JPWO2013054623A1 - Semiconductor layer manufacturing method, photoelectric conversion device manufacturing method, and semiconductor forming raw material - Google Patents

Semiconductor layer manufacturing method, photoelectric conversion device manufacturing method, and semiconductor forming raw material Download PDF

Info

Publication number
JPWO2013054623A1
JPWO2013054623A1 JP2013538477A JP2013538477A JPWO2013054623A1 JP WO2013054623 A1 JPWO2013054623 A1 JP WO2013054623A1 JP 2013538477 A JP2013538477 A JP 2013538477A JP 2013538477 A JP2013538477 A JP 2013538477A JP WO2013054623 A1 JPWO2013054623 A1 JP WO2013054623A1
Authority
JP
Japan
Prior art keywords
semiconductor layer
group
compound
photoelectric conversion
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013538477A
Other languages
Japanese (ja)
Inventor
誠一郎 稲井
誠一郎 稲井
田中 勇
勇 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2013538477A priority Critical patent/JPWO2013054623A1/en
Publication of JPWO2013054623A1 publication Critical patent/JPWO2013054623A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

本発明は、光電変換効率の高い半導体層およびそれを用いた光電変換装置を提供することを目的とする。本発明の一実施形態に係る半導体層の製造方法は、I−III−VI族化合物を含むとともに角部を有する形状の化合物粒子を用意する工程と、化合物粒子を溶媒に分散して原料溶液を作製する工程と、原料溶液を塗布して皮膜を形成し、皮膜を加熱して半導体層3にする工程とを具備する。また、光電変換装置の製造方法は、上記半導体層3上に上記半導体層3とは異なる導電型を有する第2の半導体層4を作製する。An object of this invention is to provide a semiconductor layer with high photoelectric conversion efficiency, and a photoelectric conversion apparatus using the same. A method for producing a semiconductor layer according to an embodiment of the present invention includes a step of preparing compound particles having a shape including an I-III-VI group compound and having corners, and dispersing a compound particle in a solvent to obtain a raw material solution. And a step of forming a film by applying a raw material solution and heating the film to form the semiconductor layer 3. In the method for manufacturing a photoelectric conversion device, the second semiconductor layer 4 having a conductivity type different from that of the semiconductor layer 3 is formed on the semiconductor layer 3.

Description

本発明は、I−III−VI族化合物を含む半導体層の製造方法、I−III−VI族化合物を含む半導体層を用いた光電変換装置の製造方法およびI−III−VI族化合物を含む半導体層を形成するための半導体形成用原料に関するものである。   The present invention relates to a method for producing a semiconductor layer containing an I-III-VI group compound, a method for producing a photoelectric conversion device using a semiconductor layer containing an I-III-VI group compound, and a semiconductor containing an I-III-VI group compound. The present invention relates to a semiconductor forming raw material for forming a layer.

太陽電池として、カルコパイライト系のI−III−VI族化合物を含む半導体層を具備する光電変換装置を用いたものがある。I−III−VI族化合物としては、CISやCIGS等がある。   Some solar cells use a photoelectric conversion device including a semiconductor layer containing a chalcopyrite-based I-III-VI group compound. Examples of the I-III-VI group compound include CIS and CIGS.

このような半導体層の作製方法として特開2011−11956号公報には、I−III−VI族化合物の微粒子を含む溶液を用いてコーティング層を形成し、これを焼結することによって半導体層を形成することが記載されている。   As a method for producing such a semiconductor layer, Japanese Patent Application Laid-Open No. 2011-11956 discloses that a semiconductor layer is formed by forming a coating layer using a solution containing fine particles of an I-III-VI group compound and sintering the coating layer. It is described to form.

近年、光電変換装置の需要は増加傾向にあり、光電変換装置のさらなる光電変換効率の向上が望まれている。光電変換装置の光電変換効率を高めるためには、半導体層の結晶化を促進することが有効である。   In recent years, the demand for photoelectric conversion devices has been increasing, and further improvement in photoelectric conversion efficiency of the photoelectric conversion devices is desired. In order to increase the photoelectric conversion efficiency of the photoelectric conversion device, it is effective to promote crystallization of the semiconductor layer.

本発明の1つの目的は、光電変換効率の高い半導体層およびそれを用いた光電変換装置を提供することである。   One object of the present invention is to provide a semiconductor layer having high photoelectric conversion efficiency and a photoelectric conversion device using the same.

本発明の一実施形態に係る半導体層の製造方法は、I−III−VI族化合物を含むとともに角部を有する形状の化合物粒子を用意する工程と、該化合物粒子を溶媒に分散して原料溶液を作製する工程と、該原料溶液を塗布して皮膜を形成し、該皮膜を加熱して半導体層にする工程とを具備する。   A method for producing a semiconductor layer according to an embodiment of the present invention includes a step of preparing compound particles having a shape including an I-III-VI group compound and having corner portions, and a raw material solution by dispersing the compound particles in a solvent. And a step of applying the raw material solution to form a film and heating the film to form a semiconductor layer.

本発明の一実施形態に係る光電変換装置の製造方法は、電極上に上記の半導体層の製造方法によって第1の半導体層を作製する工程と、該第1の半導体層上に該第1の半導体層とは異なる導電型を有する第2の半導体層を作製する工程とを具備する。   A method for manufacturing a photoelectric conversion device according to an embodiment of the present invention includes a step of manufacturing a first semiconductor layer on an electrode by the method for manufacturing a semiconductor layer, and the first semiconductor layer on the first semiconductor layer. Forming a second semiconductor layer having a conductivity type different from that of the semiconductor layer.

本発明の一実施形態に係る半導体形成用原料は、I−III−VI族化合物を含むとともに角部を有する形状の化合物粒子を有している。   The raw material for forming a semiconductor according to an embodiment of the present invention includes compound particles having a shape including a corner portion while containing an I-III-VI group compound.

本発明によれば、光電変換効率の高い半導体層および光電変換装置を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide a semiconductor layer and a photoelectric conversion apparatus with high photoelectric conversion efficiency.

光電変換装置の一例を示す斜視図である。It is a perspective view which shows an example of a photoelectric conversion apparatus. 図1の光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus of FIG. (a)はI−III−VI族化合物を含むとともに角部を有する形状の化合物粒子のSEM写真であり、(b)は比較例としてのI−III−VI族化合物を含む化合物粒子のSEM写真である。(A) is the SEM photograph of the compound particle of the shape which contains an I-III-VI group compound and has a corner | angular part, (b) is the SEM photograph of the compound particle containing the I-III-VI group compound as a comparative example. It is.

以下に本発明の実施形態に係る半導体層の製造方法、光電変換装置の製造方法および半導体形成用原料について図面を参照しながら詳細に説明する。   Hereinafter, a semiconductor layer manufacturing method, a photoelectric conversion device manufacturing method, and a semiconductor forming raw material according to an embodiment of the present invention will be described in detail with reference to the drawings.

<(1)光電変換装置の構成>
図1は、本発明の一実施形態に係る半導体層の製造方法および本発明の一実施形態に係る光電変換装置の製造方法を用いて作製した光電変換装置を示す斜視図であり、図2はこの光電変換装置の断面図である。光電変換装置11は、基板1と、第1の電極層2と、I−III−VI族化合物を含む第1の半導体層3と、第2の半導体層4と、第2の電極層5とを含んでいる。
<(1) Configuration of photoelectric conversion device>
FIG. 1 is a perspective view showing a photoelectric conversion device manufactured using a method for manufacturing a semiconductor layer according to one embodiment of the present invention and a method for manufacturing a photoelectric conversion device according to one embodiment of the present invention. It is sectional drawing of this photoelectric conversion apparatus. The photoelectric conversion device 11 includes a substrate 1, a first electrode layer 2, a first semiconductor layer 3 containing an I-III-VI group compound, a second semiconductor layer 4, and a second electrode layer 5. Is included.

第1の半導体層3と第2の半導体層4は導電型が異なっており、第1の半導体層3と第2の半導体層4とで光照射によって生じた正負のキャリアの電荷分離を良好に行なうことができる。例えば、第1の半導体層3がp型であれば、第2の半導体層4はn型である。あるいは、第2の半導体層4が、バッファ層と第1の半導体層3とは異なる導電型の半導体層とを含む複数層であってもよい。   The first semiconductor layer 3 and the second semiconductor layer 4 have different conductivity types, and the first semiconductor layer 3 and the second semiconductor layer 4 have good charge separation of positive and negative carriers generated by light irradiation. Can be done. For example, if the first semiconductor layer 3 is p-type, the second semiconductor layer 4 is n-type. Alternatively, the second semiconductor layer 4 may be a plurality of layers including a buffer layer and a semiconductor layer having a conductivity type different from that of the first semiconductor layer 3.

また、本実施形態における光電変換装置11は第2の電極層5側から光が入射されるものを示しているが、これに限定されず、基板1側から光が入射されるものであってもよい。図1において、光電変換装置11は複数個の光電変換セル10が並べられて形成されている。光電変換セル10は、第1の半導体層3の基板1側に第1の電極層2と離間して設けられた第3の電極層6を具備している。そして、第1の半導体層3に設けられた接続導体7によって、第2の電極層5と第3の電極層6とが電気的に接続されている。図1においては、この第3の電極層6は、隣接する光電変換セル10の第1の電極層2が延伸されたものである。この構成により、隣接する光電変換セル10同士が直列接続されている。また、一つの光電変換セル10内において、接続導体7は第1の半導体層3および第2の半導体層4を貫通するように設けられており、第1の電極層2と第2の電極層5とで挟まれた第1の半導体層3と第2の半導体層4とで光電変換が行なわれる。   Moreover, although the photoelectric conversion apparatus 11 in this embodiment has shown what the light injects from the 2nd electrode layer 5 side, it is not limited to this, Light enters from the board | substrate 1 side, Also good. In FIG. 1, the photoelectric conversion device 11 is formed by arranging a plurality of photoelectric conversion cells 10. The photoelectric conversion cell 10 includes a third electrode layer 6 provided on the substrate 1 side of the first semiconductor layer 3 so as to be separated from the first electrode layer 2. The second electrode layer 5 and the third electrode layer 6 are electrically connected by the connection conductor 7 provided in the first semiconductor layer 3. In FIG. 1, the third electrode layer 6 is obtained by extending the first electrode layer 2 of the adjacent photoelectric conversion cell 10. With this configuration, adjacent photoelectric conversion cells 10 are connected in series. In one photoelectric conversion cell 10, the connection conductor 7 is provided so as to penetrate the first semiconductor layer 3 and the second semiconductor layer 4, and the first electrode layer 2 and the second electrode layer are provided. The first semiconductor layer 3 and the second semiconductor layer 4 sandwiched between 5 and 5 perform photoelectric conversion.

基板1は、第1の半導体層3および第2の半導体層4を支持するためのものである。基板1に用いられる材料としては、例えば、ガラス、セラミックス、樹脂および金属等が挙げられる。   The substrate 1 is for supporting the first semiconductor layer 3 and the second semiconductor layer 4. Examples of the material used for the substrate 1 include glass, ceramics, resin, and metal.

第1の電極層2および第3の電極層6は、Mo、Al、TiおよびAu等から選ばれる導電体が用いられ、基板1上にスパッタリング法および蒸着法等から選ばれる方法で形成される。   The first electrode layer 2 and the third electrode layer 6 are made of a conductor selected from Mo, Al, Ti, Au, and the like, and are formed on the substrate 1 by a method selected from sputtering, vapor deposition, and the like. .

第1の半導体層3はI−III−VI族化合物を主に含んだ半導体層である。I−III−VI族化合物とは、I−B族元素(11族元素ともいう)とIII−B族元素(13族元素ともいう)とVI−B族元素(16族元素ともいう)との化合物であり、例えば、Cu(In,Ga)Se(CIGSともいう)、Cu(In,Ga)(Se,S)(CIGSSともいう)、およびCuInSe(CISともいう)等が挙げられる。なお、Cu(In,Ga)Seとは、I−B族元素としてCuを含み、III−B族元素としてInおよびGaを含み、VI−B族元素としてSeを含む化合物をいう。また、Cu(In,Ga)(Se,S)とは、I−B族元素としてCuを含み、III−B族元素としてInおよびGaを含み、VI−B族元素としてSeおよびSを含む化合物をいう。The first semiconductor layer 3 is a semiconductor layer mainly containing an I-III-VI group compound. An I-III-VI group compound is a group consisting of a group IB element (also referred to as a group 11 element), a group III-B element (also referred to as a group 13 element), and a group VI-B element (also referred to as a group 16 element). Examples of the compound include Cu (In, Ga) Se 2 (also referred to as CIGS), Cu (In, Ga) (Se, S) 2 (also referred to as CIGSS), and CuInSe 2 (also referred to as CIS). . Cu (In, Ga) Se 2 refers to a compound containing Cu as the IB group element, In and Ga as the III-B group element, and Se as the VI-B group element. Cu (In, Ga) (Se, S) 2 includes Cu as an IB group element, In and Ga as a III-B group element, and Se and S as a VI-B group element. Refers to a compound.

第2の半導体層4は上記第1の半導体層3上に10〜200nmの厚みで形成されている。本実施形態では、第1の半導体層3が一方導電型の光吸収層であり、第2の半導体層4がバッファ層と他方導電型半導体層とを兼ねている例を示している。リーク電流の低減という観点からは、第2の半導体層4は抵抗率が1Ω・cm以上であってもよい。第2の半導体層4としては、CdS、ZnS、ZnO、InSe、In(OH,S)、(Zn,In)(Se,OH)、および(Zn,Mg)O等が挙げられる。第2の半導体層4は、例えばケミカルバスデポジション(CBD)法等で形成される。なお、In(OH,S)とは、Inの水酸化物およびInの硫化物を含む混晶化合物をいう。(Zn,In)(Se,OH)は、金属元素としてZnおよびInを含み、これらの金属元素のセレン化物および水酸化物を含む化合物をいう。(Zn,Mg)Oは、Znの酸化物およびMgの酸化物を含む化合物をいう。第2の半導体層4は、第1の半導体層3の吸収効率を高めるため、第1の半導体層3が吸収する光の波長領域に対して高い光透過性を有するものであってもよい。The second semiconductor layer 4 is formed on the first semiconductor layer 3 with a thickness of 10 to 200 nm. In the present embodiment, an example is shown in which the first semiconductor layer 3 is a one-conductivity type light absorption layer, and the second semiconductor layer 4 serves both as a buffer layer and the other conductivity-type semiconductor layer. From the viewpoint of reducing leakage current, the second semiconductor layer 4 may have a resistivity of 1 Ω · cm or more. Examples of the second semiconductor layer 4 include CdS, ZnS, ZnO, In 2 Se 3 , In (OH, S), (Zn, In) (Se, OH), and (Zn, Mg) O. The second semiconductor layer 4 is formed by, for example, a chemical bath deposition (CBD) method. Note that In (OH, S) refers to a mixed crystal compound containing In hydroxide and In sulfide. (Zn, In) (Se, OH) refers to a compound containing Zn and In as metal elements and containing selenides and hydroxides of these metal elements. (Zn, Mg) O refers to a compound containing an oxide of Zn and an oxide of Mg. In order to increase the absorption efficiency of the first semiconductor layer 3, the second semiconductor layer 4 may have a high light transmittance with respect to the wavelength region of light absorbed by the first semiconductor layer 3.

第2の電極層5は、ITO、ZnO等の0.05〜3μmの厚みを有する透明導電膜である。第2の電極層5は、スパッタリング法、蒸着法または化学的気相成長(CVD)法等で形成される。第2の電極層5は、第2の半導体層4よりも抵抗率の低い層であり、第1の半導体層3で生じた電荷を取り出すためのものである。電荷を良好に取り出すという観点からは、第2の電極層5の抵抗率が1Ω・cm未満でシート抵抗が50Ω/□以下であってもよい。   The second electrode layer 5 is a transparent conductive film having a thickness of 0.05 to 3 μm, such as ITO or ZnO. The second electrode layer 5 is formed by sputtering, vapor deposition, chemical vapor deposition (CVD), or the like. The second electrode layer 5 is a layer having a resistivity lower than that of the second semiconductor layer 4, and is for taking out charges generated in the first semiconductor layer 3. From the viewpoint of taking out charges well, the resistivity of the second electrode layer 5 may be less than 1 Ω · cm and the sheet resistance may be 50 Ω / □ or less.

第2の電極層5としては、第1の半導体層3の吸収効率を高めるため、第1の半導体層3の吸収光に対して高い光透過性を有するものが用いられてもよい。光透過性を高めると同時に光反射ロス低減効果および光散乱効果を高め、さらに光電変換によって生じた電流を良好に伝送するという観点から、第2の電極層5は0.05〜0.5μmの厚さであってもよい。また、第2の電極層5と第2の半導体層4との界面での光反射ロスを低減する観点からは、第2の電極層5と第2の半導体層4の屈折率は略等しくてもよい。   As the second electrode layer 5, a material having a high light transmittance with respect to the absorbed light of the first semiconductor layer 3 may be used in order to increase the absorption efficiency of the first semiconductor layer 3. The second electrode layer 5 has a thickness of 0.05 to 0.5 μm from the viewpoint of enhancing the light transmittance and at the same time enhancing the light reflection loss reducing effect and the light scattering effect and further transmitting the current generated by the photoelectric conversion. It may be a thickness. Further, from the viewpoint of reducing light reflection loss at the interface between the second electrode layer 5 and the second semiconductor layer 4, the refractive indexes of the second electrode layer 5 and the second semiconductor layer 4 are substantially equal. Also good.

光電変換セル10は、複数個が並べられて電気的に接続され、光電変換装置11と成る。隣接する光電変換セル10同士を容易に直列接続するために、図1に示すように、光電変換セル10は、第1の半導体層3の基板1側に第1の電極層2と離間して設けられた第3の電極層6を具備している。そして、第1の半導体層3に設けられた接続導体7によって、第2の電極層5と第3の電極層6とが電気的に接続されている。   A plurality of photoelectric conversion cells 10 are arranged and electrically connected to form a photoelectric conversion device 11. In order to easily connect adjacent photoelectric conversion cells 10 in series, as shown in FIG. 1, the photoelectric conversion cell 10 is separated from the first electrode layer 2 on the substrate 1 side of the first semiconductor layer 3. A third electrode layer 6 is provided. The second electrode layer 5 and the third electrode layer 6 are electrically connected by the connection conductor 7 provided in the first semiconductor layer 3.

図1において、接続導体7は、第1の半導体層3、第2の半導体層4および第2の電極層5を貫通する溝内に、導電性ペースト等の導体が充填されて形成されている。接続導体7はこれに限定されず、第2の電極層5が延長されて形成されていてもよい。   In FIG. 1, the connection conductor 7 is formed by filling a conductor such as a conductive paste in a groove that penetrates the first semiconductor layer 3, the second semiconductor layer 4, and the second electrode layer 5. . The connection conductor 7 is not limited to this, and may be formed by extending the second electrode layer 5.

また、図1のように、第2の電極層5上に集電電極8が設けられていてもよい。集電電極8は、第2の電極層5の電気抵抗を小さくするためのものである。第2の電極層5上に集電電極8が設けられることにより、第2の電極層5の厚さを薄くして光透過性を高めるとともに第1の半導体層3で発生した電流が効率よく取り出される。その結果、光電変換装置11の発電効率が高められる。   Further, as shown in FIG. 1, a collecting electrode 8 may be provided on the second electrode layer 5. The collecting electrode 8 is for reducing the electric resistance of the second electrode layer 5. By providing the current collecting electrode 8 on the second electrode layer 5, the thickness of the second electrode layer 5 is reduced to improve the light transmittance, and the current generated in the first semiconductor layer 3 is efficiently generated. It is taken out. As a result, the power generation efficiency of the photoelectric conversion device 11 is increased.

集電電極8は、例えば、図1に示すように、光電変換セル10の一端から接続導体7にかけて線状に形成されている。これにより、第1の半導体層3の光電変換によって生じた電荷が第2の電極層5を介して集電電極8に集電され、接続導体7を介して隣接する光電変換セル10に良好に伝達される。   For example, as shown in FIG. 1, the collector electrode 8 is formed in a linear shape from one end of the photoelectric conversion cell 10 to the connection conductor 7. Thereby, the electric charge generated by the photoelectric conversion of the first semiconductor layer 3 is collected by the current collecting electrode 8 through the second electrode layer 5, and it is favorable for the adjacent photoelectric conversion cell 10 through the connection conductor 7. Communicated.

集電電極8の幅は、第1の半導体層3への光を遮るのを低減するとともに良好な導電性を有するという観点からは、50〜400μmとされ得る。また、集電電極8は、枝分かれした複数の分岐部を有していてもよい。   The width of the current collecting electrode 8 can be set to 50 to 400 μm from the viewpoint of reducing light shielding to the first semiconductor layer 3 and having good conductivity. The current collecting electrode 8 may have a plurality of branched portions.

集電電極8は、例えば、Ag等の金属粉を樹脂バインダー等に分散させた金属ペーストがパターン状に印刷され、これが硬化されることによって形成される。   The collector electrode 8 is formed, for example, by printing a metal paste in which a metal powder such as Ag is dispersed in a resin binder or the like in a pattern and curing it.

<(2)第1の半導体層の製造方法>
I−III−VI族化合物を含む第1の半導体層3の製造方法を以下に示す。先ず、半導体形成用原料として、I−III−VI族化合物を含むとともに角部を有する形状の化合物粒子(以下では、I−III−VI族化合物を含むとともに角部を有する形状の化合物粒子のことを第1化合物粒子ともいう)を用意する。次に、この第1化合物粒子が溶媒に分散された原料溶液を用意する。そして、第1の電極層2を有する基板1上に、上記原料溶液を塗布して皮膜を形成する。そして、この皮膜を加熱してI−III−VI族化合物を含む多結晶構造の第1の半導体層3を形成する。
<(2) Manufacturing Method of First Semiconductor Layer>
The manufacturing method of the 1st semiconductor layer 3 containing an I-III-VI group compound is shown below. First, as a raw material for forming a semiconductor, a compound particle having a shape including an I-III-VI group compound and having a corner (hereinafter referred to as a compound particle including an I-III-VI group compound and having a shape). Are also referred to as first compound particles). Next, a raw material solution in which the first compound particles are dispersed in a solvent is prepared. And the said raw material solution is apply | coated on the board | substrate 1 which has the 1st electrode layer 2, and a membrane | film | coat is formed. Then, the film is heated to form the first semiconductor layer 3 having a polycrystalline structure containing the I-III-VI group compound.

このように角部を有する形状の第1化合物粒子を用いた場合には、球状の化合物粒子に比べ、活性力が高く、多結晶体を良好に形成しやすくなる。その結果、第1の半導体層3の結晶化度を高め、光電変換効率を高くすることができる。   Thus, when the 1st compound particle of the shape which has a corner | angular part is used, compared with a spherical compound particle, an active force is high and it becomes easy to form a polycrystal favorably. As a result, the crystallinity of the first semiconductor layer 3 can be increased and the photoelectric conversion efficiency can be increased.

角部を有する形状の化合物粒子とは、複数の面が交差して成る角部を有した化合物粒子であり、四角柱や六角柱等の多面体構造が含まれる。より緻密な第1の半導体層3を形成するという観点から、第1化合物粒子は立方体状であってもよい。このような第1化合物粒子の形状は、走査型電子顕微鏡(SEM)で化合物粒子の外観を観察することによって特定できる。   The compound particle having a shape having a corner is a compound particle having a corner formed by crossing a plurality of faces, and includes a polyhedral structure such as a quadrangular prism or a hexagonal prism. From the viewpoint of forming the denser first semiconductor layer 3, the first compound particles may be cubic. The shape of the first compound particles can be specified by observing the appearance of the compound particles with a scanning electron microscope (SEM).

活性力をより高め、結晶化をより促進するという観点からは、第1化合物粒子は、平均粒径が10〜200nmであってもよい。なお、第1化合物粒子の平均粒径とは、複数の第1化合物粒子をSEM観察して得られる画像から、各第1化合物粒子における最大の長さを求め、その最大長さを各第1化合物粒子の粒径と見なした場合の平均粒径である。   From the viewpoint of further increasing the activity and further promoting crystallization, the first compound particles may have an average particle size of 10 to 200 nm. The average particle diameter of the first compound particles is the maximum length of each first compound particle obtained from an image obtained by SEM observation of a plurality of first compound particles, and the maximum length is determined for each first compound particle. It is an average particle diameter when it is regarded as the particle diameter of the compound particles.

第1化合物粒子は、例えば、有機カルコゲン化合物、塩基性溶媒およびIII−B族元素を含むIII族溶液に、I−B族元素を少しずつ溶解させながら上記III族溶液を加熱することによって作製できる。第1化合物粒子の製造方法の具体例を以下に示す。まず、アニリンやピリジン等の塩基性溶媒に、ジスルフィド基、ジセレニド基およびジテルリド基等のカルコゲン元素同士の結合を有する有機カルコゲン化合物が溶解された混合溶媒を用意する。そして、この混合溶媒にIII−B族元素を金属の状態で溶解してIII族溶液を作製する。次に、このIII族溶液に、I−B族元素を金属の状態で混入し、50〜200℃で攪拌する。つまり、III族溶液をI−B族金属と接触しながら加熱する。これにより、I−B族元素が徐々に溶解するとともに、溶解したI−B族元素とIII−B族元素とカルコゲン元素とが反応し、角部を有する形状の第1化合物粒子が生成しやすくなる。   The first compound particles can be produced, for example, by heating the group III solution while gradually dissolving the group IB element in a group III solution containing an organic chalcogen compound, a basic solvent, and a group III-B element. . Specific examples of the method for producing the first compound particles are shown below. First, a mixed solvent in which an organic chalcogen compound having a bond between chalcogen elements such as a disulfide group, a diselenide group and a ditelluride group is dissolved in a basic solvent such as aniline or pyridine is prepared. Then, a group III-B element is dissolved in this mixed solvent in a metal state to prepare a group III solution. Next, in this group III solution, a group IB element is mixed in a metal state and stirred at 50 to 200 ° C. That is, the group III solution is heated while in contact with the group IB metal. As a result, the IB group element is gradually dissolved, and the dissolved IB group element, the III-B group element, and the chalcogen element react to easily form first compound particles having a corner portion. Become.

なお、カルコゲン元素とはVI−B族元素のうち、S、SeおよびTeをいう。また、有機カルコゲン化合物とは、カルコゲン元素を含む有機化合物であり、炭素元素とカルコゲン元素との共有結合を有する有機化合物である。カルコゲン元素同士の結合を有する有機カルコゲン化合物としては、例えば、ジフェニルジスルフィド等のジスルフィド類、ジフェニルジセレニド等のジセレニド類、ジフェニルジテルリド等のジテルリド類等が挙げられる。   In addition, a chalcogen element means S, Se, and Te among VI-B group elements. The organic chalcogen compound is an organic compound containing a chalcogen element, and is an organic compound having a covalent bond between a carbon element and a chalcogen element. Examples of the organic chalcogen compound having a bond between chalcogen elements include disulfides such as diphenyl disulfide, diselenides such as diphenyl diselenide, ditellurides such as diphenyl ditelluride, and the like.

上記方法によって角部を有する形状の第1化合物粒子が生成しやすくなる理由はよくわからないが、ジスルフィド基、ジセレニド基およびジテルリド基等が還元的に開裂する傾向を有することや、III−B族元素に比べてカルコゲン元素との反応性が高いI−B族元素が後から投入されて徐々に溶解されながら反応されることが起因しているのではないかと考えられる。   The reason why the first compound particles having a corner portion are easily formed by the above method is not well understood, but disulfide groups, diselenide groups, ditelluride groups, etc. tend to be reductively cleaved, and group III-B elements It is thought that this is because the group IB element having a higher reactivity with the chalcogen element than the above is introduced later and reacted while being gradually dissolved.

上記第1化合物粒子の作製における各原料の調合比としては、1molの有機カルコゲン化合物に対して、塩基性溶媒は1〜5mol程度、I−B族元素は0.3〜0.6mol程度、III−B族元素は0.4〜0.6mol程度とすることができる。I−III−VI族化合物を構成するVI−B族元素は有機カルコゲン化合物のカルコゲン元素を供給源として用いるが、原料溶液に別途添加したカルコゲン元素を供給源として用いてもよい。カルコゲン元素を別途添加する場合であれば、例えば、有機カルコゲン化合物と塩基性溶媒との混合溶媒にIII−B族元素の金属およびカルコゲン元素の単体を溶解してIII族溶液を作製した後、これにI−B族元素の金属を添加して加熱すればよい。   As the preparation ratio of each raw material in the production of the first compound particles, the basic solvent is about 1 to 5 mol, the IB group element is about 0.3 to 0.6 mol, and III for 1 mol of the organic chalcogen compound. The -B group element can be about 0.4 to 0.6 mol. The VI-B group element constituting the I-III-VI group compound uses a chalcogen element of an organic chalcogen compound as a supply source, but a chalcogen element added separately to the raw material solution may be used as a supply source. In the case of adding a chalcogen element separately, for example, a group III-B element metal and a chalcogen element alone are dissolved in a mixed solvent of an organic chalcogen compound and a basic solvent to prepare a group III solution. What is necessary is just to add and heat the metal of a IB group element.

上記の方法によって作製した第1化合物粒子は、塩基性溶媒と有機カルコゲン化合物とを含む混合溶媒中に分散した状態で生成するため、この第1化合物粒子が分散した混合溶媒を第1の半導体層3を形成するための原料溶液として用いてもよい。あるいは、不純物をより低減するという観点から、この第1化合物粒子が分散した混合溶媒に、ヘキサン等の非極性溶媒を添加することによって第1化合物粒子を沈殿させ、この第1化合物粒子を取り出して洗浄した後、この取り出した第1化合物粒子を塩基性溶媒等に再分散したものを原料溶液として用いてもよい。   Since the first compound particles produced by the above method are produced in a state dispersed in a mixed solvent containing a basic solvent and an organic chalcogen compound, the mixed solvent in which the first compound particles are dispersed is used as the first semiconductor layer. 3 may be used as a raw material solution for forming 3. Alternatively, from the viewpoint of further reducing impurities, the first compound particles are precipitated by adding a nonpolar solvent such as hexane to the mixed solvent in which the first compound particles are dispersed, and the first compound particles are taken out. After washing, the first compound particles taken out and redispersed in a basic solvent or the like may be used as a raw material solution.

そして、この原料溶液を、例えば、スピンコータ、スクリーン印刷、ディッピング、スプレー、またはダイコータ等によって第1の電極層2上に膜状に被着し、溶媒を乾燥によって除去することにより、皮膜を形成する。なお、この乾燥時に皮膜中の有機成分を熱分解してもよい。   Then, this raw material solution is deposited in the form of a film on the first electrode layer 2 by, for example, a spin coater, screen printing, dipping, spraying, or a die coater, and the solvent is removed by drying to form a film. . In addition, you may thermally decompose the organic component in a film | membrane at the time of this drying.

次に、上記の皮膜を、窒素ガス等の不活性ガス雰囲気あるいは水素ガス等の還元性ガス雰囲気において50〜600℃に加熱する。これにより、第1化合物粒子同士が焼結して多結晶化し、第1の半導体層3が生成する。より欠陥の少ない良好な多結晶体を形成するという観点から、皮膜の加熱時の雰囲気中にカルコゲン元素を、例えば、硫黄蒸気、硫化水素、セレン蒸気、セレン化水素等、テルル蒸気またはテルル化水素として含めてもよい。   Next, the above film is heated to 50 to 600 ° C. in an inert gas atmosphere such as nitrogen gas or a reducing gas atmosphere such as hydrogen gas. Thereby, the first compound particles are sintered and polycrystallized, and the first semiconductor layer 3 is generated. From the viewpoint of forming a good polycrystalline body with fewer defects, a chalcogen element in the atmosphere during heating of the film, for example, sulfur vapor, hydrogen sulfide, selenium vapor, hydrogen selenide, tellurium vapor or hydrogen telluride May be included.

なお、上記の方法では、原料溶液に用いる半導体形成用原料として、I−III−VI族化合物を含むとともに角部を有する形状の化合物粒子(第1化合物粒子)を用いたが、半導体形成用原料は、第1化合物粒子以外に、I−B族元素、III−B族元素およびカルコゲン元素のうちの少なくとも一種を含む化合物(以下では、第1化合物粒子とは異なる、I−B族元素、III−B族元素およびカルコゲン元素のうちの少なくとも一種を含む化合物のことを第2化合物ともいう)を含んでいてもよい。この場合には、結晶性を高める効果を有効に発揮させるため、半導体形成用原料に占める第1化合物の重量比を70質量%以上としてもよい。   In the above method, the compound forming material (first compound particle) having a corner portion and containing the I-III-VI group compound is used as the semiconductor forming material used for the raw material solution. Is a compound containing at least one of group IB elements, group III-B elements and chalcogen elements in addition to the first compound particles (hereinafter referred to as IB group elements, III, which are different from the first compound particles). A compound containing at least one of a group B element and a chalcogen element is also referred to as a second compound). In this case, the weight ratio of the first compound in the raw material for forming the semiconductor may be 70% by mass or more in order to effectively exhibit the effect of increasing crystallinity.

このような第2化合物としては、I−B族元素のカルコゲナイドや、III−B族元素のカルコゲナイド、I−B族元素にチオールやセレノール、テルロール等の有機カルコゲン化合物が配位した錯体、III−B族元素に有機カルコゲン化合物が配位した錯体、1つの錯体分子中にI−B族元素とIII−B族元素と有機カルコゲン化合物とが含まれる単一源錯体等を用いることができる。第1化合物に加えてこのような第2化合物を含むことによって、第1の半導体層3の結晶化をより促進できるとともに、第1の半導体層3におけるI−B族元素とIII−B族元素との比率を容易に調整することもできる。   Such second compounds include chalcogenides of group IB elements, chalcogenides of group III-B elements, complexes in which organic chalcogen compounds such as thiol, selenol, tellurium and the like are coordinated to group IB elements, III-B A complex in which an organic chalcogen compound is coordinated to a group B element, a single source complex in which a group IB element, a group III-B element, and an organic chalcogen compound are included in one complex molecule can be used. By including such a second compound in addition to the first compound, the crystallization of the first semiconductor layer 3 can be further promoted, and the IB group element and the III-B group element in the first semiconductor layer 3 can be promoted. The ratio can be easily adjusted.

なお、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更が施されることは何等差し支えない。例えば、上記の第1の半導体層の製造方法において、第1化合物粒子は、III族溶液をI−B族金属と接触させながら加熱することによって作製したが、これに限定されない。例えば、III族溶液にI−B族元素を含む溶液を少しずつ添加しながら、このIII族溶液を加熱することによって第1化合物粒子を作製してもよい。   Note that the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present invention. For example, in the first method for producing a semiconductor layer, the first compound particles are produced by heating a group III solution in contact with a group IB metal, but the present invention is not limited to this. For example, the first compound particles may be produced by heating the group III solution while gradually adding a solution containing the group IB element to the group III solution.

III族溶液をI−B族金属と接触させながら加熱して第1化合物粒子を作製する場合には、III族溶液内でI−B族金属が徐々に溶解してIII族溶液内のIII−B族元素やカルコゲン元素と反応するので、凝集の発生を低減することができ、微細な第1化合物粒子を良好に作製することができる。また、III族溶液にI−B族元素を含む溶液を少しずつ添加しながら加熱して第1化合物粒子を作製する場合には、製造時間を短縮することができる。   When the first compound particles are produced by heating the Group III solution in contact with the Group IB metal, the Group IB metal gradually dissolves in the Group III solution, and the III- Since it reacts with a group B element or a chalcogen element, the occurrence of aggregation can be reduced, and fine first compound particles can be produced favorably. In addition, when the first compound particles are produced by heating while gradually adding a solution containing a group IB element to a group III solution, the production time can be shortened.

半導体層の製造方法および光電変換装置の製造方法について、以下のようにして評価した。本実施例においては半導体層としてCIGSを用いた。   The manufacturing method of the semiconductor layer and the manufacturing method of the photoelectric conversion device were evaluated as follows. In this example, CIGS was used as the semiconductor layer.

<原料溶液の作製>
第1化合物粒子を分散した原料溶液の作製についての具体例を示す。まず、塩基性溶媒としての500mmolのアニリンと、有機カルコゲン化合物としての250mmolのジフェニルジセレニドとを混合し、混合溶媒を作製した。次に、この混合溶媒に65mmolの金属Inおよび35mmolの金属Gaを混入し、70℃で攪拌することにより、金属Inおよび金属Gaを完全に溶解してIII族溶液を作製した。次に、このIII族溶液に100mmolの金属Cuを混入した後、この溶液を攪拌しながら昇温(20℃/min)して金属Cuを徐々に溶解させた。そして、液温が190℃に達した後、その液温で24時間攪拌を行なった。その後、この溶液にヘキサンを添加することによって粉末を沈殿させ、この粉末を取り出した。この粉末のSEM観察結果を図3(a)に示す。この結果より、作製した粉末は、角部を有する形状の化合物粒子であることを確認した。また、この粉末のX線回折結果より、上記粉末はI−III−VI族化合物であることを確認した。
<Preparation of raw material solution>
The specific example about preparation of the raw material solution which disperse | distributed 1st compound particle | grains is shown. First, 500 mmol of aniline as a basic solvent and 250 mmol of diphenyl diselenide as an organic chalcogen compound were mixed to prepare a mixed solvent. Next, 65 mmol of metal In and 35 mmol of metal Ga were mixed in the mixed solvent, and the mixture was stirred at 70 ° C. to completely dissolve the metal In and metal Ga, thereby preparing a group III solution. Next, 100 mmol of metal Cu was mixed into this group III solution, and then the solution was heated (20 ° C./min) while stirring to gradually dissolve the metal Cu. Then, after the liquid temperature reached 190 ° C., the liquid temperature was stirred for 24 hours. Thereafter, hexane was added to the solution to precipitate a powder, and the powder was taken out. The SEM observation result of this powder is shown in FIG. From this result, it was confirmed that the produced powder was a compound particle having a corner portion. Moreover, from the X-ray diffraction result of this powder, it confirmed that the said powder was an I-III-VI group compound.

一方、比較例として、I−III−VI族化合物を含む球状の化合物粒子を分散した原料溶液を以下のように作製した。まず、180mmolのアニリンと、180mmolのフェニルセレノールとを混合し、混合溶媒を作製した。次に、この混合溶媒を3つに分け、1つめの混合溶媒に20mmolの金属Cuを混入して70℃で溶解させた。また、2つめの混合溶媒には10mmolの金属Inを混入して70℃で溶解させた。また、3つめの混合溶媒には10mmolの金属Gaを混入して70℃で溶解させた。そして、これらの3つの溶液を混合して190℃で攪拌した後、この溶液にヘキサンを添加することによって粉末を沈殿させ、この粉末を取り出した。この粉末のSEM観察結果を図3(b)に示す。これより、比較例として作製された粉末は、角部を有しておらず球状粒子であることを確認した。また、この粉末のX線回折結果より、比較例としての粉末もI−III−VI族化合物であることを確認した。   On the other hand, as a comparative example, a raw material solution in which spherical compound particles containing an I-III-VI group compound were dispersed was prepared as follows. First, 180 mmol of aniline and 180 mmol of phenyl selenol were mixed to prepare a mixed solvent. Next, this mixed solvent was divided into three, and 20 mmol of metal Cu was mixed in the first mixed solvent and dissolved at 70 ° C. Further, 10 mmol of metal In was mixed in the second mixed solvent and dissolved at 70 ° C. Further, 10 mmol of metal Ga was mixed in the third mixed solvent and dissolved at 70 ° C. And after mixing these three solutions and stirring at 190 degreeC, the powder was precipitated by adding hexane to this solution, and this powder was taken out. The SEM observation result of this powder is shown in FIG. From this, it was confirmed that the powder produced as a comparative example had no corners and was a spherical particle. Moreover, from the X-ray diffraction result of this powder, it confirmed that the powder as a comparative example was also an I-III-VI group compound.

以上のようにして作製された角部を有する化合物粒子(第1化合物粒子)および球状粒子をそれぞれアニリンに分散して、第1化合物粒子を含む原料溶液Aと球状粒子を含む原料溶液Bとを作製した。   The compound particles having the corners (first compound particles) and spherical particles prepared as described above are dispersed in aniline, respectively, and a raw material solution A containing the first compound particles and a raw material solution B containing the spherical particles are obtained. Produced.

<光電変換装置の作製>
上記の原料溶液A、Bをそれぞれドクターブレード法にて、ソーダライムガラス基板のMoからなる第1の電極層上に塗布膜を形成した。塗布膜は、グローブボックス内で、キャリアガスとして窒素ガスを用いて各原料溶液を第1の電極層上へ塗布することによって形成した。塗布の後、上記試料をホットプレートで110℃に加熱しながら、5分間乾燥させることによって皮膜を形成させた。
<Production of photoelectric conversion device>
A coating film was formed on the first electrode layer made of Mo of the soda lime glass substrate by using the raw material solutions A and B by the doctor blade method. The coating film was formed by applying each raw material solution onto the first electrode layer using nitrogen gas as a carrier gas in the glove box. After coating, the sample was dried for 5 minutes while being heated to 110 ° C. on a hot plate to form a film.

皮膜形成後、水素ガス雰囲気下で熱処理を実施した。熱処理条件は、525℃まで5分間で急速昇温し、525℃で1時間保持することで行ない、その後、自然冷却して、厚み1.5μmの第1の半導体層を作製した。この第1の半導体層のX線回折結果から、得られた第1の半導体層は、原料溶液A、Bのいずれを用いた場合もCIGSであることを確認した。   After film formation, heat treatment was performed in a hydrogen gas atmosphere. The heat treatment was performed by rapidly raising the temperature to 525 ° C. in 5 minutes and holding it at 525 ° C. for 1 hour, and then naturally cooling to produce a first semiconductor layer having a thickness of 1.5 μm. From the X-ray diffraction result of the first semiconductor layer, it was confirmed that the obtained first semiconductor layer was CIGS when both the raw material solutions A and B were used.

この後、酢酸カドミウム、チオ尿素をアンモニア水に溶解し、これに上記試料を浸漬し、各第1の半導体層上に厚み0.05μmのCdSからなる第2の半導体層を形成した。さらに、第2の半導体層の上に、スパッタリング法にてAlドープ酸化亜鉛膜(第2の電極層5)を形成して光電変換装置を作製した。   Thereafter, cadmium acetate and thiourea were dissolved in aqueous ammonia, and the above sample was immersed therein to form a second semiconductor layer made of CdS having a thickness of 0.05 μm on each first semiconductor layer. Further, an Al-doped zinc oxide film (second electrode layer 5) was formed on the second semiconductor layer by a sputtering method, thereby manufacturing a photoelectric conversion device.

これらの光電変換装置の光電変換効率を測定したところ、球状粒子を含む原料溶液Bを用いて作製した光電変換装置の光電変換効率は5%であったのに対し、第1化合物粒子を含む原料溶液Aを用いて作製した光電変換装置の光電変換効率は8%であった。以上の結果より、I−III−VI族化合物を含むとともに角部を有する形状の第1化合物粒子が分散された原料溶液Aを用いることによって、光電変換効率の高い光電変換装置が得られることがわかった。   When the photoelectric conversion efficiency of these photoelectric conversion devices was measured, the photoelectric conversion efficiency of the photoelectric conversion device prepared using the raw material solution B containing spherical particles was 5%, whereas the raw material containing the first compound particles The photoelectric conversion efficiency of the photoelectric conversion device manufactured using the solution A was 8%. From the above results, it is possible to obtain a photoelectric conversion device with high photoelectric conversion efficiency by using the raw material solution A in which the first compound particles having a shape including an I-III-VI group compound and having corners are dispersed. all right.

1:基板
2:第1の電極層
3:第1の半導体層
4:第2の半導体層
5:第2の電極層
6:第3の電極層
7:接続導体
8:集電電極
10:光電変換セル
11:光電変換装置
1: Substrate 2: First electrode layer 3: First semiconductor layer 4: Second semiconductor layer 5: Second electrode layer 6: Third electrode layer 7: Connection conductor 8: Current collecting electrode 10: Photoelectric Conversion cell 11: photoelectric conversion device

Claims (12)

I−III−VI族化合物を含むとともに角部を有する形状の化合物粒子を用意する工程と、該化合物粒子を溶媒に分散して原料溶液を作製する工程と、
該原料溶液を塗布して皮膜を形成し、該皮膜を加熱して半導体層にする工程と
を具備する半導体層の製造方法。
A step of preparing compound particles having a shape including an I-III-VI group compound and having corners; a step of dispersing the compound particles in a solvent to prepare a raw material solution;
Applying the raw material solution to form a film, and heating the film to form a semiconductor layer.
前記化合物粒子として立方体状のものを用いる、請求項1に記載の半導体層の製造方法。   The method for manufacturing a semiconductor layer according to claim 1, wherein the compound particles are cubic. 前記化合物粒子として平均粒径が10〜200nmのものを用いる、請求項1または2に記載の半導体層の製造方法。   The method for producing a semiconductor layer according to claim 1, wherein the compound particles have an average particle diameter of 10 to 200 nm. 前記化合物粒子を用意する工程は、有機カルコゲン化合物、塩基性溶媒およびIII−B族元素を含むIII族溶液にI−B族元素を溶解させながら前記III族溶液を加熱することによって前記化合物粒子を生成させる工程である、請求項1乃至3のいずれかに記載の半導体層の製造方法。   The step of preparing the compound particles comprises heating the group III solution while dissolving the group IB element in a group III solution containing an organic chalcogen compound, a basic solvent, and a group III-B element. The manufacturing method of the semiconductor layer in any one of Claims 1 thru | or 3 which is the process made to produce | generate. 前記III族溶液を加熱する工程は、前記III族溶液をI−B族金属と接触させながら加熱する工程である、請求項4に記載の半導体層の製造方法。   The method of manufacturing a semiconductor layer according to claim 4, wherein the step of heating the group III solution is a step of heating the group III solution while contacting the group III solution with a group IB metal. 前記III族溶液を加熱する工程は、前記III族溶液にI−B族元素を含む溶液を添加しながら前記III族溶液を加熱する工程である、請求項4に記載の半導体層の製造方法。   The method of manufacturing a semiconductor layer according to claim 4, wherein the step of heating the group III solution is a step of heating the group III solution while adding a solution containing a group IB element to the group III solution. 前記有機カルコゲン化合物としてカルコゲン元素同士の結合を有するものを用いる、請求項4乃至6のいずれかに記載の半導体層の製造方法。   The manufacturing method of the semiconductor layer in any one of Claims 4 thru | or 6 using what has the coupling | bonding of chalcogen elements as said organic chalcogen compound. 前記III−B族元素としてInおよびGaを用い、前記I−B族金属としてCuを用いる、請求項4乃至7のいずれかに記載の半導体層の製造方法。   The manufacturing method of the semiconductor layer in any one of Claims 4 thru | or 7 which uses In and Ga as said III-B group element, and uses Cu as said IB group metal. 電極上に請求項1乃至9のいずれかに記載の半導体層の製造方法によって第1の半導体層を作製する工程と、
該第1の半導体層上に該第1の半導体層とは異なる導電型を有する第2の半導体層を作製する工程と
を具備することを特徴とする光電変換装置の製造方法。
Producing a first semiconductor layer on the electrode by the method for producing a semiconductor layer according to claim 1;
Forming a second semiconductor layer having a conductivity type different from that of the first semiconductor layer over the first semiconductor layer. A method for manufacturing a photoelectric conversion device, comprising:
I−III−VI族化合物を含むとともに角部を有する形状の化合物粒子を有している半導体形成用原料。   A raw material for forming a semiconductor, comprising compound particles containing a I-III-VI group compound and having corners. 前記化合物粒子は立方体状である、請求項10に記載の半導体形成用原料。   The material for forming a semiconductor according to claim 10, wherein the compound particles have a cubic shape. 前記化合物粒子の平均粒径が10〜200nmである、請求項10または11に記載の半導体形成用原料。   The raw material for forming a semiconductor according to claim 10 or 11, wherein the average particle diameter of the compound particles is 10 to 200 nm.
JP2013538477A 2011-10-13 2012-09-11 Semiconductor layer manufacturing method, photoelectric conversion device manufacturing method, and semiconductor forming raw material Pending JPWO2013054623A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013538477A JPWO2013054623A1 (en) 2011-10-13 2012-09-11 Semiconductor layer manufacturing method, photoelectric conversion device manufacturing method, and semiconductor forming raw material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011225809 2011-10-13
JP2011225809 2011-10-13
JP2013538477A JPWO2013054623A1 (en) 2011-10-13 2012-09-11 Semiconductor layer manufacturing method, photoelectric conversion device manufacturing method, and semiconductor forming raw material

Publications (1)

Publication Number Publication Date
JPWO2013054623A1 true JPWO2013054623A1 (en) 2015-03-30

Family

ID=48081682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013538477A Pending JPWO2013054623A1 (en) 2011-10-13 2012-09-11 Semiconductor layer manufacturing method, photoelectric conversion device manufacturing method, and semiconductor forming raw material

Country Status (2)

Country Link
JP (1) JPWO2013054623A1 (en)
WO (1) WO2013054623A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225985A (en) * 2009-03-25 2010-10-07 Fujifilm Corp Photoelectric conversion semiconductor layer and method of manufacturing the same, photoelectric conversion device, and solar cell
JP2011091305A (en) * 2009-10-26 2011-05-06 Fujifilm Corp Photoelectric conversion semiconductor layer and method for manufacturing the same, method for manufacturing component film of photoelectric conversion element, photoelectric conversion element, and solar cell
WO2011093278A1 (en) * 2010-01-29 2011-08-04 京セラ株式会社 Method for manufacturing semiconductor layer, method for manufacturing photoelectric conversion device, and semiconductor layer forming solution
WO2012090339A1 (en) * 2010-12-28 2012-07-05 東北精機工業株式会社 Process for production of compound having chalcopyrite structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225985A (en) * 2009-03-25 2010-10-07 Fujifilm Corp Photoelectric conversion semiconductor layer and method of manufacturing the same, photoelectric conversion device, and solar cell
JP2011091305A (en) * 2009-10-26 2011-05-06 Fujifilm Corp Photoelectric conversion semiconductor layer and method for manufacturing the same, method for manufacturing component film of photoelectric conversion element, photoelectric conversion element, and solar cell
WO2011093278A1 (en) * 2010-01-29 2011-08-04 京セラ株式会社 Method for manufacturing semiconductor layer, method for manufacturing photoelectric conversion device, and semiconductor layer forming solution
WO2012090339A1 (en) * 2010-12-28 2012-07-05 東北精機工業株式会社 Process for production of compound having chalcopyrite structure

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6012063220; Yu-hsiang A.WANG, et al.: 'Synthesis of ternary and quaternary CuIn x Ga1-x Se2 (0≰ x ≰1) semiconductor nanocrystals' Solid State Sciences Vol.11, 2009, P.1961-1964 *
JPN6012063221; Weidong WANG,et al.: 'Preparation and characteristics of CuInSe2 thin films by dip-coating method using its nanocrystal in' Materials Letters Vol.65, 20110625, P.2895-2898 *
JPN6012063223; Jiang TANG,et al.: 'Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles' Chemistry of Materials Vol.20 No.22, 2008, P.6906-6910 *
JPN6012063224; Changlin YU,et al.: 'A mild solvothermal route for preparation of cubic-like CuInS2 crystals' Materials Letters Vol.63, 2009, P.1984-1986 *

Also Published As

Publication number Publication date
WO2013054623A1 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
JP5261581B2 (en) Semiconductor layer manufacturing method, photoelectric conversion device manufacturing method, and semiconductor layer forming solution
JP5687343B2 (en) Semiconductor layer manufacturing method, photoelectric conversion device manufacturing method, and semiconductor raw material
JP5383826B2 (en) Manufacturing method of semiconductor layer and manufacturing method of photoelectric conversion device
WO2011129322A1 (en) Photoelectric converter and method for producing photoelectric converter
JP5934056B2 (en) Manufacturing method of semiconductor layer and manufacturing method of photoelectric conversion device
JP5451899B2 (en) Photoelectric conversion device
WO2013054623A1 (en) Method for manufacturing semiconductor layer, method for manufacturing photoelectric conversion device, and raw material for semiconductor formation
JP5570650B2 (en) Manufacturing method of semiconductor layer and manufacturing method of photoelectric conversion device
JP5566335B2 (en) Method for manufacturing photoelectric conversion device
JP2012015257A (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
JP5687367B2 (en) Compound particle, method for producing compound particle, method for producing semiconductor layer, and method for producing photoelectric conversion device
JP2012114251A (en) Manufacturing method of photoelectric conversion device
JP2013224239A (en) Particle for formation of semiconductor layer, method of producing semiconductor layer and method of manufacturing photoelectric conversion device
JP5683377B2 (en) Manufacturing method of semiconductor layer and manufacturing method of photoelectric conversion device
JP5618942B2 (en) Method for manufacturing photoelectric conversion device
JP2012160514A (en) Method for producing metal chalcogenide layer and method for manufacturing photoelectric conversion device
JP2012033728A (en) Manufacturing method of metal chalcogenide particle, and manufacturing method of photoelectric conversion device
JP2012195553A (en) Method for manufacturing semiconductor layer and method for manufacturing photoelectric conversion device
JP2012049358A (en) Method of producing metal chalcogenide particle and method of manufacturing photoelectric conversion device
JP2013012722A (en) Photoelectric conversion device manufacturing method
JP5832229B2 (en) Photoelectric conversion device
JP2012114344A (en) Precursor for forming group i-iii-vi compound semiconductor, method for manufacturing group i-iii-vi compound semiconductor, and method for manufacturing photoelectric conversion device
JP2011249560A (en) Semiconductor layer manufacturing method and photoelectric conversion device manufacturing method
JP2011138837A (en) Method of manufacturing semiconductor layer, and method of manufacturing photoelectric conversion device
JP2012079770A (en) Production method of metal chalcogenide particle and manufacturing method of photoelectric conversion device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150728