JPWO2013137300A1 - Silanol compound removing agent, silanol compound removing method, chemical filter and exposure apparatus - Google Patents

Silanol compound removing agent, silanol compound removing method, chemical filter and exposure apparatus Download PDF

Info

Publication number
JPWO2013137300A1
JPWO2013137300A1 JP2014504954A JP2014504954A JPWO2013137300A1 JP WO2013137300 A1 JPWO2013137300 A1 JP WO2013137300A1 JP 2014504954 A JP2014504954 A JP 2014504954A JP 2014504954 A JP2014504954 A JP 2014504954A JP WO2013137300 A1 JPWO2013137300 A1 JP WO2013137300A1
Authority
JP
Japan
Prior art keywords
silanol compound
activated carbon
oxygen
functional group
containing functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014504954A
Other languages
Japanese (ja)
Inventor
太年 下津
太年 下津
俊 石川
俊 石川
章博 今井
章博 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2014504954A priority Critical patent/JPWO2013137300A1/en
Publication of JPWO2013137300A1 publication Critical patent/JPWO2013137300A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/372Coating; Grafting; Microencapsulation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/55Compounds of silicon, phosphorus, germanium or arsenic
    • B01D2257/553Compounds comprising hydrogen, e.g. silanes

Abstract

含酸素官能基を有する活性炭であり、該活性炭1g当たりの含酸素官能基の量が0.5mmol/g以上であることを特徴とするシラノール化合物除去剤。本発明によれば、シラノール化合物の除去効果が高いシラノール化合物除去剤を提供することができる。A silanol compound removing agent characterized by being an activated carbon having an oxygen-containing functional group, wherein the amount of the oxygen-containing functional group per 1 g of the activated carbon is 0.5 mmol / g or more. ADVANTAGE OF THE INVENTION According to this invention, the silanol compound removal agent with a high removal effect of a silanol compound can be provided.

Description

本発明は、シラノール化合物を含有する被処理空気中のシラノール化合物の除去等、シラノール化合物を除去するためシラノール化合物除去剤に関する。   The present invention relates to a silanol compound removing agent for removing a silanol compound such as removal of a silanol compound in air to be treated containing the silanol compound.

半導体・液晶をはじめとする産業では、製品の歩留まりや品質、信頼性を確保するため、クリーンルーム内の空気や製品表面の汚染制御が重要である。特に、半導体産業分野では、製品の高集積度化に伴い、回路パターンが微細化しているため、半導体の製造に用いられる露光工程においては、露光波長が短波長化してきている。現在では、光源として、波長が248nmであるKrFエキシマレーザーや、波長が193nmであるArFエキシマレーザーが用いられている。   In industries such as semiconductors and liquid crystals, control of air in clean rooms and product surfaces is important to ensure product yield, quality, and reliability. In particular, in the semiconductor industry field, circuit patterns are miniaturized as products are highly integrated, so that the exposure wavelength has become shorter in the exposure process used for semiconductor manufacturing. At present, a KrF excimer laser having a wavelength of 248 nm and an ArF excimer laser having a wavelength of 193 nm are used as a light source.

半導体の製造では、ウエハの表面に水酸基があるとレジストがはじかれるので、ウエハの処理過程として、フォトレジスト塗布前にウエハの水酸基を除去し、疎水性を増すために、ヘキサメチルジシラザン(HMDS)が使用される。このHMDSが加水分解すると、トリメチルシラノールが生成する。そして、トリメチルシラノールは、上記露光工程において、エネルギーの高い短波長の光と光化化学反応を起こし、露光装置の露光レンズに付着し、ヘイズ(曇り)の原因となり、露光障害を引き起こす。   In semiconductor manufacturing, when a hydroxyl group is present on the wafer surface, the resist is repelled. Therefore, as a wafer processing process, hexamethyldisilazane (HMDS) is used to remove the hydroxyl group of the wafer before applying the photoresist and increase the hydrophobicity. ) Is used. When this HMDS is hydrolyzed, trimethylsilanol is produced. And in the said exposure process, trimethylsilanol raise | generates photochemical reaction with light with a short wavelength with high energy, adheres to the exposure lens of an exposure apparatus, causes a haze (cloudiness), and causes exposure trouble.

このような背景から、特許文献1(特開2009−295765号公報)には、シラノール類を、水酸基が存在する繊維状無機化合物と接触させて、該繊維状無機化合物に化学結合でシラノール類を捕集除去する基体の浄化方法が開示されている。   From such a background, Patent Document 1 (Japanese Patent Laid-Open No. 2009-295765) discloses that silanols are brought into contact with a fibrous inorganic compound having a hydroxyl group, and the silanols are chemically bonded to the fibrous inorganic compound. A method for purifying a substrate to be collected and removed is disclosed.

また、特許文献2(特開2011−166085号公報)には、多孔質体から構成される多数の吸着剤を備え、前記多数の吸着剤の少なくとも一部は、金属触媒(白金又はパラジウム)が担持されているケミカルフィルタが開示されている。該ケミカルフィルタでは、金属触媒が担持されているフィルタ部で、シラノール化合物を二量化し、その二量体を金属触媒が担持されていないフィルタ部で吸着させる方法が採用されている。   Patent Document 2 (Japanese Patent Application Laid-Open No. 2011-166085) includes a large number of adsorbents composed of a porous body, and at least a part of the large number of adsorbents includes a metal catalyst (platinum or palladium). A supported chemical filter is disclosed. The chemical filter employs a method in which a silanol compound is dimerized in a filter portion on which a metal catalyst is supported, and the dimer is adsorbed on a filter portion on which the metal catalyst is not supported.

また、特許文献3(特開2012−30164号公報)には、シラノール化合物を含む空気を減湿して相対湿度33%以下とする減湿手段と、前記減湿手段で減湿された空気をろ過して、前記シラノール化合物を除去するケミカルフィルタとを備えることを特徴とする空気浄化システムが開示されている。   Patent Document 3 (Japanese Patent Application Laid-Open No. 2012-30164) describes a dehumidifying means that dehumidifies air containing a silanol compound to a relative humidity of 33% or less, and air dehumidified by the dehumidifying means. An air purification system comprising a chemical filter for filtering and removing the silanol compound is disclosed.

特開2009−295765号公報(特許請求の範囲)JP 2009-295765 A (Claims) 特開2011−166085号公報(特許請求の範囲)JP 2011-166085 A (Claims) 特開2012−30164号公報(特許請求の範囲)JP 2012-30164 A (Claims)

ところが、引用文献1では、無機状繊維化合物の表面温度を70〜300℃に保持する機構が必要であり、温湿度が極めて精密に制御されている露光装置等に搭載するには、現実的ではなく、また、コスト高になってしまう。   However, in Cited Document 1, a mechanism for maintaining the surface temperature of the inorganic fiber compound at 70 to 300 ° C. is necessary, and it is practical to mount it on an exposure apparatus or the like in which the temperature and humidity are extremely precisely controlled. It will also be expensive.

また、引用文献2では、高価な金属触媒が使用されていること、金属触媒が担持されている部分と、シラノール化合物の二量体を吸着させる部分とが必要となるため、フィルタ層が厚くなってしまい、経済的ではない。   Further, in Cited Document 2, an expensive metal catalyst is used, a part on which the metal catalyst is supported, and a part for adsorbing the dimer of the silanol compound are required, so that the filter layer becomes thick. It is not economical.

また、引用文献3には、減湿を行うための除湿装置が必要になるため、コスト高になってしまう。   Moreover, since Cited Document 3 requires a dehumidifying device for performing dehumidification, the cost increases.

従って、本発明の課題は、シラノール化合物の除去効果、特に、被処理空気中のシラノール化合物の除去効果が高いシラノール化合物除去剤を提供することにある。また、本発明の課題は、被処理空気中のシラノール化合物の除去効果が高いシラノール化合物の除去方法を提供することにある。   Therefore, the subject of this invention is providing the silanol compound removal agent with a high removal effect of the silanol compound, especially the removal effect of the silanol compound in to-be-processed air. Moreover, the subject of this invention is providing the removal method of the silanol compound with the high removal effect of the silanol compound in to-be-processed air.

本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、シラノール化合物、特に、トリメチルシラノールを、含酸素官能基が導入されている活性炭に接触させることにより、含酸素官能基の作用で、シラノール化合物を二量化させることができ、そして、シラノール化合物を二量化させることにより、活性炭に吸着され易くすることができること、活性炭中の含酸素官能基の量を特定の範囲とすることにより、シラノール化合物、特に、トリメチルシラノール化合物の除去効果が高くなること等を見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-described problems in the prior art, the present inventors have made contact with a silanol compound, particularly trimethylsilanol, by contacting activated carbon into which an oxygen-containing functional group has been introduced. The silanol compound can be dimerized by the action of the functional group, and by dimerizing the silanol compound, it can be easily adsorbed on the activated carbon, and the amount of oxygen-containing functional group in the activated carbon is in a specific range. As a result, it has been found that the removal effect of silanol compounds, particularly trimethylsilanol compounds, is increased, and the present invention has been completed.

すなわち、本発明(1)は、含酸素官能基を有する活性炭であり、該含酸素官能基を有する活性炭1g当たりの含酸素官能基の量が0.5mmol/g以上であることを特徴とするシラノール化合物除去剤を提供するものである。   That is, the present invention (1) is activated carbon having an oxygen-containing functional group, and the amount of the oxygen-containing functional group per 1 g of the activated carbon having the oxygen-containing functional group is 0.5 mmol / g or more. A silanol compound removing agent is provided.

また、本発明(2)は、1g当たりに0.5mmol/g以上の含酸素官能基を有する活性炭に、シラノール化合物を含有する被処理空気を接触させて、シラノール化合物を二量化させ、生成した該シラノール化合物の二量体を、該含酸素官能基を有する活性炭に吸着させることにより、該被処理空気中の該シラノール化合物を除去することを特徴とするシラノール化合物の除去方法を提供するものである。   Moreover, this invention (2) produced | generated by making the to-be-processed air containing a silanol compound contact the activated carbon which has an oxygen-containing functional group of 0.5 mmol / g or more per gram, and dimerizing the silanol compound. Provided is a method for removing a silanol compound, characterized in that the silanol compound in the air to be treated is removed by adsorbing the dimer of the silanol compound to activated carbon having the oxygen-containing functional group. is there.

また、本発明(3)は、1g当たりに0.5mmol/g以上の含酸素官能基を有する活性炭が用いられていることを特徴とする本発明(2)のシラノール化合物の除去方法を実施するためのケミカルフィルタを提供するものである。   In addition, the present invention (3) carries out the silanol compound removal method of the present invention (2), characterized in that activated carbon having an oxygen-containing functional group of 0.5 mmol / g or more per gram is used. A chemical filter is provided.

また、本発明(4)は、本発明(3)のケミカルフィルタを有することを特徴とする露光装置を提供するものである。   Moreover, this invention (4) provides the exposure apparatus characterized by having the chemical filter of this invention (3).

本発明によれば、シラノール化合物の除去効果、特に、被処理空気中のシラノール化合物の除去効果が高いシラノール化合物除去剤を提供することができる。また、本発明によれば、被処理空気中のシラノール化合物の除去効果が高いシラノール化合物の除去方法を提供することができる。また、本発明によれば、被処理空気中のシラノール化合物の除去効果が高いケミカルフィルタを提供することができる。また、本発明によれば、トリメチルシラノールの露光レンズへの付着による露光障害が少ない露光装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the removal effect of a silanol compound, especially the silanol compound removal agent with a high removal effect of the silanol compound in to-be-processed air can be provided. Moreover, according to this invention, the removal method of the silanol compound with the high removal effect of the silanol compound in to-be-processed air can be provided. Moreover, according to this invention, the chemical filter with the high removal effect of the silanol compound in to-be-processed air can be provided. Further, according to the present invention, it is possible to provide an exposure apparatus with few exposure obstacles due to adhesion of trimethylsilanol to the exposure lens.

実施例で用いたトリメチルシラノール除去試験装置を示す図である。It is a figure which shows the trimethylsilanol removal test apparatus used in the Example. 実施例及び比較例のトリメチルシラノール除去率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the trimethylsilanol removal rate of an Example and a comparative example.

本発明のシラノール化合物除去剤は、含酸素官能基を有する活性炭であり、該含酸素官能基を有する活性炭1g当たりの含酸素官能基の量が0.5mmol/g以上であることを特徴とするシラノール化合物除去剤である。   The silanol compound removing agent of the present invention is activated carbon having an oxygen-containing functional group, and the amount of the oxygen-containing functional group per 1 g of the activated carbon having the oxygen-containing functional group is 0.5 mmol / g or more. Silanol compound remover.

本発明のシラノール化合物除去剤は、含酸素官能基を有する活性炭、すなわち、含酸素官能基が導入されている活性炭である。つまり、含酸素官能基を有する活性炭とは、活性炭の炭素原子に、含酸素官能基が結合している活性炭である。言い換えると、本発明のシラノール化合物除去剤は、酸化処理された活性炭であり、酸化処理により含酸素官能基が導入された活性炭である。   The silanol compound removing agent of the present invention is activated carbon having an oxygen-containing functional group, that is, activated carbon into which an oxygen-containing functional group has been introduced. That is, the activated carbon having an oxygen-containing functional group is activated carbon in which an oxygen-containing functional group is bonded to a carbon atom of the activated carbon. In other words, the silanol compound removing agent of the present invention is activated carbon that has been subjected to oxidation treatment, and activated carbon into which an oxygen-containing functional group has been introduced by oxidation treatment.

含酸素官能基としては、カルボニル基、水酸基、ラクトン基、カルボキシル基、キノン基、無水カルボン酸基等が挙げられる。そして、含酸素官能基を有する活性炭は、含酸素官能基として、少なくとも、カルボニル基、水酸基、ラクトン基及びカルボキシル基のうちの1種又は2種以上を有することが好ましく、少なくとも、カルボニル基、水酸基、ラクトン基及びカルボキシル基を有することが特に好ましい。   Examples of the oxygen-containing functional group include a carbonyl group, a hydroxyl group, a lactone group, a carboxyl group, a quinone group, and a carboxylic anhydride group. The activated carbon having an oxygen-containing functional group preferably has at least one or more of a carbonyl group, a hydroxyl group, a lactone group and a carboxyl group as the oxygen-containing functional group, and at least a carbonyl group, a hydroxyl group It is particularly preferable to have a lactone group and a carboxyl group.

含酸素官能基を有する活性炭の1g当たりの含酸素官能基の量は、0.5mmol/g以上、好ましくは0.8〜3.0mmol/g、特に好ましくは1.0〜2.5mmol/gである。含酸素官能基を有する活性炭の1g当たりの含酸素官能基の量が、上記範囲にあることにより、シラノール化合物の除去効果が高くなる。   The amount of the oxygen-containing functional group per 1 g of the activated carbon having an oxygen-containing functional group is 0.5 mmol / g or more, preferably 0.8 to 3.0 mmol / g, particularly preferably 1.0 to 2.5 mmol / g. It is. When the amount of the oxygen-containing functional group per 1 g of the activated carbon having the oxygen-containing functional group is within the above range, the effect of removing the silanol compound is enhanced.

なお、含酸素官能基を有する活性炭の1g当たりの含酸素官能基の量及び各官能基の量は、以下のようにして測定される。先ず、含酸素官能基を有する活性炭を、115℃に調節した恒温乾燥器で8〜10時間真空乾燥後、乾燥剤としてシリカゲルを入れたデシケータ中で放冷する。次いで、4個の50ml共栓三角フラスコ(A、B、C、D)を用意し、各三角フラスコに、冷却した活性炭1gを0.1mgまで正確に量り取る。次いで、三角フラスコ(D)にN/10炭酸水素ナトリウム水溶液を、三角フラスコ(C)にN/10炭酸ナトリウム水溶液を、三角フラスコ(B)にN/10水酸化ナトリウム水溶液を、三角フラスコ(A)にN/10ナトリウムエトキシドエタノール溶液を、25ml加え、160rpm、25℃にて24時間振盪する。振盪後、遠心分離にて上澄みと沈殿に分離し、上澄み液10mlを20mlビーカーに正確に量り、pH計を用いてpHが4になるまで、N/10塩酸で滴定する。次いで、塩酸滴定量から、次式により、活性炭1g当たりの各塩基の消費量を算出する。
塩基消費量(mmol/g)=(0.1×(10−HCl滴定量)×25)/10
滴定の結果、炭酸水素ナトリウムの消費量がD(mmol/g)、炭酸ナトリウムの消費量がC(mmol/g)、水酸化ナトリウム水溶液の消費量がB(mmol/g)、ナトリウムエトキシドの消費量がA(mmol/g)であった場合、活性炭1g当たりの含酸素官能基の量は「A(mmol/g)」であり、また、カルボニル基の量は「A−B(mmol/g)」、水酸基の量は「B−C(mmol/g)」、ラクトン基の量は「C−D(mmol/g)」、カルボキシル基の量は「D(mmol/g)」となる。
In addition, the amount of oxygen-containing functional groups per 1 g of activated carbon having oxygen-containing functional groups and the amount of each functional group are measured as follows. First, activated carbon having an oxygen-containing functional group is vacuum-dried for 8 to 10 hours in a constant temperature dryer adjusted to 115 ° C., and then allowed to cool in a desiccator containing silica gel as a desiccant. Next, four 50 ml stoppered Erlenmeyer flasks (A, B, C, D) are prepared, and 1 g of cooled activated carbon is accurately weighed to 0.1 mg in each Erlenmeyer flask. Next, an N / 10 sodium hydrogen carbonate aqueous solution was added to the Erlenmeyer flask (D), an N / 10 sodium carbonate aqueous solution was added to the Erlenmeyer flask (C), an N / 10 sodium hydroxide aqueous solution was added to the Erlenmeyer flask (B), and an Erlenmeyer flask (A ) 25 ml of N / 10 sodium ethoxide ethanol solution is added to the solution and shaken at 160 rpm at 25 ° C. for 24 hours. After shaking, the supernatant and precipitate are separated by centrifugation, and 10 ml of the supernatant is accurately weighed into a 20 ml beaker and titrated with N / 10 hydrochloric acid until the pH is 4 using a pH meter. Next, the consumption of each base per gram of activated carbon is calculated from the hydrochloric acid titration amount according to the following formula.
Base consumption (mmol / g) = (0.1 × (10-HCl titration) × 25) / 10
As a result of titration, the consumption of sodium bicarbonate was D (mmol / g), the consumption of sodium carbonate was C (mmol / g), the consumption of aqueous sodium hydroxide was B (mmol / g), and the sodium ethoxide When the consumption was A (mmol / g), the amount of oxygen-containing functional groups per gram of activated carbon was “A (mmol / g)”, and the amount of carbonyl groups was “A-B (mmol / g). g) ", the amount of hydroxyl groups is" BC (mmol / g) ", the amount of lactone groups is" CD (mmol / g) ", and the amount of carboxyl groups is" D (mmol / g) ". .

本発明のシラノール化合物除去剤により除去される物質は、被処理空気等に含有されているシラノール化合物である。シラノール化合物は、シラノール基(−Si−OH)を有する化合物である。シラノール化合物としては、分子量が300以下のシラノール化合物が好ましく、分子量が200以下のシラノール化合物が特に好ましい。更に好ましくは、シラノール化合物としては、トリメチルシラノール、トリエチルシラノール等が挙げられる。そして、本発明のシラノール化合物除去剤は、被処理空気がトリメチルシラノールを含有する場合に、特に顕著な効果を奏する。   The substance removed by the silanol compound removing agent of the present invention is a silanol compound contained in the air to be treated. A silanol compound is a compound having a silanol group (—Si—OH). As the silanol compound, a silanol compound having a molecular weight of 300 or less is preferable, and a silanol compound having a molecular weight of 200 or less is particularly preferable. More preferably, examples of the silanol compound include trimethylsilanol and triethylsilanol. And the silanol compound removing agent of this invention has a remarkable effect especially when to-be-processed air contains a trimethylsilanol.

含酸素官能基を有する活性炭のBET比表面積は、好ましくは500〜2000m/g、特に好ましくは800〜1700m/gである。含酸素官能基を有する活性炭のBET比表面積が、上記範囲にあることにより、シラノール化合物の除去効果が高くなる。BET specific surface area of the activated carbon with oxygen-containing functional groups is preferably 500~2000m 2 / g, particularly preferably 800~1700m 2 / g. When the BET specific surface area of the activated carbon having an oxygen-containing functional group is in the above range, the silanol compound removal effect is enhanced.

含酸素官能基を有する活性炭の平均細孔径は、好ましくは0.4〜3.0nm、特に好ましくは0.6〜2.5nmである。また、含酸素官能基を有する活性炭の全細孔容積は、好ましくは0.30〜2.00cm/g、特に好ましくは0.40〜1.50cm/gである。含酸素官能基を有する活性炭の平均細孔径又は全細孔容積が、上記範囲にあることにより、シラノール化合物の除去効果が高くなる。The average pore diameter of the activated carbon having an oxygen-containing functional group is preferably 0.4 to 3.0 nm, particularly preferably 0.6 to 2.5 nm. The total pore volume of the activated carbon having an oxygen-containing functional group is preferably 0.30 to 2.00 cm 3 / g, particularly preferably 0.40 to 1.50 cm 3 / g. When the average pore diameter or total pore volume of the activated carbon having an oxygen-containing functional group is in the above range, the removal effect of the silanol compound is enhanced.

含酸素官能基を有する活性炭を製造する方法としては、活性炭を気相又は液相で酸化する方法が挙げられる。   Examples of a method for producing activated carbon having an oxygen-containing functional group include a method of oxidizing activated carbon in a gas phase or a liquid phase.

含酸素官能基を有する活性炭の製造の原料となる活性炭としては、特に制限されないが、ヤシ殻系活性炭、木質炭系活性炭、ピッチ系活性炭、フェノール樹脂系活性炭等が挙げられる。原料活性炭のBET比表面積は、好ましくは600〜2000m/g、特に好ましくは900〜1800m/gである。原料活性炭の平均細孔径は、好ましくは0.4〜3.0nm、特に好ましくは0.6〜2.5nmである。原料活性炭の全細孔容積は、好ましくは0.30〜2.00cm/g、特に好ましくは0.40〜1.50cm/gである。Although it does not restrict | limit especially as activated carbon used as the raw material of manufacture of the activated carbon which has an oxygen-containing functional group, A coconut shell type | system | group activated carbon, a wood charcoal type activated carbon, a pitch type activated carbon, a phenol resin type activated carbon etc. are mentioned. The BET specific surface area of the raw material activated carbon is preferably 600 to 2000 m 2 / g, particularly preferably 900 to 1800 m 2 / g. The average pore diameter of the raw material activated carbon is preferably 0.4 to 3.0 nm, particularly preferably 0.6 to 2.5 nm. The total pore volume of the raw material activated carbon is preferably 0.30 to 2.00 cm 3 / g, particularly preferably 0.40 to 1.50 cm 3 / g.

活性炭を気相で酸化する方法としては、活性炭を、オゾンガスで酸化する方法、塩素ガスで酸化する方法、空気中で加熱することにより空気酸化する方法、酸素処理と窒素酸化物処理の併用、酸素ガス又は空気による低温プラズマ処理等が挙げられる。   As a method of oxidizing activated carbon in the gas phase, a method of oxidizing activated carbon with ozone gas, a method of oxidizing with chlorine gas, a method of air oxidation by heating in air, a combination of oxygen treatment and nitrogen oxide treatment, oxygen Examples thereof include low-temperature plasma treatment with gas or air.

また、活性炭を液相で酸化する方法としては、活性炭を、オゾン水溶液、硝酸水溶液、過酸化水素水溶液、硫酸溶液、塩素酸溶液、ヨウ素酸溶液、次亜塩素酸溶液、臭素水溶液、過マンガン酸カリウム溶液等に浸漬する方法が挙げられる。液相での活性炭の酸化を行った後は、酸化処理された活性炭を、純水で十分に洗浄し、80〜120℃程度で乾燥する。   In addition, as a method of oxidizing activated carbon in the liquid phase, activated carbon is converted into ozone aqueous solution, nitric acid aqueous solution, hydrogen peroxide aqueous solution, sulfuric acid solution, chloric acid solution, iodic acid solution, hypochlorous acid solution, bromine aqueous solution, permanganic acid. The method of immersing in a potassium solution etc. is mentioned. After the activated carbon is oxidized in the liquid phase, the oxidized activated carbon is sufficiently washed with pure water and dried at about 80 to 120 ° C.

活性炭の酸化条件は、適宜選択されるが、活性炭1g当たりの含酸素官能基の量が、0.5mmol/g以上となる条件、好ましくは0.8〜3.0mmol/gとなる条件、特に好ましくは1.0〜2.5mmol/gとなる条件が選択される。   The oxidation conditions of the activated carbon are selected as appropriate, but the condition that the amount of oxygen-containing functional groups per 1 g of activated carbon is 0.5 mmol / g or more, preferably 0.8 to 3.0 mmol / g, particularly Preferably, a condition of 1.0 to 2.5 mmol / g is selected.

そして、活性炭を酸化することにより、活性炭の炭素の一部が酸化されて、含酸素官能基へと変換され、含酸素官能基を有する活性炭が得られる。   Then, by oxidizing the activated carbon, a part of the carbon of the activated carbon is oxidized and converted to an oxygen-containing functional group, and activated carbon having an oxygen-containing functional group is obtained.

本発明のシラノール化合物除去剤は、シラノール化合物を含有する被処理空気中のシラノール化合物の除去等、シラノール化合物を除去するために用いられる。   The silanol compound removing agent of the present invention is used for removing a silanol compound such as removal of a silanol compound in air to be treated containing the silanol compound.

本発明のシラノール化合物除去剤は、含酸素官能基を有する活性炭であるので、その含酸素官能基にシラノール化合物を含有する被処理空気が接触すること等により、シラノール化合物と含酸素官能基が接触すると、下記式(1)に示すように、含酸素官能基を有する活性炭中の含酸素官能基の酸素原子の非共有電子対と、シラノール化合物中のシラノール基の水素原子とが結合し、次いで、近隣に存在している含酸素官能基の酸素原子の非共有電子対にシラノール基の水素原子が結合している2つのシラノール化合物が、脱水縮合して、二量化するものと考えられる。二量化反応は、「2RSiOH→RSiOSiR+HO」である。
式(1):
Since the silanol compound removing agent of the present invention is activated carbon having an oxygen-containing functional group, the silanol compound and the oxygen-containing functional group come into contact with the oxygen-containing functional group, for example, by contact with the air to be treated containing the silanol compound. Then, as shown in the following formula (1), the unshared electron pair of the oxygen atom of the oxygen-containing functional group in the activated carbon having an oxygen-containing functional group is bonded to the hydrogen atom of the silanol group in the silanol compound, It is considered that two silanol compounds in which a hydrogen atom of a silanol group is bonded to an unshared electron pair of an oxygen atom of an oxygen-containing functional group present in the vicinity undergoes dehydration condensation to dimerize. The dimerization reaction is “2R 3 SiOH → R 3 SiOSiR 3 + H 2 O”.
Formula (1):

本発明者らは、活性炭に導入されている含酸素官能基の作用により、5〜40℃、好ましくは10〜30℃の低温でも、シラノール化合物の二量化が起こること、及びシラノール化合物を二量化することにより、除去対象物の分子量を大きくすることができるので、活性炭に吸着され易くすることができることを見出した。そして、含酸素官能基を有する活性炭の1g当たりの含酸素官能基の量を、0.5mmol/g以上、好ましくは0.8〜3.0mmol/g、特に好ましくは1.0〜2.5mmol/gとすることにより、シラノール化合物の除去効果が高くなることを見出した。そのため、本発明のシラノール化合物除去剤によれば、従来、分子量が小さいために、活性炭では吸着除去し難いと考えられていたトリメチルシラノール等の低分子量のシラノール化合物であっても、活性炭に吸着させて除去することができる。また、本発明のシラノール化合物除去剤によれば、5〜40℃、好ましくは10〜30℃と低温で、被処理空気中のシラノール化合物の除去等、シラノール化合物の除去を行うことができる。   The present inventors have found that dimerization of the silanol compound occurs even at a low temperature of 5 to 40 ° C., preferably 10 to 30 ° C., due to the action of the oxygen-containing functional group introduced into the activated carbon, and the silanol compound is dimerized. As a result, the molecular weight of the object to be removed can be increased, so that it can be easily adsorbed on the activated carbon. And the amount of the oxygen-containing functional group per 1 g of the activated carbon having an oxygen-containing functional group is 0.5 mmol / g or more, preferably 0.8 to 3.0 mmol / g, particularly preferably 1.0 to 2.5 mmol. It was found that the effect of removing the silanol compound is enhanced by setting the amount to / g. Therefore, according to the silanol compound removing agent of the present invention, even low molecular weight silanol compounds such as trimethylsilanol, which have been conventionally considered difficult to adsorb and remove with activated carbon due to the low molecular weight, are adsorbed on activated carbon. Can be removed. Further, according to the silanol compound removing agent of the present invention, it is possible to remove the silanol compound such as removal of the silanol compound in the air to be treated at a low temperature of 5 to 40 ° C., preferably 10 to 30 ° C.

特に、本発明のシラノール化合物除去剤は、相対湿度が45%以下であるシラノール化合物を含有する被処理空気中のシラノール化合物の除去において、優れたシラノール化合物の除去効果を発揮する。なお、相対湿度の下限値は、特に制限されないが、相対湿度は、好ましくは15%以上、特に好ましくは20%以上、更に好ましくは25%以上である。   In particular, the silanol compound removing agent of the present invention exhibits an excellent silanol compound removing effect in removing silanol compounds in the air to be treated containing a silanol compound having a relative humidity of 45% or less. The lower limit of the relative humidity is not particularly limited, but the relative humidity is preferably 15% or more, particularly preferably 20% or more, and further preferably 25% or more.

本発明のシラノール化合物除去剤を用いて、被処理空気中のシラノール化合物を除去する方法としては、本発明のシラノール化合物除去剤に、シラノール化合物を含有する被処理空気を接触させる方法が挙げられる。   Examples of the method for removing the silanol compound in the air to be treated using the silanol compound removing agent of the present invention include a method of bringing the silanol compound removing agent of the present invention into contact with the air to be treated containing the silanol compound.

本発明のシラノール化合物除去剤を用いて処理される被処理空気は、特に制限されないが、例えば、半導体製造用の露光装置の光学系設置空間の空気、半導体製造用のクリーンルーム内の空気等のシラノール化合物を含有する空気である。被処理空気に含有されているシラノール化合物は、シラノール基(−Si−OH)を有する化合物であり、トリメチルシラノール、トリエチルシラノール等が挙げられる。そして、本発明のシラノール化合物除去剤は、被処理空気がトリメチルシラノールを含有する場合に、特に顕著な効果を奏する。被処理空気中のシラノール化合物の含有量は、特に制限されないが、例えば、半導体製造用の露光装置の光学系設置空間の空気の場合、通常、0.3〜8.0ppbである。   The air to be treated that is treated with the silanol compound removing agent of the present invention is not particularly limited. For example, silanol such as air in an optical system installation space of an exposure apparatus for semiconductor production, air in a clean room for semiconductor production, etc. Air containing a compound. The silanol compound contained in the air to be treated is a compound having a silanol group (—Si—OH), and examples thereof include trimethylsilanol and triethylsilanol. And the silanol compound removing agent of this invention has a remarkable effect especially when to-be-processed air contains a trimethylsilanol. The content of the silanol compound in the air to be treated is not particularly limited. For example, in the case of air in an optical system installation space of an exposure apparatus for manufacturing a semiconductor, it is usually 0.3 to 8.0 ppb.

本発明のシラノール化合物除去剤は、以下で述べる本発明のシラノール化合物の除去方法を実施するためのシラノール化合物の除去剤として、好適に用いられる。つまり、本発明のシラノール化合物の除去方法は、本発明のシラノール化合物の除去剤に、シラノール化合物を含有する被処理空気を接触させて、シラノール化合物を二量化させ、生成した該シラノール化合物の二量体を、該含酸素官能基を有する活性炭に吸着させることにより、該被処理空気中の該シラノール化合物を除去することを特徴とするシラノール化合物の除去方法である。   The silanol compound removing agent of the present invention is preferably used as a silanol compound removing agent for carrying out the silanol compound removing method of the present invention described below. That is, the silanol compound removal method of the present invention is such that the silanol compound remover of the present invention is brought into contact with the treated air containing the silanol compound to dimerize the silanol compound, and the dimer of the generated silanol compound is dimerized. A silanol compound removing method comprising removing a silanol compound in the air to be treated by adsorbing a body to activated carbon having the oxygen-containing functional group.

本発明のシラノール化合物の除去方法は、1g当たりに0.5mmol/g以上の含酸素官能基を有する活性炭に、シラノール化合物を含有する被処理空気を接触させて、シラノール化合物を二量化させ、生成した該シラノール化合物の二量体を、該含酸素官能基を有する活性炭に吸着させることにより、該被処理空気中の該シラノール化合物を除去することを特徴とするシラノール化合物の除去方法である。   In the method for removing a silanol compound of the present invention, activated carbon having an oxygen-containing functional group of 0.5 mmol / g or more per 1 g is brought into contact with the air to be treated containing the silanol compound to dimerize the silanol compound. The silanol compound removal method is characterized in that the silanol compound in the air to be treated is removed by adsorbing the dimer of the silanol compound to the activated carbon having the oxygen-containing functional group.

本発明のシラノール化合物の除去方法に係る含酸素官能基を有する活性炭は、本発明のシラノール化合物除去剤に係る含酸素官能基を有する活性炭と同様である。   The activated carbon having an oxygen-containing functional group according to the method for removing a silanol compound of the present invention is the same as the activated carbon having an oxygen-containing functional group according to the silanol compound removing agent of the present invention.

本発明のシラノール化合物の除去方法では、含酸素官能基を有する活性炭には、シラノール化合物を含有する被処理空気を接触させる。   In the silanol compound removal method of the present invention, the activated carbon having an oxygen-containing functional group is brought into contact with the air to be treated containing the silanol compound.

被処理空気は、特に制限されないが、例えば、半導体製造用の露光装置の光学系設置空間の空気、半導体製造用のクリーンルーム内の空気等のシラノール化合物を含有する空気である。   The air to be treated is not particularly limited, but is air containing a silanol compound such as air in an optical system installation space of an exposure apparatus for semiconductor manufacture, air in a clean room for semiconductor manufacture, and the like.

被処理空気に含有されているシラノール化合物は、シラノール基(−Si−OH)を有する化合物である。シラノール化合物としては、分子量が300以下のシラノール化合物が好ましく、分子量が200以下のシラノール化合物が特に好ましい。更に好ましくは、シラノール化合物としては、トリメチルシラノール、トリエチルシラノール等が挙げられる。そして、本発明のシラノール化合物の除去方法では、被処理空気がトリメチルシラノールを含有する場合に、特に顕著な効果を奏する。   The silanol compound contained in the air to be treated is a compound having a silanol group (—Si—OH). As the silanol compound, a silanol compound having a molecular weight of 300 or less is preferable, and a silanol compound having a molecular weight of 200 or less is particularly preferable. More preferably, examples of the silanol compound include trimethylsilanol and triethylsilanol. And in the removal method of the silanol compound of this invention, when a to-be-processed air contains a trimethylsilanol, there exists a remarkable effect.

被処理空気中のシラノール化合物の含有量は、特に制限されないが、例えば、半導体製造用の露光装置の光学系設置空間の空気の場合、通常、0.3〜8.0ppbである。   The content of the silanol compound in the air to be treated is not particularly limited. For example, in the case of air in an optical system installation space of an exposure apparatus for manufacturing a semiconductor, it is usually 0.3 to 8.0 ppb.

含酸素官能基を有する活性炭に被処理空気を接触させる方法としては、特に制限されず、例えば、含酸素官能基を有する活性炭を充填容器に充填して、含酸素官能基を有する活性炭層を形成し、その活性炭層に被処理空気を通過させる方法、含酸素官能基を有する活性炭を担体に担持し、その担体内に被処理空気を通過させる方法等が挙げられる。   The method of bringing the air to be treated into contact with the activated carbon having an oxygen-containing functional group is not particularly limited. For example, the activated carbon having an oxygen-containing functional group is formed by filling activated carbon having an oxygen-containing functional group into a filling container. Examples thereof include a method of allowing the air to be treated to pass through the activated carbon layer, a method of supporting the activated carbon having an oxygen-containing functional group on a carrier, and allowing the air to be treated to pass through the carrier.

含酸素官能基を有する活性炭に被処理空気を接触させるときの温度は、5〜40℃、好ましくは10〜30℃である。   The temperature at which the air to be treated is brought into contact with the activated carbon having an oxygen-containing functional group is 5 to 40 ° C, preferably 10 to 30 ° C.

含酸素官能基を有する活性炭に被処理空気を接触させるときの被処理空気の供給量は、被処理空気中のシラノール化合物の含有量、含酸素官能基を有する活性炭の使用量等により、適宜選択される。   The supply amount of the air to be treated when the air to be treated is brought into contact with the activated carbon having the oxygen-containing functional group is appropriately selected depending on the content of the silanol compound in the air to be treated, the amount of the activated carbon having the oxygen-containing functional group, etc. Is done.

本発明のシラノール化合物の除去方法では、含酸素官能基を有する活性炭にシラノール化合物を含有する被処理空気を接触させることにより、前記式(1)に示すように、含酸素官能基を有する活性炭中の含酸素官能基の酸素原子の非共有電子対と、シラノール化合物中のシラノール基の水素原子とが結合し、次いで、近隣に存在している含酸素官能基の酸素原子の非共有電子対にシラノール基の水素原子が結合している2つのシラノール化合物が、脱水縮合して、二量化するものと考えられる。二量化反応は、「2RSiOH→RSiOSiR+HO」である。In the method for removing a silanol compound of the present invention, the activated carbon having an oxygen-containing functional group is brought into contact with the treated air containing the silanol compound to bring the activated carbon having an oxygen-containing functional group into contact with the activated carbon having the oxygen-containing functional group. The unshared electron pair of the oxygen atom of the oxygen-containing functional group and the hydrogen atom of the silanol group in the silanol compound are bonded to each other, and then to the unshared electron pair of the oxygen atom of the oxygen-containing functional group present in the vicinity Two silanol compounds to which the hydrogen atom of the silanol group is bonded are considered to undergo dehydration condensation and dimerization. The dimerization reaction is “2R 3 SiOH → R 3 SiOSiR 3 + H 2 O”.

本発明者らは、活性炭に導入されている含酸素官能基の作用により、5〜40℃、好ましくは10〜30℃の低温でも、シラノール化合物の二量化が起こること、及びシラノール化合物を二量化することにより、除去対象物の分子量を大きくすることができるので、活性炭に吸着され易くすることができること、活性炭中の含酸素官能基の量を特定の範囲とすることにより、シラノール化合物の除去効果が高くなることを見出した。そして、含酸素官能基を有する活性炭の1g当たりの含酸素官能基の量を、0.5mmol/g以上、好ましくは0.8〜3.0mmol/g、特に好ましくは1.0〜2.5mmol/gとすることにより、シラノール化合物の除去効果が高くなることを見出した。そのため、本発明のシラノール化合物の除去方法によれば、従来、分子量が小さいために、活性炭では吸着除去し難いと考えられていたトリメチルシラノール等の低分子量のシラノール化合物であっても、活性炭に吸着させて除去することができる。また、本発明のシラノール化合物の除去方法によれば、5〜40℃、好ましくは10〜30℃と低温で、被処理空気中のシラノール化合物の除去を行うことができる。   The present inventors have found that dimerization of the silanol compound occurs even at a low temperature of 5 to 40 ° C., preferably 10 to 30 ° C., due to the action of the oxygen-containing functional group introduced into the activated carbon, and the silanol compound is dimerized. Since the molecular weight of the object to be removed can be increased, it can be easily adsorbed on the activated carbon, and the amount of oxygen-containing functional groups in the activated carbon is within a specific range, thereby removing the silanol compound. Found to be higher. And the amount of the oxygen-containing functional group per 1 g of the activated carbon having an oxygen-containing functional group is 0.5 mmol / g or more, preferably 0.8 to 3.0 mmol / g, particularly preferably 1.0 to 2.5 mmol. It was found that the effect of removing the silanol compound is enhanced by setting the amount to / g. Therefore, according to the silanol compound removal method of the present invention, even low-molecular weight silanol compounds such as trimethylsilanol, which have been conventionally considered difficult to adsorb and remove with activated carbon due to its low molecular weight, are adsorbed on activated carbon. Can be removed. Moreover, according to the removal method of the silanol compound of this invention, the removal of the silanol compound in to-be-processed air can be performed at 5-40 degreeC, Preferably it is 10-30 degreeC low temperature.

1g当たりに0.5mmol/g以上の含酸素官能基を有する活性炭は、特に、相対湿度が45%以下であるシラノール化合物を含有する被処理空気中のシラノール化合物の除去において、優れたシラノール化合物の除去効果を発揮する。そのため、本発明のシラノール化合物の除去方法では、シラノール化合物を含有する被処理空気の相対湿度は、45%以下が好ましい。なお、相対湿度の下限値は、特に制限されないが、相対湿度は、好ましくは15%以上、特に好ましくは20%以上、更に好ましくは25%以上である。つまり、本発明のシラノール化合物の除去方法では、シラノール化合物を含有する被処理空気の相対湿度は、15〜45%が好ましく、20〜45%が特に好ましく、25〜45%が更に好ましい。   Activated carbon having an oxygen-containing functional group of 0.5 mmol / g or more per gram is an excellent silanol compound particularly in removing silanol compounds in air to be treated containing a silanol compound having a relative humidity of 45% or less. Demonstrate the removal effect. Therefore, in the method for removing a silanol compound of the present invention, the relative humidity of the air to be treated containing the silanol compound is preferably 45% or less. The lower limit of the relative humidity is not particularly limited, but the relative humidity is preferably 15% or more, particularly preferably 20% or more, and further preferably 25% or more. That is, in the method for removing a silanol compound of the present invention, the relative humidity of the air to be treated containing the silanol compound is preferably 15 to 45%, particularly preferably 20 to 45%, and further preferably 25 to 45%.

本発明のケミカルフィルタは、本発明のシラノール化合物の除去方法を実施するためのケミカルフィルタであり、1g当たりに0.5mmol/g以上の含酸素官能基を有する活性炭(本発明のシラノール化合物除去剤に係る活性炭、本発明のシラノール化合物の除去方法に係る含酸素官能基を有する活性炭)が用いられていることを特徴とするケミカルフィルタである。   The chemical filter of the present invention is a chemical filter for carrying out the method for removing a silanol compound of the present invention, and is activated carbon having an oxygen-containing functional group of 0.5 mmol / g or more per gram (silanol compound removing agent of the present invention). Activated carbon having an oxygen-containing functional group according to the method for removing a silanol compound of the present invention) is used.

本発明のケミカルフィルタに係る含酸素官能基を有する活性炭は、本発明のシラノール化合物除去剤に係る含酸素官能基を有する活性炭と同様である。   The activated carbon having an oxygen-containing functional group according to the chemical filter of the present invention is the same as the activated carbon having an oxygen-containing functional group according to the silanol compound removing agent of the present invention.

本発明のケミカルフィルタとしては、1g当たりに0.5mmol/g以上の含酸素官能基を有する活性炭が、通気性を有する充填容器に充填され、活性炭層が形成されているケミカルフィルタが挙げられる。   Examples of the chemical filter of the present invention include a chemical filter in which activated carbon having an oxygen-containing functional group of 0.5 mmol / g or more per gram is filled in a gas-permeable filling container to form an activated carbon layer.

また、本発明のケミカルフィルタとしては、1g当たりに0.5mmol/g以上の含酸素官能基を有する活性炭が、担体に担持されているケミカルフィルタが挙げられる。   The chemical filter of the present invention includes a chemical filter in which activated carbon having an oxygen-containing functional group of 0.5 mmol / g or more per 1 g is supported on a carrier.

担体に含酸素官能基を有する活性炭が担持されている本発明のケミカルフィルタにおいて、含酸素官能基を有する活性炭が担持される担体としては、特に制限されず、ケミカルフィルタの担体として用いられるものであればよく、例えば、無機繊維で構成される無機繊維質基材(ペーパー)をハニカム構造やプリーツ構造に成形した無機繊維質担体、有機繊維で構成される有機繊維質基材(ペーパー)をハニカム構造やプリーツ構造に成形した有機繊維質担体等が挙げられる。これらのうち、担体としては、プリーツ構造が、単位体積あたりの活性炭量を増やせること、低圧力損失であることから、好ましい。   In the chemical filter of the present invention in which activated carbon having an oxygen-containing functional group is supported on the carrier, the carrier on which the activated carbon having an oxygen-containing functional group is supported is not particularly limited and is used as a carrier for a chemical filter. For example, an inorganic fibrous base material (paper) composed of inorganic fibers is formed into a honeycomb structure or a pleated structure, and an organic fibrous base material (paper) composed of organic fibers is honeycomb. Examples thereof include an organic fibrous carrier molded into a structure or a pleated structure. Among these, as the carrier, a pleated structure is preferable because it can increase the amount of activated carbon per unit volume and has a low pressure loss.

担体に含酸素官能基を有する活性炭が担持されている本発明のケミカルフィルタでは、含酸素官能基を有する活性炭の担持方法は特に制限されない。例えば、担体に含酸素官能基を有する活性炭が担持されている本発明のケミカルフィルタにおいて、含酸素官能基を有する活性炭は、担体にバインダーを用いて担持されていてもよいし、また、無機繊維質又は有機繊維質のシートにより、含酸素官能基を有する活性炭が挟み込むまれることにより、担持されていてもよい。   In the chemical filter of the present invention in which activated carbon having oxygen-containing functional groups is supported on the carrier, the method for supporting activated carbon having oxygen-containing functional groups is not particularly limited. For example, in the chemical filter of the present invention in which activated carbon having an oxygen-containing functional group is supported on a carrier, the activated carbon having an oxygen-containing functional group may be supported on a carrier by using a binder, or an inorganic fiber Activated carbon having oxygen-containing functional groups may be supported by a sheet of quality or organic fiber so as to be supported.

そして、本発明のケミカルフィルタ内に、シラノール化合物を含有する被処理空気、例えば、半導体製造用の露光装置の光学系設置空間の空気、半導体製造用のクリーンルーム内の空気等を導入し、ケミカルフィルタ内に被処理空気を通過させて、担体に担持されている含酸素官能基を有する活性炭に、被処理空気を接触させることにより、本発明のケミカルフィルタを用いて、本発明のシラノール化合物の除去方法を実施することができる。   And, into the chemical filter of the present invention, air to be treated containing a silanol compound, for example, air in an optical system installation space of an exposure apparatus for manufacturing a semiconductor, air in a clean room for manufacturing a semiconductor, etc. Removal of the silanol compound of the present invention using the chemical filter of the present invention by passing the air to be treated into contact with the activated carbon having an oxygen-containing functional group supported on the carrier. The method can be carried out.

上述したように、1g当たりに0.5mmol/g以上の含酸素官能基を有する活性炭は、特に、相対湿度が45%以下であるシラノール化合物を含有する被処理空気中のシラノール化合物の除去において、優れたシラノール化合物の除去効果を発揮するので、そのような活性炭が用いられている本発明のケミカルフィルタは、相対湿度が45%以下であるシラノール化合物を含有する被処理空気中のシラノール化合物の除去において、優れたシラノール化合物除去性能を有する。   As described above, the activated carbon having an oxygen-containing functional group of 0.5 mmol / g or more per gram, particularly in the removal of the silanol compound in the air to be treated containing a silanol compound having a relative humidity of 45% or less, Since the chemical filter of the present invention in which such activated carbon is used exhibits an excellent silanol compound removal effect, the removal of the silanol compound in the treated air containing the silanol compound having a relative humidity of 45% or less In, it has excellent silanol compound removal performance.

本発明の露光装置は、本発明のケミカルフィルタを有する露光装置である。   The exposure apparatus of the present invention is an exposure apparatus having the chemical filter of the present invention.

本発明の露光装置に係るケミカルフィルタは、本発明のケミカルフィルタと同様である。   The chemical filter according to the exposure apparatus of the present invention is the same as the chemical filter of the present invention.

本発明の露光装置の構造は、特に制限されず、通常、半導体の製造に用いられている露光装置であればよい。   The structure of the exposure apparatus of the present invention is not particularly limited, and may be any exposure apparatus that is usually used for semiconductor manufacturing.

本発明の露光装置には、光学系部材と露光対象物が設置され外部空気とは遮断可能な光学系設置空間が設けられている。また、本発明の露光装置は、光学系設置空間内の空気を抜き出し、再び、光学系設置空間内に戻す光学系設置空間内の空気の循環経路と、クリーンルーム内の空気を光学系設置空間内に取り込む外部空気取り込み経路と、を有する。そして、本発明の露光装置では、循環経路中及び外部空気取り込み経路中のそれぞれに、本発明のケミカルフィルタが設置される。   The exposure apparatus of the present invention is provided with an optical system installation space in which an optical system member and an exposure object are installed and can be shielded from external air. Further, the exposure apparatus of the present invention extracts the air in the optical system installation space and returns the air in the optical system installation space back to the optical system installation space and the air in the clean room in the optical system installation space. And an external air intake path for intake. In the exposure apparatus of the present invention, the chemical filter of the present invention is installed in each of the circulation path and the external air intake path.

本発明の露光装置は、リレーレンズ系、コンデンサーレンズ系及び投影光学系レンズ(以下、光学系部材とも記載する。)並びに露光対象物の設置部を有する。そして、本発明の露光装置では、外部空気とは遮断可能な小室内に、光学系部材及び露光対象物が設置されることにより、光学系部材及び露光対象物が設置される設置部の空間(以下、光学系設置空間とも記載する。)は、外部空気とは遮断されている。   The exposure apparatus of the present invention includes a relay lens system, a condenser lens system, a projection optical system lens (hereinafter also referred to as an optical system member), and an exposure object installation portion. In the exposure apparatus of the present invention, the optical system member and the exposure object are installed in a small chamber that can be cut off from the outside air, so that the space of the installation part in which the optical system member and the exposure object are installed ( Hereinafter, it is also referred to as an optical system installation space.) Is cut off from outside air.

本発明の露光装置は、光学系設置空間内の空気を抜き出し、再び、光学系設置空間内に戻す光学系設置空間内の空気の循環経路と、クリーンルーム内の空気を光学系設置空間内に取り込む外部空気取り込み経路と、を有し、その循環経路中と外部空気取り込み経路中のそれぞれに、本発明のケミカルフィルタが設置されている。そして、本発明の露光装置では、循環経路において、光学系設置空間から抜き出された光学系設置空間内の空気が、循環経路内に設置されているケミカルフィルタを通過することにより、抜き出された光学系設置空間内の空気中のシラノール化合物、特に、トリメチルシラノールが除去される。トリメチルシラノール等のシラノール化合物が除去された空気は、再び、光学系設置空間に戻される。また、本発明の露光装置では、外部空気取り込み経路において、クリーンルームから取り込こまれる空気が、外部空気取り込み経路内に設置されているケミカルフィルタを通過することにより、取り込まれたクリーンルーム内の空気中のシラノール化合物、特に、トリメチルシラノールが除去される。トリメチルシラノール等のシラノール化合物が除去された空気は、光学系設置空間に供給される。   In the exposure apparatus of the present invention, air in the optical system installation space is extracted and returned to the optical system installation space, and the air circulation path in the optical system installation space and the air in the clean room are taken into the optical system installation space. An external air intake path, and the chemical filter of the present invention is installed in each of the circulation path and the external air intake path. In the exposure apparatus of the present invention, the air in the optical system installation space extracted from the optical system installation space in the circulation path is extracted by passing through the chemical filter installed in the circulation path. In addition, silanol compounds in the air in the optical system installation space, particularly trimethylsilanol, are removed. The air from which silanol compounds such as trimethylsilanol have been removed is returned to the optical system installation space again. In the exposure apparatus of the present invention, in the external air intake path, the air taken in from the clean room passes through the chemical filter installed in the external air intake path, so that the air in the clean room taken in The silanol compound, especially trimethylsilanol, is removed. The air from which silanol compounds such as trimethylsilanol have been removed is supplied to the optical system installation space.

(分析方法及び評価方法)
<含酸素官能基量の測定方法>
測定対象の活性炭を、115℃に調節した恒温乾燥器で8〜10時間真空乾燥後、乾燥剤としてシリカゲルを入れたデシケータ中で放冷した。次いで、4個の50ml共栓三角フラスコ(A、B、C、D)を用意し、各三角フラスコに、冷却した活性炭1gを0.1mgまで正確に量り取った。次いで、三角フラスコ(D)にN/10炭酸水素ナトリウム水溶液を、三角フラスコ(C)にN/10炭酸ナトリウム水溶液を、三角フラスコ(B)にN/10水酸化ナトリウム水溶液を、三角フラスコ(A)にN/10ナトリウムエトキシドエタノール溶液を、25ml加え、160rpm、25℃にて24時間振盪した。振盪後、遠心分離にて上澄みと沈殿に分離し、上澄み液10mlを20mlビーカーに正確に量り、pH計を用いてpHが4になるまで、N/10塩酸で滴定した。次いで、塩酸滴定量から、次式により、活性炭1g当たりの各塩基の消費量を算出した。
塩基消費量(mmol/g)=(0.1×(10−HCl滴定量)×25)/10
炭酸水素ナトリウムの消費量がD(mmol/g)、炭酸ナトリウムの消費量がC(mmol/g)、水酸化ナトリウム水溶液の消費量がB(mmol/g)、ナトリウムエトキシドの消費量がA(mmol/g)であった場合、活性炭1g当たりの含酸素官能基量は「A(mmol/g)」であり、また、カルボニル基の量は「A−B(mmol/g)」、水酸基の量は「B−C(mmol/g)」、ラクトン基の量は「C−D(mmol/g)」、カルボキシル基の量は「D(mmol/g)」である。
(Analysis method and evaluation method)
<Measurement method of oxygen-containing functional group amount>
The activated carbon to be measured was vacuum-dried for 8 to 10 hours in a constant temperature dryer adjusted to 115 ° C., and then allowed to cool in a desiccator containing silica gel as a desiccant. Next, four 50 ml stoppered Erlenmeyer flasks (A, B, C, D) were prepared, and 1 g of cooled activated carbon was accurately weighed to 0.1 mg in each Erlenmeyer flask. Next, an N / 10 sodium hydrogen carbonate aqueous solution was added to the Erlenmeyer flask (D), an N / 10 sodium carbonate aqueous solution was added to the Erlenmeyer flask (C), an N / 10 sodium hydroxide aqueous solution was added to the Erlenmeyer flask (B), and an Erlenmeyer flask (A ) 25 ml of N / 10 sodium ethoxide ethanol solution was added to the solution and shaken at 160 rpm at 25 ° C. for 24 hours. After shaking, the mixture was separated into a supernatant and a precipitate by centrifugation, and 10 ml of the supernatant was accurately weighed in a 20 ml beaker and titrated with N / 10 hydrochloric acid until the pH reached 4 using a pH meter. Next, the consumption of each base per gram of activated carbon was calculated from the hydrochloric acid titration amount by the following formula.
Base consumption (mmol / g) = (0.1 × (10-HCl titration) × 25) / 10
The consumption of sodium bicarbonate is D (mmol / g), the consumption of sodium carbonate is C (mmol / g), the consumption of aqueous sodium hydroxide is B (mmol / g), and the consumption of sodium ethoxide is A (Mmol / g), the oxygen-containing functional group amount per 1 g of activated carbon is “A (mmol / g)”, and the carbonyl group amount is “A-B (mmol / g)”. Is “BC (mmol / g)”, the amount of lactone group is “CD (mmol / g)”, and the amount of carboxyl group is “D (mmol / g)”.

<トリメチルシラノールの除去試験>
図1に示すように、内径20mm、長さ300mmの中空ガラス管2内に、支持部材4で試験試料を挟み込むようにして、厚さ5mm(被処理空気の通気方向の長さ)の試験試料層(活性炭層)3を形成させて、トリメチルシラノール除去試験装置1を作製した。
次いで、150ppbのトリメチルシラノール含有空気(温度:23℃、相対湿度:45%(実施例1及び比較例1)、35%(実施例2及び比較例2)、又は25%(実施例3及び比較例3))を、ガス入口21から供給し、ガス出口22から排出して、試験試料層3に被処理空気を風速0.3m/秒で通気した。所定時間が経過する毎に、通気時のガス入口21側のトリメチルシラノール含有空気と、ガス出口22側のトリメチルシラノール含有空気を、専用の分析用炭素系吸着管にて捕集し、ガスクロマトグラフ質量分析計を用いて分析し、各捕集空気のトリメチルシラノール濃度を分析した。下記式により、各経時時間のトリメチルシラノール除去率を求めた。
トリメチルシラノール除去率(%)=((入口側のトリメチルシラノール濃度−出口側のトリメチルシラノール濃度)/入口側のトリメチルシラノール濃度)×100
<Trimethylsilanol removal test>
As shown in FIG. 1, a test sample having a thickness of 5 mm (length in the aeration direction of the air to be treated) is inserted in a hollow glass tube 2 having an inner diameter of 20 mm and a length of 300 mm by a support member 4. A layer (activated carbon layer) 3 was formed to produce a trimethylsilanol removal test apparatus 1.
Next, 150 ppb trimethylsilanol-containing air (temperature: 23 ° C., relative humidity: 45% (Example 1 and Comparative Example 1), 35% (Example 2 and Comparative Example 2), or 25% (Example 3 and Comparative Example) Example 3)) was supplied from the gas inlet 21 and discharged from the gas outlet 22, and the air to be treated was vented to the test sample layer 3 at a wind speed of 0.3 m / sec. Every time a predetermined time elapses, the trimethylsilanol-containing air on the gas inlet 21 side during ventilation and the trimethylsilanol-containing air on the gas outlet 22 side are collected by a dedicated analytical carbon-based adsorption tube, and the mass of the gas chromatograph Analysis was performed using an analyzer, and the concentration of trimethylsilanol in each collected air was analyzed. The trimethylsilanol removal rate for each elapsed time was determined by the following formula.
Trimethylsilanol removal rate (%) = ((trimethylsilanol concentration at the inlet side−trimethylsilanol concentration at the outlet side) / trimethylsilanol concentration at the inlet side) × 100

(実施例1)
破砕形状の平均粒径が32/60メッシュ(0.25〜0.50mm)、比表面積が1500m/gである活性炭a50gを、1%オゾン雰囲気下に8時間曝露して酸化を行った。得られた含酸素官能基を有する活性炭Aの含酸素官能基量を測定したところ、含酸素官能基量は1.57mmol/g、カルボニル基量は0.35mmol/g、水酸基量は0.59mmol/g、ラクトン基量は0.33mmol/g、カルボキシル基量は0.30mmol/gであった。また、得られた含酸素官能基を有する活性炭Aの比表面積は1500m/gであり、平均細孔径は0.7nmであり、全細孔容積は0.78cm/gであった。
次いで、図1に示すトリメチルシラノール除去試験装置1に、含酸素官能基を有する活性炭Aを充填し、150ppbのトリメチルシラノール含有空気として、温度が23℃、相対湿度が45%の150ppbのトリメチルシラノール含有空気を用いて、トリメチルシラノールの除去試験を行った。その結果を表1及び図2に示す。
Example 1
Oxidation was performed by exposing 50 g of activated carbon a having an average particle size of crushed shape of 32/60 mesh (0.25 to 0.50 mm) and a specific surface area of 1500 m 2 / g in a 1% ozone atmosphere for 8 hours. When the amount of oxygen-containing functional groups of the obtained activated carbon A having oxygen-containing functional groups was measured, the amount of oxygen-containing functional groups was 1.57 mmol / g, the amount of carbonyl groups was 0.35 mmol / g, and the amount of hydroxyl groups was 0.59 mmol. / G, the amount of lactone groups was 0.33 mmol / g, and the amount of carboxyl groups was 0.30 mmol / g. Moreover, the specific surface area of the obtained activated carbon A having an oxygen-containing functional group was 1500 m 2 / g, the average pore diameter was 0.7 nm, and the total pore volume was 0.78 cm 3 / g.
Next, the trimethylsilanol removal test apparatus 1 shown in FIG. 1 is filled with activated carbon A having an oxygen-containing functional group and 150 ppb of trimethylsilanol containing 150 ppb of trimethylsilanol containing air at a temperature of 23 ° C. and a relative humidity of 45%. Trimethylsilanol removal test was performed using air. The results are shown in Table 1 and FIG.

(比較例1)
破砕形状の平均粒径が32/60メッシュ(0.25〜0.50mm)、比表面積が1500m/gである活性炭aの含酸素官能基量を測定したところ、含酸素官能基量は0.39mmol/g、カルボニル基量は0.14mmol/g、水酸基量は0.20mmol/g、ラクトン基量は0.02mmol/g、カルボキシル基量は0.03mmol/gであった。
次いで、図1に示すトリメチルシラノール除去試験装置1に、活性炭aを充填し、150ppbのトリメチルシラノール含有空気として、温度が23℃、相対湿度が45%の150ppbのトリメチルシラノール含有空気を用いて、トリメチルシラノールの除去試験を行った。その結果を表2及び図2に示す。
(Comparative Example 1)
When the oxygen-containing functional group amount of the activated carbon a having a crushed shape average particle size of 32/60 mesh (0.25 to 0.50 mm) and a specific surface area of 1500 m 2 / g was measured, the oxygen-containing functional group amount was 0. .39 mmol / g, the amount of carbonyl groups was 0.14 mmol / g, the amount of hydroxyl groups was 0.20 mmol / g, the amount of lactone groups was 0.02 mmol / g, and the amount of carboxyl groups was 0.03 mmol / g.
Next, activated carbon a is filled in the trimethylsilanol removal test apparatus 1 shown in FIG. 1, and trimethylsilanol-containing air having a temperature of 23 ° C. and a relative humidity of 45% is used as 150 ppb of trimethylsilanol-containing air. A silanol removal test was conducted. The results are shown in Table 2 and FIG.

(シラノール化合物の二量体の吸着量の分析)
実施例1、比較例1において、トリメチルシラノール除去試験を行った後の活性炭(実施例1では234.1時間試験後のもの、比較例1では99.3時間試験後のもの)を、それぞれ、バイアル瓶に0.1g採取した。次いで、バイアル瓶に、ジクロロメタン2mLを加えてから振とうし、抽出を行った。次いで、抽出液を、GC−MSにて定量分析し、活性炭に吸着されていた物質中のトリメチルシラノールとトリメチルシラノールの二量体の比率を求めた。その結果、実施例1では、トリメチルシラノールが12質量%、トリメチルシラノールの二量体が88質量%であった。また、比較例1では、トリメチルシラノールが76質量%、トリメチルシラノールの二量体が24質量%であった。
(Analysis of adsorption amount of dimer of silanol compound)
In Example 1 and Comparative Example 1, activated carbon after the trimethylsilanol removal test (in Example 1, after 234.1 hours test, in Comparative Example 1 after 99.3 hours test), respectively, 0.1 g was collected in a vial. Next, 2 mL of dichloromethane was added to the vial and shaken for extraction. Subsequently, the extract was quantitatively analyzed by GC-MS, and the ratio of the trimer of trimethylsilanol and trimethylsilanol in the substance adsorbed on the activated carbon was determined. As a result, in Example 1, trimethylsilanol was 12 mass%, and the dimer of trimethylsilanol was 88 mass%. In Comparative Example 1, trimethylsilanol was 76% by mass, and trimethylsilanol dimer was 24% by mass.

(実施例2)
実施例1と同様にして、含酸素官能基を有する活性炭Aを得た。
次いで、図1に示すトリメチルシラノール除去試験装置1に、含酸素官能基を有する活性炭Aを充填し、150ppbのトリメチルシラノール含有空気として、温度が23℃、相対湿度が35%の150ppbのトリメチルシラノール含有空気を用いて、トリメチルシラノールの除去試験を行った。その結果を表3及び図2に示す。
(Example 2)
In the same manner as in Example 1, activated carbon A having an oxygen-containing functional group was obtained.
Next, the trimethylsilanol removal test apparatus 1 shown in FIG. 1 is filled with activated carbon A having an oxygen-containing functional group and 150 ppb of trimethylsilanol containing 150 ppb of trimethylsilanol containing air at a temperature of 23 ° C. and a relative humidity of 35%. Trimethylsilanol removal test was performed using air. The results are shown in Table 3 and FIG.

(比較例2)
比較例1で用いた活性炭aを用意した。
次いで、図1に示すトリメチルシラノール除去試験装置1に、活性炭aを充填し、150ppbのトリメチルシラノール含有空気として、温度が23℃、相対湿度が35%の150ppbのトリメチルシラノール含有空気を用いて、トリメチルシラノールの除去試験を行った。その結果を表4及び図2に示す。
(Comparative Example 2)
Activated carbon a used in Comparative Example 1 was prepared.
Next, activated carbon a is filled in the trimethylsilanol removal test apparatus 1 shown in FIG. 1, and trimethylsilanol-containing air having a temperature of 23 ° C. and a relative humidity of 35% is used as 150 ppb of trimethylsilanol-containing air. A silanol removal test was conducted. The results are shown in Table 4 and FIG.

(実施例3)
実施例1と同様にして、含酸素官能基を有する活性炭Aを得た。
次いで、図1に示すトリメチルシラノール除去試験装置1に、含酸素官能基を有する活性炭Aを充填し、150ppbのトリメチルシラノール含有空気として、温度が23℃、相対湿度が25%の150ppbのトリメチルシラノール含有空気を用いて、トリメチルシラノールの除去試験を行った。その結果を表5及び図2に示す。
(Example 3)
In the same manner as in Example 1, activated carbon A having an oxygen-containing functional group was obtained.
Next, the trimethylsilanol removal test apparatus 1 shown in FIG. 1 is filled with activated carbon A having an oxygen-containing functional group, and 150 ppb of trimethylsilanol containing 150 ppb of trimethylsilanol containing air at a temperature of 23 ° C. and a relative humidity of 25%. Trimethylsilanol removal test was performed using air. The results are shown in Table 5 and FIG.

(比較例3)
比較例1で用いた活性炭aを用意した。
次いで、図1に示すトリメチルシラノール除去試験装置1に、活性炭aを充填し、150ppbのトリメチルシラノール含有空気として、温度が23℃、相対湿度が25%の150ppbのトリメチルシラノール含有空気を用いて、トリメチルシラノールの除去試験を行った。その結果を表6及び図2に示す。
(Comparative Example 3)
Activated carbon a used in Comparative Example 1 was prepared.
Next, activated carbon a is filled in the trimethylsilanol removal test apparatus 1 shown in FIG. 1 and trimethylsilanol-containing air having a temperature of 23 ° C. and a relative humidity of 25% is used as 150 ppb of trimethylsilanol-containing air. A silanol removal test was conducted. The results are shown in Table 6 and FIG.

上記トリメチルシラノールの除去試験で求めたトリメチルシラノールの除去率の経時変化から、トリメチルシラノールの除去率が90%に達する時間を、90%除去寿命(時間)として求めた。その結果を表7に示す。   From the time-dependent change of the trimethylsilanol removal rate determined in the trimethylsilanol removal test, the time at which the trimethylsilanol removal rate reached 90% was determined as the 90% removal life (hours). The results are shown in Table 7.

1)相対湿度:試験に用いたトリメチルシラノール含有空気の相対湿度 1) Relative humidity: Relative humidity of air containing trimethylsilanol used in the test

Claims (9)

含酸素官能基を有する活性炭であり、該含酸素官能基を有する活性炭1g当たりの含酸素官能基の量が0.5mmol/g以上であることを特徴とするシラノール化合物除去剤。   A silanol compound removing agent, which is activated carbon having an oxygen-containing functional group, wherein the amount of the oxygen-containing functional group per 1 g of the activated carbon having the oxygen-containing functional group is 0.5 mmol / g or more. 前記含酸素官能基を有する活性炭は、前記含酸素官能基として、少なくとも、カルボニル基、水酸基、ラクトン基及びカルボキシル基のうちの1種又は2種以上を有することを特徴とする請求項1記載のシラノール化合物除去剤。   The activated carbon having the oxygen-containing functional group has at least one or more of a carbonyl group, a hydroxyl group, a lactone group, and a carboxyl group as the oxygen-containing functional group. Silanol compound remover. 前記シラノール化合物が、トリメチルシラノールであることを特徴とする請求項1又は2いずれか1項記載のシラノール化合物除去剤。   The silanol compound removing agent according to claim 1, wherein the silanol compound is trimethylsilanol. 1g当たりに0.5mmol/g以上の含酸素官能基を有する活性炭に、シラノール化合物を含有する被処理空気を接触させて、シラノール化合物を二量化させ、生成した該シラノール化合物の二量体を、該含酸素官能基を有する活性炭に吸着させることにより、該被処理空気中の該シラノール化合物を除去することを特徴とするシラノール化合物の除去方法。   The activated carbon having an oxygen-containing functional group of 0.5 mmol / g or more per 1 g is brought into contact with the treated air containing the silanol compound to dimerize the silanol compound, and the produced dimer of the silanol compound is A method for removing a silanol compound, wherein the silanol compound in the air to be treated is removed by adsorbing the activated carbon having an oxygen-containing functional group. 前記含酸素官能基を有する活性炭は、前記含酸素官能基として、少なくとも、カルボニル基、水酸基、ラクトン基及びカルボキシル基のうちの1種又は2種以上を有することを特徴とする請求項4記載のシラノール化合物の除去方法。   The activated carbon having the oxygen-containing functional group has at least one or more of a carbonyl group, a hydroxyl group, a lactone group, and a carboxyl group as the oxygen-containing functional group. A method for removing a silanol compound. 前記シラノール化合物が、トリメチルシラノールであることを特徴とする請求項4又は5いずれか1項記載のシラノール化合物の除去方法。   The method for removing a silanol compound according to claim 4 or 5, wherein the silanol compound is trimethylsilanol. 前記シラノール化合物を含有する被処理空気の相対湿度が、45%以下であることを特徴とする請求項4〜6いずれか1項記載のシラノール化合物の除去方法。   The method for removing a silanol compound according to any one of claims 4 to 6, wherein a relative humidity of the air to be treated containing the silanol compound is 45% or less. 1g当たりに0.5mmol/g以上の含酸素官能基を有する活性炭が用いられていることを特徴とする請求項4〜7いずれか1項記載のシラノール化合物の除去方法を実施するためのケミカルフィルタ。   8. The chemical filter for carrying out the silanol compound removal method according to claim 4, wherein activated carbon having an oxygen-containing functional group of 0.5 mmol / g or more per gram is used. . 請求項8記載のケミカルフィルタを有することを特徴とする露光装置。   An exposure apparatus comprising the chemical filter according to claim 8.
JP2014504954A 2012-03-13 2013-03-13 Silanol compound removing agent, silanol compound removing method, chemical filter and exposure apparatus Pending JPWO2013137300A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014504954A JPWO2013137300A1 (en) 2012-03-13 2013-03-13 Silanol compound removing agent, silanol compound removing method, chemical filter and exposure apparatus

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2012055382 2012-03-13
JP2012055382 2012-03-13
JP2012055383 2012-03-13
JP2012055383 2012-03-13
JP2012225763 2012-10-11
JP2012225762 2012-10-11
JP2012225762 2012-10-11
JP2012225763 2012-10-11
JP2014504954A JPWO2013137300A1 (en) 2012-03-13 2013-03-13 Silanol compound removing agent, silanol compound removing method, chemical filter and exposure apparatus

Publications (1)

Publication Number Publication Date
JPWO2013137300A1 true JPWO2013137300A1 (en) 2015-08-03

Family

ID=49161205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014504954A Pending JPWO2013137300A1 (en) 2012-03-13 2013-03-13 Silanol compound removing agent, silanol compound removing method, chemical filter and exposure apparatus

Country Status (3)

Country Link
JP (1) JPWO2013137300A1 (en)
TW (1) TW201348131A (en)
WO (1) WO2013137300A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077305A1 (en) * 2012-11-16 2014-05-22 ニチアス株式会社 Silanol compound remover
CN110467183A (en) * 2019-09-09 2019-11-19 上海纳米技术及应用国家工程研究中心有限公司 Efficiently preparation process of column-shaped active carbon of removal benzene in air and products thereof and application
WO2023117432A1 (en) * 2021-12-20 2023-06-29 Asml Netherlands B.V. Purge gas supply

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118121A (en) * 1988-10-25 1990-05-02 Osaka Gas Co Ltd Pitch-based active carbon fiber and production thereof
JP2009295765A (en) * 2008-06-05 2009-12-17 Ebara Corp Gas clarification method and apparatus for collecting and removing silanols
WO2011099616A1 (en) * 2010-02-15 2011-08-18 ニッタ株式会社 Chemical filter comprising acidic impregnating agent
JP2011166085A (en) * 2010-02-15 2011-08-25 Nitta Corp Metal catalyst carrying chemical filter
JP2011212531A (en) * 2010-03-31 2011-10-27 Kuraray Chemical Co Ltd Alkylsilanol removing material, and method for manufacturing the same
JP2012030163A (en) * 2010-07-29 2012-02-16 Nitta Corp Air cleaning system
JP2012055807A (en) * 2010-09-07 2012-03-22 Kureha Corp Adsorbent for trimethylsilanol and chemical filter carrying the adsorbent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118121A (en) * 1988-10-25 1990-05-02 Osaka Gas Co Ltd Pitch-based active carbon fiber and production thereof
JP2009295765A (en) * 2008-06-05 2009-12-17 Ebara Corp Gas clarification method and apparatus for collecting and removing silanols
WO2011099616A1 (en) * 2010-02-15 2011-08-18 ニッタ株式会社 Chemical filter comprising acidic impregnating agent
JP2011166085A (en) * 2010-02-15 2011-08-25 Nitta Corp Metal catalyst carrying chemical filter
JP2011212531A (en) * 2010-03-31 2011-10-27 Kuraray Chemical Co Ltd Alkylsilanol removing material, and method for manufacturing the same
JP2012030163A (en) * 2010-07-29 2012-02-16 Nitta Corp Air cleaning system
JP2012055807A (en) * 2010-09-07 2012-03-22 Kureha Corp Adsorbent for trimethylsilanol and chemical filter carrying the adsorbent

Also Published As

Publication number Publication date
TW201348131A (en) 2013-12-01
WO2013137300A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
Guo et al. Adsorption of hydrogen sulphide (H2S) by activated carbons derived from oil-palm shell
Qin et al. Enhanced nitrobenzene adsorption in aqueous solution by surface silylated MCM-41
JP2005169391A (en) Material and method for purifying hydride
US20180021613A1 (en) Catalyst for disinfection, sterilization and purification of air, and preparation method thereof
JP5771012B2 (en) Method for producing ultra-high purity hydrogen peroxide solution and method for producing molecular sieve used therefor
CN102125821B (en) Active carbon-silicon aerogel complex for removing volatile organic pollutants
US4273751A (en) Removal of acidica contaminants from gas streams by caustic impregnated activated carbon
JP4469975B2 (en) Photocatalyst composite and organic substance conversion method using the same
Chen et al. Catalytic Materials for Low Concentration VOCs Removal through “Storage‐Regeneration” Cycling
Martínez de Yuso et al. Adsorption of toluene and toluene–water vapor mixture on almond shell based activated carbons
WO2013137300A1 (en) Silanol compound remover, silanol compound removal method, chemical filter, and light exposure device
Kapica-Kozar et al. Alkali-treated titanium dioxide as adsorbent for CO2 capture from air
JP6156391B2 (en) Silanol compound remover
JP6156390B2 (en) Method for removing silanol compound, chemical filter and exposure apparatus
JP2011173059A (en) Carbon dioxide adsorbent and carbon dioxide recovery apparatus using the same
JP2007160163A (en) Method of separating volatile readily adsorbable component and hardly adsorbable component from solution containing volatile readily adsorbable component and hardly adsorbable component using adsorbent
JP2009295765A (en) Gas clarification method and apparatus for collecting and removing silanols
JP2014033188A (en) Removing method of silanol compound and exposure device
JP6345964B2 (en) NOx adsorbent and method for producing the same
WO2013031415A1 (en) Nitrogen dioxide adsorbent, nitrogen dioxide adsorption apparatus, and method for removing nitrogen dioxide
JP2012030163A (en) Air cleaning system
JP2011166085A (en) Metal catalyst carrying chemical filter
JP2006016270A (en) Basic metal compound-carrying carbon and its production method
CN112107992A (en) Harmful gas removing medium and preparation method thereof
CN116801974A (en) Modified carbon adsorbents

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151202