JPWO2013084432A1 - Air conditioner and refrigeration cycle apparatus - Google Patents

Air conditioner and refrigeration cycle apparatus Download PDF

Info

Publication number
JPWO2013084432A1
JPWO2013084432A1 JP2013548073A JP2013548073A JPWO2013084432A1 JP WO2013084432 A1 JPWO2013084432 A1 JP WO2013084432A1 JP 2013548073 A JP2013548073 A JP 2013548073A JP 2013548073 A JP2013548073 A JP 2013548073A JP WO2013084432 A1 JPWO2013084432 A1 JP WO2013084432A1
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
compressor
outdoor heat
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013548073A
Other languages
Japanese (ja)
Other versions
JP6132243B2 (en
Inventor
憲昭 山本
憲昭 山本
廣和 加守田
廣和 加守田
明広 重田
明広 重田
富之 野間
富之 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013548073A priority Critical patent/JP6132243B2/en
Publication of JPWO2013084432A1 publication Critical patent/JPWO2013084432A1/en
Application granted granted Critical
Publication of JP6132243B2 publication Critical patent/JP6132243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

室外熱交換器の除霜運転時における冷媒の流れが暖房運転時における冷媒の流れと同一の方向である構成とし、室外熱交換器は、複数の冷媒流路を有する複数列の熱交換器からなり、複数列の熱交換器は、暖房運転時において、空気流に対して風上側の領域に冷媒流路の入口を設け、他の領域に冷媒流路の出口を設け、複数の冷媒流路は、前記冷媒流路の入口から前記冷媒流路の出口に向かって冷媒流路数が増加するように接続し、冷媒流路の入口の領域における冷媒流路数を、他の領域における冷媒流路数より少なく構成している。  The refrigerant flow during the defrosting operation of the outdoor heat exchanger is configured in the same direction as the refrigerant flow during the heating operation, and the outdoor heat exchanger includes a plurality of rows of heat exchangers having a plurality of refrigerant flow paths. The plurality of rows of heat exchangers are provided with a refrigerant flow path inlet in an area on the windward side of the air flow and a refrigerant flow path outlet in another area during heating operation. Is connected so that the number of refrigerant channels increases from the inlet of the refrigerant channel toward the outlet of the refrigerant channel, and the number of refrigerant channels in the inlet region of the refrigerant channel is the same as the refrigerant flow rate in other regions. The number is less than the number of roads.

Description

本発明は、空気調和機及び冷凍サイクル装置に関する。特に、空気調和機に用いられる室外熱交換器、及び室外熱交換器に付着した霜を融解するための補助熱交換器に冷媒を流す切り替え機構を備えた冷凍サイクル装置に関する。   The present invention relates to an air conditioner and a refrigeration cycle apparatus. In particular, the present invention relates to an outdoor heat exchanger used in an air conditioner, and a refrigeration cycle apparatus including a switching mechanism for flowing a refrigerant to an auxiliary heat exchanger for melting frost attached to the outdoor heat exchanger.

従来の空気調和機に用いられる室外熱交換器は、蒸発器および凝縮器のどちらで使用した場合にも高性能となるように構成されている。この従来の室外熱交換器は、蒸発器として使用した場合には、低圧力損失の冷媒流路とし、凝縮器として使用した場合には、出口側でサブクールがとれやすい冷媒流路としている(例えば、特許文献1参照。)。   An outdoor heat exchanger used in a conventional air conditioner is configured to have high performance when used in either an evaporator or a condenser. When this conventional outdoor heat exchanger is used as an evaporator, it is a refrigerant flow path with a low pressure loss, and when it is used as a condenser, it is a refrigerant flow path that is easy to take a subcool on the outlet side (for example, , See Patent Document 1).

図11は、従来の空気調和機の室外熱交換器の冷媒流路を示す図である。図11において、室外熱交換器の冷媒流路は、風下側に暖房運転時の冷媒出口側(冷房運転時の入口側)100a1、100b1、100d1、100e1、風上側に暖房運転時の冷媒入口側(冷房運転時の出口側)100c1、100f1としている。また、暖房運転時の冷媒出口側(冷房運転時の入口側)100a1、100b1、100d1、100e1の冷媒流路を100a、100b、100d、100eからなる4系統としている。更に、暖房運転時の冷媒入口側(冷房運転時の出口側)100c、100fの冷媒流路を100c、100fからなる2系統で構成している。このように、暖房運転時において、冷媒流路数を入口側より出口側に多く設けた構成となっている。   FIG. 11 is a diagram illustrating a refrigerant flow path of an outdoor heat exchanger of a conventional air conditioner. In FIG. 11, the refrigerant flow path of the outdoor heat exchanger has a refrigerant outlet side during heating operation (inlet side during cooling operation) 100a1, 100b1, 100d1, 100e1 on the leeward side, and a refrigerant inlet side during heating operation on the leeward side. (Exit side during cooling operation) 100c1 and 100f1. In addition, the refrigerant outlet side 100a1, 100b1, 100d1, 100e1 of the refrigerant outlet side during the heating operation (inlet side during the cooling operation) has four systems consisting of 100a, 100b, 100d, 100e. Furthermore, the refrigerant flow paths on the refrigerant inlet side during heating operation (outlet side during cooling operation) 100c and 100f are configured by two systems consisting of 100c and 100f. As described above, during the heating operation, the number of refrigerant flow paths is larger on the outlet side than on the inlet side.

従来の空気調和機の室外熱交換器の冷媒流路として、図12に示すようなものもある。図12において、室外熱交換器の冷媒流路としては、暖房運転時には室外熱交換器の風上側の最下段部110より冷媒が流入する。そして、1系統で複数本の伝熱管を流通したのち、室外熱交換器の最上部を経由し、冷媒流路入口110a1、110b1、110c1、110d1で4系統の流路へ分流される。それから、風下側の冷媒流路出口110a2、110b2、110c2、110d2より流出するような構成となっている。   As a refrigerant flow path of an outdoor heat exchanger of a conventional air conditioner, there is a refrigerant flow path as shown in FIG. In FIG. 12, as the refrigerant flow path of the outdoor heat exchanger, the refrigerant flows from the lowermost step part 110 on the windward side of the outdoor heat exchanger during the heating operation. Then, after a plurality of heat transfer tubes are circulated in one system, they are divided into four channels through the refrigerant channel inlets 110a1, 110b1, 110c1, and 110d1 via the top of the outdoor heat exchanger. Then, the refrigerant flows out from the leeward refrigerant passage outlets 110a2, 110b2, 110c2, and 110d2.

また、従来、ヒートポンプ式空気調和機による暖房運転時においては、室外熱交換器に着霜した場合に、暖房サイクルから冷房サイクルに四方弁を切り替えて除霜を行っている。この除霜方式では、室内ファンは停止するものの、室内機から冷気が徐々に放出され暖房感が失われるという欠点がある。   Conventionally, during heating operation using a heat pump air conditioner, when the outdoor heat exchanger is frosted, defrosting is performed by switching the four-way valve from the heating cycle to the cooling cycle. In this defrosting method, although the indoor fan stops, there is a disadvantage that the cool air is gradually discharged from the indoor unit and the feeling of heating is lost.

そこで、室外機に設けられた圧縮機に熱源となる蓄熱槽を設け、暖房運転中に補助熱交換器となる蓄熱槽に蓄えられた圧縮機の廃熱を利用して除霜するようにしたものが提案されている(例えば、特許文献2参照。)。   Therefore, a heat storage tank serving as a heat source is provided in the compressor provided in the outdoor unit, and defrosting is performed using the waste heat of the compressor stored in the heat storage tank serving as an auxiliary heat exchanger during heating operation. The thing is proposed (for example, refer patent document 2).

特開2001−174101号公報Japanese Patent Laid-Open No. 2001-174101 特許第4666111号公報Japanese Patent No. 4666111

図11に示す冷媒流路では、四方弁を切り替え、冷房サイクルで除霜運転を実施する空気調和機に関しては、除霜運転時の室外熱交換器を循環する冷媒温度も高温となるため、問題なく除霜運転をすることができる。しかしながら、暖房運転中に四方弁を切り替えることなく暖房運転を実施しながら除霜運転を実施する空気調和機に関しては、室内側への熱量も必要になる。このため、除霜運転時の室外熱交換器を循環する冷媒温度は上昇しにくく、特に、室外熱交換器の下部と室外機の基盤との間では、付着した霜が溶け残りやすいという課題を有していた。   In the refrigerant flow path shown in FIG. 11, the air conditioner that switches the four-way valve and performs the defrosting operation in the cooling cycle has a problem because the temperature of the refrigerant circulating in the outdoor heat exchanger during the defrosting operation is also high. Without defrosting. However, regarding the air conditioner that performs the defrosting operation while performing the heating operation without switching the four-way valve during the heating operation, the amount of heat to the indoor side is also required. For this reason, the temperature of the refrigerant circulating in the outdoor heat exchanger during the defrosting operation is unlikely to rise, and in particular, the problem that the attached frost tends to remain undissolved between the lower part of the outdoor heat exchanger and the base of the outdoor unit. Had.

また、図12に示す冷媒流路では、霜の溶け残りが発生しやすい箇所(室外熱交換器の長手方向両端部分)に冷媒流路の前半部分を適用することで、比較的高温の冷媒をこの箇所に流通させることができるため、上記霜の溶け残りの課題を低減することができる。しかしながら、寒冷地のように室外熱交換器に霜が着霜しやすく、室外気温が低い地域においては、霜の溶け残りが発生することがある。更に、伝熱管を繋ぐ冷媒流通管の引き回しが複雑となり、コストアップとなると共に、冷媒流路が延長されることによる圧力損失増大で暖房性能が悪化するといった課題を有していた。   Further, in the refrigerant flow path shown in FIG. 12, by applying the first half of the refrigerant flow path to places where frost is likely to remain undissolved (both ends in the longitudinal direction of the outdoor heat exchanger), relatively high temperature refrigerant can be obtained. Since it can be made to distribute | circulate to this location, the subject of the said frost remaining unmelted can be reduced. However, frost is likely to form on the outdoor heat exchanger as in cold regions, and unmelted frost may be generated in regions where the outdoor air temperature is low. Furthermore, the routing of the refrigerant flow pipe connecting the heat transfer pipes becomes complicated, resulting in an increase in cost, and heating performance deteriorates due to an increase in pressure loss due to the extension of the refrigerant flow path.

さらに、前記従来の構成は、冷暖房を行う空気調和機に対して、蓄熱槽、蓄熱熱交換器、蓄熱材、第一電磁弁、第二電磁弁といった多くの部品を追加して高コストな構成をしているにもかかわらず、冷房運転の際には蓄熱槽に蓄積された温熱を活用する機会がないという課題があった。   Furthermore, the conventional configuration is a high-cost configuration by adding many parts such as a heat storage tank, a heat storage heat exchanger, a heat storage material, a first electromagnetic valve, and a second electromagnetic valve to an air conditioner that performs air conditioning. In spite of this, there was a problem that there was no opportunity to utilize the heat accumulated in the heat storage tank during the cooling operation.

本発明の目的は、前記従来の課題を解決するもので、霜の溶け残りを解消すると共に、高性能かつ高効率な暖房運転を実現する空気調和機を提供することである。また、暖房運転の除霜時にしか使用できなかった高コストな蓄熱システムを構成する冷媒回路を冷房運転時にも活用することを可能とし、年間を通じて冷房時、暖房時双方の快適性を向上する冷凍サイクル装置を提供することである。   An object of the present invention is to solve the above-described conventional problems, and to provide an air conditioner that eliminates unmelted frost and realizes a high-performance and highly efficient heating operation. In addition, the refrigerant circuit that makes up the high-cost heat storage system that could only be used during defrosting during heating operation can be used during cooling operation, and refrigeration that improves both cooling and heating comfort throughout the year. A cycle device is provided.

上記目的を達成するために、本発明の一態様である空気調和機は、
圧縮機と、
前記圧縮機に接続された室内熱交換器と、
前記室内熱交換器と接続された膨張弁と、
前記膨張弁と接続された室外熱交換器と、
前記室内熱交換器あるいは前記室外熱交換器と前記圧縮機との接続を切り替える四方弁と、を備え、
前記室外熱交換器の除霜運転時における冷媒の流れが暖房運転時における冷媒の流れと同一の方向である構成とし、
前記室外熱交換器は、複数の冷媒流路を有する複数列の熱交換器からなり、
前記複数列の熱交換器は、暖房運転時において、空気流に対して風上側の領域に冷媒流路の入口を設け、他の領域に冷媒流路の出口を設け、
前記複数の冷媒流路は、前記冷媒流路の入口から前記冷媒流路の出口に向かって冷媒流路数が増加するように接続し、前記冷媒流路の入口の領域における冷媒流路数を、前記他の領域における冷媒流路数より少なく構成している。
In order to achieve the above object, an air conditioner according to an aspect of the present invention includes:
A compressor,
An indoor heat exchanger connected to the compressor;
An expansion valve connected to the indoor heat exchanger;
An outdoor heat exchanger connected to the expansion valve;
A four-way valve for switching the connection between the indoor heat exchanger or the outdoor heat exchanger and the compressor,
The refrigerant flow during the defrosting operation of the outdoor heat exchanger is configured in the same direction as the refrigerant flow during the heating operation,
The outdoor heat exchanger comprises a plurality of rows of heat exchangers having a plurality of refrigerant flow paths,
The plurality of rows of heat exchangers are provided with an inlet of a refrigerant channel in a region on the windward side with respect to the air flow and an outlet of the refrigerant channel in another region during heating operation,
The plurality of refrigerant channels are connected so that the number of refrigerant channels increases from the inlet of the refrigerant channel toward the outlet of the refrigerant channel, and the number of refrigerant channels in the region of the inlet of the refrigerant channel is determined. The number of refrigerant channels in the other area is smaller than that.

また、本発明の一態様である冷凍サイクル装置は、
圧縮機と、
前記圧縮機に接続された室内熱交換器と、
前記室内熱交換器と接続された膨張弁と、
前記膨張弁と接続された室外熱交換器と、
前記室内熱交換器あるいは前記室外熱交換器と前記圧縮機との接続を切り替える四方弁と、
前記圧縮機の周囲に配置される冷媒加熱用の補助熱交換器と、
前記補助熱交換器を経由して前記圧縮機の吸入管へ冷媒を流す補助熱交経路と、
前記室内熱交換器と前記膨張弁の間の配管を流れる冷媒を前記補助熱交経路へ流れるように切り替える電磁弁と、を備え、
除霜時に前記電磁弁を開いて前記室外熱交換器に付着した霜を融解して除霜する冷凍サイクル装置であって、
前記電磁弁を開閉する動作を行う電磁弁制御装置を、更に有し、
前記電磁弁制御装置は、冷房運転時において前記圧縮機の回転数が下限に到達し、冷房負荷が冷房能力より下回る状態の時、前記電磁弁の開閉動作の制御を行う構成としている。
Moreover, the refrigeration cycle apparatus which is one embodiment of the present invention includes:
A compressor,
An indoor heat exchanger connected to the compressor;
An expansion valve connected to the indoor heat exchanger;
An outdoor heat exchanger connected to the expansion valve;
A four-way valve for switching the connection between the indoor heat exchanger or the outdoor heat exchanger and the compressor;
An auxiliary heat exchanger for heating the refrigerant disposed around the compressor;
An auxiliary heat exchange path for flowing the refrigerant to the suction pipe of the compressor via the auxiliary heat exchanger;
An electromagnetic valve that switches the refrigerant flowing through the pipe between the indoor heat exchanger and the expansion valve to flow to the auxiliary heat exchange path,
A refrigeration cycle apparatus that opens the electromagnetic valve during defrosting to melt and defrost frost adhering to the outdoor heat exchanger,
A solenoid valve control device for performing an operation of opening and closing the solenoid valve;
The electromagnetic valve control device is configured to control the opening / closing operation of the electromagnetic valve when the rotation speed of the compressor reaches a lower limit during cooling operation and the cooling load is lower than the cooling capacity.

本発明の空気調和機は、室外熱交換器を通過する空気と伝熱管内を流動する冷媒が温度として対向流的な配置となる。したがって、効率よく熱交換を行うことができるため、熱交換器の高効率化が図れる。また、暖房・除霜運転時のために空気調和機に搭載された高コストな蓄熱槽、蓄熱熱交換器、蓄熱材、第一電磁弁、第二電磁弁といった多くの部品を、冷房運転時にも活用して圧縮機の運転を継続させることができるようになるため、年間を通じて冷房時、暖房時双方の快適性を向上させることができる。   In the air conditioner of the present invention, the air passing through the outdoor heat exchanger and the refrigerant flowing in the heat transfer tube are arranged in counterflow with respect to temperature. Therefore, since heat exchange can be performed efficiently, high efficiency of the heat exchanger can be achieved. In addition, many components such as high-cost heat storage tanks, heat storage heat exchangers, heat storage materials, first solenoid valves, and second solenoid valves that are installed in air conditioners for heating and defrosting operations are used during cooling operations. Since it becomes possible to continue the operation of the compressor using this, it is possible to improve the comfort of both cooling and heating throughout the year.

本発明の実施の形態1に係る蓄熱装置を備えた空気調和機の構成図である。It is a block diagram of the air conditioner provided with the thermal storage apparatus which concerns on Embodiment 1 of this invention. 図1の空気調和機の通常暖房時の冷媒回路図である。It is a refrigerant circuit figure at the time of normal heating of the air conditioner of FIG. 図1の空気調和機の除霜・暖房時の冷媒回路図である。It is a refrigerant circuit figure at the time of defrosting and heating of the air conditioner of FIG. 本発明の実施の形態1に係る室外熱交換器の暖房運転時における冷媒流路を示す図である。It is a figure which shows the refrigerant | coolant flow path at the time of the heating operation of the outdoor heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る室外熱交換器の冷媒流通管番号と通常暖房運転時における冷媒流通管温度の関係図である。It is a related figure of the refrigerant | coolant flow pipe number of the outdoor heat exchanger which concerns on Embodiment 1 of this invention, and the refrigerant | coolant flow pipe temperature at the time of normal heating operation. 本発明の実施の形態1に係る室外熱交換器の冷房運転時における冷媒流路を示す図である。It is a figure which shows the refrigerant | coolant flow path at the time of the air_conditionaing | cooling operation of the outdoor heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る室外熱交換器の冷媒流通管番号と冷房運転時における冷媒流通管温度の関係図である。It is a related figure of the refrigerant | coolant flow pipe number of the outdoor heat exchanger which concerns on Embodiment 1 of this invention, and the refrigerant | coolant flow pipe temperature at the time of air_conditionaing | cooling operation. 本発明の実施の形態1に係る室外熱交換器の冷媒流通管番号と除霜運転時における冷媒流通管温度の関係図である。It is a related figure of the refrigerant | coolant distribution pipe number of the outdoor heat exchanger which concerns on Embodiment 1 of this invention, and the refrigerant | coolant distribution pipe temperature at the time of a defrost operation. 本発明の実施の形態2に係る冷凍サイクル装置を備えた空気調和機の構成図である。It is a block diagram of the air conditioner provided with the refrigeration cycle apparatus which concerns on Embodiment 2 of this invention. (a)は、本発明の実施の形態2に係る冷凍サイクル装置を備えた空気調和機の圧縮機回転数の制御タイムチャートである。(b)は、第2電磁弁の制御タイムチャートである。(c)は、冷房能力のタイムチャートである。(A) is a control time chart of the compressor rotation speed of the air conditioner provided with the refrigeration cycle apparatus according to Embodiment 2 of the present invention. (B) is a control time chart of the second solenoid valve. (C) is a time chart of the cooling capacity. 従来の空気調和機の室外熱交換器の冷媒流路図である。It is a refrigerant | coolant flow path figure of the outdoor heat exchanger of the conventional air conditioner. 従来の空気調和機の室外熱交換器の冷媒流路図である。It is a refrigerant | coolant flow path figure of the outdoor heat exchanger of the conventional air conditioner.

第1の発明は、
圧縮機と、
前記圧縮機に接続された室内熱交換器と、
前記室内熱交換器と接続された膨張弁と、
前記膨張弁と接続された室外熱交換器と、
前記室内熱交換器あるいは前記室外熱交換器と前記圧縮機との接続を切り替える四方弁と、を備え、
前記室外熱交換器の除霜運転時における冷媒の流れが暖房運転時における冷媒の流れと同一の方向である構成とし、
前記室外熱交換器は、複数の冷媒流路を有する複数列の熱交換器からなり、
前記複数列の熱交換器は、暖房運転時において、空気流に対して風上側の領域に冷媒流路の入口を設け、他の領域に冷媒流路の出口を設け、
前記複数の冷媒流路は、前記冷媒流路の入口から前記冷媒流路の出口に向かって冷媒流路数が増加するように接続し、前記冷媒流路の入口の領域における冷媒流路数を、前記他の領域における冷媒流路数より少なく構成している。
The first invention is
A compressor,
An indoor heat exchanger connected to the compressor;
An expansion valve connected to the indoor heat exchanger;
An outdoor heat exchanger connected to the expansion valve;
A four-way valve for switching the connection between the indoor heat exchanger or the outdoor heat exchanger and the compressor,
The refrigerant flow during the defrosting operation of the outdoor heat exchanger is configured in the same direction as the refrigerant flow during the heating operation,
The outdoor heat exchanger comprises a plurality of rows of heat exchangers having a plurality of refrigerant flow paths,
The plurality of rows of heat exchangers are provided with an inlet of a refrigerant channel in a region on the windward side with respect to the air flow and an outlet of the refrigerant channel in another region during heating operation,
The plurality of refrigerant channels are connected so that the number of refrigerant channels increases from the inlet of the refrigerant channel toward the outlet of the refrigerant channel, and the number of refrigerant channels in the region of the inlet of the refrigerant channel is determined. The number of refrigerant channels in the other area is smaller than that.

このような構成とすることで、室外熱交換器が凝縮器として作用する場合、また室外熱交換器が蒸発器として作用する場合で、かつ高暖房能力が必要な時などで冷媒圧力損失が大きい場合、室外熱交換器を通過する空気と伝熱管内を流動する冷媒が温度として対向流的な配置となる。したがって、効率よく熱交換を行うことができるため、熱交換器の高能力・高効率化が図れる。   With such a configuration, the refrigerant pressure loss is large when the outdoor heat exchanger acts as a condenser or when the outdoor heat exchanger acts as an evaporator and when high heating capacity is required. In this case, the air passing through the outdoor heat exchanger and the refrigerant flowing in the heat transfer tube are arranged in counterflow with respect to temperature. Therefore, since heat can be exchanged efficiently, high capacity and high efficiency of the heat exchanger can be achieved.

第2の発明は、特に、第1の発明の空気調和機において、前記室外熱交換器の温度を検知する温度検知器を更に備え、前記温度検知器を前記複数の冷媒流路のうち最下段の流路の暖房運転時の出口に接続される配管もしくは最下段の冷媒流路のいずれかの箇所に配置している。
このような構成にすることで、暖房運転と同一の冷媒の流れ方向で除霜運転を行った際に最も霜の溶け残りが懸念される熱交換器最下段の流路の配管に温度検知器を配置することになる。このため、温度検知器によって検知した温度で除霜完了を判断できるので、霜の溶け残りを解消できる。更に霜の溶け残り防止のための予備運転時間も最小限にとどめることができるため、除霜運転時間を短縮することができる。
In a second aspect of the invention, in particular, in the air conditioner of the first aspect of the invention, the air conditioner further includes a temperature detector that detects the temperature of the outdoor heat exchanger, and the temperature detector is the lowest stage of the plurality of refrigerant flow paths. It arrange | positions in either the piping connected to the exit at the time of the heating operation of this flow path, or the refrigerant | coolant flow path of the lowest stage.
By adopting such a configuration, when the defrosting operation is performed in the same refrigerant flow direction as in the heating operation, the temperature detector is installed in the pipe of the lowermost flow channel where the frost is most likely not melted. Will be placed. For this reason, since the completion of defrosting can be determined at the temperature detected by the temperature detector, the remaining frost can be eliminated. Furthermore, since the preliminary operation time for preventing frost from remaining undissolved can be minimized, the defrosting operation time can be shortened.

第3の発明は、特に、第1又は2の発明の空気調和機において、前記風上側の冷媒流路の入口のうち少なくとも1つの経路が、前記室外熱交換器最下段の伝熱管を通る構成としている。
この構成とすることで、暖房運転時および除霜運転時に、比較的高温となる風上側から流入する冷媒が熱交換器最下段を通ることとなり、更に室外熱交換器の下部と室外機の基盤との間に付着した霜の溶け残りを防止することが可能となる。
In a third aspect of the invention, in particular, in the air conditioner of the first or second aspect of the invention, at least one path among the inlets of the refrigerant channel on the windward side passes through the heat transfer tube at the lowest stage of the outdoor heat exchanger. It is said.
With this configuration, during heating operation and defrosting operation, the refrigerant flowing from the windward side that is relatively hot passes through the lowermost stage of the heat exchanger, and further, the lower part of the outdoor heat exchanger and the base of the outdoor unit It is possible to prevent frost remaining undissolved between the two.

第4の発明は、特に、第1〜3のいずれかの発明の空気調和機において、前記風上側の冷媒流路の入口となる経路を、1経路で構成している。
この構成とすることで、室外熱交換器を凝縮器として使用する場合には、管内冷媒流速向上に伴う熱伝達率向上により、サブクールがとれやすくなり、凝縮器能力を向上させることが可能となる。
In a fourth aspect of the present invention, in particular, in the air conditioner of any one of the first to third aspects of the present invention, the path serving as the inlet of the windward refrigerant flow path is configured as one path.
With this configuration, when the outdoor heat exchanger is used as a condenser, the heat transfer rate is improved along with the increase in the refrigerant flow rate in the pipe, so that subcooling can be easily taken and the condenser performance can be improved. .

第5の発明は、特に、第1〜4のいずれかの発明の空気調和機において、前記室外熱交換器を、風上列、中央列、風下列、の3列で構成し、そのうち少なくとも中央列、風下列の伝熱管は、前記複数の冷媒流路のうち、増加した後の冷媒流路で満たされる構成としている。
この構成とすることで、室外熱交換器が凝縮器として作用する場合、また室外熱交換器が蒸発器として作用する場合でかつ高暖房能力が必要な時などで冷媒圧力損失が大きい場合、室外熱交換器を通過する空気と伝熱管内を流動する冷媒が温度として対向流的な配置となる。したがって、効率よく熱交換を行うことができるため、熱交換器の大幅な高能力・高効率化が図ることができる。
In a fifth aspect of the present invention, in particular, in the air conditioner of any one of the first to fourth aspects, the outdoor heat exchanger is configured by three rows of an upwind row, a central row, and a leeward row, of which at least the center The heat transfer tubes in the row and the lee row are configured to be filled with the increased number of refrigerant channels among the plurality of refrigerant channels.
With this configuration, when the outdoor heat exchanger acts as a condenser, or when the outdoor heat exchanger acts as an evaporator and a high heating capacity is required, the refrigerant pressure loss is large. The air passing through the heat exchanger and the refrigerant flowing in the heat transfer tube are arranged in counterflow with respect to temperature. Therefore, since heat can be exchanged efficiently, the heat exchanger can be greatly increased in capacity and efficiency.

第6の発明は、特に、第1〜5のいずれかの発明の空気調和機において、前記圧縮機を囲むように配置された蓄熱装置を更に備え、前記蓄熱装置は、前記圧縮機で発生した熱を蓄熱し、前記室内熱交換器と前記膨張弁の間の配管から前記蓄熱装置に冷媒が流れるように配管し、前記蓄熱装置で吸熱した冷媒が前記室外熱交換器に流れるように配管することで、前記室外熱交換器の除霜運転と暖房運転を同時に行うことが可能な構成としている。
この構成により、除霜運転時においても室内への熱量供給が可能となる。また、複数の冷媒流路のうち最下段の流路の暖房運転時の出口に接続される配管、もしくは最下段の冷媒流路のいずれかの箇所に配置した温度検知器によって、除霜完了時間を的確に把握できる。したがって、最小限の運転時間での除霜が可能となり、室内の快適性を維持することが可能となる。例えば、除霜運転時の室外熱交換器を循環する冷媒温度が上昇しづらく、特に室外熱交換器の下部と室外機の基盤との間に付着した霜が溶け残りやすい場合において有用である。
The sixth invention, in particular, in the air conditioner according to any one of the first to fifth inventions, further includes a heat storage device arranged to surround the compressor, and the heat storage device is generated by the compressor. Piping for storing heat, piping so that refrigerant flows from the piping between the indoor heat exchanger and the expansion valve to the heat storage device, and piping so that the refrigerant absorbed by the heat storage device flows to the outdoor heat exchanger Thus, the defrosting operation and the heating operation of the outdoor heat exchanger can be performed simultaneously.
With this configuration, it is possible to supply heat to the room even during the defrosting operation. In addition, the defrosting completion time is determined by a pipe connected to the outlet during heating operation of the lowermost flow path among the plurality of refrigerant flow paths, or by a temperature detector disposed at any position of the lowermost refrigerant flow path. Can be accurately grasped. Therefore, defrosting with a minimum operation time is possible, and indoor comfort can be maintained. For example, it is useful when the temperature of the refrigerant circulating in the outdoor heat exchanger during the defrosting operation does not rise easily, and particularly when frost adhering between the lower part of the outdoor heat exchanger and the base of the outdoor unit tends to remain unmelted.

第7の発明は、特に、第1〜6のいずれかの発明の空気調和機において、前記蓄熱装置は、前記圧縮機で発生した熱を蓄熱する蓄熱材と、前記蓄熱材で蓄熱した熱を取得するための蓄熱熱交換器と、前記蓄熱材と前記蓄熱熱交換器を内部に有する蓄熱槽と、からなる構成としている。
この構成とすることで、ヒータなどの圧縮機以外の熱源を用いることなく、暖房運転と除霜運転を同時に行うことが可能となる。また、前記複数の冷媒流路のうち最下段の流路の暖房運転時の出口に接続される配管、もしくは最下段の冷媒流路のいずれかの箇所に配置した温度検知器によって、除霜完了時間を的確に把握できる。したがって、最小限の運転時間での除霜が可能となるため、蓄熱材に蓄えられた有限の熱量を無駄に使うことなく、効率的な除霜運転が可能となる。
In a seventh aspect of the present invention, in particular, in the air conditioner according to any one of the first to sixth aspects, the heat storage device stores a heat storage material that stores heat generated by the compressor, and heat stored by the heat storage material. It is set as the structure which consists of the thermal storage heat exchanger for acquiring, and the thermal storage tank which has the said thermal storage material and the said thermal storage heat exchanger inside.
By setting it as this structure, it becomes possible to perform heating operation and defrost operation simultaneously, without using heat sources other than compressors, such as a heater. Further, defrosting is completed by a pipe connected to an outlet at the time of heating operation of the lowermost flow path among the plurality of refrigerant flow paths, or a temperature detector disposed at any position of the lowermost refrigerant flow path Accurately grasp time. Therefore, since the defrosting can be performed with the minimum operation time, an efficient defrosting operation can be performed without wastefully using the finite amount of heat stored in the heat storage material.

第8の発明は、
圧縮機と、
前記圧縮機に接続された室内熱交換器と、
前記室内熱交換器と接続された膨張弁と、
前記膨張弁と接続された室外熱交換器と、
前記室内熱交換器あるいは前記室外熱交換器と前記圧縮機との接続を切り替える四方弁と、
前記圧縮機の周囲に配置される冷媒加熱用の蓄熱装置と、
前記蓄熱装置を経由して前記圧縮機の吸入管へ冷媒を流す補助熱交経路と、
前記室内熱交換器と前記膨張弁の間の配管を流れる冷媒を前記補助熱交経路へ流れるように切り替える電磁弁と、を備え、
除霜時に前記電磁弁を開いて前記室外熱交換器に付着した霜を融解して除霜する冷凍サイクル装置であって、
前記電磁弁を開閉する動作を行う電磁弁制御装置を、更に有し、
前記電磁弁制御装置は、冷房運転時において前記圧縮機の回転数が下限に到達し、冷房負荷が冷房能力より下回る状態の時、前記電磁弁の開閉動作の制御を行う構成としている。
The eighth invention
A compressor,
An indoor heat exchanger connected to the compressor;
An expansion valve connected to the indoor heat exchanger;
An outdoor heat exchanger connected to the expansion valve;
A four-way valve for switching the connection between the indoor heat exchanger or the outdoor heat exchanger and the compressor;
A heat storage device for heating the refrigerant disposed around the compressor;
An auxiliary heat exchange path for flowing the refrigerant to the suction pipe of the compressor via the heat storage device;
An electromagnetic valve that switches the refrigerant flowing through the pipe between the indoor heat exchanger and the expansion valve to flow to the auxiliary heat exchange path,
A refrigeration cycle apparatus that opens the electromagnetic valve during defrosting to melt and defrost frost adhering to the outdoor heat exchanger,
A solenoid valve control device for performing an operation of opening and closing the solenoid valve;
The electromagnetic valve control device is configured to control the opening / closing operation of the electromagnetic valve when the rotation speed of the compressor reaches a lower limit during cooling operation and the cooling load is lower than the cooling capacity.

このような構成とすることで、冷房負荷が小さくなり、圧縮機の回転数が下限に到達して、冷房負荷が冷房能力を下回る状態になったとき、電磁弁制御装置が電磁弁を開閉制御できる。この電磁弁の開閉制御により、補助熱交経路の補助熱交換器を経由して前記圧縮機の吸入管へ冷媒を流す冷媒の流れが発生し、圧縮機を連続運転しながら冷房運転を継続することができる。すなわち、暖房・除霜運転時のために空気調和機に搭載された高コストな蓄熱槽、蓄熱熱交換器、蓄熱材、第一電磁弁、第二電磁弁といった多くの部品を、冷房運転時にも活用して圧縮機の運転を継続させることができる。その結果、年間を通じて冷房時、暖房時双方の快適性を向上させることができる。   With this configuration, when the cooling load is reduced, the rotation speed of the compressor reaches the lower limit, and the cooling load falls below the cooling capacity, the solenoid valve control device controls the opening and closing of the solenoid valve. it can. By the opening / closing control of the solenoid valve, a refrigerant flow is generated that flows the refrigerant to the suction pipe of the compressor via the auxiliary heat exchanger in the auxiliary heat exchange path, and the cooling operation is continued while the compressor is continuously operated. be able to. That is, many components such as high-cost heat storage tank, heat storage heat exchanger, heat storage material, first solenoid valve, and second solenoid valve mounted on the air conditioner for heating / defrosting operation are used during cooling operation. Can also be used to continue the operation of the compressor. As a result, it is possible to improve comfort during cooling and heating throughout the year.

第9の発明は、特に、第8の発明の冷凍サイクル装置において、電磁弁制御装置によって電磁弁を予め定めた開時間と閉時間の組み合わせにより動作させる構成としている。
この構成により簡素な構成で冷房能力を制御することが可能となる。
In a ninth aspect of the invention, in particular, in the refrigeration cycle apparatus of the eighth aspect of the invention, the electromagnetic valve is operated by a combination of a predetermined opening time and closing time by the electromagnetic valve control device.
With this configuration, the cooling capacity can be controlled with a simple configuration.

第10の発明は、特に、第8又は9の発明の冷凍サイクル装置において、電磁弁制御装置を室内熱交換器に備えられた室内熱交換器温度センサの検知温度により、電磁弁の開閉を制御する構成としている。
この構成により、室内熱交換器の温度を適正に保ちながら冷房運転することができる。
According to a tenth aspect of the invention, in particular, in the refrigeration cycle apparatus of the eighth or ninth aspect of the invention, the electromagnetic valve control device controls the opening and closing of the electromagnetic valve based on the detected temperature of the indoor heat exchanger temperature sensor provided in the indoor heat exchanger. It is configured to do.
With this configuration, it is possible to perform a cooling operation while keeping the temperature of the indoor heat exchanger appropriate.

以下、本発明の空気調和機、及び冷凍サイクル装置の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of an air conditioner and a refrigeration cycle apparatus according to the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1に係る蓄熱装置を備えた空気調和機の構成図である。本発明の実施の形態1に係る空気調和機は、冷媒配管で互いに接続された室外機2と室内機4とで構成されている。
(Embodiment 1)
1 is a configuration diagram of an air conditioner including a heat storage device according to Embodiment 1 of the present invention. The air conditioner according to Embodiment 1 of the present invention includes an outdoor unit 2 and an indoor unit 4 that are connected to each other through a refrigerant pipe.

図1に示されるように、室外機2の内部には、圧縮機6と四方弁8とストレーナ10と膨張弁12と室外熱交換器14とが設けられている。室内機4の内部には、室内熱交換器16が設けられている。これらは、冷媒配管を介して互いに接続されることで冷凍サイクルを構成している。   As shown in FIG. 1, a compressor 6, a four-way valve 8, a strainer 10, an expansion valve 12, and an outdoor heat exchanger 14 are provided inside the outdoor unit 2. An indoor heat exchanger 16 is provided inside the indoor unit 4. These constitute a refrigeration cycle by being connected to each other via a refrigerant pipe.

更に詳述すると、圧縮機6と室内熱交換器16は、四方弁8が設けられた第1配管18を介して接続されている。室内熱交換器16と膨張弁12は、ストレーナ10が設けられた第2配管20を介して接続されている。膨張弁12と室外熱交換器14は、第3配管22を介して接続されている。室外熱交換器14と圧縮機6は、第4配管24を介して接続されている。   More specifically, the compressor 6 and the indoor heat exchanger 16 are connected via a first pipe 18 provided with a four-way valve 8. The indoor heat exchanger 16 and the expansion valve 12 are connected via a second pipe 20 provided with a strainer 10. The expansion valve 12 and the outdoor heat exchanger 14 are connected via a third pipe 22. The outdoor heat exchanger 14 and the compressor 6 are connected via a fourth pipe 24.

第4配管24の中間部には、四方弁8が配置されている。圧縮機6の冷媒吸入側における第4配管24には、液相冷媒と気相冷媒を分離するためのアキュームレータ26が設けられている。また、圧縮機6と第3配管22は、第5配管28を介して接続されており、第5配管28には第1電磁弁30が設けられている。   A four-way valve 8 is disposed in the middle portion of the fourth pipe 24. The fourth pipe 24 on the refrigerant suction side of the compressor 6 is provided with an accumulator 26 for separating the liquid phase refrigerant and the gas phase refrigerant. The compressor 6 and the third pipe 22 are connected via a fifth pipe 28, and the first solenoid valve 30 is provided in the fifth pipe 28.

更に、圧縮機6の周囲には蓄熱槽32が設けられている。蓄熱槽32の内部には、蓄熱熱交換器34が設けられるとともに、蓄熱熱交換器34と熱交換するための蓄熱材(例えば、エチレングリコール水溶液)36が充填されている。なお、本発明の実施の形態1に係る空気調和機において、蓄熱装置は、蓄熱槽32と蓄熱熱交換器34と蓄熱材36のいずれかを含んで構成されている。   Further, a heat storage tank 32 is provided around the compressor 6. A heat storage heat exchanger 34 is provided inside the heat storage tank 32, and a heat storage material (for example, ethylene glycol aqueous solution) 36 for exchanging heat with the heat storage heat exchanger 34 is filled therein. In the air conditioner according to Embodiment 1 of the present invention, the heat storage device includes any one of the heat storage tank 32, the heat storage heat exchanger 34, and the heat storage material 36.

また、第2配管20と蓄熱熱交換器34は、第6配管38を介して接続されている。蓄熱熱交換器34と第4配管24は、第7配管40を介して接続されており、第6配管38には第2電磁弁42が設けられている。   The second pipe 20 and the heat storage heat exchanger 34 are connected via a sixth pipe 38. The heat storage heat exchanger 34 and the fourth pipe 24 are connected via a seventh pipe 40, and a second electromagnetic valve 42 is provided in the sixth pipe 38.

室内機4の内部には、室内熱交換器16に加えて、送風ファン(図示せず)と上下羽根(図示せず)と左右羽根(図示せず)とが設けられている。室内熱交換器16は、送風ファンにより室内機4の内部に吸込まれた室内空気と、室内熱交換器16の内部を流れる冷媒との熱交換を行う。この室内熱交換器16は、暖房運転時には熱交換により暖められた空気を室内に吹き出す一方、冷房運転時には熱交換により冷却された空気を室内に吹き出す。上下羽根は、室内機4から吹き出される空気の方向を必要に応じて上下に変更し、左右羽根は、室内機4から吹き出される空気の方向を必要に応じて左右に変更する。   In the interior of the indoor unit 4, in addition to the indoor heat exchanger 16, a blower fan (not shown), upper and lower blades (not shown), and left and right blades (not shown) are provided. The indoor heat exchanger 16 performs heat exchange between the indoor air sucked into the indoor unit 4 by the blower fan and the refrigerant flowing inside the indoor heat exchanger 16. The indoor heat exchanger 16 blows out air heated by heat exchange into the room during heating operation, and blows out air cooled by heat exchange into the room during cooling operation. The upper and lower blades change the direction of air blown from the indoor unit 4 up and down as necessary, and the left and right blades change the direction of air blown from the indoor unit 4 to right and left as needed.

なお、圧縮機6、送風ファン、上下羽根、左右羽根、四方弁8、膨張弁12、電磁弁30、42などは、制御装置(図示せず、例えばマイコン)に電気的に接続され、制御装置により制御される。   The compressor 6, the blower fan, the upper and lower blades, the left and right blades, the four-way valve 8, the expansion valve 12, the electromagnetic valves 30 and 42, etc. are electrically connected to a control device (not shown, for example, a microcomputer). Controlled by

上記構成の本発明の実施の形態1に係る冷凍サイクル装置において、各部品の相互の接続関係と機能について暖房運転時を例にとり、冷媒の流れとともに説明する。   In the refrigeration cycle apparatus according to Embodiment 1 of the present invention having the above-described configuration, the mutual connection relationship and function of each component will be described together with the flow of refrigerant, taking the heating operation as an example.

圧縮機6の吐出口から吐出された冷媒は、第1配管18を通って四方弁8から室内熱交換器16へと至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て第2配管20を通り、膨張弁12への異物侵入を防止するストレーナ10を通って、膨張弁12に至る。膨張弁12で減圧した冷媒は、第3配管22を通って室外熱交換器14に至る。室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、第4配管24と四方弁8とアキュームレータ26を通って、圧縮機6の吸入口へと戻る。   The refrigerant discharged from the discharge port of the compressor 6 reaches the indoor heat exchanger 16 from the four-way valve 8 through the first pipe 18. The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 passes through the second pipe 20 through the indoor heat exchanger 16, expands through the strainer 10 that prevents foreign matter from entering the expansion valve 12. To valve 12. The refrigerant decompressed by the expansion valve 12 reaches the outdoor heat exchanger 14 through the third pipe 22. The refrigerant evaporated by exchanging heat with outdoor air in the outdoor heat exchanger 14 returns to the suction port of the compressor 6 through the fourth pipe 24, the four-way valve 8, and the accumulator 26.

また、第1配管18の圧縮機6の吐出口と四方弁8の間から分岐した第5配管28は、第1電磁弁30を介して第3配管22の膨張弁12と室外熱交換器14の間で合流している。   The fifth pipe 28 branched from the discharge port of the compressor 6 of the first pipe 18 and the four-way valve 8 is connected to the expansion valve 12 of the third pipe 22 and the outdoor heat exchanger 14 via the first electromagnetic valve 30. Have joined together.

更に、内部に蓄熱材36と蓄熱熱交換器34を収納した蓄熱槽32は、圧縮機6に接して取り囲むように配置され、圧縮機6で発生した熱を蓄熱材36に蓄積する。第2配管20から室内熱交換器16とストレーナ10の間で分岐した第6配管38は、第2電磁弁42を経て蓄熱熱交換器34の入口へと至る。そして、蓄熱熱交換器34の出口から出た第7配管40は、第4配管24における四方弁8とアキュームレータ26の間に合流する。   Furthermore, the heat storage tank 32 in which the heat storage material 36 and the heat storage heat exchanger 34 are housed is disposed so as to be in contact with and surround the compressor 6, and heat generated by the compressor 6 is accumulated in the heat storage material 36. The sixth pipe 38 branched between the indoor heat exchanger 16 and the strainer 10 from the second pipe 20 reaches the inlet of the heat storage heat exchanger 34 via the second electromagnetic valve 42. Then, the seventh pipe 40 that has come out from the outlet of the heat storage heat exchanger 34 joins between the four-way valve 8 and the accumulator 26 in the fourth pipe 24.

図2は、図1の空気調和機の通常暖房時の冷媒回路図である。図2を参照しながら通常暖房運転時の動作を説明する。   FIG. 2 is a refrigerant circuit diagram during normal heating of the air conditioner of FIG. The operation during normal heating operation will be described with reference to FIG.

通常暖房運転時、第1電磁弁30と第2電磁弁42は閉制御されている。このため、第5配管28、第6配管38及び第7配管40で構成される部分の冷媒回路には冷媒が流れない。   During the normal heating operation, the first solenoid valve 30 and the second solenoid valve 42 are closed. For this reason, the refrigerant does not flow in the refrigerant circuit of the portion constituted by the fifth pipe 28, the sixth pipe 38 and the seventh pipe 40.

上述したように圧縮機6の吐出口から吐出された冷媒は、第1配管18を通って四方弁8から室内熱交換器16に至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て、第2配管20を通り膨張弁12に至る。膨張弁12で減圧した冷媒は、第3配管22を通って室外熱交換器14に至る。室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、第4配管24を通って四方弁8から圧縮機6の吸入口へと戻る。   As described above, the refrigerant discharged from the discharge port of the compressor 6 passes through the first pipe 18 and reaches the indoor heat exchanger 16 from the four-way valve 8. The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 exits the indoor heat exchanger 16 and reaches the expansion valve 12 through the second pipe 20. The refrigerant decompressed by the expansion valve 12 reaches the outdoor heat exchanger 14 through the third pipe 22. The refrigerant evaporated by exchanging heat with outdoor air in the outdoor heat exchanger 14 returns from the four-way valve 8 to the suction port of the compressor 6 through the fourth pipe 24.

また、圧縮機6で発生した熱は、圧縮機6の外壁から蓄熱槽32の外壁を介して蓄熱槽32の内部に収容された蓄熱材36に蓄熱される。   The heat generated in the compressor 6 is stored in the heat storage material 36 housed in the heat storage tank 32 from the outer wall of the compressor 6 through the outer wall of the heat storage tank 32.

図3は、図1の空気調和機の除霜・暖房時の冷媒回路図である。図3を参照しながら除霜・暖房時の動作を説明する。図中、実線矢印は、暖房時における冷媒の流れを示しており、破線矢印は除霜における冷媒の流れを示している。   FIG. 3 is a refrigerant circuit diagram during defrosting / heating of the air conditioner of FIG. 1. The operation during defrosting / heating will be described with reference to FIG. In the figure, solid line arrows indicate the flow of the refrigerant during heating, and broken line arrows indicate the flow of the refrigerant during defrosting.

上述した通常暖房運転中に室外熱交換器14に着霜し、着霜した霜が成長すると、室外熱交換器14の通風抵抗が増加して風量が減少し、室外熱交換器14内の蒸発温度が低下する。本発明の実施の形態1に係る空気調和機には、図3に示されるように、室外熱交換器14の配管温度を検出する第1温度センサ44が設けられている。第1温度センサ44が、非着霜時に比べて蒸発温度が低下したことを検出すると、通常暖房運転から除霜・暖房運転への指示が制御装置によって出力される。   When the outdoor heat exchanger 14 is frosted during the above-described normal heating operation and the frosted frost grows, the ventilation resistance of the outdoor heat exchanger 14 increases and the air flow decreases, and the evaporation in the outdoor heat exchanger 14 increases. The temperature drops. As shown in FIG. 3, the air conditioner according to Embodiment 1 of the present invention is provided with a first temperature sensor 44 that detects the piping temperature of the outdoor heat exchanger 14. When the first temperature sensor 44 detects that the evaporating temperature is lower than that during non-frosting, an instruction from the normal heating operation to the defrosting / heating operation is output by the control device.

通常暖房運転から除霜・暖房運転に移行すると、第1電磁弁30と第2電磁弁42は、開制御される。上述した通常暖房運転時の冷媒の流れに加え、圧縮機6の吐出口から出た気相冷媒の一部は、第5配管28と第1電磁弁30を通り、第3配管22を通る冷媒に合流する。そして、室外熱交換器14を加熱し、凝縮して液相化した後、第4配管24を通って四方弁8とアキュームレータ26を介して圧縮機6の吸入口へと戻る。   When the normal heating operation is shifted to the defrosting / heating operation, the first electromagnetic valve 30 and the second electromagnetic valve 42 are controlled to be opened. In addition to the refrigerant flow during the normal heating operation described above, a part of the gas-phase refrigerant exiting from the discharge port of the compressor 6 passes through the fifth pipe 28 and the first electromagnetic valve 30 and passes through the third pipe 22. To join. Then, the outdoor heat exchanger 14 is heated and condensed to form a liquid phase, and then returns to the suction port of the compressor 6 through the fourth pipe 24 and the four-way valve 8 and the accumulator 26.

また、第2配管20における室内熱交換器16とストレーナ10の間で分流した液相冷媒の一部は、第6配管38と第2電磁弁42を経て、蓄熱熱交換器34で蓄熱材36から吸熱し蒸発、気相化する。そして、第7配管40を通って第4配管24を通る冷媒に合流し、アキュームレータ26から圧縮機6の吸入口へと戻る。   Further, a part of the liquid-phase refrigerant that is divided between the indoor heat exchanger 16 and the strainer 10 in the second pipe 20 passes through the sixth pipe 38 and the second electromagnetic valve 42, and then is stored in the heat storage material 36 in the heat storage heat exchanger 34. Evaporates and vaporizes. Then, the refrigerant passes through the seventh pipe 40 and merges with the refrigerant passing through the fourth pipe 24, and returns from the accumulator 26 to the suction port of the compressor 6.

アキュームレータ26に戻る冷媒には、室外熱交換器14から戻ってくる液相冷媒が含まれているが、これに蓄熱熱交換器34から戻ってくる高温の気相冷媒を混合することで、液相冷媒の蒸発が促される。その結果、アキュームレータ26を通過して液相冷媒が圧縮機6に戻ることがなくなり、圧縮機6の信頼性の向上を図ることができる。   The refrigerant returning to the accumulator 26 includes the liquid phase refrigerant returning from the outdoor heat exchanger 14. By mixing this with the high-temperature gas phase refrigerant returning from the heat storage heat exchanger 34, The evaporation of the phase refrigerant is promoted. As a result, the liquid refrigerant does not return to the compressor 6 through the accumulator 26, and the reliability of the compressor 6 can be improved.

除霜・暖房運転開始時に霜の付着により氷点下となった室外熱交換器14の温度は、圧縮機6の吐出口から出た気相冷媒によって加熱されて、零度付近で霜が融解し、霜の融解が終わると、室外熱交換器14の温度は再び上昇し始める。図3に示すように、本発明の実施の形態1に係る空気調和機には、室外熱交換器14の配管温度を検出する第2温度センサ45を設けている。この室外熱交換器14の温度上昇を第2温度センサ45で検出すると、除霜が完了したと判断し、除霜・暖房運転から通常暖房運転への指示が制御装置によって出力される。   The temperature of the outdoor heat exchanger 14 that has become below freezing due to frost adhesion at the start of the defrosting / heating operation is heated by the gas-phase refrigerant discharged from the discharge port of the compressor 6, and the frost is melted at around zero degrees. When the melting of the outdoor heat exchanger 14 ends, the temperature of the outdoor heat exchanger 14 begins to rise again. As shown in FIG. 3, the air conditioner according to Embodiment 1 of the present invention is provided with a second temperature sensor 45 that detects the piping temperature of the outdoor heat exchanger 14. When the temperature rise of the outdoor heat exchanger 14 is detected by the second temperature sensor 45, it is determined that the defrosting is completed, and an instruction from the defrosting / heating operation to the normal heating operation is output by the control device.

以上のように構成された空気調和機の室外熱交換器14について詳説する。
図4は、本発明の実施の形態1に係る室外熱交換器の暖房運転時における冷媒流路を示す図である。図5は、室外熱交換器の冷媒流通管番号と通常暖房運転時における冷媒流通管温度の関係図である。なお、冷媒流通管は、伝熱管を意味する。
The outdoor heat exchanger 14 of the air conditioner configured as described above will be described in detail.
FIG. 4 is a diagram illustrating the refrigerant flow path during the heating operation of the outdoor heat exchanger according to Embodiment 1 of the present invention. FIG. 5 is a graph showing the relationship between the refrigerant flow tube number of the outdoor heat exchanger and the refrigerant flow tube temperature during normal heating operation. The refrigerant circulation pipe means a heat transfer pipe.

図4に示すように、室外熱交換器14は、風上列、中央列、風下列の3列の複数列の熱交換器で構成されると共に、複数の冷媒流路を有している。なお、暖房運転時における空気流55に近い方から順に風上列、中央列、風下列と定義している。複数列の熱交換器は、風上列に冷媒流路の入口を、風下列に冷媒流路の出口を設けている。複数の冷媒流路は、風上列の冷媒流路の入口から風下列の冷媒流路の出口に向かって冷媒流路数が増加するように接続されている。特に、蒸発器として使用される暖房運転時においては、冷媒流路の入口は、風上列の最下段の冷媒流通管51に配置されている。また、冷媒流路の出口は、風下列の冷媒流通管54a〜54fに配置されている。このため、冷媒流通管51より流入した冷媒は、風上列の冷媒流通管52a、52bの2つの冷媒流路に分流される。それから、冷媒流通管53a〜53fの6つの冷媒流路に分流され、風下列の冷媒流通管54a〜54fより流出する。   As shown in FIG. 4, the outdoor heat exchanger 14 includes a plurality of heat exchangers in three rows, that is, a windward row, a central row, and a leeward row, and has a plurality of refrigerant flow paths. In addition, it defines as an upwind row | line | column, a center row | line | column, and a leeward row | line | column in order from the one near the air flow 55 at the time of heating operation. The plurality of rows of heat exchangers are provided with an inlet of the refrigerant flow path in the windward row and an outlet of the refrigerant flow passage in the leeward row. The plurality of refrigerant channels are connected so that the number of refrigerant channels increases from the inlet of the refrigerant channel in the windward row toward the outlet of the refrigerant channel in the leeward row. In particular, at the time of heating operation used as an evaporator, the inlet of the refrigerant flow path is arranged in the lowermost refrigerant circulation pipe 51 in the windward row. Further, the outlets of the refrigerant flow paths are arranged in the refrigerant flow pipes 54a to 54f in the leeward row. For this reason, the refrigerant that has flowed in from the refrigerant flow pipe 51 is divided into two refrigerant flow paths of the wind-flow line refrigerant flow pipes 52a and 52b. Then, the refrigerant is divided into six refrigerant flow paths of the refrigerant flow pipes 53a to 53f and flows out from the refrigerant flow pipes 54a to 54f in the leeward row.

図5に示すように、暖房運転時において、冷媒流路の入口となる冷媒流通管51は、他の流通管と比べて高温となる。このため、上述したように室外熱交換器14の風上列の最下段に、高温となる冷媒流通管51を配置すると、特に霜の溶け残りが発生しやすい箇所である風上列の熱交換器と基盤付近に高温の冷媒流通管51を配置することになる。その結果、本発明の実施の形態1に係る空気調和機では、暖房運転時において、冷媒流通管51の熱を利用して、室外熱交換器14に付着した霜の溶け残りを低減することができる。   As shown in FIG. 5, during the heating operation, the refrigerant flow pipe 51 serving as the inlet of the refrigerant flow path is at a higher temperature than the other flow pipes. For this reason, when the refrigerant | coolant circulation pipe | tube 51 which becomes high temperature is arrange | positioned in the lowest stage of the upwind row | line | column of the outdoor heat exchanger 14 as mentioned above, especially the heat exchange of the upwind row | line | column which is easy to generate | occur | produce the frost melt | dissolution residue. The high-temperature refrigerant circulation pipe 51 is disposed near the vessel and the base. As a result, in the air conditioner according to Embodiment 1 of the present invention, during the heating operation, the heat of the refrigerant flow pipe 51 can be used to reduce unmelted frost attached to the outdoor heat exchanger 14. it can.

また、実施の形態1に係る空気調和機では、室外熱交換器14の中央列、風下列を6つの流路に分流された53以降の冷媒流通管、すなわち冷媒流速の低下により圧力損失を低減させた冷媒流路で満たすことができる。これにより、室外熱交換器14を通過する空気と伝熱管内を流動する冷媒が温度として対向流的な配置となることに加え、図5に示すように、中央列、風下列を比較的低温とすることができる。したがって、更なる熱交換器の高効率化が図れ、暖房能力を向上させることができる。   Further, in the air conditioner according to Embodiment 1, the pressure loss is reduced by reducing the refrigerant flow rate after 53, that is, the refrigerant flow pipes 53 and later, in which the central row and the leeward row of the outdoor heat exchanger 14 are divided into six flow paths. The refrigerant flow path can be filled. As a result, the air passing through the outdoor heat exchanger 14 and the refrigerant flowing in the heat transfer tubes are arranged in counterflow as the temperature, and as shown in FIG. It can be. Therefore, the efficiency of the heat exchanger can be further increased, and the heating capacity can be improved.

次に、冷房運転時について説明する。
図6は、本発明の実施の形態1に係る室外熱交換器の冷房運転時における冷媒流路を示す図である。図7は、室外熱交換器の冷媒流通管番号と冷房運転時における冷媒流通管温度の関係図である。
Next, the cooling operation will be described.
FIG. 6 is a diagram showing the refrigerant flow path during the cooling operation of the outdoor heat exchanger according to Embodiment 1 of the present invention. FIG. 7 is a diagram showing the relationship between the refrigerant flow tube number of the outdoor heat exchanger and the refrigerant flow tube temperature during the cooling operation.

図6に示すように、室外熱交換器14が凝縮器として作用する冷房運転時において、冷媒の流れは、暖房運転時と逆となる。つまり、冷房運転時において、冷媒流路の入口は冷媒流通管54a〜54fとなり、冷媒流路の出口は冷媒流通管51となる。したがって、冷房運転時において、風下列の冷媒流通管54a〜54fより流入した冷媒は、冷媒流通管53a〜53fの6つの冷媒流路を通る。そして、風上列の冷媒流通管52a、52bの2つの冷媒流路で合流し、冷媒流通管51から流出される。   As shown in FIG. 6, during the cooling operation in which the outdoor heat exchanger 14 acts as a condenser, the refrigerant flow is opposite to that during the heating operation. In other words, during the cooling operation, the inlet of the refrigerant flow path becomes the refrigerant flow pipes 54a to 54f, and the outlet of the refrigerant flow path becomes the refrigerant flow pipe 51. Therefore, during the cooling operation, the refrigerant that has flowed in from the leeward row refrigerant circulation pipes 54a to 54f passes through the six refrigerant flow paths of the refrigerant circulation pipes 53a to 53f. Then, the refrigerant flows in the two refrigerant flow paths of the refrigerant flow pipes 52 a and 52 b in the windward row and flows out from the refrigerant flow pipe 51.

図7に示すように、冷房運転時においては、暖房運転時とは逆に、風下列の冷媒流通管54が高温となる。本発明の実施の形態1では、風下列に比較的高温の冷媒流通管54を配置し、風上列に比較的低温の冷媒流通管51、52を配置する。したがって、室外熱交換器14を通過する空気と伝熱管内を流動する冷媒が温度として対向流的な配置となる。したがって、効率よく熱交換を行うことができるため、熱交換器の高効率化が図れ、冷房能力を向上させることができる。   As shown in FIG. 7, during the cooling operation, the refrigerant flow pipes 54 in the leeward row are hot, contrary to the heating operation. In Embodiment 1 of the present invention, the relatively high-temperature refrigerant flow pipes 54 are arranged in the leeward row, and the relatively low-temperature refrigerant flow pipes 51 and 52 are arranged in the windward row. Therefore, the air passing through the outdoor heat exchanger 14 and the refrigerant flowing in the heat transfer tube are arranged in counterflow with respect to temperature. Therefore, since heat can be exchanged efficiently, the efficiency of the heat exchanger can be increased and the cooling capacity can be improved.

更に、室外熱交換器14が凝縮器として作用する際の冷媒の出口を1経路とし、風上列に冷媒の出口を配置することで、管内冷媒流速向上に伴う熱伝達率向上および冷媒温度と空気温度差を極大化することができる。これにより、サブクールがとれやすくなり、冷房能力を更に向上させることができる。   Furthermore, by using the refrigerant outlet when the outdoor heat exchanger 14 acts as a condenser as one path and arranging the refrigerant outlet in the windward row, the heat transfer rate improvement and refrigerant temperature associated with the improvement of the refrigerant flow velocity in the pipe The air temperature difference can be maximized. Thereby, it becomes easy to take a subcool and the cooling capacity can be further improved.

次に、除霜・暖房運転時について説明する。
図8は、室外熱交換器の冷媒流通管番号と除霜運転時における冷媒流通管温度の関係図である。
Next, the defrosting / heating operation will be described.
FIG. 8 is a graph showing the relationship between the refrigerant flow tube number of the outdoor heat exchanger and the refrigerant flow tube temperature during the defrosting operation.

除霜・暖房運転時、冷媒の流れは、図4に示す通常暖房運転時と同様である。冷媒流通管51より流入した冷媒は、風上列の冷媒流通管52a、52bの2つの冷媒流路に分流される。その後、冷媒流通管53a〜53fの6つの冷媒流路に分流され、冷媒流通管54a〜54fより流出する。この際、図8に示すように、最も高温となる冷媒流通管51を特に霜の溶け残りが発生しやすい、風上側の熱交換器と基盤付近に配置することで、通常暖房運転時と同様に、霜の溶け残りを低減することができる。   During the defrosting / heating operation, the refrigerant flow is the same as in the normal heating operation shown in FIG. The refrigerant flowing in from the refrigerant circulation pipe 51 is divided into two refrigerant flow paths of the up-stream refrigerant circulation pipes 52a and 52b. Thereafter, the refrigerant is divided into six refrigerant flow paths of the refrigerant flow pipes 53a to 53f and flows out from the refrigerant flow pipes 54a to 54f. At this time, as shown in FIG. 8, the refrigerant flow pipe 51 having the highest temperature is disposed near the wind-side heat exchanger and the base where the frost is not easily melted. Furthermore, the remaining frost can be reduced.

更に、図4に示すように、本発明の実施の形態1では、6経路に分流された冷媒流通管出口のうち、最下段の冷媒流通管54fに第2温度センサ45を配置してもよい。第2の温度センサ45によって検知された温度が所定の温度に達したことを除霜完了の信号とすることができる。その結果、高能力化のために室外熱交換器14を3列構成とした場合においても、中央列、風下列の熱交換器の下部と室外機2の基盤との間に付着した霜の溶け残りを確実に防ぐことができる。   Further, as shown in FIG. 4, in the first embodiment of the present invention, the second temperature sensor 45 may be arranged in the lowermost refrigerant circulation pipe 54f among the refrigerant circulation pipe outlets divided into six paths. . It can be used as a defrosting completion signal that the temperature detected by the second temperature sensor 45 has reached a predetermined temperature. As a result, even when the outdoor heat exchanger 14 has a three-row configuration for high performance, the melting of frost adhering between the lower part of the heat exchanger in the central row and the leeward row and the base of the outdoor unit 2 is melted. The rest can be surely prevented.

本発明の実施の形態1では、蓄熱装置を用いてもよい。蓄熱装置を用いると、除霜時にも室内への熱量供給ができ、除霜運転と暖房運転を同時に行う構成とすることができる。また、上述したように第1温度センサ44または第2温度センサ45によって、除霜完了時間を的確に把握できる。この構成により、室外熱交換器14を流通する冷媒温度が上昇しにくい場合においても、室外熱交換器14の下部と室外機2の基盤との間の霜の溶け残り防止のために、余分に暖房・除霜運転時間を長くする必要がなくなる。また、一般に通常暖房運転より暖房能力が低くなる、暖房・除霜運転時間を最小限にとどめることが可能となる。したがって、四方弁8を切り替え冷房サイクルで除霜運転を実施する空気調和機と比べて、室内の快適性を維持することができる。   In Embodiment 1 of the present invention, a heat storage device may be used. When the heat storage device is used, the amount of heat can be supplied into the room even during defrosting, and the defrosting operation and the heating operation can be performed simultaneously. Further, as described above, the defrosting completion time can be accurately grasped by the first temperature sensor 44 or the second temperature sensor 45. With this configuration, even when the temperature of the refrigerant flowing through the outdoor heat exchanger 14 is unlikely to rise, extra frost is prevented from remaining between the lower portion of the outdoor heat exchanger 14 and the base of the outdoor unit 2. There is no need to lengthen the heating / defrosting operation time. In addition, it is possible to minimize the heating / defrosting operation time in which the heating capacity is generally lower than that of the normal heating operation. Therefore, indoor comfort can be maintained as compared with an air conditioner that switches the four-way valve 8 and performs the defrosting operation in the cooling cycle.

また、本実施の形態1のように、蓄熱装置を構成する蓄熱材36に圧縮機6で発生した熱を蓄え、その蓄熱した熱を暖房・除霜運転時に用いる場合、使用可能な蓄熱材36の蓄熱量が除霜時間によらず一定である。このため、除霜運転を短時間で終了させる必要があり、本システムの有用性が更に増加する。   Further, when the heat generated in the compressor 6 is stored in the heat storage material 36 constituting the heat storage device as in the first embodiment, and the stored heat is used during heating / defrosting operation, the heat storage material 36 that can be used. The amount of stored heat is constant regardless of the defrosting time. For this reason, it is necessary to finish a defrost operation in a short time, and the usefulness of this system increases further.

図4に示す本発明の実施の形態1では、除霜完了を検知する温度検知器45を6経路に分流された冷媒流通管出口のうち、最下段の冷媒流通管54fに配置している。この温度検知器45は、6経路に分流された冷媒流通管出口のうち、最上段の冷媒流通管54aに追加で温度検知器を配置してもよい。この場合、室外熱交換器14の上部と室外機2の天板の間に霜の溶け残りが発生しやすい場合においても、霜の溶け残りを防止することが可能となる。さらに、最小限の運転時間での除霜が可能となり、室内の快適性を維持することが可能となる。   In Embodiment 1 of this invention shown in FIG. 4, the temperature detector 45 which detects completion | finish of defrost is arrange | positioned in the refrigerant | coolant distribution pipe 54f of the lowest stage among the refrigerant | coolant distribution pipe outlets divided into 6 paths. This temperature detector 45 may additionally arrange a temperature detector in the uppermost refrigerant flow tube 54a among the refrigerant flow tube outlets divided into six paths. In this case, it is possible to prevent frost from remaining undissolved even when frost remains undissolved between the upper part of the outdoor heat exchanger 14 and the top plate of the outdoor unit 2. Furthermore, defrosting can be performed with a minimum operation time, and indoor comfort can be maintained.

(実施の形態2)
本発明の実施の形態2に係る冷凍サイクル装置について、空気調和機に搭載した場合を例にして図面を参照しながら説明する。なお、この実施の形態2によって本発明が限定されるものではない。
(Embodiment 2)
A refrigeration cycle apparatus according to Embodiment 2 of the present invention will be described with reference to the drawings, taking as an example a case where it is mounted on an air conditioner. The present invention is not limited to the second embodiment.

図9は、本発明の実施の形態2に係る冷凍サイクル装置を備えた空気調和機の構成である。実施の形態1と同じ構成要素には同一番号を付し、詳細な説明は省略する。また、実施の形態1の構成において記載した、第1配管18の圧縮機6の吐出口と四方弁8の間から分岐し、第1電磁弁30を介して第3配管22の膨張弁12と室外熱交換器14の間に合流する第5配管28は、本発明の実施の形態2においては簡略のため図示していない。   FIG. 9 shows a configuration of an air conditioner including the refrigeration cycle apparatus according to Embodiment 2 of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. Further, as described in the configuration of the first embodiment, the branch from the discharge port of the compressor 6 of the first pipe 18 and the four-way valve 8, and the expansion valve 12 of the third pipe 22 via the first electromagnetic valve 30 The fifth pipe 28 that merges between the outdoor heat exchangers 14 is not shown for simplicity in the second embodiment of the present invention.

図9において、実施の形態2に係る空気調和機では実施の形態1の構成に加え、電磁弁制御装置60が設けてある。この電磁弁制御装置60は、室内熱交換器温度センサ61と電気的に接続され、圧縮機6の回転数が下限に到達したとき、室内熱交換器14の温度に基づいて第6配管38に設けられた第2電磁弁42の開閉を駆動制御する。   In FIG. 9, the air conditioner according to the second embodiment is provided with an electromagnetic valve control device 60 in addition to the configuration of the first embodiment. The electromagnetic valve control device 60 is electrically connected to the indoor heat exchanger temperature sensor 61, and when the rotational speed of the compressor 6 reaches the lower limit, the electromagnetic valve control device 60 is connected to the sixth pipe 38 based on the temperature of the indoor heat exchanger 14. The opening and closing of the provided second electromagnetic valve 42 is driven and controlled.

暖房運転時における動作は、図2に示す実施の形態1に係る空気調和機と同様であるため、説明を省略する。   Since the operation | movement at the time of heating operation is the same as that of the air conditioner which concerns on Embodiment 1 shown in FIG. 2, description is abbreviate | omitted.

次に冷房運転時における動作について説明する。冷房運転時、圧縮機6の吐出口から吐出された冷媒は、四方弁8から室外熱交換器14に至る。室外熱交換器14で室外空気と熱交換して凝縮した冷媒は、室外熱交換器14を出て、配管22を通り膨張弁12に至る。膨張弁12で減圧した冷媒は、ストレーナ10を介して配管20を通って室内熱交換器16に至る。室内熱交換器16で室内空気と熱交換して蒸発した冷媒は、配管18を通って四方弁8、第4配管24とアキュームレータ26を通って圧縮機6の吸入口へと戻る。   Next, the operation during the cooling operation will be described. During the cooling operation, the refrigerant discharged from the discharge port of the compressor 6 reaches the outdoor heat exchanger 14 from the four-way valve 8. The refrigerant condensed by exchanging heat with outdoor air in the outdoor heat exchanger 14 exits the outdoor heat exchanger 14 and reaches the expansion valve 12 through the pipe 22. The refrigerant decompressed by the expansion valve 12 reaches the indoor heat exchanger 16 through the pipe 20 via the strainer 10. Refrigerant evaporated by exchanging heat with indoor air in the indoor heat exchanger 16 returns to the suction port of the compressor 6 through the pipe 18, the four-way valve 8, the fourth pipe 24 and the accumulator 26.

第2配管20から分岐し、第2電磁弁42、補助熱交換器、第7配管40を介して第4配管24に合流する第6配管38は、補助熱交経路となる。冷房運転時において、通常、第2電磁弁42は閉制御されており、補助熱交経路に冷媒は流れていない。なお、実施の形態2において、補助熱交換器は、蓄熱熱交換器34として説明する。   The sixth pipe 38 branched from the second pipe 20 and joining the fourth pipe 24 via the second solenoid valve 42, the auxiliary heat exchanger, and the seventh pipe 40 serves as an auxiliary heat exchange path. During the cooling operation, the second electromagnetic valve 42 is normally controlled to be closed, and the refrigerant does not flow through the auxiliary heat exchange path. In the second embodiment, the auxiliary heat exchanger will be described as a heat storage heat exchanger 34.

ここで、室内機4における冷房負荷が小さい場合、空気調和機は圧縮機6の回転数を下げ、冷房能力を小さく抑えるように制御する。しかし、圧縮機6の回転数が下限に到達すると、それ以下に冷房能力を抑えることができず、冷房負荷が冷房能力を下回る状態、つまり室温の値が設定温度を下回る状態となり、やがて圧縮機6を停止せざるを得ない状態になる。そして、圧縮機6が停止すると冷房能力が零になり、圧縮機6を再起動する、といった状態を繰り返す、圧縮機発停運転となる。この圧縮機発停運転は、圧縮機6の再起動時のロス等により、圧縮機6が連続運転している状態に比べて効率が悪い。   Here, when the cooling load in the indoor unit 4 is small, the air conditioner performs control so as to reduce the number of rotations of the compressor 6 and to suppress the cooling capacity. However, when the rotational speed of the compressor 6 reaches the lower limit, the cooling capacity cannot be suppressed below that, and the cooling load is lower than the cooling capacity, that is, the room temperature value is lower than the set temperature, and the compressor is eventually reached. 6 must be stopped. Then, when the compressor 6 stops, the cooling capacity becomes zero and the compressor 6 is restarted, and the compressor start / stop operation is repeated. This compressor start / stop operation is less efficient than the state in which the compressor 6 is continuously operated due to a loss or the like when the compressor 6 is restarted.

そこで、本発明の実施の形態2に係る空気調和機では、上述した室内機4における冷房負荷が小さく、圧縮機6の回転数が下限に到達して冷房負荷が冷房能力を下回る状態になると、電磁弁制御装置60が第2電磁弁42を開閉制御する。この第2電磁弁42の開閉制御により、第2配管20から分岐し、第2電磁弁42、蓄熱熱交換器34、第7配管40を介して第4配管24に合流する第6配管38への補助熱交経路に冷媒が流れる。このため、圧縮機6を連続運転しながら冷房運転を継続することができる。その際、電磁弁制御装置60は、第2電磁弁42の開量、すなわち、配管20を通って室内熱交換器16へ流れる冷媒量を室内熱交換器温度センサ61からの出力に基づいて制御し、冷房能力を制御する。   Therefore, in the air conditioner according to Embodiment 2 of the present invention, when the cooling load in the indoor unit 4 described above is small, the rotation speed of the compressor 6 reaches the lower limit, and the cooling load falls below the cooling capacity, The electromagnetic valve control device 60 controls the opening and closing of the second electromagnetic valve 42. By opening / closing control of the second electromagnetic valve 42, the second pipe 20 branches to the sixth pipe 38 that merges with the fourth pipe 24 via the second electromagnetic valve 42, the heat storage heat exchanger 34, and the seventh pipe 40. The refrigerant flows through the auxiliary heat exchange path. For this reason, the cooling operation can be continued while the compressor 6 is continuously operated. At that time, the electromagnetic valve control device 60 controls the opening amount of the second electromagnetic valve 42, that is, the amount of refrigerant flowing to the indoor heat exchanger 16 through the pipe 20 based on the output from the indoor heat exchanger temperature sensor 61. And control the cooling capacity.

図10は、本発明の実施の形態2に係る制御タイムチャートである。(a)は、本発明の実施の形態2に係る冷凍サイクル装置を備えた空気調和機の圧縮機回転数の制御タイムチャートである。(b)は、第2電磁弁の制御タイムチャートである。(c)は、冷房能力のタイムチャートである。   FIG. 10 is a control time chart according to the second embodiment of the present invention. (A) is a control time chart of the compressor rotation speed of the air conditioner provided with the refrigeration cycle apparatus according to Embodiment 2 of the present invention. (B) is a control time chart of the second solenoid valve. (C) is a time chart of the cooling capacity.

上述したように、室内機4において冷房負荷が小さい場合、図10(a)及び(c)に示すように、空気調和機は圧縮機6の回転数を下げ、冷房能力を小さく抑えるように制御する。そして、時間T1において圧縮機6の回転数が下限Fminに到達すると、時間T1以後は冷房能力をQminより小さくすることができなくなる。   As described above, when the cooling load is small in the indoor unit 4, as shown in FIGS. 10A and 10C, the air conditioner is controlled so as to reduce the rotation speed of the compressor 6 and suppress the cooling capacity to a small value. To do. When the rotational speed of the compressor 6 reaches the lower limit Fmin at time T1, the cooling capacity cannot be made smaller than Qmin after time T1.

本発明の実施の形態2に係る空気調和機は、時間T2より以降、例えば第2電磁弁42を予め定めた開時間及び閉時間の組み合わせによりON/OFFする構成となっている。この構成により、電磁弁42を開閉(ON/OFF)動作させ、補助熱交経路に自由に冷媒を流すことができる。つまり、図10(b)及び(c)に示すように、時間T2以後では、電磁弁42のON時に冷房能力を下げ、電磁弁42のOFF時に冷房能力を上げることができる。したがって、時間T2以後の冷房能力を平均すると、冷房能力Qminよりも低く抑えた運転を行うことができ、上述した圧縮機発停運転とならず、効率の低下を防止することができる。なお、電磁弁42を開閉(ON/OFF)動作させる理由は、例えば、電磁弁42を開動作(ON)にした状態でいると、冷房能力が下がりすぎるからである。したがって、本発明の実施の形態2に係る空気調和機では、電磁弁42を開閉(ON/OFF)動作させ、平均して任意の冷房能力を得るようにしている。   The air conditioner according to Embodiment 2 of the present invention is configured to turn on / off the second electromagnetic valve 42, for example, by a combination of a predetermined opening time and closing time after the time T2. With this configuration, the solenoid valve 42 can be opened and closed (ON / OFF), and the refrigerant can freely flow through the auxiliary heat exchange path. That is, as shown in FIGS. 10B and 10C, after time T2, the cooling capacity can be lowered when the electromagnetic valve 42 is ON, and the cooling capacity can be increased when the electromagnetic valve 42 is OFF. Therefore, if the cooling capacity after the time T2 is averaged, it is possible to perform an operation that is suppressed to be lower than the cooling capacity Qmin, so that the above-described compressor start / stop operation is not performed, and a decrease in efficiency can be prevented. The reason for opening / closing (ON / OFF) the electromagnetic valve 42 is, for example, that the cooling capacity is too low when the electromagnetic valve 42 is in the opening operation (ON). Therefore, in the air conditioner according to Embodiment 2 of the present invention, the electromagnetic valve 42 is operated to open and close (ON / OFF), and an average cooling capacity is obtained.

さらに、図9に示す室内熱交換器温度センサ61により検知された室内熱交換器16の温度に基づき、この温度を所定の温度に保つように、第2電磁弁42のON/OFF時間を調整してもよい。これにより、圧縮機回転数下限状態における冷房能力Qmin以下の冷房能力制御がより効果的に可能となる。   Further, based on the temperature of the indoor heat exchanger 16 detected by the indoor heat exchanger temperature sensor 61 shown in FIG. 9, the ON / OFF time of the second electromagnetic valve 42 is adjusted so as to keep this temperature at a predetermined temperature. May be. Thereby, the cooling capacity control below the cooling capacity Qmin in the compressor rotation speed lower limit state can be more effectively performed.

なお、この実施の形態2では補助熱交換器として、圧縮機6を囲むように設けた熱交換器34を例にして説明したが、これに限られることなく他の構成によるものであってもよい。   In the second embodiment, the heat exchanger 34 provided so as to surround the compressor 6 is described as an example of the auxiliary heat exchanger. However, the heat exchanger 34 is not limited to this and may be of other configurations. Good.

以上のように、本発明の実施の形態2に係る冷凍サイクル装置では、暖房運転の除霜時にしか使用できなかった高コストな蓄熱システムを構成する冷媒回路を冷房運転時にも活用することができる。その結果、年間を通じて冷房時、暖房時双方の快適性を向上させることができる。   As described above, in the refrigeration cycle apparatus according to Embodiment 2 of the present invention, the refrigerant circuit constituting the high-cost heat storage system that can only be used during the defrosting of the heating operation can be utilized also during the cooling operation. . As a result, it is possible to improve comfort during cooling and heating throughout the year.

本発明は、暖房時の除霜に用いる蓄熱槽、蓄熱熱交換器、蓄熱材、第一電磁弁、第二電磁弁といった高コストな部品を、冷房時の低負荷時に利用することで圧縮機発停によるロスを低減することができ、年間を通じて冷房時、暖房時双方の快適性を向上することができる。よって、小型の空気調和機はもとより、パッケージエアコン等の中型、大型の空気調和機等にも有用である。また、本発明は、熱交換器の効率を向上させると共に、短時間での除霜運転完了を可能とするので、冷蔵庫、ヒートポンプ式給湯器等にも有用である。   The present invention uses a high-cost component such as a heat storage tank, a heat storage heat exchanger, a heat storage material, a first electromagnetic valve, and a second electromagnetic valve used for defrosting during heating at the time of low load during cooling. Loss due to starting and stopping can be reduced, and comfort during both cooling and heating can be improved throughout the year. Therefore, it is useful not only for small air conditioners but also for medium-sized and large air conditioners such as packaged air conditioners. Moreover, since this invention improves the efficiency of a heat exchanger and enables completion of a defrosting operation in a short time, it is useful also for a refrigerator, a heat pump type water heater, etc.

2 室外機
4 室内機
6 圧縮機
8 四方弁
10 ストレーナ
12 膨張弁
14 室外熱交換器
16 室内熱交換器
18、20、22、24、25 配管
26 アキュームレータ
28 配管
30 電磁弁
32 蓄熱槽
34 蓄熱熱交換器
36 蓄熱材
38、40 配管
42 電磁弁
43 キャピラリチューブ
44 第1温度センサ
45 第2温度センサ
51 冷媒流通管
52a、52b 冷媒流通管
53a、53b、53c、53d、53e、53f 冷媒流通管
54a、54b、54c、54d、54e、54f 冷媒流通管
55 空気流
60 電磁弁制御装置
61 室内熱交換器温度センサ
DESCRIPTION OF SYMBOLS 2 Outdoor unit 4 Indoor unit 6 Compressor 8 Four-way valve 10 Strainer 12 Expansion valve 14 Outdoor heat exchanger 16 Indoor heat exchanger 18, 20, 22, 24, 25 Piping 26 Accumulator 28 Piping 30 Electromagnetic valve 32 Thermal storage tank 34 Thermal storage heat Exchanger 36 Heat storage material 38, 40 Piping 42 Solenoid valve 43 Capillary tube 44 First temperature sensor 45 Second temperature sensor 51 Refrigerant flow pipe 52a, 52b Refrigerant flow pipe 53a, 53b, 53c, 53d, 53e, 53f Refrigerant flow pipe 54a 54b, 54c, 54d, 54e, 54f Refrigerant flow pipe 55 Air flow 60 Solenoid valve control device 61 Indoor heat exchanger temperature sensor

Claims (10)

圧縮機と、
前記圧縮機に接続された室内熱交換器と、
前記室内熱交換器と接続された膨張弁と、
前記膨張弁と接続された室外熱交換器と、
前記室内熱交換器あるいは前記室外熱交換器と前記圧縮機との接続を切り替える四方弁と、を備え、
前記室外熱交換器の除霜運転時における冷媒の流れが暖房運転時における冷媒の流れと同一の方向である構成とし、
前記室外熱交換器は、複数の冷媒流路を有する複数列の熱交換器からなり、
前記複数列の熱交換器は、暖房運転時において、空気流に対して風上側の領域に冷媒流路の入口を設け、他の領域に冷媒流路の出口を設け、
前記複数の冷媒流路は、前記冷媒流路の入口から前記冷媒流路の出口に向かって冷媒流路数が増加するように接続し、前記冷媒流路の入口の領域における冷媒流路数を、前記他の領域における冷媒流路数より少なく構成したことを特徴とする空気調和機。
A compressor,
An indoor heat exchanger connected to the compressor;
An expansion valve connected to the indoor heat exchanger;
An outdoor heat exchanger connected to the expansion valve;
A four-way valve for switching the connection between the indoor heat exchanger or the outdoor heat exchanger and the compressor,
The refrigerant flow during the defrosting operation of the outdoor heat exchanger is configured in the same direction as the refrigerant flow during the heating operation,
The outdoor heat exchanger comprises a plurality of rows of heat exchangers having a plurality of refrigerant flow paths,
The plurality of rows of heat exchangers are provided with an inlet of a refrigerant channel in a region on the windward side with respect to the air flow and an outlet of the refrigerant channel in another region during heating operation,
The plurality of refrigerant channels are connected so that the number of refrigerant channels increases from the inlet of the refrigerant channel toward the outlet of the refrigerant channel, and the number of refrigerant channels in the region of the inlet of the refrigerant channel is determined. The air conditioner is configured to have a smaller number of refrigerant channels in the other area.
前記室外熱交換器の温度を検知する温度検知器を更に備え、
前記温度検知器を前記複数の冷媒流路のうち最下段の流路の暖房運転時の出口に接続される配管もしくは最下段の冷媒流路のいずれかの箇所に配置したことを特徴とする請求項1に記載の空気調和機。
A temperature detector for detecting the temperature of the outdoor heat exchanger;
The temperature detector is arranged at any one of a pipe connected to an outlet during heating operation of a lowermost flow path among the plurality of refrigerant flow paths or a lowermost refrigerant flow path. Item 2. An air conditioner according to Item 1.
前記冷媒流路の入口のうち少なくとも1つの経路は、前記室外熱交換器最下段の伝熱管を通ることを特徴とする請求項1又は2に記載の空気調和機。   3. The air conditioner according to claim 1, wherein at least one path among the inlets of the refrigerant flow path passes through a heat transfer tube at a lowermost stage of the outdoor heat exchanger. 前記冷媒流路の入口となる経路は、1経路であることを特徴とする請求項1乃至3のいずれか一項に記載の空気調和機。   The air conditioner according to any one of claims 1 to 3, wherein a path serving as an inlet of the refrigerant flow path is a single path. 前記室外熱交換器は、風上列、中央列、風下列、の3列で構成され、そのうち少なくとも中央列、風下列の伝熱管は、前記複数の冷媒流路のうち、増加した後の冷媒流路で満たされることを特徴とする請求項1乃至4のいずれか一項に記載の空気調和機。   The outdoor heat exchanger is composed of three rows, an upwind row, a central row, and a downwind row, and at least the heat transfer tubes in the central row and the leeward row are refrigerants after increasing among the plurality of refrigerant channels. The air conditioner according to any one of claims 1 to 4, wherein the air conditioner is filled with a flow path. 前記圧縮機を囲むように配置された蓄熱装置を更に備え、
前記蓄熱装置は、前記圧縮機で発生した熱を蓄熱し、
前記室内熱交換器と前記膨張弁の間の配管から前記蓄熱装置に冷媒が流れるように配管し、
前記蓄熱装置で吸熱した冷媒を前記圧縮機の吸入管に流れるように配管することで、前記室外熱交換器の除霜運転と暖房運転を同時に行うことが可能な構成としたことを特徴とする請求項1乃至5のいずれか一項に記載の空気調和機。
A heat storage device arranged to surround the compressor;
The heat storage device stores heat generated by the compressor,
Piping so that the refrigerant flows from the piping between the indoor heat exchanger and the expansion valve to the heat storage device,
The refrigerant that has absorbed heat by the heat storage device is piped so as to flow into the suction pipe of the compressor, whereby the defrosting operation and the heating operation of the outdoor heat exchanger can be performed simultaneously. The air conditioner as described in any one of Claims 1 thru | or 5.
前記蓄熱装置は、前記圧縮機で発生した熱を蓄熱する蓄熱材と、前記蓄熱材で蓄熱した熱を取得するための蓄熱熱交換器と、を具備することを特徴とする請求項1乃至6のいずれか一項に記載の空気調和機。   The heat storage device includes a heat storage material for storing heat generated by the compressor, and a heat storage heat exchanger for acquiring heat stored by the heat storage material. The air conditioner as described in any one of. 圧縮機と、
前記圧縮機に接続された室内熱交換器と、
前記室内熱交換器と接続された膨張弁と、
前記膨張弁と接続された室外熱交換器と、
前記室内熱交換器あるいは前記室外熱交換器と前記圧縮機との接続を切り替える四方弁と、
前記圧縮機の周囲に配置される冷媒加熱用の補助熱交換器と、
前記補助熱交換器を経由して前記圧縮機の吸入管へ冷媒を流す補助熱交経路と、
前記室内熱交換器と前記膨張弁の間の配管を流れる冷媒を前記補助熱交経路へ流れるように切り替える電磁弁と、を備え、
除霜時に前記電磁弁を開いて前記室外熱交換器に付着した霜を融解して除霜する冷凍サイクル装置であって、
前記電磁弁を開閉する動作を行う電磁弁制御装置を、更に有し、
前記電磁弁制御装置は、冷房運転時において前記圧縮機の回転数が下限に到達し、冷房負荷が冷房能力より下回る状態の時、前記電磁弁の開閉動作の制御を行う冷凍サイクル装置。
A compressor,
An indoor heat exchanger connected to the compressor;
An expansion valve connected to the indoor heat exchanger;
An outdoor heat exchanger connected to the expansion valve;
A four-way valve for switching the connection between the indoor heat exchanger or the outdoor heat exchanger and the compressor;
An auxiliary heat exchanger for heating the refrigerant disposed around the compressor;
An auxiliary heat exchange path for flowing the refrigerant to the suction pipe of the compressor via the auxiliary heat exchanger;
An electromagnetic valve that switches the refrigerant flowing through the pipe between the indoor heat exchanger and the expansion valve to flow to the auxiliary heat exchange path,
A refrigeration cycle apparatus that opens the electromagnetic valve during defrosting to melt and defrost frost adhering to the outdoor heat exchanger,
A solenoid valve control device for performing an operation of opening and closing the solenoid valve;
The electromagnetic valve control device is a refrigeration cycle device that controls the opening / closing operation of the electromagnetic valve when the rotation speed of the compressor reaches a lower limit during cooling operation and the cooling load is lower than the cooling capacity.
前記電磁弁制御装置は、前記電磁弁を予め定めた開時間と閉時間の組み合わせにより動作させることを特徴とする請求項8に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 8, wherein the electromagnetic valve control device operates the electromagnetic valve by a combination of a predetermined opening time and closing time. 前記室内熱交換器に室内熱交換器温度センサを更に備え、
前記電磁弁制御装置は、前記室内熱交換器温度センサの検知した温度により、前記電磁弁の開閉制御することを特徴とする請求項8又は9に記載の冷凍サイクル装置。
The indoor heat exchanger further includes an indoor heat exchanger temperature sensor,
The refrigeration cycle apparatus according to claim 8 or 9, wherein the electromagnetic valve control device controls opening and closing of the electromagnetic valve according to a temperature detected by the indoor heat exchanger temperature sensor.
JP2013548073A 2011-12-06 2012-11-21 Air conditioner and refrigeration cycle apparatus Active JP6132243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013548073A JP6132243B2 (en) 2011-12-06 2012-11-21 Air conditioner and refrigeration cycle apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011266577 2011-12-06
JP2011266577 2011-12-06
JP2011273136 2011-12-14
JP2011273136 2011-12-14
JP2013548073A JP6132243B2 (en) 2011-12-06 2012-11-21 Air conditioner and refrigeration cycle apparatus
PCT/JP2012/007502 WO2013084432A1 (en) 2011-12-06 2012-11-21 Air conditioner and refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPWO2013084432A1 true JPWO2013084432A1 (en) 2015-04-27
JP6132243B2 JP6132243B2 (en) 2017-05-24

Family

ID=48573824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013548073A Active JP6132243B2 (en) 2011-12-06 2012-11-21 Air conditioner and refrigeration cycle apparatus

Country Status (4)

Country Link
JP (1) JP6132243B2 (en)
KR (1) KR20140105431A (en)
CN (1) CN103765111A (en)
WO (1) WO2013084432A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084970A (en) * 2014-10-24 2016-05-19 株式会社富士通ゼネラル Heat exchanger
CN108431528B (en) * 2016-01-12 2020-04-28 三菱电机株式会社 Air conditioner
CN106091203A (en) * 2016-07-30 2016-11-09 河南广度超硬材料有限公司 Air-conditioning and the refrigerating method thereof of cold-producing medium is made of air
EP3640550A4 (en) * 2017-06-12 2020-06-17 Mitsubishi Electric Corporation Outdoor unit
SG11202006153WA (en) * 2018-01-18 2020-08-28 Mitsubishi Electric Corp Heat exchanger, outdoor unit and refrigeration cycle apparatus
JP7398617B2 (en) 2020-02-17 2023-12-15 パナソニックIpマネジメント株式会社 air conditioner
KR20210104476A (en) * 2020-02-17 2021-08-25 엘지전자 주식회사 Air conditioner
EP4141348A4 (en) * 2020-04-20 2023-08-09 Mitsubishi Electric Corporation Refrigeration cycle device
CN111637583B (en) * 2020-05-25 2022-06-14 宁波奥克斯电气股份有限公司 Condenser flow path structure, control method and air conditioner
JP7374321B2 (en) * 2020-06-15 2023-11-06 日立ジョンソンコントロールズ空調株式会社 Outdoor unit of air conditioner
CN112178795A (en) * 2020-11-02 2021-01-05 珠海格力电器股份有限公司 Outdoor heat exchanger and air conditioning device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146377U (en) * 1984-08-28 1986-03-27 株式会社東芝 outdoor unit
JPS63198929U (en) * 1987-06-11 1988-12-21
JP2003114065A (en) * 2001-07-30 2003-04-18 Daikin Ind Ltd Outdoor heat exchanger and air conditioner
JP4666111B1 (en) * 2010-07-08 2011-04-06 パナソニック株式会社 Refrigeration cycle equipment
JP2011145011A (en) * 2010-01-15 2011-07-28 Panasonic Corp Air conditioning device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196347A (en) * 1984-10-15 1986-05-15 Sanyo Electric Co Ltd Air conditioner
JPS61276660A (en) * 1985-05-31 1986-12-06 松下電器産業株式会社 Controller for capacity of air conditioner
JPH0544653Y2 (en) * 1987-07-24 1993-11-12
JP2967793B2 (en) * 1991-12-30 1999-10-25 東京瓦斯株式会社 Multi-type air conditioner
JP2000301935A (en) * 1999-04-21 2000-10-31 Mitsubishi Heavy Ind Ltd Heat pump type air conditioner for vehicle
JP3888000B2 (en) * 1999-08-27 2007-02-28 株式会社日立製作所 Air conditioner
CN101078574A (en) * 2007-06-27 2007-11-28 王全龄 Highly effective heating and refrigerating air source heat pump air conditioner suitable for wide temperature environment
CN101078575A (en) * 2007-06-27 2007-11-28 王全龄 Highly effective heat pump air conditioner and hot water device suitable for wide temperature environment
JP5204189B2 (en) * 2010-03-01 2013-06-05 パナソニック株式会社 Refrigeration cycle equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146377U (en) * 1984-08-28 1986-03-27 株式会社東芝 outdoor unit
JPS63198929U (en) * 1987-06-11 1988-12-21
JP2003114065A (en) * 2001-07-30 2003-04-18 Daikin Ind Ltd Outdoor heat exchanger and air conditioner
JP2011145011A (en) * 2010-01-15 2011-07-28 Panasonic Corp Air conditioning device
JP4666111B1 (en) * 2010-07-08 2011-04-06 パナソニック株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
JP6132243B2 (en) 2017-05-24
WO2013084432A1 (en) 2013-06-13
CN103765111A (en) 2014-04-30
KR20140105431A (en) 2014-09-01

Similar Documents

Publication Publication Date Title
JP6132243B2 (en) Air conditioner and refrigeration cycle apparatus
CN102272534B (en) Air conditioning apparatus
JP5327308B2 (en) Hot water supply air conditioning system
AU2006263260B2 (en) Hotwater supply device
TWI252904B (en) Refrigerator
JP5992089B2 (en) Air conditioner
JP6910210B2 (en) Air conditioner
EP2336676B1 (en) Combined refrigerating/freezing and air conditioning system
CN108105912B (en) Multi-line system and its anti-refrigerant bias current control method, control device
WO2012032680A1 (en) Refrigeration cycle apparatus
US9513041B2 (en) Air conditioner
JP5992088B2 (en) Air conditioner
JPWO2018002983A1 (en) Refrigeration cycle equipment
US10281184B2 (en) Air conditioner
EP2522934A2 (en) Heat storing apparatus having cascade cycle and control process of the same
US9618235B2 (en) Air conditioner including an indoor auxiliary heat exchanger
US6609390B1 (en) Two-refrigerant refrigerating device
JP2013104623A (en) Refrigeration cycle device and air conditioner with the same
WO2013065233A1 (en) Refrigeration cycle apparatus and air conditioner provided with same
JP2013083439A5 (en)
JP2017194201A (en) Air conditioner
JP2013089209A (en) Automatic vending machine
JP2018036002A (en) Air Conditioning Hot Water Supply System
JP2017161159A (en) Outdoor uni of air conditioner
KR101173736B1 (en) Refrigerating and freezing combine air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170407

R151 Written notification of patent or utility model registration

Ref document number: 6132243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151