JPWO2013168716A1 - Non-aqueous electrolyte, power storage device using the same, and dihalophosphate compound - Google Patents

Non-aqueous electrolyte, power storage device using the same, and dihalophosphate compound Download PDF

Info

Publication number
JPWO2013168716A1
JPWO2013168716A1 JP2014514726A JP2014514726A JPWO2013168716A1 JP WO2013168716 A1 JPWO2013168716 A1 JP WO2013168716A1 JP 2014514726 A JP2014514726 A JP 2014514726A JP 2014514726 A JP2014514726 A JP 2014514726A JP WO2013168716 A1 JPWO2013168716 A1 JP WO2013168716A1
Authority
JP
Japan
Prior art keywords
group
carbon atoms
diethoxyphosphoryl
carbonate
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014514726A
Other languages
Japanese (ja)
Other versions
JP6137177B2 (en
Inventor
安部 浩司
浩司 安部
敷田 庄司
庄司 敷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2014514726A priority Critical patent/JP6137177B2/en
Publication of JPWO2013168716A1 publication Critical patent/JPWO2013168716A1/en
Application granted granted Critical
Publication of JP6137177B2 publication Critical patent/JP6137177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5304Acyclic saturated phosphine oxides or thioxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • C07F9/32Esters thereof
    • C07F9/3205Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4071Esters thereof the ester moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4078Esters with unsaturated acyclic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4071Esters thereof the ester moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4081Esters with cycloaliphatic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4071Esters thereof the ester moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4084Esters with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5316Unsaturated acyclic phosphine oxides or thioxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/532Cycloaliphatic phosphine oxides or thioxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5325Aromatic phosphine oxides or thioxides (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6568Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms
    • C07F9/65685Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms the ring phosphorus atom being part of a phosphine oxide or thioxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/657163Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom
    • C07F9/657172Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom the ring phosphorus atom and one oxygen atom being part of a (thio)phosphinic acid ester: (X = O, S)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/657163Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom
    • C07F9/657181Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom the ring phosphorus atom and, at least, one ring oxygen atom being part of a (thio)phosphonic acid derivative
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

本発明は、高温下での電気化学特性を向上できる非水電解液であって、非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に下記一般式(I)で表されるジハロリン酸エステル化合物を含有することを特徴とする非水電解液、それを用いた蓄電デバイス、及びそれらに用いられる特定のジハロリン酸エステル化合物である。(式中、R1及びR2は、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数3〜6のアルキニル基、炭素数1〜6のアルコキシ基、炭素数2〜6のアルケニルオキシ基、炭素数3〜6のアルキニルオキシ基、炭素数6〜12のアリール基、又は炭素数6〜12のアリールオキシ基を示し、X1及びX2は、フッ素原子又は塩素原子を示し、mは1又は2を示す。R3は、mが1の場合は、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数3〜6のアルキニル基、又は炭素数6〜12のアリール基を示し、mが2の場合は、炭素数2〜6のアルキレン基、炭素数4〜8のアルケニレン基、炭素数4〜8のアルキニレン基を示す。)The present invention is a non-aqueous electrolyte that can improve electrochemical characteristics at high temperatures, and in a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, the following general formula (I And a specific dihalophosphate compound used for the non-aqueous electrolyte, an electricity storage device using the nonaqueous electrolyte, and a power storage device using the same. Wherein R 1 and R 2 are an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and 2 to 6 carbon atoms. An alkenyloxy group, an alkynyloxy group having 3 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aryloxy group having 6 to 12 carbon atoms, X1 and X2 each represents a fluorine atom or a chlorine atom, m represents 1 or 2. When m is 1, R3 is an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, or 6 to 6 carbon atoms. 12 represents an aryl group, and when m is 2, it represents an alkylene group having 2 to 6 carbon atoms, an alkenylene group having 4 to 8 carbon atoms, or an alkynylene group having 4 to 8 carbon atoms.)

Description

本発明は、高温下での電気化学特性を向上できる非水電解液、それを用いた蓄電デバイス、及びそれらに用いられる特定のジハロリン酸エステル化合物に関する。   The present invention relates to a nonaqueous electrolytic solution capable of improving electrochemical properties at high temperatures, an electricity storage device using the same, and a specific dihalophosphate compound used in them.

近年、蓄電デバイス、特にリチウム二次電池は、携帯電話やノート型パソコン等の電子機器の電源、及び電気自動車や電力貯蔵用の電源として広く使用されている。これらの電子機器や自動車に搭載された電池は、真夏の高温下や、電子機器の発熱により暖められた環境下で使用される可能性が高い。   In recent years, power storage devices, in particular lithium secondary batteries, have been widely used as power sources for electronic devices such as mobile phones and laptop computers, and for electric vehicles and power storage. Batteries mounted on these electronic devices and automobiles are likely to be used under the high temperature of midsummer or in an environment warmed by heat generated by the electronic devices.

蓄電デバイスの一種であるリチウム二次電池は、主にリチウムを吸蔵放出可能な材料を含む正極及び負極、リチウム塩と非水溶媒からなる非水電解液から構成され、非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等のカーボネート類が使用されている。
また、リチウム二次電池の負極としては、リチウム金属、リチウムを吸蔵及び放出可能な金属化合物(金属単体、酸化物、リチウムとの合金等)、炭素材料が知られている。特に、炭素材料のうち、例えばコークス、黒鉛(人造黒鉛、天然黒鉛)等のリチウムを吸蔵及び放出することが可能な炭素材料を用いた非水系電解液二次電池が広く実用化されている。
上記の負極材料はリチウム金属と同等の極めて卑な電位でリチウムと電子を貯蔵・放出するために、特に高温下において、多くの溶媒が還元分解を受ける可能性を有しており、負極材料の種類に拠らず負極上で電解液中の溶媒が一部還元分解してしまい、分解物の沈着や、ガス発生により、リチウムイオンの移動が妨げられ、特に高温下でのサイクル特性等の電池特性を低下させるという問題があった。更に、リチウム金属やその合金、スズ又はケイ素等の金属単体や酸化物を負極材料として用いたリチウム二次電池は、初期の容量は高いもののサイクル中に微粉化が進むため、炭素材料の負極に比べて非水溶媒の還元分解が加速的に起こり、特に高温下において電池容量やサイクル特性のような電池性能が大きく低下することが知られている。
A lithium secondary battery, which is a kind of power storage device, is mainly composed of a positive electrode and a negative electrode containing a material capable of occluding and releasing lithium, a non-aqueous electrolyte solution composed of a lithium salt and a non-aqueous solvent. Carbonates such as carbonate (EC) and propylene carbonate (PC) are used.
As negative electrodes of lithium secondary batteries, lithium metal, metal compounds capable of inserting and extracting lithium (metal simple substance, oxide, alloy with lithium, etc.) and carbon materials are known. In particular, non-aqueous electrolyte secondary batteries using carbon materials that can occlude and release lithium, such as coke and graphite (artificial graphite, natural graphite), are widely used.
Since the above negative electrode material stores and releases lithium and electrons at a very low potential equivalent to that of lithium metal, many solvents may undergo reductive decomposition, particularly at high temperatures. Regardless of the type, some of the solvent in the electrolyte solution undergoes reductive decomposition on the negative electrode, and the lithium ion migration is hindered by deposition of decomposition products and gas generation. There was a problem of deteriorating characteristics. Furthermore, lithium secondary batteries using lithium metal, alloys thereof, simple metals such as tin or silicon, and oxides as negative electrode materials have high initial capacities, but fine powders progress during the cycle. In comparison, it is known that reductive decomposition of a non-aqueous solvent occurs at an accelerated rate, and battery performance such as battery capacity and cycle characteristics deteriorates particularly at high temperatures.

一方、正極材料として用いられるLiCoO2、LiMn24、LiNiO2、LiFePO4等のリチウムを吸蔵及び放出可能な材料は、リチウム基準で3.5V以上の貴な電圧でリチウムと電子を貯蔵及び放出するために、特に高温下において、多くの溶媒が酸化分解を受ける可能性を有しており、正極材料の種類に拠らず正極上で電解液中の溶媒が一部酸化分解してしまい、分解物の沈着や、ガス発生により、リチウムイオンの移動が妨げられ、サイクル特性等の電池特性を低下させるという問題があった。On the other hand, materials capable of occluding and releasing lithium, such as LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiFePO 4 and the like used as the positive electrode material, store lithium and electrons at a noble voltage of 3.5 V or more on the basis of lithium. Because of the release, many solvents have the potential to undergo oxidative decomposition, especially at high temperatures, and some of the solvent in the electrolyte solution is oxidatively decomposed on the positive electrode regardless of the type of positive electrode material. However, the deposition of decomposition products and the generation of gas hinder the movement of lithium ions, resulting in deterioration of battery characteristics such as cycle characteristics.

以上のような状況にも関わらず、リチウム二次電池が搭載されている電子機器の多機能化はますます進み、電力消費量が増大する流れにある。そのため、リチウム二次電池の高容量化はますます進んでおり、電極の密度を高めたり、電池内の無駄な空間容積を減らす等、電池内の非水電解液の占める体積が小さくなっている。従って、少しの非水電解液の分解で、高温での電池性能が低下しやすい状況にある。
特許文献1には、トリエチルホスホノアセテート等のリン酸エステル化合物を含有する非水電解液が提案されており、充電特性、保存特性を向上できることが示されている。
In spite of the above situation, electronic devices equipped with lithium secondary batteries are becoming more and more multifunctional and power consumption is increasing. As a result, the capacity of lithium secondary batteries has been increasing, and the volume occupied by non-aqueous electrolyte in the battery has become smaller, such as increasing the electrode density and reducing the useless space volume in the battery. . Therefore, the battery performance at high temperature is likely to be degraded by a slight decomposition of the non-aqueous electrolyte.
Patent Document 1 proposes a nonaqueous electrolytic solution containing a phosphoric ester compound such as triethylphosphonoacetate, and it is shown that charging characteristics and storage characteristics can be improved.

国際公開第2008/123038号International Publication No. 2008/123038

本発明は、高温下での電気化学特性を向上できる非水電解液、それを用いた蓄電デバイス、及び特定のジハロリン酸エステル化合物を提供することを目的とする。   An object of this invention is to provide the nonaqueous electrolyte which can improve the electrochemical characteristic under high temperature, the electrical storage device using the same, and a specific dihalophosphate compound.

本発明者らは、前記特許文献1に記載の非水電解液の性能について詳細に検討した。その結果、前記特許文献1に記載の非水電解液では、高温下、特に高い充電電圧でのサイクル特性を向上させるという課題に対しては、十分に満足できるとは言えないのが実情であった。
そこで、本発明者らは、上記課題を解決するために鋭意研究を重ね、非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に特定のジハロリン酸エステル化合物を含有させることで、高温下での蓄電デバイスの電気化学特性、特にリチウム電池のサイクル特性を改善できることを見出し、本発明を完成した。
The present inventors examined in detail the performance of the non-aqueous electrolyte described in Patent Document 1. As a result, the non-aqueous electrolyte disclosed in Patent Document 1 cannot be said to be sufficiently satisfactory with respect to the problem of improving the cycle characteristics at high temperatures, particularly at high charging voltages. It was.
Therefore, the present inventors have made extensive studies to solve the above problems, and in a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent, a specific dihalophosphate compound is added to the non-aqueous electrolyte solution. It has been found that the inclusion can improve the electrochemical characteristics of the electricity storage device at high temperature, particularly the cycle characteristics of the lithium battery, and the present invention has been completed.

すなわち、本発明は、下記の(1)〜(4)を提供するものである。
(1)非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に下記一般式(I)で表されるジハロリン酸エステル化合物を含有することを特徴とする非水電解液。
That is, the present invention provides the following (1) to (4).
(1) A non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte contains a dihalophosphate compound represented by the following general formula (I): Electrolytic solution.

Figure 2013168716
Figure 2013168716

(式中、R1及びR2はそれぞれ独立に、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数3〜6のアルキニル基、炭素数1〜6のアルコキシ基、炭素数2〜6のアルケニルオキシ基、炭素数3〜6のアルキニルオキシ基、炭素数6〜12のアリール基、又は炭素数6〜12のアリールオキシ基を示し、X1及びX2はそれぞれ独立に、フッ素原子又は塩素原子を示し、mは1又は2を示す。
3は、mが1の場合は、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数3〜6のアルキニル基、又は炭素数6〜12のアリール基を示し、mが2の場合は、炭素数2〜6のアルキレン基、炭素数4〜8のアルケニレン基、炭素数4〜8のアルキニレン基を示す。
1又はR2である基が有する少なくとも一つの水素原子は、ハロゲン原子で置換されていてもよい。また、R1及びR2がアルキル基又はアルコキシ基の場合は、R1及びR2は結合して環構造を形成してもよい。)
Wherein R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, An alkenyloxy group having 2 to 6 carbon atoms, an alkynyloxy group having 3 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aryloxy group having 6 to 12 carbon atoms, wherein X 1 and X 2 are each independently Represents a fluorine atom or a chlorine atom, and m represents 1 or 2.
R 3 represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms when m is 1. When m is 2, an alkylene group having 2 to 6 carbon atoms, an alkenylene group having 4 to 8 carbon atoms, or an alkynylene group having 4 to 8 carbon atoms is shown.
At least one hydrogen atom of the group represented by R 1 or R 2 may be substituted with a halogen atom. When R 1 and R 2 are alkyl groups or alkoxy groups, R 1 and R 2 may be bonded to form a ring structure. )

(2)非水電解液が、更に下記一般式(II)で表される化合物及び一般式(III)で表される化合物から選ばれる1種以上を含有することを特徴とする非水電解液。 (2) The non-aqueous electrolyte further contains at least one selected from the compound represented by the following general formula (II) and the compound represented by the general formula (III) .

Figure 2013168716
Figure 2013168716

(式中、R4及びR5はR1及びR2と同義であり、R6は、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数3〜6のアルキニル基、又は炭素数6〜12のアリール基を示し、R7は、水素原子、又は炭素数1〜6のアルキル基を示し、X3はフッ素原子又は塩素原子を示す。
4及びR5である基が有する少なくとも一つの水素原子は、ハロゲン原子で置換されていてもよい。また、R4及びR5がアルキル基又はアルコキシ基の場合は、R4及びR5は結合して環構造を形成してもよい。)
(In the formula, R 4 and R 5 have the same meanings as R 1 and R 2 , and R 6 is an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, and an alkynyl group having 3 to 6 carbon atoms. Or an aryl group having 6 to 12 carbon atoms, R 7 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and X 3 represents a fluorine atom or a chlorine atom.
At least one hydrogen atom of the groups R 4 and R 5 may be substituted with a halogen atom. When R 4 and R 5 are an alkyl group or an alkoxy group, R 4 and R 5 may be bonded to form a ring structure. )

Figure 2013168716
(式中、R8及びR9はR1及びR2と同義であり、R10はR6と同義であり、R11及びR12は同一でも異なっていてもよく、水素原子、又は少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1〜6のアルキル基を示し、nは1〜4の整数を示す。また、R8及びR9がアルキル基又はアルコキシ基の場合は、R8及びR9は結合して環構造を形成してもよい。)
Figure 2013168716
(Wherein R 8 and R 9 have the same meanings as R 1 and R 2 , R 10 has the same meaning as R 6 , R 11 and R 12 may be the same or different, and are a hydrogen atom or at least one 1 represents an alkyl group having 1 to 6 carbon atoms in which one hydrogen atom may be substituted with a halogen atom, and n represents an integer of 1 to 4. When R 8 and R 9 are an alkyl group or an alkoxy group, , R 8 and R 9 may combine to form a ring structure.)

(3)正極、負極及び前記(1)又は(2)に記載の非水電解液を備えたことを特徴とする蓄電デバイス。 (3) A power storage device comprising a positive electrode, a negative electrode, and the non-aqueous electrolyte according to (1) or (2).

(4)下記一般式(IV)で表されるジハロリン酸エステル化合物。 (4) A dihalophosphate compound represented by the following general formula (IV).

Figure 2013168716
Figure 2013168716

(式中、R13及びR14はそれぞれ独立に、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、炭素数6〜12のアリール基、又は炭素数6〜12のアリールオキシ基を示し、X4は、フッ素原子又は塩素原子を示し、pは1又は2を示す。
15は、pが1の場合は、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数3〜6のアルキニル基、又は炭素数6〜12のアリール基を示し、pが2の場合は、炭素数2〜6のアルキレン基、炭素数4〜8のアルケニレン基、炭素数4〜8のアルキニレン基を示す。
13又はR14である基が有する少なくとも一つの水素原子は、ハロゲン原子で置換されていてもよい。また、R13及びR14がアルキル基又はアルコキシ基の場合は、R13及びR14は結合して環構造を形成してもよい。ただし、R13及びR14が、ともに炭素数1〜6のアルキコキシ基であり、R15が、炭素数1〜2のアルキル基の場合を除く。)
Wherein R 13 and R 14 are each independently an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aryloxy having 6 to 12 carbon atoms. Represents a group, X 4 represents a fluorine atom or a chlorine atom, and p represents 1 or 2.
R 15 represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms when p is 1. When p is 2, an alkylene group having 2 to 6 carbon atoms, an alkenylene group having 4 to 8 carbon atoms, or an alkynylene group having 4 to 8 carbon atoms is shown.
At least one hydrogen atom of the group represented by R 13 or R 14 may be substituted with a halogen atom. When R 13 and R 14 are an alkyl group or an alkoxy group, R 13 and R 14 may be bonded to form a ring structure. However, R 13 and R 14 are both an alkoxy group having 1 to 6 carbon atoms, and R 15 is an alkyl group having 1 to 2 carbon atoms. )

本発明によれば、高温下での電気化学特性、特に高温サイクル特性を向上できる非水電解液、それを用いたリチウム電池等の蓄電デバイス、及びそれらに用いられる特定のジハロリン酸エステル化合物を提供することができる。   According to the present invention, there are provided a nonaqueous electrolytic solution capable of improving electrochemical characteristics under high temperature, particularly high temperature cycle characteristics, a power storage device such as a lithium battery using the same, and a specific dihalophosphate compound used in them. can do.

本発明は、高温下での電気化学特性を向上できる非水電解液、それを用いた蓄電デバイス、及び特定のジハロリン酸エステル化合物に関する。   The present invention relates to a nonaqueous electrolytic solution capable of improving electrochemical properties at high temperatures, an electricity storage device using the nonaqueous electrolytic solution, and a specific dihalophosphate compound.

〔非水電解液〕
本発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に前記一般式(I)で表されるジハロリン酸エステル化合物を一種以上含有することを特徴とする非水電解液である。
[Non-aqueous electrolyte]
The non-aqueous electrolyte of the present invention contains at least one dihalophosphate compound represented by the above general formula (I) in the non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent. This is a non-aqueous electrolyte solution.

本発明の非水電解液が、高温下でのサイクル特性を大幅に改善できる理由は必ずしも明確ではないが、以下のように考えられる。
本発明のジハロリン酸エステル化合物は、一般式(I)で表されるとおり、P(=O)C−基、>C=O基及び二つのハロゲン原子を有する。
2つのハロゲン原子を有することにより、1つのハロゲン原子のみを有している場合やハロゲン原子を有してない場合に比較して、充放電初期に分解され易くなり、正極及び負極上に緻密で耐熱性の高い被膜を形成することができると考えられる。また、被膜中にリチウムイオンを緩やかにトラップするサイトとして機能するP(=O)C−基と>C=O基という2つの異なる比較的弱い電子吸引性の置換基を有するため、リチウムイオン伝導性が著しく向上し、高温サイクル特性の顕著な改善効果が得られたものと考えられる。
さらに、1つのハロゲン原子が置換した化合物やハロゲン原子が置換してない化合物を併用して使用すると、高温サイクル特性が一段と向上する。その理由は、1つのハロゲン原子が置換した化合物やハロゲン原子が置換してない化合物はハロゲン原子が2つ置換した一般式(I)で表されるジハロリン酸エステル化合物と比較して分解性が低いことから、一般式(I)で表されるジハロリン酸エステル化合物の添加効果が長期に渡って持続するためと考えられる。
The reason why the nonaqueous electrolytic solution of the present invention can greatly improve the cycle characteristics at high temperatures is not necessarily clear, but is considered as follows.
The dihalophosphate compound of the present invention has a P (═O) C— group, a> C═O group and two halogen atoms as represented by the general formula (I).
By having two halogen atoms, compared to the case of having only one halogen atom or the case of not having a halogen atom, it is easy to be decomposed at the initial stage of charge and discharge, and it is dense on the positive and negative electrodes. It is considered that a film having high heat resistance can be formed. In addition, since the film has two different relatively weak electron-withdrawing substituents, a P (═O) C— group and a> C═O group that function as sites for slowly trapping lithium ions, lithium ion conduction It is considered that the property was remarkably improved, and a remarkable improvement effect of the high-temperature cycle characteristics was obtained.
Furthermore, when a compound in which one halogen atom is substituted or a compound in which a halogen atom is not substituted is used in combination, the high-temperature cycle characteristics are further improved. The reason is that a compound in which one halogen atom is substituted or a compound in which a halogen atom is not substituted is less decomposable than a dihalophosphate compound represented by the general formula (I) in which two halogen atoms are substituted. From this, it is considered that the effect of adding the dihalophosphate compound represented by the general formula (I) is sustained for a long time.

本発明の非水電解液に含まれるジハロリン酸エステル化合物は、下記一般式(I)で表される。   The dihalophosphate compound contained in the nonaqueous electrolytic solution of the present invention is represented by the following general formula (I).

Figure 2013168716
(式中、R1、R2、R3、X1、X2、及びmは前記のとおりである。)
Figure 2013168716
(In the formula, R 1 , R 2 , R 3 , X 1 , X 2 , and m are as described above.)

前記一般式(I)のR1及びR2は、それぞれ独立して、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1〜6のアルキル基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数2〜6のアルケニル基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数3〜6のアルキニル基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1〜6のアルキコキシ基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数2〜6のアルケニルオキシ基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数3〜6のアルキニルオキシ基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数6〜12のアリール基、又は少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数6〜12のアリールオキシ基を示す。R 1 and R 2 in formula (I) are each independently an alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, and at least one hydrogen atom is a halogen atom. An optionally substituted alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, and at least one hydrogen atom being a halogen atom An optionally substituted alkoxy group having 1 to 6 carbon atoms, an alkenyloxy group having 2 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, and at least one hydrogen atom substituted with a halogen atom An optionally substituted alkynyloxy group having 3 to 6 carbon atoms and at least one hydrogen atom having 6 to 12 carbon atoms optionally substituted with a halogen atom An aryl group or an aryloxy group having 6 to 12 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom.

前記R1及びR2の具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基等の直鎖のアルキル基、イソプロピル基、sec−ブチル基、tert−ブチル基、tert−アミル基等の分枝鎖のアルキル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、2−プロペニル基、2−ブテニル基、3−ブテニル基、4−ペンテニル基、5−ヘキセニル基、2−メチル−2−プロペニル基、3−メチル−2−ブテニル基等のアルケニル基、2−プロピニル基、3−ブチニル基、4−ペンチニル基、5−ヘキシニル基、1−メチル−2−プロピニル基、1,1−ジメチル−2−プロピニル基等のアルキニル基、メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基、n−ペンチルオキシ基、n−ヘキシルオキシ基等の直鎖のアルコキシ基、iso−プロポキシ基、sec−ブトキシ基、tert−ブトキシ基、tert−アミルオキシ基等の分枝鎖のアルコキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等のシクロアルコキシ基、2−プロペニルオキシ基、2−ブテニルオキシ基、3−ブテニルオキシ基、4−ペンテニルオキシ基、5−ヘキセニルオキシ基等のアルケニルオキシ基、2−プロピニルオキシ基、3−ブチニルオキシ基、4−ペンチニルオキシ基、5−ヘキシニルオキシ基、1−メチル−2−プロピニルオキシ基、1、1−ジメチル−2−プロピニルオキシ基、3−メチル−2−ブチニルオキシ基等のアルキニルオキシ基、フルオロメチル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基等の水素原子の一部がフッ素原子で置換されたアルキル基、フルオロメトキシ基、トリフルオロメトキシ基、2,2,2−トリフルオロエトキシ基等の水素原子の一部がフッ素原子で置換されたアルコキシ基、フェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、4−tert-ブチルフェニル基、2,4,6−トリメチルフェニル基、2−フルオロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基、2,4−ジフルオロフェニル基、2,6−ジフルオロフェニル基、3,4−ジフルオロフェニル基、2,4,6−トリフルオロフェニル基、ペンタフルオロフェニル基、4−トリフルオロメチルフェニル基等のアリール基、フェニルオキシ基、2−メチルフェニルオキシ基、3−メチルフェニルオキシ基、4−メチルフェニルオキシ基、4−tert-ブチルフェニルオキシ基、2,4,6−トリメチルフェニルオキシ基、2−フルオロフェニルオキシ基、3−フルオロフェニルオキシ基、4−フルオロフェニルオキシ基、2,4−ジフルオロフェニルオキシ基、2,6−ジフルオロフェニルオキシ基、3,4−ジフルオロフェニルオキシ基、2,4,6−トリフルオロフェニルオキシ基、ペンタフルオロフェニルオキシ基、4−トリフルオロメチルフェニルオキシ基等のアリールオキシ基、ブタン−1,4−ジイル基、ペンタン−1,5−ジイル基、−(CH23O−、−(CH24O−、エタン−1,2−ジオキシ基、プロパン−1,2−ジオキシ基、プロパン−1,3−ジオキシ基、ブタン−2,3−ジオキシ基等のR1とR2で環を形成した置換基等が好適に挙げられる。
上記の中でも、R1及びR2は、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、又は炭素数3〜6のアルキニルオキシ基がより好ましく、炭素数1〜2のアルコキシ基が更に好ましい。より具体的には、R1及びR2は、メチル基、エチル基、n−プロピル基、n−ブチル基、メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基、フェニル基、フェニルオキシ基、エタン−1,2−ジオキシ基が好ましく、メトキシ基、エトキシ基が更に好ましい。
Specific examples of R 1 and R 2 include methyl groups, ethyl groups, n-propyl groups, n-butyl groups, n-pentyl groups, n-hexyl groups and other linear alkyl groups, isopropyl groups, sec- Branched alkyl groups such as butyl group, tert-butyl group, tert-amyl group, cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, 2-propenyl group, 2-butenyl group, 3 -Butenyl group, 4-pentenyl group, 5-hexenyl group, 2-methyl-2-propenyl group, alkenyl group such as 3-methyl-2-butenyl group, 2-propynyl group, 3-butynyl group, 4-pentynyl group , 5-hexynyl group, 1-methyl-2-propynyl group, 1,1-dimethyl-2-propynyl group and other alkynyl groups, methoxy group, ethoxy group, n-propoxy group Branches such as linear alkoxy groups such as xoxy group, n-butoxy group, n-pentyloxy group, n-hexyloxy group, iso-propoxy group, sec-butoxy group, tert-butoxy group, tert-amyloxy group Chain alkoxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group and other cycloalkoxy groups, 2-propenyloxy group, 2-butenyloxy group, 3-butenyloxy group, 4-pentenyloxy group, Alkenyloxy groups such as 5-hexenyloxy group, 2-propynyloxy group, 3-butynyloxy group, 4-pentynyloxy group, 5-hexynyloxy group, 1-methyl-2-propynyloxy group, 1,1-dimethyl- 2-propynyloxy group, 3-methyl-2-butynyloxy group, etc. Alkyl groups in which a part of hydrogen atoms such as alkynyloxy group, fluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group are substituted with fluorine atoms, fluoromethoxy group, trifluoromethoxy group, 2, Alkoxy groups in which some hydrogen atoms such as 2,2-trifluoroethoxy groups are substituted with fluorine atoms, phenyl groups, 2-methylphenyl groups, 3-methylphenyl groups, 4-methylphenyl groups, 4-tert- Butylphenyl group, 2,4,6-trimethylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,4-difluorophenyl group, 2,6-difluorophenyl group, 3, 4-difluorophenyl group, 2,4,6-trifluorophenyl group, pentafluorophenyl group, 4-trifluoromethyl Aryl group such as phenyl group, phenyloxy group, 2-methylphenyloxy group, 3-methylphenyloxy group, 4-methylphenyloxy group, 4-tert-butylphenyloxy group, 2,4,6-trimethylphenyloxy Group, 2-fluorophenyloxy group, 3-fluorophenyloxy group, 4-fluorophenyloxy group, 2,4-difluorophenyloxy group, 2,6-difluorophenyloxy group, 3,4-difluorophenyloxy group, Aryloxy groups such as 2,4,6-trifluorophenyloxy group, pentafluorophenyloxy group, 4-trifluoromethylphenyloxy group, butane-1,4-diyl group, pentane-1,5-diyl group, - (CH 2) 3 O - , - (CH 2) 4 O-, ethane-1,2-dioxy group, prop 1,2-dioxy group, 1,3-dioxy group, and substituted groups form a ring R 1 and R 2, such as butane-2,3-dioxy group suitably.
Among the above, R 1 and R 2 are more preferably an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkynyloxy group having 3 to 6 carbon atoms, and an alkoxy having 1 to 2 carbon atoms. Groups are more preferred. More specifically, R 1 and R 2 are methyl group, ethyl group, n-propyl group, n-butyl group, methoxy group, ethoxy group, n-propoxy group, n-butoxy group, phenyl group, phenyloxy Group, ethane-1,2-dioxy group is preferable, and methoxy group and ethoxy group are more preferable.

前記一般式(I)のR3は、mが1の場合には、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1〜6のアルキル基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数2〜6のアルケニル基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数3〜6のアルキニル基、又は少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数6〜12のアリール基を示す。
これらの中でも、R3は、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1〜6のアルキル基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数2〜6のアルケニル基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数3〜6のアルキニル基、又は少なくとも一つの水素原子がハロゲン原子で置換された炭素数6〜12のアリール基がより好ましく、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数2〜6のアルケニル基、又は少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数3〜6のアルキニル基が更に好ましい。
3が少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1〜6のアルキル基の場合、直鎖状又は分枝状であってもよく、分枝鎖が互いに結合して環を形成してもよい。炭素数は1〜3の場合がより好ましい。
3が少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数2〜6のアルケニル基ある場合、炭素数は2〜3の場合がより好ましい。
3が少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数3〜6のアルキニル基である場合、炭素数は3〜4の場合がより好ましい。
3が少なくとも一つの水素原子がハロゲン原子で置換された炭素数6〜12のアリール基である場合、炭素数は6〜8の場合がより好ましい。
R 3 in the general formula (I), when m is 1, is an alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, and at least one hydrogen atom is halogen. An optionally substituted alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, or at least one hydrogen atom being a halogen atom An aryl group having 6 to 12 carbon atoms which may be substituted with
Among these, R 3 is an alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, and 2 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom. -6 alkenyl group, C3-C6 alkynyl group in which at least one hydrogen atom may be substituted with a halogen atom, or C6-C12 aryl in which at least one hydrogen atom is substituted with a halogen atom Group is more preferable, and an alkenyl group having 2 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, or 3 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom. The alkynyl group is more preferable.
When R 3 is an alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, it may be linear or branched, and the branched chains are bonded to each other. A ring may be formed. The number of carbon atoms is more preferably 1 to 3.
When R 3 is an alkenyl group having 2 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, the number of carbon atoms is more preferably 2 to 3.
When R 3 is an alkynyl group having 3 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, the number of carbon atoms is more preferably 3 to 4.
When R 3 is an aryl group having 6 to 12 carbon atoms in which at least one hydrogen atom is substituted with a halogen atom, the number of carbon atoms is more preferably 6 to 8.

前記一般式(I)のR3は、mが2の場合には、少なくとも一つの水素原子がハロゲンで置換されていてもよい炭素数2〜6のアルキレン基、炭素数4〜8のアルケニレン基、炭素数4〜8のアルキニレン基を示し、中でも、炭素数4〜8のアルケニレン基、又は炭素数4〜8のアルキニレン基が好ましい。R 3 in the general formula (I), when m is 2, is an alkylene group having 2 to 6 carbon atoms or an alkenylene group having 4 to 8 carbon atoms in which at least one hydrogen atom may be substituted with halogen. Represents an alkynylene group having 4 to 8 carbon atoms, and among them, an alkenylene group having 4 to 8 carbon atoms or an alkynylene group having 4 to 8 carbon atoms is preferable.

前記R3の具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基等の直鎖のアルキル基、イソプロピル基、sec−ブチル基、tert−ブチル基、tert−アミル基等の分枝鎖のアルキル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、2−プロペニル基、2−ブテニル基、3−ブテニル基、4−ペンテニル基、5−ヘキセニル基、2−メチル−2−プロペニル基、3−メチル−2−ブテニル基等のアルケニル基、2−プロピニル基、3−ブチニル基、4−ペンチニル基、5−ヘキシニル基、1−メチル−2−プロピニル基、1、1−ジメチル−2−プロピニル基等のアルキニル基、フルオロメチル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基等の水素原子の一部がフッ素原子で置換されたアルキル基、フェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、4−tert-ブチルフェニル基、2,4,6−トリメチルフェニル基、2−フルオロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基、2,4−ジフルオロフェニル基、2,6−ジフルオロフェニル基、3,4−ジフルオロフェニル基、2,4,6−トリフルオロフェニル基、ペンタフルオロフェニル基、2−トリフルオロメチルフェニル基、4−トリフルオロメチルフェニル基等のアリール基、エタン−1,2−ジイル基、プロパン−1,2−ジイル基、プロパン−1,3−ジイル基、ブタン−1,4−ジイル基、ブタン−2,3−ジイル基等のアルキレン基、2−ブテン−1,4−ジイル基、3−ヘキセン−2,5−ジイル基等のアルケニレン基、2−ブチン−1,4−ジイル基、3−ヘキシン−2,5−ジイル基、2,5−ジメチル−3−ヘキシン−2,5−ジイル基等のアルキニレン基が好適に挙げられる。Specific examples of R 3 include linear alkyl groups such as methyl, ethyl, n-propyl, n-butyl, n-pentyl, and n-hexyl, isopropyl, sec-butyl, Branched alkyl groups such as tert-butyl group and tert-amyl group, cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclohexyl group, vinyl group, 2-propenyl group, 2-butenyl group, 3 -Butenyl group, 4-pentenyl group, 5-hexenyl group, 2-methyl-2-propenyl group, alkenyl group such as 3-methyl-2-butenyl group, 2-propynyl group, 3-butynyl group, 4-pentynyl group , 5-hexynyl group, 1-methyl-2-propynyl group, 1,1-dimethyl-2-propynyl group and other alkynyl groups, fluoromethyl group, trifluoro Alkyl group, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group in which a part of hydrogen atoms such as til group and 2,2,2-trifluoroethyl group are substituted with fluorine atoms 4-tert-butylphenyl group, 2,4,6-trimethylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,4-difluorophenyl group, 2,6-difluoro Aryl groups such as phenyl group, 3,4-difluorophenyl group, 2,4,6-trifluorophenyl group, pentafluorophenyl group, 2-trifluoromethylphenyl group, 4-trifluoromethylphenyl group, ethane-1 , 2-diyl group, propane-1,2-diyl group, propane-1,3-diyl group, butane-1,4-diyl group, butane-2,3 Alkylene group such as diyl group, alkenylene group such as 2-butene-1,4-diyl group, 3-hexene-2,5-diyl group, 2-butyne-1,4-diyl group, 3-hexyne-2, Preferable examples include alkynylene groups such as 5-diyl group and 2,5-dimethyl-3-hexyne-2,5-diyl group.

これらの中でも、R3は、mが1の場合は、メチル基、エチル基、n−プロピル基、n−ブチル基、イソプロピル基、ビニル基、2−プロペニル基、2−ブテニル基、3−ブテニル基、2−プロピニル基、3−ブチニル基、1−メチル−2−プロピニル基、1、1−ジメチル−2−プロピニル基、ペンタフルオロフェニル基、2−トリフルオロメチルフェニル基、4−トリフルオロメチルフェニル基がより好ましく、mが2の場合は、エタン−1,2−ジイル基、プロパン−1,2−ジイル基、2−ブテン−1,4−ジイル基、2−ブチン−1,4−ジイル基、3−ヘキシン−2,5−ジイル基、2,5−ジメチル−3−ヘキシン−2,5−ジイル基がより好ましい。また、mが1の場合は、メチル基、エチル基、イソプロピル基、2−プロピニル基、ペンタフルオロフェニル基、2−トリフルオロメチルフェニル基が更に好ましく、mが2の場合は、エタン−1,2−ジイル基、2−ブテン−1,4−ジイル基、2−ブチン−1,4−ジイル基が更に好ましい。Among these, when m is 1, R 3 is methyl group, ethyl group, n-propyl group, n-butyl group, isopropyl group, vinyl group, 2-propenyl group, 2-butenyl group, 3-butenyl. Group, 2-propynyl group, 3-butynyl group, 1-methyl-2-propynyl group, 1,1-dimethyl-2-propynyl group, pentafluorophenyl group, 2-trifluoromethylphenyl group, 4-trifluoromethyl A phenyl group is more preferable, and when m is 2, ethane-1,2-diyl group, propane-1,2-diyl group, 2-butene-1,4-diyl group, 2-butyne-1,4- A diyl group, a 3-hexyne-2,5-diyl group, and a 2,5-dimethyl-3-hexyne-2,5-diyl group are more preferable. When m is 1, a methyl group, ethyl group, isopropyl group, 2-propynyl group, pentafluorophenyl group, or 2-trifluoromethylphenyl group is more preferable. When m is 2, ethane-1, 2-diyl group, 2-butene-1,4-diyl group, and 2-butyne-1,4-diyl group are more preferable.

前記一般式(I)のX1及びX2は同一であっても異なっていてもよく、フッ素原子又は塩素原子を示し、フッ素原子がより好ましい。X 1 and X 2 in the general formula (I) may be the same or different and each represents a fluorine atom or a chlorine atom, and more preferably a fluorine atom.

前記一般式(I)で表されるジハロリン酸エステル化合物としては、具体的に以下の化合物が好適に挙げられる。
(1)m=1の場合、下記の化合物A1〜A80が好適に挙げられる。
Specific examples of the dihalophosphate compound represented by the general formula (I) include the following compounds.
(1) In the case of m = 1, the following compounds A1-A80 are mentioned suitably.

Figure 2013168716
Figure 2013168716

Figure 2013168716
Figure 2013168716

上記化合物の中でも、より好適なものとしては、上記、A1、A3〜A8、A10、A14、A22〜A24、A28〜A32、A38、A39、A41〜A48、A50、A51、A56、A61〜A66、A68〜A75、A78、A79の構造を有する化合物から選ばれる一種又は二種以上が挙げられる。   Among the above-mentioned compounds, more preferable are A1, A3 to A8, A10, A14, A22 to A24, A28 to A32, A38, A39, A41 to A48, A50, A51, A56, A61 to A66, One kind or two or more kinds selected from compounds having a structure of A68 to A75, A78, and A79 can be mentioned.

(2)m=2の場合、下記の化合物A81〜A97が好適に挙げられる。 (2) In the case of m = 2, the following compounds A81 to A97 are preferable.

Figure 2013168716
Figure 2013168716

上記化合物の中でも、より好適なものとしては、上記、A82、A86−2、A87〜A96の構造を有する化合物から選ばれる一種又は二種以上が挙げられる。   Among the above compounds, one or more selected from the compounds having the structures of A82, A86-2, and A87 to A96 are preferable.

前記一般式(I)で表されるジハロリン酸エステル化合物の中でも、更に好適なものとしては、m=1の場合、上記、A6〜A8、A22、A23、A32、A38、A41〜A48、A56、A62、A63、A65、A66、A69〜A74、A78〜A80の構造を有する化合物から選ばれる一種又は二種以上が挙げられ、m=2の場合、上記、A87〜A90、A93〜A96の構造を有する化合物から選ばれる一種又は二種以上が挙げられる。   Among the dihalophosphate compounds represented by the general formula (I), more preferably, when m = 1, A6 to A8, A22, A23, A32, A38, A41 to A48, A56, One or two or more types selected from compounds having the structures of A62, A63, A65, A66, A69 to A74, and A78 to A80 may be mentioned. When m = 2, the above structures of A87 to A90 and A93 to A96 1 type or 2 types or more chosen from the compound which has is mentioned.

前記一般式(I)で表されるジハロリン酸エステル化合物の中でも、特に好適なものとしては、m=1の場合、エチル 2−(ジエチルホスホリル)−2,2−ジフルオロアセテート(構造式A6)、2−プロピニル 2−(ジエチルホスホリル)−2,2−ジフルオロアセテート(構造式A23)、エチル 2−(エトキシ(エチル)ホスホリル)−2,2−ジフルオロアセテート(構造式A32)、メチル 2−(ジメトキシホスホリル)−2,2−ジフルオロアセテート(構造式A41)、メチル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート(構造式A44)、エチル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート(構造式A46)、エチル 2−クロロ−2−(ジエトキシホスホリル)−2−フルオロアセテート(構造式A47)、エチル 2,2−ジクロロ−2−(ジエトキシホスホリル)アセテート(構造式A48)、エチル 2−(ジフェノキシホスホリル)−2,2−ジフルオロアセテート(構造式A56)、プロピル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート(構造式A62)、ヘキシル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート(構造式A65)、イソプロピル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート(構造式A66)、シクロヘキシル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート(構造式A69)、ビニル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート(構造式A70)、アリル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート(構造式A71)、2−プロピニル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート(構造式A72)、2−プロピニル 2,2−ジクロロ−2−(ジエトキシホスホリル)アセテート(構造式A73)、1−メチル−2−プロピニル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート(構造式A74)、ペンタフルオロフェニル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート(構造式A78)、2−トリフルオロメチル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート(構造式A79)から選ばれる一種又は二種以上が挙げられ、m=2の場合、エタン−1,2−ジイル ビス(2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート)(構造式A88)、2−ブテン−1,4−ジイル ビス(2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート)(構造式A93)、2−ブチン−1,4−ジイル ビス(2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート)(構造式A95)から選ばれる一種又は二種以上が挙げられる。   Among the dihalophosphate compounds represented by the general formula (I), particularly preferred are those in which, when m = 1, ethyl 2- (diethylphosphoryl) -2,2-difluoroacetate (Structural Formula A6), 2-propynyl 2- (diethylphosphoryl) -2,2-difluoroacetate (Structural Formula A23), ethyl 2- (ethoxy (ethyl) phosphoryl) -2,2-difluoroacetate (Structural Formula A32), methyl 2- (dimethoxy) Phosphoryl) -2,2-difluoroacetate (Structural Formula A41), methyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate (Structural Formula A44), ethyl 2- (diethoxyphosphoryl) -2,2-difluoro Acetate (Structural Formula A46), ethyl 2-chloro-2- (diethoxyphosphoryl) -2-phenyl Oroacetate (Structural Formula A47), ethyl 2,2-dichloro-2- (diethoxyphosphoryl) acetate (Structural Formula A48), ethyl 2- (diphenoxyphosphoryl) -2,2-difluoroacetate (Structural Formula A56), Propyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate (Structural Formula A62), Hexyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate (Structural Formula A65), Isopropyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate (Structural Formula A66), cyclohexyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate (Structural Formula A69), vinyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate ( Structural formula A70), allyl 2- (diethoxyphosphori) ) -2,2-difluoroacetate (Structural Formula A71), 2-propynyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate (Structural Formula A72), 2-propynyl 2,2-dichloro-2- (di-) Ethoxyphosphoryl) acetate (Structural Formula A73), 1-methyl-2-propynyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate (Structural Formula A74), pentafluorophenyl 2- (diethoxyphosphoryl) -2, 1 type or 2 or more types chosen from 2-difluoroacetate (Structural formula A78) and 2-trifluoromethyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate (Structural formula A79) are mentioned, m = 2 Ethane-1,2-diyl bis (2- (diethoxyphosphoryl) -2,2-difluoroacetate Tate) (Structural Formula A88), 2-butene-1,4-diyl bis (2- (diethoxyphosphoryl) -2,2-difluoroacetate) (Structural Formula A93), 2-butyne-1,4-diyl bis One type or two or more types selected from (2- (diethoxyphosphoryl) -2,2-difluoroacetate) (Structural Formula A95) may be used.

本発明の非水電解液において、非水電解液に含有される前記一般式(I)で表されるジハロリン酸エステル化合物の含有量は、非水電解液中に0.001〜10質量%が好ましい。該含有量が10質量%以下であれば、電極上に過度に被膜が形成され高温サイクル特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、高温サイクル特性の改善効果が高まる。該含有量は、非水電解液中に0.05質量%以上が好ましく、0.2質量%以上がより好ましい。また、その上限は、8質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下が特に好ましい。   In the non-aqueous electrolyte of the present invention, the content of the dihalophosphate compound represented by the general formula (I) contained in the non-aqueous electrolyte is 0.001 to 10% by mass in the non-aqueous electrolyte. preferable. If the content is 10% by mass or less, a film is excessively formed on the electrode and the high-temperature cycle characteristics are less likely to be deteriorated. If the content is 0.001% by mass or more, the film is sufficiently formed, and the high temperature The effect of improving cycle characteristics is enhanced. The content is preferably 0.05% by mass or more, and more preferably 0.2% by mass or more in the nonaqueous electrolytic solution. Further, the upper limit is preferably 8% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less.

本発明の非水電解液は、更に下記一般式(II)で表される化合物及び一般式(III)で表される化合物から選ばれる1種以上を含有することが好ましい。   The non-aqueous electrolyte of the present invention preferably further contains one or more selected from the compound represented by the following general formula (II) and the compound represented by the general formula (III).

Figure 2013168716
(式中、R4、R5、R6、R7、及びX3は前記のとおりである。)
Figure 2013168716
(In the formula, R 4 , R 5 , R 6 , R 7 , and X 3 are as described above.)

Figure 2013168716
(式中、R8、R9、R10、R11、R12、及びnは前記のとおりである。)
Figure 2013168716
(In the formula, R 8 , R 9 , R 10 , R 11 , R 12 , and n are as defined above.)

前記一般式(II)のR4及びR5は、一般式(I)のR1及びR2と同義である。
前記一般式(II)のR6は、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1〜6のアルキル基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数2〜6のアルケニル基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数3〜6のアルキニル基、又は少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数6〜12のアリール基を示し、中でも、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数3〜6のアルキニル基がより好ましく、炭素数1〜4のアルキル基、炭素数3〜6のアルキニル基が更に好ましい。
R 4 and R 5 in the general formula (II) have the same meanings as R 1 and R 2 in the general formula (I).
R 6 in the general formula (II) is an alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, and at least one hydrogen atom may be substituted with a halogen atom. An alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, or carbon in which at least one hydrogen atom is substituted with a halogen atom An aryl group having 6 to 12 carbon atoms, among which an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, and an alkynyl group having 3 to 6 carbon atoms are more preferable, and an alkyl group having 1 to 4 carbon atoms Further, an alkynyl group having 3 to 6 carbon atoms is more preferable.

前記R6の具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基等の直鎖のアルキル基、イソプロピル基、sec−ブチル基、tert−ブチル基、tert−アミル基等の分枝鎖のアルキル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、2−プロペニル基、2−ブテニル基、3−ブテニル基、4−ペンテニル基、5−ヘキセニル基、2−メチル−2−プロペニル基、3−メチル−2−ブテニル基等のアルケニル基、2−プロピニル基、3−ブチニル基、4−ペンチニル基、5−ヘキシニル基、1−メチル−2−プロピニル基、1,1−ジメチル−2−プロピニル基等のアルキニル基、フルオロメチル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基等の水素原子の一部がフッ素原子で置換されたアルキル基、フェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、4−tert-ブチルフェニル基、2,4,6−トリメチルフェニル基、2−フルオロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基、2,4−ジフルオロフェニル基、2,6−ジフルオロフェニル基、3,4−ジフルオロフェニル基、2,4,6−トリフルオロフェニル基、ペンタフルオロフェニル基、2−トリフルオロメチルフェニル基、4−トリフルオロメチルフェニル基等のアリール基が好適に挙げられる。
これらの中でも、R6は、メチル基、エチル基、イソプロピル基、ビニル基、2−プロペニル基、2−ブテニル基、3−ブテニル基、2−メチル−2−プロペニル基、2−プロピニル基、3−ブチニル基、ペンタフルオロフェニル基、2−トリフルオロメチルフェニル基、4−トリフルオロメチルフェニル基、1−メチル−2−プロピニル基、又は1,1−ジメチル−2−プロピニル基が好ましく、メチル基、エチル基、イソプロピル基、2−プロピニル基、2−トリフルオロメチルフェニル基、又は4−トリフルオロメチルフェニル基が更に好ましい。
Specific examples of R 6 include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group and other linear alkyl groups, an isopropyl group, a sec-butyl group, Branched alkyl groups such as tert-butyl group and tert-amyl group, cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclohexyl group, vinyl group, 2-propenyl group, 2-butenyl group, 3 -Butenyl group, 4-pentenyl group, 5-hexenyl group, 2-methyl-2-propenyl group, alkenyl group such as 3-methyl-2-butenyl group, 2-propynyl group, 3-butynyl group, 4-pentynyl group , 5-hexynyl group, 1-methyl-2-propynyl group, 1,1-dimethyl-2-propynyl group and other alkynyl groups, fluoromethyl group, trifluoro Alkyl group, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group in which a part of hydrogen atoms such as til group and 2,2,2-trifluoroethyl group are substituted with fluorine atoms 4-tert-butylphenyl group, 2,4,6-trimethylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,4-difluorophenyl group, 2,6-difluoro Preferred examples include aryl groups such as phenyl group, 3,4-difluorophenyl group, 2,4,6-trifluorophenyl group, pentafluorophenyl group, 2-trifluoromethylphenyl group and 4-trifluoromethylphenyl group. It is done.
Among these, R 6 is methyl group, ethyl group, isopropyl group, vinyl group, 2-propenyl group, 2-butenyl group, 3-butenyl group, 2-methyl-2-propenyl group, 2-propynyl group, 3 -Butynyl group, pentafluorophenyl group, 2-trifluoromethylphenyl group, 4-trifluoromethylphenyl group, 1-methyl-2-propynyl group or 1,1-dimethyl-2-propynyl group is preferred, methyl group , Ethyl group, isopropyl group, 2-propynyl group, 2-trifluoromethylphenyl group, or 4-trifluoromethylphenyl group is more preferable.

前記一般式(II)のR7は、水素原子、又は少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1〜6のアルキル基を示し、中でも、炭素数1〜4のアルキル基がより好ましく、炭素数1〜2のアルキル基が更に好ましい。
前記R7の具体例としては、水素原子、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基等の直鎖のアルキル基、イソプロピル基、sec−ブチル基、tert−ブチル基、tert−アミル基等の分枝鎖のアルキル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基等が好適に挙げられる。これらの中でも、水素原子、メチル基、エチル基、n−プロピル基、又はn−ブチル基が好ましく、水素原子、メチル基、又はエチル基が更に好ましい。
R 7 in the general formula (II) represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, and in particular, an alkyl having 1 to 4 carbon atoms. Group is more preferable, and an alkyl group having 1 to 2 carbon atoms is still more preferable.
Specific examples of R 7 include hydrogen atoms, methyl groups, ethyl groups, n-propyl groups, n-butyl groups, n-pentyl groups, n-hexyl groups and other linear alkyl groups, isopropyl groups, sec- Preferable examples include branched alkyl groups such as butyl group, tert-butyl group, and tert-amyl group, and cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group, and cyclohexyl group. Among these, a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, or an n-butyl group is preferable, and a hydrogen atom, a methyl group, or an ethyl group is more preferable.

前記一般式(II)のX3は、フッ素原子又は塩素原子を示し、フッ素原子がより好ましい。X 3 in the general formula (II) represents a fluorine atom or a chlorine atom, and a fluorine atom is more preferable.

前記一般式(II)で表される化合物としては、具体的に以下の化合物B1〜B77が好適に挙げられる。   Specific examples of the compound represented by the general formula (II) include the following compounds B1 to B77.

Figure 2013168716
Figure 2013168716

Figure 2013168716
Figure 2013168716

前記一般式(II)で表される化合物の中でも、更に好適なものとしては、上記、B1、B2、B4、B5、B8、B12〜B18、B21〜B23、B25〜B27、B33、B34、B36〜B45、B50、B55〜B57、B60、B62〜B66、B70〜B75の構造を有する化合物から選ばれる一種又は二種以上が挙げられる。   Among the compounds represented by the general formula (II), more preferable are B1, B2, B4, B5, B8, B12 to B18, B21 to B23, B25 to B27, B33, B34, B36. 1 type, or 2 or more types chosen from the compound which has the structure of -B45, B50, B55-B57, B60, B62-B66, B70-B75 is mentioned.

前記一般式(II)で表される化合物の中でも、特に好適なものとしては、エチル 2−(ジエチルホスホリル)−2−フルオロアセテート(構造式B5)、2−プロピニル 2−(ジエチルホスホリル)−2−フルオロアセテート(構造式B17)、メチル 2−(ジメトキシホスホリル)−2−フルオロアセテート(構造式B36)、メチル 2−(ジメトキシホスホリル)−2−フルオロプロパノエート(構造式B37)、メチル 2−(ジエトキシホスホリル)−2−フルオロアセテート(構造式B39)、エチル 2−(ジメトキシホスホリル)−2−フルオロアセテート(構造式B40)、エチル 2−(ジエトキシホスホリル)−2−フルオロアセテート(構造式B41)、イソプロピル 2−(ジエトキシホスホリル)−2−フルオロアセテート(構造式B60)、ビニル 2−(ジエトキシホスホリル)−2−フルオロアセテート(構造式B63)、アリル 2−(ジエトキシホスホリル)−2−フルオロアセテート(構造式B64)、2−プロピニル 2−(ジエトキシホスホリル)−2−フルオロアセテート(構造式B65)、エチル 2−(ジエトキシホスホリル)−2−フルオロプロパノエート(構造式B73)から選ばれる一種又は二種以上が挙げられる。   Among the compounds represented by the general formula (II), particularly preferred are ethyl 2- (diethylphosphoryl) -2-fluoroacetate (structural formula B5), 2-propynyl 2- (diethylphosphoryl) -2. -Fluoroacetate (Structural Formula B17), methyl 2- (dimethoxyphosphoryl) -2-fluoroacetate (Structural Formula B36), methyl 2- (dimethoxyphosphoryl) -2-fluoropropanoate (Structural Formula B37), methyl 2- (Diethoxyphosphoryl) -2-fluoroacetate (structural formula B39), ethyl 2- (dimethoxyphosphoryl) -2-fluoroacetate (structural formula B40), ethyl 2- (diethoxyphosphoryl) -2-fluoroacetate (structural formula B41), isopropyl 2- (diethoxyphosphoryl) -2-fluoro Acetate (structural formula B60), vinyl 2- (diethoxyphosphoryl) -2-fluoroacetate (structural formula B63), allyl 2- (diethoxyphosphoryl) -2-fluoroacetate (structural formula B64), 2-propynyl 2- One or two or more kinds selected from (diethoxyphosphoryl) -2-fluoroacetate (Structural Formula B65) and ethyl 2- (diethoxyphosphoryl) -2-fluoropropanoate (Structural Formula B73) may be mentioned.

前記一般式(III)のR8及びR9は、一般式(I)のR1及びR2と同義である。
前記一般式(III)のR10は、一般式(I)のR6と同義である。
前記一般式(III)のR11及びR12は、一般式(II)のR7と同義である。
前記一般式(III)のnは1〜4の整数を示し、1〜2がより好ましく、1が更に好ましい。
R 8 and R 9 in the general formula (III) have the same meanings as R 1 and R 2 in the general formula (I).
R 10 in the general formula (III) has the same meaning as R 6 in the general formula (I).
R 11 and R 12 in the general formula (III) have the same meaning as R 7 in the general formula (II).
In the general formula (III), n represents an integer of 1 to 4, more preferably 1 to 2, and still more preferably 1.

前記一般式(III)で表される化合物としては、具体的に以下の化合物C1〜C80が好適に挙げられる。   Specific examples of the compound represented by the general formula (III) include the following compounds C1 to C80.

Figure 2013168716
Figure 2013168716

Figure 2013168716
Figure 2013168716

Figure 2013168716
Figure 2013168716

前記一般式(III)で表される化合物の中でも、更に好適なものとしては、上記C1〜C6、C12〜19、C22〜C24、C32、C33、C37〜C43、C45、C46、C51、C56〜C58、C61、C63〜C67、C71〜C73、C78の構造を有する化合物から選ばれる一種又は二種以上が挙げられる。   Among the compounds represented by the general formula (III), more preferable examples include C1 to C6, C12 to 19, C22 to C24, C32, C33, C37 to C43, C45, C46, C51, and C56 to One type or two or more types selected from compounds having a structure of C58, C61, C63 to C67, C71 to C73, and C78 may be mentioned.

前記一般式(III)で表される化合物の中でも、特に好適なものとしては、エチル 2−(ジエチルホスホリル)アセテート(構造式C4)、2−プロピニル 2−(ジエチルホスホリル)アセテート(構造式C18)、メチル 2−(ジメトキシホスホリル)アセテート(構造式C37)、メチル 2−(ジエトキシホスホリル)アセテート(構造式C39)、エチル 2−(ジメトキシホスホリル)アセテート(構造式C40)、エチル 2−(ジエトキシホスホリル)アセテート(構造式C41)、エチル 2−(ジエトキシホスホリル)プロパノエート(構造式C42)、プロピル 2−(ジエトキシホスホリル)アセテート(構造式C57)、イソプロピル 2−(ジエトキシホスホリル)アセテート(構造式C61)、ビニル 2−(ジエトキシホスホリル)アセテート(構造式C64)、アリル 2−(ジエトキシホスホリル)アセテート(構造式C65)、2−プロピニル 2−(ジエトキシホスホリル)アセテート(構造式C66)から選ばれる一種又は二種以上が挙げられる。   Among the compounds represented by the general formula (III), particularly preferred are ethyl 2- (diethylphosphoryl) acetate (structural formula C4), 2-propynyl 2- (diethylphosphoryl) acetate (structural formula C18). Methyl 2- (dimethoxyphosphoryl) acetate (Structural Formula C37), methyl 2- (diethoxyphosphoryl) acetate (Structural Formula C39), ethyl 2- (dimethoxyphosphoryl) acetate (Structural Formula C40), ethyl 2- (diethoxy) Phosphoryl) acetate (Structural Formula C41), ethyl 2- (diethoxyphosphoryl) propanoate (Structural Formula C42), propyl 2- (diethoxyphosphoryl) acetate (Structural Formula C57), isopropyl 2- (diethoxyphosphoryl) acetate (Structure) Formula C61), vinyl 2- (di Toxyl phosphoryl) acetate (Structural Formula C64), allyl 2- (diethoxyphosphoryl) acetate (Structural Formula C65), 2-propynyl 2- (diethoxyphosphoryl) acetate (Structural Formula C66) Can be mentioned.

本発明の非水電解液において、非水電解液に含有される前記一般式(II)で表される化合物及び一般式(III)で表される化合物から選ばれる1種以上の化合物の含有量は、非水電解液中に0.001〜10質量%が好ましい。該含有量が10質量%以下であれば、電極上に過度に被膜が形成され高温サイクル特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、高温サイクル特性の改善効果が高まる。該含有量は、非水電解液中に0.05質量%以上が好ましく、0.2質量%以上がより好ましい。また、その上限は、8質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下が特に好ましい。   In the nonaqueous electrolytic solution of the present invention, the content of one or more compounds selected from the compound represented by the general formula (II) and the compound represented by the general formula (III) contained in the nonaqueous electrolytic solution Is preferably 0.001 to 10% by mass in the non-aqueous electrolyte. If the content is 10% by mass or less, a film is excessively formed on the electrode and the high-temperature cycle characteristics are less likely to be deteriorated. If the content is 0.001% by mass or more, the film is sufficiently formed, and the high temperature The effect of improving cycle characteristics is enhanced. The content is preferably 0.05% by mass or more, and more preferably 0.2% by mass or more in the nonaqueous electrolytic solution. Further, the upper limit is preferably 8% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less.

本発明の非水電解液において、前記一般式(I)で表されるジハロリン酸エステル化合物を以下に述べる非水溶媒、電解質塩、更にその他の添加剤を組み合わせることにより、高温での電気化学特性が相乗的に向上するという特異な効果を発現する。   In the non-aqueous electrolytic solution of the present invention, the dihalophosphate compound represented by the general formula (I) is combined with a non-aqueous solvent, an electrolyte salt, and other additives described below, so that electrochemical characteristics at high temperature are obtained. Expresses a unique effect of improving synergistically.

〔非水溶媒〕
本発明の非水電解液に使用される非水溶媒としては、環状カーボネート、鎖状エステル、エーテル、アミド、スルホン、及びラクトンから選ばれる一種又は二種以上が挙げられ、少なくとも1種の環状カーボネートを含むことが好ましく、環状カーボネートと鎖状エステルの両方が含まれることがより好ましい。
なお、「鎖状エステル」なる用語は、鎖状カーボネート及び鎖状カルボン酸エステルを含む概念として用いる。
環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2−ブチレンカーボネート、2,3−ブチレンカーボネート、4−フルオロ−1,3−ジオキソラン−2−オン(FEC)、トランス又はシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン(以下、両者を総称して「DFEC」という)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、及び4−エチニル−1,3−ジオキソラン−2−オン(EEC)から選ばれる少なくとも一種が挙げられる。
これらの中でも、炭素−炭素二重結合又はフッ素原子を有する環状カーボネートのうち少なくとも一種を使用すると高温サイクル特性が一段と向上するので好ましく、炭素−炭素二重結合を含む環状カーボネートとフッ素原子を有する環状カーボネートを両方含むことがより好ましい。炭素−炭素二重結合を有する環状カーボネートとしては、VC、VECが更に好ましく、フッ素原子を有する環状カーボネートとしては、FEC、DFECが更に好ましい。
[Nonaqueous solvent]
Examples of the non-aqueous solvent used in the non-aqueous electrolyte of the present invention include one or more selected from cyclic carbonates, chain esters, ethers, amides, sulfones, and lactones, and at least one cyclic carbonate. It is preferable that both a cyclic carbonate and a chain ester are included.
The term “chain ester” is used as a concept including a chain carbonate and a chain carboxylic acid ester.
Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolan-2-one (FEC), trans or Cis-4,5-difluoro-1,3-dioxolan-2-one (hereinafter collectively referred to as “DFEC”), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and 4-ethynyl-1 , 3-dioxolan-2-one (EEC).
Among these, it is preferable to use at least one of a carbon-carbon double bond or a cyclic carbonate having a fluorine atom because the high-temperature cycle characteristics are further improved, and a cyclic carbonate having a carbon-carbon double bond and a cyclic having a fluorine atom are preferred. More preferably, both carbonates are included. As the cyclic carbonate having a carbon-carbon double bond, VC and VEC are more preferable, and as the cyclic carbonate having a fluorine atom, FEC and DFEC are more preferable.

炭素−炭素二重結合を有する環状カーボネートの含有量は、非水溶媒の総体積に対して、好ましくは0.07体積%以上、より好ましくは0.2体積%以上、更に好ましくは0.7体積%以上、また、上限としては、好ましくは7体積%以下、より好ましくは4体積%以下、更に好ましくは2.5体積%以下含むと一段と高温サイクル時の被膜の安定性を増すことができるので好ましい。
フッ素原子を有する環状カーボネートの含有量は、非水溶媒の総体積に対して好ましくは0.07体積%以上、より好ましくは4体積%以上、更に好ましくは7体積%以上であり、また、上限としては、好ましくは35体積%以下、より好ましくは25体積%以下、更に好ましくは15体積%以下であると一段と高温サイクル時の被膜の安定性を増すことができるので好ましい。
非水溶媒が炭素−炭素二重結合を有する環状カーボネートとフッ素原子を有する環状カーボネートの両方を含む場合、フッ素原子を有する環状カーボネートの含有量に対する炭素−炭素二重結合を有する環状カーボネートの含有量は、好ましくは0.2体積%以上、より好ましくは3体積%以上、更に好ましくは7体積%以上であり、上限としては、好ましくは40体積%以下、より好ましくは30体積%以下、更に好ましくは15体積%以下であると一段と高温サイクル時の被膜の安定性を増すことができるので特に好ましい。
また、非水溶媒がエチレンカーボネート、プロピレンカーボネート、又はエチレンカーボネートとプロピレンカーボネートの両者を含むと電極上に形成される被膜の抵抗が小さくなるので好ましい。エチレンカーボネート、プロピレンカーボネート、又はエチレンカーボネートとプロピレンカーボネートの両者の含有量は、非水溶媒の総体積に対し、好ましくは3体積%以上、より好ましくは5体積%以上、更に好ましくは7体積%以上であり、また、上限としては、好ましくは45体積%以下、より好ましくは35体積%以下、更に好ましくは25体積%以下である。
The content of the cyclic carbonate having a carbon-carbon double bond is preferably 0.07% by volume or more, more preferably 0.2% by volume or more, still more preferably 0.7% by volume based on the total volume of the nonaqueous solvent. More than 7% by volume, and the upper limit is preferably 7% by volume or less, more preferably 4% by volume or less, and still more preferably 2.5% by volume or less, and the stability of the coating during a high temperature cycle can be further increased. Therefore, it is preferable.
The content of the cyclic carbonate having a fluorine atom is preferably 0.07% by volume or more, more preferably 4% by volume or more, and still more preferably 7% by volume or more with respect to the total volume of the nonaqueous solvent. Is preferably 35% by volume or less, more preferably 25% by volume or less, and still more preferably 15% by volume or less, since the stability of the coating during a high temperature cycle can be further increased.
When the non-aqueous solvent contains both a cyclic carbonate having a carbon-carbon double bond and a cyclic carbonate having a fluorine atom, the content of the cyclic carbonate having a carbon-carbon double bond relative to the content of the cyclic carbonate having a fluorine atom Is preferably 0.2% by volume or more, more preferably 3% by volume or more, and further preferably 7% by volume or more. The upper limit is preferably 40% by volume or less, more preferably 30% by volume or less, and still more preferably Is preferably 15% by volume or less because the stability of the coating film during a high temperature cycle can be further increased.
Moreover, since the resistance of the film formed on an electrode becomes small when a nonaqueous solvent contains both ethylene carbonate, propylene carbonate, or both ethylene carbonate and propylene carbonate, it is preferable. The content of ethylene carbonate, propylene carbonate, or both ethylene carbonate and propylene carbonate is preferably at least 3% by volume, more preferably at least 5% by volume, even more preferably at least 7% by volume, based on the total volume of the nonaqueous solvent. Moreover, as an upper limit, Preferably it is 45 volume% or less, More preferably, it is 35 volume% or less, More preferably, it is 25 volume% or less.

これらの溶媒は一種で使用してもよく、また二種以上を組み合わせて使用した場合は、高温での電気化学特性が更に向上するので好ましく、三種以上を組み合わせて使用することが特に好ましい。
これらの環状カーボネートの好適な組合せとしては、ECとPC、ECとVC、PCとVC、VCとFEC、ECとFEC、PCとFEC、FECとDFEC、ECとDFEC、PCとDFEC、VCとDFEC、VECとDFEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、ECとVCとVEC、PCとVCとFEC、ECとVCとDFEC、PCとVCとDFEC、ECとPCとVCとFEC、ECとPCとVCとDFEC等が好ましい。前記の組合せのうち、ECとVC、ECとFEC、PCとFEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、PCとVCとFEC、ECとPCとVCとFEC等の組合せがより好ましい。
These solvents may be used alone, and when two or more solvents are used in combination, the electrochemical properties at high temperatures are further improved, and it is particularly preferable to use a combination of three or more solvents.
Preferred combinations of these cyclic carbonates include EC and PC, EC and VC, PC and VC, VC and FEC, EC and FEC, PC and FEC, FEC and DFEC, EC and DFEC, PC and DFEC, VC and DFEC , VEC and DFEC, EC and PC and VC, EC and PC and FEC, EC and VC and FEC, EC and VC and VEC, PC and VC and FEC, EC and VC and DFEC, PC and VC and DFEC, EC and PC And VC, FEC, EC, PC, VC, DFEC and the like are preferable. Of the above combinations, EC and VC, EC and FEC, PC and FEC, EC and PC and VC, EC and PC and FEC, EC and VC and FEC, PC and VC and FEC, EC and PC and VC and FEC, etc. The combination of is more preferable.

鎖状エステルとしては、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MIPC)、メチルブチルカーボネート、エチルプロピルカーボネート等の非対称鎖状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、ジブチルカーボネート等の対称鎖状カーボネート、ピバリン酸メチル、ピバリン酸エチル、ピバリン酸プロピル等のピバリン酸エステル、プロピオン酸メチル、プロピオン酸エチル、酢酸メチル、酢酸エチル等の鎖状カルボン酸エステルが好適に挙げられる。
満充電状態における充電電位がLi基準で1V未満となる負極を用いる場合、前記鎖状エステルの中でも、ジメチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、プロピオン酸メチル、酢酸メチル及び酢酸エチルから選ばれるメチル基を有する鎖状エステルが好ましく、特にメチル基を有する鎖状カーボネートが好ましい。負極での分解が進行しにくく、容量劣化を抑制できるためである。
また、メチル基を有する鎖状カーボネートを用いる場合には、二種以上を用いることが好ましい。さらに対称鎖状カーボネートと非対称鎖状カーボネートの両方が含まれるとより好ましく、対称鎖状カーボネートの含有量が非対称鎖状カーボネートより多く含まれると更に好ましい。
Examples of chain esters include asymmetric chain carbonates such as methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate, and ethyl propyl carbonate, dimethyl carbonate (DMC), and diethyl carbonate ( DEC), symmetric chain carbonates such as dipropyl carbonate and dibutyl carbonate, pivalate esters such as methyl pivalate, ethyl pivalate, and propyl pivalate, chains such as methyl propionate, ethyl propionate, methyl acetate, and ethyl acetate Preferred examples include carboxylic acid esters.
When using a negative electrode whose charging potential in a fully charged state is less than 1 V on the basis of Li, among the chain esters, dimethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, methyl propionate, acetic acid A chain ester having a methyl group selected from methyl and ethyl acetate is preferable, and a chain carbonate having a methyl group is particularly preferable. This is because decomposition at the negative electrode hardly proceeds and capacity deterioration can be suppressed.
Moreover, when using the chain carbonate which has a methyl group, it is preferable to use 2 or more types. Further, it is more preferable that both a symmetric chain carbonate and an asymmetric chain carbonate are contained, and it is further more preferable that the content of the symmetric chain carbonate is more than that of the asymmetric chain carbonate.

鎖状エステルの含有量は、特に制限されないが、非水溶媒の総体積に対して、60〜90体積%の範囲で用いるのが好ましい。該含有量が60体積%以上であれば非水電解液の粘度が高くなりすぎず、90体積%以下であれば非水電解液の電気伝導度が低下して高温での電気化学特性が低下するおそれが少ないので上記範囲であることが好ましい。
また、鎖状カーボネートを用いる場合には、二種以上を用いることが好ましい。更に対称鎖状カーボネートと非対称鎖状カーボネートの両方が含まれるとより好ましく、対称鎖状カーボネートの含有量が非対称鎖状カーボネートより多く含まれると更に好ましい。
鎖状カーボネート中に対称鎖状カーボネートが占める体積の割合は、51体積%以上が好ましく、55体積%以上がより好ましい。上限としては、95体積%以下がより好ましく、85体積%以下であると更に好ましい。対称鎖状カーボネートにジメチルカーボネートが含まれると特に好ましい。また、非対称鎖状カーボネートはメチル基を有するとより好ましく、メチルエチルカーボネートが特に好ましい。
上記の場合に一段と高温での電気化学特性が向上するので好ましい。
環状カーボネートと鎖状エステルの割合は、高温での電気化学特性向上の観点から、環状カーボネート:鎖状エステル(体積比)が10:90〜45:55が好ましく、15:85〜40:60がより好ましく、20:80〜35:65が特に好ましい。
The content of the chain ester is not particularly limited, but it is preferably used in the range of 60 to 90% by volume with respect to the total volume of the nonaqueous solvent. If the content is 60% by volume or more, the viscosity of the non-aqueous electrolyte does not become too high, and if it is 90% by volume or less, the electrical conductivity of the non-aqueous electrolyte decreases and the electrochemical properties at high temperature decrease. Since there is little possibility of doing, it is preferable that it is the said range.
Moreover, when using chain carbonate, it is preferable to use 2 or more types. Further, it is more preferable that both a symmetric chain carbonate and an asymmetric chain carbonate are contained, and it is more preferable that the content of the symmetric chain carbonate is more than that of the asymmetric chain carbonate.
The volume ratio of the symmetric chain carbonate in the chain carbonate is preferably 51% by volume or more, and more preferably 55% by volume or more. As an upper limit, 95 volume% or less is more preferable, and it is still more preferable in it being 85 volume% or less. It is particularly preferred that the symmetric chain carbonate contains dimethyl carbonate. The asymmetric chain carbonate preferably has a methyl group, and methyl ethyl carbonate is particularly preferable.
The above case is preferable because the electrochemical characteristics at a higher temperature are further improved.
The ratio between the cyclic carbonate and the chain ester is preferably 10:90 to 45:55, and preferably 15:85 to 40:60, from the viewpoint of improving electrochemical properties at high temperatures. More preferably, 20:80 to 35:65 is particularly preferable.

その他の非水溶媒としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、1,3−ジオキサン、1,4−ジオキサン等の環状エーテル、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタン等の鎖状エーテル、ジメチルホルムアミド等のアミド、スルホラン等のスルホン、γ−ブチロラクトン、γ−バレロラクトン、α−アンゲリカラクトン等のラクトン等から選ばれる一種又は二種以上が好適に挙げられる。   Other non-aqueous solvents include tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 1,3-dioxane, cyclic ethers such as 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxy. One or two selected from chain ethers such as ethane, 1,2-dibutoxyethane, amides such as dimethylformamide, sulfones such as sulfolane, lactones such as γ-butyrolactone, γ-valerolactone, and α-angelicalactone The above is preferably mentioned.

〔電解質塩〕
本発明に使用される電解質塩としては、下記のリチウム塩、オニウム塩が好適に挙げられる。
(リチウム塩)
リチウム塩としては、LiPF6、LiPO22、Li2PO3F、LiBF4、LiClO4、FSO3Li等の無機リチウム塩、LiN(SO2CF32、LiN(SO2252、LiCF3SO3、LiC(SO2CF33、LiPF4(CF32、LiPF3(C253、LiPF3(CF33、LiPF3(iso−C373、LiPF5(iso−C37)等の鎖状のフッ化アルキル基を含有するリチウム塩や、(CF22(SO22NLi、(CF23(SO22NLi等の環状のフッ化アルキレン鎖を有するリチウム塩、ビス[オキサレート−O,O’]ホウ酸リチウムやジフルオロ[オキサレート−O,O’]ホウ酸リチウム、ジフルオロビス[オキサレート−O,O’]リン酸リチウム及びテトラフルオロ[オキサレート−O,O’]リン酸リチウム等のオキサレート錯体をアニオンとするリチウム塩が好適に挙げられ、これらの一種又は二種以上を混合して使用することができる。
これらの中でも、LiPF6、LiPO22、Li2PO3F、LiBF4、FSO3Li、LiN(SO2CF32、LiN(SO2252、LiN(SO2F)2、ビス[オキサレート−O,O’]ホウ酸リチウム、ジフルオロビス[オキサレート−O,O’]リン酸リチウム、及びテトラフルオロ[オキサレート−O,O’]リン酸リチウムから選ばれる一種又は二種以上が好ましく、LiPF6、LiPO22、FSO3Li、LiBF4、LiN(SO2CF32、LiN(SO2F)2及びジフルオロビス[オキサレート−O,O’]リン酸リチウムから選ばれる一種又は二種以上が更に好ましい。リチウム塩の濃度は、前記の非水溶媒に対して、通常0.3M以上が好ましく、0.7M以上がより好ましく、1.1M以上が更に好ましい。またその上限は、2.5M以下が好ましく、2.0M以下がより好ましく、1.6M以下が更に好ましい。
また、これらのリチウム塩の好適な組み合わせとしては、LiPF6を含み、更にLiPO22、FSO3Li、LiBF4、LiN(SO2CF32、LiN(SO2F)2、ビス[オキサレート−O,O’]ホウ酸リチウム及びジフルオロビス[オキサレート−O,O’]リン酸リチウムから選ばれる一種又は二種以上を含むことが更に好ましい。
LiPF6以外のリチウム塩が非水溶媒中に占める割合は、0.001M以上であると、高温での電気化学特性の向上効果発揮されやすく、0.005M以下であると高温での電気化学特性の向上効果が低下する懸念が少ないので好ましい。好ましくは0.01M以上、特に好ましくは0.03M以上、最も好ましくは0.04M以上である。その上限は、好ましくは0.4M以下、特に好ましくは0.2M以下である。
非水電解液にLiPF6を含む場合、本発明のリチウム塩のLiPF6に対するモル濃度の比は、0.0005以上であると高温での電気化学特性の向上効果が発揮されやすく、0.3以下であると高温での電気化学特性の向上効果が低下するおそれが少ないので好ましい。その下限は0.001以上がより好ましく、0.005以上が更に好ましい。また、その上限は、0.2以下がより好ましく、0.1以下が更に好ましい。
[Electrolyte salt]
Preferred examples of the electrolyte salt used in the present invention include the following lithium salts and onium salts.
(Lithium salt)
Examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , Li 2 PO 3 F, LiBF 4 , LiClO 4 , FSO 3 Li, LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 , LiPF 3 (iso-C) 3 F 7 ) 3 , LiPF 5 (iso-C 3 F 7 ) and other lithium salts containing a chain-like fluorinated alkyl group, (CF 2 ) 2 (SO 2 ) 2 NLi, (CF 2 ) 3 ( SO 2 ) 2 Lithium salt having a cyclic fluorinated alkylene chain such as NLi, bis [oxalate-O, O ′] lithium borate, difluoro [oxalate-O, O ′] lithium borate, difluorobis [oxalate-O , O '] lithium phosphate Fine tetrafluoro [oxalate -O, O '] lithium salt having an anion oxalate complexes of lithium phosphate and the like are suitably exemplified, can be used as a mixture alone or in combination.
Among these, LiPF 6 , LiPO 2 F 2 , Li 2 PO 3 F, LiBF 4 , FSO 3 Li, LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 F ) 2 , one or two selected from lithium bis [oxalate-O, O ′] lithium borate, difluorobis [oxalate-O, O ′] lithium phosphate, and tetrafluoro [oxalate-O, O ′] lithium phosphate More than species are preferred, LiPF 6 , LiPO 2 F 2 , FSO 3 Li, LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 F) 2 and difluorobis [oxalate-O, O ′] lithium phosphate 1 type, or 2 or more types selected from are more preferable. The concentration of the lithium salt is usually preferably 0.3 M or more, more preferably 0.7 M or more, and further preferably 1.1 M or more with respect to the non-aqueous solvent. Moreover, the upper limit is preferably 2.5M or less, more preferably 2.0M or less, and still more preferably 1.6M or less.
Further, a suitable combination of these lithium salts includes LiPF 6 , and further includes LiPO 2 F 2 , FSO 3 Li, LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 F) 2 , bis [ More preferably, it contains one or more selected from lithium oxalate-O, O ′] lithium borate and difluorobis [oxalate-O, O ′] lithium phosphate.
When the proportion of lithium salt other than LiPF 6 in the non-aqueous solvent is 0.001M or more, the effect of improving electrochemical characteristics at high temperatures is easily exhibited, and when it is 0.005M or less, electrochemical characteristics at high temperatures. This is preferable because there is little concern that the effect of improving the resistance will decrease. Preferably it is 0.01M or more, Especially preferably, it is 0.03M or more, Most preferably, it is 0.04M or more. The upper limit is preferably 0.4M or less, particularly preferably 0.2M or less.
When the non-aqueous electrolyte contains LiPF 6 , the ratio of the molar concentration of the lithium salt of the present invention to LiPF 6 is 0.0005 or more, and the effect of improving electrochemical properties at high temperatures is easily exhibited. The following is preferable because there is little possibility that the improvement effect of electrochemical characteristics at high temperature is lowered. The lower limit is more preferably 0.001 or more, and still more preferably 0.005 or more. Moreover, the upper limit is more preferably 0.2 or less, and still more preferably 0.1 or less.

(オニウム塩)
また、オニウム塩としては、下記に示すオニウムカチオンとアニオンを組み合わせた各種塩が好適に挙げられる。
オニウムカチオンの具体例としては、テトラメチルアンモニウムカチオン、エチルトリメチルアンモニウムカチオン、ジエチルジメチルアンモニウムカチオン、トリエチルメチルアンモニウムカチオン、テトラエチルアンモニウムカチオン、N,N−ジメチルピロリジニウムカチオン、N−エチル−N−メチルピロリジニウムカチオン、N,N−ジエチルピロリジニウムカチオン、スピロ−(N,N’)−ビピロリジニウムカチオン、N,N’−ジメチルイミダゾリニウムカチオン、N−エチル−N’−メチルイミダゾリニウムカチオン、N,N’−ジエチルイミダゾリニウムカチオン、N,N’−ジメチルイミダゾリウムカチオン、N−エチル−N’−メチルイミダゾリウムカチオン、N,N’−ジエチルイミダゾリウムカチオン等が好適に挙げられる。
アニオンの具体例としては、PF6アニオン、BF4アニオン、ClO4アニオン、AsF6アニオン、CF3SO3アニオン、N(CF3SO22アニオン、N(C25SO22アニオン、等が好適に挙げられる。
これらのオニウム塩は、一種単独で又は二種以上を組み合わせて使用することができる。
(Onium salt)
Moreover, as an onium salt, the various salts which combined the onium cation and anion shown below are mentioned suitably.
Specific examples of the onium cation include tetramethylammonium cation, ethyltrimethylammonium cation, diethyldimethylammonium cation, triethylmethylammonium cation, tetraethylammonium cation, N, N-dimethylpyrrolidinium cation, N-ethyl-N-methylpyrrole. Dinium cation, N, N-diethylpyrrolidinium cation, spiro- (N, N ′)-bipyrrolidinium cation, N, N′-dimethylimidazolinium cation, N-ethyl-N′-methylimidazoli Preferable examples include nium cation, N, N′-diethylimidazolinium cation, N, N′-dimethylimidazolium cation, N-ethyl-N′-methylimidazolium cation, and N, N′-diethylimidazolium cation. Is The
Specific examples of anions include PF 6 anion, BF 4 anion, ClO 4 anion, AsF 6 anion, CF 3 SO 3 anion, N (CF 3 SO 2 ) 2 anion, N (C 2 F 5 SO 2 ) 2 anion. , Etc. are mentioned suitably.
These onium salts can be used singly or in combination of two or more.

〔非水電解液の製造〕
本発明の非水電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩及び該非水電解液に対して前記一般式(I)で表されるジハロリン酸エステル化合物を添加することにより得ることができる。
この際、用いる非水溶媒及び非水電解液に加える化合物は、生産性を著しく低下させない範囲内で、予め精製して、不純物が極力少ないものを用いることが好ましい。
[Production of non-aqueous electrolyte]
The non-aqueous electrolyte of the present invention is, for example, mixed with the non-aqueous solvent, and added thereto the dihalophosphate compound represented by the general formula (I) with respect to the electrolyte salt and the non-aqueous electrolyte. Can be obtained.
At this time, it is preferable that the compound added to the non-aqueous solvent and the non-aqueous electrolyte to be used is one that is purified in advance and has as few impurities as possible within a range that does not significantly reduce the productivity.

本発明の非水電解液は、下記の第1〜第4の蓄電デバイスに使用することができ、非水電解質として、液体状のものだけでなくゲル化されているものも使用し得る。更に本発明の非水電解液は固体高分子電解質用としても使用できる。中でも電解質塩にリチウム塩を使用する第1の蓄電デバイス用(即ち、リチウム電池用)又は第4の蓄電デバイス用(即ち、リチウムイオンキャパシタ用)として用いることが好ましく、リチウム電池用として用いることが更に好ましく、リチウム二次電池用として用いることが最も適している。   The nonaqueous electrolytic solution of the present invention can be used in the following first to fourth power storage devices, and not only a liquid but also a gelled one can be used as the nonaqueous electrolyte. Furthermore, the non-aqueous electrolyte of the present invention can be used for a solid polymer electrolyte. In particular, it is preferably used for the first electricity storage device (that is, for a lithium battery) or the fourth electricity storage device (that is, for a lithium ion capacitor) that uses a lithium salt as an electrolyte salt, and is used for a lithium battery. More preferably, it is most suitable for use as a lithium secondary battery.

〔第1の蓄電デバイス(リチウム電池)〕
本明細書においてリチウム電池とは、リチウム一次電池及びリチウム二次電池の総称である。また、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。本発明のリチウム電池は、正極、負極及び非水溶媒に電解質塩が溶解されている前記非水電解液からなる。非水電解液以外の正極、負極等の構成部材は特に制限なく使用できる。
例えば、リチウム二次電池用正極活物質としては、コバルト、マンガン、及びニッケルから選ばれる少なくとも一種を含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、一種単独又は二種以上を組み合わせて用いることができる。
このようなリチウム複合金属酸化物としては、例えば、LiCoO2、LiMn24、LiNiO2、LiCo1-xNix2(0.01<x<1)、LiCo1/3Ni1/3Mn1/32、LiNi1/2Mn3/24、LiCo0.98Mg0.022から選ばれる一種又は二種以上が挙げられる。また、LiCoO2とLiMn24、LiCoO2とLiNiO2、LiMn24とLiNiO2のように併用してもよい。
[First power storage device (lithium battery)]
In this specification, the lithium battery is a general term for a lithium primary battery and a lithium secondary battery. In this specification, the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery. The lithium battery of the present invention comprises the nonaqueous electrolyte solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a nonaqueous solvent. Components other than the non-aqueous electrolyte, such as a positive electrode and a negative electrode, can be used without particular limitation.
For example, as the positive electrode active material for a lithium secondary battery, a composite metal oxide with lithium containing at least one selected from cobalt, manganese, and nickel is used. These positive electrode active materials can be used individually by 1 type or in combination of 2 or more types.
Examples of such lithium composite metal oxides include LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 <x <1), LiCo 1/3 Ni 1/3. One type or two or more types selected from Mn 1/3 O 2 , LiNi 1/2 Mn 3/2 O 4 , and LiCo 0.98 Mg 0.02 O 2 may be mentioned. Further, LiCoO 2 and LiMn 2 O 4 , LiCoO 2 and LiNiO 2 , LiMn 2 O 4 and LiNiO 2 may be used in combination.

また、過充電時の安全性やサイクル特性を向上したり、4.3V以上の充電電位での使用を可能にするために、リチウム複合金属酸化物の一部は他元素で置換してもよい。例えば、コバルト、マンガン、ニッケルの一部をSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cu、Bi、Mo、La等の少なくとも一種以上の元素で置換したり、Oの一部をSやFで置換したり、又はこれらの他元素を含有する化合物を被覆することもできる。
これらの中では、LiCoO2、LiMn24、LiNiO2のような満充電状態における正極の充電電位がLi基準で4.3V以上で使用可能なリチウム複合金属酸化物が好ましく、LiCo1-xx2(但し、MはSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cuから選ばれる一種又は二種以上の元素、0.001≦x≦0.05)、LiCo1/3Ni1/3Mn1/32、LiNi0.5Mn0.3Co0.22、LiNi0.85Co0.10Al0.052、LiNi1/2Mn3/24、Li2MnO3とLiMO2(Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体のような4.4V以上で使用可能なリチウム複合金属酸化物がより好ましい。高充電電圧で動作するリチウム複合金属酸化物を使用すると、充電時における電解液との反応により特に高温での電気化学特性が低下しやすいが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を抑制することができる。
In addition, in order to improve safety and cycle characteristics during overcharge, or to enable use at a charging potential of 4.3 V or higher, a part of the lithium composite metal oxide may be substituted with another element. . For example, a part of cobalt, manganese, nickel is replaced with at least one element such as Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, Bi, Mo, La, A part of O can be substituted with S or F, or a compound containing these other elements can be coated.
Among these, lithium composite metal oxides such as LiCoO 2 , LiMn 2 O 4 , and LiNiO 2 that can be used at a charged potential of the positive electrode in a fully charged state of 4.3 V or more on the basis of Li are preferable, and LiCo 1-x M x O 2 (wherein M is one or more elements selected from Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, 0.001 ≦ x ≦ 0.05) ), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 1/2 Mn 3/2 O 4 , Li 2 MnO 3 And LiMO 2 (M is a transition metal such as Co, Ni, Mn, Fe, etc.) and more preferably a lithium composite metal oxide usable at 4.4 V or higher. When a lithium composite metal oxide that operates at a high charging voltage is used, the electrochemical characteristics at high temperatures are likely to be deteriorated due to the reaction with the electrolyte during charging. However, in the lithium secondary battery according to the present invention, these electrochemical properties are reduced. The deterioration of characteristics can be suppressed.

上記の正極活物質10gを蒸留水100mlに分散させた時の上澄み液のpHとしては10.0〜12.5である場合、一段と高温サイクル特性が得られやすいので好ましく、更に10.5〜12.0である場合が好ましい。
また、正極中に元素としてNiが含まれる場合、正極活物質中のLiOH等の不純物が増える傾向があるため、一段と高温サイクル特性が得られやすいので好ましく、正極活物質中のNiの原子濃度が5〜25atomic%である場合が更に好ましく、8〜21atomic%である場合が特に好ましい。
When the pH of the supernatant obtained when 10 g of the positive electrode active material is dispersed in 100 ml of distilled water is 10.0 to 12.5, it is preferable because high-temperature cycle characteristics can be easily obtained, and further 10.5 to 12 0.0 is preferred.
In addition, when Ni is included as an element in the positive electrode, since impurities such as LiOH in the positive electrode active material tend to increase, it is preferable because higher temperature cycle characteristics are easily obtained, and the atomic concentration of Ni in the positive electrode active material is preferable. The case where it is 5-25 atomic% is still more preferable, and the case where it is 8-21 atomic% is especially preferable.

更に、正極活物質として、リチウム含有オリビン型リン酸塩を用いることもできる。特に鉄、コバルト、ニッケル及びマンガンから選ばれる一種又は二種以上を含有するリチウム含有オリビン型リン酸塩が好ましい。その具体例としては、LiFePO4、LiCoPO4、LiNiPO4、LiMnPO4等が挙げられる。
これらのリチウム含有オリビン型リン酸塩の一部は他元素で置換してもよく、鉄、コバルト、ニッケル、マンガンの一部をCo、Mn、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、W及びZr等から選ばれる一種以上の元素で置換したり、又はこれらの他元素を含有する化合物や炭素材料で被覆することもできる。これらの中では、LiFePO4又はLiMnPO4が好ましい。
また、リチウム含有オリビン型リン酸塩は、例えば前記の正極活物質と混合して用いることもできる。
Furthermore, lithium-containing olivine-type phosphate can also be used as the positive electrode active material. In particular, lithium-containing olivine-type phosphate containing one or more selected from iron, cobalt, nickel and manganese is preferable. Specific examples thereof include LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 and the like.
Some of these lithium-containing olivine-type phosphates may be substituted with other elements, and some of iron, cobalt, nickel, and manganese are replaced with Co, Mn, Ni, Mg, Al, B, Ti, V, and Nb. , Cu, Zn, Mo, Ca, Sr, W and Zr can be substituted by one or more elements selected from these, or can be coated with a compound or carbon material containing these other elements. Among these, LiFePO 4 or LiMnPO 4 is preferable.
Moreover, lithium containing olivine type | mold phosphate can also be mixed with the said positive electrode active material, for example, and can be used.

また、リチウム一次電池用正極としては、CuO、Cu2O、Ag2O、Ag2CrO4、CuS、CuSO4、TiO2、TiS2、SiO2、SnO、V25、V612、VOx、Nb25、Bi23、Bi2Pb25,Sb23、CrO3、Cr23、MoO3、WO3、SeO2、MnO2、Mn23、Fe23、FeO、Fe34、Ni23、NiO、CoO3、CoO等の、一種又は二種以上の金属元素の酸化物又はカルコゲン化合物、SO2、SOCl2等の硫黄化合物、一般式(CFxnで表されるフッ化炭素(フッ化黒鉛)等が挙げられる。これらの中でも、MnO2、V25、フッ化黒鉛等が好ましい。As the positive electrode for lithium primary battery, CuO, Cu 2 O, Ag 2 O, Ag 2 CrO 4, CuS, CuSO 4, TiO 2, TiS 2, SiO 2, SnO, V 2 O 5, V 6 O 12 , VO x , Nb 2 O 5 , Bi 2 O 3 , Bi 2 Pb 2 O 5 , Sb 2 O 3 , CrO 3 , Cr 2 O 3 , MoO 3 , WO 3 , SeO 2 , MnO 2 , Mn 2 O 3 , Fe 2 O 3 , FeO, Fe 3 O 4 , Ni 2 O 3 , NiO, CoO 3 , CoO and the like, oxides of one or more metal elements or chalcogen compounds, sulfur such as SO 2 and SOCl 2 Examples thereof include compounds, and fluorocarbons (fluorinated graphite) represented by the general formula (CF x ) n . Among these, MnO 2 , V 2 O 5 , graphite fluoride and the like are preferable.

正極の導電剤は、化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックから選ばれる一種又は二種以上のカーボンブラック等が挙げられる。また、グラファイトとカーボンブラックを適宜混合して用いてもよい。導電剤の正極合剤への添加量は、1〜10質量%が好ましく、特に2〜5質量%が好ましい。   The conductive agent for the positive electrode is not particularly limited as long as it is an electron conductive material that does not cause a chemical change. For example, graphite such as natural graphite (flaky graphite, etc.), graphite such as artificial graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, or one or more carbon blacks can be used. . Further, graphite and carbon black may be appropriately mixed and used. 1-10 mass% is preferable and, as for the addition amount to the positive mix of a electrically conductive agent, 2-5 mass% is especially preferable.

正極は、前記の正極活物質をアセチレンブラック、カーボンブラック等の導電剤、及びポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)、エチレンプロピレンジエンターポリマー等の結着剤と混合し、これに1−メチル−2−ピロリドン等の高沸点溶剤を加えて混練して正極合剤とした後、この正極合剤を集電体のアルミニウム箔やステンレス製のラス板等に塗布して、乾燥、加圧成型した後、50℃〜250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
正極の集電体を除く部分の密度は、通常は1.5g/cm3以上であり、電池の容量を更に高めるため、好ましくは2g/cm3以上であり、より好ましくは、3g/cm3以上であり、更に好ましくは、3.6g/cm3以上である。なお、上限としては、4g/cm3以下が好ましい。
The positive electrode is composed of a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene. Mixing with a binder such as copolymer (NBR), carboxymethyl cellulose (CMC), ethylene propylene diene terpolymer, etc., and adding a high boiling point solvent such as 1-methyl-2-pyrrolidone to knead and mix Then, this positive electrode mixture was applied to a current collector aluminum foil, a stainless steel lath plate, etc., dried and pressure-molded, and then subjected to vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. It can be manufactured by heat treatment.
The density of the part except the collector of the positive electrode is usually at 1.5 g / cm 3 or more, to further enhance the capacity of the battery, is preferably 2 g / cm 3 or more, more preferably, 3 g / cm 3 It is above, More preferably, it is 3.6 g / cm 3 or more. In addition, as an upper limit, 4 g / cm < 3 > or less is preferable.

リチウム二次電池用負極活物質としては、リチウム金属やリチウム合金、及びリチウムを吸蔵及び放出することが可能な炭素材料〔易黒鉛化炭素や、(002)面の面間隔が0.37nm以上の難黒鉛化炭素や、(002)面の面間隔が0.34nm以下の黒鉛等〕、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物、Li4Ti512等のチタン酸リチウム化合物等を一種単独又は二種以上を組み合わせて用いることができる。
これらの中では、リチウムイオンの吸蔵及び放出能力において、人造黒鉛や天然黒鉛等の高結晶性の炭素材料を使用することがより好ましく、格子面(002)の面間隔(d002)が0.340nm(ナノメータ)以下、特に0.335〜0.337nmである黒鉛型結晶構造を有する炭素材料を使用することが特に好ましい。
複数の扁平状の黒鉛質微粒子が互いに非平行に集合又は結合した塊状構造を有する人造黒鉛粒子や、例えば鱗片状天然黒鉛粒子に圧縮力、摩擦力、剪断力等の機械的作用を繰り返し与え、球形化処理を施した黒鉛粒子を用いることにより、負極の集電体を除く部分の密度を1.5g/cm3以上の密度に加圧成形したときの負極シートのX線回折測定から得られる黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比I(110)/I(004)が0.01以上となると一段と高温での電気化学特性が向上するので好ましく、0.05以上となることがより好ましく、0.1以上となることが更に好ましい。また、過度に処理し過ぎて結晶性が低下し電池の放電容量が低下する場合があるので、ピーク強度の比I(110)/I(004)の上限は0.5以下が好ましく、0.3以下がより好ましい。
また、高結晶性の炭素材料(コア材)はコア材よりも低結晶性の炭素材料によって被膜されていると、高温での電気化学特性が一段と良好となるので好ましい。被覆の炭素材料の結晶性は、TEMにより確認することができる。
高結晶性の炭素材料を使用すると、充電時において非水電解液と反応し、界面抵抗の増加によって高温における電気化学特性を低下させる傾向があるが、本発明に係るリチウム二次電池では高温での電気化学特性が良好となる。
Examples of the negative electrode active material for a lithium secondary battery include lithium metal, lithium alloy, and a carbon material capable of occluding and releasing lithium (easily graphitized carbon and a (002) plane spacing of 0.37 nm or more). Non-graphitizable carbon, graphite with (002) plane spacing of 0.34 nm or less, etc.], tin (single), tin compound, silicon (single), silicon compound, lithium titanate such as Li 4 Ti 5 O 12 A compound etc. can be used individually by 1 type or in combination of 2 or more types.
Among these, in terms of the ability to occlude and release lithium ions, it is more preferable to use a highly crystalline carbon material such as artificial graphite and natural graphite, and the lattice spacing (d 002 ) of the lattice plane ( 002 ) is 0. It is particularly preferable to use a carbon material having a graphite-type crystal structure of 340 nm (nanometer) or less, particularly 0.335 to 0.337 nm.
Artificial graphite particles having a massive structure in which a plurality of flat graphite fine particles are assembled or bonded non-parallel to each other, for example, scaly natural graphite particles are repeatedly given mechanical action such as compression force, friction force, shear force, By using graphite particles that have been subjected to spheroidization treatment, the density of the portion excluding the current collector of the negative electrode can be obtained from X-ray diffraction measurement of the negative electrode sheet when pressure-molded to a density of 1.5 g / cm 3 or more. Electrochemistry at higher temperatures when the ratio I (110) / I (004) of the peak intensity I (110) of the (110) plane and the peak intensity I (004) of the (004) plane of the graphite crystal is 0.01 or more. It is preferable because the characteristics are improved, more preferably 0.05 or more, and still more preferably 0.1 or more. In addition, since the crystallinity may be lowered due to excessive treatment and the discharge capacity of the battery may be lowered, the upper limit of the peak intensity ratio I (110) / I (004) is preferably 0.5 or less. 3 or less is more preferable.
In addition, it is preferable that the highly crystalline carbon material (core material) is coated with a carbon material having a lower crystallinity than the core material because electrochemical characteristics at a high temperature are further improved. The crystallinity of the carbon material of the coating can be confirmed by TEM.
When a highly crystalline carbon material is used, it reacts with the non-aqueous electrolyte during charging and tends to lower the electrochemical characteristics at high temperatures due to an increase in interfacial resistance, but the lithium secondary battery according to the present invention has a high temperature. The electrochemical properties of the are improved.

また、負極活物質としてのリチウムを吸蔵及び放出可能な金属化合物としては、Si、Ge、Sn、Pb、P、Sb、Bi、Al、Ga、In、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ag、Mg、Sr、Ba等の金属元素を少なくとも一種含有する化合物が挙げられる。これらの金属化合物は単体、合金、酸化物、窒化物、硫化物、硼化物、リチウムとの合金等、何れの形態で用いてもよいが、単体、合金、酸化物、リチウムとの合金の何れかが高容量化できるので好ましい。中でも、Si、Ge及びSnから選ばれる少なくとも一種の元素を含有するものが好ましく、Si及びSnから選ばれる少なくとも一種の元素を含むものが電池を高容量化できるのでより好ましい。   Examples of the metal compound capable of inserting and extracting lithium as the negative electrode active material include Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, and Cu. , Zn, Ag, Mg, Sr, Ba, and other compounds containing at least one metal element. These metal compounds may be used in any form such as a simple substance, an alloy, an oxide, a nitride, a sulfide, a boride, and an alloy with lithium, but any of a simple substance, an alloy, an oxide, and an alloy with lithium. Is preferable because the capacity can be increased. Among these, those containing at least one element selected from Si, Ge and Sn are preferable, and those containing at least one element selected from Si and Sn are more preferable because the capacity of the battery can be increased.

負極は、上記の正極の作製と同様な導電剤、結着剤、高沸点溶剤を用いて混練して負極合剤とした後、この負極合剤を集電体の銅箔等に塗布して、乾燥、加圧成型した後、50℃〜250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
負極の集電体を除く部分の密度は、通常は1.1g/cm3以上であり、電池の容量を更に高めるため、好ましくは1.5g/cm3以上であり、より好ましくは1.7g/cm3以上である。なお、上限としては、2g/cm3以下が好ましい。
The negative electrode is kneaded using the same conductive agent, binder, and high-boiling solvent as in the production of the positive electrode, and then the negative electrode mixture is applied to the copper foil of the current collector. After being dried and pressure-molded, it can be produced by heat treatment under vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.
The density of the portion excluding the current collector of the negative electrode is usually 1.1 g / cm 3 or more, and is preferably 1.5 g / cm 3 or more, more preferably 1.7 g, in order to further increase the capacity of the battery. / Cm 3 or more. In addition, as an upper limit, 2 g / cm < 3 > or less is preferable.

また、リチウム一次電池用の負極活物質としては、リチウム金属又はリチウム合金が挙げられる。   Moreover, lithium metal or a lithium alloy is mentioned as a negative electrode active material for lithium primary batteries.

リチウム電池の構造には特に限定はなく、単層又は複層のセパレータを有するコイン型電池、円筒型電池、角型電池、ラミネート電池等を適用できる。
電池用セパレータとしては、特に制限はないが、ポリプロピレン、ポリエチレン等のポリオレフィンの単層又は積層の微多孔性フィルム、織布、不織布等を使用できる。
The structure of the lithium battery is not particularly limited, and a coin-type battery, a cylindrical battery, a square battery, a laminated battery, or the like having a single-layer or multi-layer separator can be applied.
Although there is no restriction | limiting in particular as a separator for batteries, The single layer or laminated microporous film of polyolefin, such as a polypropylene and polyethylene, a woven fabric, a nonwoven fabric, etc. can be used.

本発明におけるリチウム二次電池は、充電終止電圧が4.2V以上、特に4.3V以上の場合にも高温での電気化学特性に優れ、更に、4.4V以上においても電気化学特性は良好である。放電終止電圧は、通常2.8V以上、更には2.5V以上とすることが出来るが、本願発明におけるリチウム二次電池は、2.0V以上とすることが出来る。電流値については特に限定されないが、通常0.1〜30Cの範囲で使用される。また、本発明におけるリチウム電池は、−40〜100℃、好ましくは−10〜80℃で充放電することができる。   The lithium secondary battery in the present invention has excellent electrochemical characteristics at high temperatures even when the end-of-charge voltage is 4.2 V or higher, particularly 4.3 V or higher, and also has excellent electrochemical characteristics at 4.4 V or higher. is there. The end-of-discharge voltage is usually 2.8 V or more, and further 2.5 V or more, but the lithium secondary battery in the present invention can be 2.0 V or more. Although it does not specifically limit about an electric current value, Usually, it uses in the range of 0.1-30C. Moreover, the lithium battery in this invention can be charged / discharged at -40-100 degreeC, Preferably it is -10-80 degreeC.

本発明においては、リチウム電池の内圧上昇の対策として、電池蓋に安全弁を設けたり、電池缶やガスケット等の部材に切り込みを入れる方法も採用することができる。また、過充電防止の安全対策として、電池の内圧を感知して電流を遮断する電流遮断機構を電池蓋に設けることができる。   In the present invention, as a countermeasure against an increase in the internal pressure of the lithium battery, a method of providing a safety valve on the battery lid or cutting a member such as a battery can or a gasket can be employed. Further, as a safety measure for preventing overcharge, the battery lid can be provided with a current interruption mechanism that senses the internal pressure of the battery and interrupts the current.

〔第2の蓄電デバイス(電気二重層キャパシタ)〕
電解液と電極界面の電気二重層容量を利用してエネルギーを貯蔵する蓄電デバイスである。本発明の一例は、電気二重層キャパシタである。この蓄電デバイスに用いられる最も典型的な電極活物質は、活性炭である。二重層容量は概ね表面積に比例して増加する。
[Second power storage device (electric double layer capacitor)]
It is an electricity storage device that stores energy by using the electric double layer capacity at the interface between the electrolyte and the electrode. An example of the present invention is an electric double layer capacitor. The most typical electrode active material used for this electricity storage device is activated carbon. Double layer capacity increases roughly in proportion to surface area.

〔第3の蓄電デバイス〕
電極のドープ/脱ドープ反応を利用してエネルギーを貯蔵する蓄電デバイスである。この蓄電デバイスに用いられる電極活物質として、酸化ルテニウム、酸化イリジウム、酸化タングステン、酸化モリブデン、酸化銅等の金属酸化物や、ポリアセン、ポリチオフェン誘導体等のπ共役高分子が挙げられる。これらの電極活物質を用いたキャパシタは、電極のドープ/脱ドープ反応にともなうエネルギー貯蔵が可能である。
[Third power storage device]
It is an electrical storage device which stores energy using dope / dedope reaction of an electrode. Examples of the electrode active material used in this power storage device include metal oxides such as ruthenium oxide, iridium oxide, tungsten oxide, molybdenum oxide, and copper oxide, and π-conjugated polymers such as polyacene and polythiophene derivatives. Capacitors using these electrode active materials can store energy associated with electrode doping / dedoping reactions.

〔第4の蓄電デバイス(リチウムイオンキャパシタ)〕
負極であるグラファイト等の炭素材料へのリチウムイオンのインターカレーションを利用してエネルギーを貯蔵する蓄電デバイスである。リチウムイオンキャパシタ(LIC)と呼ばれる。正極は、例えば活性炭電極と電解液との間の電気二重層を利用したものや、π共役高分子電極のドープ/脱ドープ反応を利用したもの等が挙げられる。電解液には少なくともLiPF6等のリチウム塩が含まれる。
[Fourth storage device (lithium ion capacitor)]
It is an electricity storage device that stores energy by utilizing lithium ion intercalation with a carbon material such as graphite as a negative electrode. It is called a lithium ion capacitor (LIC). Examples of the positive electrode include those using an electric double layer between an activated carbon electrode and an electrolytic solution, and those using a π-conjugated polymer electrode doping / dedoping reaction. The electrolyte contains at least a lithium salt such as LiPF 6 .

〔ジハロリン酸エステル化合物〕
本発明の新規化合物であるジハロリン酸エステル化合物は、下記一般式(IV)で表される。
下記一般式(IV)で表されるジハロリン酸エステル化合物。
[Dihalophosphate compound]
The dihalophosphate compound which is a novel compound of the present invention is represented by the following general formula (IV).
A dihalophosphate compound represented by the following general formula (IV).

Figure 2013168716
Figure 2013168716

(式中、R13及びR14はそれぞれ独立に、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、炭素数6〜12のアリール基、又は炭素数6〜12のアリールオキシ基を示し、X4は、フッ素原子又は塩素原子を示し、pは1又は2を示す。
15は、pが1の場合は、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数3〜6のアルキニル基、又は炭素数6〜12のアリール基を示し、pが2の場合は、炭素数2〜6のアルキレン基、炭素数4〜8のアルケニレン基、炭素数4〜8のアルキニレン基を示す。
13又はR14である基が有する少なくとも一つの水素原子は、ハロゲン原子で置換されていてもよい。また、R13及びR14がアルキル基又はアルコキシ基の場合は、R13及びR14は結合して環構造を形成してもよい。ただし、R13及びR14が、ともに炭素数1〜6のアルキコキシ基であり、R15が、炭素数1〜2のアルキル基の場合を除く。)
前記一般式(IV)におけるR13、R14、R15、X4、及びpの具体例、好適例は、一般式(I)において対応するR1、R2、R3、X1及びmのそれぞれと同じである。また、一般式(IV)で表されるジハロリン酸エステル化合物の具体例、好適例は、一般式(I)で表されるジハロリン酸エステル化合物のX1、X2ともに塩素原子の場合を除いた具体例、好適例と同じである。
Wherein R 13 and R 14 are each independently an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aryloxy having 6 to 12 carbon atoms. Represents a group, X 4 represents a fluorine atom or a chlorine atom, and p represents 1 or 2.
R 15 represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms when p is 1. When p is 2, an alkylene group having 2 to 6 carbon atoms, an alkenylene group having 4 to 8 carbon atoms, or an alkynylene group having 4 to 8 carbon atoms is shown.
At least one hydrogen atom of the group represented by R 13 or R 14 may be substituted with a halogen atom. When R 13 and R 14 are an alkyl group or an alkoxy group, R 13 and R 14 may be bonded to form a ring structure. However, R 13 and R 14 are both an alkoxy group having 1 to 6 carbon atoms, and R 15 is an alkyl group having 1 to 2 carbon atoms. )
Specific examples and preferred examples of R 13 , R 14 , R 15 , X 4 , and p in the general formula (IV) are R 1 , R 2 , R 3 , X 1 and m corresponding to the general formula (I). Is the same as each. In addition, specific examples and preferred examples of the dihalophosphate compound represented by the general formula (IV) exclude the case where both of X 1 and X 2 of the dihalophosphate compound represented by the general formula (I) are chlorine atoms. It is the same as a specific example and a suitable example.

本発明のジハロリン酸エステル化合物は、下記の(a)〜(c)方法により合成することができるが、これらの方法に限定されるものではない。
(a)有機リンカルボン酸ハライドと対応するヒドロキシ化合物とを溶媒の存在下又は不存在下、塩基の存在下又は不存在下、エステル化反応させる方法(以下「(a)法」ともいう)。
(b)有機リンカルボン酸と対応するヒドロキシ化合物とを、溶媒の存在下又は不存在下、酸触媒又は脱水剤の存在下で、縮合させる方法(以下「(b)法」ともいう)。
(c)有機リンカルボン酸エステルと対応するヒドロキシ化合物とを溶媒の存在下又は不存在下、触媒の存在下、エステル交換反応させる方法(以下「(c)法」ともいう)。
The dihalophosphate compound of the present invention can be synthesized by the following methods (a) to (c), but is not limited to these methods.
(A) A method in which an organophosphorus carboxylic acid halide and a corresponding hydroxy compound are esterified in the presence or absence of a solvent and in the presence or absence of a base (hereinafter also referred to as “method (a)”).
(B) A method in which an organophosphorus carboxylic acid and a corresponding hydroxy compound are condensed in the presence or absence of a solvent and in the presence of an acid catalyst or a dehydrating agent (hereinafter also referred to as “method (b)”).
(C) A method of transesterifying an organophosphorus carboxylic acid ester and the corresponding hydroxy compound in the presence or absence of a solvent and in the presence of a catalyst (hereinafter also referred to as “(c) method”).

[(a)法]
(a)法は、有機リンカルボン酸ハライドと対応するヒドロキシ化合物とを溶媒の存在下又は不存在下、塩基の存在下又は不存在下、エステル化反応させる方法である。なお、原料の有機リンカルボン酸ハライドは既存の汎用的手法により合成することができる。例えば、Organic Letters, 6, (20), p3477 (2004)に記載の有機リンカルボン酸と塩化チオニルを反応させる方法により合成できる。
(a)法の反応において、ヒドロキシ化合物の使用量は有機リンカルボン酸ハライド1モルに対して、好ましくは0.8〜20モル、より好ましくは0.9〜10モル、更に好ましくは1〜5モルである。
(a)法として使用されるヒドロキシ化合物としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、イソプロパノール、シクロヘキサノール、2−プロピン−1−オール、3−ブチン−2−オール、2−メチル−3−ブチン−2−オール、2−ブチン−1,4−ジオール、3−ヘキシン−2,5−ジオール、2,5−ジメチル−3−ヘキシン−2,5−ジオール、2−トリフルオロメチルフェノール、3−トリフルオロメチルフェノール、4−トリフルオロメチルフェノール、ペンタフルオロフェノール等が挙げられる。
[(A) method]
Method (a) is a method in which an organophosphorus carboxylic acid halide and the corresponding hydroxy compound are esterified in the presence or absence of a solvent and in the presence or absence of a base. The raw material organophosphorus carboxylic acid halide can be synthesized by an existing general-purpose method. For example, it can be synthesized by a method of reacting an organophosphorus carboxylic acid and thionyl chloride described in Organic Letters, 6, (20), p3477 (2004).
In the reaction of the method (a), the amount of the hydroxy compound used is preferably 0.8 to 20 mol, more preferably 0.9 to 10 mol, and further preferably 1 to 5 with respect to 1 mol of the organophosphorus carboxylic acid halide. Is a mole.
(A) As a hydroxy compound used as the method, methanol, ethanol, propanol, butanol, hexanol, isopropanol, cyclohexanol, 2-propyn-1-ol, 3-butyn-2-ol, 2-methyl-3- Butyn-2-ol, 2-butyne-1,4-diol, 3-hexyne-2,5-diol, 2,5-dimethyl-3-hexyne-2,5-diol, 2-trifluoromethylphenol, 3 -Trifluoromethylphenol, 4-trifluoromethylphenol, pentafluorophenol and the like.

(a)法の反応においては、無溶媒で反応は進行するが、反応に不活性であれば、溶媒を使用することができる。使用される溶媒は、ヘプタン、シクロヘキサン等の脂肪族炭化水素、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素、トルエン、キシレン等の芳香族炭化水素、クロロベンゼン、フルオロベンゼン等のハロゲン化芳香族炭化水素、ジイソプロピルエーテル、ジオキサン、ジメトキシエタン等のエーテル、酢酸エチル、酢酸ブチル、ジメチルカーボネート、ジエチルカーボネート等のエステル、アセトニトリル、プロピオニトリル等のニトリル、ジメチルスルホキシド、スルホラン等のスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド、又はこれらの混合物が挙げられる。これらの中では、ヘプタン、シクロヘキサン、トルエン、酢酸エチル、ジメチルカーボネート等の脂肪族又は芳香族炭化水素、エステルが好ましい。
前記、溶媒の使用量は、有機リンカルボン酸ハライド1質量部に対して、好ましくは0〜30質量部、より好ましくは1〜10質量部である。
In the reaction of the method (a), the reaction proceeds without solvent, but a solvent can be used if it is inert to the reaction. Solvents used are aliphatic hydrocarbons such as heptane and cyclohexane, halogenated hydrocarbons such as dichloromethane and dichloroethane, aromatic hydrocarbons such as toluene and xylene, halogenated aromatic hydrocarbons such as chlorobenzene and fluorobenzene, diisopropyl Ethers such as ether, dioxane and dimethoxyethane, esters such as ethyl acetate, butyl acetate, dimethyl carbonate and diethyl carbonate, nitriles such as acetonitrile and propionitrile, sulfoxides such as dimethyl sulfoxide and sulfolane, N, N-dimethylformamide, N , N-dimethylacetamide and the like, or a mixture thereof. Among these, aliphatic or aromatic hydrocarbons such as heptane, cyclohexane, toluene, ethyl acetate, dimethyl carbonate, and esters are preferable.
The amount of the solvent used is preferably 0 to 30 parts by mass, more preferably 1 to 10 parts by mass with respect to 1 part by mass of the organophosphorus carboxylic acid halide.

(a)法の反応においては、塩基の非存在下に反応は進行するが、塩基を共存させると反応が促進されるので好ましい。塩基としては、無機塩基及び有機塩基のいずれも使用することができる。
無機塩基としては、炭酸カリウム、炭酸ナトリウム、水酸化カルシウム、及び酸化カルシウムが挙げられる。有機塩基としては、直鎖又は分枝した脂肪族3級アミン、無置換又は置換されたイミダゾール、ピリジン、ピリミジンが挙げられ、これらの中では、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、ジイソプロプルエチルアミン等のトリアルキルアミン類、ピリジン、N,N−ジメチルアミノピリジン等のピリジン類が好ましい。
前記塩基の使用量は、有機リンカルボン酸ハライド1モルに対して、好ましくは0.8〜5モル、より好ましくは1〜3モル、更に好ましくは1〜1.5モルである。
In the reaction of the method (a), the reaction proceeds in the absence of a base, but the presence of a base is preferable because the reaction is promoted. As the base, both inorganic bases and organic bases can be used.
Inorganic bases include potassium carbonate, sodium carbonate, calcium hydroxide, and calcium oxide. Organic bases include linear or branched aliphatic tertiary amines, unsubstituted or substituted imidazoles, pyridines, pyrimidines, among which trimethylamine, triethylamine, tripropylamine, tributylamine, diisopropyl Trialkylamines such as pluethylamine and pyridines such as pyridine and N, N-dimethylaminopyridine are preferred.
The amount of the base used is preferably 0.8 to 5 mol, more preferably 1 to 3 mol, and still more preferably 1 to 1.5 mol, with respect to 1 mol of the organophosphorus carboxylic acid halide.

(a)法の反応において、反応温度の下限は、反応性を低下させない観点から−20℃以上が好ましく、−10℃以上がより好ましい。また副反応や生成物の分解を抑制する観点から、反応温度の上限は100℃以下が好ましく、80℃以下がより好ましい。
また、反応時間は前記反応温度やスケールにより適宜変更しうるが、反応時間が短すぎると未反応物が残り、逆に反応時間が長すぎると反応生成物の分解や副反応の恐れが生じるため、好ましくは0.1〜12時間、より好ましくは0.2〜6時間である。
In the reaction of the method (a), the lower limit of the reaction temperature is preferably −20 ° C. or higher, more preferably −10 ° C. or higher, from the viewpoint of not reducing the reactivity. From the viewpoint of suppressing side reactions and product decomposition, the upper limit of the reaction temperature is preferably 100 ° C. or less, and more preferably 80 ° C. or less.
In addition, the reaction time can be appropriately changed depending on the reaction temperature and scale, but if the reaction time is too short, unreacted substances remain, and conversely if the reaction time is too long, there is a risk of decomposition of the reaction product or side reaction. , Preferably 0.1 to 12 hours, more preferably 0.2 to 6 hours.

[(b)法]
(b)法は、有機リンカルボン酸と対応するヒドロキシ化合物とを、溶媒の存在下又は不存在下、酸触媒又は脱水剤の存在下で、縮合させる方法である。
(b)法の反応において、ヒドロキシ化合物の使用量は有機リンカルボン酸1モルに対して、好ましくは0.8〜20モル、より好ましくは0.9〜10モル、更に好ましくは1〜5モルである。
(b)法として使用されるヒドロキシ化合物としては、(a)法において記述したヒドロキシ化合物が挙げられる。
[(B) method]
Method (b) is a method in which an organophosphorus carboxylic acid and a corresponding hydroxy compound are condensed in the presence or absence of a solvent and in the presence of an acid catalyst or a dehydrating agent.
In the reaction of the method (b), the amount of the hydroxy compound used is preferably 0.8 to 20 mol, more preferably 0.9 to 10 mol, still more preferably 1 to 5 mol, relative to 1 mol of the organophosphorus carboxylic acid. It is.
Examples of the hydroxy compound used in the method (b) include the hydroxy compounds described in the method (a).

(b)法の反応においては、無溶媒で反応は進行するが、反応に不活性であれば、溶媒を使用することができる。使用される溶媒は、(a)法において記述した脂肪族炭化水素、ハロゲン化炭化水素、芳香族炭化水素、ハロゲン化芳香族炭化水素、エーテル、ニトリル、スルホキシド、又はこれらの混合物が挙げられる。これらの中では、水と混和しにくい、ヘプタン、シクロヘキサン、トルエン等の脂肪族又は芳香族炭化水素が好ましい。
前記、溶媒の使用量は、有機リンカルボン酸1質量部に対して、好ましくは0〜30質量部、より好ましくは1〜10質量部である。
In the reaction of method (b), the reaction proceeds without solvent, but a solvent can be used if it is inert to the reaction. Examples of the solvent used include aliphatic hydrocarbons, halogenated hydrocarbons, aromatic hydrocarbons, halogenated aromatic hydrocarbons, ethers, nitriles, sulfoxides, and mixtures thereof described in the method (a). Among these, aliphatic or aromatic hydrocarbons such as heptane, cyclohexane, and toluene that are difficult to mix with water are preferable.
The amount of the solvent used is preferably 0 to 30 parts by mass, more preferably 1 to 10 parts by mass with respect to 1 part by mass of the organophosphorus carboxylic acid.

(b)法においては、酸触媒を使用する場合、使用できる酸触媒としては、硫酸、リン酸等の鉱酸、パラトルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸等のスルホン酸、トリフルオロホウ酸、テトライソプロポキシチタン等のルイス酸、ゼオライト、酸性樹脂等の固体酸、又はこれらの混合酸が挙げられ、これらの中では、パラトルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸等のスルホン酸及びテトライソプロポキシチタン等のルイス酸が好ましい。前記触媒の使用量は、副反応を抑制する観点から有機リンカルボン酸1モルに対し、好ましくは0.001〜5モル、より好ましくは0.01〜1モルであり、更に好ましくは0.01〜0.3モルである。
また、脱水剤を使用する場合、使用できる脱水剤はジシクロヘキシルカルボジイミド、N,N’−カルボニルジイミダゾール、ジ−2−ピリジルカーボネート、フェニルジクロロホスフェート、ジエチルアゾジカルボン酸エチルとトリフェニルホスフィンの混合物等から選ばれる一種以上が挙げられる。脱水剤の使用量は、有機リンカルボン酸1モルに対して、好ましくは0.8〜10モル、よりは好ましくは0.9〜5モル、更に好ましくは1〜3モルである。
In the method (b), when an acid catalyst is used, the acid catalyst that can be used includes mineral acids such as sulfuric acid and phosphoric acid, sulfonic acids such as paratoluenesulfonic acid, methanesulfonic acid, and trifluoromethanesulfonic acid, and trifluoro Examples include boric acid, Lewis acids such as tetraisopropoxytitanium, solid acids such as zeolite and acidic resin, or mixed acids thereof. Among these, paratoluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, etc. Lewis acids such as sulfonic acid and tetraisopropoxy titanium are preferred. The amount of the catalyst used is preferably 0.001 to 5 mol, more preferably 0.01 to 1 mol, and still more preferably 0.01 to 1 mol of the organophosphorus carboxylic acid from the viewpoint of suppressing side reactions. ~ 0.3 mol.
When a dehydrating agent is used, usable dehydrating agents are dicyclohexylcarbodiimide, N, N′-carbonyldiimidazole, di-2-pyridyl carbonate, phenyldichlorophosphate, a mixture of ethyl diethylazodicarboxylate and triphenylphosphine, and the like. One or more types may be selected. The amount of the dehydrating agent to be used is preferably 0.8 to 10 mol, more preferably 0.9 to 5 mol, and still more preferably 1 to 3 mol with respect to 1 mol of the organophosphorus carboxylic acid.

(b)法の反応において、酸触媒を使用する場合の反応温度の下限は、0℃以上が好ましく、反応性を低下させない観点から、20℃以上がより好ましい。また副反応や生成物の分解を抑制する観点から、反応温度の上限は200℃以下が好ましく、150℃以下がより好ましい。
また、脱水剤を使用する場合の反応温度の下限は、−20℃以上が好ましく、反応性を低下させない観点から、0℃以上がより好ましい。また副反応や生成物の分解を抑制する観点から、反応温度の上限は100℃以下が好ましく、50℃以下がより好ましい。
(b)法の反応時間は反応温度やスケールにより適宜変更しうるが、反応時間が短すぎると未反応物が残り、逆に反応時間が長すぎると反応生成物の分解や副反応の恐れが生じるため、好ましくは0.1〜24時間、より好ましくは0.2〜12時間である。
In the reaction of the method (b), the lower limit of the reaction temperature when using an acid catalyst is preferably 0 ° C. or higher, and more preferably 20 ° C. or higher from the viewpoint of not reducing the reactivity. Further, from the viewpoint of suppressing side reactions and product decomposition, the upper limit of the reaction temperature is preferably 200 ° C. or less, and more preferably 150 ° C. or less.
Further, the lower limit of the reaction temperature when using the dehydrating agent is preferably −20 ° C. or higher, and more preferably 0 ° C. or higher from the viewpoint of not reducing the reactivity. From the viewpoint of suppressing side reactions and product decomposition, the upper limit of the reaction temperature is preferably 100 ° C. or lower, more preferably 50 ° C. or lower.
The reaction time of the method (b) can be appropriately changed depending on the reaction temperature and scale, but if the reaction time is too short, unreacted substances remain. Conversely, if the reaction time is too long, there is a risk of decomposition of the reaction product or side reaction. Therefore, it is preferably 0.1 to 24 hours, and more preferably 0.2 to 12 hours.

[(c)法]
(c)法は、有機リンカルボン酸エステルと対応するヒドロキシ化合物とを溶媒の存在下又は不存在下、触媒の存在下、エステル交換反応させる方法である。
(c)法の反応において、ヒドロキシ化合物の使用量は有機リンカルボン酸1モルに対して、好ましくは0.9〜20モル、より好ましくは1〜15モル、更に好ましくは1〜8モルである。
(c)法として使用されるヒドロキシ化合物としては、(a)法において記述したヒドロキシ化合物が挙げられる。
[(C) method]
Method (c) is a method in which an organophosphorus carboxylic acid ester and a corresponding hydroxy compound are transesterified in the presence or absence of a solvent and in the presence of a catalyst.
In the reaction of the method (c), the amount of the hydroxy compound used is preferably 0.9 to 20 mol, more preferably 1 to 15 mol, still more preferably 1 to 8 mol, relative to 1 mol of the organophosphorus carboxylic acid. .
Examples of the hydroxy compound used in the method (c) include the hydroxy compounds described in the method (a).

(c)法の反応においては、無溶媒で反応は進行するが、反応に不活性であれば、溶媒を使用することができる。使用される溶媒は、(a)法において記述した脂肪族炭化水素、ハロゲン化炭化水素、芳香族炭化水素、ハロゲン化芳香族炭化水素、エーテル、ニトリル、スルホキシド、又はこれらの混合物が挙げられる。これらの中では、水と混和しにくい、ヘプタン、シクロヘキサン、トルエン等の脂肪族又は芳香族炭化水素が好ましい。
前記、溶媒の使用量は、有機リンカルボン酸エステル1質量部に対して、好ましくは0〜30質量部、より好ましくは1〜10質量部である。
In the reaction of the method (c), the reaction proceeds without solvent, but a solvent can be used if it is inert to the reaction. Examples of the solvent used include aliphatic hydrocarbons, halogenated hydrocarbons, aromatic hydrocarbons, halogenated aromatic hydrocarbons, ethers, nitriles, sulfoxides, and mixtures thereof described in the method (a). Among these, aliphatic or aromatic hydrocarbons such as heptane, cyclohexane, and toluene that are difficult to mix with water are preferable.
The amount of the solvent used is preferably 0 to 30 parts by mass, more preferably 1 to 10 parts by mass with respect to 1 part by mass of the organophosphorus carboxylic acid ester.

(c)法においては、使用される触媒としては、酸触媒、塩基触媒のいずれも使用することができる。使用される酸触媒としては、硫酸、リン酸等の鉱酸、パラトルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸等のスルホン酸、トリフルオロホウ酸、テトラエトキシチタン、テトライソプロポキシチタン等のルイス酸、ゼオライト、酸性樹脂等の固体酸、又はこれらの混合酸が挙げられ、これらの中でもテトラエトキシチタン、テトライソプロポキシチタン等のルイス酸が好ましい。使用される塩基としては、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ナトリウムメチラート、ナトリウムエチラート、カリウム−tert−ブトキシド等のアルカリ金属アルコラート、水素化ナトリウム、水素化カリウム等のアルカリ金属水素化物、ナトリウム、カリウム、リチウム等のアルカリ金属、又はこれらの混合物が挙げられ、これらの中でも炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩が好ましい。前記触媒の使用量が、有機リンカルボン酸エステル1モルに対し、好ましくは0.001〜5モル、より好ましくは0.005〜1モルであり、更に好ましくは0.01〜0.3モルであれば、副反応を抑制させることができるため好ましい。   In the method (c), either an acid catalyst or a base catalyst can be used as the catalyst used. Examples of the acid catalyst used include mineral acids such as sulfuric acid and phosphoric acid, sulfonic acids such as paratoluenesulfonic acid, methanesulfonic acid, and trifluoromethanesulfonic acid, trifluoroboric acid, tetraethoxytitanium, and tetraisopropoxytitanium. Examples include Lewis acids, zeolites, solid acids such as acidic resins, and mixed acids thereof. Among these, Lewis acids such as tetraethoxy titanium and tetraisopropoxy titanium are preferable. Examples of the base used include alkali metal carbonates such as sodium carbonate and potassium carbonate, alkali metal alcoholates such as sodium methylate, sodium ethylate and potassium tert-butoxide, and alkali metal hydrogens such as sodium hydride and potassium hydride. And alkali metals such as sodium, potassium and lithium, or mixtures thereof. Among these, alkali metal carbonates such as sodium carbonate and potassium carbonate are preferred. The amount of the catalyst used is preferably 0.001 to 5 mol, more preferably 0.005 to 1 mol, and still more preferably 0.01 to 0.3 mol, relative to 1 mol of the organophosphorus carboxylic acid ester. If present, side reactions can be suppressed, which is preferable.

(c)法の反応において、反応温度の下限は0℃以上が好ましく、反応性を低下させないために、20℃以上がより好ましい。また反応の上限は200℃以下が好ましく、副反応や生成物の分解を抑制するため、150℃以下がより好ましい。また反応時間は反応温度やスケールによるが、反応時間が短すぎると未反応物が残り、逆に反応時間が長すぎると副反応や生成物の分解が進行しやすくなるため、好ましくは、0.1〜24時間であり、より好ましくは0.2〜15時間である。   In the reaction of the method (c), the lower limit of the reaction temperature is preferably 0 ° C. or higher, and more preferably 20 ° C. or higher so as not to lower the reactivity. The upper limit of the reaction is preferably 200 ° C. or lower, and more preferably 150 ° C. or lower in order to suppress side reactions and product decomposition. The reaction time depends on the reaction temperature and scale. However, if the reaction time is too short, unreacted substances remain. Conversely, if the reaction time is too long, side reactions and decomposition of the product tend to proceed. 1 to 24 hours, more preferably 0.2 to 15 hours.

以下、本発明で用いるジハロリン酸エステル化合物の合成例、及びジハロリン酸エステル化合物を用いた本発明の非水電解液の実施例を示すが、本発明は、これらの合成例及び実施例に限定されるものではない。   Examples of synthesis of dihalophosphate compounds used in the present invention and examples of non-aqueous electrolytes of the present invention using dihalophosphate compounds are shown below, but the present invention is limited to these synthesis examples and examples. It is not something.

合成例1〔2−プロピニル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテートの合成〕
エチル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート10.0g(38.0mmol)に、プロパルギルアルコール43.1g(76.9mol)、チタン酸テトラエチル0.88g(4.0mmol)を室温で加えた。100℃で24時間加熱還流を行い、減圧下でエタノールを21mL、プロパルギルアルコール42mLをそれぞれ留去した。その後、水10gを加え、生じた固体をろ過し、溶媒を減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/5溶出)で精製し、目的の2−プロピニル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート4.2g(40%)を得た。得られた2−プロピニル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテートについて、1H−NMRの測定を行い、その構造を確認した。
結果を以下に示す。
〔2−プロピニル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート〕
1H−NMR(400MHz,CDCl3):δ=4.91(d,J=2.5Hz,2H),4.41−4.28(m,4H),2.59(t,J=2.5Hz,1H),1.43−1.35(m,6H)
Synthesis Example 1 [Synthesis of 2-propynyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate]
Ethyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate 10.0 g (38.0 mmol), propargyl alcohol 43.1 g (76.9 mol) and tetraethyl titanate 0.88 g (4.0 mmol) at room temperature added. The mixture was heated to reflux at 100 ° C. for 24 hours, and 21 mL of ethanol and 42 mL of propargyl alcohol were distilled off under reduced pressure. Thereafter, 10 g of water was added, the resulting solid was filtered, and the solvent was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (ethyl acetate / hexane = 1/5 elution), and the desired 2-propynyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate 4.2 g (40%) Got. The obtained 2-propynyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate was subjected to 1 H-NMR measurement to confirm its structure.
The results are shown below.
[2-propynyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate]
1 H-NMR (400 MHz, CDCl 3 ): δ = 4.91 (d, J = 2.5 Hz, 2H), 4.41-4.28 (m, 4H), 2.59 (t, J = 2) .5Hz, 1H), 1.43-1.35 (m, 6H)

実施例1〜30、比較例1〜2
〔リチウムイオン二次電池の作製〕
LiCo1/3Ni1/3Mn1/32(正極活物質、正極活物質10gを蒸留水100mlに分散させた時の上澄み液のpHは11.1);94質量%、アセチレンブラック(導電剤);3質量%を混合し、予めポリフッ化ビニリデン(結着剤);3質量%を1−メチル−2−ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の両面に塗布し、乾燥、加圧処理して所定の大きさに裁断して、正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cm3であった。
また、人造黒鉛(d002=0.335nm、負極活物質)95質量%を、予めポリフッ化ビニリデン(結着剤)5質量%を1−メチル−2−ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の両面に塗布し、乾燥、加圧処理して所定の大きさに裁断して、負極シートを作製した。負極の集電体を除く部分の密度は1.5g/cm3であった。また、この電極シートを用いてX線回折測定した結果、黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比〔I(110)/I(004)〕は0.1であった。
上記で得られた正極シート、負極シートと微多孔性ポリエチレンフィルム製セパレータを用い、表1〜表3に記載の組成の非水電解液を加えて、18650型の円筒電池を作製した。
Examples 1-30, Comparative Examples 1-2
[Production of lithium ion secondary battery]
LiCo 1/3 Ni 1/3 Mn 1/3 O 2 (the positive electrode active material, the pH of the supernatant liquid when 10 g of the positive electrode active material is dispersed in 100 ml of distilled water is 11.1); 94% by mass, acetylene black ( Conductive agent); 3% by mass is mixed and added to a solution in which polyvinylidene fluoride (binder); 3% by mass is previously dissolved in 1-methyl-2-pyrrolidone. Prepared. This positive electrode mixture paste was applied on both surfaces of an aluminum foil (current collector), dried and pressurized, and cut into a predetermined size to produce a positive electrode sheet. The density of the portion excluding the current collector of the positive electrode was 3.6 g / cm 3 .
Further, 95% by mass of artificial graphite (d 002 = 0.335 nm, negative electrode active material) is added to a solution in which 5% by mass of polyvinylidene fluoride (binder) is dissolved in 1-methyl-2-pyrrolidone in advance. And mixed to prepare a negative electrode mixture paste. This negative electrode mixture paste was applied on both sides of a copper foil (current collector), dried and pressurized, and cut into a predetermined size to prepare a negative electrode sheet. The density of the portion excluding the current collector of the negative electrode was 1.5 g / cm 3 . As a result of X-ray diffraction measurement using this electrode sheet, the ratio of the peak intensity I (110) of the (110) plane of the graphite crystal to the peak intensity I (004) of the (004) plane [I (110) / I (004)] was 0.1.
Using the positive electrode sheet and negative electrode sheet obtained above and a separator made of a microporous polyethylene film, a nonaqueous electrolyte solution having the composition shown in Tables 1 to 3 was added to produce a 18650 type cylindrical battery.

〔高温サイクル特性の評価〕
上記の方法で作製した電池を用いて60℃の恒温槽中、1Cの定電流及び定電圧で、終止電圧4.3Vまで3時間充電し、次に1Cの定電流下、放電電圧3.0Vまで放電することを1サイクルとし、これを200サイクルに達するまで繰り返した。そして、以下の式により60℃200サイクル後の放電容量維持率を求めた。
放電容量維持率(%)=(200サイクル後の放電容量/1サイクル後の放電容量)×100
電池の作製条件及び電池特性を表1〜表3に示す。
[Evaluation of high-temperature cycle characteristics]
Using the battery produced by the above method, in a constant temperature bath at 60 ° C., it was charged with a constant current and a constant voltage of 1 C for 3 hours to a final voltage of 4.3 V, and then a discharge voltage of 3.0 V under a constant current of 1 C. Discharging until 1 cycle was repeated until 200 cycles were reached. And the discharge capacity maintenance factor after 60 degreeC 200 cycles was calculated | required with the following formula | equation.
Discharge capacity retention rate (%) = (discharge capacity after 200 cycles / discharge capacity after one cycle) × 100
Tables 1 to 3 show battery fabrication conditions and battery characteristics.

Figure 2013168716
Figure 2013168716

Figure 2013168716
Figure 2013168716

Figure 2013168716
Figure 2013168716

実施例31、比較例3
実施例3、比較例1で用いた負極活物質に変えて、ケイ素(単体)(負極活物質)を用いて、負極シートを作製した。ケイ素(単体);80質量%、アセチレンブラック(導電剤);15質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1−メチル−2−ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに裁断し、負極シートを作製したことの他は、実施例1、比較例1と同様に円筒電池を作製し、電池評価を行った。結果を表4に示す。
Example 31, Comparative Example 3
Instead of the negative electrode active material used in Example 3 and Comparative Example 1, a negative electrode sheet was prepared using silicon (single element) (negative electrode active material). Silicon (simple substance); 80% by mass, acetylene black (conductive agent); 15% by mass were mixed, and polyvinylidene fluoride (binder); 5% by mass was previously dissolved in 1-methyl-2-pyrrolidone. In addition to the solution, mixing was performed to prepare a negative electrode mixture paste. Example 1 and Comparative Example 1 except that this negative electrode mixture paste was applied onto a copper foil (current collector), dried and pressurized, and cut into a predetermined size to produce a negative electrode sheet. A cylindrical battery was prepared in the same manner as described above, and the battery was evaluated. The results are shown in Table 4.

Figure 2013168716
Figure 2013168716

実施例32、比較例4
実施例3、比較例1で用いた正極活物質に変えて、非晶質炭素で被覆されたLiFePO4(正極活物質)を用いて、正極シートを作製した。非晶質炭素で被覆されたLiFePO4;90質量%、アセチレンブラック(導電剤);5質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1−メチル−2−ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに裁断し、正極シートを作製したこと、電池評価の際の充電終止電圧を3.6V、放電終止電圧を2.0Vとしたことの他は、実施例1、比較例1と同様に円筒電池を作製し、電池評価を行った。結果を表5に示す。
Example 32, Comparative Example 4
A positive electrode sheet was prepared using LiFePO 4 (positive electrode active material) coated with amorphous carbon instead of the positive electrode active material used in Example 3 and Comparative Example 1. LiFePO 4 coated with amorphous carbon; 90% by mass, acetylene black (conductive agent); 5% by mass were mixed in advance, and polyvinylidene fluoride (binder); 5% by mass was added to 1-methyl-2-pyrrolidone. The positive electrode mixture paste was prepared by adding to and mixing with the solution previously dissolved in the mixture. This positive electrode mixture paste was applied onto an aluminum foil (current collector), dried, pressurized and cut into a predetermined size to produce a positive electrode sheet, and the charge termination voltage during battery evaluation was 3 A cylindrical battery was produced in the same manner as in Example 1 and Comparative Example 1, except that the discharge end voltage was set to 0.6 V and the discharge end voltage was set to 2.0 V, and the battery was evaluated. The results are shown in Table 5.

Figure 2013168716
Figure 2013168716

上記実施例1〜30のリチウム二次電池は何れも、本願発明の非水電解液においてジハロリン酸エステル化合物を添加しない場合の比較例1、特許文献1に記載されているトリエチルホスホノアセテートを添加した非水電解液である比較例2のリチウム二次電池に比べ、高温下、更には特に高充電電圧でのサイクル特性が顕著に向上している。以上より、本発明の効果は、非水溶媒に電解質塩が溶解されている非水電解液において、本願発明の特定のジハロリン酸エステル化合物を含有させた場合に特有の効果であることが判明した。
また、実施例31と比較例3の対比、実施例32と比較例4の対比から、負極にケイ素(単体)Siを用いた場合や、正極にリチウム含有オリビン型リン酸鉄塩を用いた場合にも同様な効果がみられる。従って、本発明の効果は、特定の正極や負極に依存した効果でないことは明らかである。
In any of the lithium secondary batteries of Examples 1 to 30, the triethylphosphonoacetate described in Comparative Example 1 and Patent Document 1 in which the dihalophosphate compound is not added in the nonaqueous electrolytic solution of the present invention was added. Compared with the lithium secondary battery of Comparative Example 2 which is a non-aqueous electrolyte, the cycle characteristics at a high temperature and particularly at a high charge voltage are remarkably improved. From the above, it was found that the effect of the present invention is a unique effect when the specific dihalophosphate compound of the present invention is contained in a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent. .
Further, from the comparison between Example 31 and Comparative Example 3 and from the comparison between Example 32 and Comparative Example 4, when silicon (single) Si is used for the negative electrode, or when lithium-containing olivine iron phosphate is used for the positive electrode Has the same effect. Therefore, it is clear that the effect of the present invention is not an effect dependent on a specific positive electrode or negative electrode.

更に、本発明の非水電解液は、リチウム一次電池の高温での放電特性を改善する効果も有する。   Furthermore, the non-aqueous electrolyte of the present invention also has an effect of improving the discharge characteristics at high temperatures of the lithium primary battery.

本発明の非水電解液を使用すれば、高温での電気化学特性に優れた蓄電デバイスを得ることができる。特にハイブリッド電気自動車、プラグインハイブリッド電気自動車、バッテリー電気自動車等に搭載される蓄電デバイス用の非水電解液として使用される場合、高温での電気化学特性が低下しにくい蓄電デバイスを得ることができる。   If the non-aqueous electrolyte of the present invention is used, an electricity storage device having excellent electrochemical characteristics at high temperatures can be obtained. Particularly when used as a non-aqueous electrolyte for an electricity storage device mounted on a hybrid electric vehicle, a plug-in hybrid electric vehicle, a battery electric vehicle, or the like, it is possible to obtain an electricity storage device in which electrochemical characteristics at high temperatures are unlikely to deteriorate. .

Claims (18)

非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に下記一般式(I)で表されるジハロリン酸エステル化合物を含有することを特徴とする非水電解液。
Figure 2013168716
(式中、R1及びR2はそれぞれ独立に、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数3〜6のアルキニル基、炭素数1〜6のアルコキシ基、炭素数2〜6のアルケニルオキシ基、炭素数3〜6のアルキニルオキシ基、炭素数6〜12のアリール基、又は炭素数6〜12のアリールオキシ基を示し、X1及びX2はそれぞれ独立に、フッ素原子又は塩素原子を示し、mは1又は2を示す。
3は、mが1の場合は、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数3〜6のアルキニル基、又は炭素数6〜12のアリール基を示し、mが2の場合は、炭素数2〜6のアルキレン基、炭素数4〜8のアルケニレン基、炭素数4〜8のアルキニレン基を示す。
1又はR2である基が有する少なくとも一つの水素原子は、ハロゲン原子で置換されていてもよい。また、R1及びR2がアルキル基又はアルコキシ基の場合は、R1及びR2は結合して環構造を形成してもよい。)
A nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent, wherein the nonaqueous electrolytic solution contains a dihalophosphate compound represented by the following general formula (I):
Figure 2013168716
Wherein R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, An alkenyloxy group having 2 to 6 carbon atoms, an alkynyloxy group having 3 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aryloxy group having 6 to 12 carbon atoms, wherein X 1 and X 2 are each independently Represents a fluorine atom or a chlorine atom, and m represents 1 or 2.
R 3 represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms when m is 1. When m is 2, an alkylene group having 2 to 6 carbon atoms, an alkenylene group having 4 to 8 carbon atoms, or an alkynylene group having 4 to 8 carbon atoms is shown.
At least one hydrogen atom of the group represented by R 1 or R 2 may be substituted with a halogen atom. When R 1 and R 2 are alkyl groups or alkoxy groups, R 1 and R 2 may be bonded to form a ring structure. )
非水電解液が、更に下記一般式(II)で表される化合物及び一般式(III)で表される化合物から選ばれる1種以上を含有することを特徴とする非水電解液。
Figure 2013168716
(式中、R4及びR5はR1及びR2と同義であり、R6は、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数3〜6のアルキニル基、又は炭素数6〜12のアリール基を示し、R7は、水素原子、又は炭素数1〜6のアルキル基を示し、X3はフッ素原子又は塩素原子を示す。
4及びR5である基が有する少なくとも一つの水素原子は、ハロゲン原子で置換されていてもよい。また、R4及びR5がアルキル基又はアルコキシ基の場合は、R4及びR5は結合して環構造を形成してもよい。)
Figure 2013168716
(式中、R8及びR9はR1及びR2と同義であり、R10はR6と同義であり、R11及びR12は同一でも異なっていてもよく、水素原子、又は少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1〜6のアルキル基を示し、nは1〜4の整数を示す。また、R8及びR9がアルキル基又はアルコキシ基の場合は、R8及びR9は結合して環構造を形成してもよい。)
The non-aqueous electrolyte further contains at least one selected from a compound represented by the following general formula (II) and a compound represented by the general formula (III).
Figure 2013168716
(In the formula, R 4 and R 5 have the same meanings as R 1 and R 2 , and R 6 is an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, and an alkynyl group having 3 to 6 carbon atoms. Or an aryl group having 6 to 12 carbon atoms, R 7 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and X 3 represents a fluorine atom or a chlorine atom.
At least one hydrogen atom of the groups R 4 and R 5 may be substituted with a halogen atom. When R 4 and R 5 are an alkyl group or an alkoxy group, R 4 and R 5 may be bonded to form a ring structure. )
Figure 2013168716
(Wherein R 8 and R 9 have the same meanings as R 1 and R 2 , R 10 has the same meaning as R 6 , R 11 and R 12 may be the same or different, and are a hydrogen atom or at least one 1 represents an alkyl group having 1 to 6 carbon atoms in which one hydrogen atom may be substituted with a halogen atom, and n represents an integer of 1 to 4. When R 8 and R 9 are an alkyl group or an alkoxy group, , R 8 and R 9 may combine to form a ring structure.)
前記一般式(I)で表されるジハロリン酸エステル化合物が、エチル 2−(ジエチルホスホリル)−2,2−ジフルオロアセテート、2−プロピニル 2−(ジエチルホスホリル)−2,2−ジフルオロアセテート、エチル 2−(エトキシ(エチル)ホスホリル)−2,2−ジフルオロアセテート、メチル 2−(ジメトキシホスホリル)−2,2−ジフルオロアセテート、メチル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート、エチル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート、エチル 2−クロロ−2−(ジエトキシホスホリル)−2−フルオロアセテート、エチル 2,2−ジクロロ−2−(ジエトキシホスホリル)アセテート、エチル 2−(ジフェノキシホスホリル)−2,2−ジフルオロアセテート、プロピル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート、ヘキシル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート、イソプロピル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート、シクロヘキシル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート、ビニル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート、アリル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート、2−プロピニル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート、2−プロピニル 2,2−ジクロロ−2−(ジエトキシホスホリル)アセテート、1−メチル−2−プロピニル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート、ペンタフルオロフェニル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート、2−トリフルオロメチル 2−(ジエトキシホスホリル)−2,2−ジフルオロアセテートから選ばれる一種又は二種以上が挙げられ、m=2の場合、エタン−1,2−ジイル ビス(2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート)、2−ブテン−1,4−ジイル ビス(2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート)、2−ブチン−1,4−ジイル ビス(2−(ジエトキシホスホリル)−2,2−ジフルオロアセテート)から選ばれる一種又は二種以上である、請求項1に記載の非水電解液。   The dihalophosphate compound represented by the general formula (I) is ethyl 2- (diethylphosphoryl) -2,2-difluoroacetate, 2-propynyl 2- (diethylphosphoryl) -2,2-difluoroacetate, ethyl 2 -(Ethoxy (ethyl) phosphoryl) -2,2-difluoroacetate, methyl 2- (dimethoxyphosphoryl) -2,2-difluoroacetate, methyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate, ethyl 2- (Diethoxyphosphoryl) -2,2-difluoroacetate, ethyl 2-chloro-2- (diethoxyphosphoryl) -2-fluoroacetate, ethyl 2,2-dichloro-2- (diethoxyphosphoryl) acetate, ethyl 2- (Diphenoxyphosphoryl) -2,2-difluo Acetate, propyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate, hexyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate, isopropyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate, Cyclohexyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate, vinyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate, allyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate, 2- Propinyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate, 2-propynyl 2,2-dichloro-2- (diethoxyphosphoryl) acetate, 1-methyl-2-propynyl 2- (diethoxyphosphoryl) -2 , 2-Difluoroacete , Pentafluorophenyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate, 2-trifluoromethyl 2- (diethoxyphosphoryl) -2,2-difluoroacetate , M = 2, ethane-1,2-diyl bis (2- (diethoxyphosphoryl) -2,2-difluoroacetate), 2-butene-1,4-diyl bis (2- (diethoxyphosphoryl) -2,2-difluoroacetate) or 2-butyne-1,4-diylbis (2- (diethoxyphosphoryl) -2,2-difluoroacetate) The non-aqueous electrolyte described. 前記一般式(II)で表される化合物が、エチル 2−(ジエチルホスホリル)−2−フルオロアセテート、2−プロピニル 2−(ジエチルホスホリル)−2−フルオロアセテート、メチル 2−(ジメトキシホスホリル)−2−フルオロアセテート、メチル 2−(ジメトキシホスホリル)−2−フルオロプロパノエート、メチル 2−(ジエトキシホスホリル)−2−フルオロアセテート、エチル 2−(ジメトキシホスホリル)−2−フルオロアセテート、エチル 2−(ジエトキシホスホリル)−2−フルオロアセテート、イソプロピル 2−(ジエトキシホスホリル)−2−フルオロアセテート、ビニル 2−(ジエトキシホスホリル)−2−フルオロアセテート、アリル 2−(ジエトキシホスホリル)−2−フルオロアセテート、2−プロピニル 2−(ジエトキシホスホリル)−2−フルオロアセテート、エチル 2−(ジエトキシホスホリル)−2−フルオロプロパノエートから選ばれる一種又は二種以上である、請求項2に記載の非水電解液。   The compound represented by the general formula (II) is ethyl 2- (diethylphosphoryl) -2-fluoroacetate, 2-propynyl 2- (diethylphosphoryl) -2-fluoroacetate, methyl 2- (dimethoxyphosphoryl) -2. -Fluoroacetate, methyl 2- (dimethoxyphosphoryl) -2-fluoropropanoate, methyl 2- (diethoxyphosphoryl) -2-fluoroacetate, ethyl 2- (dimethoxyphosphoryl) -2-fluoroacetate, ethyl 2- ( Diethoxyphosphoryl) -2-fluoroacetate, isopropyl 2- (diethoxyphosphoryl) -2-fluoroacetate, vinyl 2- (diethoxyphosphoryl) -2-fluoroacetate, allyl 2- (diethoxyphosphoryl) -2-fluoro Acetate, 2- The nonaqueous electrolytic solution according to claim 2, which is one or more selected from propynyl 2- (diethoxyphosphoryl) -2-fluoroacetate and ethyl 2- (diethoxyphosphoryl) -2-fluoropropanoate. . 前記一般式(III)で表される化合物が、エチル 2−(ジエチルホスホリル)アセテート(構造式C4)、2−プロピニル 2−(ジエチルホスホリル)アセテート、メチル 2−(ジメトキシホスホリル)アセテート、メチル 2−(ジエトキシホスホリル)アセテート、エチル 2−(ジメトキシホスホリル)アセテート、エチル 2−(ジエトキシホスホリル)アセテート、エチル 2−(ジエトキシホスホリル)プロパノエート、プロピル 2−(ジエトキシホスホリル)アセテート、イソプロピル 2−(ジエトキシホスホリル)アセテート、ビニル 2−(ジエトキシホスホリル)アセテート、アリル 2−(ジエトキシホスホリル)アセテート、2−プロピニル 2−(ジエトキシホスホリル)アセテートから選ばれる一種又は二種以上である、請求項2に記載の非水電解液。   The compound represented by the general formula (III) is ethyl 2- (diethylphosphoryl) acetate (structural formula C4), 2-propynyl 2- (diethylphosphoryl) acetate, methyl 2- (dimethoxyphosphoryl) acetate, methyl 2- (Diethoxyphosphoryl) acetate, ethyl 2- (dimethoxyphosphoryl) acetate, ethyl 2- (diethoxyphosphoryl) acetate, ethyl 2- (diethoxyphosphoryl) propanoate, propyl 2- (diethoxyphosphoryl) acetate, isopropyl 2- ( Diethoxyphosphoryl) acetate, vinyl 2- (diethoxyphosphoryl) acetate, allyl 2- (diethoxyphosphoryl) acetate, 2-propynyl 2- (diethoxyphosphoryl) acetate In a non-aqueous electrolyte according to claim 2. 前記一般式(I)で表されるジハロリン酸エステル化合物の含有量が、非水電解液中で0.001〜10質量%である、請求項1に記載の非水電解液。   The nonaqueous electrolytic solution according to claim 1, wherein the content of the dihalophosphate compound represented by the general formula (I) is 0.001 to 10% by mass in the nonaqueous electrolytic solution. 非水溶媒が少なくとも1種の環状カーボネートを含む、請求項1〜6のいずれかに記載の非水電解液。   The nonaqueous electrolytic solution according to any one of claims 1 to 6, wherein the nonaqueous solvent contains at least one cyclic carbonate. 環状カーボネートが、エチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、2,3−ブチレンカーボネート、4−フルオロ−1,3−ジオキソラン−2−オン、トランス又はシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、ビニレンカーボネート、ビニルエチレンカーボネート、及び4−エチニル−1,3−ジオキソラン−2−オンから選ばれる一種又は二種以上である、請求項7に記載の非水電解液。   The cyclic carbonate is ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolan-2-one, trans or cis-4,5-difluoro-1, The nonaqueous electrolytic solution according to claim 7, which is one or more selected from 3-dioxolan-2-one, vinylene carbonate, vinylethylene carbonate, and 4-ethynyl-1,3-dioxolan-2-one. . 非水溶媒が、更に鎖状エステルを含有する、請求項1〜8のいずれかに記載の非水電解液。   The nonaqueous electrolytic solution according to any one of claims 1 to 8, wherein the nonaqueous solvent further contains a chain ester. 鎖状エステルが、メチルエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、及びエチルプロピルカーボネートから選ばれる非対称鎖状カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、及びジブチルカーボネートから選ばれる対称鎖状カーボネート、及び鎖状カルボン酸エステルから選ばれる一種又は二種以上である、請求項9に記載の非水電解液。   Symmetrical chain ester selected from asymmetric chain carbonate selected from methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, and ethyl propyl carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, and dibutyl carbonate The nonaqueous electrolytic solution according to claim 9, which is one or more selected from a chain carbonate and a chain carboxylic acid ester. 電解質塩が、LiPF6、LiPO22、Li2PO3F、LiBF4、LiSO3F、LiN(SO2F)2、LiN(SO2CF32、LiN(SO2252、ビス[オキサレート−O,O’]ホウ酸リチウム、ジフルオロビス[オキサレート−O,O’]リン酸リチウム、及びテトラフルオロ[オキサレート−O,O’]リン酸リチウムから選ばれる一種又は二種以上のリチウム塩を含む、請求項1〜10のいずれかに記載の非水電解液。The electrolyte salt is LiPF 6 , LiPO 2 F 2 , Li 2 PO 3 F, LiBF 4 , LiSO 3 F, LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , one or two selected from lithium bis [oxalate-O, O ′] lithium borate, difluorobis [oxalate-O, O ′] lithium phosphate, and tetrafluoro [oxalate-O, O ′] lithium phosphate The non-aqueous electrolyte in any one of Claims 1-10 containing the lithium salt of a seed | species or more. リチウム塩が、LiPF6を含み、更にLiPO22、LiBF4、LiN(SO2CF32、LiN(SO2F)2、ビス[オキサレート−O,O’]ホウ酸リチウム及びジフルオロビス[オキサレート−O,O’]リン酸リチウムから選ばれる一種又は二種以上を含む、請求項11に記載の非水電解液。The lithium salt contains LiPF 6 , and LiPO 2 F 2 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 F) 2 , lithium bis [oxalate-O, O ′] lithium borate and difluorobis The nonaqueous electrolytic solution according to claim 11, comprising one or more selected from [oxalate-O, O ′] lithium phosphate. リチウム塩の濃度が、非水溶媒に対して、0.3〜2.5Mである、請求項11又は12に記載の非水電解液。   The nonaqueous electrolytic solution according to claim 11 or 12, wherein the concentration of the lithium salt is 0.3 to 2.5 M with respect to the nonaqueous solvent. 請求項1に記載の一般式(I)で表されるジハロリン酸エステル化合物を含有することを特徴とする蓄電デバイスの非水電解液用添加剤。   An additive for a nonaqueous electrolyte solution for an electricity storage device, comprising the dihalophosphate compound represented by the general formula (I) according to claim 1. 正極、負極及び請求項1〜13のいずれかに記載の非水電解液を備えたことを特徴とする蓄電デバイス。   An electricity storage device comprising the positive electrode, the negative electrode, and the nonaqueous electrolytic solution according to claim 1. 正極の活物質が、コバルト、マンガン、及びニッケルから選ばれる一種又は二種以上を含有するリチウムとの複合金属酸化物、又は鉄、コバルト、ニッケル、及びマンガンから選ばれる一種又は二種以上を含有するリチウム含有オリビン型リン酸塩である、請求項15に記載の蓄電デバイス。   The active material of the positive electrode contains a composite metal oxide with lithium containing one or more selected from cobalt, manganese, and nickel, or one or more selected from iron, cobalt, nickel, and manganese The electricity storage device according to claim 15, which is a lithium-containing olivine-type phosphate. 負極の活物質が、リチウム金属、リチウム合金、リチウムを吸蔵及び放出することが可能な炭素材料、スズ、スズ化合物、ケイ素、ケイ素化合物、及びチタン酸リチウム化合物から選ばれる一種又は二種以上を含有する、請求項15又は16に記載の蓄電デバイス。   The negative electrode active material contains one or more selected from lithium metal, lithium alloy, carbon material capable of inserting and extracting lithium, tin, tin compounds, silicon, silicon compounds, and lithium titanate compounds The electricity storage device according to claim 15 or 16. 下記一般式(IV)で表されるジハロリン酸エステル化合物。
Figure 2013168716
(式中、R13及びR14はそれぞれ独立に、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、炭素数6〜12のアリール基、又は炭素数6〜12のアリールオキシ基を示し、X4は、フッ素原子又は塩素原子を示し、pは1又は2を示す。
15は、pが1の場合は、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数3〜6のアルキニル基、又は炭素数6〜12のアリール基を示し、pが2の場合は、炭素数2〜6のアルキレン基、炭素数4〜8のアルケニレン基、炭素数4〜8のアルキニレン基を示す。
13又はR14である基が有する少なくとも一つの水素原子は、ハロゲン原子で置換されていてもよい。また、R13及びR14がアルキル基又はアルコキシ基の場合は、R13及びR14は結合して環構造を形成してもよい。ただし、R13及びR14が、ともに炭素数1〜6のアルキコキシ基であり、R15が、炭素数1〜2のアルキル基の場合を除く。)
A dihalophosphate compound represented by the following general formula (IV).
Figure 2013168716
Wherein R 13 and R 14 are each independently an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aryloxy having 6 to 12 carbon atoms. Represents a group, X 4 represents a fluorine atom or a chlorine atom, and p represents 1 or 2.
R 15 represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 3 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms when p is 1. When p is 2, an alkylene group having 2 to 6 carbon atoms, an alkenylene group having 4 to 8 carbon atoms, or an alkynylene group having 4 to 8 carbon atoms is shown.
At least one hydrogen atom of the group represented by R 13 or R 14 may be substituted with a halogen atom. When R 13 and R 14 are an alkyl group or an alkoxy group, R 13 and R 14 may be bonded to form a ring structure. However, R 13 and R 14 are both an alkoxy group having 1 to 6 carbon atoms, and R 15 is an alkyl group having 1 to 2 carbon atoms. )
JP2014514726A 2012-05-08 2013-05-07 Non-aqueous electrolyte, power storage device using the same, and dihalophosphate compound Active JP6137177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014514726A JP6137177B2 (en) 2012-05-08 2013-05-07 Non-aqueous electrolyte, power storage device using the same, and dihalophosphate compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012106522 2012-05-08
JP2012106522 2012-05-08
PCT/JP2013/062858 WO2013168716A1 (en) 2012-05-08 2013-05-07 Nonaqueous electrolyte solution, electricity storage device using same, and dihalophosphoric acid ester compound
JP2014514726A JP6137177B2 (en) 2012-05-08 2013-05-07 Non-aqueous electrolyte, power storage device using the same, and dihalophosphate compound

Publications (2)

Publication Number Publication Date
JPWO2013168716A1 true JPWO2013168716A1 (en) 2016-01-07
JP6137177B2 JP6137177B2 (en) 2017-05-31

Family

ID=49550752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014514726A Active JP6137177B2 (en) 2012-05-08 2013-05-07 Non-aqueous electrolyte, power storage device using the same, and dihalophosphate compound

Country Status (2)

Country Link
JP (1) JP6137177B2 (en)
WO (1) WO2013168716A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768773A (en) * 2021-03-15 2021-05-07 蜂巢能源科技有限公司 Electrolyte and lithium ion battery
US11888117B2 (en) 2021-07-14 2024-01-30 Lg Energy Solution, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6414077B2 (en) * 2013-12-19 2018-10-31 宇部興産株式会社 Non-aqueous electrolyte, power storage device using the same, and phosphonoformic acid compound used therefor
US10093688B2 (en) 2014-08-25 2018-10-09 Ube Industries, Ltd. Non-aqueous liquid electrolyte, electricity storage device using same, and phosphorus compound used therein
JP6628697B2 (en) * 2015-09-30 2020-01-15 パナソニック株式会社 Non-aqueous electrolyte secondary battery
WO2017216821A1 (en) * 2016-06-13 2017-12-21 Nec Corporation Fast Chargeable Lithium Ion Batteries with Oxide-Nanoparticle Coated Carbon Anodes and Imide Anion Based Lithium Salt Included Electrolyte
CN114122521B (en) * 2020-12-30 2023-12-19 珠海冠宇电池股份有限公司 Nonaqueous electrolyte for lithium ion battery and lithium ion battery comprising same
CN114421014A (en) * 2022-01-20 2022-04-29 中国科学技术大学 Chlorinated ether electrolyte and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196896A (en) * 1983-04-12 1984-11-08 バイエル・アクチエンゲゼルシヤフト Chlorinated phosphorylmethylcarbonyl derivatives
JPH10189039A (en) * 1996-12-25 1998-07-21 Mitsui Chem Inc Nonaqueous electrolyte and nonaqueous electrolytic secondary battery
JP2004006382A (en) * 2003-06-30 2004-01-08 Ube Ind Ltd Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery
JP2009070615A (en) * 2007-09-11 2009-04-02 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2010192457A (en) * 2003-08-11 2010-09-02 Ube Ind Ltd Lithium secondary battery, and nonaqueous electrolyte solution thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460495B (en) * 2011-04-12 2016-01-27 宇部兴产株式会社 Nonaqueous electrolytic solution and employ the electric energy storage device of this nonaqueous electrolytic solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196896A (en) * 1983-04-12 1984-11-08 バイエル・アクチエンゲゼルシヤフト Chlorinated phosphorylmethylcarbonyl derivatives
JPH10189039A (en) * 1996-12-25 1998-07-21 Mitsui Chem Inc Nonaqueous electrolyte and nonaqueous electrolytic secondary battery
JP2004006382A (en) * 2003-06-30 2004-01-08 Ube Ind Ltd Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery
JP2010192457A (en) * 2003-08-11 2010-09-02 Ube Ind Ltd Lithium secondary battery, and nonaqueous electrolyte solution thereof
JP2009070615A (en) * 2007-09-11 2009-04-02 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768773A (en) * 2021-03-15 2021-05-07 蜂巢能源科技有限公司 Electrolyte and lithium ion battery
US11888117B2 (en) 2021-07-14 2024-01-30 Lg Energy Solution, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same

Also Published As

Publication number Publication date
WO2013168716A1 (en) 2013-11-14
JP6137177B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP5354118B2 (en) Organophosphorus compound
JP6414077B2 (en) Non-aqueous electrolyte, power storage device using the same, and phosphonoformic acid compound used therefor
JP6380392B2 (en) Non-aqueous electrolyte, power storage device using the same, and biphenyl group-containing carbonate compound used therefor
JP6137177B2 (en) Non-aqueous electrolyte, power storage device using the same, and dihalophosphate compound
JP5979150B2 (en) Non-aqueous electrolyte and power storage device using the same
JP6075374B2 (en) Non-aqueous electrolyte and power storage device using the same
JP6583267B2 (en) Non-aqueous electrolyte, power storage device using the same, and lithium salt used therefor
JP6176112B2 (en) Non-aqueous electrolyte and power storage device using the same
JP6035684B2 (en) Non-aqueous electrolyte and electrochemical device using the same
EP2579377A1 (en) Nonaqueous electrolyte solution and electrochemical element using same
JP5822070B2 (en) Non-aqueous electrolyte and power storage device using the same
JP6015673B2 (en) Non-aqueous electrolyte and power storage device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R150 Certificate of patent or registration of utility model

Ref document number: 6137177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250