JPWO2013080763A1 - Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JPWO2013080763A1
JPWO2013080763A1 JP2013547079A JP2013547079A JPWO2013080763A1 JP WO2013080763 A1 JPWO2013080763 A1 JP WO2013080763A1 JP 2013547079 A JP2013547079 A JP 2013547079A JP 2013547079 A JP2013547079 A JP 2013547079A JP WO2013080763 A1 JPWO2013080763 A1 JP WO2013080763A1
Authority
JP
Japan
Prior art keywords
lithium ion
ion secondary
positive electrode
secondary battery
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013547079A
Other languages
Japanese (ja)
Other versions
JP5967101B2 (en
Inventor
洋和 佐々木
洋和 佐々木
淳史 根本
淳史 根本
真紀 守屋
真紀 守屋
雅彦 宮原
雅彦 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Publication of JPWO2013080763A1 publication Critical patent/JPWO2013080763A1/en
Application granted granted Critical
Publication of JP5967101B2 publication Critical patent/JP5967101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

組成式Li2(M1-yLiy)(Si,MB)O4(ここで、Mは、Fe、Mn、Co、及びNiよりなる群から選ばれる1つ以上の元素である。MBは、Li+のy分の電荷を補償するために、Siを置換する元素である。)で表される酸化物と、炭素材との複合体からなり、前記酸化物の組成式において0<y≰0.25であり、前記複合体は、前記炭素材に対して前記酸化物が島状に点在する海島構造を呈し、当該海島構造の島の円換算径の平均値が3nm以上15nm以下である。また、前記リチウムイオン二次電池用正極材料を用いたリチウムイオン二次電池用正極部材、及びリチウムイオン二次電池である。Composition formula Li2 (M1-yLiy) (Si, MB) O4 (where M is one or more elements selected from the group consisting of Fe, Mn, Co, and Ni. MB is the y component of Li +) Is an element that substitutes for Si to compensate for the electric charge of the above.) And a carbon material, and in the composition formula of the oxide, 0 <y≰0.25, The composite has a sea-island structure in which the oxide is scattered in islands with respect to the carbon material, and the average value of the circle-converted diameters of the islands of the sea-island structure is 3 nm or more and 15 nm or less. Moreover, it is the positive electrode member for lithium ion secondary batteries using the said positive electrode material for lithium ion secondary batteries, and a lithium ion secondary battery.

Description

本発明は、リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、及びリチウムイオン二次電池に関する。   The present invention relates to a positive electrode material for a lithium ion secondary battery, a positive electrode member for a lithium ion secondary battery, and a lithium ion secondary battery.

リチウムイオン二次電池は、従来の鉛二次電池やニッケル−カドミウム二次電池などに比べ軽量で容量も大きいため携帯電話やノート型パーソナルコンピューターなどの電子機器の電源として広く用いられている。最近では、電気自動車、プラグインハイブリッド自動車、電動二輪車等の電池としても利用され始めている。
リチウムイオン二次電池は、基本的に、正極、負極、電解質、セパレータで構成されている。
通常、負極は、金属リチウム、リチウムイオンを挿入脱離できる炭素やチタン酸リチウム等が使用されている。電解質は、リチウム塩とそれを溶解できる有機溶媒やイオン性液体(イオン液体)が使用されている。セパレータは、正極と負極の間に置かれその間の絶縁を保つとともに、電解質が通過できる細孔を有するもので多孔質の有機樹脂やガラス繊維等が使用されている。
正極は、基本的には、リチウムイオンが脱離挿入できる活物質、集電体への電気伝導経路(電子伝導経路)を確保するための導電助剤、活物質と導電助剤をつなぎ合わせる結着剤で構成されている。導電助剤としては、アセチレンブラック、カーボンブラック、グラファイト等の炭素材料が用いられている。また、正極材料である前記活物質としては、LiCoO2、LiNiO2、LiNi0.8Co0.2O2、LiMn2O4などのリチウムと遷移金属の金属酸化物が一般的に用いられている。その他にも、LiMPO4及び該リン酸金属塩リチウムを基本構造として元素置換や組成変化させた誘導体、Li2MSiO4や該ケイ酸金属塩リチウムを基本構造として元素置換や組成変化させた誘導体、LiMBO3や該ホウ酸金属塩リチウムを基本構造として元素置換や組成変化させた誘導体がある。ここで、Mは、Fe、Mn、Ni、Co等の価数変化する遷移金属元素が主として含まれる。
Lithium ion secondary batteries are widely used as power sources for electronic devices such as mobile phones and notebook personal computers because they are lighter and have a larger capacity than conventional lead secondary batteries and nickel-cadmium secondary batteries. Recently, it has begun to be used as a battery for electric vehicles, plug-in hybrid vehicles, electric motorcycles and the like.
A lithium ion secondary battery basically includes a positive electrode, a negative electrode, an electrolyte, and a separator.
Usually, the negative electrode uses metallic lithium, carbon capable of inserting and removing lithium ions, lithium titanate, and the like. As the electrolyte, a lithium salt and an organic solvent or an ionic liquid (ionic liquid) that can dissolve the lithium salt are used. The separator is placed between the positive electrode and the negative electrode to maintain insulation therebetween, and has pores through which the electrolyte can pass, and a porous organic resin, glass fiber, or the like is used.
The positive electrode basically has an active material in which lithium ions can be desorbed and inserted, a conductive auxiliary agent for securing an electric conduction path (electron conduction path) to the current collector, and a combination of the active material and the conductive auxiliary agent. It is composed of a dressing. Carbon materials such as acetylene black, carbon black, and graphite are used as the conductive assistant. Further, as the active material that is a positive electrode material, lithium and transition metal metal oxides such as LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4 are generally used. In addition, LiMPO 4 and derivatives whose elemental substitution and composition change is based on the lithium phosphate metal salt, Li 2 MSiO 4 and derivatives whose elemental substitution and composition change are based on the lithium silicate metal salt basic structure, There are derivatives in which element substitution and composition change are performed using LiMBO 3 or lithium metal borate as a basic structure. Here, M mainly includes transition metal elements such as Fe, Mn, Ni, and Co that change in valence.

このような金属酸化物は一般に電子伝導度が低いので、金属酸化物を活物質とする正極では、上述のように導電助剤が混合されている。また、導電助剤を混合するとともに、金属酸化物活物質の表面を炭素被覆したり、当該表面に炭素粒子や炭素繊維を付着させたりすることで更に正極内の電子伝導性を改善することも行われている(特許文献1〜6、非特許文献1参照)。
特に電子伝導性が著しく乏しい金属酸化物では、単に導電助剤を共存させて正極を構成するだけでは不十分であり、優れた電池特性が得られないので、該金属酸化物の表面に炭素被覆して使用される。
また、上記酸化物の中で、ケイ酸鉄リチウムLi2FeSiO4やケイ酸マンガンリチウムLi2MnSiO4、及びそれらを基本構造として元素置換や組成変化させた誘導体は、1つの組成式中に2つのリチウムイオンを含んでいるために、理論的には高い容量が期待できる(特許文献7〜11、非特許文献2参照)。また、電子伝導度が特に低いので、電極中に導電助剤を混合するだけでなく、当該酸化物粒子への炭素被覆も試みられている(非特許文献3〜5参照)。
さらに、Li2MSiO4で示され、Mが2種類以上の遷移金属から選ばれた化合物を含む正極活物質も知られている(特許文献12)。しかし、ここでは、後述するようにLi2MSiO4固体内においてリチウムイオンの移動方向を広げて内部抵抗を低減できる組成については開示されておらず、更にはLi2MSiO4と炭素材とを複合化して海島構造を形成することも開示されていない。
Since such a metal oxide generally has a low electronic conductivity, in the positive electrode using the metal oxide as an active material, the conductive additive is mixed as described above. In addition to mixing the conductive assistant, the surface of the metal oxide active material may be coated with carbon, or carbon particles or carbon fibers may be attached to the surface to further improve the electron conductivity in the positive electrode. (See Patent Documents 1 to 6 and Non-Patent Document 1).
In particular, in the case of metal oxides with extremely poor electronic conductivity, it is not sufficient to simply form a positive electrode in the presence of a conductive additive, and excellent battery characteristics cannot be obtained. Used.
Among the above oxides, lithium iron silicate Li 2 FeSiO 4 , manganese manganese silicate Li 2 MnSiO 4 , and derivatives in which element substitution and composition change are performed using these as basic structures are included in one composition formula. Since it contains two lithium ions, a high capacity can be expected theoretically (see Patent Documents 7 to 11 and Non-Patent Document 2). In addition, since the electron conductivity is particularly low, not only a conductive additive is mixed in the electrode, but also carbon coating on the oxide particles has been attempted (see Non-Patent Documents 3 to 5).
Furthermore, a positive electrode active material containing a compound represented by Li 2 MSiO 4 and M selected from two or more transition metals is also known (Patent Document 12). However, here, as described later, there is no disclosure of a composition that can reduce the internal resistance by expanding the direction of movement of lithium ions in a Li 2 MSiO 4 solid, and further, a composite of Li 2 MSiO 4 and a carbon material. Neither is it disclosed to form a sea-island structure.

特開2003−34534号公報Japanese Patent Laid-Open No. 2003-34534 特開2006−302671号公報JP 2006-302671 A 特開2002−75364号公報JP 2002-75364 A 特開2003−272632号公報JP 2003-272632 A 特開2004−234977号公報Japanese Patent Laid-Open No. 2004-234777 特開2003−59491号公報JP 2003-59491 A 特開2007−335325号公報JP 2007-335325 A 特表2005−519451号公報Special table 2005-519451 gazette 特開2001−266882号公報JP 2001-266882 A 特開2010−108678号公報JP 2010-108678 A 特開2009−170401号公報JP 2009-170401 A 特開2010−257592号公報JP 2010-257592 A

J. Moskon, R. Dominko, R. Cerc-Korosec, M. Gaberscek, J. Jamnik, J. Power Sources 174, (2007)638-688.J. Moskon, R. Dominko, R. Cerc-Korosec, M. Gaberscek, J. Jamnik, J. Power Sources 174, (2007) 638-688. R. Dominko, M. Bele, M. Gaberscek, A. Meden, M. Remskar, J. Jamnik, Electrochem. Commun. 8, (2006)217-222.R. Dominko, M. Bele, M. Gaberscek, A. Meden, M. Remskar, J. Jamnik, Electrochem. Commun. 8, (2006) 217-222. 邵斌、谷口泉、第50回電池討論会講演要旨集、(2009)111.Tsuji, Izumi Taniguchi, Proc. Of the 50th Battery Conference, (2009) 111. 邵斌、谷口泉、第51回電池討論会講演要旨集、(2010)211.Tsuji, Izumi Taniguchi, Proceedings of the 51st Battery Conference, (2010) 211. Yi-Xiao Li, Zheng-Liang Gong, Yong Yang, J. Power Sources 174, (2007)528-532.Yi-Xiao Li, Zheng-Liang Gong, Yong Yang, J. Power Sources 174, (2007) 528-532. 小島晶、小島敏勝、幸琢寛、奥村妥絵、境哲男、第51回電池討論会要旨集、(2010)194.Akira Kojima, Toshikatsu Kojima, Hiroshi Kouki, Mitsue Okumura, Tetsuo Sakai, Abstracts of the 51st Battery Conference, (2010) 194. 上村雄一、小林栄次、土井貴之、岡田重人、山木準一、第50回電池討論会講演要旨集、(2009)30.Yuichi Uemura, Eiji Kobayashi, Takayuki Doi, Shigeto Okada, Junichi Yamaki, Proceedings of the 50th Battery Conference, (2009) 30.

上述のように、ケイ酸鉄リチウムLi2FeSiO4やケイ酸マンガンリチウムLi2MnSiO4、及びそれらを基本構造として元素置換や組成変化させた誘導体は、理論上又は組成上高い容量(330mAh/g)が期待できる。実際には、1Li以上の実容量(165mAh/g)が得られたという例はまだ数少なく、1.5Liの実容量(247mAh/g)にまではまだ達成されていないが、特許文献7では、60〜130mAh/gの容量となっており、非特許文献6では190mAh/gの実容量、非特許文献7では225mAh/gの実容量が報告されている。
しかしながら、実際には、高い実容量が得られたとしても内部抵抗が高いと、電池としては高い電圧が得られないので、実質のエネルギー密度が低くなる。また、内部抵抗が高いと、電池の発熱が大きくなるので電池ユニットの熱設計等が難しくなる。従来、ケイ酸鉄リチウムやケイ酸マンガンリチウムでは、理論容量が高いので実容量を高める努力がなされてきたが、本発明者らは、実容量を高くするだけでは十分ではなく、内部抵抗を低減しなければならないという問題があるということを明らかにした。
また、大きな充電量で充放電を繰り返すと内部抵抗が増加したり、実容量が低下したりするという問題もある。特に、Mnを含むケイ酸マンガンリチウムは、充放電を繰り返すと実容量の低下が著しい。
本発明では、上記問題点に鑑みてなされたものであり、2Li以上の理論容量の酸化物を含有するリチウムイオン二次電池用正極材料であって、高い実用量、低い内部抵抗、高充電における充放電の繰り返しに対する高い安定性が得られるリチウムイオン二次電池用正極材料、それを用いたリチウムイオン二次電池用正極部材、及びリチウムイオン二次電池を提供することを目的とする。
As described above, lithium iron silicate Li 2 FeSiO 4 , lithium manganese silicate Li 2 MnSiO 4 , and derivatives in which element substitution and composition change are performed using these as basic structures are theoretically or compositionally high in capacity (330 mAh / g ) Can be expected. Actually, there are only a few examples that an actual capacity of 1 Li or more (165 mAh / g) was obtained, and the actual capacity of 1.5 Li (247 mAh / g) has not yet been achieved. The non-patent document 6 reports an actual capacity of 190 mAh / g, and non-patent document 7 reports an actual capacity of 225 mAh / g.
However, in practice, even if a high actual capacity is obtained, if the internal resistance is high, a high voltage cannot be obtained as a battery, so that a substantial energy density is lowered. In addition, when the internal resistance is high, the heat generation of the battery increases, so that it becomes difficult to design the battery unit in a thermal manner. Conventionally, lithium iron silicate and lithium manganese silicate have high theoretical capacity, so efforts have been made to increase the actual capacity. However, the inventors have not been able to increase the actual capacity, but reduce the internal resistance. Clarified that there is a problem that must be done.
In addition, when charging / discharging is repeated with a large charge amount, there is a problem that the internal resistance increases or the actual capacity decreases. In particular, lithium manganese silicate containing Mn has a significant decrease in actual capacity when charging and discharging are repeated.
The present invention has been made in view of the above problems, and is a positive electrode material for a lithium ion secondary battery containing an oxide having a theoretical capacity of 2 Li or more, in a high practical amount, a low internal resistance, and a high charge. It aims at providing the positive electrode material for lithium ion secondary batteries from which the high stability with respect to the repetition of charging / discharging is obtained, the positive electrode member for lithium ion secondary batteries using the same, and a lithium ion secondary battery.

本発明者らは、ケイ酸鉄リチウムやケイ酸マンガンリチウム等の組成式Li2MSiO4におけるMサイトをリチウムイオンで置換した新たな材料で低い内部抵抗が得られることを見出した。
すなわち、本発明は、以下を要旨とするものである。
(1)組成式Li2(M1-yLiy)(Si,MB)O4(ここで、Mは、Fe、Mn、Co、及びNiよりなる群から選ばれる1つ以上の元素である。MBは、Li+のy分の電荷を補償するために、Siを置換する元素である。)で表される酸化物と、炭素材との複合体からなり、前記酸化物の組成式において0<y≦0.25であり、前記複合体は、前記炭素材に対して前記酸化物が島状に点在する海島構造を呈し、当該海島構造の島の円換算径の平均値が3nm以上15nm以下であることを特徴とするリチウムイオン二次電池用正極材料である。
(2)前記yの値が、0.03125の倍数であることを特徴とする(1)に記載のリチウムイオン二次電池用正極材料である。
(3)前記MBが、Pであることを特徴とする(1)又は(2)に記載のリチウムイオン二次電池用正極材料である。
(4)前記複合体が1μm以上20μm以下のサイズを有する粒子であって、前記粒子の内部には空隙が存在することを特徴とする(1)〜(3)のいずれかに記載のリチウムイオン二次電池用正極材料である。
(5)前記粒子の内部に200nm以上前記粒子サイズ未満のサイズを有する空隙が存在することを特徴とする(4)に記載のリチウムイオン二次電池用正極材料である。
(6)前記空隙の存在量が、前記粒子断面における面積率で20%以上80%以下であることを特徴とする(5)に記載のリチウムイオン二次電池用正極材料である。
(7)(1)〜(6)のいずれかに記載のリチウムイオン二次電池用正極材料、及び、結合剤を含む正極層を有する金属箔を有することを特徴とするリチウムイオン二次電池用正極部材である。
(8)(1)〜(6)のいずれかに記載のリチウムイオン二次電池用正極材料、又は(7)に記載のリチウムイオン二次電池用正極部材を用いたことを特徴とするリチウムイオン二次電池である。
The present inventors have found that a low internal resistance can be obtained with a new material in which the M site in the composition formula Li 2 MSiO 4 such as lithium iron silicate and lithium manganese silicate is substituted with lithium ions.
That is, the gist of the present invention is as follows.
(1) Composition formula Li 2 (M 1-y Li y ) (Si, M B ) O 4 (where M is one or more elements selected from the group consisting of Fe, Mn, Co, and Ni) there .M B, in order to compensate for the y component of the charge of Li +, it the oxide represented by an element which replaces the Si.), a composite of the carbon material, the composition of the oxide In the formula, 0 <y ≦ 0.25, and the composite exhibits a sea-island structure in which the oxide is scattered in an island shape with respect to the carbon material, and an average value of a circle-converted diameter of the island of the sea-island structure is 3 nm. This is a positive electrode material for a lithium ion secondary battery having a thickness of 15 nm or less.
(2) The positive electrode material for a lithium ion secondary battery according to (1), wherein the value of y is a multiple of 0.03125.
(3) the M B is a positive electrode material for a lithium ion secondary battery according to (1) or (2) that the P.
(4) The lithium ion according to any one of (1) to (3), wherein the composite is a particle having a size of 1 μm or more and 20 μm or less, and voids exist inside the particle. It is a positive electrode material for secondary batteries.
(5) The positive electrode material for a lithium ion secondary battery according to (4), wherein voids having a size of 200 nm or more and less than the particle size exist inside the particles.
(6) The positive electrode material for a lithium ion secondary battery according to (5), wherein the abundance of the voids is 20% or more and 80% or less as an area ratio in the particle cross section.
(7) A lithium ion secondary battery positive electrode material according to any one of (1) to (6) and a metal foil having a positive electrode layer containing a binder, for a lithium ion secondary battery It is a positive electrode member.
(8) A lithium ion using the positive electrode material for a lithium ion secondary battery according to any one of (1) to (6) or the positive electrode member for a lithium ion secondary battery according to (7) It is a secondary battery.

本発明によれば、高い実容量で、内部抵抗を低減でき、充放電の繰り返しに対する高い安定性を有するリチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材及びリチウムイオン二次電池とすることができる。   According to the present invention, a positive electrode material for a lithium ion secondary battery, a positive electrode member for a lithium ion secondary battery, and a lithium ion secondary battery that have high actual capacity, can reduce internal resistance, and have high stability against repeated charge and discharge. It can be.

本発明の複合体の内部構造を示した模式図及び破断部のTEM像である。It is the schematic diagram which showed the internal structure of the composite_body | complex of this invention, and the TEM image of a fracture | rupture part.

本発明のリチウムイオン二次電池用正極材料は、Li2(M1-yLiy)(Si,MB)O4(ここで、Mは、Fe、Mn、Co、及びNiよりなる群から選ばれる1つ以上の元素である。MBは、Li+のy分の電荷を補償するために、Siを置換する元素である。)で表わされる酸化物を含有するものであり、前記酸化物の組成式において0<y≦0.25である。即ち、ケイ酸鉄リチウムやケイ酸マンガンリチウム等の一般的な組成式Li2MSiO4におけるMをLiで一部置換した酸化物にすることで、内部抵抗を低減できる。The positive electrode material for a lithium ion secondary battery of the present invention is Li 2 (M 1-y Li y ) (Si, M B ) O 4 (where M is a group consisting of Fe, Mn, Co, and Ni). is one or more elements selected .M B, in order to compensate for the y component of the charge of Li +, and those containing oxides represented by an element which replaces the Si.), the oxide In the composition formula of the product, 0 <y ≦ 0.25. That is, the internal resistance can be reduced by using an oxide in which M in the general composition formula Li 2 MSiO 4 such as lithium iron silicate and lithium manganese silicate is partially substituted with Li.

ケイ酸鉄リチウムやケイ酸マンガンリチウム等の結晶構造は、Mの酸素四面体とSiの酸素四面体が頂点共有してできるMSiO4シート(層)と同シート(層)のシート間(層間)にリチウムイオンが入った構造である。
前記層間のリチウムイオンは、充放電によって層間を平面的に(二次元的に)移動することになる。内部抵抗の要因の一つに、固体内のリチウムイオンの移動のしにくさがある。
前記層間のリチウムイオンの移動では、その移動範囲が二次元に限定されるということになる。MSiO4シートを突き抜けてリチウムイオンが移動できれば、隣の層間にリチウムイオンが移動でき、移動方向が広がって(三次元化)内部抵抗を低減できると考えられる。そこで、リチウムイオンがMSiO4シートを突き抜けるために、MSiO4シートのMの一部をリチウムイオンに置換した。MSiO4シートのMの一部にリチウムイオンが存在すると、層間のリチウムイオンがMSiO4シート内のリチウムイオンと交換しながら(玉突きのように)隣の層間に容易に移動できる。
このような技術思想のもと、Mの置換量yが0<y≦0.25であると、内部抵抗を低減できることを見出した。したがって、yがゼロ以下では、内部抵抗が低減できない。また、yが0.25を超えると酸化還元を担うMの量が減りすぎるので十分な放電容量が得られない。
The crystal structure of lithium iron silicate, lithium manganese silicate, etc. is between the MSiO 4 sheet (layer) and the same sheet (layer) between the M oxygen tetrahedron and Si oxygen tetrahedron. The structure contains lithium ions.
The lithium ions between the layers move in a plane (two-dimensionally) between the layers by charging and discharging. One factor of internal resistance is the difficulty of moving lithium ions within the solid.
In the movement of lithium ions between the layers, the movement range is limited to two dimensions. If lithium ions can move through the MSiO 4 sheet, lithium ions can move between adjacent layers, and the direction of movement can be expanded (three-dimensionalization) to reduce internal resistance. Therefore, lithium ions to penetrate the MSiO 4 sheets, by replacing part of MSiO 4 sheets of M lithium ions. When lithium ions to some MSiO 4 sheet M is present, while lithium ions between the layers are replaced with lithium ions MSiO 4 in the sheet (as billiard) it can easily be moved between the layers of the next.
Based on this technical idea, it has been found that the internal resistance can be reduced when the substitution amount y of M is 0 <y ≦ 0.25. Therefore, if y is zero or less, the internal resistance cannot be reduced. On the other hand, if y exceeds 0.25, the amount of M responsible for redox is reduced too much, so that a sufficient discharge capacity cannot be obtained.

前記yの値は、上記範囲内で0.03125の倍数であるのが、より好ましい。前記倍数であると、副格子を形成して構造がより安定しやすい。したがって、充放電を繰り返しても構造変化し難くなって放電容量の低下や内部抵抗の増大が進み難くなる。   The value of y is more preferably a multiple of 0.03125 within the above range. If it is the multiple, a sublattice is formed and the structure is more stable. Therefore, even if charging / discharging is repeated, it is difficult for the structure to change, and it is difficult to reduce the discharge capacity and increase the internal resistance.

Mを置換したリチウムイオンの電荷補償は、SiをMBで置換することで行う。MBとしては、Siの価数より大きな5価、6価の元素である。例えば、P、As、S、Se、V、Nb、Ta、Mo、W等が挙げられる。前記電荷補償は、Pで行うのがより好ましい。内部抵抗の低減が効果的に行われる。Charge compensation of lithium ions replace M is performed by replacing the Si with M B. The M B, greater pentavalent than the valence of Si, a 6-valent elements. For example, P, As, S, Se, V, Nb, Ta, Mo, W and the like can be mentioned. The charge compensation is more preferably performed with P. The internal resistance is effectively reduced.

また、本発明は、前記酸化物と炭素材との複合体であって、前記複合体が、前記炭素材に対して前記酸化物が島状に点在する海島構造を呈し、当該海島構造の島の円換算径の平均値が3nm以上15nm以下である。   Further, the present invention is a composite of the oxide and carbon material, wherein the composite exhibits a sea-island structure in which the oxide is scattered in an island shape with respect to the carbon material, The average value of the circle equivalent diameter of the island is 3 nm or more and 15 nm or less.

前記複合体中で酸化物である領域が複数存在することによって、即ち、前記複合体では炭素質がマトリックス(連続体)となり前記酸化物である領域が分散された(非連続体)構造とすることによって、リチウムイオンが前記各領域から挿入・脱離に伴って起こる前記各領域からの電子の移動が炭素材を経由できるので、全ての前記領域が活物質として作用する。よって、より高い実容量が実現できる。更に、前記領域の大きさが小さいとリチウムイオンの固体内拡散する距離が小さくなって実容量が高くなる傾向になる。前記酸化物では電気伝導度が非常に小さいので、現実的な充放電時間で高い実容量を得るには充放電時間に追随してリチウムイオンの固体内拡散ができる距離以下の結晶粒サイズである必要がある。
具体的には、前記複合体中の前記酸化物である領域の投影面積の円換算直径が15nm以下であると、より高い実容量が得られる。前記直径が15nmを超えるとリチウムイオンの固体内拡散距離が大きくなり現実的な充放電時間内にリチウムイオンが拡散できず、その結果、高い実容量が得られない場合がある。一方、前記直径の下限値は、リチウムイオンを酸化物構造内に保持し易い最小サイズである。よって、前記直径が3nm未満になるとリチウムイオンを酸化物構造内に保持し難くなる場合がある。
The composite has a plurality of oxide regions, that is, the composite has a structure in which carbon is a matrix (continuous) and the oxide regions are dispersed (non-continuous). As a result, the movement of electrons from each region, which occurs when lithium ions are inserted / extracted from each region, can pass through the carbon material, so that all the regions act as active materials. Therefore, a higher actual capacity can be realized. Furthermore, if the size of the region is small, the distance in which lithium ions diffuse in the solid becomes small and the actual capacity tends to increase. Since the oxide has a very low electric conductivity, a crystal grain size equal to or less than the distance at which lithium ions can be diffused in the solid following the charge / discharge time in order to obtain a high actual capacity in a realistic charge / discharge time. There is a need.
More specifically, a higher actual capacity can be obtained when the projected area of the oxide region in the composite has a circle-equivalent diameter of 15 nm or less. When the diameter exceeds 15 nm, the diffusion distance of lithium ions in the solid becomes large, and lithium ions cannot be diffused within a realistic charge / discharge time, and as a result, a high actual capacity may not be obtained. On the other hand, the lower limit value of the diameter is a minimum size at which lithium ions can be easily held in the oxide structure. Therefore, when the diameter is less than 3 nm, it may be difficult to hold lithium ions in the oxide structure.

ここで、前記複合体の前記酸化物である領域は、透過型電子顕微鏡を用いて観察することができる。投影面積の円換算直径は、透過型電子顕微鏡で観察し、画像処理することによって算出することができる。
具体的には、透過型電子顕微鏡像を2値化し、円の面積として置き換えた場合の直径の平均値で円換算直径を算出することができる。円換算直径とは、20個以上の前記直径の数平均値である。通常は、50個の数平均値を、円換算直径とする。
Here, the region which is the oxide of the composite can be observed using a transmission electron microscope. The circle-converted diameter of the projected area can be calculated by observing with a transmission electron microscope and image processing.
Specifically, the circle-converted diameter can be calculated from the average value of the diameters when the transmission electron microscope image is binarized and replaced as a circle area. The circle-converted diameter is a number average value of 20 or more of the diameters. Usually, the number average value of 50 is the diameter in terms of a circle.

本発明のリチウムイオン二次電池用正極材料では、炭素質の含有量が2質量%以上25質量%以下であるのがより好ましい。
前記炭素質の含有量が2質量%未満であると、集電体までの電子伝導経路が十分確保できない場合があり、優れた電池特性が得られない場合がある。一方、前記炭素質の含有量が25質量%を超えると、電極を作製した際の活物質の割合が少なくなるので、電池設計の仕方や目的によっては高い電池容量が得られなくなる場合がある。したがって、上記範囲内であると、優れた電池性能を容易に確保でき、電池設計の選択幅を広くできることになる。
In the positive electrode material for a lithium ion secondary battery of the present invention, the carbonaceous content is more preferably 2% by mass or more and 25% by mass or less.
When the carbonaceous content is less than 2% by mass, a sufficient electron conduction path to the current collector may not be ensured, and excellent battery characteristics may not be obtained. On the other hand, if the carbonaceous content exceeds 25% by mass, the ratio of the active material when the electrode is produced decreases, so that a high battery capacity may not be obtained depending on the battery design method and purpose. Therefore, if it is within the above range, excellent battery performance can be easily ensured, and the selection range of battery design can be widened.

本発明における炭素材は、元素状炭素を含むものであり、複合体粒子中の炭素材に含まれるグラファイト骨格炭素の含有率は20〜70%であることが好ましい。グラファイト骨格炭素の含有率が20%未満であると、炭素材の電気伝導率が低くなり、高い容量が得られ難くなる。一方、グラファイト骨格炭素の含有率が70%を超えると疎水性が強まり、電解質溶液が浸透し難くなるため、高容量が得られ難くなる場合がある。   The carbon material in the present invention contains elemental carbon, and the content of graphite skeleton carbon contained in the carbon material in the composite particles is preferably 20 to 70%. When the content of graphite skeleton carbon is less than 20%, the electric conductivity of the carbon material becomes low, and it becomes difficult to obtain a high capacity. On the other hand, when the content of the graphite skeleton carbon exceeds 70%, the hydrophobicity becomes strong and the electrolyte solution does not easily permeate, so that it may be difficult to obtain a high capacity.

前記複合体が1μm以上20μm以下のサイズを有する粒子であって、図1に示すように、当該粒子の内部には空隙が存在するのがより好ましい。
このようにすることで、容量を低下させることなく、即ち、高い容量で良好な塗工性が得られる。粒子サイズが大きいことによって、塗工スラリー中に正極材料を均一に分散し易くなり、スラリーの流動性も良くなるので塗工斑が生じ難くなる。よって、塗工過程や乾燥過程で起こる塗膜の収縮も小さく均一に起こり、クラックが発生するということも抑制される。特に、塗布量を多くした際には、前記効果が顕著に発揮される。即ち、前記粒子のサイズが1μm未満になると、塗工性が悪くなる場合がある。一方、前記粒子のサイズが20μmを超えると、塗膜表面が粒子による凹凸によって均一でなくなる場合がある。粒子形状は球状が特に好ましい。
More preferably, the composite is a particle having a size of 1 μm or more and 20 μm or less, and voids are present inside the particle as shown in FIG.
By doing so, good coatability can be obtained without reducing the capacity, that is, with a high capacity. When the particle size is large, the positive electrode material is easily dispersed uniformly in the coating slurry, and the fluidity of the slurry is improved, so that coating spots are less likely to occur. Therefore, the shrinkage of the coating film that occurs during the coating process and the drying process is also small and uniform, and the occurrence of cracks is also suppressed. In particular, when the coating amount is increased, the above-described effect is remarkably exhibited. That is, when the particle size is less than 1 μm, the coatability may be deteriorated. On the other hand, if the size of the particles exceeds 20 μm, the surface of the coating film may not be uniform due to irregularities caused by the particles. The particle shape is particularly preferably spherical.

ここで、球状粒子のサイズとは、透過型電子顕微鏡(Transmission Electron Microscope ; TEM)又は走査型電子顕微鏡(Scanning Electron Microscope; SEM)を用いて観察できる球状粒子の投影面積の円換算直径である。TEM像又はSEM像を用いて、観測される球状粒子を円の面積として置き換えた場合の直径の平均値で円換算直径を算出する。円換算直径とは、20個以上の前記直径の数平均値である。通常は、50個の数平均値を、円換算直径とする。TEM又はSEMのいずれか1つの像が、本発明の範囲内に入っていれば、上記効果が得られるものである。   Here, the size of the spherical particles is a circle-converted diameter of the projected area of the spherical particles that can be observed using a transmission electron microscope (TEM) or a scanning electron microscope (SEM). Using the TEM image or SEM image, the circle-converted diameter is calculated by the average value of the diameters when the observed spherical particles are replaced as the area of the circle. The circle-converted diameter is a number average value of 20 or more of the diameters. Normally, the number average value of 50 is the diameter in terms of yen. If any one image of TEM or SEM is within the scope of the present invention, the above effect can be obtained.

前記粒子の内部に200nm以上粒子径未満のサイズを有する空隙が存在するのがより好ましい。
前記粒子の内部に前記空隙が存在することによって、高い放電レートでも高い容量が得られる。前記空隙には、電解質溶液が浸透して十分な量を保持できるので、高いレートでも粒子内部で電解質溶液との間でLi+イオンのやり取りが容易にできるためである。一方、空隙が無い場合には、電解質溶液は粒子内部まで十分な量を浸透できないので、Li+イオンは固体内を粒子表面まで拡散しないといけなくなり、高いレートでは効率良くLi+イオンの挿入脱離が出来なくなる場合がある。即ち、高いレートで高い容量が得られない場合がある。
ここで、空隙のサイズとは、粒子の断面をSEMを用いて観察できる空隙の投影面積の円換算直径である。
More preferably, voids having a size of 200 nm or more and less than the particle diameter are present inside the particles.
Due to the presence of the voids inside the particles, a high capacity can be obtained even at a high discharge rate. This is because the electrolyte solution can permeate into the voids and can maintain a sufficient amount, so that Li + ions can be easily exchanged with the electrolyte solution inside the particles even at a high rate. On the other hand, in the absence of voids, the electrolyte solution cannot penetrate a sufficient amount into the interior of the particle, so Li + ions must diffuse through the solid to the surface of the particle, effectively inserting and removing Li + ions at high rates. It may become impossible to separate. That is, a high capacity may not be obtained at a high rate.
Here, the size of the void is a circle-equivalent diameter of the projected area of the void where the cross section of the particle can be observed using SEM.

前記空隙の存在量が、前記粒子断面における面積率で20%以上80%以下であるのが、より好ましい。前記面積率を20%以上80%以下としたのは、20%未満であると、高い放電レートで高い容量が得られない場合があり、一方、80%を超えると、高い放電レートでも高い容量が得られるが電極中に占める活物質の含有量を高くすることが難しくなる場合があるためである。   The abundance of the voids is more preferably 20% or more and 80% or less in terms of the area ratio in the particle cross section. When the area ratio is 20% or more and 80% or less, if it is less than 20%, a high capacity may not be obtained at a high discharge rate, whereas if it exceeds 80%, a high capacity may be obtained even at a high discharge rate. This is because it may be difficult to increase the content of the active material in the electrode.

本発明のリチウムイオン二次電池用正極材料は、少なくとも結合剤を含む正極層とすることができ、当該正極層は集電体となる金属箔表面に施されてリチウムイオン二次電池用正極部材にできるものである。   The positive electrode material for a lithium ion secondary battery of the present invention can be a positive electrode layer containing at least a binder, and the positive electrode layer is applied to the surface of a metal foil serving as a current collector to be a positive electrode member for a lithium ion secondary battery It can be made.

前記結合剤(結着剤やバインダーとも呼ばれる。)は、活物質や導電助剤を結着する役割を担うものである。
本発明に係る結合剤としては、通常、リチウムイオン二次電池の正極を作製する際に使用されるものである。
また、結合剤としては、リチウムイオン二次電池の電解質及びその溶媒に対して、化学的および電気化学的に安定なものが好ましい。結合剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン;ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体などのフッ素樹脂;スチレンブタジエンゴム(SBR);エチレン−アクリル酸共重合体または該共重合体のNaイオン架橋体;エチレン−メタクリル酸共重合体または該共重合体のNaイオン架橋体;エチレン−アクリル酸メチル共重合体または該共重合体のNaイオン架橋体;エチレン−メタクリル酸メチル共重合体または該共重合体のNaイオン架橋体;カルボキシメチルセルロースなどが挙げられる。また、これらを併用することもできる。これらの材料の中でも、PVDF、PTFEが特に好ましい。
前記結合剤は、通常、正極全量中の1〜20質量%程度の割合で用いられる。
The binder (also called a binder or a binder) plays a role of binding an active material or a conductive aid.
The binder according to the present invention is usually used when producing a positive electrode of a lithium ion secondary battery.
Moreover, as a binder, what is chemically and electrochemically stable with respect to the electrolyte of a lithium ion secondary battery and its solvent is preferable. The binder may be either a thermoplastic resin or a thermosetting resin. For example, polyolefins such as polyethylene and polypropylene; polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetra Fluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE), poly Chlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene Fluorine resins such as a lene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer; styrene butadiene rubber (SBR); Ethylene-acrylic acid copolymer or Na + ion crosslinked product of the copolymer; Ethylene-methacrylic acid copolymer or Na + ion crosslinked product of the copolymer; Ethylene-methyl acrylate copolymer or the copolymer Examples thereof include Na + ion cross-linked product of coalescence; ethylene-methyl methacrylate copolymer or Na + ion cross-linked product of the copolymer; carboxymethyl cellulose and the like. Moreover, these can also be used together. Among these materials, PVDF and PTFE are particularly preferable.
The binder is usually used at a ratio of about 1 to 20% by mass in the total amount of the positive electrode.

また、前記リチウムイオン二次電池用正極部材の正極層に、更に、導電助剤を含んでいてもよい。
前記導電助剤とは、実質上、化学的に安定な電子伝導性材料であれば特に限定されない。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類;アセチレンブラック;ケッチェンブラック;チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類;炭素繊維;などの炭素材料の他、金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛;チタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの有機導電性材料;などが挙げられ、これらを1種単独で用いてもよく、2種以上を同時に使用しても構わない。これらの中でも、アセチレンブラック、ケッチェンブラック、カーボンブラックといった炭素材料が特に好ましい。
前記導電助剤は、通常、正極全量中の1〜25質量%程度の割合で用いられる。
The positive electrode layer of the positive electrode member for a lithium ion secondary battery may further contain a conductive additive.
The conductive auxiliary agent is not particularly limited as long as it is substantially a chemically stable electron conductive material. For example, graphites such as natural graphite (flaky graphite, etc.) and artificial graphite; acetylene black; ketjen black; carbon blacks such as channel black, furnace black, lamp black, and thermal black; carbon fibers; Other conductive fibers such as metal fibers; carbon fluoride; metal powders such as aluminum; zinc oxide; conductive whiskers such as potassium titanate; conductive metal oxides such as titanium oxide; organics such as polyphenylene derivatives These may be used alone, or two or more of them may be used simultaneously. Among these, carbon materials such as acetylene black, ketjen black, and carbon black are particularly preferable.
The conductive aid is usually used at a ratio of about 1 to 25% by mass in the total amount of the positive electrode.

前記正極層とは、少なくとも、正極活物質と結合剤を含むものであり、電解質溶液が侵入できる隙間を有する組織構造である。尚、前記正極層には、正極活物質と結合剤に加えて、導電助剤を含んでいてもよい。   The positive electrode layer includes at least a positive electrode active material and a binder, and has a structure having a gap through which an electrolyte solution can enter. The positive electrode layer may contain a conductive additive in addition to the positive electrode active material and the binder.

前記金属箔とは、導電性金属箔であり、例えば、アルミニウムまたはアルミニウム合金製の箔を用いることができる。その厚みは、5μm〜50μmとすることができる。   The metal foil is a conductive metal foil, and for example, a foil made of aluminum or an aluminum alloy can be used. The thickness can be 5 μm to 50 μm.

前記リチウムイオン二次電池用部材を用いてリチウムイオン二次電池とすることができる。例えば、前記リチウムイオン二次電池用部材に加えて、少なくとも、負極、セパレータ、及び非水電解液の構成でリチウムイオン二次電池になる。   A lithium ion secondary battery can be obtained using the lithium ion secondary battery member. For example, in addition to the lithium ion secondary battery member, at least a negative electrode, a separator, and a nonaqueous electrolytic solution are used to form a lithium ion secondary battery.

前記負極は、負極活物質に必要に応じて結合剤(結着剤やバインダーとも呼ばれる。)を含むものである。
負極に係る負極活物質としては、金属リチウム、又はLiイオンをドープ・脱ドープできるものであればよく、Liイオンをドープ・脱ドープできるものとしては、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などの炭素材料が挙げられる。また、Si、Sn、Inなどの合金、またはLiに近い低電位で充放電できるSi、Sn、Tiなどの酸化物、Li2.6Co0.4NなどのLiとCoの窒化物などの化合物も負極活物質として用いることができる。さらに、黒鉛の一部をLiと合金化し得る金属や酸化物などと置き換えることもできる。
負極活物質として黒鉛を用いた場合には、満充電時の電圧をLi基準で約0.1Vとみなすことができるため、電池電圧に0.1Vを加えた電圧で正極の電位を便宜上計算することができることから、正極の充電電位が制御しやすく好ましい。
The negative electrode includes a binder (also referred to as a binder or a binder) as necessary in the negative electrode active material.
The negative electrode active material related to the negative electrode may be any material that can be doped / undoped with metallic lithium or Li ions. Examples of materials that can be doped / undoped with Li ions include graphite, pyrolytic carbons, and cokes. And carbon materials such as glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, carbon fibers, and activated carbon. In addition, alloys such as Si, Sn, and In, oxides such as Si, Sn, and Ti that can be charged and discharged at a low potential close to Li, and nitrides of Li and Co such as Li 2.6 Co 0.4 N, etc. A compound can also be used as a negative electrode active material. Furthermore, a part of graphite can be replaced with a metal or oxide that can be alloyed with Li.
When graphite is used as the negative electrode active material, the voltage at the time of full charge can be regarded as about 0.1 V on the basis of Li. Therefore, the potential of the positive electrode is calculated for convenience by adding 0.1 V to the battery voltage. Therefore, it is preferable that the charge potential of the positive electrode is easy to control.

前記負極は、集電体となる金属箔の表面上に負極活物質と結合剤を含む負極層を有する構造としてもよい。
前記金属箔としては、例えば、銅、ニッケル、チタン単体またはこれらの合金、またはステンレスの箔が挙げられる。本発明で用いられる好ましい負極集電体の材質のひとつとして銅またはその合金が挙げられる。銅と合金化する好ましい金属としてはZn、Ni、Sn、Alなどがあるが、他にFe、P、Pb、Mn、Ti、Cr、Si、Asなどを少量加えても良い。
The negative electrode may have a structure having a negative electrode layer containing a negative electrode active material and a binder on the surface of a metal foil serving as a current collector.
As said metal foil, copper, nickel, titanium single-piece | unit or these alloys, or stainless steel foil is mentioned, for example. One of the preferred negative electrode current collector materials used in the present invention is copper or an alloy thereof. Preferred metals that can be alloyed with copper include Zn, Ni, Sn, Al, etc. In addition, Fe, P, Pb, Mn, Ti, Cr, Si, As, and the like may be added in small amounts.

前記セパレータは、イオン透過度が大きく、所定の機械的強度を持ち、絶縁性の薄膜であれば良く、材質として、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン、ガラス繊維、アルミナ繊維が用いられ、形態として、不織布、織布、微孔性フィルムが用いられる。
特に、材質として、ポリプロピレン、ポリエチレン、ポリプロピレンとポリエチレンの混合体、ポリプロピレンとポリテトラフルオロエチレン(PTFE)の混合体、ポリエチレンとポリテトラフルオロエチレン(PTFE)の混合体が好ましく、形態として微孔性フィルムであるものが好ましい。
また、特に、孔径が0.01〜1μm、厚みが5〜50μmの微孔性フィルムが好ましい。これらの微孔性フィルムは単独の膜であっても、微孔の形状や密度等や材質等の性質の異なる2層以上からなる複合フィルムであっても良い。例えば、ポリエチレンフィルムとポリプロピレンフィルムを張り合わせた複合フィルムを挙げることができる。
The separator has only to have a large ion permeability, a predetermined mechanical strength, and an insulating thin film. The material is olefin polymer, fluorine polymer, cellulose polymer, polyimide, nylon, glass fiber, alumina. Fibers are used, and the form is a non-woven fabric, a woven fabric, or a microporous film.
In particular, the material is preferably polypropylene, polyethylene, a mixture of polypropylene and polyethylene, a mixture of polypropylene and polytetrafluoroethylene (PTFE), or a mixture of polyethylene and polytetrafluoroethylene (PTFE), and the form is a microporous film. Are preferred.
In particular, a microporous film having a pore diameter of 0.01 to 1 μm and a thickness of 5 to 50 μm is preferable. These microporous films may be a single film or a composite film composed of two or more layers having different properties such as the shape, density, and material of the micropores. For example, the composite film which bonded the polyethylene film and the polypropylene film can be mentioned.

前記非水電解液としては、一般に電解質(支持塩)と非水溶媒から構成される。リチウム二次電池における支持塩はリチウム塩が主として用いられる。
本発明で使用出来るリチウム塩としては、例えば、LiClO4 、LiBF4、LiPF6 、LiCF3 CO2 、LiAsF6 、LiSbF6 、LiB10Cl10、LiOSO2 n 2n+1で表されるフルオロスルホン酸(nは6以下の正の整数)、LiN(SO2 n 2n+1)(SO2 m 2m+1)で表されるイミド塩(m、nはそれぞれ6以下の正の整数)、LiC(SO2 p 2p+1)(SO2q 2q+1)(SO2 r 2r+1)で表されるメチド塩(p、q、rはそれぞれ6以下の正の整数)、低級脂肪族カルボン酸リチウム、LiAlCl4、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウムなどのLi塩を上げることが出来、これらの一種または二種以上を混合して使用することができる。中でもLiBF4 及び/あるいはLiPF6 を溶解したものが好ましい。
支持塩の濃度は、特に限定されないが、電解液1リットル当たり0.2〜3モルが好ましい。
The non-aqueous electrolyte is generally composed of an electrolyte (supporting salt) and a non-aqueous solvent. Lithium salt is mainly used as the supporting salt in the lithium secondary battery.
The lithium salt can be used in the present invention, for example, fluoro represented by LiClO 4, LiBF 4, LiPF 6 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiOSO 2 C n F 2n + 1 Imide salts represented by sulfonic acid (n is a positive integer of 6 or less), LiN (SO 2 C n F 2n + 1 ) (SO 2 C m F 2m + 1 ) (m and n are each 6 or less positive) ), A metide salt represented by LiC (SO 2 C p F 2p + 1 ) (SO 2 C q F 2q + 1 ) (SO 2 C r F 2r + 1 ) (p, q and r are each 6). The following positive integers), Li aliphatic salts such as lithium lithium carboxylate, LiAlCl 4 , LiCl, LiBr, LiI, chloroborane lithium, lithium tetraphenylborate, etc. can be raised, and one or more of these can be mixed Can be used. Among these, a solution in which LiBF 4 and / or LiPF 6 is dissolved is preferable.
The concentration of the supporting salt is not particularly limited, but is preferably 0.2 to 3 mol per liter of the electrolytic solution.

非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、炭酸トリフルオロメチルエチレン、炭酸ジフルオロメチルエチレン、炭酸モノフルオロメチルエチレン、六フッ化メチルアセテート、三フッ化メチルアセテート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、ギ酸メチル、酢酸メチル、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルホキシド、1,3−ジオキソラン、2,2−ビス(トリフルオロメチル)−1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、ジオキサン、アセトニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、ホウ酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、3−アルキルシドノン(アルキル基はプロピル、イソプロピル、ブチル基等)、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒、イオン性液体を挙げることができ、これらの一種または二種以上を混合して使用する。
これらの中では、カーボネート系の溶媒が好ましく、環状カーボネートと非環状カーボネートを混合して用いるのが特に好ましい。環状カーボネートとしてはエチレンカーボネート、プロピレンカーボネートが好ましい。また、非環状カーボネートとしては、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネートが好ましい。また、高電位窓や耐熱性の観点からは、イオン性液体が好ましい。
Non-aqueous solvents include propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, trifluoromethyl ethylene carbonate, difluoromethyl ethylene carbonate, monofluoromethyl ethylene carbonate, hexafluoromethyl acetate, methyl trifluoride acetate, dimethyl carbonate , Diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, methyl formate, methyl acetate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, 2,2-bis (trifluoromethyl ) -1,3-dioxolane, formamide, dimethylformamide, dioxolane, dioxane, acetonitrile, nitromethane, ethyl monoglyme, lithium Acid triester, boric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl-2-oxazolidinone, 3-alkylsydnone (alkyl group is propyl, isopropyl, butyl group, etc.), propylene carbonate derivative, tetrahydrofuran derivative And aprotic organic solvents such as ethyl ether and 1,3-propane sultone, and ionic liquids. These may be used alone or in combination.
Among these, carbonate-based solvents are preferable, and it is particularly preferable to use a mixture of a cyclic carbonate and an acyclic carbonate. As the cyclic carbonate, ethylene carbonate and propylene carbonate are preferable. Moreover, as an acyclic carbonate, diethyl carbonate, dimethyl carbonate, and methyl ethyl carbonate are preferable. Moreover, an ionic liquid is preferable from the viewpoint of a high potential window and heat resistance.

電解質溶液としては、エチレンカーボネート、プロピレンカーボネ−ト、1,2−ジメトキシエタン、ジメチルカーボネートあるいはジエチルカーボネートを適宜混合した電解液にLiCF3 SO3 、LiClO4 、LiBF4 および/またはLiPF6 を含む電解質溶液が好ましい。
特にプロピレンカーボネートもしくはエチレンカーボネートの少なくとも一方とジメチルカーボネートもしくはジエチルカーボネートの少なくとも一方の混合溶媒に、LiCF3 SO3 、LiClO4 、及びLiBF4 の中から選ばれた少なくとも一種の塩とLiPF6 を含む電解液が好ましい。これら電解液を電池内に添加する量は特に限定されず、正極材料や負極材料の量や電池のサイズに応じて用いることができる。
The electrolyte solution contains LiCF 3 SO 3 , LiClO 4 , LiBF 4 and / or LiPF 6 in an electrolyte solution appropriately mixed with ethylene carbonate, propylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate or diethyl carbonate. An electrolyte solution is preferred.
In particular, an electrolysis containing at least one salt selected from LiCF 3 SO 3 , LiClO 4 , and LiBF 4 and LiPF 6 in a mixed solvent of at least one of propylene carbonate or ethylene carbonate and at least one of dimethyl carbonate or diethyl carbonate. Liquid is preferred. The amount of the electrolyte added to the battery is not particularly limited, and can be used depending on the amount of the positive electrode material or the negative electrode material or the size of the battery.

また、電解質溶液の他に次の様な固体電解質を使用することができる。固体電解質としては、無機固体電解質と有機固体電解質に分けられる。
無機固体電解質には、Liの窒化物、ハロゲン化物、酸素酸塩などが挙げられる。中でも、Li3 N、LiI、Li5 NI2、Li3 N−LiI−LiOH、Li4 SiO4 、Li4 SiO4 −LiI−LiOH、x Li3 PO4 (1-x) Li4 SiO4 、Li2 SiS3 、硫化リン化合物などが有効である。
In addition to the electrolyte solution, the following solid electrolyte can be used. The solid electrolyte is classified into an inorganic solid electrolyte and an organic solid electrolyte.
Inorganic solid electrolytes include Li nitrides, halides, oxyacid salts, and the like. Among them, Li 3 N, LiI, Li 5 NI 2, Li 3 N-LiI-LiOH, Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, x Li 3 PO 4 - (1-x) Li 4 SiO 4 Li 2 SiS 3 , phosphorus sulfide compounds and the like are effective.

有機固体電解質では、ポリエチレンオキサイド誘導体か該誘導体を含むポリマー、ポリプロピレンオキサイド誘導体あるいは該誘導体を含むポリマー、イオン解離基を含むポリマー、イオン解離基を含むポリマーと上記非プロトン性電解液の混合物、リン酸エステルポリマー、非プロトン性極性溶媒を含有させた高分子マトリックス材料が有効である。さらに、ポリアクリロニトリルを電解液に添加する方法もある。また、無機と有機固体電解質を併用する方法も知られている。   In the organic solid electrolyte, a polyethylene oxide derivative or a polymer containing the derivative, a polypropylene oxide derivative or a polymer containing the derivative, a polymer containing an ion dissociation group, a mixture of a polymer containing an ion dissociation group and the above aprotic electrolyte, phosphoric acid A polymer matrix material containing an ester polymer and an aprotic polar solvent is effective. Furthermore, there is a method of adding polyacrylonitrile to the electrolytic solution. A method of using an inorganic and organic solid electrolyte in combination is also known.

また、前記リチウムイオン二次電池用部材とせずに、前記リチウムイオン二次電池用材料を用いてリチウムイオン二次電池とすることができる。例えば、リチウムイオン二次電池用材料、導電助剤、結合剤を含む正極層を金属メッシュに形成した正極、負極、セパレータ、及び非水電解液の構成でリチウムイオン二次電池となる。   Moreover, it can be set as a lithium ion secondary battery using the said material for lithium ion secondary batteries, without setting it as the said member for lithium ion secondary batteries. For example, a lithium ion secondary battery is formed by a configuration of a positive electrode, a negative electrode, a separator, and a nonaqueous electrolytic solution in which a positive electrode layer containing a material for a lithium ion secondary battery, a conductive additive, and a binder is formed on a metal mesh.

本発明のリチウムイオン二次電池用正極材料は、一例として以下の方法で製造することができる。
本発明に係る酸化物は、酸化物が合成できる方法であれば、乾式法や湿式法等どのような方法で作製してもよい。例えば、固相法(固相反応法)、水熱法(水熱合成法)、共沈法、ゾル・ゲル法、気相合成法(Physical Vapor Deposition:PVD法,Chemical Vapor Deposition:CVD法)、噴霧熱分解法、火炎法、焙焼法等が挙げられる。
The positive electrode material for lithium ion secondary batteries of the present invention can be produced by the following method as an example.
The oxide according to the present invention may be produced by any method such as a dry method or a wet method as long as the oxide can be synthesized. For example, solid phase method (solid phase reaction method), hydrothermal method (hydrothermal synthesis method), coprecipitation method, sol-gel method, gas phase synthesis method (Physical Vapor Deposition: PVD method, Chemical Vapor Deposition: CVD method) , Spray pyrolysis method, flame method, roasting method and the like.

以下に、固相法、噴霧熱分解法、焙焼法で作製する例を示す。
なお、以下に示す固相法の作製例では、有機化合物を添加しておらず、酸化物と炭素材を含む海島構造の複合体の作製例については説明していないが、以下の固相法を参考に海島構造の複合体も作製することができる。
固相法で用いる原料は、前記酸化物を構成する元素を含む化合物、例えば、酸化物、炭酸塩、酢酸塩やシュウ酸塩等の有機酸塩等を使用する。前記化合物を組成比に合わせて秤量して混合する。前記混合には、湿式混合法や乾式混合法等が用いられる。得られた混合物を焼成して前記酸化物を合成する。焼成して得られる酸化物粉末は、必要に応じて粉砕される。未反応物が残っている場合には、粉砕後、更に焼成することもある。
Examples of production by the solid phase method, spray pyrolysis method, and roasting method are shown below.
In addition, in the preparation example of the solid phase method shown below, an organic compound is not added, and a preparation example of a complex of a sea-island structure including an oxide and a carbon material is not described. A composite with a sea-island structure can also be produced.
As a raw material used in the solid phase method, a compound containing an element constituting the oxide, for example, an oxide, a carbonate, an organic acid salt such as acetate or oxalate, or the like is used. The compounds are weighed and mixed according to the composition ratio. For the mixing, a wet mixing method, a dry mixing method, or the like is used. The obtained mixture is fired to synthesize the oxide. The oxide powder obtained by firing is pulverized as necessary. When the unreacted material remains, it may be further baked after pulverization.

具体的な例として、Li2(Mn0.9375Li0.0625)(Si0.9375P0.0625)O4の場合には、例えば、二酸化マンガン、炭酸リチウム、二酸化ケイ素、リン酸アンモニウムを前記化学組成になるように秤量して混合し、該混合粉末を還元雰囲気で700〜900℃の温度で5〜20時間焼成することで作製することができる。As a specific example, in the case of Li 2 (Mn 0.9375 Li 0.0625 ) (Si 0.9375 P 0.0625 ) O 4 , for example, manganese dioxide, lithium carbonate, silicon dioxide, and ammonium phosphate are weighed so as to have the above chemical composition. And the mixed powder can be produced by firing at a temperature of 700 to 900 ° C. for 5 to 20 hours in a reducing atmosphere.

また、Li2(Fe0.9375Li0.0625)(Si0.9375P0.0625)O4の場合には、例えば、炭酸リチウム、シュウ酸鉄(II)二水和物、二酸化ケイ素、リン酸アンモニウムを前記化学組成になるように秤量して混合し、該混合粉末を還元雰囲気で700〜900℃の温度で5〜20時間焼成することで作製することができる。In the case of Li 2 (Fe 0.9375 Li 0.0625 ) (Si 0.9375 P 0.0625 ) O 4 , for example, lithium carbonate, iron (II) oxalate dihydrate, silicon dioxide, and ammonium phosphate are added to the chemical composition. It can be produced by weighing and mixing so that the mixed powder is fired at a temperature of 700 to 900 ° C. for 5 to 20 hours in a reducing atmosphere.

噴霧熱分解法で用いる原料は、所望の酸化物を構成する元素を含む化合物であって、水や有機溶媒に溶解する化合物を使用する。前記化合物を溶解した溶液を、超音波、ノズル(一流体ノズル、二流体ノズル、四流体ノズル等)によって液滴とし、次いで前記液滴を400〜1200℃の温度の加熱炉中に導入して熱分解することで前記酸化物を作製することができる。必要に応じて、更に、熱処理したり、粉砕したりする。また、原料溶液に有機化合物を含ませることによって、炭素材を含む酸化物を作製することができる。   The raw material used in the spray pyrolysis method is a compound containing an element constituting a desired oxide, and a compound that dissolves in water or an organic solvent is used. The solution in which the compound is dissolved is made into droplets by ultrasonic waves, nozzles (one-fluid nozzle, two-fluid nozzle, four-fluid nozzle, etc.), and then the droplet is introduced into a heating furnace at a temperature of 400 to 1200 ° C. The oxide can be produced by thermal decomposition. If necessary, it is further heat-treated or pulverized. Moreover, the oxide containing a carbon material can be produced by including an organic compound in the raw material solution.

具体的な例として、Li2(Mn0.9375Li0.0625)(Si0.9375P0.0625)O4の場合には、例えば、硝酸リチウム、硝酸マンガン(II)六水和物、コロイダルシリカ、リン酸を前記化学組成になるように秤量して水に溶解させる。
ここで、前記溶液に、更に、有機化合物を添加すれば海島構造を容易に得ることができる。当該有機化合物としては、アスコルビン酸、単糖(グルコース、フルクトース、ガラクトース等)、二糖(スクロース、マルトース、ラクトース等)、多糖(アミロース、セルロース、デキストリン等)、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルブチラール、ポリビニルピロリドン、フェノール、ヒドロキノン、カテコール、マレイン酸、クエン酸、マロン酸、エチレングリコール、トリエチレングリコール、ジエチレングリコールブチルメチルエーテル、トリエチレングリコールブチルメチルエーテル、テトラエチレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル、グリセリン等が挙げられる。
有機化合物の添加量は、有機化合物に含まれる炭素C/組成式(例えば、Li2(Mn0.9375Li0.0625)(Si0.9375P0.0625)O4)のモル比で0.3以上であることが好ましい。前記モル比が0.3未満では、炭素量が不十分となり、有効な海島構造が形成できない場合がある。
前記化合物を溶解した溶液を、例えば、超音波噴霧器で液滴とし、500〜800℃の温度の加熱炉中に窒素をキャリヤーガスとして導入して熱分解することで作製することができる。
As a specific example, in the case of Li 2 (Mn 0.9375 Li 0.0625 ) (Si 0.9375 P 0.0625 ) O 4 , for example, lithium nitrate, manganese (II) nitrate hexahydrate, colloidal silica, and phosphoric acid are used as the above chemicals. Weigh to make composition and dissolve in water.
Here, if an organic compound is further added to the solution, a sea-island structure can be easily obtained. Examples of the organic compounds include ascorbic acid, monosaccharides (glucose, fructose, galactose, etc.), disaccharides (sucrose, maltose, lactose, etc.), polysaccharides (amylose, cellulose, dextrin, etc.), polyvinyl alcohol, polyethylene glycol, polypropylene glycol, Polyvinyl butyral, polyvinyl pyrrolidone, phenol, hydroquinone, catechol, maleic acid, citric acid, malonic acid, ethylene glycol, triethylene glycol, diethylene glycol butyl methyl ether, triethylene glycol butyl methyl ether, tetraethylene glycol dimethyl ether, tripropylene glycol dimethyl ether, Examples include glycerin.
The addition amount of the organic compound is preferably 0.3 or more in terms of a carbon C / composition formula (for example, Li 2 (Mn 0.9375 Li 0.0625 ) (Si 0.9375 P 0.0625 ) O 4 )) contained in the organic compound. If the molar ratio is less than 0.3, the amount of carbon becomes insufficient and an effective sea-island structure may not be formed.
The solution in which the above compound is dissolved can be prepared by, for example, forming droplets with an ultrasonic sprayer, and introducing nitrogen as a carrier gas into a heating furnace at a temperature of 500 to 800 ° C. and thermally decomposing it.

また、Li2(Fe0.9375Li0.0625)(Si0.9375P0.0625)O4の場合には、例えば、硝酸リチウム、硝酸鉄(III)九水和物、テトラエトキシシラン、リン酸を前記化学組成になるように秤量して水に溶解させ、有機化合物を添加する。ここで、テトラエトキシシランは、予めメトキシエタノールに溶解し、その溶液を水に溶解させる。前記化合物を溶解した溶液を、例えば、超音波噴霧器で液滴とし、500〜900℃の温度の加熱炉中に窒素をキャリヤーガスとして導入して熱分解することで作製することができる。In the case of Li 2 (Fe 0.9375 Li 0.0625 ) (Si 0.9375 P 0.0625 ) O 4 , for example, lithium nitrate, iron (III) nitrate nonahydrate, tetraethoxysilane, and phosphoric acid have the above chemical composition. Weigh and dissolve in water and add organic compound. Here, tetraethoxysilane is previously dissolved in methoxyethanol, and the solution is dissolved in water. The solution in which the above compound is dissolved can be prepared by, for example, forming droplets with an ultrasonic atomizer and introducing nitrogen as a carrier gas into a heating furnace at a temperature of 500 to 900 ° C. to thermally decompose the solution.

次に、焙焼法を利用した作製方法の例を示す。
焙焼法で用いる原料は、所望の酸化物を構成する元素を含む化合物であって、水に溶解する化合物を使用する。鉄の元素を含む酸化物の場合には、前記原料に鉄鋼酸洗廃液又は圧延スケールを塩酸に溶解して調製した水溶液を使用するのが好ましい。前記化合物を溶解した水溶液を、ルスナー型、ルルギー型やケミライト型等の焙焼炉に導入して熱分解することで前記酸化物を作製することができる。必要に応じて、更に、熱処理したり、粉砕したりする。また、原料溶液に有機化合物を含ませることによって、炭素材を含む酸化物を作製することができる。
Next, an example of a manufacturing method using a roasting method is shown.
The raw material used in the roasting method is a compound containing an element constituting a desired oxide, and a compound that dissolves in water is used. In the case of an oxide containing an iron element, it is preferable to use a steel pickling waste solution or an aqueous solution prepared by dissolving a rolling scale in hydrochloric acid as the raw material. The oxide can be produced by introducing an aqueous solution in which the compound is dissolved into a Lusner type, Lurgie type, chemilite type or the like roasting furnace and thermally decomposing it. If necessary, it is further heat-treated or pulverized. Moreover, the oxide containing a carbon material can be produced by including an organic compound in the raw material solution.

具体的な例として、Li2(Mn0.9375Li0.0625)(Si0.9375P0.0625)O4の場合には、例えば、酢酸リチウム、硝酸マンガン(II)六水和物、コロイダルシリカ、リン酸を前記化学組成になるように秤量して水に溶解させる。前記化合物を溶解した水溶液に更にグルコースを溶解し、該溶液を、例えば、ケミライト型焙焼炉に導入して500〜800℃の温度で熱分解することで作製することができる。更に、ビーズミルで湿式粉砕して得られた粉砕粒子を不活性雰囲気中で熱処理してもよい。As a specific example, in the case of Li 2 (Mn 0.9375 Li 0.0625 ) (Si 0.9375 P 0.0625 ) O 4 , for example, lithium acetate, manganese (II) nitrate hexahydrate, colloidal silica, and phosphoric acid are used as the above chemicals. Weigh to make composition and dissolve in water. It can be prepared by further dissolving glucose in an aqueous solution in which the compound is dissolved, and introducing the solution into, for example, a chemilite-type roasting furnace and thermally decomposing it at a temperature of 500 to 800 ° C. Furthermore, the pulverized particles obtained by wet pulverization with a bead mill may be heat-treated in an inert atmosphere.

また、Li2(Fe0.9375Li0.0625)(Si0.9375P0.0625)O4の場合には、例えば、炭酸リチウム、コロイダルシリカ、塩化アルミニウム(III)六水和物、リン酸を鉄鋼酸洗廃液(例えば、3.0mol(Fe)/L濃度の塩酸廃液)に溶解させ、前記化学組成比の濃度に調製する。ここで、炭酸リチウムを全て溶解するように、18%塩酸を鉄鋼酸洗廃液に予め適量加えている。前記化合物を溶解した水溶液に更にグルコースを溶解し、該溶液を、例えば、ルスナー型焙焼炉に導入して500〜800℃の温度で熱分解することで作製することができる。更に、ビーズミルで湿式粉砕して得られた粉砕粒子を不活性雰囲気中で熱処理してもよい。Further, in the case of Li 2 (Fe 0.9375 Li 0.0625 ) (Si 0.9375 P 0.0625 ) O 4 , for example, lithium carbonate, colloidal silica, aluminum chloride (III) hexahydrate, and phosphoric acid are used in a steel pickling waste solution (for example, , 3.0 mol (Fe) / L concentration hydrochloric acid waste liquid), and the concentration is adjusted to the above chemical composition ratio. Here, an appropriate amount of 18% hydrochloric acid is added in advance to the steel pickling waste solution so as to dissolve all the lithium carbonate. It can be prepared by further dissolving glucose in an aqueous solution in which the compound is dissolved, and introducing the solution into, for example, a Lusner roasting furnace and thermally decomposing it at a temperature of 500 to 800 ° C. Furthermore, the pulverized particles obtained by wet pulverization with a bead mill may be heat-treated in an inert atmosphere.

上述の炭素源となる前記有機化合物としては、例えば、アスコルビン酸、単糖(グルコース、フルクトース、ガラクトース等)、二糖(スクロース、マルトース、ラクトース等)、多糖(アミロース、セルロース、デキストリン等)、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルブチラール、ポリビニルピロリドン、フェノール、ヒドロキノン、カテコール、マレイン酸、クエン酸、マロン酸、エチレングリコール、トリエチレングリコール、ジエチレングリコールブチルメチルエーテル、トリエチレングリコールブチルメチルエーテル、テトラエチレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル、グリセリン等が挙げられる。
有機化合物の添加量は、有機化合物に含まれる炭素C/組成式(例えば、Li2(Fe0.9375Li0.0625)(Si0.9375P0.0625)O4)のモル比で0.3以上であることが好ましい。前記モル比が0.3未満では、炭素量が不十分となり、有効な海島構造が形成できない場合がある。
上述の金属酸化物を構成する元素を含む化合物としては、例えば、金属、水酸化物、硝酸塩、塩化物、有機酸塩、酸化物、炭酸塩、金属アルコキシド等が例示できる。
Examples of the organic compound serving as the carbon source include ascorbic acid, monosaccharides (glucose, fructose, galactose, etc.), disaccharides (sucrose, maltose, lactose, etc.), polysaccharides (amylose, cellulose, dextrin, etc.), polyvinyl Alcohol, polyethylene glycol, polypropylene glycol, polyvinyl butyral, polyvinyl pyrrolidone, phenol, hydroquinone, catechol, maleic acid, citric acid, malonic acid, ethylene glycol, triethylene glycol, diethylene glycol butyl methyl ether, triethylene glycol butyl methyl ether, tetraethylene Examples include glycol dimethyl ether, tripropylene glycol dimethyl ether, and glycerin.
The amount of the organic compound added is preferably 0.3 or more in terms of a carbon C / composition formula (for example, Li 2 (Fe 0.9375 Li 0.0625 ) (Si 0.9375 P 0.0625 ) O 4 )) contained in the organic compound. If the molar ratio is less than 0.3, the amount of carbon becomes insufficient and an effective sea-island structure may not be formed.
As a compound containing the element which comprises the above-mentioned metal oxide, a metal, a hydroxide, nitrate, a chloride, an organic acid salt, an oxide, carbonate, a metal alkoxide etc. can be illustrated, for example.

(実施例1)
出発原料として、硝酸リチウム(LiNO3)、硝酸マンガン(II)六水和物(Mn(NO3)2・6H2O)、コロイダルシリカ、リン酸(H3PO4)、硫酸アンモニウム((NH4)2SO4)を用いた。表1Aの各組成比になるように、前記原料を水に溶解して水溶液を調製した。更に、前記水溶液に炭素材となる有機化合物としてグルコースを添加した。これらの水溶液を、それぞれ、窒素ガスからなるキャリヤーガスを用いて650℃に加熱した加熱炉中で噴霧熱分解することにより、試料を作製した。また、試料No.1-11については、600℃の加熱炉中に噴霧した。試料No.1-14については、800℃の加熱炉中に噴霧した。
表1Bに示すように、試料No.1-1〜No.1-10は、更に、湿式粉砕し、その後、1%H2/Ar中で700℃、5h熱処理を行った。試料No.1-14は、更に、湿式粉砕し、その後、1%H2/Ar中で800℃、2h熱処理を行った。試料No.1-11〜No.1-12は、前記粉砕も熱処理も行っていない。試料No.1-13は、試料No.1-12を粉砕した後、造粒したものである。
なお、溶液中の金属イオンの濃度は、酸化物組成モル換算で0.33mol/Lの範囲で溶液を調製した。前記グルコースは、グルコース/酸化物のモル比2.1又は2.2の範囲で添加した。また、粉砕していない試料は、球状粒子であり、液滴中の金属イオン濃度、グルコース含有量によって、球状粒子のサイズを制御できる。
各試料の、溶液中の金属イオンの濃度、グルコース添加量は表1A及び表1Bに示す通りである。
Example 1
Starting materials include lithium nitrate (LiNO 3 ), manganese (II) nitrate hexahydrate (Mn (NO 3 ) 2 · 6H 2 O), colloidal silica, phosphoric acid (H 3 PO 4 ), ammonium sulfate ((NH 4 ) 2 SO 4 ) was used. The raw materials were dissolved in water to prepare an aqueous solution so that the composition ratios in Table 1A were obtained. Furthermore, glucose was added to the aqueous solution as an organic compound to be a carbon material. Samples were prepared by spray pyrolysis of these aqueous solutions, respectively, in a heating furnace heated to 650 ° C. using a carrier gas composed of nitrogen gas. Sample No. 1-11 was sprayed into a 600 ° C. heating furnace. Sample No. 1-14 was sprayed into a heating furnace at 800 ° C.
As shown in Table 1B, Samples No. 1-1 to No. 1-10 were further wet pulverized, and then heat-treated in 1% H 2 / Ar at 700 ° C. for 5 hours. Sample No. 1-14 was further wet pulverized, and then heat-treated in 1% H 2 / Ar at 800 ° C. for 2 hours. Samples No. 1-11 to No. 1-12 were neither crushed nor heat-treated. Sample No. 1-13 is obtained by pulverizing Sample No. 1-12 and then granulating it.
The solution was prepared so that the concentration of metal ions in the solution was in the range of 0.33 mol / L in terms of oxide composition mole. The glucose was added in a glucose / oxide molar ratio range of 2.1 or 2.2. Moreover, the sample which is not grind | pulverized is a spherical particle, The size of a spherical particle can be controlled with the metal ion concentration and glucose content in a droplet.
The concentration of metal ions in the solution and the amount of glucose added for each sample are as shown in Table 1A and Table 1B.

<各試料の分析>
上述のようにして得られた各試料について、以下の分析を行った。
粉末X線回折装置(リガク製Ultima II)を用いて、相の確認を行った。試料No.1-1〜No.1-10、No.1-14は、熱処理をしているので、Li2MnSiO4結晶相と類似の回折パターンであった。但し、元素置換している試料では、回折ピークにシフトが見られた。試料No.1-11〜No.1-13は、CuKα線で2θ=15〜18°には回折ピークが現れないが、2θ=33±2°にはブロードな回折ピークが現れる結晶質であった。
透過型電子顕微鏡(日立製H-9000UHR III)を用いて、試料No.1-1〜試料No1-14を観察した。これらの試料は全て海島構造の複合体であり、既出の方法により、島(酸化物)の円換算径を算出し、得られた各試料の円換算径を表1Cに併記した。
走査型電子顕微鏡(日本電子株式会社製のJSM-7000F)を用いて、試料No.1-11〜No.1-14の粒子を観察し、その画像から球状粒子のサイズとして円換算径を算出した。表1Cの「粒子サイズ」欄に示したような値であった。尚、試料No.1-13は、試料No.1-12を粉砕して造粒したものなので、球状に造粒された粒子のサイズである。尚、透過型電子顕微鏡によっても粒子を観察できるが、粒子のサイズは、透過型電子顕微鏡によっても同様の値が得られた。
また、粒子である試料No.1-11〜No.14は、それらの断面も走査型電子顕微鏡で観察した。その画像から、粒子内の200nm以上の空隙を選定し、該空隙の存在量として、面積率を求めた。試料No.1-11〜No.12は、表1Cの「粒子内の空隙」の「面積率」欄に示したような値であった。試料No.1-13は、試料No.1-12を粉砕して造粒した粒子であるので、粒子内はち密であり、200nmサイズのような大きな空隙は存在しなかった。
各試料中に含まれる炭素材の含有量を、堀場製作所製の炭素・硫黄分析装置EMIA-320Vを用いて測定し、表1Bに併記した。
<Analysis of each sample>
The following analysis was performed on each sample obtained as described above.
The phase was confirmed using a powder X-ray diffractometer (Ultima II manufactured by Rigaku). Samples No. 1-1 to No. 1-10 and No. 1-14 were heat-treated, and thus had diffraction patterns similar to those of the Li 2 MnSiO 4 crystal phase. However, a shift was observed in the diffraction peak in the sample with element substitution. Samples No. 1-11 to No. 1-13 are crystalline with no diffraction peak appearing at 2θ = 15-18 ° in CuKα rays but a broad diffraction peak appearing at 2θ = 33 ± 2 °. It was.
Sample No. 1-1 to Sample No. 1-14 were observed using a transmission electron microscope (H-9000UHR III manufactured by Hitachi). All of these samples were sea-island composites, and the circle-equivalent diameters of the islands (oxides) were calculated by the above-described method, and the circle-equivalent diameters of the obtained samples were also shown in Table 1C.
Using a scanning electron microscope (JSM-7000F, manufactured by JEOL Ltd.), observe the particles of sample No.1-11 to No.1-14, and calculate the circle equivalent diameter as the size of the spherical particles from the image did. The values were as shown in the “Particle Size” column of Table 1C. Since sample No. 1-13 is obtained by pulverizing and granulating sample No. 1-12, it is the size of particles granulated spherically. Although the particles can be observed with a transmission electron microscope, the same particle size was obtained with a transmission electron microscope.
Further, Samples Nos. 1-11 to No. 14 as particles were also observed with a scanning electron microscope. From the image, voids of 200 nm or more in the particles were selected, and the area ratio was determined as the abundance of the voids. Samples No. 1-11 to No. 12 had values as shown in the “area ratio” column of “voids in particles” in Table 1C. Since sample No. 1-13 was a particle obtained by pulverizing and granulating sample No. 1-12, the inside of the particle was dense, and there was no large void such as a 200 nm size.
The content of the carbon material contained in each sample was measured using a carbon / sulfur analyzer EMI-320V manufactured by Horiba, Ltd., and is also shown in Table 1B.

<電池特性の評価>
各試料の電池特性評価は、以下のようにして行った。
先ず、それぞれの試料を、アセチレンブラック粉末及びポリテトラフルオロエチレン粉末と70:25:5の重量比で乳鉢で混合した後、チタンメッシュに圧着して正極を作製した。
負極には金属リチウム箔を用い、負極集電体に厚さ20μmのニッケル箔を使用した。
また、電解液としては、エチルカーボネートとジメチルカーボネートの体積比で1:2の混合溶媒に1.0mol/LのLiPF6を溶解させた非水電解液を用い、セパレータには厚さ25μmの多孔質ポリプロピレンを用いてCR2032型コイン電池をアルゴングローブボックス内で組み立てた。
各試料にコイン電池をそれぞれ5個作製し、30℃の恒温槽でそれぞれ充放電試験を行い、初期充放電容量を測定した。初期充放電試験は、先ず、電圧範囲1.0〜5.0V、0.1CのCC-CV条件で1回予備充放電を繰り返した後に0.1CでCC-CV条件で250mAh/g充電し、その放電容量を測定した結果を初期充放電容量とした。表1Dの「初期充放電容量」の欄には、各試料毎に5個のコイン電池の初期充放電容量を測定し、その最大値と最小値を除いた3個のコイン電池の初期充放電容量の平均値を記載している。
内部抵抗の低減効果については、前記初期放電容量を求めた放電曲線から150mAh/gでの電圧を求めて、該電圧が高くなるのが内部抵抗が低減されたと判断した。該電圧についても、各試料に5個のコイン電池の放電曲線から求め、その最大値と最小値を除いた3個のコイン電池の電圧の平均値を表1Cに記載している。
更に、充放電を10サイクルまで繰り返して、5サイクルから10サイクル間の放電曲線における150mAh/gでの電圧変化の傾き(1サイクル当たりの電圧変化)を求め、内部抵抗の低減効果の安定性として表1Dに各試料の値を記載している。
また、放電容量維持率として、(10サイクル目の2Vの放電容量/2サイクル目の2Vの放電容量)×100の値を表1Dに記載している。
表1A及び表1Cの結果より、y値がゼロである試料No.1-1の150mAh/gでの電圧に比べて、y値がゼロを超える試料No.1-2〜No.1-5、No.1-7〜No.1-8、No.1-11〜1-14は、該電圧が高くなり、内部抵抗の低減効果が見られた。試料No.1-6及びNo.1-9は、y値が0.25を超えているので、内部抵抗の低減効果が見られなかった。試料No.1-10は、本発明の組成式とは異なる組成式Li1.9Mn(Si0.9P0.1)O4であるため、内部抵抗の低減効果が見られなかった。また、試料No.1-1、No.1-6、No.1-9、No.1-10の150mAh/gでの電圧に比べて、試料No.1-14では該電圧が高くなっているが、その他の試料と比べると、該電圧が低くなっていた。
また、表1A及び表1Dの結果より、y値が0.03125の倍数である場合と0.03125の倍数でない場合について、例えば、試料No.1-2とNo.1-3を比較すると、y値が0.03125の倍数である場合には内部抵抗の低減効果の安定性に優れることが示されている。
また、試料No.1-11〜No.1-13で、塗工性の評価を行った。各試料をそれぞれ90質量%と、ポリフッ化ビニリデン(PolyVinylidene DiFluoride、PVDF)4質量%、アセチレンブラック6質量%とを分散媒(N-methylpyrrolidone、NMP)に混合してスラリーを調製する。前記スラリーを厚さ20μmのアルミニウム箔上にクリアランス300μmとしたベーカー式アプリケータ―を用いて塗布し、110℃の乾燥器で乾燥させた。乾燥後の塗膜の表面を目視観察して、表面の凹凸が顕著なものやクラックが発生したものを「塗工性不良」、表面が平坦でクラックが発生しなかったものを「塗工性良」と評価した。
試料No.1-11〜No.1-13は、「塗工性良」という結果であった。また、球状粒子内に適度な空隙が有するものは、高いレートでも優れた放電容量を示すものであった。
<Evaluation of battery characteristics>
The battery characteristics evaluation of each sample was performed as follows.
First, each sample was mixed with acetylene black powder and polytetrafluoroethylene powder in a mortar at a weight ratio of 70: 25: 5, and then pressed onto a titanium mesh to produce a positive electrode.
A metal lithium foil was used for the negative electrode, and a nickel foil with a thickness of 20 μm was used for the negative electrode current collector.
As the electrolyte, a non-aqueous electrolyte in which 1.0 mol / L LiPF 6 was dissolved in a 1: 2 mixed solvent of ethyl carbonate and dimethyl carbonate was used, and the separator was porous with a thickness of 25 μm. A CR2032 coin cell was assembled in an argon glove box using polypropylene.
Five coin batteries were prepared for each sample, and a charge / discharge test was performed in a thermostat at 30 ° C. to measure an initial charge / discharge capacity. In the initial charge / discharge test, first, preliminary charge / discharge was repeated once under the CC-CV condition of voltage range 1.0 to 5.0V and 0.1C, then 250mAh / g was charged under the CC-CV condition at 0.1C, and the discharge capacity was determined. The measured result was defined as the initial charge / discharge capacity. In the “Initial charge / discharge capacity” column of Table 1D, the initial charge / discharge capacity of five coin batteries is measured for each sample, and the initial charge / discharge of three coin batteries excluding the maximum and minimum values is measured. The average value of capacity is indicated.
Regarding the effect of reducing the internal resistance, a voltage at 150 mAh / g was obtained from the discharge curve obtained from the initial discharge capacity, and it was determined that the internal resistance was reduced when the voltage increased. The voltage is also obtained from the discharge curve of five coin batteries for each sample, and the average value of the voltages of the three coin batteries excluding the maximum and minimum values is shown in Table 1C.
Furthermore, charge / discharge is repeated up to 10 cycles, and the slope of the voltage change at 150 mAh / g (voltage change per cycle) in the discharge curve between 5 and 10 cycles is obtained, and the stability of the internal resistance reduction effect is obtained. Table 1D lists the values for each sample.
Further, as a discharge capacity maintenance rate, a value of (100 V 2V discharge capacity / 2nd cycle 2V discharge capacity) × 100 is shown in Table 1D.
From the results of Table 1A and Table 1C, sample Nos. 1-2 to No. 1-5 whose y value exceeds zero compared to the voltage at 150 mAh / g of sample No. 1-1 whose y value is zero No. 1-7 to No. 1-8 and No. 1-11 to 1-14 showed an increase in the voltage and an effect of reducing internal resistance. Samples No. 1-6 and No. 1-9 had an y value exceeding 0.25, and thus the internal resistance reduction effect was not observed. Since sample No. 1-10 has a composition formula Li 1.9 Mn (Si 0.9 P 0.1 ) O 4 different from the composition formula of the present invention, the effect of reducing the internal resistance was not observed. In addition, compared with the voltage at 150 mAh / g of sample No.1-1, No.1-6, No.1-9, No.1-10, the voltage is higher in sample No.1-14. However, the voltage was lower than other samples.
Further, from the results of Table 1A and Table 1D, when the y value is a multiple of 0.03125 and not a multiple of 0.03125, for example, when comparing sample No. 1-2 and No. 1-3, the y value is 0.03125. It is shown that the stability of the effect of reducing the internal resistance is excellent when it is a multiple of.
Moreover, the coating property was evaluated using Sample Nos. 1-11 to 1-13. Each sample is mixed with 90% by mass, 4% by mass of polyvinylidene fluoride (PolyVinylidene DiFluoride, PVDF), and 6% by mass of acetylene black in a dispersion medium (N-methylpyrrolidone, NMP) to prepare a slurry. The slurry was applied onto an aluminum foil having a thickness of 20 μm using a Baker type applicator having a clearance of 300 μm and dried with a dryer at 110 ° C. Visually observe the surface of the coating after drying. If the surface has significant irregularities or cracks occur, the coating properties are poor. If the surface is flat and cracks do not occur, apply the coating properties. It was evaluated as “good”.
Samples No. 1-11 to No. 1-13 had a result of “good coating properties”. Moreover, what has an appropriate space | gap in a spherical particle showed the outstanding discharge capacity even at a high rate.

Figure 2013080763
Figure 2013080763
Figure 2013080763
Figure 2013080763
Figure 2013080763
Figure 2013080763
Figure 2013080763
Figure 2013080763

(実施例2)
出発原料として、硝酸リチウム(LiNO3)、硝酸鉄(III)九水和物(Fe(NO3)3・9H2O)、テトトラエトキシシラン(以下、TEOSという)、リン酸(H3PO4)、硫酸アンモニウム((NH4)2SO4)を用いた。表2Aの各組成比になるように、前記原料を水に溶解して水溶液を調製した。ここで、TEOSは、予めメトキシエタノールに溶解し、その溶液を水に溶解させた。更に、前記水溶液に炭素材となる有機化合物としてグルコースを添加した。
これらの水溶液を、それぞれ、窒素ガスからなるキャリヤーガスを用いて750℃に加熱した加熱炉中で噴霧熱分解することにより、試料を作製した。試料No.2-18については、800℃の加熱炉中に噴霧した。
表2Bに示すように、試料No.2-1〜No.2-10は、更に、湿式粉砕し、その後、1%H2/Ar中で550℃、10h熱処理を行った。試料No.2-18は、更に、湿式粉砕し、その後、1%H2/Ar中で550℃、20h熱処理を行った。試料No.2-11〜No.2-16は、前記粉砕も熱処理も行っていない。試料No.2-17は、試料No.2-12を粉砕した後、造粒したものである。
なお、溶液中の金属イオンの濃度は、酸化物組成モル換算で0.1〜0.35mol/Lの範囲で溶液を調製した。前記グルコースは、グルコース/酸化物のモル比2〜2.4の範囲で添加した。また、粉砕していない試料は球状粒子であり、液滴中の金属イオン濃度、グルコース含有量によって、球状粒子のサイズを制御した。
各試料の、溶液中の金属イオンの濃度、グルコース添加量は表2A及び表2Bに示す通りである。
(Example 2)
Starting materials include lithium nitrate (LiNO 3 ), iron (III) nitrate nonahydrate (Fe (NO 3 ) 3 · 9H 2 O), tetotraethoxysilane (hereinafter referred to as TEOS), phosphoric acid (H 3 PO 4 ), ammonium sulfate ((NH 4 ) 2 SO 4 ) was used. The raw materials were dissolved in water to prepare an aqueous solution so that the composition ratios in Table 2A were obtained. Here, TEOS was dissolved in methoxyethanol in advance, and the solution was dissolved in water. Furthermore, glucose was added to the aqueous solution as an organic compound to be a carbon material.
Samples were prepared by spray pyrolysis of these aqueous solutions, respectively, in a heating furnace heated to 750 ° C. using a carrier gas composed of nitrogen gas. Sample No. 2-18 was sprayed into a heating furnace at 800 ° C.
As shown in Table 2B, Samples No. 2-1 to No. 2-10 were further wet pulverized and then heat-treated in 1% H 2 / Ar at 550 ° C. for 10 hours. Sample No. 2-18 was further wet pulverized and then heat-treated in 1% H 2 / Ar at 550 ° C. for 20 hours. Samples No. 2-11 to No. 2-16 were neither crushed nor heat-treated. Sample No. 2-17 is obtained by pulverizing Sample No. 2-12 and then granulating it.
The solution was prepared so that the concentration of metal ions in the solution was in the range of 0.1 to 0.35 mol / L in terms of oxide composition mole. The glucose was added in a glucose / oxide molar ratio range of 2 to 2.4. Moreover, the sample which was not grind | pulverized is a spherical particle, The size of the spherical particle was controlled by the metal ion concentration and glucose content in a droplet.
The concentration of metal ions in the solution and the amount of glucose added for each sample are as shown in Tables 2A and 2B.

<各試料の分析>
上述のようにして得られた試料No.2-1〜No.2-18のそれぞれについて、実施例1と同様に分析を行った。
試料No.2-1〜No.2-18をX線回折測定したところ、試料No.2-1〜No.2-10、No.2-18は、熱処理をしているので、Li2FeSiO4結晶相と類似の回折パターンであった。但し、元素置換している試料では、回折ピークにシフトが見られた。試料No.2-11〜No.2-17は、CuKα線で2θ=15〜18°には回折ピークが現れないが、2θ=33±2°にはブロードな回折ピークが現れる結晶質であった。
TEM観察より、試料No.2-1〜No.2-18は全て海島構造の複合体であり、既出の方法により、島(酸化物)の円換算径を算出し、得られた各試料の円換算径を表2Cに併記した。
SEMを用いて、試料No.2-11〜No.2-17の球状粒子を観察し、その画像から粒子のサイズとして円換算径を算出した。表2Cの「粒子サイズ」欄に示したような値であった。尚、試料No.2-1〜No.2-9は、0.15μmサイズに粉砕したものであり、試料No.2-18は0.18μmサイズに粉砕したものであるので、球状粒子ではなく、これらのサイズの異形微粒子である。また、試料No.2-17は、試料No.2-12を粉砕して造粒したものなので、球状に造粒された粒子のサイズである。
また、球状粒子である試料No.2-11〜No.2-17は、それらの断面もSEMで観察した。その画像から、粒子内の200nm以上の空隙を選定し、該空隙の存在量として、面積率を求めた。試料No.2-11〜No.2-16は、表2Cの「粒子内の空隙」の「面積率」欄に示したような値であった。試料No.2-17は、試料No.2-12を粉砕して造粒した粒子であるので、粒子内はち密であり、200nmサイズのような大きな空隙は存在しなかった。
<Analysis of each sample>
The samples No. 2-1 to No. 2-18 obtained as described above were analyzed in the same manner as in Example 1.
Samples No. 2-1 to No. 2-18 were measured by X-ray diffraction. Samples No. 2-1 to No. 2-10 and No. 2-18 were heat-treated, so Li 2 FeSiO The diffraction pattern was similar to that of the four crystal phases. However, a shift was observed in the diffraction peak in the sample with element substitution. Samples No. 2-11 to No. 2-17 were crystalline with no diffraction peak appearing at 2θ = 15-18 ° with CuKα rays, but having a broad diffraction peak at 2θ = 33 ± 2 °. It was.
From TEM observation, Samples No.2-1 to No.2-18 are all sea-island composites, and the circle-converted diameter of the island (oxide) was calculated by the above-mentioned method, and each sample obtained The circle-converted diameter is also shown in Table 2C.
Using SEM, the spherical particles of Samples No. 2-11 to No. 2-17 were observed, and the circle-converted diameter was calculated as the particle size from the image. The values were as shown in the “Particle Size” column of Table 2C. Samples No. 2-1 to No. 2-9 were pulverized to a size of 0.15 μm, and Sample No. 2-18 were pulverized to a size of 0.18 μm. Of irregularly shaped particles of the size Sample No. 2-17 is the size of particles granulated in a spherical shape because Sample No. 2-12 was pulverized and granulated.
In addition, samples No. 2-11 to No. 2-17, which are spherical particles, were also observed by SEM. From the image, voids of 200 nm or more in the particles were selected, and the area ratio was determined as the abundance of the voids. Samples No. 2-11 to No. 2-16 had values as shown in the “area ratio” column of “voids in particles” in Table 2C. Since sample No. 2-17 was a particle obtained by pulverizing and granulating sample No. 2-12, the inside of the particle was dense and there was no large void such as a 200 nm size.

<電池特性の評価>
電池特性評価については、次の点のみが実施例1と異なる点である。
初期充放電試験は、先ず、電圧範囲1.5〜5.0V、0.1CのCC-CV条件で4回予備充放電を繰り返した後に0.1CでCC-CV条件で250mAh/g充電し、その放電容量を測定した結果を初期充放電容量とした。
内部抵抗の低減効果については、前記初期放電容量を求めた放電曲線から100mAh/gでの電圧を求めて、該電圧が高くなるのが内部抵抗が低減されたと判断した。更に、充放電を20サイクルまで繰り返して、20サイクルから25サイクル間の放電曲線における100mAh/gでの電圧変化の傾き(1サイクル当たりの電圧変化)を求め、内部抵抗の低減効果の安定性とした。
また、放電容量維持率は、(10サイクル目の1.5Vの放電容量/2サイクル目の1.5Vの放電容量)×100の値とした。
表2A及び表2Cの結果より、y値がゼロである試料No.2-1の100mAh/gでの電圧に比べて、y値がゼロを超える試料No.2-2〜No.2-5、No.2-7〜No.2-8、No.2-11〜2-18は、該電圧が高くなり、内部抵抗の低減効果が見られた。試料No.2-6及びNo.2-9は、y値が0.25を超えているので、内部抵抗の低減効果が見られなかった。試料No.2-10は、本発明の組成式とは異なる組成式Li1.9Fe(Si0.9P0.1)O4であるため、内部抵抗の低減効果が見られなかった。
また、試料No.2-1、No.2-6、No.2-9、No.2-10の100mAh/gでの電圧に比べて、試料No.2-18では該電圧が高くなっているが、その他の試料と比べると、該電圧が低くなっていた。
また、表2A及び表2Dの結果より、y値が0.03125の倍数である場合と0.03125の倍数でない場合について、例えば、試料No.2-2とNo.2-3を比較すると、y値が0.03125の倍数である場合には内部抵抗の低減効果の安定性に優れることが示されている。
また、試料No.2-11〜No.2-17で、塗工性の評価を行い、No.2-11〜No.2-13、No.2-15〜No.2-17が「塗工性良」という結果であった。また、粒子内に適度な空隙が有するものは、高いレートでも優れた放電容量を示すものであった。
<Evaluation of battery characteristics>
Regarding the battery characteristic evaluation, only the following points are different from the first embodiment.
In the initial charge / discharge test, first, preliminary charge / discharge was repeated 4 times under the CC-CV condition of voltage range 1.5 to 5.0V and 0.1C, then 250mAh / g was charged under CC-CV condition at 0.1C, and the discharge capacity was The measured result was defined as the initial charge / discharge capacity.
Regarding the effect of reducing the internal resistance, a voltage at 100 mAh / g was obtained from the discharge curve obtained from the initial discharge capacity, and it was determined that the internal resistance was reduced when the voltage increased. Furthermore, charge / discharge is repeated up to 20 cycles, and the slope of voltage change at 100 mAh / g (voltage change per cycle) in the discharge curve between 20 and 25 cycles is obtained, and the stability of the internal resistance reduction effect is did.
Further, the discharge capacity retention rate was set to a value of (1.5 V discharge capacity at the 10th cycle / 1.5 V discharge capacity at the second cycle) × 100.
From the results of Table 2A and Table 2C, sample No. 2-2 to No. 2-5 whose y value exceeds zero compared to the voltage at 100 mAh / g of sample No. 2-1 whose y value is zero No.2-7 to No.2-8 and Nos.2-11 to 2-18 showed an increase in the voltage and an effect of reducing internal resistance. In samples No. 2-6 and No. 2-9, the y value exceeded 0.25, and thus the effect of reducing internal resistance was not observed. Since sample No. 2-10 has a composition formula Li 1.9 Fe (Si 0.9 P 0.1 ) O 4 different from the composition formula of the present invention, the effect of reducing the internal resistance was not observed.
In addition, compared with the voltage at 100 mAh / g of sample No.2-1, No.2-6, No.2-9, No.2-10, the voltage is higher in sample No.2-18. However, the voltage was lower than other samples.
Further, from the results of Table 2A and Table 2D, when the y value is a multiple of 0.03125 and not a multiple of 0.03125, for example, when comparing sample No. 2-2 and No. 2-3, the y value is 0.03125. It is shown that the stability of the effect of reducing the internal resistance is excellent when it is a multiple of.
Samples No.2-11 to No.2-17 were evaluated for coatability, and No.2-11 to No.2-13 and No.2-15 to No.2-17 The result was “good workability”. Moreover, what the moderate space | gap has in the particle | grains showed the outstanding discharge capacity even at the high rate.

Figure 2013080763
Figure 2013080763
Figure 2013080763
Figure 2013080763
Figure 2013080763
Figure 2013080763
Figure 2013080763
Figure 2013080763

(比較例)
出発原料として、炭酸リチウム(Li2CO3)、シュウ酸鉄(II)二水和物(FeC2O4・2H2O)、炭酸マンガン(MnCO3)、酸化コバルト(CoO)、二酸化ケイ素(SiO2)、リン酸アンモニウム((NH4)3PO4)、硫酸アンモニウム((NH4)2SO4)を用いて、固相反応法で、表3Aの組成欄に記載されている各酸化物粉末を調製した。
先ず、表3Aの組成欄に記載の組成比になるように、上記各原料を組合せて秤量し、メタノールを使用してボールミルで12時間、湿式混合した。それぞれ得られた混合物を窒素雰囲気下850℃で24時間焼成を行い、その後、遊星ボールミルによる粉砕を行った。更に、前記粉砕粉末を窒素雰囲気下950℃で10時間焼成を行って、酸化物粉末を調製した。
上記調製した各酸化物粉末には、予め、アセチレンブラックを10質量%混合した。アセチレンブラックの混合方法は、各酸化物粉末とアセチレンブラックを、エタノールを使用したボールミルで12時間、湿式混合した。得られた混合物を窒素雰囲気下400℃で5時間焼成した。
(Comparative example)
Starting materials include lithium carbonate (Li 2 CO 3 ), iron (II) oxalate dihydrate (FeC 2 O 4 · 2H 2 O), manganese carbonate (MnCO 3 ), cobalt oxide (CoO), silicon dioxide ( SiO 2 ), ammonium phosphate ((NH 4 ) 3 PO 4 ), ammonium sulfate ((NH 4 ) 2 SO 4 ), each oxide listed in the composition column of Table 3A by a solid phase reaction method A powder was prepared.
First, the above raw materials were combined and weighed so that the composition ratio described in the composition column of Table 3A was obtained, and wet-mixed with a ball mill using methanol for 12 hours. Each of the obtained mixtures was baked at 850 ° C. for 24 hours in a nitrogen atmosphere, and then pulverized by a planetary ball mill. Furthermore, the pulverized powder was fired at 950 ° C. for 10 hours in a nitrogen atmosphere to prepare an oxide powder.
Each prepared oxide powder was previously mixed with 10% by mass of acetylene black. As a method for mixing acetylene black, each oxide powder and acetylene black were wet-mixed for 12 hours in a ball mill using ethanol. The resulting mixture was calcined at 400 ° C. for 5 hours under a nitrogen atmosphere.

<各試料の分析>
上述のようにして得られた試料No.3-1〜No.3-14のそれぞれについて、実施例1と同様に分析を行った。
試料No.3-1〜No.3-10をX線回折したところ、試料No.3-1〜No.3-10は、Li2CoSiO4結晶相と類似の回折パターンを主相とするものであった。試料No.3-11〜No.3-12は、Li2FeSiO4結晶相と類似の回折パターンを主相とするものであった。試料No.3-13〜No.3-14は、Li2MnSiO4結晶相と類似の回折パターンを主相とするものであった。但し、元素置換している試料では、回折ピークにシフトが見られた。
<Analysis of each sample>
The samples No. 3-1 to No. 3-14 obtained as described above were analyzed in the same manner as in Example 1.
Samples No.3-1 to No.3-10 were X-ray diffracted. Sample Nos.3-1 to No.3-10 had a diffraction pattern similar to the Li 2 CoSiO 4 crystal phase as the main phase. Met. Samples Nos. 3-11 to 3-12 had a diffraction pattern similar to that of the Li 2 FeSiO 4 crystal phase as the main phase. Samples No. 3-13 to No. 3-14 had a diffraction pattern similar to the Li 2 MnSiO 4 crystal phase as the main phase. However, a shift was observed in the diffraction peak in the sample with element substitution.

<電池特性の評価>
試料No.3-1〜No.3-10の電池特性評価については、次の点のみが実施例1と異なる点である。
初期充放電試験は、先ず、電圧範囲1.0〜5.0V、0.1CのCC-CV条件で4回予備充放電を繰り返した後に0.1CでCC-CV条件で200mAh/g充電し、その放電容量を測定した結果を初期充放電容量とした。
内部抵抗の低減効果については、前記初期放電容量を求めた放電曲線から100mAh/gでの電圧を求めて、該電圧が高くなるのが内部抵抗が低減されたと判断した。更に、充放電を20サイクルまで繰り返して、15サイクルから20サイクル間の放電曲線における100mAh/gでの電圧変化の傾き(1サイクル当たりの電圧変化)を求め、内部抵抗の低減効果の安定性とした。
表3Aの結果より、y値がゼロである試料No.3-1の100mAh/gでの電圧に比べて、y値がゼロを超える試料No.3-2〜No.3-5、No.3-7〜No.3-8は、該電圧が高くなり、内部抵抗の低減効果が見られた。試料No.3-6及びNo.3-9は、y値が0.25を超えているので、内部抵抗の低減効果が見られなかった。試料No.3-10は、本発明の組成式とは異なる組成式Li1.9Co(Si0.9P0.1)O4であるため、内部抵抗の低減効果が見られなかった。
また、表3A及び表3Bの結果より、y値が0.03125の倍数である場合と0.03125の倍数でない場合について、例えば、試料No.3-2とNo.3-3を比較すると、y値が0.03125の倍数である場合には内部抵抗の低減効果の安定性に優れることが示されている。
試料No.3-11〜No.3-12の電池特性評価については、実施例2と同様である。試料No.3-13〜No.3-14の電池特性評価は、実施例1と同様である。
表1C、表1D、表3A及び表3Bの結果より、海島構造の複合体ではない試料No.3-13〜No.3-14と比べて、海島構造の複合体である試料No.1-4、No.1-7は、内部抵抗の低減効果、内部抵抗の低減効果の安定性などについて優れている。
また、表2C、表2D、表3A及び表3Bの結果より、海島構造の複合体ではない試料No.3-11〜No.3-12と比べて、海島構造の複合体である試料No.2-4、No.2-7は、内部抵抗の低減効果、内部抵抗の低減効果の安定性などについて優れている。
<Evaluation of battery characteristics>
Regarding the battery characteristic evaluation of Samples No. 3-1 to No. 3-10, only the following points are different from Example 1.
In the initial charge / discharge test, first, preliminary charge / discharge was repeated 4 times under the CC-CV condition of voltage range 1.0-5.0V and 0.1C, then 200mAh / g was charged under CC-CV condition at 0.1C, and the discharge capacity was The measured result was defined as the initial charge / discharge capacity.
Regarding the effect of reducing the internal resistance, a voltage at 100 mAh / g was obtained from the discharge curve obtained from the initial discharge capacity, and it was determined that the internal resistance was reduced when the voltage increased. Furthermore, charge / discharge is repeated up to 20 cycles, the slope of voltage change at 100 mAh / g (voltage change per cycle) in the discharge curve between 15 and 20 cycles is obtained, and the stability of the internal resistance reduction effect is did.
From the results of Table 3A, sample No. 3-2 to No. 3-5, No. 3 with a y value exceeding zero compared to the voltage at 100 mAh / g of sample No. 3-1 with a y value of zero. In 3-7 to No. 3-8, the voltage was increased, and the effect of reducing internal resistance was observed. In samples No. 3-6 and No. 3-9, the y value exceeded 0.25, and thus the effect of reducing internal resistance was not observed. Since Sample No. 3-10 has a composition formula Li 1.9 Co (Si 0.9 P 0.1 ) O 4 different from the composition formula of the present invention, the effect of reducing the internal resistance was not observed.
Further, from the results of Table 3A and Table 3B, when the y value is a multiple of 0.03125 and when it is not a multiple of 0.03125, for example, when sample No. 3-2 and No. 3-3 are compared, the y value is 0.03125. It is shown that the stability of the effect of reducing the internal resistance is excellent when it is a multiple of.
The battery characteristics evaluation of samples No. 3-11 to No. 3-12 is the same as in Example 2. The battery characteristics evaluation of Samples No. 3-13 to No. 3-14 is the same as in Example 1.
From the results of Table 1C, Table 1D, Table 3A, and Table 3B, Sample No.1-, which is a complex of sea-island structure, compared to Samples No.3-13 to No.3-14, which are not complex of sea-island structure. 4, No.1-7 is excellent in reducing the internal resistance and stability of the internal resistance.
Further, from the results of Table 2C, Table 2D, Table 3A and Table 3B, sample No. 3 which is a complex of sea-island structure is compared with Samples No. 3-11 to No. 3-12 which are not complex of sea-island structure. Nos. 2-4 and No.2-7 are excellent in reducing the internal resistance and stability in reducing the internal resistance.

Figure 2013080763
Figure 2013080763
Figure 2013080763
Figure 2013080763

本発明は、リチウムイオン二次電池の分野で利用することができる。   The present invention can be used in the field of lithium ion secondary batteries.

Claims (8)

組成式Li2(M1-yLiy)(Si,MB)O4(ここで、Mは、Fe、Mn、Co、及びNiよりなる群から選ばれる1つ以上の元素である。MBは、Li+のy分の電荷を補償するために、Siを置換する元素である。)で表される酸化物と、炭素材との複合体からなり、
前記酸化物の組成式において0<y≦0.25であり、
前記複合体は、前記炭素材に対して前記酸化物が島状に点在する海島構造を呈し、当該海島構造の島の円換算径の平均値が3nm以上15nm以下であることを特徴とするリチウムイオン二次電池用正極材料。
Composition formula Li 2 (M 1-y Li y ) (Si, M B ) O 4 (where M is one or more elements selected from the group consisting of Fe, Mn, Co, and Ni). B is an element that substitutes Si in order to compensate the charge of Li + y component)) and a composite of an oxide represented by carbon material,
In the composition formula of the oxide, 0 <y ≦ 0.25,
The composite has a sea-island structure in which the oxide is scattered in an island shape with respect to the carbon material, and an average value of a circle-converted diameter of the island of the sea-island structure is 3 nm or more and 15 nm or less. Positive electrode material for lithium ion secondary battery.
前記yの値が、0.03125の倍数であることを特徴とする請求項1に記載のリチウムイオン二次電池用正極材料。   2. The positive electrode material for a lithium ion secondary battery according to claim 1, wherein the value of y is a multiple of 0.03125. 前記MBが、Pであることを特徴とする請求項1又は2に記載のリチウムイオン二次電池用正極材料。Wherein M B is a positive electrode material for a lithium ion secondary battery according to claim 1 or 2, characterized in that a P. 前記複合体が1μm以上20μm以下のサイズを有する粒子であって、
前記粒子の内部には空隙が存在することを特徴とする請求項1〜3のいずれか一項に記載のリチウムイオン二次電池用正極材料。
The composite is a particle having a size of 1 μm or more and 20 μm or less,
The positive electrode material for a lithium ion secondary battery according to any one of claims 1 to 3, wherein voids are present inside the particles.
前記粒子の内部に200nm以上前記粒子サイズ未満のサイズを有する空隙が存在することを特徴とする請求項4に記載のリチウムイオン二次電池用正極材料。   5. The positive electrode material for a lithium ion secondary battery according to claim 4, wherein voids having a size of 200 nm or more and less than the particle size exist inside the particles. 前記空隙の存在量が、前記粒子断面における面積率で20%以上80%以下であることを特徴とする請求項5に記載のリチウムイオン二次電池用正極材料。   6. The positive electrode material for a lithium ion secondary battery according to claim 5, wherein the abundance of the voids is 20% or more and 80% or less as an area ratio in the particle cross section. 請求項1〜6のいずれか一項に記載のリチウムイオン二次電池用正極材料、及び、結合剤を含む正極層を有する金属箔を有することを特徴とするリチウムイオン二次電池用正極部材。   A positive electrode member for a lithium ion secondary battery comprising the positive electrode material for a lithium ion secondary battery according to any one of claims 1 to 6 and a metal foil having a positive electrode layer containing a binder. 請求項1〜6のいずれか一項に記載のリチウムイオン二次電池用正極材料、又は請求項7に記載のリチウムイオン二次電池用正極部材を用いたことを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery using the positive electrode material for a lithium ion secondary battery according to any one of claims 1 to 6 or the positive electrode member for a lithium ion secondary battery according to claim 7. .
JP2013547079A 2011-12-02 2012-11-08 Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery Active JP5967101B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011264388 2011-12-02
JP2011264388 2011-12-02
PCT/JP2012/078910 WO2013080763A1 (en) 2011-12-02 2012-11-08 Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JPWO2013080763A1 true JPWO2013080763A1 (en) 2015-04-27
JP5967101B2 JP5967101B2 (en) 2016-08-10

Family

ID=48535230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013547079A Active JP5967101B2 (en) 2011-12-02 2012-11-08 Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery

Country Status (3)

Country Link
JP (1) JP5967101B2 (en)
TW (1) TWI536645B (en)
WO (1) WO2013080763A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016081634A (en) * 2014-10-14 2016-05-16 古河電気工業株式会社 Positive electrode active material for lithium ion secondary batteries

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181375A (en) * 2010-03-02 2011-09-15 Sumitomo Osaka Cement Co Ltd Electrode active material and lithium ion battery
JP2011243349A (en) * 2010-05-17 2011-12-01 Sanyo Electric Co Ltd Positive electrode active material and nonaqueous electrolyte secondary battery using the positive electrode active material
WO2012105039A1 (en) * 2011-02-04 2012-08-09 株式会社日立製作所 Positive electrode material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2013005704A1 (en) * 2011-07-04 2013-01-10 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013065483A (en) * 2011-09-20 2013-04-11 Hitachi Ltd Cathode material for lithium secondary battery, cathode for lithium secondary battery, and lithium secondary battery
JP5637102B2 (en) * 2011-09-05 2014-12-10 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery
JP5850058B2 (en) * 2011-09-28 2016-02-03 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery
JP5867505B2 (en) * 2011-07-04 2016-02-24 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member, lithium ion secondary battery, and method for producing the positive electrode material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181375A (en) * 2010-03-02 2011-09-15 Sumitomo Osaka Cement Co Ltd Electrode active material and lithium ion battery
JP2011243349A (en) * 2010-05-17 2011-12-01 Sanyo Electric Co Ltd Positive electrode active material and nonaqueous electrolyte secondary battery using the positive electrode active material
WO2012105039A1 (en) * 2011-02-04 2012-08-09 株式会社日立製作所 Positive electrode material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2013005704A1 (en) * 2011-07-04 2013-01-10 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5867505B2 (en) * 2011-07-04 2016-02-24 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member, lithium ion secondary battery, and method for producing the positive electrode material
JP5637102B2 (en) * 2011-09-05 2014-12-10 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery
JP2013065483A (en) * 2011-09-20 2013-04-11 Hitachi Ltd Cathode material for lithium secondary battery, cathode for lithium secondary battery, and lithium secondary battery
JP5850058B2 (en) * 2011-09-28 2016-02-03 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013005845; N. Kuganathan et al.: 'Li2MnSiO4 Lithium Battery Material: Atomic-Scale Study of Defects, Lithium Mobility, and Trivalent D' Chemistry of Materials Vol.21, 200910 *
JPN6013005848; Paromita Ghosh et al.: 'Improved Electrochemical Performance of Li2MnSiO4/C Composite Synthesized by Combustion Technique' Journal of The Electrochemical Society Vol.156,No.8, 2009, A677-A681 *

Also Published As

Publication number Publication date
JP5967101B2 (en) 2016-08-10
TWI536645B (en) 2016-06-01
WO2013080763A1 (en) 2013-06-06
TW201332200A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
KR101840541B1 (en) Positive electrode material for lithium secondary battery, method for preparing the same and secondary battery comprising the same
JP5637102B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery
JP5942855B2 (en) Positive electrode material for lithium ion secondary battery and method for producing the same
JP5867505B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode member, lithium ion secondary battery, and method for producing the positive electrode material
JP5871543B2 (en) Modified vanadium phosphate lithium carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
KR102572648B1 (en) Composite cathode active material for lithium battery, cathode for lithium battery including the same, and lithium battery including the cathode
KR20170071945A (en) Cathode active material, cathode and lithium battery including the same, and method of preparing the cathode active material
JP5850058B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery
JP5939253B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2013191540A (en) Positive active material, method of preparing the same, and secondary battery using the same
TWI556494B (en) Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, lithium ion secondary battery, and method of producing positive electrode material for lithium ion secondary battery
WO2015025887A1 (en) Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP5967101B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery
JP4951879B2 (en) Lithium secondary battery and positive electrode active material for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R150 Certificate of patent or registration of utility model

Ref document number: 5967101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250