JPWO2013172347A1 - Method for detecting IgA aggregate and method for examining IgA nephropathy - Google Patents

Method for detecting IgA aggregate and method for examining IgA nephropathy Download PDF

Info

Publication number
JPWO2013172347A1
JPWO2013172347A1 JP2014515638A JP2014515638A JPWO2013172347A1 JP WO2013172347 A1 JPWO2013172347 A1 JP WO2013172347A1 JP 2014515638 A JP2014515638 A JP 2014515638A JP 2014515638 A JP2014515638 A JP 2014515638A JP WO2013172347 A1 JPWO2013172347 A1 JP WO2013172347A1
Authority
JP
Japan
Prior art keywords
iga
lectin
iga1
wfa
miga
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014515638A
Other languages
Japanese (ja)
Other versions
JP6066220B2 (en
Inventor
成松 久
久 成松
由規 成松
由規 成松
敦 久野
敦 久野
浩美 伊藤
浩美 伊藤
裕之 梶
裕之 梶
邦弘 山縣
邦弘 山縣
丈一 臼井
丈一 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2013172347A1 publication Critical patent/JPWO2013172347A1/en
Application granted granted Critical
Publication of JP6066220B2 publication Critical patent/JP6066220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • C07K16/065Purification, fragmentation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • C07K16/4283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4724Lectins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/34Genitourinary disorders
    • G01N2800/347Renal failures; Glomerular diseases; Tubulointerstitial diseases, e.g. nephritic syndrome, glomerulonephritis; Renovascular diseases, e.g. renal artery occlusion, nephropathy

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

IgA腎症患者に見られるIgA凝集体の特徴的な構造に対して結合特異性を有するレクチンを用いた、新規なIgA腎症の検出方法を提供する。Provided is a novel method for detecting IgA nephropathy using a lectin having binding specificity for the characteristic structure of IgA aggregates found in IgA nephropathy patients.

Description

本発明はIgA腎症患者の血清または尿中における、IgA凝集体を検出する簡便な方法を提供し、IgA腎症の早期診断を可能にするものである。   The present invention provides a simple method for detecting an IgA aggregate in the serum or urine of a patient with IgA nephropathy, and enables early diagnosis of IgA nephropathy.

IgA腎症(IgANとも称す)とは、主に免疫グロブリンの一種であるIgAが免疫複合体を形成し、腎糸球体メサンギウム領域に沈着することを特徴とする慢性糸球体腎炎であり、患者の約40%が20年以内に腎不全に移行する極めて予後不良な疾患である。
当疾患は、世界中で患者数が増加しているが特にアジア太平洋地域、ヨーロッパに多く、例えば日本では、末期腎不全により透析療法を受けている患者総数は26万人を超えており、透析医療費として年間1兆4000億(全医療費の3%)と多大な資金が費やされている。また、IgA腎症が原因となる新規透析導入患者数は年間4〜5000人と非常に多いが、本腎症の発症メカニズムについて不明な点が多く、適正に治療する方法が確立していない。したがって、早期に本症を発見し、食事療法や薬物療法を施すことが必要である。
ところで、現在、IgA腎症の確定診断には侵襲性の高い腎生検が、臨床における唯一の方法として用いられている。しかし、腎生検は患者への負担が大きいにも関わらず、正確な予後診断ができず、また、短期間に複数回の検査を行えないことから、患者の病状の経過を正しく観察することができず、治療が適正に行われているかどうかを判定することが出来ない。このように、腎生検は臨床診断マーカーとしては整合性に欠け、腎生検の結果に基づいて患者に対する適正な治療を行なうことは困難である。
以上のことから、IgA腎症患者の早期診断や、透析前のIgA腎症患者において症状を簡便に定量的に判断することが可能な新規な血清マーカーの開発が急務とされている。
IgA nephropathy (also referred to as IgAN) is a chronic glomerulonephritis characterized by the formation of immune complexes and IgA, a type of immunoglobulin, that deposits in the glomerular mesangial region. About 40% are extremely poor prognosis diseases that shift to renal failure within 20 years.
This disease is increasing in the number of patients all over the world, but particularly in Asia Pacific and Europe. For example, in Japan, the total number of patients receiving dialysis therapy due to end stage renal failure exceeds 260,000. A large amount of money is spent on medical expenses of 1.4 trillion billion (3% of total medical expenses) annually. In addition, the number of new dialysis patients who are caused by IgA nephropathy is very large at 4 to 5,000 per year, but there are many unclear points about the onset mechanism of this nephropathy, and a method for appropriately treating it has not been established. Therefore, it is necessary to detect this disease at an early stage and to apply dietary therapy and drug therapy.
By the way, at present, a highly invasive renal biopsy is used as the only clinical method for the definitive diagnosis of IgA nephropathy. However, despite the heavy burden on patients, renal biopsy does not provide accurate prognosis, and multiple tests cannot be performed in a short period of time. It is not possible to determine whether the treatment is properly performed. Thus, renal biopsy lacks consistency as a clinical diagnostic marker, and it is difficult to appropriately treat a patient based on the result of renal biopsy.
Based on the above, there is an urgent need for early diagnosis of IgA nephropathy patients and development of new serum markers that can easily and quantitatively determine symptoms in patients with IgA nephropathy before dialysis.

ところで、IgA腎症は、糸球体メサンギウム領域へのIgA1を含む免疫複合体の沈着を特徴とするが、当患者血清中のIgA1上の糖鎖構造の変化が生じていることは報告されている(非特許文献1〜3)。特にIgA1上のO-glycan構造については数多くの研究報告があり、例えばIgAN患者の血清IgA1中にO-glycan上のガラクトース欠損した異常O-glycan構造が存在することが、Lectin-ELISA法や自己抗体検出方法を用いることによって示されている(非特許文献4〜6、特許文献1〜5)。しかしながら、異常O-glycan構造を有するこのような異常IgAを、血清中から実際に分離・精製や濃縮した報告はない。   By the way, IgA nephropathy is characterized by the deposition of an immune complex containing IgA1 in the glomerular mesangial region, but it has been reported that the sugar chain structure on IgA1 in the patient's serum has changed. (Non-patent documents 1 to 3). In particular, there have been many reports on the O-glycan structure on IgA1, such as the presence of an abnormal O-glycan structure lacking galactose on O-glycan in the serum IgA1 of IgAN patients. It is shown by using an antibody detection method (Non-patent Documents 4 to 6, Patent Documents 1 to 5). However, there has been no report that such abnormal IgA having an abnormal O-glycan structure was actually separated, purified or concentrated from serum.

最近、モノクローナルIgA沈着症(mIgA-MIDD)患者と疾患コントロール(mIgA)および健常者のIgAについて比較検討した結果、mIgA-MIDD患者のIgAでは、IgAのN-glycan上のCore-fucoseやシアル酸の構造が変化していることが報告されている(非特許文献7)。しかし、このような糖鎖構造の変化が糸球体への沈着にどのように関わっているのかについては明らかでない。
このように、腎症患者のIgAでは、糖鎖構造の変化が生じていることは報告されているものの、糖鎖構造のこのような変化がどのようにIgA腎症の発症に関係しているのかは明らかではなく、またこの糖鎖構造の変化を簡便に検出する方法も見出されていないのが現状である。
Recently, we compared IgA in patients with monoclonal IgA deposition (mIgA-MIDD), disease control (mIgA), and healthy subjects. As a result, IgA in mIgA-MIDD patients showed that Core-fucose and sialic acid on N-glycan of IgA It has been reported that the structure of is changed (Non-patent Document 7). However, it is not clear how such changes in sugar chain structure are involved in glomerular deposition.
Thus, although it has been reported that changes in glycan structure occur in IgA in patients with nephropathy, how these glycan structure changes are related to the development of IgA nephropathy. It is not clear whether this is the case, and no method for easily detecting this change in sugar chain structure has been found.

J Am Soc Nephrol. 1999 Apr;10(4):760-9.J Am Soc Nephrol. 1999 Apr; 10 (4): 760-9. Kidney Int. 2001 Sep;60(3):969-73.Kidney Int. 2001 Sep; 60 (3): 969-73. Clin Exp Nephrol. 2008 Oct;12(5):332-8.Clin Exp Nephrol. 2008 Oct; 12 (5): 332-8. J Clin Invest. 2009 Jun;119(6):1668-77J Clin Invest. 2009 Jun; 119 (6): 1668-77 Nephrol Dial Transplant. 2008 Jun;23(6):1931-9.Nephrol Dial Transplant. 2008 Jun; 23 (6): 1931-9. Nephrol Dial Transplant. 2002 Jan;17(1):50-6.Nephrol Dial Transplant. 2002 Jan; 17 (1): 50-6. Clin Exp Nephrol. 2010 Aug;14(4):389-95Clin Exp Nephrol. 2010 Aug; 14 (4): 389-95

特開2010-285419号公報JP 2010-285419 A 特開2009-001512号公報JP 2009-001512 A 特開2007-024661号公報JP 2007-024661 特開2007-163151号公報JP 2007-163151 A 特開平10-111291号公報Japanese Patent Laid-Open No. 10-111291

本発明の課題は、IgA腎症患者から採取した血清または尿などの試料を用いて、侵襲性がなく患者に負担の少ない、IgA腎症を簡便に診断または検出する方法を提供することである。   An object of the present invention is to provide a method for easily diagnosing or detecting IgA nephropathy using a sample such as serum or urine collected from a patient with IgA nephropathy, which is not invasive and has a low burden on the patient. .

発明者らは、IgA腎症の発症原因となる腎糸球体に沈着する異常IgA分子に注目し、この異常分子が血中に多く存在すると考えられる、モノクローナルイムノグロブリン血症(MGUS)かつIgA腎症様の腎症を併発したmIgA-MIDD患者をモデルとし、この患者の血清中の異常IgA分子の精製および同定を行った。
その結果、本患者の血清中IgA1はN-glycanが異常に付加し、1分子あたりの糖鎖の本数が多い分子構造を有することを見出した。さらに当該IgA1は、通常のIgAでは見られない多量体を形成し、高度に糖鎖で被覆された凝集体の分子として存在していることを見出した。このように、これまで、腎症患者のIgAに関しては、正常(非疾患)IgAとの糖鎖構造の違いにのみ着目されていたが、本発明者らは糖鎖構造が異なるだけではなく糖鎖構造の付加数およびIgA凝集体の形成といった立体構造にも違いがあることを明らかにした。
さらに、発明者らはこのIgA凝集体(異常IgA)についてレクチンアレイ測定を行なったところIgA凝集体に対して特異的に反応する種々のレクチンを見出した。そして、このIgA凝集体に対して特異的に反応するレクチンを用いるIgA腎症を簡便に診断・検出する方法を見出した。
すなわち、本明細書では以下の発明を提供する。
The inventors focused on an abnormal IgA molecule deposited in the glomeruli that causes IgA nephropathy, and it is considered that this abnormal molecule is present in the blood in a large amount. Monoclonal immunoglobulin disease (MGUS) and IgA kidney We used a patient with mIgA-MIDD with comorbid nephropathy as a model, and purified and identified an abnormal IgA molecule in the serum of this patient.
As a result, it was found that IgA1 in the serum of this patient has a molecular structure in which N-glycan is abnormally added and the number of sugar chains per molecule is large. Further, the present inventors have found that the IgA1 forms a multimer that is not found in normal IgA and exists as an aggregate molecule that is highly coated with a sugar chain. Thus, until now, regarding IgA of patients with nephropathy, attention has been paid only to the difference in sugar chain structure from normal (non-disease) IgA. It was clarified that there were differences in the three-dimensional structures such as the number of added chain structures and the formation of IgA aggregates.
Furthermore, when the inventors measured the lectin array for this IgA aggregate (abnormal IgA), they found various lectins that react specifically with the IgA aggregate. And the method of diagnosing / detecting IgA nephropathy simply using the lectin which reacts specifically with this IgA aggregate was discovered.
That is, this specification provides the following inventions.

(1)IgA凝集体の検出方法であって、IgAを含む試料に該IgA凝集体に特異的に反応するレクチンを接触させることを特徴とする該IgA凝集体の検出方法。
(2)上記IgA凝集体に対する上記レクチンのへの結合能(結合量)を測定することを特徴とする(1)に記載の方法。
(3)上記結合能(結合量)の測定が、N-glycan上の非還元末端β14 galactoseに対する上記レクチンの認識性に基づくことを特徴とする、(1)または(2)に記載の方法。
(4)上記レクチンが、HHL, GNA, NPA、WFA, SBA, VVA, BPL, TJA-II、PHA-L、AOLレクチンからなる群から選択される、少なくとも1つ以上のレクチンである(1)〜(3)のいずれかに記載の方法。
(5)上記レクチンが、WFAレクチンである(1)〜(3)のいずれかに記載の方法。
(6) 上記IgAを含む試料が、被検者の血清または尿である(1)〜(5)のいずれかに記載の方法。
(7)(1)〜(6)のいずれかに記載の方法によってIgA凝集体を検出し、その検出結果に基づいてIgA腎症を検査することを特徴とする、IgA腎症の検査方法。
(8)上記IgA腎症が、mIgA-MIDDであることを特徴とする、(7)に記載の方法。
(9)上記IgA凝集体に特異的に反応するレクチンを結合させることによって、該IgA凝集体の分子を精製または濃縮する方法。
(10) 以下の手順を含むIgA腎症の検査方法:
1)被検体から採取された血清または尿中のIgAをWFAレクチンに接触させ;
2)IgA1モノクローナル抗体による抗体オーバーレイ法による解析を行いWFAレクチンに結合したIgA量を測定し、WFAレクチンに結合したIgA量を健常人の場合と比較することによりIgA腎症を判定する。
(11)IgA1モノクローナル抗体による抗体オーバーレイ法による解析を行うことによりWFAレクチンに結合したIgA量を測定する、(10)に記載の方法。
(1) A method for detecting an IgA aggregate, which comprises contacting a sample containing IgA with a lectin that specifically reacts with the IgA aggregate.
(2) The method according to (1), wherein the binding ability (binding amount) of the lectin to the IgA aggregate is measured.
(3) The method according to (1) or (2), wherein the measurement of the binding ability (binding amount) is based on the recognition property of the lectin for non-reducing terminal β14 galactose on N-glycan.
(4) The lectin is at least one lectin selected from the group consisting of HHL, GNA, NPA, WFA, SBA, VVA, BPL, TJA-II, PHA-L, and AOL lectin (1) The method in any one of-(3).
(5) The method according to any one of (1) to (3), wherein the lectin is a WFA lectin.
(6) The method according to any one of (1) to (5), wherein the sample containing IgA is serum or urine of a subject.
(7) An IgA nephropathy test method, wherein IgA aggregates are detected by the method according to any one of (1) to (6), and IgA nephropathy is tested based on the detection result.
(8) The method according to (7), wherein the IgA nephropathy is mIgA-MIDD.
(9) A method of purifying or concentrating molecules of the IgA aggregate by binding a lectin that specifically reacts with the IgA aggregate.
(10) Examination method of IgA nephropathy including the following procedures:
1) Contact IgA in serum or urine collected from a subject with WFA lectin;
2) The IgA1 monoclonal antibody is analyzed by the antibody overlay method, the amount of IgA bound to the WFA lectin is measured, and IgA nephropathy is determined by comparing the amount of IgA bound to the WFA lectin with that of a healthy person.
(11) The method according to (10), wherein the amount of IgA bound to the WFA lectin is measured by analyzing by an antibody overlay method using an IgA1 monoclonal antibody.

本発明によれば、侵襲性がなく患者に負担の少なく、IgA腎症を簡便に診断または検出することが可能となる。   According to the present invention, IgA nephropathy can be easily diagnosed or detected without invasiveness and less burden on the patient.

IgA1の構造が保存されているα鎖中のFC領域におけるN-glycosylation site(Asn263,Asn459)及び、ヒンジ部のO-glycosylation siteを示す。The N-glycosylation site (Asn263, Asn459) in the FC region in the α chain in which the structure of IgA1 is conserved and the O-glycosylation site of the hinge part are shown. 各種血清からの精製IgA1におけるSDS-PAGE(左:銀染色)および抗IgA1モノローナル抗体によるWestern blotting解析(右)の結果を示す(写真)。The results of SDS-PAGE (left: silver staining) of purified IgA1 from various sera and Western blotting analysis (right) using an anti-IgA1 monologous antibody are shown (photos). 各血清から精製したIgA1,40ngを用いたレクチンマイクロアレイ解析。解析に供した43全てのレクチンについての結果を示す。各レクチンシグナルは最もシグナルの高いレクチンTJA-1で割って補正した。Lectin microarray analysis using 1,40 ng of IgA purified from each serum. The results for all 43 lectins subjected to analysis are shown. Each lectin signal was corrected by dividing by the highest signal lectin TJA-1. 各血清から精製したIgA1,100ngを用いたレクチンマイクロアレイ解析。mIgA-MIDD患者に顕著に異なっていたレクチン12種類を抜粋して示す。各レクチンのシグナルは最もシグナルの高いレクチンTJA-1で割って補正した。Lectin microarray analysis using 1,100 ng of IgA purified from each serum. Here are 12 excerpts of lectins that were significantly different from patients with mIgA-MIDD. The signal for each lectin was corrected by dividing by the highest signal lectin TJA-1. トリプシン消化物を用いたレクチンマイクロアレイ解析結果。The lectin microarray analysis result using the trypsin digest. 各種グリコシダーゼ消化IgA1に対するWFAレクチンの反応性。Reactivity of WFA lectin to various glycosidase digested IgA1. mIgA-MIDD由来IgA1に対するWFAレクチンの反応性のPNGase消化処理による変化。The change of the reactivity of WFA lectin with IgA1 derived from mIgA-MIDD by PNGase digestion treatment. 熱処理をしたIgA1のレクチンマイクロアレイ測定。Measurement of lectin microarray of heat-treated IgA1. 非還元条件下におけるmIgA-MIDD由来精製IgA1に対するWFAの反応性(写真)。Reactivity of WFA to mIgA-MIDD-derived purified IgA1 under non-reducing conditions (photo). PNGase F処理を利用したN-glycan付加数の検出(写真)。Detection of N-glycan addition number using PNGase F treatment (photo). 各検体由来精製IgA1における分子量の測定(写真)。Measurement of molecular weight of each specimen-derived purified IgA1 (photo). WFAレクチンを用いたSandwichレクチンEILSAによる比較解析。Comparative analysis with Sandwich lectin EILSA using WFA lectin. WFAレクチンを用いたmIgA-MIDDの分離・精製1(写真)。Separation and purification 1 (photo) of mIgA-MIDD using WFA lectin. WFAレクチンを用いたmIgA-MIDDの分離・精製2(写真)。Separation and purification of mIgA-MIDD using WFA lectin 2 (photo). WFAレクチンを用いたmIgA-MIDD精製条件の検討。Examination of mIgA-MIDD purification conditions using WFA lectin. 抗IgA抗体オーバーレイ法を用いた血清に対するレクチンマイクロアレイ測定(写真)。Lectin microarray measurement on serum using anti-IgA antibody overlay method (photo).

本発明の方法は、N-glycanが異常付加しかつ凝集して多量体を形成するIgA(異常IgA)を含むIgA凝集体を検出する方法及びこの方法によりIgA腎症を検査する方法である。   The method of the present invention is a method for detecting an IgA aggregate containing IgA (abnormal IgA) in which N-glycan is abnormally added and aggregates to form a multimer, and a method for examining IgA nephropathy by this method.

IgAはIgA1およびIgA2が含まれ得るが、血清または尿中に存在する単量体あるいは2量体IgA(血清型IgA)にはIgA1が約90%と圧倒的に多いため、IgA1のみを検出して本発明の方法を実施してもよい。   IgA may include IgA1 and IgA2, but only about IgA1 is detected because IgA1 is predominantly about 90% in monomer or dimer IgA (serotype IgA) present in serum or urine. The method of the present invention may be carried out.

ここで、IgA腎症とは腎糸球体メサンギウム領域へのIgA沈着を特徴とする慢性糸球体腎炎であり、例えば、モノクローナルIgA沈着症(mIgA-MIDD)が含まれる。   Here, IgA nephropathy is chronic glomerulonephritis characterized by IgA deposition in the glomerular mesangial region, and includes, for example, monoclonal IgA deposition (mIgA-MIDD).

例えば、健常者に比べてIgA1分子あたりに付加するN-glycanの数が4本以上多い場合などが例示される。N-glycanの異常付加は、通常の糖鎖分析法によって確認できるが、IgAの重鎖と軽鎖のバンドパターンを電気泳動などで調べてもよい。   For example, a case where the number of N-glycan added per molecule of IgA is 4 or more as compared with healthy individuals is exemplified. Abnormal addition of N-glycan can be confirmed by ordinary sugar chain analysis, but the band pattern of IgA heavy and light chains may be examined by electrophoresis or the like.

N-glycanの異常付加によりIgA凝集体が形成され、これにより糸球体へのIgA沈着が促進されれば、最終的にIgA腎症が引き起こされる。したがって、N-glycanの異常付加が観察された場合、および/またはその量が健常者と比べて多いとき、被検者はIgA腎症と判定することが可能である。   If IgA aggregates are formed by the abnormal addition of N-glycan, and this promotes IgA deposition in the glomeruli, IgA nephropathy is ultimately caused. Therefore, when abnormal addition of N-glycan is observed and / or when the amount thereof is higher than that of healthy subjects, the subject can be determined to have IgA nephropathy.

本発明の方法においては、レクチンは上記IgA凝集体のN-glycan上のβ1,4 galactoseに接触させることが好ましい。   In the method of the present invention, the lectin is preferably contacted with β1,4 galactose on the N-glycan of the IgA aggregate.

上記IgA凝集体(異常IgA)上に特異的に反応するレクチンとしては、HHL(Hippeastrum Hybrid由来レクチン), GNA(Galanthus nivalis由来レクチン), NPA(Narcissus pseudonarcissus由来レクチン), WFA(Wisteria floribunda由来レクチン), SBA(Glycine max由来レクチン), VVA(Vicia villosa由来レクチン), BPL(Bauhinia purpurea由来レクチン), TJA-II(Trichosanthes japonica由来レクチン), PHA-L(Phaseolus vulgaris由来レクチン), AOL(Aspergillus oryzae由来レクチン)からなる群から選択される、少なくとも1つ以上のレクチンであることが好ましく、WFAがより好ましい。これらのレクチンはAnal Biochem. 1991 Dec;199(2):286-92、Biochim Biophys Acta. 1998 Apr 10;1380(2):268-74, Int J Cancer, 2003,Jul 1;105(4):533-41, Glycobiolog. Sep;16(9):777-85等に説明されており、例えば、データベースは「JCGGDB, Lectin Frontier DataBase」としてNCBIから、また、各レクチンはVector Laboratoriesから入手することができる。   The lectins that specifically react on the above IgA aggregates (abnormal IgA) include HHL (Hippeastrum Hybrid-derived lectin), GNA (Galanthus nivalis-derived lectin), NPA (Narcissus pseudonarcissus-derived lectin), WFA (Wisteria floribunda-derived lectin) , SBA (Glycine max-derived lectin), VVA (Vicia villosa-derived lectin), BPL (Bauhinia purpurea-derived lectin), TJA-II (Trichosanthes japonica-derived lectin), PHA-L (Phaseolus vulgaris-derived lectin), AOL (derived from Aspergillus oryzae) Preferably, the lectin is at least one lectin selected from the group consisting of lectins, and more preferably WFA. These lectins are anal biochem.1991 Dec; 199 (2): 286-92, Biochim Biophys Acta.1998 Apr 10; 1380 (2): 268-74, Int J Cancer, 2003, Jul 1; 105 (4): 533-41, Glycobiolog. Sep; 16 (9): 777-85, etc. it can.

レクチンを用いたIgAの検出は、例えば、レクチンを結合させた担体に血清や尿などの試料を混合し、これら試料中のIgAをレクチンに結合させたのち、標識した抗IgA抗体などで検出することができる。
例えば、被検体から採取された血清または尿中のIgAをプレート上に固定化されたWFAレクチンに接触させ;IgA1モノクローナル抗体(例えば、7303B)による抗体オーバーレイ法による解析を行いWFAレクチンに結合したIgA量を測定することができる。
そして、WFAレクチンに結合したIgA量を、健常人血清または尿を接触させたときのWFAレクチンに結合したIgA量と比較し、健常人の場合より多いときにIgA腎症と判定することができる。
The detection of IgA using lectin is performed by, for example, mixing a sample such as serum or urine with a carrier to which lectin is bound, binding IgA in these samples to lectin, and then detecting with a labeled anti-IgA antibody or the like. be able to.
For example, IgA in serum or urine collected from a subject is contacted with WFA lectin immobilized on a plate; IgA1 monoclonal antibody (eg, 7303B) is analyzed by antibody overlay method and IgA bound to WFA lectin The amount can be measured.
Then, the amount of IgA bound to WFA lectin is compared with the amount of IgA bound to WFA lectin when contacted with serum or urine of a healthy person, and can be determined as IgA nephropathy when the amount is higher than that of a healthy person .

なお、レクチンをビオチン化し、血清または尿中のIgAをビオチン化レクチンに結合させたのち、酵素または蛍光などで標識したアビジンによって検出することもできる。
WFAによって上記IgAを検出する場合、シアリダーゼ処理をすると検出感度が向上するのでより好ましい。
In addition, after lectin is biotinylated and IgA in serum or urine is bound to biotinylated lectin, it can also be detected by avidin labeled with an enzyme or fluorescence.
When IgA is detected by WFA, sialidase treatment is more preferable because detection sensitivity is improved.

また、被検者から単離された血清や尿などの試料中のIgAに対するWFAレクチンの結合能を測定することによってもIgA腎症を判定することができる。結合能は、上記のレクチンと相互作用するIgAの量(結合量)を定量する、または、一般的に用いられる相互作用解析手法により解離定数を算出することによって求めることができる。   IgA nephropathy can also be determined by measuring the binding ability of WFA lectin to IgA in a sample such as serum or urine isolated from a subject. The binding ability can be determined by quantifying the amount (binding amount) of IgA that interacts with the lectin or by calculating the dissociation constant by a commonly used interaction analysis technique.

また、WFAなどのレクチンを用いてIgA腎症患者由来のIgA凝集体を精製したり濃縮したりすることもできる。   In addition, IgA aggregates derived from IgA nephropathy patients can be purified or concentrated using a lectin such as WFA.

以下に本発明の実施例を説明するが、ここで挙げる実施例は単なる具体的例示に過ぎず、本発明の技術的範囲を何ら限定するものではない。   Examples of the present invention will be described below. However, the examples given here are merely specific illustrations, and do not limit the technical scope of the present invention.

<実施例1>IgA1のレクチン反応性の解析
(1)血清からのIgA1分離精製方法
血清サンプルにはmIgA-MIDD、良性疾患(MGUS患者)(mIgA)および健常者のものを用いた。500 μLの血清を0.01 M Tris-HCl bufferにて5 mLに希釈し、Cibacron Blue A agarose column (1 mL Column volume; Sigma Chemical Co)に供した。サンプルを供した後、0.01M Tris-HCl buffer, 6mLにて洗浄し、素通り画分と洗浄画分を回収した。続いて回収したサンプルは抗IgA1モノクローナル抗体(7393B)をSepharose 4Bに結合させ作成したカラム(500 μL column volume)に供した。20 mLのPBSによる洗浄後、0.1M Glycine/HCl(pH2.5)bufferを3mL用いて溶出し、直ちに1M Tris-HCl(pH8.0)を 400μL加えて中和を行った。さらに溶出画分にprotein G sepharose(Pierce)を100 μL加えて、4℃C、一晩反応させ、混在するIgGを除去した。上清を回収後、0.01M 重炭酸アンモニウムbufferにて透析を行い、凍結乾燥を行った。凍結乾燥後のサンプルはPBS bufferに溶かし、吸光度計を用いて濃度測定を行い1mg/mLの濃度に調整した。サンプルの精製度については次のSDS-PAGEおよびウエスタンブロットによって確認した。
<Example 1> Analysis of lectin reactivity of IgA1
(1) Separation and purification method of IgA1 from serum Serum samples used were mIgA-MIDD, benign disease (MGUS patient) (mIgA), and healthy subjects. 500 μL of serum was diluted to 5 mL with 0.01 M Tris-HCl buffer and applied to a Cibacron Blue A agarose column (1 mL Column volume; Sigma Chemical Co). After the sample was provided, it was washed with 0.01 M Tris-HCl buffer, 6 mL, and a flow-through fraction and a washed fraction were collected. Subsequently, the collected sample was applied to a column (500 μL column volume) prepared by binding anti-IgA1 monoclonal antibody (7393B) to Sepharose 4B. After washing with 20 mL of PBS, elution was carried out using 3 mL of 0.1 M Glycine / HCl (pH 2.5) buffer, and immediately neutralized by adding 400 μL of 1 M Tris-HCl (pH 8.0). Furthermore, 100 μL of protein G sepharose (Pierce) was added to the eluted fraction and reacted overnight at 4 ° C. to remove mixed IgG. The supernatant was collected, dialyzed against 0.01M ammonium bicarbonate buffer, and lyophilized. The sample after lyophilization was dissolved in PBS buffer, the concentration was measured using an absorptiometer, and the concentration was adjusted to 1 mg / mL. The purity of the sample was confirmed by the following SDS-PAGE and Western blot.

(2)SDS-PAGEおよびウエスタンブロット法による精製IgA1分析
精製したIgA1サンプルは2-メルカプトエタノール存在下で還元処理した後、10%ポリアクリルアミドゲルを用いてSDS-PAGEを行い、銀染色により精製度の確認を行った。さらに銀染色とは別に、SDS-PAGEを行ったゲルをPVDF膜に転写し、ウエスタンブロットを行った。転写したPVDF膜は3%BSA/0.1%Tween/PBS bufferにて室温、1 hブロッキングした後、1 μg/μLの抗IgA1モノクローナル抗体(7303B、特殊免疫研究所)を1000倍希釈した溶液にて4℃、一晩反応させた。0.1%Tween/PBS bufferにて5 minの洗浄を3回行ったのち、抗IgG-HRP抗体(GE healthcare)を5000倍希釈した溶液を用いて、室温、1 h反応させた。0.1%Tween/PBS bufferにて5 minの洗浄を3回行った後、基質としてWestern lightning CHemiluminescence Plus (Perkin-Elmer)を用い、high-perfomance chemiluminescence film(GE Healthcare)に現像し目的のIgA1バンドの検出を行った。図2に上記の結果を示す。
(2) SDS-PAGE and Western blotting purification IgA1 analysis Purified IgA1 samples were reduced in the presence of 2-mercaptoethanol, then subjected to SDS-PAGE using a 10% polyacrylamide gel, and purified by silver staining. Was confirmed. In addition to the silver staining, the SDS-PAGE gel was transferred to a PVDF membrane and subjected to Western blotting. The transferred PVDF membrane was blocked with 3% BSA / 0.1% Tween / PBS buffer at room temperature for 1 h, and then diluted with a 1000-fold diluted solution of 1 μg / μL anti-IgA1 monoclonal antibody (7303B, Special Immunology Laboratories) The reaction was allowed to proceed overnight at 4 ° C. After washing with 0.1% Tween / PBS buffer for 5 min three times, a solution obtained by diluting anti-IgG-HRP antibody (GE healthcare) 5000 times was used and reacted at room temperature for 1 h. After washing with 0.1% Tween / PBS buffer for 5 min three times, using Western lightning CHemiluminescence Plus (Perkin-Elmer) as a substrate, developing to high-perfomance chemiluminescence film (GE Healthcare), and developing the target IgA1 band Detection was performed. FIG. 2 shows the above results.

(3)精製IgA1に対する抗体-オーバーレイ レクチンマイクロアレイ比較解析
10 ng、50 ng、100 ngの各精製IgA1を0.1%Triton x/PBS溶液(PBS-Tx)にて80 μLに希釈し、レクチンマイクロアレイスライドガラス( Kuno et al. Nature Methods 2005
Uchiyama et al Methods in Enzymology 2006, Uchiyama et al Proteomics 2008に記載の方法で作成した)に供し、20℃、18h反応させた。1 μgのhuman serum polyclonal IgG(SIGMA)を供し、20℃、30 min反応させた後、80 μLのPBS-Txにて3回洗浄し、ビオチン化6.25 μg/mL濃度のビオチン化抗IgA1抗体(7303B)を80μL供し、20℃,1h反応させた。さらに80 μLPBS-Txにて3回洗浄した後、2.5 μg/mL濃度のstreptavidin-Cy3を80 μL供し、20℃,1h反応させた。80 μLPBS-Txにて3回洗浄した後80 μLのPBS-Txを供し、Glycostation(Moritex)を用いて測定した。Gain125〜100で測定した画像をArray Pro analyzer version 4.5を用いて各種レクチンのシグナルを数値化した後、患者および健常者間での比較解析を行った。
(3) Antibody-overlay lectin microarray comparative analysis for purified IgA1
10 ng, 50 ng and 100 ng of each purified IgA1 was diluted to 80 μL with 0.1% Triton x / PBS solution (PBS-Tx), and lectin microarray slide glass (Kuno et al. Nature Methods 2005
Prepared by the method described in Uchiyama et al Methods in Enzymology 2006, Uchiyama et al Proteomics 2008) and reacted at 20 ° C. for 18 hours. Use 1 μg of human serum polyclonal IgG (SIGMA), react at 20 ° C. for 30 min, wash 3 times with 80 μL of PBS-Tx, biotinylated 6.25 μg / mL concentration of biotinylated anti-IgA1 antibody ( 7303B) was applied at 80 μL and reacted at 20 ° C. for 1 h. After further washing 3 times with 80 μL PBS-Tx, 80 μL of 2.5 μg / mL concentration of streptavidin-Cy3 was applied and reacted at 20 ° C. for 1 h. After washing 3 times with 80 μL PBS-Tx, 80 μL PBS-Tx was applied, and measurement was performed using Glycostation (Moritex). The images measured at Gain 125 to 100 were converted into numerical values from various lectin signals using Array Pro analyzer version 4.5, and then subjected to comparative analysis between patients and healthy subjects.

図3に、各血清から精製したIgA1を用いたレクチンマイクロアレイ解析結果を示す。各血清から精製したIgA1,40ngを供して解析を行い、シグナルの観測されたレクチンについて各種数値化した。図3ではスライドガラス上にのせられている43のレクチンを示し、各レクチンのシグナルは最もシグナルの高いTJA-1レクチンの値で割って補正した。   FIG. 3 shows the results of lectin microarray analysis using IgA1 purified from each serum. Analysis was performed using 1,40 ng of IgA purified from each serum, and various values were obtained for the lectins in which signals were observed. FIG. 3 shows 43 lectins placed on a slide glass, and the signal of each lectin was corrected by dividing by the value of TJA-1 lectin having the highest signal.

また、図4には各血清から精製したIgA1 100ngを用い、シグナルの観測されたレクチンについて各種数値化した。図3と同様に各レクチンのシグナルは最もシグナルの高いTJA-1レクチンの値で割って補正した。図4では、mIgA-MIDD患者に顕著に異なっていたレクチン12種類を抜粋して示している。
上記の検討から、(1)mIgA-MIDD> MGUSおよび健常者 の結合性を示すmIgA-MIDD患者のIgAに対して結合性の高いレクチン、(2)MGUSおよび健常者>mIgA-MIDDの結合性を示す mIgAおよび健常者のIgAに対して結合性の高いレクチンに分類しそれぞれ下記に列記した。また、これまで報告されている各レクチンの糖鎖の認識部位を矢印で示した。
In FIG. 4, 100 ng of IgA1 purified from each serum was used, and various numerical values were obtained for the lectins in which signals were observed. Similarly to FIG. 3, the signal of each lectin was corrected by dividing by the value of TJA-1 lectin having the highest signal. In FIG. 4, 12 types of lectins that were remarkably different in mIgA-MIDD patients are extracted and shown.
From the above study, (1) mIgA-MIDD> MGUS and mIgA-MIDD showing healthy lectin binding to IgA patients with high binding to IgA, (2) MGUS and normal> mIgA-MIDD binding These were classified into lectins having high binding properties to mIgA and healthy individuals, and are listed below. Moreover, the recognition site | part of the sugar chain of each lectin reported so far was shown by the arrow.

そこで、レクチンとIgA1との反応性を調べるため、IgA1のトリプシン消化物を用いて実験を行った。   Therefore, in order to investigate the reactivity between lectin and IgA1, an experiment was conducted using a tryptic digest of IgA1.

<実施例2>IgA1の構造的特徴の解析
(1)精製IgA1のトリプシン消化
精製したIgA1を500 μgを10mM dithiothreitol存在下0.1 M Tris-HCl(pH7.4)buffer中にて、37℃、45 min還元処理した後、50 mM Iodoacetoamideによって室温、遮光、90 minアルキル化処理を行った。還元アルキル化したサンプルについては2.5 Lの50 mM重炭酸アンモニウムbufferにて4℃、48 h透析した。透析したサンプルのうち100 μg相当のIgA1に対して1μgのトリプシンを用いて37℃、1 h反応させた。反応後のトリプシン消化物については逆相カラム Oasis HLB catridge (10 mg/mL ; Waters)を用いて脱塩処理を行った。逆相カラムの操作手順は、3 mLのMeOHおよび3 mLの純水の順序で平衡か操作を行ったカラムに対してトリプシン消化物溶液を供し、3 mLの純水による洗浄を行った。洗浄後、3 mLの80%アセトニトリル溶液にて溶出したサンプルについて凍結乾燥を行った。
<Example 2> Analysis of structural features of IgA1
(1) Trypsin digestion of purified IgA1 500 μg of purified IgA1 was subjected to reduction treatment in 0.1 M Tris-HCl (pH 7.4) buffer in the presence of 10 mM dithiothreitol at 37 ° C. for 45 min, followed by 50 mM Iodoacetoamide at room temperature. Shading and 90 min alkylation were performed. The reduced alkylated sample was dialyzed against 2.5 L of 50 mM ammonium bicarbonate buffer at 4 ° C. for 48 h. Of the dialyzed sample, 100 μg of IgA1 was reacted with 1 μg trypsin at 37 ° C. for 1 h. The tryptic digest after the reaction was desalted using a reverse phase column Oasis HLB catridge (10 mg / mL; Waters). The operating procedure of the reverse phase column was that the trypsin digest solution was applied to the column which had been equilibrated or operated in the order of 3 mL of MeOH and 3 mL of pure water, and washed with 3 mL of pure water. After washing, the sample eluted with 3 mL of 80% acetonitrile solution was lyophilized.

(2)IgA1トリプシン消化物のレクチンマイクロアレイ分析
凍結乾燥したトリプシン消化物をPBS溶液にて1 mg/ml濃度になるよう調整した。調整したサンプルのうち1 μg相当のトリプシン消化物溶液に対して10 μgのCy3-succimidyl ester (GE Healthcare)を用いて室温、1 h、遮光条件にてペプチドに対するラベル化処理を行った。未反応のCy3試薬を無効化するため、500 mM glycine/1%Triton X-100/TBS(probing buffer)を加えて室温、2 h、遮光条件にてブロッキング処理を行った。最終的にprobing bufferにて10 μg/mLに希釈したサンプル80 μLをレクチンマイクロアレイに供し、20℃、12 h反応させた。反応後probing bufferで3回洗浄した後、probing buffer 80 μLを加えてGlycostationを用いて測定を行った。シグナルの検出およびデータ処理方法等については前述のレクチンオーバーレイでの項と同様である。
(2) Lectin microarray analysis of IgA1 trypsin digest The freeze-dried trypsin digest was adjusted to a concentration of 1 mg / ml with a PBS solution. Of the prepared sample, a trypsin digest solution corresponding to 1 μg was labeled with 10 μg of Cy3-succimidyl ester (GE Healthcare) at room temperature for 1 h under light-shielding conditions. In order to invalidate the unreacted Cy3 reagent, 500 mM glycine / 1% Triton X-100 / TBS (probing buffer) was added, and blocking treatment was performed at room temperature for 2 h under light-shielding conditions. Finally, 80 μL of the sample diluted to 10 μg / mL with probing buffer was applied to a lectin microarray and reacted at 20 ° C. for 12 h. After the reaction, the membrane was washed three times with a probing buffer, 80 μL of probing buffer was added, and measurement was performed using Glycostation. Signal detection, data processing methods, and the like are the same as those in the lectin overlay section described above.

図5に示すように、トリプシン消化物ではO-glycanを認識するレクチンPNAがwhole sampleのデータと比べて上昇していたことから、トリプシン消化処理によってO-glycanとの反応が強くなることが示唆される。一方mIgA-MIDDに特異的に見られたWFAシグナルはトリプシン消化処理によって著しいシグナルの低下が見られた。
以上の結果から、WFAのmIgA-MIDDのIgA1分子への特異的な結合力は、O-glycanではなくて、N-glycanを認識するものであることが示された。
そこで、WFAレクチンがN-glycanのどのような構造部位を認識するかを調べるために、グリコシダーゼ消化処理をしたIgAに対して、GalNAcを認識するレクチンとしてHPA、VVA、WFA各種レクチン、またCore1(Gal-GalNAc)を認識するPNA レクチンを用いてSandwich レクチンELISAを行った。
As shown in FIG. 5, the lectin PNA recognizing O-glycan was increased in the digested trypsin compared to the whole sample data, suggesting that the trypsin digestion treatment enhanced the reaction with O-glycan. Is done. On the other hand, the WFA signal specifically observed in mIgA-MIDD was significantly reduced by trypsin digestion.
From the above results, it was shown that the specific binding force of WFA mIgA-MIDD to IgA1 molecule recognizes N-glycan, not O-glycan.
Therefore, in order to investigate what structural sites of WFA lectin recognize N-glycan, HPA, VVA, various WFA lectins, and Core1 ( Sandwich lectin ELISA was performed using PNA lectin that recognizes Gal-GalNAc).

(3)各種グリコシダーゼを用いた糖鎖欠損IgA1の調製
mIgA-MIDD由来の精製IgA1,10 μgを200 mM酢酸ナトリウムbufferにて25 μLへ希釈し20 mUのシアリダーゼ(Nacalai Tesque)を用いて、37℃、一晩反応させた。さらに反応したサンプルを5 μLを分注したサンプルに対して溶液に1.1 mUのβガラクトシダーゼ、1 mUのβ1,3ガラクトシダーゼ、1.5 mUのβ1,4ガラクトシダーゼのいずれかを加えてさらに37℃, 一晩反応させた。最終的に未処理、シアリダーゼ(neuraminidase)、βガラクトシダーゼ、β1,3ガラクトシダーゼ、β1,4ガラクトシダーゼ、シアリダーゼ+βガラクトシダーゼ、シアリダーゼ+β1,3ガラクトシダーゼ、シアリダーゼ+β1,4ガラクトシダーゼの合計8種類を調整した。次にそれぞれのサンプルについてHPA, PNA, VVA, WFA レクチンを用いてSandwich lectin ELISAにて比較した。
図6に示すように、HPA,VVAレクチンではシアリダーゼ+ガラクトシダーゼ処理した場合に最も強い反応を示した(白)。PNAについても予想どおり、シアリダーゼ処理したIgA、O-glycan上のcore1(Gal-GalNAc)が露出したと思われるIgAに強く反応した。一方、WFAレクチンではシアル酸消化した場合の方が強く反応した。一方でN-glycan上のβ1,4結合のガラクトースを消化するβ1,4ガラクトシダーゼで処理した場合、WFAのシグナルが顕著に消失した(黒)。
β1,4ガラクトシダーゼはN-glycan上のglcNAcにβ1,4で結合したGalを切断する酵素であることから、WFAレクチンはこれまでに報告のあったTnやLacdiNAcに対する既知の基質特異性ではなく、β1,4結合したGalに結合するという新規な基質特異性を有し、同様の基質特異性を有すると考えられていたGalNac認識レクチン、HPAおよびVVAとは異なる反応性を示すことが明らかになった。
以上の結果より、WFAレクチンのmIgA-MIDD由来のIgA1分子との強い結合性はWFAレクチンが、IgA1分子上のN-glycan、特にβ1,4ガラクトース構造を認識するためであることが判明した。
また、WFAレクチンは、健常者由来のIgA1よりも、mIgA-MIDD患者由来のIgA1に強く結合することから、mIgA-MIDD患者由来のIgA1はN-glycanに関連した構造的な特徴を有することが明らかとなった。
(3) Preparation of sugar chain-deficient IgA1 using various glycosidases
Purified IgA derived from mIgA-MIDD (1,10 μg) was diluted to 25 μL with 200 mM sodium acetate buffer and reacted overnight at 37 ° C. using 20 mU sialidase (Nacalai Tesque). Add 5 μL of the reacted sample to the sample, and add 1.1 mU β-galactosidase, 1 mU β1,3 galactosidase, 1.5 mU β1,4 galactosidase to the solution, and continue at 37 ° C overnight. Reacted. Finally, a total of 8 types of untreated, sialidase (neuraminidase), β galactosidase, β1,3 galactosidase, β1,4 galactosidase, sialidase + β galactosidase, sialidase + β1,3 galactosidase, sialidase + β1,4 galactosidase were prepared. Next, each sample was compared by Sandwich lectin ELISA using HPA, PNA, VVA, and WFA lectin.
As shown in FIG. 6, HPA and VVA lectin showed the strongest reaction when treated with sialidase + galactosidase (white). As expected, PNA strongly reacted to IgA treated with sialidase, and IgA that appeared to expose core1 (Gal-GalNAc) on O-glycan. On the other hand, WFA lectin reacted more strongly when sialic acid was digested. On the other hand, when treated with β1,4 galactosidase, which digests β1,4-linked galactose on N-glycan, the WFA signal disappeared significantly (black).
Since β1,4 galactosidase is an enzyme that cleaves Gal bound to glcNAc on N-glycan by β1,4, WFA lectin is not a known substrate specificity for Tn and LacdiNAc reported so far, It has a novel substrate specificity that binds to β1,4-linked Gal, and it is clear that it shows a different reactivity from GalNac-recognizing lectins, HPA and VVA, which were thought to have similar substrate specificity. It was.
From the above results, it was found that the WFA lectin strongly binds to the IgA1 molecule derived from mIgA-MIDD because the WFA lectin recognizes N-glycan on the IgA1 molecule, particularly β1,4 galactose structure.
In addition, WFA lectin binds to IgA1 derived from mIgA-MIDD patients more strongly than IgA1 derived from healthy individuals, so that IgA1 derived from mIgA-MIDD patients may have structural characteristics related to N-glycan. It became clear.

(4)種々のレクチンを用いた酵素結合免疫測定(ELISA)
5 μg/mL濃度のポリクローナル抗IgA抗体(Jackson社製)50μLをMaxisorp 96-well immunoplate (Thermo Fisher Scientific社)に供し室温、2h静置した。上清廃棄後、1%BSA/PBS溶液100μLにて室温、1hブロッキングを行った。上清廃棄後、上記で調製した各種グリコシダーゼ消化処理IgA1を1%BSA/PBS溶液で5 μg/mLに希釈し、50 μLをプレートに供し、4℃、一晩反応させた。反応させたプレートは200 μLのPBS-Tにて3回洗浄した後、各種ビオチン化レクチンHPA5 μg/mL)、PNA(2 μg/mL)、VVA(5 μg/mL)、WFA(5 μg/mL)をそれぞれ50μL供し、室温、1 h反応させた。さらに200 μLのPBS-Tにて3回洗浄した後、いずれのサンプルについても1 μg/μLのstreptavidin-HRPを50μL供し、室温、1 h反応させた。200 μLのPBS-Tにて3回洗浄した後、基質として3,3',5,5'-tetramethylbenzidine (TMB) substrate solution (Thermo Fisher Scientific)を50μL供し、室温で1〜15 min反応させ、十分なシグナルが得られた後に50 μLの2 M H2SO4を加えて反応を終了させた。反応終了後、マイクロプレートリーダー(Wallac 1420ARVO sx Multilabel Counter,Perkin Elmer)を用いて450 nmの波長により検出を行った。
(4) Enzyme-linked immunoassay (ELISA) using various lectins
50 μL of a polyclonal anti-IgA antibody (manufactured by Jackson) at a concentration of 5 μg / mL was subjected to Maxisorp 96-well immunoplate (Thermo Fisher Scientific) and allowed to stand at room temperature for 2 h. After discarding the supernatant, blocking was performed with 100 μL of 1% BSA / PBS solution at room temperature for 1 h. After discarding the supernatant, the various glycosidase digested IgA1 prepared above was diluted to 5 μg / mL with a 1% BSA / PBS solution, 50 μL was applied to a plate, and reacted at 4 ° C. overnight. The reacted plate was washed 3 times with 200 μL of PBS-T and then various biotinylated lectins HPA (5 μg / mL), PNA (2 μg / mL), VVA (5 μg / mL), WFA (5 μg / mL). 50 mL of each) was allowed to react at room temperature for 1 h. After further washing three times with 200 μL of PBS-T, 50 μL of 1 μg / μL of streptavidin-HRP was applied to each sample and allowed to react at room temperature for 1 h. After washing 3 times with 200 μL of PBS-T, 50 μL of 3,3 ′, 5,5′-tetramethylbenzidine (TMB) substrate solution (Thermo Fisher Scientific) was used as a substrate and reacted at room temperature for 1 to 15 min. After sufficient signal was obtained, 50 μL of 2 MH 2 SO 4 was added to terminate the reaction. After completion of the reaction, detection was performed at a wavelength of 450 nm using a microplate reader (Wallac 1420ARVO sx Multilabel Counter, Perkin Elmer).

(5)PNGase Fを用いた精製IgA1の脱Nグリコシル化反応
N-glycanをIgA1タンパク上から完全に切除する場合、10 μgの精製IgA1を0.5%SDS/0.2 M 2-mercaptoethanol/PBS(pH8.0)溶液20 μL中で98℃,5 min加熱した後、さらに20μLの5%Nonidet P-40、60 μLのPBS(8.0)および1 mUのPeptide N-glycosidase F(PNGase F ; takara)を加えて37℃、一晩反応させた。部分的な切断処理を行う場合、2.5 μgの精製IgA1を0.5%SDS/0.2 M 2-mercaptoethanol/PBS(pH8.0)溶液5 μL中で98℃,5 min加熱し、さらに5 μLの5%Nonidet P-40、15 μLのPBS(8.0)および0.1 mUのPNGase Fを加えて37℃で15,30,60,120minと経時的に反応させた。各酵素反応の停止は98℃、5 minの熱処理で行った。調整したde-N-glycosylated IgA1はSDS-PAGE(銀染色)およびレクチンアレイ測定を行った。
(5) De-N-glycosylation of purified IgA1 using PNGase F
To completely excise N-glycan from IgA1 protein, 10 μg of purified IgA1 was heated at 98 ° C for 5 min in 20 μL of 0.5% SDS / 0.2 M 2-mercaptoethanol / PBS (pH 8.0), Furthermore, 20 μL of 5% Nonidet P-40, 60 μL of PBS (8.0) and 1 mU of Peptide N-glycosidase F (PNGase F; takara) were added and reacted at 37 ° C. overnight. For partial cleavage, heat 2.5 μg of purified IgA1 in 5 μL of 0.5% SDS / 0.2 M 2-mercaptoethanol / PBS (pH 8.0) at 98 ° C. for 5 min, and then add 5 μL of 5% Nonidet P-40, 15 μL of PBS (8.0) and 0.1 mU of PNGase F were added and reacted at 37 ° C. with 15, 30, 60, 120 min over time. Each enzyme reaction was stopped by heat treatment at 98 ° C. for 5 min. The prepared de-N-glycosylated IgA1 was subjected to SDS-PAGE (silver staining) and lectin array measurement.

(6)PNGase F処理サンプルを用いたSDS-PAGE解析(銀染色)
mIgA-MIDDおよびmIgA由来の精製IgA1について、上記方法にて調整したPNGase F処理および未処理サンプルを各400 ngずつ10%ポリアクリルアミドゲルSDS-PAGEによって分離し銀染色法によってバンドの検出を行った。
(6) SDS-PAGE analysis using a PNGase F-treated sample (silver staining)
For purified IgA1 derived from mIgA-MIDD and mIgA, 400 ng of each prepared PNGase F-treated and untreated sample was separated by 10% polyacrylamide gel SDS-PAGE, and bands were detected by silver staining method. .

(7)PNGase処理サンプルを用いたレクチンマイクロアレイ解析
mIgA-MIDD由来精製IgA1についてPNGase Fによって完全消化したものと未消化の物を上記方法により作製した。調製した1 μg相当のPNGase消化物および未消化物IgA1に対して10 μgのCy3-succimidyl ester (GE Healthcare)を用いて室温、1 h、遮光条件にてペプチドに対するラベル化処理を行った。未反応のCy3試薬を無効化するため、500 mM glycine/1%Triton X-100/TBS(probing buffer)を加えて室温、2 h、遮光条件にてブロッキング処理を行った。最終的にprobing bufferにて10 μg/mLに希釈したサンプル100 ng相当のIgA1をレクチンマイクロアレイに供し、20℃、一晩反応させた。反応後probing bufferで3回洗浄した後、probing buffer 80 μLを加えてGlycostationを用いて測定を行った。シグナルの検出およびデータ処理等については前述のトリプシン消化物を測定した項と同様の方法を用いた。
(7) Lectin microarray analysis using PNGase-treated samples
The mIgA-MIDD-derived purified IgA1 was completely digested with PNGase F and undigested by the above method. The prepared PNGase digested product corresponding to 1 μg and the undigested product IgA1 were labeled with 10 μg of Cy3-succimidyl ester (GE Healthcare) at room temperature for 1 h under light-shielding conditions. In order to invalidate the unreacted Cy3 reagent, 500 mM glycine / 1% Triton X-100 / TBS (probing buffer) was added, and blocking treatment was performed at room temperature for 2 h under light-shielding conditions. Finally, IgA1 equivalent to 100 ng of the sample diluted to 10 μg / mL with probing buffer was applied to a lectin microarray and reacted at 20 ° C. overnight. After the reaction, the membrane was washed three times with a probing buffer, 80 μL of probing buffer was added, and measurement was performed using Glycostation. Signal detection, data processing, and the like were performed using the same method as that used for the above-mentioned measurement of tryptic digest.

図7に示すようにN-glycanを切断する酵素PNGaseF処理によってN-glycanを認識する多くのレクチン(UDAレクチンより下部)のシグナルが消失している。一方O-glycanを認識するレクチンのシグナル(BPLレクチンより上部)はPNGase処理によって変わらない、もしくは上昇している。したがって、WFAレクチンはPNGaseF処理によってシグナルが低下したことから、N-glycanを認識していることが、この実験によっても確認された。
さらに、予想外なことに、PNGase消化しないサンプルでもWFAシグナルの低下が見られた。この実験では立体構造を破壊する2-mercaptoethanolによる前処理を行っている。トリプシン消化も同様に立体構造を解消することから、結果としてWFAはIgAの立体構造を加味した変化を認識している可能性が示唆された。このようにWFAがmIgA-MIDD由来IgA1の立体構造を認識している可能性があることから、立体構造を解消させるような前処理を行うことで、WFAレクチンのシグナルがどのような挙動を示すか調べることとした。そこでSDS存在下で熱処理を行ったIgA1についてレクチンマイクロアレイ測定を行った。
As shown in FIG. 7, signals of many lectins (lower than UDA lectin) that recognize N-glycan are lost by treatment with the enzyme PNGaseF that cleaves N-glycan. On the other hand, the signal of the lectin that recognizes O-glycan (above the BPL lectin) is unchanged or increased by the PNGase treatment. Therefore, the WFA lectin was confirmed to have recognized N-glycan since the signal was reduced by the treatment with PNGaseF.
In addition, unexpectedly, the WFA signal was reduced even in samples that were not digested with PNGase. In this experiment, pretreatment with 2-mercaptoethanol that destroys the three-dimensional structure is performed. Similarly, trypsin digestion also eliminates the three-dimensional structure, suggesting that WFA may recognize changes taking into account the three-dimensional structure of IgA. In this way, WFA may recognize the three-dimensional structure of mIgA-MIDD-derived IgA1, so what kind of behavior the WFA lectin signal shows by pre-processing to eliminate the three-dimensional structure I decided to investigate. Therefore, lectin microarray measurement was performed on IgA1 that had been heat-treated in the presence of SDS.

(8)精製IgA1の熱処理方法および熱処理サンプルにおけるレクチンマイクロアレイ測定
mIgA-MIDD由来精製IgA1の界面活性剤存在下での熱処理がレクチンマイクロアレイ上レクチンとの相互作用にどのような影響を与えるかを検討するために以下の実験を実施した。mIgA-MIDD由来精製IgA1へ終濃度0.2%になるようにSDSを加え、95℃で5分間加熱した。対象サンプルとして0.2%SDS含有mIgA-MIDD由来精製IgA1溶液を調製した。これらを各レクチンアレイ反応槽に100ng, 50ng, 25ng添加し、20℃で約16時間保温した。反応後の相互作用検出は上述の抗体オーバーレイレクチンアレイ法により行った。
図8に示すように、mIgA-MIDD由来IgA1はSDS存在下での熱処理によってレクチンアレイにおける糖鎖プロファイルが異なった。特にWFAレクチンシグナルは熱処理によって著しく減少した。それに対して他のO-glycan認識レクチンについては熱処理によって大きな変動が見られなかった。
(8) Heat treatment method of purified IgA1 and lectin microarray measurement in heat treated sample
In order to examine how the heat treatment in the presence of a surfactant of mIgA-MIDD-derived purified IgA1 affects the interaction with lectins on lectin microarrays, the following experiment was performed. SDS was added to mIgA-MIDD-derived purified IgA1 to a final concentration of 0.2% and heated at 95 ° C. for 5 minutes. As a target sample, a 0.2% SDS-containing mIgA-MIDD-derived purified IgA1 solution was prepared. 100 ng, 50 ng, and 25 ng of these were added to each lectin array reaction vessel and incubated at 20 ° C. for about 16 hours. The interaction after the reaction was detected by the above-described antibody overlay lectin array method.
As shown in FIG. 8, mIgA-MIDD-derived IgA1 had different sugar chain profiles in the lectin array by heat treatment in the presence of SDS. In particular, WFA lectin signal was significantly reduced by heat treatment. In contrast, other O-glycan-recognizing lectins did not show significant fluctuations due to heat treatment.

(9)非還元条件下におけるmIgA-MIDD由来精製IgA1に対するWFAの反応性
WFAレクチンがIgAの立体構造変化を認識していることをさらに確認するため、還元または非還元条件でSDS-PAGEを行い、WFAレクチンブロットを行った。
mIgA-MIDD由来精製IgA1について還元および非還元条件下でSDS-PAGEを行った後、WFAレクチン、抗IgA1抗体、ConAレクチンを用いてウエスタンブロッティングを行った。図9に示すように、抗IgA抗体およびConAレクチンを用いた場合、非還元および還元条件に関係なく反応していた(B, C)。一方で、WFAレクチンでは還元条件におけるIgAに全く反応していないのに対して非還元条件におけるIgAにのみ反応していた。コントロールであるシアリダーゼ+ガラクトシダーゼ処理したサンプル(O-glycanの構造がTn構造となっている)では還元条件でも反応する(A)。
この結果から、WFAは非還元状態のnativeのIgAと反応していることがわかった。さらに、nativeのIgAの中でも、特に高分子のIgA分子とだけ反応することが判明した。
また、WFAレクチンは、健常者由来のIgA1よりも、mIgA-MIDD患者由来のIgA1に強く結合することから、mIgA-MIDD患者由来のIgA1は、健常者由来のIgA1に比べて高分子であると考えられる。
(9) WFA reactivity to mIgA-MIDD-derived purified IgA1 under non-reducing conditions
In order to further confirm that the WFA lectin recognizes the conformation change of IgA, SDS-PAGE was performed under reducing or non-reducing conditions, and a WFA lectin blot was performed.
After SDS-PAGE of purified IgA1 derived from mIgA-MIDD under reducing and non-reducing conditions, Western blotting was performed using WFA lectin, anti-IgA1 antibody, and ConA lectin. As shown in FIG. 9, when anti-IgA antibody and ConA lectin were used, the reaction was carried out regardless of non-reducing and reducing conditions (B, C). On the other hand, WFA lectin did not react at all with IgA under reducing conditions, but reacted only with IgA under non-reducing conditions. The sample treated with sialidase + galactosidase (the structure of O-glycan has a Tn structure) reacts even under reducing conditions (A).
From this result, it was found that WFA reacts with non-reduced native IgA. Furthermore, among native IgA, it was found to react only with high molecular weight IgA molecules.
In addition, WFA lectin binds to IgA1 derived from mIgA-MIDD patients more strongly than IgA1 derived from healthy subjects, so that IgA1 derived from mIgA-MIDD patients is a higher polymer than IgA1 derived from healthy subjects. Conceivable.

(10)PNGase F処理を利用したN-glycan付加数の検出
糖鎖の付加数の違いについてPNGFase Fを用いて検討した。PNGase FをIgA1に経時的に反応させ、各時間におけるIgA1由来のバンドをSDS-PAGE(銀染色)にて検出した。PNGaseFを経時的に反応させた場合、N-glycanの付加数に依存したバンドが複数見られた(図10)。
また、図10Cに示すように良性疾患(mIgA)ではPNGaseF反応を途中で止めた場合、3本の重鎖由来、1本の軽鎖由来バンドが検出された(B、lane 8〜10)。一方mIgA-MIDDでPNGase F反応を途中で止めた場合、4本の重鎖由来、2本の軽鎖由来のバンドが検出された(A、lane 2〜5)。
結果として、健常者では3本のバンドが見られたことから、2本のN-glycanが重鎖上に存在することがわかった。一方mIgA-MIDDでは合計4本のバンドが現れたことから、3本のN-glycanが重鎖上に存在することがわかった。さらに軽鎖にも1本のN-glycanが付加していることがわかった。mIgA-MIDDではN-glycanの本数が増えていることがわかり、健常者に比べてIgA分子1分子あたり合計4本も糖鎖が増加するという異常付加が認められた。
(10) Detection of N-glycan addition number using PNGase F treatment The difference in the number of added sugar chains was examined using PNGFase F. PNGase F was allowed to react with IgA1 over time, and IgA1-derived bands at each time were detected by SDS-PAGE (silver staining). When PNGaseF was reacted over time, multiple bands depending on the number of N-glycan added were observed (FIG. 10).
In addition, as shown in FIG. 10C, in the benign disease (mIgA), when the PNGaseF reaction was stopped halfway, three heavy chain-derived and one light chain-derived bands were detected (B, lanes 8 to 10). On the other hand, when the PNGase F reaction was stopped midway with mIgA-MIDD, bands derived from 4 heavy chains and 2 light chains were detected (A, lanes 2 to 5).
As a result, three bands were found in healthy subjects, indicating that two N-glycans were present on the heavy chain. On the other hand, in mIgA-MIDD, a total of 4 bands appeared, indicating that 3 N-glycans were present on the heavy chain. It was also found that one N-glycan was added to the light chain. In mIgA-MIDD, it was found that the number of N-glycan was increased, and an abnormal addition was observed in which a total of 4 sugar chains increased per molecule of IgA compared to healthy subjects.

(11)各検体由来精製IgA1における分子量の測定
各検体由来の精製IgA1を非還元条件もしくは還元条件処理した後、10%ポリアクリルアミドゲルSDS-PAGE(銀染色)にて分離して分子量について比較したところ、顕著な違いを見出すことが出来なかった(A)。しかし、より高分子量の物を検出可能な2%アガロースゲルSDS-PAGE(抗IgA1抗体によるウエスタンブロット)にて分離して分子量について比較したところ、mIgA-MIDDにおいては、500kDa以上の高分子多量体IgAを形成していることがわかった(B、lane 3)。(図11)
一般的にIgAはモノマー、ダイマー、ポリマーを形成することが知られており、健常者の血清中のIgAではモノマーがほとんどである。このような高分子量体は糖鎖の多価性が非常に強いと考えられる。
これまでは、腎症IgAと健常者IgAの糖鎖構造の違いにのみ着目されていたが、本症では糖鎖構造の違いではなく糖鎖構造の付加数および凝集IgAの形成といった立体構造上の異常も加味された異常性を見出した。
(11) Measurement of molecular weight of each specimen-derived purified IgA1 After treating each specimen-derived purified IgA1 under non-reducing conditions or reducing conditions, the specimens were separated by 10% polyacrylamide gel SDS-PAGE (silver staining) and compared for molecular weight. However, we could not find any significant differences (A). However, when the molecular weight was separated by 2% agarose gel SDS-PAGE (Western blotting with anti-IgA1 antibody) that can detect higher molecular weight, the molecular weight of mIgA-MIDD was higher than 500 kDa. It was found that IgA was formed (B, lane 3). (Fig. 11)
In general, IgA is known to form monomers, dimers, and polymers, and most of the IgA in the serum of healthy subjects is a monomer. Such a high molecular weight substance is considered to have a very strong multivalent sugar chain.
Until now, attention was focused only on the difference in the sugar chain structure between nephropathy IgA and healthy subject IgA. However, in this disease, not the difference in sugar chain structure, but the three-dimensional structure such as the number of added sugar chain structures and the formation of aggregated IgA We found abnormalities that took into account the abnormalities.

<実施例3>WFAレクチン結合能の測定
(1)WFAレクチンを用いたSandwichレクチンEILSAによる比較解析
レクチンマイクロアレイ測定において、mIgA-MIDDのIgA1に対してWFAレクチンシグナルが顕著に高かったことから、良性疾患、健常者およびmIgA-MIDDの精製IgA1についてWFAレクチンを用いたSandwich lectin ELISAによってWFAへの反応性の差を調べた。mIgA-MIDD、mIgAおよび健常者由来の精製IgA1,10 μgを200 mM酢酸ナトリウムbufferにて50 μLへ希釈し20 mUのシアリダーゼを用いて、37℃、一晩反応させた。さらに反応後、溶液に1.1 mUのβガラクトシダーゼもしくは1.5 mUのβ1,4ガラクトシダーゼによって37℃, 一晩反応させた。次に酵素消化によって作製したサンプルをWFA レクチンを用いたSandwich lectin ELISAによって比較した。まず5 μg/mL濃度のポリクローナル抗IgA抗体(Jackson社製)50μLをMaxisorp 96-well immunoplate (Thermo Fisher Scientific社)に供し室温、2h静置した。上清廃棄後、1%BSA入りPBS溶液100μLを供し室温、1h静置した。上清廃棄後、上記で調製した酵素消化済みIgA1を1%BSA入りPBSにて200倍に希釈して50 μLをプレートに供し、4℃、一晩反応させた。反応させたプレートは200 μLのPBS-Tにて3回洗浄した後、WFA(5 μg/ml; Vector社製), VVA A(5 μg/ml; Vector社製), PNA (2 μg/μl; Vector社製), HPA(5 μg/ml; EY laboratories社製)の各種ビオチン化レクチンを50μL供し、室温、1 h反応させた。さらに200 μLのPBS-Tにて3回洗浄した後、1 μg/μLのstreptavidin-HRPを50μL供し、室温、1 h反応させた。200 μLのPBS-Tにて3回洗浄した後、基質として3,3',5,5'-tetramethylbenzidine (TMB) substrate solution (Thermo Fisher Scientific)を50μL供し、室温で1〜15 min反応させ、十分なシグナルが得られた後に50 μLの2 M H2SO4を加えて反応を終了させた。反応終了後、マイクロプレートリーダー(Wallac 1420ARVO sx Multilabel Counter,Perkin Elmer)を用いて450 nmの波長により検出を行った。検出結果を図12に示すが、WFAはいずれの検体についてもシアリダーゼ消化したIgA1に強く反応したが、mIgA-MIDD IgA1については特に強く反応することがわかった。したがって、シアリダーゼ処理を行なったIgA1については、良性疾患および健常者とmIgA-MIDDでは顕著な反応性の差があることが見出された。
<Example 3> Measurement of WFA lectin binding ability
(1) Comparative analysis by Sandwich lectin EILSA using WFA lectin Since the WFA lectin signal was significantly higher than IgA1 of mIgA-MIDD in the lectin microarray measurement, benign diseases, healthy subjects and purified IgA1 of mIgA-MIDD The difference in reactivity to WFA was examined by Sandwich lectin ELISA using WFA lectin. mIgA-MIDD, mIgA and 1,10 μg of purified IgA derived from healthy subjects were diluted to 50 μL with 200 mM sodium acetate buffer and reacted overnight at 37 ° C. with 20 mU sialidase. After the reaction, the solution was reacted overnight at 37 ° C. with 1.1 mU β-galactosidase or 1.5 mU β1,4 galactosidase. Next, samples prepared by enzymatic digestion were compared by Sandwich lectin ELISA using WFA lectin. First, 50 μL of a polyclonal anti-IgA antibody (manufactured by Jackson) at a concentration of 5 μg / mL was subjected to Maxisorp 96-well immunoplate (Thermo Fisher Scientific) and allowed to stand at room temperature for 2 h. After discarding the supernatant, 100 μL of a 1% BSA-containing PBS solution was used and allowed to stand at room temperature for 1 h. After discarding the supernatant, the enzyme-digested IgA1 prepared above was diluted 200-fold with PBS containing 1% BSA, and 50 μL was applied to the plate and reacted at 4 ° C. overnight. The reacted plate was washed 3 times with 200 μL of PBS-T, and then WFA (5 μg / ml; Vector), VVA A (5 μg / ml; Vector), PNA (2 μg / μl) 50 μL of various biotinylated lectins of Vector) and HPA (5 μg / ml; EY laboratories) were reacted at room temperature for 1 h. After further washing with 200 μL of PBS-T three times, 50 μL of 1 μg / μL of streptavidin-HRP was applied and reacted at room temperature for 1 h. After washing 3 times with 200 μL of PBS-T, 50 μL of 3,3 ′, 5,5′-tetramethylbenzidine (TMB) substrate solution (Thermo Fisher Scientific) was used as a substrate and reacted at room temperature for 1 to 15 min. After sufficient signal was obtained, 50 μL of 2 MH 2 SO 4 was added to terminate the reaction. After completion of the reaction, detection was performed at a wavelength of 450 nm using a microplate reader (Wallac 1420ARVO sx Multilabel Counter, Perkin Elmer). The detection results are shown in FIG. 12, and it was found that WFA reacted strongly with sialidase-digested IgA1 in all specimens, but particularly reacted with mIgA-MIDD IgA1. Therefore, it was found that IgA1 treated with sialidase had a significant difference in reactivity between benign diseases and healthy subjects and mIgA-MIDD.

<実施例4>WFAレクチンを用いたmIgA-MIDDの分離・精製(エンリッチ化)
(1)分離・精製法1
WFAレクチンがmIgA-MIDDに強く反応することから、WFAレクチンを用いてmIgA-MIDD由来IgAの分離・精製を行った。mIgA-MIDDおよび健常者のPBS buffer中の1μg/μLの精製IgA1 20μLに対して4μgのビオチン化WFAレクチンを加えて20℃、14000rpm、一晩反応させた。あらかじめ200 μL PBS-Tx bufferによて洗浄したDynabeads MyOne streptavidin T1 (Invitrogen) 20 μL(v/v)を添加して20℃、1 hインキュベートした。1 mLのPBS-Txで3回magnetic Beadsを洗浄した後、100 mM GalNAcもしくは100 mM Glycine-HCl(pH2.5)溶液20 μLで20℃、14000rpm、15 minの条件で溶出させた。後者の酸で溶出した場合は3 μL 1M Tris-HCl(pH8.0)で中和を行った。素通り画分および溶出画分についてはSDS-PAGE(銀染色)を用いてバンドの検出を行った(図13)。
mIgA-MIDD IgA1については良好に精製することができた。
<Example 4> Separation and purification (enrichment) of mIgA-MIDD using WFA lectin
(1) Separation and purification method 1
Since WFA lectin strongly reacts with mIgA-MIDD, mIgA-MIDD-derived IgA was separated and purified using WFA lectin. 4 μg of biotinylated WFA lectin was added to 20 μL of mIgA-MIDD and 1 μg / μL of purified IgA1 in PBS buffer of healthy subjects, and reacted overnight at 20 ° C. and 14000 rpm. Dynabeads MyOne streptavidin T1 (Invitrogen) 20 μL (v / v) previously washed with 200 μL PBS-Tx buffer was added and incubated at 20 ° C. for 1 h. The magnetic beads were washed three times with 1 mL of PBS-Tx, and then eluted with 20 μL of 100 mM GalNAc or 100 mM Glycine-HCl (pH 2.5) solution at 20 ° C., 14000 rpm, and 15 min. When it was eluted with the latter acid, it was neutralized with 3 μL 1M Tris-HCl (pH 8.0). For the flow-through fraction and the eluted fraction, bands were detected using SDS-PAGE (silver staining) (FIG. 13).
mIgA-MIDD IgA1 was successfully purified.

(2)分離・精製法2
WFAレクチンを用いて健常者由来IgA中からmIgA-MIDD由来IgAの精製を行った。精製前のサンプルとして健常由来IgA1にmIgA-MIDD由来IgA1を一定比率で混ぜたサンプルを調整した。健常者IgA1を10μgに対してmIgA-MIDD由来IgA1の量を1 μg(10%)、100 ng(1%)、10ng(0.1%)の比率で混ぜサンプルを調整した。続いて、あらかじめ200 μL PBS-Tx bufferによって洗浄したDynabeads MyOne streptavidin T1 (Invitrogen) 50 μL(v/v)に8 μgのビオチン化WFAレクチンを50 μLのPBSに希釈し、20℃、14000rpm、1 hインキュベートした。上述のサンプルをそれぞれPBSで 40 μLに希釈し、1 mLのPBS-Txで3回洗浄したWFA結合magnetic Beadsに添加して20℃、14000rpm、一晩インキュベートした。1 mLのPBS-Txによる3回の洗浄後、40 μlの100 mM GalNAc/PBS溶液を加え、20℃、14000 rpm、15 minの条件で溶出した。素通り画分および溶出画分についてはSDS-PAGE(銀染色)を用いてバンドの検出を行った。
図14に示すように、10μgの健常者由来精製IgA1に対して10%、1%および0.1%の比率のmIgA-MIDD IgA1(それぞれ、1 μg, 100 ng 10 ng)を混入し、WFAレクチンを用いてmIgA-MIDD IgA1を精製した。WFAレクチンを用いることによって1%のmIgA-MIDD IgA1を十分に分離することができた(緑枠)。また0.1%のmIgA-MIDD IgA1も分離可能であった。
(2) Separation and purification method 2
MIgA-MIDD-derived IgA was purified from normal healthy IgA using WFA lectin. As a sample before purification, a sample in which mIgA-MIDD-derived IgA1 was mixed at a constant ratio with healthy-derived IgA1 was prepared. The amount of mIgA-MIDD-derived IgA1 was mixed at a ratio of 1 μg (10%), 100 ng (1%), and 10 ng (0.1%) to 10 μg of healthy subject IgA1 to prepare a sample. Subsequently, Dynabeads MyOne streptavidin T1 (Invitrogen) previously washed with 200 μL PBS-Tx buffer was diluted with 50 μL (v / v) of 8 μg of biotinylated WFA lectin in 50 μL of PBS, 20 ° C., 14000 rpm, 1 h Incubated. Each of the above samples was diluted to 40 μL with PBS, added to WFA-conjugated magnetic beads washed 3 times with 1 mL of PBS-Tx, and incubated overnight at 20 ° C. and 14000 rpm. After washing three times with 1 mL of PBS-Tx, 40 μl of 100 mM GalNAc / PBS solution was added, and elution was performed at 20 ° C., 14000 rpm, and 15 min. Bands were detected using SDS-PAGE (silver staining) for the flow-through and elution fractions.
As shown in FIG. 14, mIgA-MIDD IgA1 (1 μg, 100 ng 10 ng, respectively) at a ratio of 10%, 1% and 0.1% was mixed with 10 μg of purified IgA1 derived from healthy subjects, and WFA lectin was mixed. Was used to purify mIgA-MIDD IgA1. By using WFA lectin, 1% of mIgA-MIDD IgA1 could be sufficiently separated (green frame). Moreover, 0.1% of mIgA-MIDD IgA1 was separable.

(3)WFAレクチンを用いたmIgA-MIDD精製条件の検討
WFAレクチンのmIgA-MIDD由来IgA1に対する結合能を検証するため、WFAアガロースカラムクロマトグラフィーを行った。mIgA-MIDD由来精製IgA1(600ng)を予めPBSTx緩衝液で平衡化したWFAアガロース(130μL)を充填したミニカラムに添加し、4℃で2時間静置反応した。反応後120μLのPBSTx緩衝液をカラムに添加し、非結合分子を滴下、回収した。これを非結合画分とした。レクチンアレイの前に、非結合画分のIgA量を見積もるため、SDS-ポリアクリルアミドゲル電気泳動を行った。その結果、およそ70%程度のIgA1がWFAカラムに結合していることが分かった。次いで、非結合画分を添加前のIgA1量で換算し、50ng, 25ng, 12.5ngをレクチンアレイに添加し、20℃で16時間反応した。結合反応の検出には上述の抗体オーバーレイレクチンアレイ法を用いた。対照実験として、mIgA-MIDD由来精製IgA1を同一量(12.5ng)レクチンアレイ解析に供した。その結果を図15に示す。
非結合画分(Through)のレクチンシグナル強度は精製IgA1のそれに比べ明らかに減少している。特にWFAシグナルにおいては、非結合画分で顕著にシグナルが減少し、mIgA-MIDD由来精製IgA1は、WFAアガロースに吸着されたことが示された。したがってmIgA-MIDD由来IgA1はWFAアガロースによる吸着を行なうことで、エンリッチ化できることが判明した。
(3) Examination of mIgA-MIDD purification conditions using WFA lectin
In order to verify the binding ability of WFA lectin to mIgA-MIDD-derived IgA1, WFA agarose column chromatography was performed. mIgA-MIDD-derived purified IgA1 (600 ng) was added to a minicolumn packed with WFA agarose (130 μL) previously equilibrated with PBSTx buffer, and allowed to stand at 4 ° C. for 2 hours. After the reaction, 120 μL of PBSTx buffer was added to the column, and unbound molecules were dropped and collected. This was defined as the unbound fraction. Prior to the lectin array, SDS-polyacrylamide gel electrophoresis was performed to estimate the amount of IgA in the unbound fraction. As a result, it was found that about 70% of IgA1 was bound to the WFA column. Next, the unbound fraction was converted to the amount of IgA before addition, 50 ng, 25 ng, and 12.5 ng were added to the lectin array, and reacted at 20 ° C. for 16 hours. The antibody overlay lectin array method described above was used to detect the binding reaction. As a control experiment, mIgA-MIDD-derived purified IgA1 was subjected to the same amount (12.5 ng) of lectin array analysis. The result is shown in FIG.
The lectin signal intensity of the unbound fraction (Through) is clearly reduced compared to that of purified IgA1. In particular, in the WFA signal, the signal decreased significantly in the non-binding fraction, indicating that mIgA-MIDD-derived purified IgA1 was adsorbed to WFA agarose. Therefore, it was found that IgA1 derived from mIgA-MIDD can be enriched by adsorption with WFA agarose.

<実施例5>抗IgA抗体オーバーレイ法を用いた血清に対するレクチンマイクロアレイ測定
mIgA-MIDD患者IgA1ではWFAレクチンと高い反応性が見られたことから、精製をせずに血清から直接、mIgA-MIDDと健常者を区別できるか調べるために、血清についてのレクチンマイクロアレイ測定を行った。測定法としては抗IgA1モノクローナル抗体(7303B)による抗体オーバーレイ法によって測定した。以下に実験方法を示す。
mIgA-MIDDおよび健常者の血清70nLを80μLのPBS-Txに希釈し、レクチンマイクロアレイスライドガラスに全量供し、20℃, 18 h反応させた。反応後、80 μLPBS-Txにて3回洗浄した後、6.25 μg/mL濃度のビオチン化抗IgA1抗体(7303B)を80μL供し、20℃,1h反応させた。さらに80 μLPBS-Txにて3回洗浄した後、2.5 μg/mL濃度のstreptavidin-Cy3を80μL供し、20℃,1h反応させた。80 μLPBS-Txにて3回洗浄した後80 μLのPBS-Txを供し、レクチンマイクロアレイにて測定した。Gain125〜110で測定を行った。結果はGain125のものを示す。
図16に示すように、血清を直接用いた場合においても、mIgA-MIDDおよび健常者で顕著に異なる糖鎖プロファイルが得られた。血清の直接測定においても、WFAレクチンは健常者には反応しないのに対して、mIgA-MIDDのIgA1に強く反応することがわかった。
結果として、血清を直接用いた場合においても、mIgA-MIDDおよび健常者で顕著に異なる糖鎖プロファイルが得られた。血清の直接測定においても、WFAレクチンは健常者には反応しないのに対して、mIgA-MIDDのIgA1に強く反応することがわかった。
<Example 5> Measurement of lectin microarray for serum using anti-IgA antibody overlay method
Since IgA1 was highly reactive with WFA lectin in patients with mIgA-MIDD, lectin microarray measurements were performed on serum to determine whether mIgA-MIDD can be distinguished from normal subjects directly from serum without purification. It was. As a measuring method, it was measured by an antibody overlay method using an anti-IgA1 monoclonal antibody (7303B). The experimental method is shown below.
mIgA-MIDD and 70 nL of healthy human serum were diluted in 80 μL of PBS-Tx, and all were applied to a lectin microarray slide glass and reacted at 20 ° C. for 18 h. After the reaction, the plate was washed 3 times with 80 μL PBS-Tx, and then 80 μL of 6.25 μg / mL concentration of biotinylated anti-IgA1 antibody (7303B) was used and reacted at 20 ° C. for 1 h. After further washing 3 times with 80 μL PBS-Tx, 80 μL of 2.5 μg / mL concentration of streptavidin-Cy3 was applied and reacted at 20 ° C. for 1 h. After washing 3 times with 80 μL PBS-Tx, 80 μL of PBS-Tx was used, and measurement was performed with a lectin microarray. Measurements were taken at Gain 125-110. The result shows that of Gain125.
As shown in FIG. 16, even when serum was used directly, significantly different sugar chain profiles were obtained between mIgA-MIDD and healthy subjects. In direct serum measurement, it was found that WFA lectin does not react with healthy subjects, but strongly reacts with IgA1 of mIgA-MIDD.
As a result, even when serum was used directly, significantly different sugar chain profiles were obtained between mIgA-MIDD and healthy subjects. In direct serum measurement, it was found that WFA lectin does not react with healthy subjects, but strongly reacts with IgA1 of mIgA-MIDD.

Claims (11)

IgA凝集体の検出方法であって、IgAを含む試料に該IgA凝集体に特異的に反応するレクチンを接触させることを特徴とする該IgA凝集体の検出方法。 A method for detecting an IgA aggregate, comprising contacting a sample containing IgA with a lectin that specifically reacts with the IgA aggregate. 上記IgA凝集体に対する上記レクチンの結合能を測定することを特徴とする請求項1に記載の方法。 The method according to claim 1, wherein the binding ability of the lectin to the IgA aggregate is measured. 上記結合能の測定が、N-glycan上のβ 14 galactoseに対する上記レクチンの認識性に基づくことを特徴とする、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the measurement of the binding ability is based on the recognition property of the lectin for β 14 galactose on N-glycan. 上記レクチンが、HHL, GNA, NPA、WFA, SBA, VVA, BPL, TJA-II、PHA-L、AOLレクチンからなる群から選択される、少なくとも1つ以上のレクチンである請求項1〜3のいずれかに記載の方法。 The lectin is at least one lectin selected from the group consisting of HHL, GNA, NPA, WFA, SBA, VVA, BPL, TJA-II, PHA-L, and AOL lectin. The method according to any one. 上記レクチンが、WFAレクチンである請求項1〜3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the lectin is a WFA lectin. 上記IgAを含む試料が、被検者の血清または尿である請求項1〜5のいずれかに記載の方法。 The method according to claim 1, wherein the sample containing IgA is serum or urine of a subject. 請求項1〜6のいずれかに記載の方法によってIgA凝集体を検出し、その検出結果に基づいてIgA腎症を検査することを特徴とする、IgA腎症の検査方法。 An IgA nephropathy test method, comprising detecting IgA aggregates by the method according to claim 1 and testing IgA nephropathy based on the detection result. 上記IgA腎症が、mIgA-MIDDであることを特徴とする、請求項7に記載の方法。 The method according to claim 7, wherein the IgA nephropathy is mIgA-MIDD. IgA凝集体分子に特異的に反応するレクチンを結合させることによって該IgA凝集体分子を精製することを特徴とする、IgA凝集体分子の精製方法。 A method for purifying an IgA aggregate molecule, comprising purifying the IgA aggregate molecule by binding a lectin that specifically reacts with the IgA aggregate molecule. 以下の手順を含むIgA腎症の検査方法:
1)被検体から採取された血清または尿中のIgAをWFAレクチンに接触させ;
2)WFAレクチンに結合したIgA量を健常人の場合と比較することによりIgA腎症を判定する。
Methods for testing IgA nephropathy, including the following procedures:
1) Contact IgA in serum or urine collected from a subject with WFA lectin;
2) IgA nephropathy is determined by comparing the amount of IgA bound to the WFA lectin with that of a healthy person.
IgA1モノクローナル抗体による抗体オーバーレイ法による解析を行うことによりWFAレクチンに結合したIgA量を測定する、請求項10に記載の方法。 The method according to claim 10, wherein the amount of IgA bound to the WFA lectin is measured by performing analysis by an antibody overlay method using an IgA1 monoclonal antibody.
JP2014515638A 2012-05-14 2013-05-14 Method for detecting IgA aggregate and method for examining IgA nephropathy Active JP6066220B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261646497P 2012-05-14 2012-05-14
US61/646,497 2012-05-14
PCT/JP2013/063427 WO2013172347A1 (en) 2012-05-14 2013-05-14 Method for detecting iga aggregate, and method for testing iga nephropathy

Publications (2)

Publication Number Publication Date
JPWO2013172347A1 true JPWO2013172347A1 (en) 2016-01-12
JP6066220B2 JP6066220B2 (en) 2017-01-25

Family

ID=49583752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014515638A Active JP6066220B2 (en) 2012-05-14 2013-05-14 Method for detecting IgA aggregate and method for examining IgA nephropathy

Country Status (2)

Country Link
JP (1) JP6066220B2 (en)
WO (1) WO2013172347A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098328A1 (en) * 2017-11-17 2019-05-23 学校法人帝京大学 KIT FOR IgA NEPHROPATHY DIAGNOSIS
JP7457367B2 (en) 2019-01-17 2024-03-28 国立大学法人 岡山大学 Method and kit for determining the possibility of developing IgA nephropathy
JP7473398B2 (en) 2020-05-28 2024-04-23 シスメックス株式会社 Calibrators, complexes, and methods for measuring IgA aggregates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163151A (en) * 2005-12-09 2007-06-28 Kitasato Gakuen Method of determining physiological state of target organism
JP2009001512A (en) * 2007-06-20 2009-01-08 Mie Univ New jacalin derivative
WO2011081189A1 (en) * 2009-12-28 2011-07-07 協和発酵キリン株式会社 Anti-iga1 antibody

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311132A (en) * 1996-05-22 1997-12-02 Asahi Chem Ind Co Ltd Diagnostic method of immunoglobulin-a nephropathy
JPH10111291A (en) * 1996-10-04 1998-04-28 Asahi Chem Ind Co Ltd Method for diagnosis of iga nephropathy
AU2003254952A1 (en) * 2002-08-20 2004-03-11 Summit Glycoresearch Corporation Use of lectin library for distinguishing glycoproteins or cells, diagnosing serum or cells, or fractionating glycoproteins or cells
JP2006083104A (en) * 2004-09-16 2006-03-30 Mie Tlo Co Ltd FOOD ADDITIVE FOR PREVENTING IgA NEPHROPATHY
JP5747315B2 (en) * 2009-05-12 2015-07-15 学校法人藤田学園 Antibody recognizing sugar chain-deficient human IgA1 hinge region and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163151A (en) * 2005-12-09 2007-06-28 Kitasato Gakuen Method of determining physiological state of target organism
JP2009001512A (en) * 2007-06-20 2009-01-08 Mie Univ New jacalin derivative
WO2011081189A1 (en) * 2009-12-28 2011-07-07 協和発酵キリン株式会社 Anti-iga1 antibody

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WANG Y, ZHAO MH, ZHANG YK, LI XM, WANG HY.: "Binding capacity and pathophysiological effects of IgA1 from patients with IgA nephropathy on human", CLIN EXP IMMUNOL., vol. 136, no. 1, JPN7013003066, April 2004 (2004-04-01), pages 168 - 175, XP071084720, ISSN: 0003448147, DOI: 10.1111/j.1365-2249.2004.02408.x *
成松由規, 池原譲, 佐藤隆, 成松久: "臨床糖鎖バイオマーカーの開発‐糖鎖機能の解明とその応用 第4章 臨床編 1.糖鎖関連バイオマーカーの医", 遺伝子医学MOOK, JPN6013040462, 10 September 2008 (2008-09-10), JP, pages 259 - 263, ISSN: 0003448145 *
鈴木仁、富野康日己: "IgA腎症における糖鎖異常IgA1と免疫複合体の病的意義", 医学のあゆみ, vol. 232, no. 11, JPN6013040465, 13 March 2010 (2010-03-13), JP, pages 1107 - 1112, ISSN: 0003448146 *

Also Published As

Publication number Publication date
WO2013172347A1 (en) 2013-11-21
JP6066220B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
Silsirivanit et al. A novel serum carbohydrate marker on mucin 5AC: values for diagnostic and prognostic indicators for cholangiocarcinoma
US10739356B2 (en) Prognosis and monitoring of membranous nephropathy based on the analysis of PLA2R1 epitope profile and spreading
JP6779504B2 (en) Methods for Predicting the Risk and Prognosis of Hepatocyte Cancer in Patients with Cirrhosis
CN113248609B (en) Antibody combination for regenerated islet-derived protein 1alpha and detection kit comprising same
JP6066220B2 (en) Method for detecting IgA aggregate and method for examining IgA nephropathy
WO2010032458A1 (en) Novel biomarker for non-alcoholic fatty liver disease, and method for detecting non-alcoholic fatty liver disease by using the biomarker
WO2012173228A1 (en) Method for analyzing mucin 1 using probe capable of binding to 3´-sulfonated core 1 carbohydrate chain, and method for detecting or monitoring breast cancer
Motooka et al. Detection of fucosylated haptoglobin using the 10-7G antibody as a biomarker for evaluating endoscopic remission in ulcerative colitis
WO2016068226A1 (en) Rheumatoid arthritis marker
AU2011311765B2 (en) A new method for diagnosing hypertension as well as cardiomyopathies
AU2017294979B2 (en) Method of detecting proteins in human samples and uses of such methods
CN107110848B (en) Method for detecting arteriosclerosis and cancer using deoxyhypusine synthase gene as index
JP2019011978A (en) Method and kit for measuring the amount of fucosyl sugar chain in glycoprotein
WO2012081701A1 (en) Method for enrichment and separation of spinal fluid glycoprotein, method for searching for marker for central nervous system diseases which utilizes the aforementioned method, and marker for central nervous system diseases
Tomoda et al. Alteration of serum N-glycan profile in patients with autoimmune pancreatitis
JP5120843B2 (en) Test method and test reagent for autoimmune pancreatitis
KR101143891B1 (en) A marker for the diagnosis of cancers by using aberrant glycosylation of protein
CN114152754A (en) ELISA kit for detecting human Dsg1IgG antibody and application thereof
JP5413863B2 (en) Test method and test reagent for fulminant type 1 diabetes
US11242408B2 (en) Monoclonal antibody specific for gamma-glutamyl-l-epsilon-lysine for the monitoring of apoptosis
JP5653725B2 (en) Amyotrophic lateral sclerosis marker and use thereof
Khorshed et al. Development of an impedance-based biosensor for determination of IgG galactosylation levels
KR102128251B1 (en) Biomarker Composition for Diagnosing Colorectal Cancer Specifically Binding to Arginine-methylated Dopamine Receptor D2
KR101544085B1 (en) Growth differentiation factor 15 as marker for impaired fasting glucose and Diagnosis kit for impaired fasting glucose including the same
Bandyopadhyay et al. Detection of immune-complexed 9-O-acetylated sialoglycoconjugates in the sera of patients with pediatric acute lymphoblastic leukemia

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161214

R150 Certificate of patent or registration of utility model

Ref document number: 6066220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250