JPWO2013057756A1 - Magnesian fired brick - Google Patents

Magnesian fired brick Download PDF

Info

Publication number
JPWO2013057756A1
JPWO2013057756A1 JP2012523758A JP2012523758A JPWO2013057756A1 JP WO2013057756 A1 JPWO2013057756 A1 JP WO2013057756A1 JP 2012523758 A JP2012523758 A JP 2012523758A JP 2012523758 A JP2012523758 A JP 2012523758A JP WO2013057756 A1 JPWO2013057756 A1 JP WO2013057756A1
Authority
JP
Japan
Prior art keywords
magnesia
raw material
brick
resistance
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012523758A
Other languages
Japanese (ja)
Inventor
昭弘 土成
昭弘 土成
隆之 小村
隆之 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROZAI KOGYO KAISHA, LTD.
Original Assignee
ROZAI KOGYO KAISHA, LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ROZAI KOGYO KAISHA, LTD. filed Critical ROZAI KOGYO KAISHA, LTD.
Priority to JP2012523758A priority Critical patent/JPWO2013057756A1/en
Publication of JPWO2013057756A1 publication Critical patent/JPWO2013057756A1/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

本発明に係るマグネシア質焼成れんがは、主原料となるマグネシア質原料と、チタニア質原料2〜8wt%と、マグネシア‐アルミナ系スピネル質原料3〜20wt%および/またはムライト質原料3〜20wt%と、リン酸塩ガラス質原料0.3〜3.0wt%とからなる配合組成100wt%に結合剤を添加し、混練・成形した後、焼成してなることを特徴とする。さらに、ジルコン質原料3〜20wt%または酸化ニッケル質原料0.1〜3.0wt%を添加することにより耐食性を向上させることができる。The magnesia calcined brick according to the present invention includes a magnesia raw material as a main raw material, 2-8 wt% of a titania raw material, 3-20 wt% of a magnesia-alumina-based spinel raw material, and / or 3-20 wt% of a mullite raw material. A binder is added to 100 wt% of a composition composed of 0.3 to 3.0 wt% of a phosphate glassy raw material, kneaded and molded, and then fired. Furthermore, the corrosion resistance can be improved by adding 3 to 20 wt% of the zircon material or 0.1 to 3.0 wt% of the nickel oxide material.

Description

本発明は製鋼炉や精錬炉などに用いられる内張り用焼成耐火物に関する。 The present invention relates to a baked refractory for lining used in a steelmaking furnace, a refining furnace, and the like.

従来から各種の炉に用いられる内張り用耐火物には耐食性および耐スポーリング性に優れたマグネシア‐クロム耐火物が使用されている。マグネシア‐クロム耐火物は、使用後に人体や環境衛生に有害な六価クロムを生成することから、クロムを含まないれんが、所謂クロムフリーれんがが早くから求められていた。 Conventionally, magnesia-chromium refractories having excellent corrosion resistance and spalling resistance have been used for lining refractories used in various furnaces. Since magnesia-chromium refractories produce hexavalent chromium which is harmful to the human body and environmental sanitation after use, so-called chromium-free bricks have been sought from early on.

クロムフリーれんがとしては、例えば、マグネシアをカーボンと複合させたマグネシア‐カーボンれんがが提案されている。しかし、マグネシア‐カーボンれんがには、カーボンの酸化によりれんがの組織が脆弱になり、長期間にわたって使用できないという欠点がある。また、カーボンの酸化により二酸化炭素が発生するため、地球温暖化防止の観点からも好ましくない。   As chromium-free bricks, for example, magnesia-carbon bricks in which magnesia is combined with carbon have been proposed. However, magnesia-carbon bricks have the disadvantage that the brick structure becomes brittle due to carbon oxidation and cannot be used for a long time. Moreover, since carbon dioxide is generated by the oxidation of carbon, it is not preferable from the viewpoint of preventing global warming.

そのため、これらの欠点を解消するクロムフリーれんがとして、マグネシアにチタニア等を添加した塩基性れんがが提案されている。例えば特許文献1では、マグネシア‐カルシア‐チタニア質塩基性れんがが開示されている。その他、スピネルにチタン酸アルミニウムを添加した耐火物(特許文献2)や、マグネシア‐アルミナ‐チタニア質れんが(特許文献3)が提案されている。   Therefore, basic bricks in which titania or the like is added to magnesia have been proposed as chromium-free bricks that eliminate these drawbacks. For example, Patent Document 1 discloses magnesia-calcia-titania basic brick. In addition, refractories in which aluminum titanate is added to spinel (Patent Document 2) and magnesia-alumina-titania brick (Patent Document 3) have been proposed.

特開平9−20550号公報Japanese Patent Laid-Open No. 9-20550 特開平7−300361号公報Japanese Patent Laid-Open No. 7-300361 特開2001−253765号公報JP 2001-253765 A

しかしながら、焼成中にマグネシアとチタニアとが反応して生成されるチタン酸マグネシウムは、組織が緻密であるため熱膨張に対して脆弱であり、耐スポーリング性が非常に低い。このためマグネシア‐チタニア質の塩基性れんがは、加熱と冷却が反復される炉内の環境下では、長期間の使用に耐えられないという欠点がある。   However, magnesium titanate produced by the reaction of magnesia and titania during firing is vulnerable to thermal expansion due to its dense structure, and its spalling resistance is very low. For this reason, magnesia-titania basic bricks have the disadvantage that they cannot withstand long-term use in an oven environment where heating and cooling are repeated.

この対策の一つとして、れんがの成分にアルミナを添加する方法がある。アルミナの添加により、れんがの焼成中にアルミナがマグネシアと反応してスピネルが生成する。そしてスピネルとマグネシアの熱膨張率の差により、れんがの焼結時に組織内に微亀裂が発生する。これにより、れんがの組織に熱膨張に対する空間的余裕が生じ、耐スポーリング性が改善する。しかし、アルミナの添加量の増加に伴って、発生する微亀裂が多くなることから、アルミナの添加量が10wt%を超えると、逆に組織が脆弱化して耐食性が低下する。このため、マグネシア‐アルミナ‐チタニア質れんがにおいては、無制限にアルミナを添加することができず、膨張係数の大きなマグネシア原料の配合割合が依然として大きくなってしまうことから、耐スポーリング性の改善には限界があるという問題がある。   One countermeasure is to add alumina to the brick component. Due to the addition of alumina, the alumina reacts with magnesia during the firing of the brick to produce spinel. Due to the difference in thermal expansion coefficient between spinel and magnesia, microcracks are generated in the structure during sintering of the brick. Thereby, the space | gap margin with respect to thermal expansion arises in the structure | tissue of a brick, and spalling resistance improves. However, as the amount of alumina added increases, the number of microcracks that are generated increases. Therefore, if the amount of alumina exceeds 10 wt%, the structure weakens and the corrosion resistance decreases. For this reason, in magnesia-alumina-titania bricks, alumina cannot be added indefinitely, and the blending ratio of magnesia raw materials with a large expansion coefficient will still increase, so improving the spalling resistance There is a problem that there is a limit.

一方、チタン酸アルミニウムはチタニアとアルミナから合成する必要があり、そのクリンカーを製造するためにコストが高くなるという問題がある。   On the other hand, it is necessary to synthesize aluminum titanate from titania and alumina, and there is a problem that the cost is high for producing the clinker.

さらに、マグネシア質の塩基性れんがの大きな欠点として、消化によるれんがの崩壊がある。消化とは、れんがの主成分であるマグネシアが水分と反応して水酸化マグネシウムが生成され、その反応時の急激な体膨張によって、れんがが崩壊する現象である。これにより、例えば、真空脱ガス炉において、浸漬管の内面を構成するれんがが、その外層を構成する不定形耐火物に含まれる水分により、乾燥中に崩壊してしまうといった問題がある。   Furthermore, a major drawback of magnesia basic bricks is the collapse of bricks due to digestion. Digestion is a phenomenon in which magnesia, which is the main component of brick, reacts with moisture to produce magnesium hydroxide, and the brick collapses due to rapid body expansion during the reaction. Thereby, for example, in a vacuum degassing furnace, there is a problem that the brick constituting the inner surface of the dip tube collapses during drying due to moisture contained in the amorphous refractory constituting the outer layer.

そこで、本発明は、上記の問題点を解決することを課題として研究開発されたものであり、耐食性、耐スラグ浸潤性、耐スポーリング性および耐消化性に優れ、十分な耐久性を有するマグネシア質焼成れんがを提供することを目的とする。   Accordingly, the present invention has been researched and developed with the object of solving the above-mentioned problems, and is excellent in corrosion resistance, slag infiltration resistance, spalling resistance and digestion resistance, and has sufficient durability. The purpose is to provide a quality fired brick.

上記目的を達成するために、本発明に係るマグネシア質焼成れんがは、主原料となるマグネシア質原料と、チタニア質原料2〜8wt%と、マグネシア‐アルミナ系スピネル質原料3〜20wt%および/またはムライト質原料3〜20wt%と、リン酸塩ガラス質原料0.3〜3.0wt%とからなる配合組成100wt%に結合剤を添加し、混練・成形した後、焼成してなることを特徴とする。   In order to achieve the above object, the magnesia fired brick according to the present invention comprises a magnesia raw material as a main raw material, a titania raw material of 2-8 wt%, a magnesia-alumina-based spinel raw material of 3-20 wt% and / or A binder is added to a blend composition of 100 wt% composed of 3 to 20 wt% of a mullite raw material and 0.3 to 3.0 wt% of a phosphate glassy raw material, kneaded and molded, and then fired. And

これにより、チタニアとスラグ中のカルシアとの反応によってペロブスカイト(CaO・TiO)がれんがの稼働面付近に膜状に生成されるので、その他のスラグ成分がれんがの組織内へ浸潤することが防止され、耐スラグ浸潤性が向上する。また、スピネル質原料またはムライト質原料に含まれるアルミナとマグネシアとの反応によりスピネルが生成され、スピネルとマグネシアとの熱膨張率の差によりれんが組織に微亀裂が形成されるので、熱膨張に対する空間的余裕がもたらされる。これらの結果、スラグ浸潤や熱変化に伴う構造変化によってれんがに亀裂や割れが生じにくくなり、耐スポーリング性が向上する。また、ムライト質原料に含まれるシリカとマグネシアとの反応により、マグネシアより低い融点を有するフォルステライト(2MgO・SiO)が生成されるので、れんがの組織が緻密になる。その結果、スピネルが多く発生することによる組織の脆弱性が抑制され、耐スポーリング性がより向上する。さらに、スピネル質原料とムライト質原料との併用により、れんがの組織を脆弱化させることなく、耐食性を向上させ、かつ耐スポーリング性をも向上させることが可能となる。As a result, perovskite (CaO · TiO 2 ) is produced in the form of a film near the working surface of the brick by the reaction between titania and calcia in the slag, preventing other slag components from infiltrating into the brick structure. And slag infiltration resistance is improved. In addition, since spinel is generated by the reaction of alumina and magnesia contained in the spinel material or mullite material, and the cracks are formed in the brick structure due to the difference in thermal expansion coefficient between the spinel and magnesia, the space for thermal expansion Allowance. As a result, cracks and cracks are less likely to occur in bricks due to structural changes accompanying slag infiltration and thermal changes, and spalling resistance is improved. Further, forsterite (2MgO.SiO 2 ) having a melting point lower than that of magnesia is generated by the reaction between silica and magnesia contained in the mullite raw material, and thus the brick structure becomes dense. As a result, the vulnerability of the organization due to the occurrence of a large amount of spinel is suppressed, and the spalling resistance is further improved. Furthermore, the combined use of the spinel material and the mullite material can improve the corrosion resistance and also improve the spalling resistance without weakening the brick structure.

また、本発明によれば、リン酸塩ガラスとマグネシアとが反応し、リン酸マグネシウムがマグネシアの周囲に生成されることにより、マグネシアと水との反応が遮断されるので、耐消化性が向上する。   Further, according to the present invention, the phosphate glass reacts with magnesia, and magnesium phosphate is generated around magnesia, so that the reaction between magnesia and water is blocked, thereby improving digestion resistance. To do.

ここで、上記マグネシア質焼成れんがは、さらに、ジルコン質原料3〜20wt%または酸化ニッケル質原料0.1〜3.0wt%を添加することが望ましい。   Here, it is desirable that the magnesia fired brick is further added with a zircon material 3 to 20 wt% or a nickel oxide material 0.1 to 3.0 wt%.

これにより、焼成中にジルコンが解離してジルコニアとシリカが生成される。シリカはマグネシアとの反応によりフォルステライトを生成するので、上述のように耐スポーリング性が向上する。また、ジルコニアは融点が非常に高いので、これがれんがの構成成分に含まれることにより、高熱下におけるれんがの耐食性が向上する。一方、酸化ニッケルは、発明者の研究結果によれば金属やスラグをはじく性質があるので、これがれんがの構成成分に含まれることにより、耐食性がさらに向上する。   Thereby, zircon dissociates during firing and zirconia and silica are generated. Since silica produces forsterite by reaction with magnesia, the spalling resistance is improved as described above. In addition, since zirconia has a very high melting point, the corrosion resistance of the brick under high heat is improved by including it in the constituent components of the brick. On the other hand, nickel oxide has the property of repelling metal and slag according to the research results of the inventor. Therefore, the corrosion resistance is further improved by including this in the components of the brick.

また、上記マグネシア質焼成れんがは、さらに、ドロマイト質原料、マグネサイト質原料または炭酸カルシウムを1〜5wt%添加することが望ましい。   Further, it is desirable that the magnesia fired brick is further added with 1 to 5 wt% of dolomite raw material, magnesite raw material or calcium carbonate.

これにより、ドロマイト、マグネサイトまたは炭酸カルシウムが、焼成中に二酸化炭素を放出し、れんがの組織中にマイクロポア(細かい空隙)を発生させるので、見掛気孔率が大きくなり、耐スポーリング性が向上する。   As a result, dolomite, magnesite or calcium carbonate releases carbon dioxide during firing and generates micropores (fine voids) in the brick structure, increasing the apparent porosity and reducing spalling resistance. improves.

上述のように、本発明に係るマグネシア質焼成れんがによれば、耐食性、耐スラグ浸潤性、耐スポーリング性および耐消化性に優れ、十分な耐久性を有するマグネシア質焼成れんがが実現される。とりわけ、ムライトやジルコンを構成するシリカとマグネシアにより生成されるフォルステライトとにより、スピネルの生成に伴うれんが組織の脆弱化が抑制されるため、耐スポーリング性をさらに向上させることができる。さらに、リン酸塩ガラスにより生成されるリン酸マグネシウムがマグネシアと水との反応を遮断するため、耐消化性が向上する。   As described above, according to the magnesia calcined brick according to the present invention, a magnesia calcined brick that is excellent in corrosion resistance, slag infiltration resistance, spalling resistance and digestion resistance and has sufficient durability is realized. In particular, the weakening of the brick structure associated with the generation of spinel is suppressed by the forsterite produced by the silica and magnesia constituting mullite and zircon, and therefore the spalling resistance can be further improved. Furthermore, since the magnesium phosphate produced by the phosphate glass blocks the reaction between magnesia and water, digestion resistance is improved.

本発明に係るマグネシア質焼成れんがにつき、以下詳細に説明する。   The magnesia fired brick according to the present invention will be described in detail below.

本発明は、主原料となるマグネシア質原料と、チタニア質原料2〜8wt%と、マグネシア‐アルミナ系スピネル質原料3〜20wt%および/またはムライト質原料3〜20wt%と、リン酸塩ガラス質原料0.3〜3.0wt%とからなる配合組成100wt%に結合剤を添加し、混練・成形した後、焼成したものである。   The present invention comprises a magnesia material as a main material, a titania material of 2-8 wt%, a magnesia-alumina-based spinel material of 3-20 wt% and / or a mullite material of 3-20 wt%, and a phosphate glass A binder is added to 100 wt% of a composition composed of 0.3 to 3.0 wt% of raw materials, kneaded and molded, and then fired.

主原料に含まれるマグネシアは、融点が約2800℃と高く、高塩基性物質であるためスラグに対して優れた耐食性を示す。このため、マグネシアの成分比率の増大は、れんがの耐食性の向上につながる。しかし、マグネシアの熱膨張率は、平均的なアルミナれんがの熱膨張率と比べて約2倍と高いことから、マグネシアの成分比率が大きくなると、れんがの組織が割れやすくなり、耐スポーリング性が低下するという欠点がある。   Magnesia contained in the main raw material has a high melting point of about 2800 ° C. and is a highly basic substance, and therefore exhibits excellent corrosion resistance against slag. For this reason, the increase in the component ratio of magnesia leads to the improvement of the corrosion resistance of the brick. However, the coefficient of thermal expansion of magnesia is about twice as high as that of average alumina bricks. Therefore, when the component ratio of magnesia is increased, the brick structure is easily broken and the spalling resistance is improved. There is a drawback of lowering.

チタニアは、スラグ中のカルシアと反応してペロブスカイトを生成する(TiO+CaO→CaO・TiO)。ペロブスカイトは、れんがの稼働面付近に膜状に生成されるため、スラグ成分のれんが組織内への侵入を防止する。よって、チタニア質原料の添加はスラグに対する耐浸潤性を向上させる効果がある。Titania reacts with calcia in the slag to produce perovskite (TiO 2 + CaO → CaO · TiO 2 ). Perovskite is generated in the form of a film near the working surface of the brick, so that the brick of the slag component is prevented from entering the tissue. Therefore, the addition of the titania-based raw material has an effect of improving the infiltration resistance against the slag.

また、チタニアはマグネシアと反応してチタン酸マグネシウムを生成する(MgO+2TiO→MgO・2TiO,2MgO+TiO→2MgO・TiO)。チタン酸マグネシウムは、見掛気孔率が約10wt%程度であり、通常の焼成れんがの見掛気孔率が約20wt%程度であることを考慮すると、非常に緻密な構造を有している。このため、チタン酸マグネシウムを成分に含むれんがは非常に割れやすくなる。Further, titania reacts with magnesia to produce magnesium titanate (MgO + 2TiO 2 → MgO · 2TiO 2 , 2MgO + TiO 2 → 2MgO · TiO 2 ). Magnesium titanate has a very dense structure in consideration of the apparent porosity of about 10 wt% and the apparent porosity of ordinary fired bricks is about 20 wt%. For this reason, a brick containing magnesium titanate as a component is very easily broken.

これに対し、スピネル質原料やムライト質原料の添加は、れんがを割れにくくする効果がある。すなわち、焼成中にこれらに含まれるアルミナとマグネシアとが反応することによりスピネルが生成し(MgO+Al→MgO・Al)、スピネルとマグネシアとの膨張率が異なるため、れんがの組織中に微亀裂が発生する。これにより、れんがの組織に空間的な余裕が生じ、耐スポーリング性が向上する。スピネル質原料の添加量を増やせば、れんが組織の緻密化の影響が抑制されるため、耐スポーリング性はより向上する。しかし、添加しすぎると、れんがの組織内に微亀裂が増えすぎて組織が脆弱化する。On the other hand, the addition of spinel material and mullite material has the effect of making bricks difficult to break. That is, spinel is generated by the reaction of alumina and magnesia contained in these during firing (MgO + Al 2 O 3 → MgO · Al 2 O 3 ), and the expansion coefficient of spinel and magnesia is different, so the structure of the brick Microcracks are generated inside. Thereby, a spatial margin is generated in the brick structure, and the spalling resistance is improved. If the amount of the spinel material added is increased, the influence of densification of the brick structure is suppressed, so that the spalling resistance is further improved. However, if it is added too much, microcracks increase in the brick structure and the structure becomes brittle.

ムライト質原料を添加する場合、スピネルの生成に加えて、ムライト質原料に含まれるシリカがマグネシアと反応し、フォルステライトが生成される(SiO+2MgO→2MgO・SiO)。フォルステライトはれんが組織を緻密化する役割を果たすことから、ムライト質原料を添加すると、微亀裂の増加によるれんがの組織の脆弱化が抑制される。When the mullite raw material is added, in addition to the generation of spinel, silica contained in the mullite raw material reacts with magnesia to generate forsterite (SiO 2 + 2MgO → 2MgO · SiO 2 ). Since forsterite plays a role of densifying the structure of the brick, when a mullite raw material is added, weakening of the structure of the brick due to an increase in microcracks is suppressed.

本発明では、スピネル質原料の代わりに、ムライト質原料のみを用いてもよいし、スピネル質原料とムライト質原料を併用してもよい。なお、これらの添加量がいずれも3wt%を下回るとスピネル生成量が不足し、耐スポーリング性の向上にはつながらない。また、これらの添加量がいずれも20wt%を超えると組織が脆弱化する傾向があり、耐食性の低下をもたらすので好ましくない。   In the present invention, instead of the spinel material, only the mullite material may be used, or the spinel material and the mullite material may be used in combination. In addition, when all of these addition amounts are less than 3 wt%, the amount of spinel generation is insufficient, and the spalling resistance is not improved. Moreover, when these addition amounts exceed 20 wt%, the structure tends to become brittle, and this causes a decrease in corrosion resistance.

リン酸塩ガラスは、焼成中にマグネシアと反応してリン酸マグネシウム(Mg(HPO)を生成する。これがマグネシアの周囲に生成されることにより、マグネシアと水との反応(MgO+HO→Mg(OH))が遮断される。従って、リン酸塩ガラス質原料の添加は耐消化性の向上に効果がある。なお、リン酸塩ガラス質原料の添加量が0.3wt%を下回ると耐消化性の効果が少なく、3wt%を超えると、リン酸塩ガラスの融点が相対的に低いことから、れんがの耐食性の低下につながり、好ましくない。The phosphate glass reacts with magnesia during firing to produce magnesium phosphate (Mg (H 2 PO 3 ) 2 ). By generating this around magnesia, the reaction (MgO + H 2 O → Mg (OH) 2 ) between magnesia and water is blocked. Therefore, the addition of phosphate glassy raw material is effective in improving digestion resistance. In addition, if the addition amount of the phosphate glassy raw material is less than 0.3 wt%, the effect of digestion resistance is small, and if it exceeds 3 wt%, the melting point of the phosphate glass is relatively low, so the corrosion resistance of the brick This is not preferable because it leads to a decrease in

ジルコンは、焼成中にジルコニアとシリカに解離する(ZrSiO→ZrO+SiO)。シリカはれんが中のマグネシアと反応してフォルステライトを生成し(SiO+2MgO→2MgO・SiO)、フォルステライトはれんが組織を緻密化する効果があるため、耐スポーリング性を向上させる。一方、ジルコニアはその高い融点により耐食性を向上させる。ただし、ジルコン質原料の添加量が3wt%未満ではその効果は少ない。また、高価な原料であるので、あまり多く使用することは経済的に好ましくない。Zircon dissociates into zirconia and silica during calcination (ZrSiO 4 → ZrO 2 + SiO 2 ). Silica reacts with magnesia in the brick to produce forsterite (SiO 2 + 2MgO → 2MgO · SiO 2 ), and forsterite has the effect of densifying the structure of the brick, thus improving the spalling resistance. On the other hand, zirconia improves corrosion resistance due to its high melting point. However, if the amount of the zircon material is less than 3 wt%, the effect is small. Moreover, since it is an expensive raw material, it is economically unpreferable to use too much.

酸化ニッケルには、溶融金属やスラグをはじく性質があり、これが構成成分に含まれることによりれんがの耐食性が向上する。ただし、酸化ニッケル質原料の添加量が0.1wt%未満では効果が少ない。また、高価な原料であるので、あまり多く使用することは経済的に好ましくない。なお、酸化ニッケル質原料を添加する際には、その効果を十分に発揮することができるように、あらかじめ液体バインダー中に懸濁液を準備してから添加する方法が望ましい。   Nickel oxide has a property of repelling molten metal and slag, and the corrosion resistance of bricks is improved by including this in the constituent components. However, if the addition amount of the nickel oxide raw material is less than 0.1 wt%, the effect is small. Moreover, since it is an expensive raw material, it is economically unpreferable to use too much. In addition, when adding a nickel oxide raw material, the method of adding, after preparing a suspension in a liquid binder previously so that the effect may fully be exhibited is desirable.

ドロマイト(Ca(Mg(CO))、マグネサイト、または炭酸カルシウムは、いずれも焼成中に二酸化炭素を放出する(Ca(Mg(CO)→CaO+MgO+2CO,MgCO→MgO+CO,CaCO→CaO+CO)。これにより、れんがの組織中にマイクロポアが形成される。スピネルやムライトは耐スポーリング性を向上させる効果があるが、添加しすぎると逆に組織の脆弱化を招く。そこで、ドロマイト等を添加し、焼成中に発生する二酸化炭素によってれんがの組織中にマイクロポアを形成させることにより、微亀裂と同等の空間的効果を生じさせている。従って、これらを添加することにより、れんがの組織を脆弱化することなく、耐スポーリング性を向上させることができる。Dolomite (Ca (Mg (CO 3 ) 2 )), magnesite, or calcium carbonate all release carbon dioxide during calcination (Ca (Mg (CO 3 ) 2 ) → CaO + MgO + 2CO 2 , MgCO 3 → MgO + CO 2. , CaCO 3 → CaO + CO 2 ). As a result, micropores are formed in the brick tissue. Spinel and mullite have the effect of improving the spalling resistance, but if added too much, the structure is weakened. Therefore, by adding dolomite or the like and forming micropores in the brick structure by carbon dioxide generated during firing, a spatial effect equivalent to microcracks is produced. Therefore, by adding these, the spalling resistance can be improved without weakening the brick structure.

次に、本発明に係るマグネシア質焼成れんがの構成原料について詳細に説明する。   Next, the constituent materials of the magnesia fired brick according to the present invention will be described in detail.

マグネシア質原料は、電融マグネシア、焼結マグネシアのいずれを使用してもよい。純度は97wt%以上であれば十分である。粒度は3〜1mm、1mm以下および74μm以下のものを適宜混合して使用する。   As the magnesia material, either electrofused magnesia or sintered magnesia may be used. A purity of 97 wt% or more is sufficient. Particle sizes of 3 to 1 mm, 1 mm or less, and 74 μm or less are appropriately mixed and used.

チタニア質原料は、粒度が45μm以下、かつ純度が85wt%以上のものを使用する。   As the titania material, a material having a particle size of 45 μm or less and a purity of 85 wt% or more is used.

スピネル質原料は、粒度が74μm以下のものを使用する。アルミナ成分が約70wt%で、かつマグネシア成分が約30wt%である理論組成のものが効果的である。   A spinel material having a particle size of 74 μm or less is used. A theoretical composition having an alumina component of about 70 wt% and a magnesia component of about 30 wt% is effective.

ムライト質原料は、天然にはほとんど産出しないため合成ムライトを用いる。粒度が74μm以下で、アルミナ成分が約70wt%、シリカ成分が約30wt%のものを使用する。   Since mullite raw materials are rarely produced in nature, synthetic mullite is used. The particle size is 74 μm or less, the alumina component is about 70 wt%, and the silica component is about 30 wt%.

ジルコン質原料は、粒度が74μm以下で、ジルコニア成分が約67wt%、かつシリカ成分が約33wt%のものを使用する。   The zircon raw material has a particle size of 74 μm or less, a zirconia component of about 67 wt%, and a silica component of about 33 wt%.

酸化ニッケル質原料は、粒度が74μm以下のものを使用することができるが、45μm以下が望ましい。これは、粒度のより細かいものを用いる方が、酸化ニッケルとマグネシアおよびチタニアとの反応性が向上するからである。また、粒度を細かくすることにより、混練の際に原料がれんが全体に分散しやすくなることから、酸化ニッケル質原料の添加量をより少なくすることが可能となるという利点もある。純度は経済性を考慮して80wt%以上であればよい。   As the nickel oxide raw material, those having a particle size of 74 μm or less can be used, but 45 μm or less is desirable. This is because the reactivity of nickel oxide with magnesia and titania is improved when a finer particle size is used. Further, by reducing the particle size, the raw material is easily dispersed throughout the brick during kneading, so that there is an advantage that the amount of the nickel oxide raw material added can be further reduced. Purity should just be 80 wt% or more in consideration of economical efficiency.

ドロマイト質原料、マグネサイト質原料および炭酸カルシウムは一般に市販されているものをそのまま使用することができる。   The commercially available dolomite raw material, magnesite raw material and calcium carbonate can be used as they are.

リン酸塩ガラス質原料は、酸化リン成分(P)が60〜65wt%、酸化ナトリウム成分(NaO)が20〜30wt%、およびアルミナ成分が8〜10wt%程度のものを使用する。As the phosphate glassy raw material, a phosphorous oxide component (P 2 O 5 ) of 60 to 65 wt%, a sodium oxide component (Na 2 O) of 20 to 30 wt%, and an alumina component of about 8 to 10 wt% are used. To do.

次に本発明に係るマグネシア質焼成れんがについて、実施例および比較例を挙げてより詳細に説明する。以下の実施例および比較例は、各構成原料の添加量がれんがの特性に及ぼす影響を示すものである。   Next, the magnesia fired brick according to the present invention will be described in more detail with reference to examples and comparative examples. The following examples and comparative examples show the influence of the amount of each constituent material added on the brick properties.

以下の各表に示す配合割合で原料を調合し、リグニンスルホン酸カルシウムの液体(パルプ廃液)を結合剤として混練し、300トンのフリクションプレスで並形(230×114×65mm)に加圧成形した。その成形体を150℃の温度下で24時間乾燥した後、シャトルキルンを用いて1700℃の温度下で6時間焼成した。焼成体を所定の大きさに切断し、実施例と比較例とについて以下を評価項目とする試験を行い特性を調査した。
(1)見掛気孔率および嵩比重:JIS規格(JIS R2205)に基づき、嵩比重および見掛気孔率を測定した。
(2)耐スポーリング性:1200℃の温度に保持した電気炉に、40×80×20mmの大きさの試料を素早く入れ、15分間加熱した後、素早く取り出して水中に入れる換作を試料が崩壊するまで繰り返し行い、その回数により耐スポーリング性を評価した。この試験では、回数が多いほど耐スポーリング性に優れることを意味する。
(3)耐食性:回転侵食試験機を用いて耐食性を評価した。鋼:スラグ(塩基度3.0)=6:4の侵食材を一回あたり300g投入し、これを30分ごとに入れ変える操作を合計10回繰り返した。温度は1730℃とし、試験時間は5時間である。結果はマグネシア‐クロムれんがの溶損量を100として、指数(溶損指数)で表示した。この試験では、溶損指数が小さいほど溶損量が少ないことを意味する。
(4)耐消化性:オートクレーブ中に50×50×50mmの大きさの試料を入れ、130℃の温度下で5時間加熱し、試料に亀裂が生じるか否かにより、耐消化性を評価した。なお、加熱時の圧力は約0・ 3MPaである。
The raw materials are prepared at the blending ratios shown in the following tables, the liquid of calcium lignin sulfonate (pulp waste liquid) is kneaded as a binder, and pressure-molded into a parallel shape (230 x 114 x 65 mm) with a 300-ton friction press did. The molded body was dried at a temperature of 150 ° C. for 24 hours, and then fired at a temperature of 1700 ° C. for 6 hours using a shuttle kiln. The fired body was cut into a predetermined size, and the characteristics of the examples and comparative examples were examined by the following evaluation items.
(1) Apparent porosity and bulk specific gravity: The bulk specific gravity and the apparent porosity were measured based on JIS standard (JIS R2205).
(2) Spalling resistance: A sample having a size of 40 × 80 × 20 mm is quickly put in an electric furnace maintained at a temperature of 1200 ° C., heated for 15 minutes, then quickly removed and put into water. It repeated until it disintegrated and evaluated the spalling resistance by the number of times. In this test, the greater the number of times, the better the spalling resistance.
(3) Corrosion resistance: Corrosion resistance was evaluated using a rotary erosion tester. The operation of adding 300 g of erodible material of steel: slag (basicity 3.0) = 6: 4 per one time and replacing it every 30 minutes was repeated a total of 10 times. The temperature is 1730 ° C. and the test time is 5 hours. The results were expressed as an index (melting loss index) with the amount of magnesia-chrome brick melting as 100. In this test, the smaller the erosion index, the smaller the erosion amount.
(4) Digestion resistance: A sample having a size of 50 × 50 × 50 mm was placed in an autoclave, heated at a temperature of 130 ° C. for 5 hours, and digestion resistance was evaluated by whether or not the sample was cracked. . In addition, the pressure at the time of a heating is about 0.3 MPa.

また、以下において、比較例1は、焼結マグネシア40wt%、クロム鉱60wt%、および酸化クロム6wt%からなる従来のマグネシア‐クロムれんがで、クロム含有率が約30wt%のものである。   Further, in the following, Comparative Example 1 is a conventional magnesia-chromium brick made of sintered magnesia 40 wt%, chromium ore 60 wt%, and chromium oxide 6 wt%, and has a chromium content of about 30 wt%.

Figure 2013057756
Figure 2013057756

表1はチタニアの添加量がれんがの特性に及ぼす影響を示すものである。これによれば、チタニアの添加量の少ない比較例2は耐食性(溶損指数)において、また、添加量の多い比較例3は耐スポーリング性において、マグネシア‐クロムれんがである比較例1に劣っている。これに対し、実施例1〜3は耐食性、耐スポーリング性および耐消化性において比較例1より優れている。よって、チタニアの添加量は2〜8wt%が好ましいことがわかる。   Table 1 shows the influence of the amount of titania added on the brick properties. According to this, Comparative Example 2 with a small addition amount of titania is inferior to Comparative Example 1 in which magnesia-chromium brick is used, and Comparative Example 3 with a large addition amount is in spalling resistance. ing. In contrast, Examples 1 to 3 are superior to Comparative Example 1 in corrosion resistance, spalling resistance and digestion resistance. Therefore, it can be seen that the addition amount of titania is preferably 2 to 8 wt%.

また、表1によれば、チタニアの添加量の増加に伴い見掛気孔率が低下している。これは、チタニアの添加量の低下に伴い、組織の緻密化が進むことを示している。   Moreover, according to Table 1, the apparent porosity is falling with the increase in the addition amount of titania. This indicates that the densification of the structure proceeds with a decrease in the amount of titania added.

Figure 2013057756
Figure 2013057756

表2はスピネルの添加量がれんがの特性に及ぼす影響を示すものである。これによれば、スピネルの添加量の少ない比較例4は耐スポーリング性において、また、添加量の多い比較例5は耐食性(溶損指数)において比較例1に劣っている。これに対し、実施例4〜6は耐食性、耐スポーリング性および耐消化性において比較例1より優れている。よって、スピネルの添加量は3〜20wt%が好ましいことがわかる。   Table 2 shows the influence of the amount of spinel added on the brick properties. According to this, Comparative Example 4 with a small amount of spinel is inferior to Comparative Example 1 in spalling resistance, and Comparative Example 5 with a large amount of addition is inferior to Comparative Example 1 in corrosion resistance (melting loss index). In contrast, Examples 4 to 6 are superior to Comparative Example 1 in corrosion resistance, spalling resistance, and digestion resistance. Therefore, it is understood that the amount of spinel added is preferably 3 to 20 wt%.

Figure 2013057756
Figure 2013057756

表3はムライトの添加量がれんがの特性に及ぼす影響を示すものである。これによれば、ムライトの添加量を増やしても、スピネルを添加する場合に比べて、見掛気孔率の大きな変化は見られない。この理由は、ムライトのアルミナ成分とマグネシアとの反応によってスピネルが生成される際に、組織に微亀裂が生じようとする作用と、ムライトのシリカ成分とマグネシアとの反応によってフォルステライトが生成される際に、組織が緻密化しようとする作用とが相殺するからであると推測される。   Table 3 shows the influence of the added amount of mullite on the brick properties. According to this, even when the amount of mullite added is increased, no significant change in apparent porosity is observed compared to the case where spinel is added. The reason for this is that when spinel is generated by the reaction between the alumina component of mullite and magnesia, forsterite is generated by the action of microcracking in the structure and the reaction between the silica component of mullite and magnesia. In this case, it is presumed that the effect of the organization trying to be densified cancels out.

また、表3によれば、ムライトの添加量の少ない比較例6は耐スポーリング性において、また、添加量の多い比較例7は耐食性において、比較例1に対する改善が認められない。これに対し、実施例7〜9は耐食性、耐スポーリング性および耐消化性において比較例1より優れている。よって、ムライトの添加量は3〜20wt%が好ましいことがわかる。   Moreover, according to Table 3, the comparative example 6 with a small amount of mullite added shows no improvement in the spalling resistance, and the comparative example 7 with a large amount added does not show an improvement over the comparative example 1 in the corrosion resistance. In contrast, Examples 7 to 9 are superior to Comparative Example 1 in corrosion resistance, spalling resistance, and digestion resistance. Therefore, it is understood that the added amount of mullite is preferably 3 to 20 wt%.

Figure 2013057756
Figure 2013057756

表4は、スピネルとムライトとを併用する場合に、両者の添加量がれんがの特性に及ぼす影響を示すものである。これによれば、スピネルとムライトとを併用しても、見掛気孔率の変化は、ムライトのみを添加した場合とさほど変わらない。この理由は、ムライトのみを添加する場合と同様に、ムライトのシリカ成分とマグネシアとの反応によって生成されるフォルステライトの緻密性が、スピネルの熱膨張により発生する微亀裂の影響を小さくするからであると推測される。従って、スピネルとムライトを併用することにより、スピネルの添加量を増加しても、耐食性を損なうことなく耐スポーリング性を向上させられることがわかる。   Table 4 shows the effect of the addition amount of both on the brick characteristics when spinel and mullite are used in combination. According to this, even when spinel and mullite are used in combination, the change in apparent porosity is not so different from the case where only mullite is added. The reason for this is that, as in the case of adding only mullite, the denseness of forsterite produced by the reaction of the silica component of mullite with magnesia reduces the effect of microcracks generated by the thermal expansion of spinel. Presumed to be. Therefore, it can be seen that by using spinel and mullite together, spalling resistance can be improved without impairing corrosion resistance even if the amount of spinel added is increased.

また、表4によれば、両者の添加量の少ない比較例8は耐スポーリング性において比較例1に対する改善が認められず、また、添加量の多い比較例9は耐食性において、比較例1に劣っている。これに対し、実施例10〜12は、耐食性、耐スポーリング性および耐消化性において比較例1より優れている。よって、スピネルとムライトとを併用する場合の両者の添加量はそれぞれ3〜20wt%が好ましいことがわかる。   Moreover, according to Table 4, the comparative example 8 with a small addition amount of both does not show an improvement over the comparative example 1 in the spalling resistance, and the comparative example 9 with a large addition amount is compared with the comparative example 1 in the corrosion resistance. Inferior. In contrast, Examples 10 to 12 are superior to Comparative Example 1 in corrosion resistance, spalling resistance, and digestion resistance. Therefore, when spinel and mullite are used together, it can be seen that the addition amount of both is preferably 3 to 20 wt%.

Figure 2013057756
Figure 2013057756

表5は、リン酸塩ガラスの添加量がれんがの特性に及ぼす影響を示すものである。これによれば、リン酸塩ガラスの添加量の少ない比較例10は耐消化性の効果が認められず、添加量の多い比較例11は、耐消化性の効果は認められるものの、耐食性において比較例1に劣っている。これに対し、実施例13〜15は、耐食性、耐スポーリング性および耐消化性において比較例1より優れている。よって、リン酸塩ガラスの添加量は0.3〜3.0wt%が好ましいことがわかる。   Table 5 shows the effect of the addition amount of phosphate glass on the properties of bricks. According to this, Comparative Example 10 with a small addition amount of phosphate glass does not show the effect of digestion resistance, and Comparative Example 11 with a large addition amount shows a digestion resistance effect, but is compared in terms of corrosion resistance. Inferior to Example 1. In contrast, Examples 13 to 15 are superior to Comparative Example 1 in corrosion resistance, spalling resistance, and digestion resistance. Therefore, it can be seen that the addition amount of phosphate glass is preferably 0.3 to 3.0 wt%.

なお、表5によれば、リン酸塩ガラスの添加量の増加に伴い、わずかながら、嵩比重が低くなり、見掛気孔率が高くなる。この理由は、リン酸塩ガラスに含まれる酸化リン(P)の一部が気化することによりれんがの組織中に気孔が形成されることによるものと推測される。In addition, according to Table 5, with the increase in the addition amount of phosphate glass, the bulk specific gravity decreases slightly, and the apparent porosity increases. The reason for this is presumed to be that pores are formed in the structure of the brick by part of phosphorus oxide (P 2 O 5 ) contained in the phosphate glass being vaporized.

Figure 2013057756
Figure 2013057756

表6は、ジルコンの添加量がれんがの特性に及ぼす影響を示すものである。これによれば、ジルコンの添加量の増加に伴い、嵩比重が高くなり、見掛気孔率および溶損指数が低くなることがわかる。この理由は、焼成中にジルコンが解離してジルコニアとシリカを生成し、シリカとマグネシアとの反応により生成されるフォルステライトが上述のようにれんが組織を緻密化すること、また、ジルコニアは融点が非常に高いため、これが構成成分に含まれることにより、耐食性が高まるからであると推測される。   Table 6 shows the influence of the amount of zircon added on the brick properties. According to this, it can be seen that as the amount of zircon added increases, the bulk specific gravity increases, and the apparent porosity and melting index decrease. This is because zircon dissociates during firing to produce zirconia and silica, and forsterite produced by the reaction of silica and magnesia densifies the brick structure as described above, and zirconia has a melting point. Since it is very high, it is presumed that this is because the corrosion resistance is increased by being contained in the constituent components.

また、表6によれば、ジルコンの添加量の少ない比較例12は、耐食性や耐ポーリング性において十分な効果が認められない。これに対し、実施例16〜18は、耐食性、耐スポーリング性および耐消化性において比較例1より優れている。また、さらに添加量を増やした比較例13についても、これらの評価項目において改善がみられる。よって、ジルコンの添加量は少なくとも3〜21wt%の範囲において有効であることがわかる。しかし、ジルコンは高価な原料であるため、経済性の問題も考慮すると、その添加量を3〜10wt%に留めることが好ましい。   Further, according to Table 6, Comparative Example 12 with a small amount of zircon added does not have a sufficient effect in corrosion resistance and poling resistance. In contrast, Examples 16 to 18 are superior to Comparative Example 1 in corrosion resistance, spalling resistance and digestion resistance. Moreover, also in Comparative Example 13 in which the addition amount is further increased, improvement is observed in these evaluation items. Therefore, it can be seen that the amount of zircon added is effective in the range of at least 3 to 21 wt%. However, since zircon is an expensive raw material, it is preferable to keep the addition amount at 3 to 10 wt% in consideration of economic problems.

Figure 2013057756
Figure 2013057756

表7は、酸化ニッケルの添加量がれんがの特性に及ぼす影響を示すものである。これによれば、酸化ニッケルの添加量の増加に伴い耐食性が向上することがわかる。この理由は、酸化ニッケルの金属やスラグをはじく性質により、れんが内へのスラグの侵入が防止されるからであると推測される。   Table 7 shows the influence of the addition amount of nickel oxide on the brick characteristics. According to this, it turns out that corrosion resistance improves with the increase in the addition amount of nickel oxide. The reason for this is presumed to be that the penetration of slag into the brick is prevented by the nature of nickel oxide and the ability to repel slag.

また、表7によれば、酸化ニッケルの添加量が少ない比較例14は耐食性において、また、添加量の多い比較例15は耐スポーリング性において比較例1に対する優位性に乏しい。これに対し、実施例19〜21は、耐食性、耐スポーリング性および耐消化性において比較例1より優れている。よって、酸化ニッケルの添加量は、0.1〜3wt%において有効といえる。しかし、酸化ニッケルもジルコンと同様に高価な原料であるため、添加量を増やすことは経済的な観点から現実的でない。以上を考慮すると、酸化ニッケルの添加量は0.5〜1wt%が好ましいといえる。   Moreover, according to Table 7, Comparative Example 14 with a small amount of nickel oxide added is poor in corrosion resistance, and Comparative Example 15 with a large amount added has poor superiority over Comparative Example 1 in spalling resistance. In contrast, Examples 19 to 21 are superior to Comparative Example 1 in corrosion resistance, spalling resistance, and digestion resistance. Therefore, it can be said that the addition amount of nickel oxide is effective at 0.1 to 3 wt%. However, since nickel oxide is also an expensive raw material like zircon, it is not practical from an economic viewpoint to increase the amount of addition. Considering the above, it can be said that the addition amount of nickel oxide is preferably 0.5 to 1 wt%.

Figure 2013057756
Figure 2013057756

表8は、炭酸カルシウムの添加量がれんがの特性に及ぼす影響を示すものである。これによれば、炭酸カルシウムの添加量の増加に伴い、見掛気孔率が増加している。この理由は、焼成中に炭酸カルシウムが二酸化炭素を放出し、れんが組織の中にマイクロポアを発生させるためであると推測される。   Table 8 shows the influence of the added amount of calcium carbonate on the properties of bricks. According to this, with the increase of the addition amount of calcium carbonate, the apparent porosity increases. The reason for this is presumed to be that calcium carbonate releases carbon dioxide during firing and generates micropores in the brick tissue.

また、表8によれば、炭酸カルシウムの添加量の少ない比較例16は、耐食性において比較例1に対する優位性に乏しく、また、添加量の多い比較例17は耐食性において、比較例1に劣っている。これに対し、実施例22〜24は、耐食性、耐スポーリング性および耐消化性において比較例1より優れている。よって、炭酸カルシウムの添加量は、1〜5wt%が好ましいといえる。なお、炭酸カルシウムの代わりにドロマイト質原料やマグネサイト質原料を用いても、同じ結論が得られる。   Further, according to Table 8, Comparative Example 16 with a small amount of calcium carbonate added is poor in the corrosion resistance over Comparative Example 1, and Comparative Example 17 with a large amount added is inferior to Comparative Example 1 in the corrosion resistance. Yes. On the other hand, Examples 22-24 are superior to Comparative Example 1 in corrosion resistance, spalling resistance, and digestion resistance. Therefore, it can be said that the addition amount of calcium carbonate is preferably 1 to 5 wt%. The same conclusion can be obtained by using a dolomite material or a magnesite material instead of calcium carbonate.

比較例17において、耐食性が急に悪化した理由は、次のように推測される。一般に、ドロマイトおよび炭酸カルシウムからはその添加量の46wt%程度、マグネサイトからは49wt%程度の二酸化炭素が放出され、マイクロポアが発生する。これにより、特に耐スポーリング性が向上する。しかし、添加量が多いとCaOと他の成分とにより低融点物が生成されることとなり、逆に耐食性が低くなる。   The reason why the corrosion resistance suddenly deteriorated in Comparative Example 17 is estimated as follows. In general, about 46 wt% of carbon dioxide is released from dolomite and calcium carbonate, and about 49 wt% of carbon dioxide is released from magnesite to generate micropores. Thereby, especially the spalling resistance is improved. However, if the addition amount is large, a low melting point product is generated by CaO and other components, and conversely the corrosion resistance is lowered.

なお、実施例17では微亀裂が観察された。この原因は、焼成により炭酸カルシウムが二酸化炭素を放出してカルシアに変化し、これがオートクレーブ中の水蒸気と反応して水酸化カルシウムを生成し(CaO+HO→(Ca(OH)))、膨張したからであると推測される。よって、炭酸カルシウムを5wt%を超過して添加することは、水酸化カルシウムの影響という観点から見ても好ましくないことがわかる。In Example 17, microcracks were observed. The cause of this is that calcium carbonate releases carbon dioxide and changes to calcia upon firing, which reacts with the water vapor in the autoclave to produce calcium hydroxide (CaO + H 2 O → (Ca (OH) 2 )), which expands. This is presumed to be because Therefore, it can be seen that adding calcium carbonate in excess of 5 wt% is not preferable from the viewpoint of the influence of calcium hydroxide.

以上、本発明に係るマグネシア質焼成れんがについて、実施の形態に基づいて説明したが、本発明はこれに限定されるものではなく、本発明の目的を達成でき、かつ発明の要旨を逸脱しない範囲内で種々設計変更が可能であり、それらも全て本発明の範囲内に包含されるものである。   Although the magnesia fired brick according to the present invention has been described based on the embodiment, the present invention is not limited to this, and the scope of the present invention can be achieved and does not depart from the gist of the invention. Various design changes are possible within the scope of the present invention, and they are all included within the scope of the present invention.

本発明は、製鋼用取鍋、真空脱ガス炉、VOD炉、AOD炉、アルミニウム製錬炉、亜鉛精錬炉、銅精錬炉、焼却されて発生した焼却灰を溶融処理する灰溶融炉、ガス化溶融炉、廃液焼却炉さらにはセメント焼成用ロータリーキルン等に使用する耐火れんがとして広く利用することが可能である。   The present invention relates to a ladle for steel making, a vacuum degassing furnace, a VOD furnace, an AOD furnace, an aluminum smelting furnace, a zinc smelting furnace, a copper smelting furnace, an ash melting furnace for melting and treating incinerated ash generated by incineration, and gasification It can be widely used as a refractory brick for use in melting furnaces, waste liquid incinerators, rotary kilns for cement firing, and the like.

Claims (3)

主原料となるマグネシア質原料と、チタニア質原料2〜8wt%と、マグネシア‐アルミナ系スピネル質原料3〜20wt%および/またはムライト質原料3〜20wt%と、リン酸塩ガラス質原料0.3〜3.0wt%とからなる配合組成100wt%に結合剤を添加し、混練・成形した後、焼成してなることを特徴とするマグネシア質焼成れんが。   The main raw material magnesia raw material, titania raw material 2-8 wt%, magnesia-alumina-based spinel raw material 3-20 wt% and / or mullite raw material 3-20 wt%, phosphate glassy raw material 0.3 A magnesia fired brick, which is obtained by adding a binder to 100 wt% of a blending composition consisting of ˜3.0 wt%, kneading and molding, and firing. 前記マグネシア質焼成れんがにおいて、さらに、ジルコン質原料3〜20wt%または酸化ニッケル質原料0.1〜3.0wt%を添加することを特徴とする請求の範囲第1項記載のマグネシア質焼成れんが。   2. The magnesia fired brick according to claim 1, wherein 3-20 wt% of a zircon material or 0.1-3.0 wt% of a nickel oxide material is further added to the magnesia fired brick. 前記マグネシア質焼成れんがにおいて、さらに、ドロマイト質原料、マグネサイト質原料または炭酸カルシウムを1〜5wt%添加することを特徴とする請求の範囲第1項記載のマグネシア質焼成れんが。   2. The magnesia fired brick according to claim 1, wherein 1 to 5 wt% of dolomite raw material, magnesite raw material or calcium carbonate is further added to the magnesia fired brick.
JP2012523758A 2011-10-18 2011-10-18 Magnesian fired brick Pending JPWO2013057756A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012523758A JPWO2013057756A1 (en) 2011-10-18 2011-10-18 Magnesian fired brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012523758A JPWO2013057756A1 (en) 2011-10-18 2011-10-18 Magnesian fired brick

Publications (1)

Publication Number Publication Date
JPWO2013057756A1 true JPWO2013057756A1 (en) 2015-04-02

Family

ID=52821514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012523758A Pending JPWO2013057756A1 (en) 2011-10-18 2011-10-18 Magnesian fired brick

Country Status (1)

Country Link
JP (1) JPWO2013057756A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238855A (en) * 1991-01-11 1992-08-26 Shinagawa Refract Co Ltd Magnesia alumina-based spinel refractory and production thereof
JPH07300361A (en) * 1993-12-09 1995-11-14 Harima Ceramic Co Ltd Refractory bricks
JP2003335572A (en) * 2002-05-21 2003-11-25 Itochu Ceratech Corp Magnesia - titania - alumina based clinker and refractory obtained by using the same
JP2005289724A (en) * 2004-03-31 2005-10-20 Sumitomo Metal Ind Ltd REFRACTORY FOR DRY PROCESS VIBRATION CONSTRUCTION WORK CONTAINING WASTE MATERIAL OF MgO-C BRICK

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238855A (en) * 1991-01-11 1992-08-26 Shinagawa Refract Co Ltd Magnesia alumina-based spinel refractory and production thereof
JPH07300361A (en) * 1993-12-09 1995-11-14 Harima Ceramic Co Ltd Refractory bricks
JP2003335572A (en) * 2002-05-21 2003-11-25 Itochu Ceratech Corp Magnesia - titania - alumina based clinker and refractory obtained by using the same
JP2005289724A (en) * 2004-03-31 2005-10-20 Sumitomo Metal Ind Ltd REFRACTORY FOR DRY PROCESS VIBRATION CONSTRUCTION WORK CONTAINING WASTE MATERIAL OF MgO-C BRICK

Similar Documents

Publication Publication Date Title
JP5290125B2 (en) Bonding agent for amorphous refractory and amorphous refractory
WO2013057756A1 (en) Burned magnesia brick
JP2008290934A (en) Binder for monolithic refractory and monolithic refractory
EA029189B1 (en) Batch composition for producing an unshaped refractory ceramic product, method for producing a fired refractory ceramic product, fired refractory ceramic product, and use of an unshaped refractory ceramic product
WO2013005253A1 (en) Magnesia-based refractory material
WO1995015932A1 (en) Chromium-free brick
JP5361795B2 (en) Lined casting material
JP4922851B2 (en) Indefinite refractory
JP2011148643A (en) Magnesia-based refractory
JP5949426B2 (en) Alumina-chromia-magnesia refractory brick
Othman et al. Recycling of spent magnesite and ZAS bricks for the production of new basic refractories
RU2623760C2 (en) Periclase-spinel refractory
KR101262077B1 (en) Low Cement Corrosion-Resistive Unshaped Refractories
JPWO2013057756A1 (en) Magnesian fired brick
JP5663122B2 (en) Castable refractories for non-ferrous metal smelting containers and precast blocks using the same
JP4956044B2 (en) Magnesia brick without lime as a mineral phase and its production method
JP2014024689A (en) Magnesia monolithic refractory
JP2021147275A (en) Magnesia-spinel refractory brick
JP6374926B2 (en) Unfixed refractory for repair and repair method
JP2008081361A (en) MgO-NiO COMPOSITE CLINKER AND REFRACTORY MATERIAL OBTAINED USING THE SAME
JP2009227508A (en) Monolithic refractory and waste material melting furnace
JP2001182921A (en) A castable refractory for constructing waste fusing furnace with casting process and waste fusing furnace using the same
JP2006076863A (en) Magnesia-chrome-boron nitride unfired refractory
JP2005213120A (en) Monolithic refractory for waste melting furnace and waste melting furnace using the same for lining
Shang et al. The Influence of SnO 2 Addition on the Properties of Spinel-based Castables

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603