 was used instead of Compound B1 used in Example 4. The spectrum data is as follows. 1 H NMR (400 MHz, CDCl 3 ) δ 2.02 (s, 12H), 2.32 (s, 6H), 6.93 (s, 4H), 7.10 (d, J = 8.5 Hz, 4H), 7.15 (d, J = 8.7 Hz, 2H), 7.36 (dd, J = 8.2, 8.3 Hz, 2H), 7.50-7.63 (m, 6H), 8.06 (d, J = 8.2 Hz, 2H), 8.15 (s, 2H) ppm; 13 C NMR (100 MHz, CDCl 3 ) δ 20.8 (4C), 21.1 (2C), 125.2 (4C), 126.6 (2C), 127.3 (2C), 128.1 (4C), 128.3 (2C), 129.2 (4C), 129.5 (4C), 131.4 (2C), 131.7 (2C), 132.8 (2C), 134.4 (2C), 135.9 (6C), 136.5 (2C), 138.8 (2C), 140.1 (2C), 145.1 (2C) ppm ; 31 P NMR (160 MHz, CDCl 3) δ -21.7 ppm; HRMS (FAB, negative mode) calcd for C 50 H 41 O 7 P 2 [MH] - 815.2328, found 815.2347.

[実施例6]
実施例4で用いた化合物B1の代わりに、化合物B3を用いた以外は、実施例4と同様にしてピロリン酸エステル化合物(化合物A3)を得た。そのスペクトルデータは、以下のとおり。1H NMR (400 MHz, CDCl3) δ 7.08 (d, J = 7.8 Hz, 2H), 7.40 (t, J = 7.8 Hz, 2H), 7.55 (t, J = 7.8 Hz, 2H), 7.77 (s, 2H), 7.92-8.14 (m, 8H) ppm; 13C NMR (100 MHz, CDCl3) δ121.1 (2C), 123.5 (d, J = 270.8 Hz, 4C), 125.4 (2C), 126.9 (2C), 128.3 (2C), 128.6 (2C), 129.8 (4C), 131.39 (d, J = 33.4 Hz, 4C), 131.42 (2C), 131.5 (2C), 132.1 (2C), 133.5 (2C), 140.3 (2C), 144.3 (2C), 165.4 (2C)ppm; 31PNMR (160 MHz, CDCl3) δ-21.1 ppm; HRMS (FAB, negative mode) calcd for C36H17F12O7P2[M-H]- 851.0258, found 851.0251.
[Example 6]
A pyrophosphate ester compound (Compound A3) was obtained in the same manner as in Example 4 except that Compound B3 was used instead of Compound B1 used in Example 4. The spectrum data is as follows. 1 H NMR (400 MHz, CDCl 3 ) δ 7.08 (d, J = 7.8 Hz, 2H), 7.40 (t, J = 7.8 Hz, 2H), 7.55 (t, J = 7.8 Hz, 2H), 7.77 (s , 2H), 7.92-8.14 (m, 8H) ppm; 13 C NMR (100 MHz, CDCl 3 ) δ121.1 (2C), 123.5 (d, J = 270.8 Hz, 4C), 125.4 (2C), 126.9 ( 2C), 128.3 (2C), 128.6 (2C), 129.8 (4C), 131.39 (d, J = 33.4 Hz, 4C), 131.42 (2C), 131.5 (2C), 132.1 (2C), 133.5 (2C), 140.3 (2C), 144.3 (2C), 165.4 (2C) ppm; 31 PNMR (160 MHz, CDCl 3 ) δ-21.1 ppm; HRMS (FAB, negative mode) calcd for C 36 H 17 F 12 O 7 P 2 [ MH] - 851.0258, found 851.0251.

[追加実施例]
更に、下記のピロリン酸エステル化合物A4〜A12も合成した。化合物A4〜A12は、実施例4で用いた化合物B1の代わりに化合物B4〜B12を用いた以外は、実施例4と同様にして合成した。
[Additional Examples]
Furthermore, the following pyrophosphate ester compounds A4 to A12 were also synthesized. Compounds A4 to A12 were synthesized in the same manner as in Example 4 except that compounds B4 to B12 were used instead of compound B1 used in Example 4.

化合物A4〜A12のスペクトルデータは、以下のとおり。   The spectrum data of the compounds A4 to A12 are as follows.

化合物A4:1H NMR (400 MHz, THF-d8) δ 7.12 (d, J = 5.4 Hz, 2H), 7.31 (t, J = 4.9 Hz, 2H), 7.39-7.49 (m, 6H),7.71-7.81 (m, 6H), 7.90 (s, 4H), 8.02-8.06 (m, 4H), 8.15 (s, 2H) ppm; 31P NMR (160 MHz, THF-d8) δ -19.5 ppm.Compound A4: 1 H NMR (400 MHz, THF-d 8 ) δ 7.12 (d, J = 5.4 Hz, 2H), 7.31 (t, J = 4.9 Hz, 2H), 7.39-7.49 (m, 6H), 7.71 -7.81 (m, 6H), 7.90 (s, 4H), 8.02-8.06 (m, 4H), 8.15 (s, 2H) ppm; 31 P NMR (160 MHz, THF-d 8 ) δ -19.5 ppm.

化合物A5:1H NMR (400 MHz, THF-d8) δ 7.12 (d, J = 8.3 Hz, 2H), 7.29-7.32 (m, 4H), 7.39-7.48 (m, 12H), 7.79 (d, J = 7.4 Hz, 8H), 7.85 (s, 2H), 7.99 (s, 4H), 8.04 (d, J = 8.2 Hz, 2H), 8.30 (s, 2H) ppm; 13C NMR (100 MHz, THF-d8) δ 125.4 (2C), 125.9 (2C), 126.1 (2C), 126.6 (2C), 127.7 (2C), 127.8 (4C), 128.0 (8C), 128.2 (4C), 128.9 (2C), 129.3 (8C), 132.2 (2C), 132.5 (2C), 134.0 (2C), 135.2 (2C), 140.3 (2C), 142.1 (4C), 142.3 (4C), 146.4 (2C) ppm; 31P NMR (160 MHz, THF-d8) δ -20.1 ppm.Compound A5: 1 H NMR (400 MHz, THF-d 8 ) δ 7.12 (d, J = 8.3 Hz, 2H), 7.29-7.32 (m, 4H), 7.39-7.48 (m, 12H), 7.79 (d, J = 7.4 Hz, 8H), 7.85 (s, 2H), 7.99 (s, 4H), 8.04 (d, J = 8.2 Hz, 2H), 8.30 (s, 2H) ppm; 13 C NMR (100 MHz, THF -d 8 ) δ 125.4 (2C), 125.9 (2C), 126.1 (2C), 126.6 (2C), 127.7 (2C), 127.8 (4C), 128.0 (8C), 128.2 (4C), 128.9 (2C), 129.3 (8C), 132.2 (2C), 132.5 (2C), 134.0 (2C), 135.2 (2C), 140.3 (2C), 142.1 (4C), 142.3 (4C), 146.4 (2C) ppm; 31 P NMR ( 160 MHz, THF-d 8 ) δ -20.1 ppm.

化合物A6:1H NMR (400 MHz, THF-d8) δ 7.16 (d, J = 7.8 Hz, 2H), 7.31 (t, J = 7.3 Hz, 2H), 7.46 (br, 12H), 7.85-8.08 (m, 16H), 8.14 (s, 2H), 8.20 (s, 4H), 8.36 (s, 4H), 8.39 (s, 2H) ppm; 13C NMR (100 MHz, THF-d8) δ 125.9 (2C), 126.2 (2C), 126.5 (4C), 126.6 (4C), 126.7 (8C), 127.8 (2C), 128.2 (4C), 128.6 (4C), 129.0 (12C), 132.4 (2C), 132.6 (2C), 133.6 (4C), 134.1(2C), 134.7 (4C), 135.2 (2C), 139.4 (4C), 140.6 (2C), 142.2 (4C), 146.6 (2C) ppm; 31P NMR (160 MHz, THF-d8) δ -20.1 ppm.Compound A6: 1 H NMR (400 MHz, THF-d 8 ) δ 7.16 (d, J = 7.8 Hz, 2H), 7.31 (t, J = 7.3 Hz, 2H), 7.46 (br, 12H), 7.85-8.08 (m, 16H), 8.14 (s, 2H), 8.20 (s, 4H), 8.36 (s, 4H), 8.39 (s, 2H) ppm; 13 C NMR (100 MHz, THF-d 8 ) δ 125.9 ( 2C), 126.2 (2C), 126.5 (4C), 126.6 (4C), 126.7 (8C), 127.8 (2C), 128.2 (4C), 128.6 (4C), 129.0 (12C), 132.4 (2C), 132.6 ( 2C), 133.6 (4C), 134.1 (2C), 134.7 (4C), 135.2 (2C), 139.4 (4C), 140.6 (2C), 142.2 (4C), 146.6 (2C) ppm; 31 P NMR (160 MHz , THF-d 8 ) δ -20.1 ppm.

化合物A7:1H NMR (400 MHz, THF-d8) δ 2.35 (s, 24H), 6.97 (s, 4H), 7.09 (d, J = 5.2 Hz, 2H), 7.30 (t, J = 4.6 Hz, 2H), 7.40 (s, 8H), 7.46 (t, J = 4.6 Hz, 2H), 7.77 (s, 2H), 7.94 (s, 4H), 8.03 (d, J = 4.9 Hz, 2H), 8.29 (s, 2H) ppm; 13C NMR (100 MHz, THF-d8) δ 21.4 (8C), 126.0 (10C), 126.3 (2C), 126.6 (2C), 127.7 (2C), 128.0 (4C), 128.9 (4C), 129.4 (4C), 132.3 (2C), 132.6 (2C), 134.1 (2C), 135.6 (2C), 138.6 (8C), 140.3 (2C), 142.3 (4C), 142.6 (4C), 146.4 (2C) ppm; 31P NMR (160 MHz, THF-d8) δ -20.3 ppm.Compound A7: 1 H NMR (400 MHz, THF-d 8 ) δ 2.35 (s, 24H), 6.97 (s, 4H), 7.09 (d, J = 5.2 Hz, 2H), 7.30 (t, J = 4.6 Hz , 2H), 7.40 (s, 8H), 7.46 (t, J = 4.6 Hz, 2H), 7.77 (s, 2H), 7.94 (s, 4H), 8.03 (d, J = 4.9 Hz, 2H), 8.29 (s, 2H) ppm; 13 C NMR (100 MHz, THF-d 8 ) δ 21.4 (8C), 126.0 (10C), 126.3 (2C), 126.6 (2C), 127.7 (2C), 128.0 (4C), 128.9 (4C), 129.4 (4C), 132.3 (2C), 132.6 (2C), 134.1 (2C), 135.6 (2C), 138.6 (8C), 140.3 (2C), 142.3 (4C), 142.6 (4C), 146.4 (2C) ppm; 31 P NMR (160 MHz, THF-d 8 ) δ -20.3 ppm.

化合物A8:1H NMR (400 MHz, THF-d8) δ 7.11 (d, J = 5.2 Hz, 2H), 7.14-7.19 (m, 8H), 7.31 (t, J = 5.2 Hz, 2H), 7.48 (t, J = 4.9 Hz, 2H), 7.80-7.83 (m, 8H), 7.90 (s, 2H), 7.95 (s, 4H), 8.03 (d, J = 4.9 Hz, 2H), 8.30 (s, 2H) ppm; 13C NMR (100 MHz, THF-d8) δ 116.1 (d, 8C), 125.3 (2C), 125.9 (2C), 126.7 (2C), 127.9 (2C), 128.1 (6C), 128.8 (2C), 129.0 (4C), 129.9 (d, 8C), 132.3 (2C), 132.6 (2C), 134.1 (2C), 135.1 (2C), 138.4 (d, 4C), 140.5 (2C), 141.4 (4C), 146.3 (2C) ppm; 31P NMR (160 MHz, THF-d8) δ -20.1 ppm.Compound A8: 1 H NMR (400 MHz, THF-d 8 ) δ 7.11 (d, J = 5.2 Hz, 2H), 7.14-7.19 (m, 8H), 7.31 (t, J = 5.2 Hz, 2H), 7.48 (t, J = 4.9 Hz, 2H), 7.80-7.83 (m, 8H), 7.90 (s, 2H), 7.95 (s, 4H), 8.03 (d, J = 4.9 Hz, 2H), 8.30 (s, 2H) ppm; 13 C NMR (100 MHz, THF-d 8 ) δ 116.1 (d, 8C), 125.3 (2C), 125.9 (2C), 126.7 (2C), 127.9 (2C), 128.1 (6C), 128.8 (2C), 129.0 (4C), 129.9 (d, 8C), 132.3 (2C), 132.6 (2C), 134.1 (2C), 135.1 (2C), 138.4 (d, 4C), 140.5 (2C), 141.4 ( 4C), 146.3 (2C) ppm; 31 P NMR (160 MHz, THF-d 8 ) δ -20.1 ppm.

化合物A9:1H NMR (400 MHz, THF-d8) δ 7.13 (d, J = 5.5 Hz, 2H), 7.34 (t, J = 4.9 Hz, 2H), 7.52 (t, J = 4.6 Hz, 2H), 8.06 (s, 6H), 8.09 (d, J = 6.6 Hz, 2H), 8.19 (s, 4H), 8.40 (s, 2H), 8.49 (s, 8H) ppm; 31P NMR (160 MHz, THF-d8) δ -20.0 ppm.Compound A9: 1 H NMR (400 MHz, THF-d 8 ) δ 7.13 (d, J = 5.5 Hz, 2H), 7.34 (t, J = 4.9 Hz, 2H), 7.52 (t, J = 4.6 Hz, 2H ), 8.06 (s, 6H), 8.09 (d, J = 6.6 Hz, 2H), 8.19 (s, 4H), 8.40 (s, 2H), 8.49 (s, 8H) ppm; 31 P NMR (160 MHz, THF-d 8 ) δ -20.0 ppm.

化合物A10:1H NMR (400 MHz, THF-d8) δ 7.13 (d, J = 5.2 Hz, 2H), 7.29-7.34 (m, 4H), 7.39-7.48 (m, 8H), 7.59-7.72 (m, 10H), 8.03 (d, J = 5.2 Hz, 2H), 8.15 (s, 2H) ppm; 13C NMR (100 MHz, THF-d8) δ 125.8 (2C), 126.7 (2C), 127.1 (4C), 127.5 (4C), 127.7 (2C), 128.8 (2C), 129.0 (2C), 129.4 (4C), 130.8 (4C), 131.4 (2C), 132.0 (2C), 132.6 (2C), 133.9 (2C), 135.3 (2C), 138.4 (2C), 140.2 (2C), 141.6 (2C), 146.2 (2C) ppm; 31P NMR (160 MHz, THF-d8) δ -20.2 ppm.Compound A10: 1 H NMR (400 MHz, THF-d 8 ) δ 7.13 (d, J = 5.2 Hz, 2H), 7.29-7.34 (m, 4H), 7.39-7.48 (m, 8H), 7.59-7.72 ( m, 10H), 8.03 (d, J = 5.2 Hz, 2H), 8.15 (s, 2H) ppm; 13 C NMR (100 MHz, THF-d 8 ) δ 125.8 (2C), 126.7 (2C), 127.1 ( 4C), 127.5 (4C), 127.7 (2C), 128.8 (2C), 129.0 (2C), 129.4 (4C), 130.8 (4C), 131.4 (2C), 132.0 (2C), 132.6 (2C), 133.9 ( 2C), 135.3 (2C), 138.4 (2C), 140.2 (2C), 141.6 (2C), 146.2 (2C) ppm; 31 P NMR (160 MHz, THF-d 8 ) δ -20.2 ppm.

化合物A11:1H NMR (400 MHz, THF-d8) δ 7.08 (d, J = 5.4 Hz, 2H), 7.21 (t, J = 4.9 Hz, 2H), 7.31-7.38 (m, 20H), 7.54-7.61 (m, 16H), 7.67 (d, J = 4.9 Hz, 4H), 7.97 (d, J = 5.2 Hz, 2H), 8.13 (s, 2H) ppm; 13C NMR (100 MHz, THF-d8) δ 125.7 (2C), 126.1 (2C), 126.8 (2C), 127.7 (2C), 128.6 (12C), 129.0 (2C), 129.9 (4C), 130.2 (6C), 132.2 (2C), 132.6 (2C), 133.3 (2C), 133.8 (2C), 135.2 (6C), 136.8 (4C), 137.1 (12C), 140.6 (2C), 146.1 (2C) ppm; 31P NMR (160 MHz, THF-d8) δ -20.4 ppm.Compound A11: 1 H NMR (400 MHz, THF-d 8 ) δ 7.08 (d, J = 5.4 Hz, 2H), 7.21 (t, J = 4.9 Hz, 2H), 7.31-7.38 (m, 20H), 7.54 -7.61 (m, 16H), 7.67 (d, J = 4.9 Hz, 4H), 7.97 (d, J = 5.2 Hz, 2H), 8.13 (s, 2H) ppm; 13 C NMR (100 MHz, THF-d 8 ) δ 125.7 (2C), 126.1 (2C), 126.8 (2C), 127.7 (2C), 128.6 (12C), 129.0 (2C), 129.9 (4C), 130.2 (6C), 132.2 (2C), 132.6 ( 2C), 133.3 (2C), 133.8 (2C), 135.2 (6C), 136.8 (4C), 137.1 (12C), 140.6 (2C), 146.1 (2C) ppm; 31 P NMR (160 MHz, THF-d 8 ) δ -20.4 ppm.

化合物A12:1H NMR (400 MHz, THF-d8) δ 2.01-2.07 (m, 4H), 2.46-2.52 (m, 4H), 2.84-2.93 (m, 8H), 7.29-7.35 (m, 6H), 7.42 (t, J = 4.6 Hz, 8H), 7.76-7.81 (m, 14H) ppm; 13C NMR (100 MHz, THF-d8) δ 23.5 (2C), 23.8 (2C), 27.9 (2C), 30.4 (2C), 125.1 (2C), 127.8 (4C), 128.0 (4C), 128.1 (8C), 129.3 (8C), 131.1 (2C), 132.6 (2C), 133.1 (2C), 135.8 (2C), 136.9 (2C), 140.6 (2C), 142.2 (4C), 142.3 (4C), 144.7 (2C) ppm; 31P NMR (160 MHz, THF-d8) δ -20.4 ppm.Compound A12: 1 H NMR (400 MHz, THF-d 8 ) δ 2.01-2.07 (m, 4H), 2.46-2.52 (m, 4H), 2.84-2.93 (m, 8H), 7.29-7.35 (m, 6H ), 7.42 (t, J = 4.6 Hz, 8H), 7.76-7.81 (m, 14H) ppm; 13 C NMR (100 MHz, THF-d 8 ) δ 23.5 (2C), 23.8 (2C), 27.9 (2C ), 30.4 (2C), 125.1 (2C), 127.8 (4C), 128.0 (4C), 128.1 (8C), 129.3 (8C), 131.1 (2C), 132.6 (2C), 133.1 (2C), 135.8 (2C ), 136.9 (2C), 140.6 (2C), 142.2 (4C), 142.3 (4C), 144.7 (2C) ppm; 31 P NMR (160 MHz, THF-d 8 ) δ -20.4 ppm.

3.各種反応例
3−1.分子内エン反応(その1)
シトロネラールの分子内エン反応について、化合物A1〜A3を触媒に用いた場合と、従来公知のリン酸エステル化合物C(表1の欄外参照)を触媒に用いた場合との活性を比較した。化合物A1を触媒に用いた場合の具体的手順を以下に説明する。
3. Various reaction examples 3-1. Intramolecular ene reaction (part 1)
Regarding the intramolecular ene reaction of citronellal, the activity was compared between the case where the compounds A1 to A3 were used as the catalyst and the case where the conventionally known phosphate ester compound C (see the column in Table 1) was used as the catalyst. A specific procedure when Compound A1 is used as a catalyst will be described below.

直前に調製した化合物A1(0.01mmol)のジクロロメタン溶液(2mL)に対して、−78℃にてシトロネラール(0.036mL,0.2mmol)を加えて、24時間撹拌した。反応溶液に対してトリエチルアミン(0.1mL)を加えて反応を停止した後、減圧下で溶媒を除去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン−酢酸エチル=20:1)で精製することにより、環化生成物(25.6mg,83%収率)を得た。この環化生成物は既知化合物である。その構造は,NMRスペクトルを文献記載のデータと比較することにより確認した。   Citronellal (0.036 mL, 0.2 mmol) was added at −78 ° C. to a dichloromethane solution (2 mL) of compound A1 (0.01 mmol) prepared immediately before, and the mixture was stirred for 24 hours. After the reaction was stopped by adding triethylamine (0.1 mL) to the reaction solution, the solvent was removed under reduced pressure. The resulting crude product was purified by silica gel column chromatography (hexane-ethyl acetate = 20: 1) to obtain a cyclized product (25.6 mg, 83% yield). This cyclization product is a known compound. The structure was confirmed by comparing the NMR spectrum with the data described in the literature.

同様の分子内エン反応を、化合物A2,A3,Cを触媒に用いて行った。それらの結果を表1に示す。なお、表1には反応条件も記載した。表1から、化合物A1〜A3を触媒に用いた場合には、化合物Cを触媒に用いた場合に比べて活性がかなり高いことがわかる。   A similar intramolecular ene reaction was carried out using compounds A2, A3 and C as catalysts. The results are shown in Table 1. Table 1 also shows the reaction conditions. From Table 1, it can be seen that when the compounds A1 to A3 are used as the catalyst, the activity is considerably higher than when the compound C is used as the catalyst.

3−2.分子内エン反応(その2)
上記3−1のシトロネラールの代わりに、3,3,7−トリメチル−6−オクテナールを用いた以外は、上記3−1と同様にして分子内エン反応を行った。それらの結果を表2に示す。なお、表2には反応条件も記載した。表2から明らかなように、化合物A1〜A3は優れた触媒活性を示したのに対して、化合物Cを触媒に用いた場合には生成物がほとんど得られなかった。また、反応温度を−78℃としたところ、触媒活性は化合物A2,A3が化合物A1よりも高い触媒活性を示した。このことから、BINOLの3,3’位に無置換のフェニル基が結合している場合よりも置換基を有するフェニル基が結合している場合の方が高い触媒活性を示すことが示唆された。
3-2. Intramolecular ene reaction (part 2)
Intramolecular ene reaction was carried out in the same manner as in 3-1, except that 3,3,7-trimethyl-6-octenal was used in place of the citronellal of 3-1. The results are shown in Table 2. Table 2 also shows the reaction conditions. As is clear from Table 2, compounds A1 to A3 showed excellent catalytic activity, whereas when compound C was used as a catalyst, almost no product was obtained. Further, when the reaction temperature was -78 ° C, the catalytic activities of the compounds A2 and A3 were higher than those of the compound A1. From this, it was suggested that when the phenyl group having a substituent is bonded to the 3,3′-position of BINOL, a higher catalytic activity is exhibited when the phenyl group having a substituent is bonded. .

3−3.マンニッヒ反応
イミンに対するアミドのマンニッヒ反応について、化合物A1,B1を触媒に用いた場合と、従来公知のリン酸エステル化合物Cを触媒に用いた場合との活性を比較した。化合物A1を触媒に用いた場合の具体的手順を以下に説明する。
3-3. Mannich Reaction Regarding the Mannich reaction of amides with imines, the activity was compared between the case where compounds A1 and B1 were used as a catalyst and the case where a conventionally known phosphate ester compound C was used as a catalyst. A specific procedure when Compound A1 is used as a catalyst will be described below.

直前に調製した化合物A1(0.03mmol)のジクロロメタン溶液(2mL)にモレキュラーシーブス4A(323mg)を加え、0℃に冷却した。この溶液に、4−クロロベンズアミド(32mg,0.2mmol)およびN−(ベンジルオキシカルボニル)ベンズアルジミン(74mg,0.3mmol)を加え、0℃にて30分間撹拌した。反応溶液に水を加えて反応を停止した後、ジクロロメタンで抽出した。有機層を合わせて飽和食塩水で洗浄し、無水炭酸ナトリウムで乾燥後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(クロロホルム−酢酸エチル=50:1→30:1)で精製することにより、目的とする付加体(78.5mg,>99%収率)を得た。この付加体は既知化合物である。その構造は,NMRスペクトルを文献記載のデータと比較することにより確認した。   Molecular sieves 4A (323 mg) was added to a dichloromethane solution (2 mL) of compound A1 (0.03 mmol) prepared immediately before, and the mixture was cooled to 0 ° C. To this solution, 4-chlorobenzamide (32 mg, 0.2 mmol) and N- (benzyloxycarbonyl) benzaldimine (74 mg, 0.3 mmol) were added, and the mixture was stirred at 0 ° C. for 30 minutes. Water was added to the reaction solution to stop the reaction, followed by extraction with dichloromethane. The organic layers were combined, washed with saturated brine, dried over anhydrous sodium carbonate, and concentrated under reduced pressure. The resulting crude product was purified by silica gel column chromatography (chloroform-ethyl acetate = 50: 1 → 30: 1) to obtain the desired adduct (78.5 mg,> 99% yield). . This adduct is a known compound. The structure was confirmed by comparing the NMR spectrum with the data described in the literature.

同様のマンニッヒ反応を、化合物B1,Cを触媒に用いて行った。それらの結果を表3に示す。なお、表3には反応条件も記載した。表3から、化合物Cに比べて化合物A1,B1の触媒活性、特に化合物A1の触媒活性が高かった。このことから、ビスリン酸エステル化合物よりもピロリン酸エステル化合物の方が高い触媒活性を示すことが示唆された。   A similar Mannich reaction was performed using compounds B1 and C as catalysts. The results are shown in Table 3. Table 3 also shows the reaction conditions. From Table 3, compared with the compound C, the catalytic activity of compound A1, B1, especially the catalytic activity of compound A1 was high. This suggests that the pyrophosphate compound exhibits higher catalytic activity than the bisphosphate compound.

3−4.フリーデル−クラフツ反応(その1)
アルジミンとクレゾールとのフリーデル−クラフツ反応について、化合物A1〜A6を触媒に用いた場合と、従来公知のリン酸エステル化合物Cを触媒に用いた場合との活性を比較した。化合物A1を触媒に用いた場合(表4のエントリー2)の具体的手順を以下に説明する。
3-4. Friedel-Crafts reaction (1)
Regarding the Friedel-Crafts reaction between aldimine and cresol, the activity was compared between when the compounds A1 to A6 were used as the catalyst and when the conventionally known phosphate ester compound C was used as the catalyst. A specific procedure when compound A1 is used as a catalyst (entry 2 in Table 4) will be described below.

直前に調製した化合物A1(0.01mmol)の塩化メチレン溶液(1mL)に対して、N−ベンジルオキシカルボニル(Cbz)アルジミン(2mmol)を室温で溶解させた後、o−クレゾール(3mmol)の塩化メチレン溶液を0℃で添加し、3時間撹拌した。反応溶液に対して水(2mL)を加えて反応を停止した後、酢酸エチルで分液し、減圧下で溶媒を除去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン−酢酸エチル=10:1→5:1)で精製することにより、パラ位に選択的なフリーデル−クラフツ反応の生成物を収率85%、光学収率4%eeで得た。この生成物のスペクトルデータは以下のとおり。   N-benzyloxycarbonyl (Cbz) aldimine (2 mmol) was dissolved at room temperature in a methylene chloride solution (1 mL) of compound A1 (0.01 mmol) prepared immediately before, and o-cresol (3 mmol) was salified. Methylene solution was added at 0 ° C. and stirred for 3 hours. Water (2 mL) was added to the reaction solution to stop the reaction, followed by liquid separation with ethyl acetate, and the solvent was removed under reduced pressure. The obtained crude product was purified by silica gel column chromatography (hexane-ethyl acetate = 10: 1 → 5: 1) to obtain a product of the Friedel-Crafts reaction selective for the para position in a yield of 85%. And an optical yield of 4% ee. The spectral data of this product is as follows.

1H NMR (400 MHz, THF-d8) δ 2.17 (s, 3H), 5.11 (s, 2H), 5.33 (br, 1H), 5.38 (d, J = 4.0 Hz, 1H), 5.88 (d, J = 4.6 Hz, 1H), 6.64 (d, J = 4.9 Hz, 1H), 6.87 (d, J = 4.9 Hz, 1H), 6.96 (s, 1H), 7.22-7.35 (m, 10H) ppm;13C NMR (100 MHz, THF-d8) δ 15.9 (1C), 58.4 (1C), 67.1 (1C), 114.9 (1C), 124.3 (1C), 125.8 (1C), 127.1 (2C), 127.3 (2C), 128.2 (2C), 128.5 (4C), 129.8 (1C), 133.2 (1C), 136.1 (1C), 141.8 (1C), 153.5 (1C), 155.2 (1C) ppm. 1 H NMR (400 MHz, THF-d 8 ) δ 2.17 (s, 3H), 5.11 (s, 2H), 5.33 (br, 1H), 5.38 (d, J = 4.0 Hz, 1H), 5.88 (d, J = 4.6 Hz, 1H), 6.64 (d, J = 4.9 Hz, 1H), 6.87 (d, J = 4.9 Hz, 1H), 6.96 (s, 1H), 7.22-7.35 (m, 10H) ppm; 13 C NMR (100 MHz, THF-d 8 ) δ 15.9 (1C), 58.4 (1C), 67.1 (1C), 114.9 (1C), 124.3 (1C), 125.8 (1C), 127.1 (2C), 127.3 (2C ), 128.2 (2C), 128.5 (4C), 129.8 (1C), 133.2 (1C), 136.1 (1C), 141.8 (1C), 153.5 (1C), 155.2 (1C) ppm.

同様のフリーデル−クラフツ反応を、化合物A2〜A6,Cを触媒に用いて行った。それらの結果を表4に示す。表4から、化合物Cに比べて化合物A1〜A6の触媒活性がかなり高く、フェノールの4位で付加した生成物が選択的に得られた。また、化合物A4〜A6(特にA5)を用いた場合に良好なエナンチオ選択性が発現することがわかった。更に、触媒に化合物A5を用い、溶媒にクロロホルムを用いた場合(表4のエントリー7)、より高いエナンチオ選択性を示した。なお、溶媒に二塩化エチレン、トルエン、トリフルオロメチルベンゼン、ニトロエタンを用いたところ、いずれもフリーデル−クラフツ反応の生成物が得られたが、クロロホルムを用いた場合の成績が最も良かった。   A similar Friedel-Crafts reaction was performed using compounds A2 to A6 and C as catalysts. The results are shown in Table 4. From Table 4, the catalytic activity of the compounds A1 to A6 was considerably higher than that of the compound C, and the product added at the 4-position of phenol was selectively obtained. Moreover, it turned out that favorable enantioselectivity is expressed when the compounds A4 to A6 (particularly A5) are used. Further, when compound A5 was used as the catalyst and chloroform was used as the solvent (entry 7 in Table 4), higher enantioselectivity was exhibited. When ethylene dichloride, toluene, trifluoromethylbenzene, or nitroethane was used as the solvent, the Friedel-Crafts reaction product was obtained, but the results with chloroform were the best.

3−5.フリーデル−クラフツ反応(その2)
化合物A5を触媒に用いて、各種の保護基を有するアルジミンとクレゾールとのフリーデル−クラフツ反応を行った。メトキシカルボニルを保護基とするアルジミンを用いた場合(表5のエントリー1)の具体的手順を以下に説明する。
3-5. Friedel-Crafts reaction (part 2)
Using Compound A5 as a catalyst, Friedel-Crafts reaction between aldimine having various protecting groups and cresol was performed. A specific procedure in the case of using aldimine having methoxycarbonyl as a protecting group (entry 1 in Table 5) will be described below.

直前に調製した化合物A5(0.01mmol)のクロロホルム溶液(1mL)に対して、N−メトキシカルボニルアルジミン(2mmol)を室温で溶解させた後、o−クレゾール(3mmol、アルジミンの1.5当量)のクロロホルム溶液を0℃で添加し、3時間撹拌した。反応溶液に対して水(2mL)を加えて反応を停止した後、酢酸エチルで分液し、減圧下で溶媒を除去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン−酢酸エチル=10:1→5:1)で精製することにより、パラ位に選択的なフリーデル−クラフツ反応の生成物を得た。この生成物のスペクトルデータは以下のとおり。   N-methoxycarbonylaldimine (2 mmol) was dissolved at room temperature in a chloroform solution (1 mL) of compound A5 (0.01 mmol) prepared immediately before o-cresol (3 mmol, 1.5 equivalents of aldimine). Was added at 0 ° C. and stirred for 3 hours. Water (2 mL) was added to the reaction solution to stop the reaction, followed by liquid separation with ethyl acetate, and the solvent was removed under reduced pressure. The resulting crude product was purified by silica gel column chromatography (hexane-ethyl acetate = 10: 1 → 5: 1) to obtain a Friedel-Crafts reaction product selective to the para position. The spectral data of this product is as follows.

1H NMR (400 MHz, THF-d8) δ 2.20 (s, 3H), 3.69 (s, 3H), 5.29 (d, J = 5.7 Hz, 1H), 5.87 (d, J = 4.3 Hz, 1H), 6.69 (d, J = 5.2 Hz, 1H), 6.90 (d, J = 4.9 Hz, 1H), 6.98 (s, 1H), 7.23-7.34 (m, 5H) ppm; 13C NMR (100 MHz, THF-d8) δ 15.9 (1C), 52.4 (1C), 58.3 (1C), 114.9 (1C), 124.3 (1C), 125.7 (1C), 127.1 (1C), 127.3 (2C), 128.5 (2C), 129.8 (1C), 133.2 (1C), 141.9 (1C), 153.6 (1C), 156.5 (1C) ppm. 1 H NMR (400 MHz, THF-d 8 ) δ 2.20 (s, 3H), 3.69 (s, 3H), 5.29 (d, J = 5.7 Hz, 1H), 5.87 (d, J = 4.3 Hz, 1H) , 6.69 (d, J = 5.2 Hz, 1H), 6.90 (d, J = 4.9 Hz, 1H), 6.98 (s, 1H), 7.23-7.34 (m, 5H) ppm; 13 C NMR (100 MHz, THF -d 8 ) δ 15.9 (1C), 52.4 (1C), 58.3 (1C), 114.9 (1C), 124.3 (1C), 125.7 (1C), 127.1 (1C), 127.3 (2C), 128.5 (2C), 129.8 (1C), 133.2 (1C), 141.9 (1C), 153.6 (1C), 156.5 (1C) ppm.

保護基がBoc(tert−ブトキシカルボニル)基やBz(ベンゾイル)基であるアルジミンを用いたフリーデル−クラフツ反応を、上述した手順と同様にして行った。それらの結果を表5のエントリー2,3に示す。なお、表5のエントリー1〜3では、o−クレゾールをアルジミンの1.5当量用い、触媒使用量、濃度、収率はアルジミンを基準として算出した。   Friedel-Crafts reaction using aldimine whose protecting group is Boc (tert-butoxycarbonyl) group or Bz (benzoyl) group was carried out in the same manner as described above. The results are shown in entries 2 and 3 of Table 5. In entries 1 to 3 in Table 5, 1.5 equivalents of o-cresol of aldimine were used, and the amount of catalyst used, concentration and yield were calculated based on aldimine.

一方、表5のエントリー4では、表5のエントリー1の濃度を10mMに変更した以外は、このエントリー1と同様にして反応を行った。そうしたところ、81%eeまでエナンチオ選択性が向上し、収率も97%まで向上した。更に、表5のエントリー5では、表5のエントリー4の触媒使用量を1mol%に変更した以外は、このエントリー4と同様にして反応を行った。そうしたところ、触媒使用量が1mol%であっても、79%eeという高いエナンチオ選択性を示した。なお、表5のエントリー4,5では、N−メトキシカルボニルアルジミンをo−クレゾールの1.5当量用い、触媒使用量、濃度、収率はo−クレゾールを基準として算出した。   On the other hand, in entry 4 in Table 5, the reaction was performed in the same manner as in entry 1 except that the concentration of entry 1 in Table 5 was changed to 10 mM. As a result, the enantioselectivity improved to 81% ee, and the yield also improved to 97%. Furthermore, in entry 5 of Table 5, the reaction was performed in the same manner as in entry 4 except that the amount of catalyst used in entry 4 of Table 5 was changed to 1 mol%. As a result, even if the amount of the catalyst used was 1 mol%, it showed a high enantioselectivity of 79% ee. In entries 4 and 5 in Table 5, 1.5 equivalents of o-cresol was used for N-methoxycarbonylaldimine, and the amount of catalyst used, concentration and yield were calculated based on o-cresol.

3−6.フリーデル−クラフツ反応(その3)
化合物A5を触媒に用いて、各種の保護基を有するアルジミンと各種の置換基を有するクレゾールとのフリーデル−クラフツ反応を行った。ここでは、表5のエントリー4の手順に準じて反応を行った。その結果を表6に示す。表6のエントリー1〜5に示すように、いずれも反応生成物を高エナンチオ選択的に高収率で得ることができた。
3-6. Friedel-Crafts reaction (3)
Using Compound A5 as a catalyst, Friedel-Crafts reaction between aldimine having various protective groups and cresol having various substituents was performed. Here, the reaction was performed according to the procedure of entry 4 in Table 5. The results are shown in Table 6. As shown in entries 1 to 5 in Table 6, all of the reaction products could be obtained in high yield with high enantioselectivity.

4.応用例
化合物A5を触媒に用いて、PhCH=NCbzと置換基を持たないフェノールとのフリーデル−クラフツ反応を行ったところ、対応する反応生成物を62%eeで得ることができた。また、下記式に示す手順にしたがって、この反応生成物を抗真菌剤であるビフォナゾール(Bifonazol)へ誘導することができた。
4). Application Example Using a compound A5 as a catalyst, a Friedel-Crafts reaction between PhCH = NCbz and phenol having no substituent was performed, and the corresponding reaction product could be obtained at 62% ee. Moreover, according to the procedure shown in the following formula, this reaction product could be induced to bifonazol, which is an antifungal agent.

本出願は、2012年7月19日に出願された日本国特許出願第2012−160092号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。   This application is based on Japanese Patent Application No. 2012-160092 filed on Jul. 19, 2012, the contents of which are incorporated herein by reference in their entirety.

本発明は、主に化学産業に利用可能であり、例えば医薬品や農薬、化粧品及びそれらの中間体などを製造する際に利用したり、金属の配位子として利用したりすることができる。   The present invention is mainly applicable to the chemical industry, and can be used, for example, in the production of pharmaceuticals, agricultural chemicals, cosmetics and intermediates thereof, and can be used as a metal ligand.

Claims (9)

式(1)で表される、ピロリン酸エステル化合物。
(Rは、アリール基、有機シリル基又はハロゲン原子である)
A pyrophosphate ester compound represented by the formula (1).
(R is an aryl group, an organic silyl group or a halogen atom)
前記アリール基は、少なくとも1つの置換基を有していてもよいフェニル基、ナフチル基又はアントラセニル基であり、前記置換基は、アリール基、ペルフルオロアルキル基、アルキル基、アルコキシ基、ニトロ基又はハロゲン原子である、
請求項1に記載のピロリン酸エステル化合物。
The aryl group is a phenyl group, a naphthyl group or an anthracenyl group which may have at least one substituent, and the substituent is an aryl group, a perfluoroalkyl group, an alkyl group, an alkoxy group, a nitro group, or a halogen atom. An atom,
The pyrophosphate compound according to claim 1.
Rは、2−ナフチル基、3,5−ジフェニルフェニル基又は3,5−ビス(2−ナフチル)フェニル基である、
請求項1に記載のピロリン酸エステル化合物。
R is a 2-naphthyl group, a 3,5-diphenylphenyl group, or a 3,5-bis (2-naphthyl) phenyl group.
The pyrophosphate compound according to claim 1.
式(2)で表される、ビスリン酸エステル化合物。
(Rは、アリール基、有機シリル基又はハロゲン原子である)
A bisphosphate compound represented by the formula (2).
(R is an aryl group, an organic silyl group or a halogen atom)
前記アリール基は、少なくとも1つの置換基を有していてもよいフェニル基、ナフチル基又はアントラセニル基であり、前記置換基は、アリール基、ペルフルオロアルキル基、アルキル基、アルコキシ基、ニトロ基又はハロゲン原子である、
請求項4に記載のビスリン酸エステル化合物。
The aryl group is a phenyl group, a naphthyl group or an anthracenyl group which may have at least one substituent, and the substituent is an aryl group, a perfluoroalkyl group, an alkyl group, an alkoxy group, a nitro group, or a halogen atom. An atom,
The bisphosphate ester compound according to claim 4.
Rは、2−ナフチル基、3,5−ジフェニルフェニル基又は3,5−ビス(2−ナフチル)フェニル基である、
請求項4に記載のビスリン酸エステル化合物。
R is a 2-naphthyl group, a 3,5-diphenylphenyl group, or a 3,5-bis (2-naphthyl) phenyl group.
The bisphosphate ester compound according to claim 4.
請求項1〜3のいずれか1項に記載のピロリン酸エステル化合物を含む分子内エン反応用触媒。   A catalyst for intramolecular ene reaction comprising the pyrophosphate ester compound according to any one of claims 1 to 3. 請求項1〜3のいずれか1項に記載のピロリン酸エステル化合物を含むマンニッヒ反応用触媒。   The catalyst for Mannich reaction containing the pyrophosphate ester compound of any one of Claims 1-3. 請求項1〜3のいずれか1項に記載のピロリン酸エステル化合物を含むフリーデル−クラフツ反応用触媒。   A Friedel-Crafts reaction catalyst comprising the pyrophosphate ester compound according to any one of claims 1 to 3.
JP2014525854A 2012-07-19 2013-07-17 Pyrophosphate ester compound, bisphosphate ester compound and catalyst Active JP6168665B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012160092 2012-07-19
JP2012160092 2012-07-19
PCT/JP2013/069443 WO2014014035A1 (en) 2012-07-19 2013-07-17 Pyrophosphoric acid ester compound, bisphosphoric acid ester compound, and catalyst

Publications (2)

Publication Number Publication Date
JPWO2014014035A1 true JPWO2014014035A1 (en) 2016-07-07
JP6168665B2 JP6168665B2 (en) 2017-07-26

Family

ID=49948859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014525854A Active JP6168665B2 (en) 2012-07-19 2013-07-17 Pyrophosphate ester compound, bisphosphate ester compound and catalyst

Country Status (2)

Country Link
JP (1) JP6168665B2 (en)
WO (1) WO2014014035A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098207A (en) * 2014-11-25 2016-05-30 高砂香料工業株式会社 Manufacturing method of optical active alcohol
CN116041221A (en) * 2023-01-17 2023-05-02 上海市奉贤区中心医院 Method for synthesizing chiral diarylmethylamine derivative

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5069090A (en) * 1973-03-29 1975-06-09 Univ California Shinki na maruchiheterokyodaikankagobutsu no seiho
WO2004096753A1 (en) * 2003-04-25 2004-11-11 Toagosei Co., Ltd. ASYMMETRIC-SYNTHESIS CATALYST BASED ON CHIRAL BR$NSTED ACID AND METHOD OF ASYMMETRIC SYNTHESIS WITH THE CATALYST
JP2006035125A (en) * 2004-07-28 2006-02-09 Japan Science & Technology Agency Asymmetric catalyst, production method for optically active alcohol, and binaphthol derivative
WO2007114445A1 (en) * 2006-04-04 2007-10-11 Kuraray Co., Ltd. Method for producing aldehyde using bisphosphite and group 8-10 metal compound, and such bisphosphite
WO2011111677A1 (en) * 2010-03-09 2011-09-15 国立大学法人東北大学 Bisphosphate compound and asymmetric reaction using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5069090A (en) * 1973-03-29 1975-06-09 Univ California Shinki na maruchiheterokyodaikankagobutsu no seiho
WO2004096753A1 (en) * 2003-04-25 2004-11-11 Toagosei Co., Ltd. ASYMMETRIC-SYNTHESIS CATALYST BASED ON CHIRAL BR$NSTED ACID AND METHOD OF ASYMMETRIC SYNTHESIS WITH THE CATALYST
JP2006035125A (en) * 2004-07-28 2006-02-09 Japan Science & Technology Agency Asymmetric catalyst, production method for optically active alcohol, and binaphthol derivative
WO2007114445A1 (en) * 2006-04-04 2007-10-11 Kuraray Co., Ltd. Method for producing aldehyde using bisphosphite and group 8-10 metal compound, and such bisphosphite
WO2011111677A1 (en) * 2010-03-09 2011-09-15 国立大学法人東北大学 Bisphosphate compound and asymmetric reaction using same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
堀部貴大、外2名: "キラル第一、二族金属ビナフトラート触媒を用いるアルジミンへの直截的不斉Mannich型反応及びα,β-不飽和", 第101回有機合成シンポジウム講演要旨集, JPN6013051405, 30 May 2012 (2012-05-30), pages 81 - 84, ISSN: 0003566610 *
宇佐美良太、外4名: "キラル超分子触媒を用いるα−置換アクロレインに対する異常な高エンド選択的不斉ディールス・アルダー反応", 日本化学会第91春季年会(2011) 講演予稿集IV, JPN6013051406, 2011, pages 1252, ISSN: 0003566611 *
岡本遼、外3名: "1,1’−ビナフチルピロリン酸ジエステルの合成とキラルBronsted酸触媒への展開", 日本化学会第93春季年会(2013) 講演予稿集IV, JPN6013051404, 8 March 2013 (2013-03-08), pages 1365, ISSN: 0003566609 *

Also Published As

Publication number Publication date
WO2014014035A1 (en) 2014-01-23
JP6168665B2 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
Delapierre et al. Design of a new class of chiral quinoline–phosphine ligands. Synthesis and application in asymmetric catalysis
JP2003340287A (en) Chiral catalyst, catalytic oxidation, and disproportionation reaction, and production of epoxychroman and taxol
Wang et al. Synthesis of chiral ferrocenyl aziridino alcohols and use in the catalytic asymmetric addition of diethylzinc to aldehydes
Cai et al. Binuclear versus mononuclear copper complexes as catalysts for asymmetric cyclopropanation of styrene
CN104478919B (en) A kind of method of synthesis of chiral silane compound
JPH0623150B2 (en) Process for producing optically active 3-hydroxybutanoic acids
JP6168665B2 (en) Pyrophosphate ester compound, bisphosphate ester compound and catalyst
Brunner et al. Enantioselective catalysis. Part 119: New chiral 2-(2-pyridinyl) oxazoline ligands containing an additional optically active substituent in the pyridine system
Song et al. Enantiopure azetidine-2-carboxamides as organocatalysts for direct asymmetric aldol reactions in aqueous and organic media
CN111517964B (en) Method for splitting chiral compound
US9512155B2 (en) Chiral phosphines for palladium-catalyzed asymmetric α-arylation of ester enolates to produce tertiary stereocenters in high enantioselectivity
CN110305122B (en) Pyridine ring C4 site sulfonyl and phosphorus oxygen group functionalized Pybox ligand and synthesis method and application thereof
JP6476497B2 (en) Process for producing optically active compound, and novel metal-diamine complex
CN101508702B (en) Tetrahydroquinoline and indoline derivative phosphor nitrogen ligand, synthesis and uses thereof
CN111689993B (en) Novel method for preparing chiral alpha-amino boric acid ester as key intermediate of boron-containing zomib drug
WO2019069828A1 (en) Optically active 2,3-bisphosphinopyrazine derivative, method for producing same, transition metal complex, and method for producing organic boron compound
CN104860975B (en) A kind of preparation method of bortezomib synthetic intermediate
CN101220058B (en) Chirality and non-chirality PCN pincerlike palladium compound, synthesizing method and uses
US20130137889A1 (en) Strecker reagents, their derivatives, methods for forming the same and improved strecker reaction
JP6286755B2 (en) Novel diamine compound and metal complex, and method for producing optically active compound
JP2004196710A (en) Ligand and asymmetric catalyst
JP7131109B2 (en) Method for producing organosilicon compound, method for producing aminoaryl group-containing organosilicon compound, and organosilicon compound
JP4379970B2 (en) Production method of olefin compounds
ES2298067B1 (en) BIDENTED QUIRAL LIGANDS OF TYPE P, S AND ITS USE IN THE REACTION OF PAUSON-KHAND.
JP4491104B2 (en) Method for producing carbonyl compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170623

R150 Certificate of patent or registration of utility model

Ref document number: 6168665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250