JPWO2013047237A1 - Stainless steel for blades and method for producing the same - Google Patents

Stainless steel for blades and method for producing the same Download PDF

Info

Publication number
JPWO2013047237A1
JPWO2013047237A1 JP2013513470A JP2013513470A JPWO2013047237A1 JP WO2013047237 A1 JPWO2013047237 A1 JP WO2013047237A1 JP 2013513470 A JP2013513470 A JP 2013513470A JP 2013513470 A JP2013513470 A JP 2013513470A JP WO2013047237 A1 JPWO2013047237 A1 JP WO2013047237A1
Authority
JP
Japan
Prior art keywords
stainless steel
blades
diffraction peak
plane
intermediate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013513470A
Other languages
Japanese (ja)
Other versions
JP5333695B1 (en
Inventor
友典 上野
友典 上野
剛 吉山
剛 吉山
一郎 岸上
一郎 岸上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013513470A priority Critical patent/JP5333695B1/en
Application granted granted Critical
Publication of JP5333695B1 publication Critical patent/JP5333695B1/en
Publication of JPWO2013047237A1 publication Critical patent/JPWO2013047237A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/18Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for knives, scythes, scissors, or like hand cutting tools
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

優れた特性をもつ高硬度かつ高靭性の刃物を得ることを最終目的とするものであり、そのための刃物用ステンレス鋼の中間素材、焼鈍材及び冷間圧延鋼帯並びにこれらの製造方法を提供する。焼鈍を適用するための熱間圧延された中間素材であって、組成が質量%でC:0.46〜0.72%、Si:0.15〜0.55%、Mn:0.45〜1.00%、Cr:12.5〜13.9%、Mo:0〜1.5%、B:0〜0.012%、残部はFe及び不純物からなり、縦断面のエックス線回折におけるfcc相からの回折ピーク面積((200)面、(220)面及び(311)面からの回折ピーク面積の総和)とbcc相からの回折ピーク面積((200)面及び(211)面からの回折ピーク面積の総和)の比(fcc相からの回折ピーク面積/bcc相からの回折ピーク面積)が30以下である刃物用ステンレス鋼の中間素材。The final objective is to obtain a high hardness and toughness blade having excellent characteristics, and provides a stainless steel intermediate material, an annealed material, a cold rolled steel strip for the purpose, and a method for producing them. . An intermediate material that has been hot-rolled for applying annealing, and the composition is mass%, C: 0.46-0.72%, Si: 0.15-0.55%, Mn: 0.45- 1.00%, Cr: 12.5 to 13.9%, Mo: 0 to 1.5%, B: 0 to 0.012%, the balance is Fe and impurities, fcc phase in X-ray diffraction of longitudinal section Diffraction peak areas (total of diffraction peak areas from (200) plane, (220) plane and (311) plane) and diffraction peak areas from bcc phase (diffraction peaks from (200) plane and (211) plane) An intermediate material of stainless steel for blades having a ratio of (total area) (diffraction peak area from fcc phase / diffraction peak area from bcc phase) of 30 or less.

Description

本発明は、例えば、剃刀、カッター、包丁、ナイフなどに用いられる刃物用ステンレス鋼およびその製造方法に関するものである。   The present invention relates to stainless steel for blades used in, for example, razors, cutters, knives, knives, and the like, and a method for manufacturing the same.

従来、マルテンサイト系ステンレス鋼は、剃刀、カッター、包丁、ナイフ等の刃物用の材料として広く使用されてきた。特に、質量%で13%程度のCrと0.65%程度のCを含む高炭素マルテンサイト系ステンレス鋼の帯材は、剃刀用の材料として最適であることが知られている。このような用途に用いられる高炭素マルテンサイト系ステンレス鋼(以下「刃物用ステンレス鋼」という。)は、通常焼入れ焼戻しを施して使用されるものであり、使用時の高硬度、高靭性と言った特性が求められている。
刃物用ステンレス鋼は通常以下の製造工程を経て製造される。
まず、原料を溶解、鋳造して素材を製造する。次に、素材を熱間圧延して中間素材を製造する。素材に対して熱間鍛造や熱間圧延による分塊工程を経る場合もある。
次に、中間素材に最初の焼鈍を行って焼鈍材を製造する。さらに、焼鈍材に対して冷間圧延とそれに続く歪除去焼鈍とを必要な回数だけ繰り返し、目的とする厚さを有する冷間圧延鋼帯を製造する。そして、冷間圧延鋼帯に焼入れ焼戻しを施して、刃物用ステンレス鋼が完成する。
さらに、刃物用ステンレス鋼は刃付けや切断などの加工工程を経て最終製品となる。なお、刃物用ステンレス鋼の市場における取引は、一般に、焼鈍材又は冷間圧延鋼帯のいずれかの形態でなされる場合が多い。
上述した刃物用ステンレス鋼において、高硬度、高靱性を達成する技術として従来から種々の提案がなされている。例えば、代表的な例として、本願出願人の提案による特開平5−039547号公報(特許文献1)では、焼入れ焼戻し前の刃物用ステンレス鋼の冷間圧延鋼帯の炭化物密度を高める提案を行っている。この提案によれば、冷間圧延鋼帯の短時間焼入れ性が大幅に改善され、且つ、焼入れ後の刃物用ステンレス鋼の硬さを高めることができ、剃刀として優れた切れ味を持たせることが可能となっている。
Conventionally, martensitic stainless steel has been widely used as a material for blades such as razors, cutters, knives, knives and the like. In particular, it is known that a strip of high carbon martensitic stainless steel containing about 13% Cr and about 0.65% C by mass is optimal as a material for a razor. High carbon martensitic stainless steel (hereinafter referred to as “stainless steel for blades”) used for such applications is usually used after quenching and tempering, and is said to have high hardness and high toughness during use. Characteristics are required.
Stainless steel for blades is usually manufactured through the following manufacturing process.
First, a raw material is melted and cast to produce a raw material. Next, the material is hot-rolled to produce an intermediate material. In some cases, the material is subjected to a lump process by hot forging or hot rolling.
Next, the intermediate material is first annealed to produce an annealed material. Further, cold rolling and subsequent strain relief annealing are repeated as many times as necessary on the annealed material to produce a cold rolled steel strip having the desired thickness. Then, the cold rolled steel strip is quenched and tempered to complete the stainless steel for blades.
Furthermore, the stainless steel for blades becomes a final product through processing steps such as cutting and cutting. In addition, generally the transaction in the stainless steel for blades is often made in the form of either an annealed material or a cold rolled steel strip.
Conventionally, various proposals have been made as techniques for achieving high hardness and high toughness in the above-described stainless steel for blades. For example, as a typical example, Japanese Patent Application Laid-Open No. 5-039547 (Patent Document 1) proposed by the applicant of the present application proposes to increase the carbide density of a cold rolled steel strip of stainless steel for a knife before quenching and tempering. ing. According to this proposal, the short-time hardenability of the cold-rolled steel strip is greatly improved, and the hardness of the stainless steel for the knife after quenching can be increased, and an excellent sharpness as a razor can be obtained. It is possible.

特開平5−039547号公報Japanese Patent Laid-Open No. 5-039547

上述したように、刃物用ステンレス鋼について焼入れ焼戻し前の冷間圧延鋼帯の素性に着目した技術に関しては、従来から種々の提案がなされている。
しかしながら、熱間圧延後焼鈍前の中間素材の素性に着目した検討はほとんどなされていないといってよく、当該中間素材の素性と、半製品として流通する焼鈍後焼入れ前の刃物用ステンレス鋼の焼鈍材の特性及び冷間圧延鋼帯の特性との関係については、十分に解明されているとはいい難かった。
このため、前記中間素材の素性はいかにあるべきかについての知見が乏しいことに起因して、刃物用ステンレス鋼が本来有する優れた特性を十分に引き出せず、特に高硬度と高靱性とを両立させることができないという課題があった。また、前記中間素材の素性が何らかの要因で変動した場合に、前記中間素材を作製した段階で不具合を察知して後工程における品質不良の発生を未然に防止する手段は知られていなかったので、前記中間素材の段階で発生していた不具合が察知されないまま、硬度や靱性の低下が下工程で初めて顕在化すると、それまでに行った工程が無駄になり、製品のコストが増大するという課題があった。
本発明は、焼入れ前の刃物用ステンレス鋼の組織に影響する前記中間素材の適正化により、優れた特性をもつ高硬度かつ高靭性の刃物を効率よく得ることを最終目的とするものであり、そのための刃物用ステンレス鋼の中間素材、焼鈍材及び冷間圧延鋼帯並びにこれらの製造方法を提供するものである。
As described above, various proposals have conventionally been made on the technology focusing on the features of the cold-rolled steel strip before quenching and tempering for the stainless steel for blades.
However, it can be said that there has been almost no investigation focusing on the features of the intermediate material after hot rolling and before annealing, and the characteristics of the intermediate material and annealing of stainless steel for blades before quenching after annealing as a semi-finished product. Regarding the relationship between the properties of the material and the properties of the cold-rolled steel strip, it was difficult to say that they were fully elucidated.
For this reason, due to the lack of knowledge on how the intermediate material should be, it is not possible to sufficiently bring out the excellent properties inherent in the stainless steel for blades, particularly to achieve both high hardness and high toughness. There was a problem that it was not possible. In addition, when the identity of the intermediate material has fluctuated for some reason, no means has been known to detect the malfunction at the stage of producing the intermediate material and prevent the occurrence of quality defects in the subsequent process. If a decrease in hardness and toughness becomes apparent for the first time in the lower process without detecting the problems occurring at the intermediate material stage, there is a problem that the processes performed so far become useless and the cost of the product increases. there were.
The present invention is intended to efficiently obtain a high-hardness and high-toughness blade having excellent characteristics by optimizing the intermediate material that affects the structure of the stainless steel for blades before quenching, Therefore, the present invention provides an intermediate material, an annealed material, a cold-rolled steel strip for stainless steel for blades, and a method for producing them.

本発明者らは、刃物用ステンレス鋼の素性のうち、特に、その硬度及び靱性を左右する因子として炭化物の形態に着目して検討を行った。
まず、刃物用ステンレス鋼の冷間圧延鋼帯の組織中において炭化物が偏在していたり、粗い結晶粒を有する炭化物と細かい結晶粒を有する炭化物とが混合していたりして、炭化物の分布が不均一である場合には、炭化物が均一に分布している場合に比べて、その冷間圧延鋼帯を焼入れ焼戻ししたときの硬度および靱性が低下することを確認した。
次に、刃物用ステンレス鋼の中間素材の素性のうち特に組成およびfcc相の量が、前記中間素材から得られる冷間圧延鋼帯の組織中の炭化物の分布に影響を与えていることを突き止めた。
そして、刃物用ステンレス鋼の中間素材の組成を適正化するとともに、fcc相の量を抑制することにより、冷間圧延鋼帯中の炭化物の分布を均一にすることができ、さらには最終製品である刃物の特性を大きく改善できることを見いだし本発明に到達した。
即ち本発明は、熱間圧延後焼鈍前の刃物用ステンレス鋼の中間素材であって、組成が質量%でC:0.46〜0.72%、Si:0.15〜0.55%、Mn:0.45〜1.00%、Cr:12.5〜13.9%、Mo:0〜1.5%、B:0〜0.012%、残部はFe及び不純物からなり、縦断面のエックス線回折におけるfcc相からの回折ピーク面積((200)面、(220)面及び(311)面からの回折ピーク面積の総和)とbcc相からの回折ピーク面積((200)面及び(211)面からの回折ピーク面積の総和)の比(fcc相からの回折ピーク面積/bcc相からの回折ピーク面積)が30以下である刃物用ステンレス鋼の中間素材である。
前述のBは、0.0005〜0.0050%の範囲で含有することが好ましい。
The inventors of the present invention have studied focusing on the form of carbide as a factor that affects the hardness and toughness of the features of stainless steel for blades.
First, the carbide distribution is inconsistent due to uneven distribution of carbides in the structure of the cold rolled steel strip of the stainless steel for blades, or a mixture of carbides with coarse crystal grains and carbides with fine crystal grains. In the case of being uniform, it was confirmed that the hardness and toughness when the cold-rolled steel strip was quenched and tempered were reduced as compared with the case where the carbide was uniformly distributed.
Next, it has been determined that the composition and the amount of the fcc phase, among the features of the intermediate material of stainless steel for blades, affect the distribution of carbides in the structure of the cold-rolled steel strip obtained from the intermediate material. It was.
And while optimizing the composition of the intermediate material of the stainless steel for blades and suppressing the amount of the fcc phase, the distribution of carbides in the cold rolled steel strip can be made uniform. The inventors have found that the characteristics of a certain blade can be greatly improved and have reached the present invention.
That is, the present invention is an intermediate material of stainless steel for blades after hot rolling and before annealing, and the composition is mass%, C: 0.46 to 0.72%, Si: 0.15 to 0.55%, Mn: 0.45 to 1.00%, Cr: 12.5 to 13.9%, Mo: 0 to 1.5%, B: 0 to 0.012%, the balance consisting of Fe and impurities, longitudinal section Of X-ray diffraction from the fcc phase (the sum of diffraction peak areas from the (200) plane, (220) plane and (311) plane) and the diffraction peak area from the bcc phase ((200) plane and (211) ) The intermediate material of the stainless steel for blades having a ratio of the total diffraction peak area from the surface) (diffraction peak area from the fcc phase / diffraction peak area from the bcc phase) of 30 or less.
The aforementioned B is preferably contained in the range of 0.0005 to 0.0050%.

また、本発明は、前述の刃物用ステンレス鋼の中間素材の製造方法であって、前述の組成に調整した熱間圧延用素材を1100〜1250℃に加熱し、熱間圧延終了温度を700〜1000℃とする熱間圧延を行って、縦断面のエックス線回折におけるfcc相からの回折ピーク面積((200)面、(220)面及び(311)面からの回折ピーク面積の総和)とbcc相からの回折ピーク面積((200)面及び(211)面からの回折ピーク面積の総和)の比(fcc相からの回折ピーク面積/bcc相からの回折ピーク面積)が30以下とする刃物用ステンレス鋼の中間素材の製造方法である。
本発明では、前述の熱間圧延後に、800〜860℃で1〜100時間の焼鈍を行う刃物用ステンレス鋼の焼鈍材の製造方法である。
また、本発明は、前述の焼鈍材を用いて、冷間圧延と焼鈍の工程を行って、厚さを1.0mm未満とする刃物用ステンレス鋼の冷間圧延鋼帯の製造方法である。
Moreover, this invention is a manufacturing method of the intermediate material of the above-mentioned stainless steel for blades, Comprising: The material for hot rolling adjusted to the above-mentioned composition is heated to 1100-1250 degreeC, and hot rolling completion temperature is 700- Performing hot rolling at 1000 ° C., the diffraction peak area from the fcc phase (the sum of the diffraction peak areas from the (200) plane, (220) plane and (311) plane) in the X-ray diffraction of the longitudinal section and the bcc phase Stainless steel for blades having a ratio of diffraction peak areas from (total of diffraction peak areas from (200) plane and (211) plane) (diffraction peak area from fcc phase / diffraction peak area from bcc phase) to 30 or less This is a method for producing an intermediate material for steel.
In this invention, it is a manufacturing method of the annealing material of the stainless steel for blades which anneals for 1 to 100 hours at 800-860 degreeC after the above-mentioned hot rolling.
Moreover, this invention is a manufacturing method of the cold rolled steel strip of the stainless steel for blades which performs the process of cold rolling and annealing using the above-mentioned annealing material, and makes thickness less than 1.0 mm.

本発明の刃物用ステンレス鋼を用いて製造した刃物は高硬度と高靭性を両立することが可能なため、特に、厚みの薄い剃刀などの用途に最適である。また、本発明によれば、最終製品ではなく中間素材の段階で品質管理を行うことが可能となるため、不良の発生を抑え、製造コストを低減することができる。   Since the blade manufactured using the stainless steel for blades of the present invention can achieve both high hardness and high toughness, it is particularly suitable for applications such as a thin razor. Further, according to the present invention, quality control can be performed at the stage of the intermediate material instead of the final product, so that the occurrence of defects can be suppressed and the manufacturing cost can be reduced.

試験片採取位置と評価面を示す模式図である。It is a schematic diagram which shows a test piece collection position and an evaluation surface. 本発明の刃物用ステンレス鋼の中間素材の金属組織の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the metal structure of the intermediate material of the stainless steel for blades of this invention. 比較例の刃物用ステンレス鋼の中間素材の金属組織の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the metal structure of the intermediate material of the stainless steel for blades of a comparative example. 本発明の刃物用ステンレス鋼の中間素材の金属組織の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the metal structure of the intermediate material of the stainless steel for blades of this invention. 比較例の刃物用ステンレス鋼の中間素材の金属組織の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the metal structure of the intermediate material of the stainless steel for blades of a comparative example. 本発明の刃物用ステンレス鋼の中間素材の金属組織の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the metal structure of the intermediate material of the stainless steel for blades of this invention. 本発明の刃物用ステンレス鋼の中間素材の金属組織の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the metal structure of the intermediate material of the stainless steel for blades of this invention. 本発明の刃物用ステンレス鋼の焼鈍材に焼入れ−サブゼロ−焼戻しを行った後の金属組織の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the metal structure after performing quenching-subzero-tempering to the annealing material of the stainless steel for blades of this invention. 比較例の刃物用ステンレス鋼の焼鈍材に焼入れ−サブゼロ−焼戻しを行った後の金属組織の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the metal structure after performing quenching-subzero-tempering to the annealing material of the stainless steel for blades of a comparative example. 本発明の刃物用ステンレス鋼の焼鈍材に焼入れ−サブゼロ−焼戻しを行った後の金属組織の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the metal structure after performing quenching-subzero-tempering to the annealing material of the stainless steel for blades of this invention. 比較例の刃物用ステンレス鋼の焼鈍材に焼入れ−サブゼロ−焼戻しを行った後の金属組織の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the metal structure after performing quenching-subzero-tempering to the annealing material of the stainless steel for blades of a comparative example. 本発明の刃物用ステンレス鋼の焼鈍材に焼入れ−サブゼロ−焼戻しを行った後の金属組織の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the metal structure after performing quenching-subzero-tempering to the annealing material of the stainless steel for blades of this invention. 本発明の刃物用ステンレス鋼の焼鈍材に焼入れ−サブゼロ−焼戻しを行った後の金属組織の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the metal structure after performing quenching-subzero-tempering to the annealing material of the stainless steel for blades of this invention. 本発明の刃物用ステンレス鋼の冷間圧延鋼帯の金属組織の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the metal structure of the cold rolled steel strip of the stainless steel for blades of this invention. 本発明の刃物用ステンレス鋼の冷間圧延鋼帯に焼入れ−サブゼロ−焼戻しを行った後の金属組織の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the metal structure after performing quenching-subzero-tempering to the cold rolled steel strip of the stainless steel for blades of this invention. 本発明の刃物用ステンレス鋼の冷間圧延鋼帯の金属組織の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the metal structure of the cold rolled steel strip of the stainless steel for blades of this invention. 本発明の刃物用ステンレス鋼の冷間圧延鋼帯に焼入れ−サブゼロ−焼戻しを行った後の金属組織の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the metal structure after performing quenching-subzero-tempering to the cold rolled steel strip of the stainless steel for blades of this invention.

上述したように、本発明の重要な特徴は、炭化物の形態に影響する合金組成を適正化するのに加えて、焼鈍前の中間素材におけるfcc相の量を制御することにより、最終製品である刃物に対して高硬度と高靭性の両立を達成したことである。
先ず、本発明で規定する基本的な特性を付与する合金組成について説明する。なお、各元素の含有量は質量%である。
C:0.46〜0.72%
Cを0.46〜0.72%としたのは、刃物として十分な硬度を達成し、かつ、鋳造・凝固時の共晶炭化物の晶出を最低限に抑制するためである。Cが0.46%未満であれば刃物として十分な硬度が得られない。また、0.72%を超えるとCr量とのバランスで共晶炭化物の晶出量が増加し刃付け時の刃欠けの原因となる。好ましいC量の下限は、0.50%であり、さらに好ましくは、0.65%である。また、好ましいC量の上限は、0.70%である。
Si:0.15〜0.55%
Siは精錬時の脱酸剤として添加する。十分な脱酸効果を得ようとすると、Siが0.15%以上は残存することとなる。一方、0.55%を超えると介在物量が増加し刃付け時の刃欠けの原因となる。そのため、Siは0.15〜0.55%とする。また、Siは焼戻し軟化抵抗を高める効果がある。Siの0.20%以上の添加が刃物として十分な硬度を得ることができる。そのため、好ましいSi量の下限は0.20%である。また、好ましいSi量の上限は、0.35%である。
Mn:0.45〜1.00%
MnもSiと同様に精錬時の脱酸剤として添加する。十分な脱酸効果を得ようとすると、Mnが0.45%以上は残存することとなる。一方、1.00%を超えると熱間加工性が低下する。そのためMnは0.45〜1.00%とする。好ましいMn量の下限は、0.65%である。また、好ましいMn量の上限は、0.85%である。
As noted above, an important feature of the present invention is the final product by controlling the amount of fcc phase in the intermediate material prior to annealing, in addition to optimizing the alloy composition that affects the morphology of the carbide. The achievement of both high hardness and high toughness for the blade.
First, the alloy composition that gives the basic characteristics defined in the present invention will be described. In addition, content of each element is the mass%.
C: 0.46-0.72%
The reason why C is set to 0.46 to 0.72% is to achieve sufficient hardness as a blade and to suppress crystallization of eutectic carbide during casting and solidification to a minimum. If C is less than 0.46%, sufficient hardness as a blade cannot be obtained. On the other hand, if it exceeds 0.72%, the crystallization amount of the eutectic carbide increases due to the balance with the Cr amount, which causes chipping at the time of cutting. The lower limit of the preferable amount of C is 0.50%, more preferably 0.65%. Moreover, the upper limit of the preferable amount of C is 0.70%.
Si: 0.15-0.55%
Si is added as a deoxidizer during refining. In order to obtain a sufficient deoxidation effect, 0.15% or more of Si remains. On the other hand, if it exceeds 0.55%, the amount of inclusions increases and causes chipping during cutting. Therefore, Si is 0.15 to 0.55%. Si also has the effect of increasing the temper softening resistance. Addition of 0.20% or more of Si can obtain sufficient hardness as a blade. Therefore, the lower limit of the preferable Si amount is 0.20%. Moreover, the upper limit of the preferable Si amount is 0.35%.
Mn: 0.45 to 1.00%
Mn is also added as a deoxidizer during refining in the same manner as Si. If an attempt is made to obtain a sufficient deoxidation effect, 0.45% or more of Mn will remain. On the other hand, when it exceeds 1.00%, hot workability will fall. Therefore, Mn is set to 0.45 to 1.00%. The minimum of the preferable amount of Mn is 0.65%. Moreover, the upper limit of the preferable amount of Mn is 0.85%.

Cr:12.5〜13.9%
Crを12.5〜13.9%としたのは、十分な耐食性を達成し、かつ、鋳造・凝固時の共晶炭化物の晶出を最低限に抑制するためである。Crが12.5%未満であればステンレス鋼として十分な耐食性は得られず、13.9%を超えると共晶炭化物の晶出量が増加し刃付け時の刃欠けの原因となる。好ましいCr量の下限は13.0%である。また、好ましいCr量の上限は13.6%である。
Mo:0〜1.5%
Moは耐食性を向上させる元素であるため必要に応じて1.5%を上限として添加することができる。しかし、Moが1.5%を超えると固溶強化が強くなり、変形抵抗が高くなって熱間加工性を劣化させるためMoの含有量を0〜1.5%とする。
B:0〜0.012%、
Bは硬度と靭性を向上させる有効な元素である。本発明では、後述するエックス線の強度比の調整によっても靭性を向上させることが可能であるが、予めBを添加することで靭性向上の効果を確実に得ることができる。そのため、Bについては0.012%を上限に添加しても良い。ただし、Bが0.012%を超えると熱間加工性として延性が著しく低下する。そのため、Bの上限を0.012%とする。なお、B添加による硬度及び靭性向上効果をより確実に得ようとするならば、0.0005%未満であればB添加の効果が十分でないため、Bを0.0005〜0.0050%の範囲内とすると良い。
以上、述べた元素以外はFe及び不純物とする。
代表的な不純物元素として、P、S、Ni、W、V、Cu、Al、Ti、N及びOがあり、これらの元素は以下の範囲に規制することが好ましい。
P≦0.03%、S≦0.005%、Ni≦0.15%、W≦0.05%、V≦0.2%、Cu≦0.1%、Al≦0.01%、Ti≦0.01%、N≦0.05%及びO≦0.05%。
Cr: 12.5 to 13.9%
The reason why Cr is set to 12.5 to 13.9% is to achieve sufficient corrosion resistance and to suppress crystallization of eutectic carbide during casting and solidification to a minimum. If Cr is less than 12.5%, sufficient corrosion resistance as stainless steel cannot be obtained, and if it exceeds 13.9%, the amount of eutectic carbides crystallizes and causes chipping during cutting. The lower limit of the preferable Cr amount is 13.0%. Moreover, the upper limit of the preferable Cr amount is 13.6%.
Mo: 0 to 1.5%
Since Mo is an element that improves the corrosion resistance, 1.5% can be added as the upper limit if necessary. However, if Mo exceeds 1.5%, the solid solution strengthening becomes strong, the deformation resistance becomes high, and the hot workability is deteriorated, so the content of Mo is made 0 to 1.5%.
B: 0 to 0.012%,
B is an effective element for improving hardness and toughness. In the present invention, the toughness can be improved also by adjusting the strength ratio of the X-ray described later, but the effect of improving the toughness can be surely obtained by adding B in advance. Therefore, about B, you may add 0.012% to an upper limit. However, if B exceeds 0.012%, the ductility is remarkably reduced as hot workability. Therefore, the upper limit of B is set to 0.012%. In addition, if it is going to acquire the hardness and toughness improvement effect by B addition more reliably, since the effect of B addition will not be enough if it is less than 0.0005%, B is 0.0005 to 0.0050% of range It is good to be inside.
The elements other than those described above are Fe and impurities.
Typical impurity elements include P, S, Ni, W, V, Cu, Al, Ti, N, and O. These elements are preferably regulated to the following ranges.
P ≦ 0.03%, S ≦ 0.005%, Ni ≦ 0.15%, W ≦ 0.05%, V ≦ 0.2%, Cu ≦ 0.1%, Al ≦ 0.01%, Ti ≦ 0.01%, N ≦ 0.05% and O ≦ 0.05%.

本発明者の検討によれば、上述した組成を有する刃物用ステンレス鋼の中間素材のエックス線回折におけるfcc相からの回折ピーク面積((200)面、(220)面及び(311)面からの回折ピーク面積の総和)と、bcc相からの回折ピーク面積((200)面及び(211)面からの回折ピーク面積の総和)の比(fcc相からの回折ピーク面積/bcc相からの回折ピーク面積)が、前記中間素材を用いて、焼鈍、冷間圧延、焼入れ、焼戻し等の製造工程を経て得られた刃物用ステンレス鋼の靭性と相関することを見出した。
具体的には、刃物用ステンレス鋼中間素材のエックス線回折におけるfcc相からの回折ピーク面積とbcc相からの回折ピーク面積の比が30を超えると、fcc相の量が多くなり過ぎた状態となる。そうすると、熱間加工後に焼鈍を行った場合、アスペクト比の高い炭化物が粒界に析出しやすくなる。その結果、例えば、刃物に用いる際に行われる焼入れ焼戻し後に靭性が著しく低下する。そのため、fcc相からの回折ピーク面積/bcc相からの回折ピーク面積の比を30以下とする必要がある。好ましくは20以下、さらに好ましくは5以下である。下限は0であっても良い。
なお、本発明でfcc相の(200)面、(220)面及び(311)面と、bcc相の(200)面及び(211)面を選択したのは、本発明で規定する組成の合金系において、前記の方位がエックス線回折における主要なピークとなっているからである。前記の主要ピーク以外では、ピーク強度が低いため、fcc相からの回折ピーク面積/bcc相からの回折ピーク面積の比の影響は少ない。そのため、前記の主要ピークの測定で十分である。
なお、上述したfcc相からの回折ピーク面積/bcc相からの回折ピーク面積の比は、それぞれの相の実際の体積比と相関があるため、構成相の比率に対応する値として評価することができる。
According to the study of the present inventors, diffraction peak areas from the fcc phase (diffraction from the (200) plane, (220) plane, and (311) plane) in the X-ray diffraction of the intermediate material of the stainless steel for blades having the above-described composition. (The sum of peak areas) and the ratio of the diffraction peak areas from the bcc phase (the sum of diffraction peak areas from the (200) plane and (211) plane) (diffraction peak area from the fcc phase / diffraction peak area from the bcc phase) ) Was found to correlate with the toughness of the stainless steel for blades obtained through the manufacturing steps such as annealing, cold rolling, quenching, and tempering using the intermediate material.
Specifically, when the ratio of the diffraction peak area from the fcc phase to the diffraction peak area from the bcc phase in the X-ray diffraction of the stainless steel intermediate material for blades exceeds 30, the amount of the fcc phase becomes too large. . Then, when annealing is performed after hot working, carbide having a high aspect ratio is likely to precipitate at the grain boundaries. As a result, for example, the toughness significantly decreases after quenching and tempering when used for a blade. Therefore, the ratio of the diffraction peak area from the fcc phase / the diffraction peak area from the bcc phase needs to be 30 or less. Preferably it is 20 or less, More preferably, it is 5 or less. The lower limit may be zero.
In the present invention, the fcc phase (200) plane, (220) plane and (311) plane and the bcc phase (200) plane and (211) plane were selected because of the alloy having the composition defined in the present invention. This is because, in the system, the above-mentioned orientation is a main peak in X-ray diffraction. Except for the main peak, since the peak intensity is low, the influence of the ratio of the diffraction peak area from the fcc phase / the diffraction peak area from the bcc phase is small. Therefore, the measurement of the main peak is sufficient.
Since the ratio of the diffraction peak area from the fcc phase / the diffraction peak area from the bcc phase described above has a correlation with the actual volume ratio of each phase, it can be evaluated as a value corresponding to the ratio of the constituent phases. it can.

上記のエックス線回折を行う場合は、中間素材の縦断面にエックス線を照射して行う。本願において「縦断面」とは、図1に示すように、刃物用ステンレス鋼の中間素材1の幅の中心付近より採取された試験片の表面のうち図1に示す評価面2に該当する断面、すなわち、中間素材の幅方向に垂直な断面、をいう。縦断面を評価に使用する理由は、圧延材は圧延方向に依存した異方性があるため、評価面を固定することで同一条件での評価を可能とするためである。また、刃物とした場合には縦断面が高強度と靱性の両立をもっとも要求される刃先に対応する場合が多いためである。
エックス線回折に用いる試験片は、縦断面を鏡面研磨し、さらに電解研磨を行ってエックス線回折用試験片に調整する。そして、前述の電解研磨面を測定面としてエックス線回折を行い、その後、fcc相の(200)面、(220)面及び(311)面からの回折ピークの面積の総和とbcc相の(200)面、(211)面からの回折ピークの面積の総和との比を算出する。それぞれの回折ピークの面積を求める場合は、バックグランドの強度を差し引いた回折ピークの面積を求めるものとする。
When the above X-ray diffraction is performed, the X-ray is irradiated on the longitudinal section of the intermediate material. In the present application, the “longitudinal section” means a section corresponding to the evaluation surface 2 shown in FIG. 1 among the surfaces of the test piece collected from the vicinity of the center of the width of the intermediate material 1 of the stainless steel for blades as shown in FIG. That is, a cross section perpendicular to the width direction of the intermediate material. The reason why the longitudinal section is used for the evaluation is that the rolled material has anisotropy depending on the rolling direction, so that the evaluation can be performed under the same conditions by fixing the evaluation surface. Moreover, when it is set as a cutting tool, it is because a vertical cross section often corresponds to the cutting edge most required to achieve both high strength and toughness.
The test piece used for X-ray diffraction is adjusted to a test piece for X-ray diffraction by mirror-polishing the longitudinal section and further performing electrolytic polishing. Then, X-ray diffraction is performed using the above-described electropolished surface as a measurement surface, and then the sum of the areas of diffraction peaks from the (200), (220), and (311) planes of the fcc phase and (200) of the bcc phase. The ratio of the total area of diffraction peaks from the (211) plane is calculated. When obtaining the area of each diffraction peak, the area of the diffraction peak obtained by subtracting the intensity of the background is obtained.

次に、本発明の刃物用ステンレス鋼の中間素材、焼鈍材及び冷間圧延鋼帯の製造方法について説明をする。
まず、刃物用ステンレス鋼の素材を溶解・鋳造により製造する。溶解は、真空溶解、大気溶解、真空アーク再溶解、エレクトロスラグ再溶解等の方法を適用することが可能である。鋳造は、鋳型への鋳造や連続鋳造等により素材を得ることが出来る。必要に応じて得られた素材に均質化熱処理を行っても良い。さらに、熱間鍛造や熱間圧延による分塊工程を加えても良い。
その後、前記素材を熱間圧延することにより刃物用ステンレス鋼の中間素材を製造する。熱間圧延は、1100〜1250℃に加熱し、熱間圧延を行い、熱間圧延の終了温度を700〜1000℃として刃物用ステンレス鋼の中間素材を製造する。
加熱温度を1100〜1250℃としたのは、この温度域は変形抵抗が比較的低く、優れた熱間加工性を有するためである。1250℃を超えると、延性が極端に低下する温度域となり、熱間加工時に割れが発生しやすくなる。一方、1100℃未満では、熱間圧延中の材料の変形抵抗が大きく、大きな加工率での加工が困難となり、熱間加工中に再加熱を繰り返す必要が生じる。加熱温度の好ましい下限は1150℃である。
Next, the manufacturing method of the intermediate material of the stainless steel for blades of this invention, an annealing material, and a cold-rolled steel strip is demonstrated.
First, a stainless steel material for blades is manufactured by melting and casting. For melting, methods such as vacuum melting, atmospheric melting, vacuum arc remelting, electroslag remelting and the like can be applied. For casting, a material can be obtained by casting into a mold or continuous casting. You may perform the homogenization heat processing to the raw material obtained as needed. Furthermore, you may add the lump process by hot forging or hot rolling.
Then, the intermediate material of the stainless steel for blades is manufactured by hot-rolling the said raw material. In hot rolling, heating is performed to 1100 to 1250 ° C., hot rolling is performed, and an intermediate material of stainless steel for blades is manufactured by setting the end temperature of hot rolling to 700 to 1000 ° C.
The reason for setting the heating temperature to 1100 to 1250 ° C. is that this temperature range has a relatively low deformation resistance and has excellent hot workability. When it exceeds 1250 ° C., it becomes a temperature range in which the ductility is extremely lowered, and cracking is likely to occur during hot working. On the other hand, if it is less than 1100 ° C., the deformation resistance of the material during hot rolling is large, and it becomes difficult to process at a high processing rate, and it is necessary to repeat reheating during hot processing. A preferred lower limit of the heating temperature is 1150 ° C.

また、本発明において、熱間圧延の終了温度を700〜1000℃としたのは、刃物用ステンレス鋼の中間素材とするときの熱間加工性を考慮しつつ、相制御、金属組織制御を行うためである。熱間圧延の終了温度が1000℃を超えるとエックス線回折におけるfcc相からの回折ピーク面積とbcc相からの回折ピーク面積の比が30を超えてしまいfcc相の量が多くなる。fcc相の量が多すぎると、その後に実施される焼鈍において、fcc相粒界に炭化物が析出しやすくなる。また、加工終了温度が高いと残留歪が少なく、かつ、結晶粒径も大きくなりやすいことより、焼鈍においてfcc相粒界に析出する炭化物がネットワークを形成しやすくなる。
一方、熱間圧延の終了温度が700℃未満の時は、変形抵抗が大きくなり、熱間圧延が困難になるため。そのため、熱間圧延工程の加熱温度を1100〜1250℃とし、熱間圧延の終了温度を700〜1000℃とする。好ましい加熱温度の下限は1150℃、好ましい終了温度の上限は950℃、より好ましい終了温度の上限は900℃、好ましい終了温度の下限は750℃である。
In the present invention, the end temperature of hot rolling is set to 700 to 1000 ° C., phase control and metal structure control are performed in consideration of hot workability when an intermediate material of stainless steel for blades is used. Because. When the end temperature of hot rolling exceeds 1000 ° C., the ratio of the diffraction peak area from the fcc phase to the diffraction peak area from the bcc phase in X-ray diffraction exceeds 30 and the amount of the fcc phase increases. When the amount of the fcc phase is too large, carbides are likely to precipitate at the fcc phase grain boundary in the annealing performed thereafter. Further, when the processing end temperature is high, the residual strain is small and the crystal grain size tends to be large, so that carbides precipitated at the fcc phase grain boundary during annealing tend to form a network.
On the other hand, when the end temperature of hot rolling is less than 700 ° C., deformation resistance increases and hot rolling becomes difficult. Therefore, the heating temperature of the hot rolling process is set to 1100 to 1250 ° C., and the end temperature of the hot rolling is set to 700 to 1000 ° C. The lower limit of the preferable heating temperature is 1150 ° C., the upper limit of the preferable end temperature is 950 ° C., the upper limit of the more preferable end temperature is 900 ° C., and the lower limit of the preferable end temperature is 750 ° C.

上述した熱間圧延にて、熱間加工の終了温度を700〜1000℃とした刃物用ステンレス鋼の中間素材は、ランアウトテーブル上の通板中、或いは/さらに、巻取り装置で巻取っている最中に、水を用いて冷却を行うと良い。冷却は、熱間圧延の最終パス終了時点から5分以内に、巻取ったコイルを600℃以下に冷却可能な冷却スピードが得られる程度の水量で行いと良い。
これは、巻取ったコイルでは、コイルが大気に接する面で一旦冷却が進行するものの、コイル自身が有する保有熱により、一旦冷却が進行したコイル表面が再び昇温して、コイルの先端領域、中央付近及び後端領域で金属組織が互いに異なってしまうおそれがあるからである。もし、熱間圧延の最終パス終了時点から5分以内に、巻取ったコイルの一部が600℃を超えると、刃物としての靭性が低下するおそれがある。
そのため、好ましくは、熱間圧延の最終パス終了時点から5分以内に、巻取ったコイルを600℃以下とするように水によって冷却すると良い。
以上の熱間圧延工程を終えると、本発明で規定する組織を有する刃物用ステンレス鋼の中間素材を得ることができる。
In the above-mentioned hot rolling, the intermediate material of the stainless steel for blades having a hot working finish temperature of 700 to 1000 ° C. is wound in the plate on the runout table and / or by the winding device. In the middle, it is good to cool with water. Cooling may be performed within a period of 5 minutes from the end of the final pass of hot rolling with an amount of water such that a cooling speed capable of cooling the coiled coil to 600 ° C. or less is obtained.
This is because, in the wound coil, although the cooling once proceeds on the surface where the coil is in contact with the atmosphere, the coil surface once cooled is heated again by the retained heat of the coil itself, and the coil tip region, This is because the metal structures may be different from each other in the vicinity of the center and in the rear end region. If a part of the wound coil exceeds 600 ° C. within 5 minutes from the end of the final pass of hot rolling, the toughness as a blade may be lowered.
Therefore, it is preferable that the wound coil is cooled with water so that the coil temperature is 600 ° C. or less within 5 minutes from the end of the final pass of the hot rolling.
When the above hot rolling process is completed, an intermediate material of stainless steel for blades having a structure defined in the present invention can be obtained.

上述の製造方法で製造した刃物用ステンレス鋼の中間素材に700℃〜860℃で1〜100時間の最初の焼鈍を行うことにより、炭化物が析出した刃物用ステンレス鋼の焼鈍材を製造する。
さらに、上記の刃物用ステンレス鋼の焼鈍材を用いて厚さが1.0mm以下の刃物用ステンレス鋼の冷間圧延鋼帯を得る場合には、冷間圧延と焼鈍を繰り返すことにより、製造が可能となる。
上述した刃物用ステンレス鋼の冷間圧延鋼帯は、焼入れ、焼き戻し、刃付けを行い刃物とする場合は、必要に応じて焼入れ後にサブゼロ処理を行うことや、焼き戻し後表面にコーティングを行うこともある。
By performing the first annealing at 700 ° C. to 860 ° C. for 1 to 100 hours on the intermediate material of the stainless steel for blades manufactured by the above-described manufacturing method, the annealed material for stainless steel for blades in which carbides are precipitated is manufactured.
Furthermore, in the case of obtaining a cold rolled steel strip of stainless steel for blades having a thickness of 1.0 mm or less using the stainless steel annealed material for blades described above, the manufacturing can be performed by repeating cold rolling and annealing. It becomes possible.
When the above-described cold rolled steel strip of stainless steel for blades is subjected to quenching, tempering, and blade cutting to make a blade, subzero treatment is performed after quenching or coating is performed on the surface after tempering as necessary. Sometimes.

以下の実施例で本発明をさらに詳しく説明する。
真空溶解でA〜Fの6個の10kg鋼塊(素材)を作製した。A〜Fの鋼塊の化学成分を表1に示す。
The following examples further illustrate the present invention.
Six 10 kg steel ingots (materials) A to F were produced by vacuum melting. Table 1 shows chemical components of the steel ingots A to F.

Figure 2013047237
Figure 2013047237

上記のA〜Dの鋼塊から、幅45mm×長さ1000mm×厚さ20mmの熱間圧延用素材を作製した。これらの熱間圧延用素材を用いて下記の3条件で熱間圧延を行い、刃物用ステンレス鋼の中間素材を得た。
(1)A〜D素材:1180℃に加熱し、850℃で熱間圧延を終了させる工程。
(2)A〜C素材:1200℃に加熱し、1050℃で熱間圧延を終了させる工程。
(3)E、F素材:1180℃に加熱し、900℃で熱間圧延を終了させる工程。
なお、上記の(2)の熱間圧延を行ったC合金は、熱間圧延中に割れが発生したため作業を中断した。
また、今回の試験では、コイルに巻取るだけの長さが得られなかったが、熱間圧延の最終パス終了時点から5分以内に、刃物用ステンレス鋼の中間素材が600℃まで冷却されていることを確認した。
A material for hot rolling having a width of 45 mm, a length of 1000 mm, and a thickness of 20 mm was produced from the steel ingots A to D described above. Using these hot rolling materials, hot rolling was performed under the following three conditions to obtain an intermediate material of stainless steel for blades.
(1) A to D materials: a process of heating to 1180 ° C. and terminating hot rolling at 850 ° C.
(2) A to C materials: a process of heating to 1200 ° C. and finishing hot rolling at 1050 ° C.
(3) E and F materials: Step of heating to 1180 ° C. and finishing hot rolling at 900 ° C.
In addition, since the C alloy which performed the hot rolling of said (2) had a crack generate | occur | produced during hot rolling, the operation | work was interrupted.
Also, in this test, the length required to wind the coil was not obtained, but within 5 minutes from the end of the final hot rolling pass, the intermediate material of the stainless steel for blades was cooled to 600 ° C. I confirmed.

上記の刃物用ステンレス鋼の中間素材の幅の中心付近より試験片を採取した。なお、試験片の採取位置は図1で示す位置であり、評価面2として記す縦断面を金属組織観察、エックス線回折及び硬度の評価面とした。
採取した試験片の縦断面にて金属組織観察とエックス線回折におけるfcc相からの回折ピーク面積とbcc相からの回折ピーク面積の比及び硬度を測定した。なお、エックス線回折に用いる試験片は縦断面を鏡面研磨し、さらに電解研磨を行ってエックス線回折用試験片に調整した。
金属組織観察を行った素材No.1〜6の金属組織を示す図面代用写真を図2〜7に示す。また、エックス線回折におけるfcc相からの回折ピーク面積とbcc相からの回折ピーク面積の比及び硬度を表2に示す。また、表3には、fcc相およびbcc相からの回折ピーク面積を面指数ごとに示す。
A test piece was collected from the vicinity of the center of the width of the stainless steel intermediate material for the blade. The sampling position of the test piece was the position shown in FIG. 1, and the longitudinal section described as the evaluation surface 2 was used as the evaluation surface for metallographic observation, X-ray diffraction and hardness.
The ratio of the diffraction peak area from the fcc phase to the diffraction peak area from the bcc phase and the hardness in observation of the metal structure and X-ray diffraction in the longitudinal section of the collected specimen were measured. In addition, the test piece used for X-ray diffraction prepared the test piece for X-ray diffraction by carrying out the mirror surface grinding | polishing of the longitudinal section, and also performing electrolytic polishing.
The material No. which performed the metal structure observation. Drawing substitute photographs showing the metal structures of 1 to 6 are shown in FIGS. Table 2 shows the ratio and hardness of the diffraction peak area from the fcc phase and the diffraction peak area from the bcc phase in X-ray diffraction. Table 3 shows the diffraction peak areas from the fcc phase and the bcc phase for each plane index.

前述の金属組織観察は、試験片の縦断面を鏡面に研磨した後、塩化第二鉄水溶液で腐食を行い、走査型電子顕微鏡を用いて観察を行った。
エックス線回折におけるfcc相からの回折ピーク面積とbcc相からの回折ピーク面積の比は、エックス線回折におけるfcc相からの回折ピーク面積((200)面、(220)面及び(311)面からの回折ピーク面積の総和)とbcc相からの回折ピーク面積((200)面及び(211)面からの回折ピーク面積の総和)の比(fcc相からの回折ピーク面積/bcc相からの回折ピーク面積)で求めた。なお、X線回折測定には(株)リガク製RINT2500Vを使用し、線源にはCoを用いた。
硬度は、切り出した試験片を#1200研磨紙までペーパー研磨した後、ビッカース硬度計を用いて、荷重98.1(N)で測定した。なお、硬度は5点平均のデータである。
In the metal structure observation described above, the longitudinal section of the test piece was polished to a mirror surface, then corroded with an aqueous ferric chloride solution, and observed using a scanning electron microscope.
The ratio of the diffraction peak area from the fcc phase to the diffraction peak area from the bcc phase in X-ray diffraction is the diffraction peak area from the fcc phase in X-ray diffraction (diffraction from the (200) plane, (220) plane, and (311) plane). (The sum of the peak areas) and the diffraction peak area from the bcc phase (the sum of the diffraction peak areas from the (200) plane and the (211) plane)) (diffraction peak area from the fcc phase / diffraction peak area from the bcc phase) I asked for it. For the X-ray diffraction measurement, RINT2500V manufactured by Rigaku Corporation was used, and Co was used as the radiation source.
The hardness was measured with a load of 98.1 (N) using a Vickers hardness meter after the cut specimen was paper-polished to # 1200 abrasive paper. The hardness is an average of 5 points.

Figure 2013047237
Figure 2013047237

Figure 2013047237
Figure 2013047237

次に、前述の表2に示した刃物用ステンレス鋼の中間素材を用いて刃物として使用する際に適用される焼入れ、サブゼロ処理、焼戻しを行った。
刃物用ステンレス鋼の中間素材から幅40mm×長さ100mm×厚さ1mmの試験片採取用中間素材を切り出した。このとき、図1に示した圧延材の幅の中心付近を含むように試験片採取用中間素材を切り出した。
前述の試験片採取用中間素材に840℃×5時間の焼鈍を行って焼鈍材とした後、焼入れとして、1100℃×3分間保持した後に水冷を行った。さらに、前記焼入れの後、−75℃で30分保持のサブゼロ処理を行い、前記サブゼロ処理後に150℃で3分間保持した焼戻しを行った。
前記の熱処理を行った各試験片採取用中間素材から、幅5mm×長さ70mm×厚さ0.5mmの三点曲げ試験用の試験片を5個作製した。
また、図1に示す位置に相当する位置(圧延材の幅の中心付近)より他の試験片を採取し、評価面2として記す縦断面が金属組織観察及び硬度の評価面となるように試験片を採取した。金属組織写真(No.1〜6)を図8〜13、硬度、三点曲げ試験による吸収エネルギー、抗折力及びたわみを表4に示す。
金属組織観察は、評価面を鏡面に研磨した後、塩化第二鉄水溶液で腐食を行い、走査型電子顕微鏡を用いて観察を行った。三点曲げ試験は、幅5mm×長さ70mm×厚さ0.5mmの試験片をスパン50mmで測定した。なお、硬度及び三点曲げ試験は5点平均のデータである。
Next, quenching, sub-zero treatment, and tempering applied when using the intermediate material of the stainless steel for blades shown in Table 2 as a blade were performed.
An intermediate material for specimen collection having a width of 40 mm, a length of 100 mm, and a thickness of 1 mm was cut out from the stainless steel intermediate material for blades. At this time, the test piece collection intermediate material was cut out so as to include the vicinity of the center of the width of the rolled material shown in FIG.
The above-mentioned intermediate material for collecting specimens was annealed at 840 ° C. for 5 hours to obtain an annealed material, and then quenched as it was kept at 1100 ° C. for 3 minutes and then cooled with water. Further, after the quenching, sub-zero treatment was performed at -75 ° C for 30 minutes, and tempering was performed at 150 ° C for 3 minutes after the sub-zero treatment.
Five test pieces for a three-point bending test having a width of 5 mm, a length of 70 mm, and a thickness of 0.5 mm were prepared from each of the test piece collection intermediate materials subjected to the heat treatment.
Further, another test piece is taken from a position corresponding to the position shown in FIG. 1 (near the center of the width of the rolled material), and the test is performed so that the longitudinal section described as the evaluation surface 2 becomes the metal structure observation and hardness evaluation surface. Pieces were collected. The metallographic photographs (Nos. 1 to 6) are shown in Tables 4 to 13 and the hardness, absorbed energy, bending strength and deflection by a three-point bending test are shown in Table 4.
In the metal structure observation, the evaluation surface was polished to a mirror surface, then corroded with an aqueous ferric chloride solution, and observed using a scanning electron microscope. In the three-point bending test, a test piece having a width of 5 mm, a length of 70 mm, and a thickness of 0.5 mm was measured with a span of 50 mm. The hardness and the three-point bending test are average data for five points.

Figure 2013047237
Figure 2013047237

表2及び表4から、刃物用ステンレス鋼中間素材に焼鈍−焼入れ−サブゼロ処理−焼戻しの熱処理をおこなったエックス線回折におけるfcc相からの回折ピーク面積とbcc相からの回折ピーク面積の比が30以下の場合においては、焼鈍−焼入れ−サブゼロ処理−焼戻しの熱処理を行った後でも高硬度を維持しつつ、三点曲げ試験の吸収エネルギで評価される靭性が優れることが確認される。
これは、焼鈍−焼入れ−サブゼロ処理−焼戻しという熱処理を行った後の金属組織の違いによるものと考えることができる。具体的には、刃物用ステンレス鋼圧延材のエックス線回折におけるfcc相からの回折ピーク面積とbcc相からの回折ピーク面積の比が30を超える場合、図9および図11より確認されるように、熱処理後の刃物用ステンレス鋼圧延材のアスペクト比の高い炭化物が粒界に連なっていて靭性低下をもたらしているものと考えられる。
一方、エックス線回折におけるfcc相からの回折ピーク面積とbcc相からの回折ピーク面積の比が30以下の場合には、図8、図10、図12および図13より確認されるように、熱処理後の炭化物がより均質に分散され靭性の点でより好ましい組織となっているからであると考えられる。
これらの結果より、本発明の刃物用ステンレス鋼中間素材は焼鈍−焼入れ−サブゼロ処理−焼戻しの熱処理を行うことにより、刃物として高硬度で高靭性であることが確認される。
また、エックス線回折におけるfcc相からの回折ピーク面積とbcc相からの回折ピーク面積の比に加えて、Bを0.0050%以下含有することにより、硬度と靭性のバランスがより優れることがわかる。
From Tables 2 and 4, the ratio of the diffraction peak area from the fcc phase to the diffraction peak area from the bcc phase in X-ray diffraction in which annealing, quenching, sub-zero treatment, and tempering heat treatment were performed on the stainless steel intermediate material for blades was 30 or less. In this case, it is confirmed that the toughness evaluated by the absorbed energy of the three-point bending test is excellent while maintaining high hardness even after the annealing-quenching-sub-zero treatment-tempering heat treatment.
This can be considered to be due to the difference in the metal structure after the heat treatment of annealing, quenching, sub-zero treatment, and tempering. Specifically, when the ratio of the diffraction peak area from the fcc phase to the diffraction peak area from the bcc phase in the X-ray diffraction of the stainless steel rolled material for blades exceeds 30, as confirmed from FIG. 9 and FIG. It is considered that carbide with a high aspect ratio of the stainless steel rolled material for blades after heat treatment is connected to the grain boundary, resulting in a decrease in toughness.
On the other hand, when the ratio of the diffraction peak area from the fcc phase to the diffraction peak area from the bcc phase in X-ray diffraction is 30 or less, as confirmed from FIG. 8, FIG. 10, FIG. 12, and FIG. This is considered to be because the carbides of the above are more uniformly dispersed and have a more preferable structure in terms of toughness.
From these results, it is confirmed that the stainless steel intermediate material for blades of the present invention has high hardness and high toughness as a blade by performing annealing-quenching-sub-zero treatment-tempering heat treatment.
In addition to the ratio of the diffraction peak area from the fcc phase to the diffraction peak area from the bcc phase in X-ray diffraction, it can be seen that the balance between hardness and toughness is further improved by containing 0.0050% or less of B.

次に、前述のNo.1およびNo.3で示した刃物用ステンレス鋼の中間素材から幅40mm×長さ100mm×厚さ1.5mmの試験片採取用中間素材を切り出した。このとき、図1に示した中間素材の幅の中心付近を含むように試験片採取用中間素材を切り出した。
前述の試験片採取用中間素材に840℃で10時間の焼鈍処理を行った後、小型冷間圧延機で冷間圧延を実施したところ、厚さが0.075mmとなるまで破断することなく冷間圧延材を得ることが可能であった。これにより、冷間圧延鋼帯とすることも可能であることが確認された。
次に、前述の冷間圧延材に焼入れとして、1100℃×40秒間保持した後に水冷を行った。さらに、前述の焼入れの後、−75℃で30分保持のサブゼロ処理を行い、前記サブゼロ処理後に150℃で30秒間保持した焼戻しを行った。
前述の冷間圧延材および焼鈍−焼入れ−サブゼロ処理−焼戻しを行った熱処理後の試験片採取用素材を用いて、図1に示す位置に相当する位置(圧延材の幅の中心付近)より試験片を採取し、評価面2として示す縦断面が金属組織観察及び硬度の評価面となるように試験片を採取した。前述の熱処理前後の金属組織(No.1および3)を示す図面代用写真を図14〜17に、硬度を表5にそれぞれ示す。
Next, the above-mentioned No. 1 and no. An intermediate material for specimen collection having a width of 40 mm, a length of 100 mm, and a thickness of 1.5 mm was cut out from the intermediate material of the stainless steel for blades shown in FIG. At this time, the test piece collection intermediate material was cut out so as to include the vicinity of the center of the width of the intermediate material shown in FIG.
The intermediate material for collecting specimens described above was annealed at 840 ° C. for 10 hours, and then cold-rolled with a small cold rolling mill, and was cooled without breaking until the thickness reached 0.075 mm. It was possible to obtain a hot rolled material. Thereby, it was confirmed that it is possible to use a cold-rolled steel strip.
Next, the above-mentioned cold-rolled material was quenched and held at 1100 ° C. for 40 seconds, followed by water cooling. Further, after the above quenching, sub-zero treatment was performed at -75 ° C for 30 minutes, and tempering was performed at 150 ° C for 30 seconds after the sub-zero treatment.
Using the above-mentioned cold-rolled material and annealing-quenching-sub-zero treatment-tempered test piece collection material after heat treatment, the test is performed from the position corresponding to the position shown in FIG. 1 (near the center of the width of the rolled material). A piece was taken and a test piece was taken so that the vertical cross section shown as the evaluation surface 2 was a metal structure observation and hardness evaluation surface. Drawing substitute photographs showing the metal structures (Nos. 1 and 3) before and after the heat treatment are shown in FIGS.

Figure 2013047237
Figure 2013047237

図14〜17及び表5の結果から、本発明の冷間圧延材並びに焼入れ、サブゼロ処理及び焼戻し後の刃物用ステンレス鋼は、靭性を劣化させるアスペクト比の高い炭化物は見られず、良好な靭性が得られる球状の炭化物が微細に分散していることが分かる。また、焼入れ、サブゼロ処理及び焼戻し後の硬さも790HV以上の高硬度が得られている。
以上の結果から、本発明の刃物用ステンレス鋼の中間素材を用いて焼鈍、冷間圧延を行い、さらに焼入れ、サブゼロ処理及び焼戻しを行うことで、刃物に好適な金属組織及び硬度を実現できることが確認された。
From the results of FIGS. 14 to 17 and Table 5, the cold-rolled material of the present invention and the stainless steel for blades after quenching, sub-zero treatment and tempering did not show carbide with high aspect ratio that deteriorates toughness, and good toughness. It turns out that the spherical carbide | carbonized_material obtained from is disperse | distributing finely. Further, the hardness after quenching, sub-zero treatment, and tempering is as high as 790 HV or higher.
From the above results, it is possible to realize a metal structure and hardness suitable for a blade by performing annealing and cold rolling using the intermediate material of the stainless steel for blades of the present invention, and further quenching, subzero treatment and tempering. confirmed.

本発明の刃物用ステンレス鋼の中間素材及び冷間圧延鋼帯を用いて製造した刃物は硬度及び靭性に優れるため、剃刀等への適用が期待できる。   Since the blade manufactured using the intermediate material of the stainless steel for blades of the present invention and the cold rolled steel strip is excellent in hardness and toughness, application to a razor or the like can be expected.

1 刃物用ステンレス鋼の中間素材
2 縦断面
1 Intermediate material of stainless steel for blades 2 Longitudinal section

Claims (6)

熱間圧延後焼鈍前の刃物用ステンレス鋼の中間素材であって、組成が質量%でC:0.46〜0.72%、Si:0.15〜0.55%、Mn:0.45〜1.00%、Cr:12.5〜13.9%、Mo:0〜1.5%、B:0〜0.012%、残部はFe及び不純物からなり、縦断面のエックス線回折におけるfcc相からの回折ピーク面積((200)面、(220)面及び(311)面からの回折ピーク面積の総和)とbcc相からの回折ピーク面積((200)面及び(211)面からの回折ピーク面積の総和)の比(fcc相からの回折ピーク面積/bcc相からの回折ピーク面積)が30以下であることを特徴とする刃物用ステンレス鋼の中間素材。   It is an intermediate material of stainless steel for blades after hot rolling and before annealing, and the composition is mass%, C: 0.46-0.72%, Si: 0.15-0.55%, Mn: 0.45 1.00%, Cr: 12.5 to 13.9%, Mo: 0 to 1.5%, B: 0 to 0.012%, the balance is Fe and impurities, and fcc in X-ray diffraction of the longitudinal section. Diffraction peak area from phase (sum of diffraction peak areas from (200) plane, (220) plane and (311) plane) and diffraction peak area from bcc phase (diffraction from (200) plane and (211) plane) An intermediate material for stainless steel for blades, characterized in that the ratio of the sum of peak areas (diffraction peak area from fcc phase / diffraction peak area from bcc phase) is 30 or less. Bを0.0005〜0.0050%の範囲で含有することを特徴とする請求項1に記載の刃物用ステンレス鋼の中間素材。   The intermediate material for stainless steel for blades according to claim 1, wherein B is contained in a range of 0.0005 to 0.0050%. 熱間圧延後焼鈍前の刃物用ステンレス鋼の中間素材の製造方法であって、組成が質量%でC:0.46〜0.72%、Si:0.15〜0.55%、Mn:0.45〜1.00%、Cr:12.5〜13.9%、Mo:0〜1.5%、B:0〜0.012%、残部はFe及び不純物からなる素材を1100〜1250℃に加熱し、熱間圧延終了温度を700〜1000℃とする熱間圧延を行って、縦断面のエックス線回折におけるfcc相からの回折ピーク面積((200)面、(220)面及び(311)面からの回折ピーク面積の総和)とbcc相からの回折ピーク面積((200)面及び(211)面からの回折ピーク面積の総和)の比(fcc相からの回折ピーク面積/bcc相からの回折ピーク面積)が30以下の中間素材とすることを特徴とする刃物用ステンレス鋼の中間素材の製造方法。   It is a manufacturing method of the intermediate material of the stainless steel for blades after a hot rolling and before annealing, Comprising: The composition is mass%. C: 0.46-0.72%, Si: 0.15-0.55%, Mn: 0.45 to 1.00%, Cr: 12.5 to 13.9%, Mo: 0 to 1.5%, B: 0 to 0.012%, the balance being Fe and impurities 1100 to 1250 The film is heated to 0 ° C. and subjected to hot rolling with a hot rolling end temperature of 700 to 1000 ° C., and diffraction peak areas ((200) plane, (220) plane and (311) from the fcc phase in X-ray diffraction of the longitudinal section are obtained. ) The ratio of the diffraction peak area from the plane) to the diffraction peak area from the bcc phase (the sum of the diffraction peak areas from the (200) plane and (211) plane) (from the diffraction peak area from the fcc phase / bcc phase) The diffraction peak area) is 30 or less. Intermediate material manufacturing method of the cutlery stainless steel characterized by and. Bを0.0005〜0.0050%の範囲で含有することを特徴とする請求項3に記載の刃物用ステンレス鋼の中間素材の製造方法。   B is contained in 0.0005 to 0.0050% of range, The manufacturing method of the intermediate material of the stainless steel for blades of Claim 3 characterized by the above-mentioned. 請求項3または4に記載の製造方法によって製造された刃物用ステンレス鋼の中間素材に対して800〜860℃で1〜100時間の焼鈍を行うことを特徴とする刃物用ステンレス鋼の焼鈍材の製造方法。   An intermediate for stainless steel for blades manufactured by the manufacturing method according to claim 3 or 4 is annealed at 800 to 860 ° C for 1 to 100 hours. Production method. 請求項5に記載の製造方法によって製造された刃物用ステンレス鋼の焼鈍材に対して冷間圧延と焼鈍を行って、厚さを1.0mm未満とすることを特徴とする刃物用ステンレス鋼の冷間圧延鋼帯の製造方法。   Cold-rolling and annealing are performed on the annealed stainless steel material for blades manufactured by the manufacturing method according to claim 5 to make the thickness less than 1.0 mm. A method of manufacturing a cold rolled steel strip.
JP2013513470A 2011-09-26 2012-09-14 Stainless steel for blades and method for producing the same Active JP5333695B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013513470A JP5333695B1 (en) 2011-09-26 2012-09-14 Stainless steel for blades and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011208430 2011-09-26
JP2011208430 2011-09-26
JP2013513470A JP5333695B1 (en) 2011-09-26 2012-09-14 Stainless steel for blades and method for producing the same
PCT/JP2012/073621 WO2013047237A1 (en) 2011-09-26 2012-09-14 Stainless steel for cutlery and manufacturing process therefor

Publications (2)

Publication Number Publication Date
JP5333695B1 JP5333695B1 (en) 2013-11-06
JPWO2013047237A1 true JPWO2013047237A1 (en) 2015-03-26

Family

ID=47995270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013513470A Active JP5333695B1 (en) 2011-09-26 2012-09-14 Stainless steel for blades and method for producing the same

Country Status (5)

Country Link
US (1) US20140294662A1 (en)
EP (1) EP2762595B1 (en)
JP (1) JP5333695B1 (en)
CN (1) CN103827339B (en)
WO (1) WO2013047237A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104838031B (en) * 2013-03-25 2017-05-10 日立金属株式会社 Intermediate material for stainless steel for knives
CN105568169A (en) * 2016-01-19 2016-05-11 溧阳市金昆锻压有限公司 Martensitic stainless steel circular mould
JP6635890B2 (en) * 2016-07-15 2020-01-29 日鉄ステンレス株式会社 Martensitic stainless steel sheet for cutting tools with excellent manufacturability and corrosion resistance
CN109563584A (en) * 2016-09-16 2019-04-02 日立金属株式会社 Cutter raw material
DE102017003965B4 (en) * 2017-04-25 2019-12-12 Zapp Precision Metals Gmbh Martensitic chrome steel, steel foil, perforated and / or perforated steel foil component, process for producing a steel foil
CN107130186B (en) * 2017-05-25 2019-06-18 湖北东舟重工科技股份有限公司 A kind of high-hardenability die steel and its preparation process
CN107699815B (en) * 2017-11-27 2019-08-30 上海大学 High hardness high toughness cutlery stainless steel and preparation method thereof
KR102282041B1 (en) * 2019-03-12 2021-07-28 한국과학기술연구원 Ferritic stainless steels with high strength and toughness and method of manufacturing the same
CN110004380A (en) * 2019-04-04 2019-07-12 山东泰山钢铁集团有限公司 A kind of shear steel containing molybdenum
WO2021220754A1 (en) * 2020-04-30 2021-11-04 Jfeスチール株式会社 Stainless steel sheet, method for producing same, edged tools and cutlery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69011118T2 (en) * 1990-11-10 1995-03-30 Hitachi Metals Ltd Corrosion-resistant steel for razor blades, razor blades and manufacturing processes.
JP3354163B2 (en) * 1991-08-05 2002-12-09 日立金属株式会社 Stainless steel for razor and method for producing the same
JPH0920923A (en) * 1995-07-05 1997-01-21 Sumitomo Metal Ind Ltd Production of high carbon stainless steel plate
TW338729B (en) * 1996-09-30 1998-08-21 Kawasaki Steel Co Hot roll stainless steel tape and the manufacturing method
EP1225242B1 (en) * 2001-01-18 2004-04-07 JFE Steel Corporation Ferritic stainless steel sheet with excellent workability and method for making the same
DE602005003979T2 (en) * 2004-04-27 2009-01-08 Hitachi Metals, Ltd. Steel band for an exchange blade and its manufacture
JP4857811B2 (en) * 2006-02-27 2012-01-18 Jfeスチール株式会社 Steel for knives
JP5365997B2 (en) * 2008-04-09 2013-12-11 日立金属株式会社 Method for producing stainless steel strip for blades
CN101643886B (en) * 2009-08-31 2013-09-18 武汉钢铁(集团)公司 Stainless steel for cutter and manufacture method thereof

Also Published As

Publication number Publication date
EP2762595B1 (en) 2018-07-04
WO2013047237A1 (en) 2013-04-04
US20140294662A1 (en) 2014-10-02
CN103827339B (en) 2015-04-01
EP2762595A1 (en) 2014-08-06
JP5333695B1 (en) 2013-11-06
CN103827339A (en) 2014-05-28
EP2762595A4 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5333695B1 (en) Stainless steel for blades and method for producing the same
JP4857811B2 (en) Steel for knives
JP5645151B1 (en) Stainless steel intermediate material for blades
JP3354163B2 (en) Stainless steel for razor and method for producing the same
CN115003841A (en) Steel sheet, member, and method for producing same
JP5660417B1 (en) Manufacturing method of steel for blades
EP2982773B1 (en) Steel for blades and method for producing same
JP7444018B2 (en) Steel plates, their manufacturing methods, and members
JP6044870B2 (en) Manufacturing method of steel strip for blades
KR102282588B1 (en) material for blade
CN115461481B (en) Stainless steel plate, method for producing same, cutter, and tableware
JPH06145907A (en) Steel for stainless razor excellent in hardenability
JP7196837B2 (en) Method for manufacturing steel strip for cutlery and steel strip for cutlery
TWI747722B (en) Matian bulk iron series stainless steel plate and matian bulk iron series stainless steel components
KR101558646B1 (en) Thick steel plate excellent in toughness and strain aging property
JPS60177134A (en) Production of stainless steel blade

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Ref document number: 5333695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350