JPWO2013035356A1 - Crystal manufacturing method - Google Patents

Crystal manufacturing method Download PDF

Info

Publication number
JPWO2013035356A1
JPWO2013035356A1 JP2013532465A JP2013532465A JPWO2013035356A1 JP WO2013035356 A1 JPWO2013035356 A1 JP WO2013035356A1 JP 2013532465 A JP2013532465 A JP 2013532465A JP 2013532465 A JP2013532465 A JP 2013532465A JP WO2013035356 A1 JPWO2013035356 A1 JP WO2013035356A1
Authority
JP
Japan
Prior art keywords
film
region
film formation
raw material
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013532465A
Other languages
Japanese (ja)
Inventor
吉川 潤
潤 吉川
克宏 今井
克宏 今井
七瀧 努
七瀧  努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2013532465A priority Critical patent/JPWO2013035356A1/en
Publication of JPWO2013035356A1 publication Critical patent/JPWO2013035356A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride

Abstract

本発明の結晶製造方法は、成膜を実行する成膜実行領域と加熱を実行する加熱実行領域との間に、成膜済みである成膜済領域又は結晶化済みである結晶化済領域が存在する状態で成膜処理と加熱処理とを並行して実行する。成膜処理は、例えば、大気圧より低い気圧の雰囲気中で原料粉体を種基板21上に噴射するエアロゾルデポジション法で行ってもよい。加熱処理は、加熱装置40からのレーザーなどの照射によって行ってもよい。この成膜結晶化工程では、成膜実行領域と加熱実行領域との間に5mm以上の幅を有する領域が存在する状態で、成膜処理及び加熱処理を実行することが好ましい。In the crystal manufacturing method of the present invention, a film-formed region that has been formed or a crystallized region that has been crystallized is between the film-forming region where film formation is performed and the heat-execution region where heating is performed. In the existing state, the film forming process and the heating process are executed in parallel. The film forming process may be performed, for example, by an aerosol deposition method in which the raw material powder is sprayed onto the seed substrate 21 in an atmosphere at a pressure lower than the atmospheric pressure. The heat treatment may be performed by irradiation with a laser or the like from the heating device 40. In this film formation crystallization process, it is preferable to perform the film formation process and the heat treatment in a state where there is an area having a width of 5 mm or more between the film formation execution area and the heat execution area.

Description

本発明は、結晶製造方法に関する。   The present invention relates to a crystal manufacturing method.

従来、結晶製造方法としては、作製する単結晶の原料融液を調製し、種となる単結晶に析出させる方法がある。しかしながら、この方法では、ZnOなどの高融点酸化物や、窒化物(例えばGaN)や炭化物(例えばSiC)など、融点が非常に高い、もしくは分解しやすい材料では適用が困難であった。そこで、例えばGaNでは、Naをフラックスとして原料を溶解し、種に析出させ単結晶を得るNaフラックス法が提案されている(例えば、特許文献1参照)。また、サファイアなどの異種基板上にハイドライド気相成長法(Hydride Vapor Phase Epitaxy)を用いてGaN層を形成し、GaN層の成長後に異種基板を除去することにより自立したGaNの単結晶基板を得る方法が提案されている(例えば、特許文献2参照)。あるいは、原料粉体のエアロゾルを単結晶基板上に噴射して基板上に原料成分を含む膜を形成させたのち、熱処理を行うことにより単結晶を成長させるエアロゾルデポジション法が提案されている(例えば、特許文献3参照)。   Conventionally, as a crystal manufacturing method, there is a method of preparing a raw material melt of a single crystal to be produced and precipitating it on a seed single crystal. However, this method has been difficult to apply to materials having a very high melting point or being easily decomposed, such as high melting point oxides such as ZnO, nitrides (for example, GaN), and carbides (for example, SiC). Therefore, for example, in GaN, a Na flux method has been proposed in which a raw material is dissolved using Na as a flux and precipitated into seeds to obtain a single crystal (see, for example, Patent Document 1). Further, a GaN layer is formed on a heterogeneous substrate such as sapphire using a hydride vapor phase epitaxy, and the heterogeneous substrate is removed after the growth of the GaN layer to obtain a self-supporting GaN single crystal substrate. A method has been proposed (see, for example, Patent Document 2). Alternatively, an aerosol deposition method has been proposed in which an aerosol of raw material powder is sprayed onto a single crystal substrate to form a film containing the raw material component on the substrate, and then a single crystal is grown by performing a heat treatment ( For example, see Patent Document 3).

米国特許第5868837号US Pat. No. 5,868,837 特開2003−178984号公報JP 2003-178984 A 特開2006−298747号公報JP 2006-298747 A

しかしながら、この特許文献1に記載された結晶製造方法では、例えば0.02mm/h以下と成長速度が遅いということがあった。また、特許文献2に記載された結晶製造方法では、気相成長であり、数ミリメートル以上の厚いバルク単結晶を形成することが困難であることがあった。特許文献3に記載された結晶製造方法では、単結晶からなる基板に膜を形成させたのち、熱処理を行い単結晶を成長させるという工程を繰り返し行うため、効率よく良好な結晶を得るには、まだ十分ではなかった。   However, the crystal manufacturing method described in Patent Document 1 sometimes has a slow growth rate of, for example, 0.02 mm / h or less. Moreover, in the crystal manufacturing method described in Patent Document 2, it is vapor phase growth, and it may be difficult to form a thick bulk single crystal of several millimeters or more. In the crystal manufacturing method described in Patent Document 3, a process of forming a film on a substrate made of a single crystal and then performing a heat treatment to grow the single crystal is repeated. Therefore, in order to obtain a good crystal efficiently, It wasn't enough yet.

本発明は、このような課題に鑑みなされたものであり、より良好な結晶をより効率よく作製することができる結晶製造方法を提供することを主目的とする。   This invention is made | formed in view of such a subject, and it aims at providing the crystal manufacturing method which can produce a more favorable crystal | crystallization more efficiently.

上述した主目的を達成するために鋭意研究したところ、本発明者らは、種基板に原料粉体を噴射して成膜する成膜処理と種基板上に形成された膜を照射熱で結晶化する加熱処理とを同時並行で行うと共に、成膜処理の領域と加熱処理を行う領域とを所定の距離を設けて各処理を行うと、より良好な結晶をより効率的に作製することができることを見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the main object described above, the present inventors have made a film formation process by spraying a raw material powder onto a seed substrate and the film formed on the seed substrate is crystallized by irradiation heat. If the heat treatment is performed simultaneously in parallel, and each treatment is performed with a predetermined distance between the film formation treatment region and the heat treatment region, a better crystal can be produced more efficiently. The inventors have found what can be done and have completed the present invention.

即ち、本発明の結晶製造方法は、
単結晶を含む種基板上に原料成分を含む原料粉体をノズルから噴射して該原料成分を含む膜の形成を実行する成膜実行領域と、前記種基板上に前記原料成分を含む膜を形成済みである成膜済領域と、前記種基板上に形成された前記膜を照射熱により加熱を実行し該膜を結晶化させる加熱実行領域と、が前記種基板上に存在し、
前記成膜実行領域と前記加熱実行領域との間に、前記成膜済領域又は前記結晶化を実行済みの結晶化済領域が存在する状態で、前記種基板の前記成膜実行領域上に前記原料粉体を前記ノズルから噴射する成膜処理と、前記種基板上に前記膜が形成された前記加熱実行領域を照射熱により加熱し該膜を結晶化させる加熱処理とを並行して実行する成膜結晶化工程、を含むものである。
That is, the crystal production method of the present invention comprises:
A film forming execution region in which a raw material powder containing a raw material component is sprayed from a nozzle on a seed substrate containing a single crystal to form a film containing the raw material component, and a film containing the raw material component on the seed substrate A film-formed region that has been formed, and a heating execution region in which the film formed on the seed substrate is heated by irradiation heat to crystallize the film exist on the seed substrate,
The film formation region or the crystallized region that has been crystallized is present between the film formation region and the heating execution region on the film formation region of the seed substrate. A film forming process for injecting raw material powder from the nozzle and a heating process for heating the heating execution region where the film is formed on the seed substrate by irradiation heat to crystallize the film are executed in parallel. A film-forming crystallization step.

本発明の結晶製造方法は、より良好な結晶をより効率よく作製することができる。この理由は定かではないが、以下のように推察される。例えば、減圧下で行うエアロゾルデポジション法(AD法)や加圧下で行うパウダージェットデポジション法(PJD法)などでは、基板に衝突した粉末が衝撃力により塑性変形することで緻密に固着する現象を繰り返すことで成膜する。ここで、一般的に、種基板が高温であり、原料粉体を含む気流が低温である場合、種基板と原料粉体の気流との温度差により基板表面から気流が押し返されるという現象を含む熱泳動効果の影響により、成膜が困難となることが知られている(非特許文献1:「エアロゾルデポジション法の基礎から応用まで」シーエムシー出版p.8−11(2008))。本発明の結晶製造方法では、成膜実行領域と加熱実行領域との間に、成膜済領域又は結晶化済領域が存在する状態で、成膜処理と加熱処理とを並行して実行するため、上述の熱泳動効果の影響をより低減して成膜することができる。したがって、より良好な結晶を作製することができる。また、照射熱を用いることから、成膜実行領域では温度を一定以下に保ちつつ(緻密膜を形成可能な条件を維持しつつ)、成膜実行領域から離れた加熱実行領域では膜を局所加熱することにより結晶化を進めることができる。このように、成膜処理と加熱処理とを並行して実行することができる。このため、効率よく結晶化を行うことができる。また、所定の順序で成膜処理、加熱処理を繰り返すことにより、連続的な結晶成長が可能である。   The crystal production method of the present invention can produce better crystals more efficiently. The reason for this is not clear, but is presumed as follows. For example, in the aerosol deposition method (AD method) performed under reduced pressure and the powder jet deposition method (PJD method) performed under pressure, a phenomenon in which powder that collides with a substrate is densely fixed by plastic deformation due to impact force. The film is formed by repeating the above. Here, in general, when the seed substrate is at a high temperature and the air flow including the raw material powder is at a low temperature, the phenomenon that the air flow is pushed back from the substrate surface due to the temperature difference between the seed substrate and the air flow of the raw material powder. It is known that film formation becomes difficult due to the effect of the thermophoresis effect including (Non-patent Document 1: “From the basics to the application of the aerosol deposition method”, CMC Publications p.8-11 (2008)). In the crystal manufacturing method of the present invention, the film formation process and the heat treatment are performed in parallel in a state where the film formation area or the crystallized area exists between the film formation execution area and the heating execution area. It is possible to form a film while further reducing the influence of the above-described thermophoresis effect. Therefore, a better crystal can be produced. In addition, because of the use of irradiation heat, the film is locally heated in the heating execution area away from the film formation execution area while keeping the temperature below a certain level in the film formation execution area (maintaining the conditions under which a dense film can be formed). By doing so, crystallization can proceed. Thus, the film forming process and the heat treatment can be performed in parallel. For this reason, crystallization can be performed efficiently. Moreover, continuous crystal growth is possible by repeating the film formation process and the heat treatment in a predetermined order.

結晶製造装置20の構成の概略を示す構成図。The block diagram which shows the outline of a structure of the crystal manufacturing apparatus 20. FIG. 種基板21上に形成された領域の説明図。Explanatory drawing of the area | region formed on the seed substrate 21. FIG. 成膜結晶化工程の説明図。Explanatory drawing of a film-forming crystallization process. 別の成膜結晶化工程の説明図。Explanatory drawing of another film-forming crystallization process. 結晶製造装置50の構成の概略を示す構成図。The block diagram which shows the outline of a structure of the crystal manufacturing apparatus 50. FIG.

次に、本発明を実施するための形態を図面を用いて説明する。図1は、本発明の結晶製造方法に用いる結晶製造装置20の構成の概略を示す構成図である。結晶製造装置20は、大気圧より低い気圧の雰囲気下で原料粉体を種基板上に噴射するエアロゾルデポジション法(AD法)に用いられる装置として構成されている。この結晶製造装置20は、原料成分を含む原料粉体のエアロゾルを生成するエアロゾル生成部22と、原料粉体を種基板21に噴射して原料成分を含む膜を形成すると共にこの膜を結晶化させる結晶生成部30と、種基板21上に形成された膜を照射熱により加熱する加熱装置40と、を備えている。   Next, modes for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing an outline of the configuration of a crystal manufacturing apparatus 20 used in the crystal manufacturing method of the present invention. The crystal manufacturing apparatus 20 is configured as an apparatus used in an aerosol deposition method (AD method) in which a raw material powder is jetted onto a seed substrate in an atmosphere at a pressure lower than atmospheric pressure. The crystal manufacturing apparatus 20 forms an aerosol generating unit 22 that generates an aerosol of raw material powder containing raw material components, and forms a film containing the raw material components by injecting the raw material powder onto the seed substrate 21 and crystallizes this film. And a heating device 40 that heats a film formed on the seed substrate 21 with irradiation heat.

エアロゾル生成部22は、原料粉体を収容し図示しないガスボンベからの搬送ガスの供給を受けてエアロゾルを生成するエアロゾル生成室23と、生成したエアロゾルを結晶生成部30へ供給する原料供給管24とを備えている。結晶生成部30は、種基板21を内包しこの種基板21に減圧条件下でエアロゾルを噴射する成膜室31と、成膜室31の内部に配設され種基板21を固定する基板設置ステージ34と、基板設置ステージ34をX軸−Y軸方向に移動するX−Yステージ33と、を備えている。また、結晶生成部30は、先端に矩形状のスリット37が形成されエアロゾルを種基板21へ噴射する噴射ノズル36と、成膜室31を減圧する真空ポンプ38と、を備えている。成膜室31の上部には、加熱装置40と基板設置ステージ34との間に透過窓32が配設されており、加熱装置40からのレーザーを基板設置ステージ34上に照射可能となっている。   The aerosol generation unit 22 contains a raw material powder, receives an supply of a carrier gas from a gas cylinder (not shown), and generates an aerosol, and a raw material supply pipe 24 that supplies the generated aerosol to the crystal generation unit 30. It has. The crystal generation unit 30 includes a seed substrate 21, a film formation chamber 31 that injects aerosol into the seed substrate 21 under reduced pressure conditions, and a substrate installation stage that is disposed inside the film formation chamber 31 and fixes the seed substrate 21. 34 and an XY stage 33 that moves the substrate placement stage 34 in the X-axis-Y-axis direction. Further, the crystal generation unit 30 includes a spray nozzle 36 that has a rectangular slit 37 formed at the tip thereof and sprays aerosol onto the seed substrate 21, and a vacuum pump 38 that decompresses the film forming chamber 31. In the upper part of the film forming chamber 31, a transmission window 32 is disposed between the heating device 40 and the substrate setting stage 34, so that the laser from the heating device 40 can be irradiated onto the substrate setting stage 34. .

加熱装置40は、成膜室31の外部から種基板21上に形成された成膜体を加熱するものであり、照射範囲を調整可能な光学系41と、加熱用のレーザーを発生するレーザー発生装置42とを備えている。光学系41は、複数のレンズなどにより構成されており、成膜室31の上部に設けられた透過窓32を介して基板設置ステージ34上の任意領域にレーザーの焦点を合わせる機能を有している。レーザー発生装置42は、加熱源としてのレーザーを発振して出力する装置である。このレーザー発生装置42は、CO2レーザーを出力するよう構成されている。なお、加熱源は特に限定されるものではなく、例えばCO2レーザーのほか、YAGレーザー、エキシマレーザー、半導体レーザーといった各種レーザーに加え、赤外線ランプなどを適用可能である。この加熱装置40は、照射領域を光学系41で設定したのち、レーザー発生装置42から出力されたレーザーを光学系41、透過窓32を介して、基板設置ステージ34に設置された種基板21上に形成された膜に照射してこの膜を加熱する。The heating device 40 heats the film-formed body formed on the seed substrate 21 from the outside of the film-forming chamber 31, and includes an optical system 41 that can adjust the irradiation range, and a laser generator that generates a heating laser. Device 42. The optical system 41 is constituted by a plurality of lenses and the like, and has a function of focusing a laser on an arbitrary region on the substrate installation stage 34 through a transmission window 32 provided on the upper part of the film forming chamber 31. Yes. The laser generator 42 is a device that oscillates and outputs a laser as a heating source. The laser generator 42 is configured to output a CO 2 laser. The heating source is not particularly limited. For example, in addition to a CO 2 laser, an infrared lamp can be applied in addition to various lasers such as a YAG laser, an excimer laser, and a semiconductor laser. The heating device 40 sets the irradiation area by the optical system 41, and then transmits the laser output from the laser generator 42 on the seed substrate 21 installed on the substrate installation stage 34 via the optical system 41 and the transmission window 32. This film is heated by irradiating the formed film.

この結晶製造装置20では、種基板21上に膜を形成して結晶化を行う工程を並行的に繰り返し実行する。図2は、種基板21上に形成された領域の説明図である。種基板21上には、種基板21上に生成した結晶を含む成膜体10が形成されている。種基板21(成膜体10)上には、成膜実行領域12と、成膜済領域13と、加熱実行領域14と、結晶化済領域15のほか図示しない未処理領域が存在する。成膜実行領域12は、種基板21上に原料成分を含む原料粉体を噴射ノズル36から噴射して原料成分を含む膜の形成を実行する領域である。成膜済領域13は、種基板21上に原料成分を含む膜を形成済みである領域である。加熱実行領域14は、種基板21上に形成された膜を加熱して結晶化させる領域である。この加熱実行領域14は、光学系41により設定された加熱領域45に対して加熱装置40からレーザーを照射し、この照射熱により結晶化を実行する領域である。結晶化済領域15は、加熱処理を実行し、結晶化済みの領域である。未処理領域は、上記処理を行っていない領域であり、2層目の膜形成時からは存在しなくなる領域である。成膜実行領域12、成膜済領域13、加熱実行領域14及び結晶化済領域15は、それぞれが同じ幅である矩形状の領域としてもよい。こうすれば、後述する成膜処理や加熱処理などを並行して行いやすい。   In the crystal manufacturing apparatus 20, a process of forming a film on the seed substrate 21 and performing crystallization is repeatedly executed in parallel. FIG. 2 is an explanatory diagram of a region formed on the seed substrate 21. On the seed substrate 21, the film forming body 10 including the crystals generated on the seed substrate 21 is formed. On the seed substrate 21 (film formation body 10), there are a film formation execution region 12, a film formation region 13, a heat execution region 14, a crystallized region 15, and an unprocessed region (not shown). The film formation execution area 12 is an area in which a raw material powder containing a raw material component is sprayed from the injection nozzle 36 onto the seed substrate 21 to form a film containing the raw material component. The film-formed region 13 is a region where a film containing a raw material component has been formed on the seed substrate 21. The heating execution region 14 is a region for heating and crystallizing the film formed on the seed substrate 21. The heating execution area 14 is an area in which laser is irradiated from the heating device 40 to the heating area 45 set by the optical system 41 and crystallization is executed by the irradiation heat. The crystallized region 15 is a region that has been crystallized after heat treatment. The unprocessed area is an area where the above processing is not performed, and is an area that does not exist after the formation of the second layer film. The film formation area 12, the film formation area 13, the heat execution area 14, and the crystallized area 15 may be rectangular areas having the same width. In this way, it is easy to perform a film forming process and a heating process described later in parallel.

次に、この結晶製造装置20を利用する結晶製造方法について以下説明する。本発明の結晶製造方法は、成膜実行領域12と加熱実行領域14との間に、成膜済領域13又は結晶化済領域15が存在する状態で、種基板21(成膜体10)の成膜実行領域12上に原料粉体を噴射ノズル36から噴射する成膜処理と、種基板21(成膜体10)上に膜が形成された加熱実行領域14を照射熱により加熱し膜を結晶化させる加熱処理とを並行して実行する成膜結晶化工程を含むものである。この成膜結晶化工程の成膜処理と加熱処理とを以下、説明する。   Next, a crystal manufacturing method using this crystal manufacturing apparatus 20 will be described below. In the crystal manufacturing method of the present invention, the seed substrate 21 (film-forming body 10) is formed in a state in which the film-formed region 13 or the crystallized region 15 exists between the film-forming region 12 and the heating region 14. A film forming process in which the raw material powder is injected from the injection nozzle 36 onto the film forming execution area 12 and the heating execution area 14 in which the film is formed on the seed substrate 21 (film forming body 10) are heated by irradiation heat to form the film. It includes a film-forming crystallization step in which a heat treatment for crystallization is performed in parallel. The film formation process and heat treatment in this film formation crystallization process will be described below.

成膜処理では、図2に示すように、噴射された原料粒子が種基板21(成膜体10)に衝突して基板上で衝撃固化し膜体が生成する。この成膜処理において、原料成分を含む原料粉体としては、単結晶を作製するものであれば特に限定されないが、例えば、酸化物や窒化物、炭化物を含む粉体などが挙げられる。このうち、酸化物としてはZnOなどが挙げられる。また、窒化物としては、例えば、GaN、AlN、InN、これらの混晶(AlGaInN)などが挙げられ、このうちGaNが好ましい。また、炭化物としては、例えば、SiCなどが挙げられる。原料粉体は、AD法においては、凝集のない1次粒子(粒子内に粒界を含まない粒子)が好ましく、粒径は、例えば、0.05μm以上10μm以下が好ましく、0.2μm以上2μm以下がより好ましい。この粒径は、レーザ回折/散乱式粒度分布測定装置を用いて分散媒(有機溶剤や水など)に分散させて測定したメディアン径(D50)をいうものとする。なお、原料粉体は予めボールミル、遊星ボールミル、ジェットミル等によるミル処理を行ってもよい。これにより粒子の表面性状や結晶性が変化し、AD法における成膜速度を向上することが可能となる。また、原料粉体に対し、熱処理を行ってもよい。これによりAD法により成膜された膜の緻密度を向上することが可能となる。成膜処理において、種基板21は、原料成分と同じ成分からなるものとしてもよく、例えば、酸化物や窒化物、炭化物などが挙げられる。この種基板21は、単結晶を含むものであればよく、例えば、単結晶基板でもよいし、表面に単結晶膜が形成された支持基板でもよい。このうち、単結晶基板であることがより好ましい。   In the film forming process, as shown in FIG. 2, the injected raw material particles collide with the seed substrate 21 (film forming body 10) and are impact-solidified on the substrate to generate a film body. In this film forming process, the raw material powder containing the raw material components is not particularly limited as long as it can produce a single crystal, and examples thereof include powders containing oxides, nitrides, and carbides. Among these, examples of the oxide include ZnO. Examples of the nitride include GaN, AlN, InN, and mixed crystals thereof (AlGaInN), and among these, GaN is preferable. Moreover, as a carbide | carbonized_material, SiC etc. are mentioned, for example. In the AD method, the raw material powder is preferably primary particles that do not aggregate (particles that do not include grain boundaries in the particles), and the particle size is preferably 0.05 μm or more and 10 μm or less, for example, 0.2 μm or more and 2 μm. The following is more preferable. This particle diameter means the median diameter (D50) measured by dispersing in a dispersion medium (such as an organic solvent or water) using a laser diffraction / scattering particle size distribution measuring apparatus. The raw material powder may be previously milled by a ball mill, a planetary ball mill, a jet mill or the like. As a result, the surface properties and crystallinity of the particles change, and the film formation rate in the AD method can be improved. Moreover, you may heat-process with respect to raw material powder. As a result, the density of the film formed by the AD method can be improved. In the film forming process, the seed substrate 21 may be made of the same component as the raw material component, and examples thereof include oxides, nitrides, and carbides. The seed substrate 21 only needs to include a single crystal, and may be, for example, a single crystal substrate or a support substrate having a single crystal film formed on the surface thereof. Of these, a single crystal substrate is more preferable.

成膜処理において、搬送ガス及び圧力調整ガスは、不活性ガスであることがより好ましく、例えば原料粉体が窒化物であるときには、N2ガスが好ましい。噴射条件としては、室温にて噴射したときに膜が形成され、その膜組織として、結晶子径が100nm以下で、緻密度が95%以上となるように、搬送ガスおよび圧力調整ガス、真空チャンバーの圧力を調整することが好ましい。こうすることで、単結晶化温度を低くできる。結晶子径はTEM観察から、緻密度は断面SEM観察による画像解析から測定できる。噴射ノズル36は、長辺及び短辺を有するスリットが形成されていることが好ましい。このスリットは、長辺が1mm以上10mm以下の範囲で形成してもよく、短辺が0.1mm以上1mm以下の範囲で形成してもよい。原料粉体を噴射して形成する膜の厚さは、1回の成膜処理につき5μm以下であることが好ましく、3μm以下であることがより好ましい。この膜の厚さは、0.1μm以上であることが好ましい。この膜の厚さを5μm以下とすると、緻密性がより向上する。また、5μmを超えるなど、厚さが増すに従い気孔が残りやすくなる。ここでは、1回の成膜処理につき5μm以下とすることにより、のちの加熱処理により生じうる膜の剥離などをより抑制することができる。この成膜処理において、原料粉体を噴射ノズル36から噴射する際には、噴射ノズル36を成膜実行領域12上で走査して成膜処理を実行するものとしてもよい。噴射ノズル36の走査は、特に限定されないが、成膜実行領域12の長手方向に行うことが好ましく、成膜処理を同じ領域に対して数回行う、即ち重ね塗りとなるよう行うものとしてもよい。成膜処理は、前回成膜処理を行った成膜済領域に隣接する未処理領域又は結晶化済領域を新たな成膜実行領域として実行することが好ましい。こうすれば、成膜済領域が連続するから、各成膜済領域の界面で生じうる欠陥の発生をより抑制することができる。In the film forming process, the carrier gas and the pressure adjusting gas are more preferably inert gases. For example, when the raw material powder is a nitride, N 2 gas is preferred. As the injection conditions, a film is formed when injected at room temperature, and the carrier structure, the pressure adjusting gas, and the vacuum chamber are such that the crystal structure is 100 nm or less and the density is 95% or more. It is preferable to adjust the pressure. By doing so, the single crystallization temperature can be lowered. The crystallite diameter can be measured by TEM observation, and the density can be measured by image analysis by cross-sectional SEM observation. The injection nozzle 36 is preferably formed with a slit having a long side and a short side. The slit may be formed in a range where the long side is 1 mm or more and 10 mm or less, and may be formed in a range where the short side is 0.1 mm or more and 1 mm or less. The thickness of the film formed by spraying the raw material powder is preferably 5 μm or less, more preferably 3 μm or less for each film forming process. The thickness of this film is preferably 0.1 μm or more. When the thickness of this film is 5 μm or less, the denseness is further improved. In addition, pores tend to remain as the thickness increases, such as exceeding 5 μm. Here, by setting the thickness to 5 μm or less for each film forming process, it is possible to further suppress the peeling of the film that may be caused by the subsequent heat treatment. In this film forming process, when the raw material powder is sprayed from the spray nozzle 36, the film forming process may be executed by scanning the spray nozzle 36 over the film forming execution region 12. The scanning of the spray nozzle 36 is not particularly limited, but is preferably performed in the longitudinal direction of the film formation execution region 12, and the film formation process may be performed several times on the same region, that is, may be performed so as to be overcoated. . The film forming process is preferably executed as an unprocessed area or a crystallized area adjacent to the film formed area where the previous film forming process was performed as a new film forming execution area. By doing so, since the film-formed regions are continuous, it is possible to further suppress the occurrence of defects that may occur at the interface between the film-formed regions.

加熱処理は、例えば、種基板21上に形成された原料成分を含む成膜体が単結晶化する所定の単結晶化温度になる条件で行うものとする。例えば、単結晶化温度は、原料成分の種別(例えばGaN、ZnO)や結晶構造、さらには結晶粒径や緻密度などの成膜体の微構造、照射熱の種類(レーザー種など)に応じて単結晶化が進行する温度に経験的に求めるものとする。この単結晶化温度は、例えば、900℃以上としてもよいし、1000℃以上としてもよいし、1200℃以上としてもよい。この単結晶化温度は、原料粉体の融点もしくは分解温度よりも低い範囲とすることが好ましい。この加熱処理では、CO2レーザー、YAGレーザー、エキシマレーザー、半導体レーザー及び赤外線ランプのうちいずれか1以上の照射熱により実行することが好ましい。加熱装置として赤外線ランプを用いる場合は、チャンバー内の種基板付近に設置し、基板部分を加熱してもよいし、チャンバー外に設置し、光ファイバーや導光管などにより光を導入して基板部分を加熱してもよい。The heat treatment is performed, for example, under the condition of a predetermined single crystallization temperature at which the film-formed body including the raw material component formed on the seed substrate 21 is single-crystallized. For example, the single crystallization temperature depends on the type of raw material component (for example, GaN, ZnO), the crystal structure, the microstructure of the film formation such as the crystal grain size and density, and the type of irradiation heat (laser species, etc.) Thus, the temperature at which single crystallization proceeds is determined empirically. This single crystallization temperature may be, for example, 900 ° C. or higher, 1000 ° C. or higher, or 1200 ° C. or higher. This single crystallization temperature is preferably in a range lower than the melting point or decomposition temperature of the raw material powder. This heat treatment is preferably performed by irradiation heat of at least one of a CO 2 laser, a YAG laser, an excimer laser, a semiconductor laser, and an infrared lamp. When using an infrared lamp as a heating device, it may be installed near the seed substrate in the chamber and the substrate part may be heated, or it may be installed outside the chamber and light introduced through an optical fiber or a light guide tube, etc. May be heated.

加熱処理では、加熱実行領域14の領域内を加熱領域45が動くようにレーザーを走査するものとしてもよい。レーザーの走査は、加熱実行領域14を1回走査するものとしてもよいし、複数回に亘って走査するものとしてもよい。あるいは、レーザーが加熱実行領域全体にあたるよう光学系41を設定し、レーザーを走査しないものとしてもよい。また、加熱処理は、前回加熱処理を行った結晶化済領域15に隣接する成膜済領域13を新たな加熱実行領域14として実行することが好ましい。こうすれば、比較的高い温度である結晶化済領域15と新たに結晶化する加熱実行領域14との温度差がより小さくなり、各領域の界面で生じうる欠陥の発生をより抑制することができる。また、成膜結晶化工程では、成膜実行領域と加熱実行領域との間に5mm以上の幅を有する領域が存在する状態で、成膜処理及び加熱処理を実行することが好ましい。例えば、図2に示す、成膜実行領域12、成膜済領域13、加熱実行領域14及び結晶化済領域15の幅をそれぞれ5mm以上の所定幅としてもよい。例えば、成膜実行領域と加熱実行領域とが近接する場合、種基板21と原料粉体の気流との温度差による熱泳動効果の影響により、成膜が困難となることがある。ここでは、成膜実行領域と加熱実行領域との間に5mm以上の幅があるから、熱泳動効果の影響をより抑制し、より緻密な成膜を加熱処理と並行して実行することができる。この成膜実行領域と加熱実行領域との間の幅は、広いほど熱泳動効果を抑制できるが、広すぎると作製効率が低下することから、成膜実行領域の幅の5倍の長さ以下(例えば50mm以下)、より好ましくは4倍の長さ以下の幅とすることが好ましい。なお、スリット37は、成膜実行領域と加熱実行領域との間の幅に合わせて形成することが好ましい。また、得られる結晶体は、単結晶であることが好ましいが、単結晶ではない部分を含んでいてもよいし、多結晶であって且つ3次元的に配向したものであってもよい。   In the heat treatment, the laser may be scanned so that the heating region 45 moves in the region of the heating execution region 14. The scanning of the laser may be performed by scanning the heating execution region 14 once or a plurality of times. Alternatively, the optical system 41 may be set so that the laser hits the entire heating execution region, and the laser is not scanned. Moreover, it is preferable to perform the heat treatment as a new heating execution region 14 in the film-formed region 13 adjacent to the crystallized region 15 on which the previous heat treatment was performed. In this way, the temperature difference between the crystallized region 15 having a relatively high temperature and the heating execution region 14 to be newly crystallized becomes smaller, and the generation of defects that may occur at the interface between the regions can be further suppressed. it can. In the film formation crystallization step, it is preferable to perform the film formation process and the heat treatment in a state where there is an area having a width of 5 mm or more between the film formation execution area and the heat execution area. For example, the widths of the film formation area 12, the film formation area 13, the heat execution area 14, and the crystallized area 15 shown in FIG. 2 may be predetermined widths of 5 mm or more. For example, when the film formation execution region and the heating execution region are close to each other, the film formation may be difficult due to the effect of the thermophoresis effect due to the temperature difference between the seed substrate 21 and the air flow of the raw material powder. Here, since there is a width of 5 mm or more between the film formation execution region and the heating execution region, the influence of the thermophoresis effect can be further suppressed, and more precise film formation can be performed in parallel with the heat treatment. . The wider the width between the film formation area and the heat execution area, the more the thermophoresis effect can be suppressed. However, if the width is too wide, the production efficiency decreases, so the width is not more than 5 times the width of the film formation area. (For example, 50 mm or less), more preferably a width of 4 times or less is preferable. The slit 37 is preferably formed in accordance with the width between the film formation execution region and the heating execution region. In addition, the obtained crystal is preferably a single crystal, but may include a portion that is not a single crystal, or may be polycrystalline and three-dimensionally oriented.

次に、成膜結晶化工程において、成膜処理と加熱処理とを並行して行う処理について説明する。図3は、成膜結晶化工程での噴射ノズル36やレーザーの走査方法の説明図である。図3に示すように、成膜結晶化工程では、種基板21の幅(例えば20mm)をスリット37の幅(例えば5mm)で4分割した領域1〜4に対して順に各処理を行うものとした。まず、成膜結晶化工程では、領域1に対して、原料粉体をスリット37から噴射すると共にこのスリット37の長辺に対して垂直方向に噴射ノズル36と種基板21とを相対的に走査して種基板21上に膜を形成する(図3(a))。成膜処理では、例えば、原料粉体を噴射しながら噴射ノズル36を1往復するものとしてもよい。このとき、領域2〜4は、未処理領域である。領域1に成膜処理を実行し終わり、領域1が成膜済領域となると、噴射ノズル36をスリット37の長辺方向に移動させ、領域1に隣接する領域2で成膜処理を実行する(図3(b))。領域2に成膜処理を実行し終わり、領域2が成膜済領域となると、噴射ノズル36をスリット37の長辺方向に移動させ、領域2に隣接する領域3で成膜処理を実行する(図3(c))。このとき、並行して、成膜済領域である領域1を加熱実行領域として加熱装置40からの照射熱により結晶化を実行する。加熱処理では、成膜室31の外部に配設された加熱装置40から透過窓32を介して、加熱実行領域に対して走査しながらレーザー照射を行う。レーザーの走査は、加熱領域45が加熱実行領域の一端から他端まで1回移動させるものとしてもよい。ここでは、成膜実行領域と加熱実行領域との間には、成膜済領域(領域2)が存在し、この間隔は例えば5mmである。続いて、領域3が成膜済領域となり領域1が結晶化済領域となると、領域3に隣接する領域4を成膜実行領域として成膜処理を実行すると共に、領域1に隣接する領域2を加熱実行領域として加熱処理を実行する(図3(d))。続いて、領域4が成膜済領域となり領域2が結晶化済領域となると、結晶化済領域である領域1を成膜実行領域として成膜処理を実行すると共に、領域2に隣接する領域3を加熱実行領域として加熱処理を実行する(図3(e))。ここでは、成膜実行領域と加熱実行領域との間には、結晶化済領域が存在し、この間隔は例えば5mmである。続いて、領域1が成膜済領域となり領域3が結晶化済領域となると、領域1に隣接する領域2を成膜実行領域として成膜処理を実行すると共に、領域3に隣接する領域4を加熱実行領域として加熱処理を実行する(図3(f))。そして、領域2が成膜済領域となり領域4が結晶化済領域となると、領域2に隣接する領域3を成膜実行領域として成膜処理を実行すると共に、結晶化済領域である領域1を加熱実行領域として加熱処理を実行する(図3(c)と同様)。この処理を、所定回数繰り返すことにより所望の厚さの結晶を作製する。即ち、成膜結晶化工程では、長辺及び短辺を有するスリット状の噴射ノズル36から原料粉体を噴射すると共にこの長辺に対して垂直方向に噴射ノズル36と種基板21とを相対的に走査し、種基板21の成膜実行領域上に膜を形成する成膜処理を実行して新たな成膜済領域を形成する。続いて、スリット37の長辺方向に噴射ノズル36と種基板21とを相対的に走査し、新たな成膜済領域に隣接する領域を新たな成膜実行領域として成膜処理を実行すると共に、新たな成膜済領域に隣接する前回形成した成膜済領域を加熱実行領域として加熱処理を実行する処理、を繰り返し実行するのである。このようにして、常に、成膜済領域に隣接する領域があればこの領域を成膜実行領域とし、結晶化済領域に隣接する領域があればこの領域を加熱実行領域として成膜処理と加熱処理とを並行して実行し、結晶成長を行うのである。   Next, a process for performing the film forming process and the heating process in parallel in the film forming and crystallization process will be described. FIG. 3 is an explanatory diagram of the jet nozzle 36 and the laser scanning method in the film-forming crystallization step. As shown in FIG. 3, in the film-forming crystallization step, each process is sequentially performed on regions 1 to 4 in which the width of the seed substrate 21 (for example, 20 mm) is divided into four by the width of the slit 37 (for example, 5 mm). did. First, in the film-forming crystallization step, the raw material powder is sprayed from the slit 37 to the region 1 and the spray nozzle 36 and the seed substrate 21 are relatively scanned in a direction perpendicular to the long side of the slit 37. Then, a film is formed on the seed substrate 21 (FIG. 3A). In the film forming process, for example, the spray nozzle 36 may be reciprocated once while spraying the raw material powder. At this time, the areas 2 to 4 are unprocessed areas. When the film formation process is finished in the area 1 and the area 1 becomes the film-formed area, the injection nozzle 36 is moved in the long side direction of the slit 37 and the film formation process is executed in the area 2 adjacent to the area 1 ( FIG. 3 (b)). When the film forming process is finished in the area 2 and the area 2 becomes the film-formed area, the injection nozzle 36 is moved in the long side direction of the slit 37 and the film forming process is executed in the area 3 adjacent to the area 2 ( FIG. 3 (c)). At the same time, crystallization is performed by irradiation heat from the heating device 40 using the region 1 that is a film-formed region as a heating execution region. In the heat treatment, laser irradiation is performed while scanning the heating execution region from the heating device 40 provided outside the film forming chamber 31 through the transmission window 32. In the laser scanning, the heating region 45 may be moved once from one end to the other end of the heating execution region. Here, a film-formed region (region 2) exists between the film-forming execution region and the heating execution region, and this interval is, for example, 5 mm. Subsequently, when the region 3 becomes a film-formed region and the region 1 becomes a crystallized region, the film-forming process is executed using the region 4 adjacent to the region 3 as the film-forming execution region, and the region 2 adjacent to the region 1 is set. The heat treatment is executed as the heating execution region (FIG. 3D). Subsequently, when the region 4 becomes the film-formed region and the region 2 becomes the crystallized region, the film-forming process is executed with the region 1 which is the crystallized region as the film-forming execution region, and the region 3 adjacent to the region 2 Is used as a heating execution region (FIG. 3E). Here, there is a crystallized region between the film formation region and the heating region, and this interval is, for example, 5 mm. Subsequently, when the region 1 becomes a film-formed region and the region 3 becomes a crystallized region, the film-forming process is executed using the region 2 adjacent to the region 1 as the film-forming execution region, and the region 4 adjacent to the region 3 is changed. The heat treatment is executed as the heating execution region (FIG. 3 (f)). Then, when the region 2 becomes the film-formed region and the region 4 becomes the crystallized region, the film-forming process is executed with the region 3 adjacent to the region 2 as the film-forming execution region, and the region 1 that is the crystallized region is changed. A heat treatment is executed as the heating execution region (similar to FIG. 3C). This process is repeated a predetermined number of times to produce a crystal having a desired thickness. That is, in the film-forming crystallization process, the raw material powder is ejected from the slit-shaped ejection nozzle 36 having the long side and the short side, and the spray nozzle 36 and the seed substrate 21 are relatively moved in the direction perpendicular to the long side. And a film forming process for forming a film on the film forming area of the seed substrate 21 is executed to form a new film-formed area. Subsequently, the spray nozzle 36 and the seed substrate 21 are relatively scanned in the long side direction of the slit 37, and the film forming process is performed using the area adjacent to the new film-formed area as a new film forming execution area. Then, the process of executing the heating process using the previously formed film-formed area adjacent to the new film-formed area as the heating execution area is repeatedly executed. In this way, if there is always a region adjacent to the film-formed region, this region is set as the film-forming execution region, and if there is a region adjacent to the crystallized region, this region is set as the heating-execution region. Processing is performed in parallel to perform crystal growth.

以上説明した実施形態の結晶製造方法によれば、成膜実行領域と加熱実行領域との間に、成膜済領域又は結晶化済領域が存在する状態で成膜処理と加熱処理とを並行して実行するため、熱泳動効果の影響をより低減して成膜することができる。したがって、より良好な結晶を作製することができる。また、照射熱を用いることから、成膜実行領域では温度を一定以下に保ちつつ(緻密膜を形成可能な条件を維持しつつ)、成膜実行領域から離れた加熱実行領域では膜を局所加熱することにより結晶化を進めることができる。このように、成膜室31内部の全体を加熱するものでは実現できない、成膜処理と加熱処理とを並行して実行することができる。このため、効率よく結晶化を行うことができる。また、所定の順序で成膜・加熱を繰り返すことにより、連続的な結晶成長が可能である。更に、所定の厚さ(例えば5μm)以下の成膜処理を行うため、気孔の生成をより抑制し、空隙のない、良質な単結晶を得ることができる。更にまた、原料融液を得ることが困難な材料系に対しても、高品質な単結晶を作製することができる。そして、成膜処理では、前回成膜処理を行った成膜済領域に隣接する領域を新たな成膜実行領域として実行するため、成膜済領域が連続し、各成膜済領域の界面で生じうる欠陥の発生をより抑制することができる。そしてまた、加熱処理では、前回加熱処理を行った結晶化済領域15に隣接する領域を新たな加熱実行領域として実行するため、比較的高い温度である結晶化済領域と新たに結晶化する加熱実行領域との温度差がより小さくなり、各領域の界面で生じうる欠陥の発生をより抑制することができる。   According to the crystal manufacturing method of the embodiment described above, the film formation process and the heat treatment are performed in parallel in a state in which the film formation area or the crystallized area exists between the film formation area and the heating execution area. Therefore, the influence of the thermophoresis effect can be further reduced to form a film. Therefore, a better crystal can be produced. In addition, because of the use of irradiation heat, the film is locally heated in the heating execution area away from the film formation execution area while keeping the temperature below a certain level in the film formation execution area (maintaining the conditions under which a dense film can be formed). By doing so, crystallization can proceed. As described above, the film forming process and the heating process, which cannot be realized by heating the entire inside of the film forming chamber 31, can be performed in parallel. For this reason, crystallization can be performed efficiently. Moreover, continuous crystal growth is possible by repeating film formation and heating in a predetermined order. Furthermore, since a film forming process with a predetermined thickness (for example, 5 μm) or less is performed, the generation of pores can be further suppressed, and a high-quality single crystal without voids can be obtained. Furthermore, a high-quality single crystal can be produced even for a material system in which it is difficult to obtain a raw material melt. In the film formation process, the area adjacent to the film-formed area where the previous film-formation process was performed is executed as a new film-formation execution area. The occurrence of defects that can occur can be further suppressed. In addition, in the heat treatment, since the region adjacent to the crystallized region 15 where the previous heat treatment was performed is executed as a new heating execution region, the crystallized region having a relatively high temperature and the newly crystallized heating are performed. The temperature difference from the execution area becomes smaller, and the occurrence of defects that may occur at the interface between the areas can be further suppressed.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、図3に示すように、4等分に分割した領域1〜4に対して、順に成膜処理及び加熱処理を実行するものとしたが、成膜済領域と加熱実行領域との間に所定の領域が存在するものとすれば、領域の数や処理の順など、特にこれに限定されない。図4は、別の成膜結晶化工程の説明図である。図4に示すように、成膜結晶化工程では、噴射ノズル36の走査方向に、後追いしながら加熱領域45を走査させ、結晶化する処理を行うものとしてもよい。このとき、スリット37から原料粉体が吐出される成膜実行領域とレーザーを照射する加熱実行領域との間には、所定の間隔を有する成膜済領域が存在するように、成膜処理及び加熱処理を行うものとする。こうしても、成膜実行領域と加熱実行領域との間に成膜済領域が存在し、熱泳動効果の影響をより抑制し、成膜処理と加熱処理とを並行して実行することができるため、より良好な結晶をより効率よく作製することができる。この場合、膜厚制御を行うには、例えば、スリット37の数を2以上にするものとしてもよい。また、図4では、領域1〜4があるものとしたが、領域数は、1以上であれば特にいくつであってもよい。   For example, in the above-described embodiment, as illustrated in FIG. 3, the film formation process and the heating process are sequentially performed on the areas 1 to 4 divided into four equal parts. As long as a predetermined area exists between the execution area and the execution area, the number of areas and the order of processing are not particularly limited thereto. FIG. 4 is an explanatory diagram of another film-forming crystallization process. As shown in FIG. 4, in the film-forming crystallization step, the heating region 45 may be scanned in the scanning direction of the spray nozzle 36 while being followed to perform crystallization. At this time, the film forming process and the film forming process are performed so that there is a film forming area having a predetermined interval between the film forming execution area where the raw material powder is discharged from the slit 37 and the heating execution area where the laser is irradiated. Heat treatment shall be performed. Even in this case, the film-formed region exists between the film-forming execution region and the heat-executing region, so that the influence of the thermophoresis effect can be further suppressed, and the film-forming process and the heat treatment can be executed in parallel. A better crystal can be produced more efficiently. In this case, in order to control the film thickness, for example, the number of slits 37 may be two or more. In FIG. 4, the areas 1 to 4 are provided. However, the number of areas may be any number as long as it is 1 or more.

上述した実施形態では、成膜実行領域12、成膜済領域13、加熱実行領域14及び結晶化済領域15は、矩形状の領域であり、成膜結晶化工程では、矩形状の成膜実行領域12に原料粉体を噴射する成膜処理を実行し、矩形状の加熱実行領域14を照射熱により加熱する加熱処理を実行するものとしたが、特にこれに限定されない。例えば、成膜実行領域12、成膜済領域13、加熱実行領域14及び結晶化済領域15を任意形状としてもよいし、多角形、例えば三角形、六角形などの領域としてもよい。   In the embodiment described above, the film formation execution region 12, the film formation region 13, the heating execution region 14, and the crystallized region 15 are rectangular regions, and in the film formation crystallization step, a rectangular film formation execution is performed. The film forming process for injecting the raw material powder into the area 12 is executed, and the heating process for heating the rectangular heating execution area 14 with the irradiation heat is executed. However, the present invention is not limited to this. For example, the film formation area 12, the film formation area 13, the heat execution area 14, and the crystallized area 15 may be arbitrary shapes, or may be polygonal areas such as triangles and hexagons.

上述した実施形態では、大気圧より低い気圧中で原料粉体を種基板上に噴射するエアロゾルデポジション法に用いられる結晶製造装置20を利用するものとしたが、特にこれに限定されず、図5に示すように、大気圧の気圧中又は大気圧以上の気圧の雰囲気中で原料粉体を種基板上に噴射するパウダージェットデポジション法に用いられる結晶製造装置50を利用するものとしてもよい。図5は、本発明の結晶製造方法に用いる結晶製造装置50の構成の概略を示す構成図である。結晶製造装置50は、原料粉体及び搬送ガスを含む原料流体を生成するジェットパウダー生成部52と、原料粉体を種基板51に噴射して原料成分を含む膜を形成すると共にこの膜を結晶化させる結晶生成部60と、種基板51上に形成された膜を照射熱により加熱する加熱装置70とを備えている。ジェットパウダー生成部52は、原料粉体を収容し図示しないガスボンベからの搬送ガスの供給を受ける圧力タンク53と、生成したエアロゾルを結晶生成部60へ供給する原料供給管54とを備えている。結晶生成部60は、常圧下で種基板51に原料流体を噴射する成膜室61と、成膜室61の内部に配設され種基板51を固定する基板設置ステージ64と、基板設置ステージ64をX軸−Y軸方向に移動するX−Yステージ63と、を備えている。また、結晶生成部60は、加熱装置70からのレーザーを透過する透過窓62と、先端にスリット67が形成され原料流体を種基板51へ噴射する噴射ノズル66と、を備えている。加熱装置70は、加熱装置40と同様であり、照射範囲を調整可能な光学系71と、加熱用のレーザーを発生するレーザー発生装置72とを備えている。この結晶製造装置50を用い、上述と同様に、成膜実行領域と加熱実行領域との間に、成膜済領域又は結晶化済領域が存在する状態で、成膜実行領域上に原料粉体を噴射ノズル66から噴射する成膜処理と、加熱実行領域を照射熱により加熱し成膜体を結晶化させる加熱処理とを並行して実行する。このとき、噴射条件として、室温にて噴射したときに膜が形成され、その膜組織として、結晶子径が100nm以下で、緻密度が95%以上となるように、搬送ガスを調整するものとしてもよい。その他の条件は、上述したAD法の条件に準じて行うことができる。こうしても、より良好な結晶をより効率よく作製することができる。   In the above-described embodiment, the crystal manufacturing apparatus 20 used in the aerosol deposition method in which the raw material powder is sprayed onto the seed substrate at an atmospheric pressure lower than the atmospheric pressure is used. As shown in FIG. 5, a crystal manufacturing apparatus 50 used in a powder jet deposition method in which a raw material powder is sprayed onto a seed substrate in an atmospheric pressure or an atmosphere of atmospheric pressure or higher may be used. . FIG. 5 is a configuration diagram showing an outline of the configuration of the crystal manufacturing apparatus 50 used in the crystal manufacturing method of the present invention. The crystal manufacturing apparatus 50 forms a film containing a raw material component by jetting the raw material powder onto a seed substrate 51 and a jet powder generation unit 52 that generates a raw material fluid including the raw material powder and a carrier gas, and crystallizes this film. And a heating device 70 that heats a film formed on the seed substrate 51 with irradiation heat. The jet powder generation unit 52 includes a pressure tank 53 that contains raw material powder and receives a supply of carrier gas from a gas cylinder (not shown), and a raw material supply pipe 54 that supplies the generated aerosol to the crystal generation unit 60. The crystal generation unit 60 includes a film formation chamber 61 that injects a raw material fluid onto the seed substrate 51 under normal pressure, a substrate installation stage 64 that is disposed inside the film formation chamber 61 and fixes the seed substrate 51, and a substrate installation stage 64. And an XY stage 63 that moves in the X-axis-Y-axis direction. In addition, the crystal generation unit 60 includes a transmission window 62 that transmits the laser from the heating device 70, and an injection nozzle 66 that has a slit 67 formed at the tip and injects a raw material fluid onto the seed substrate 51. The heating device 70 is the same as the heating device 40, and includes an optical system 71 capable of adjusting the irradiation range, and a laser generator 72 that generates a laser for heating. Using this crystal manufacturing apparatus 50, in the same manner as described above, the raw material powder is formed on the film formation execution region in a state where the film formation region or the crystallized region exists between the film formation execution region and the heating execution region. Is performed in parallel with the film forming process in which the film is ejected from the spray nozzle 66 and the heating execution region is heated by irradiation heat to crystallize the film forming body. At this time, as the injection conditions, a film is formed when injected at room temperature, and the carrier gas is adjusted so that the film structure is a crystallite diameter of 100 nm or less and a density of 95% or more. Also good. Other conditions can be performed in accordance with the conditions of the AD method described above. Even in this case, a better crystal can be produced more efficiently.

上述した実施形態では、噴射ノズルにはスリットが設けられているものとしたが、原料粉体を噴射することができれば、特にこれに限定されず、円形や楕円形、多角形の孔としてもよい。   In the above-described embodiment, the injection nozzle is provided with the slit, but is not particularly limited as long as the raw material powder can be injected, and may be a circular, elliptical, or polygonal hole. .

上述した実施形態では、結晶製造装置20や結晶製造装置50を用いるものとしたが、特にこれに限定されず、成膜結晶化工程を実行可能であれば、結晶製造装置20,50以外の装置を用いるものとしてもよい。   In the above-described embodiment, the crystal manufacturing apparatus 20 and the crystal manufacturing apparatus 50 are used. However, the present invention is not particularly limited thereto, and any apparatus other than the crystal manufacturing apparatuses 20 and 50 can be used as long as the film formation crystallization step can be performed. May be used.

以下には、結晶製造方法を具体的に製造した例を実施例として説明する。   Below, the example which manufactured the crystal manufacturing method concretely is demonstrated as an Example.

[実施例1]
原料粉体としてGaN粉体(高純度化学研究所製、平均一次粒径0.2μm)、種基板としてGaN単結晶基板(20mm×20mm角、(002)面)を用いた。また、図1に示す、AD法の結晶製造装置を用いてGaN単結晶を製造した。製造条件として、まず噴射条件は、搬送ガス及び圧力調整ガスをN2とした。長辺5mm×短辺0.3mmのスリットが形成されたステンレス製のノズルを用いた。また、ノズルのスキャン条件は、1mm/sのスキャン速度とした。ここでは、スリットの長辺に対して垂直且つ進む方向に20mm移動したのち戻る方向へ20mm移動する、即ち、領域1で噴射ノズルを1往復した(図3(a))。これにより、厚さ4μmの膜が成膜できた。次に、噴射ノズル36をスリットの長辺方向に5mm移動させ、領域2で噴射ノズルを1往復した(図3(b))。続いて、噴射ノズル36をスリットの長辺方向に5mm移動させ、領域3で噴射ノズルを1往復した(図3(c))。このとき、並行して、成膜済領域である領域1で加熱装置からの照射熱により結晶化を行った(加熱実行領域)。加熱処理では、成膜室の外部に配設された加熱装置から透過窓を介して、加熱実行領域に対して走査しながらレーザー照射を行った。加熱条件は、CO2レーザーを用い、ビーム径を6mm、走査速度を0.5mm/sで片道20mm×1回とし、種基板上の膜が約1050℃となるよう出力を調整した。また、成膜実行領域と加熱実行領域との間の成膜済領域の幅、即ち、成膜実行領域と加熱実行領域との間隔は、5mmであった。この、領域1〜4に対する成膜実行処理及び加熱実行処理を100サイクル行い、厚さ400μmの結晶を作製した。この1サイクルの成膜において、搬送ガスの設定圧力を0.06MPa、流量を6L/min、圧力調整ガスの流量を0L/min、チャンバー内圧力を100Pa以下に調整した。この条件での室温の1サイクルの成膜では、結晶子径100nm以下、緻密度95%以上の膜組織が得られた。この噴射条件で成膜結晶化工程を実行した。この工程により、種基板上に結晶が得られた。
[Example 1]
A GaN powder (manufactured by High Purity Chemical Laboratory, average primary particle size 0.2 μm) was used as a raw material powder, and a GaN single crystal substrate (20 mm × 20 mm square, (002) plane) was used as a seed substrate. Further, a GaN single crystal was manufactured using an AD method crystal manufacturing apparatus shown in FIG. As production conditions, first, the injection conditions were N 2 for the carrier gas and the pressure adjusting gas. A stainless steel nozzle having a slit with a long side of 5 mm and a short side of 0.3 mm was used. The nozzle scan condition was a scan speed of 1 mm / s. Here, it moved 20 mm in the direction perpendicular to the long side of the slit and moved forward, and then moved 20 mm in the return direction, that is, the injection nozzle was reciprocated once in region 1 (FIG. 3A). As a result, a film having a thickness of 4 μm was formed. Next, the injection nozzle 36 was moved 5 mm in the long side direction of the slit, and the injection nozzle was reciprocated once in the region 2 (FIG. 3B). Subsequently, the ejection nozzle 36 was moved 5 mm in the long side direction of the slit, and the ejection nozzle was reciprocated once in the region 3 (FIG. 3C). At the same time, crystallization was performed in the region 1 as a film-formed region by irradiation heat from a heating device (heating execution region). In the heat treatment, laser irradiation was performed while scanning the heating execution region through a transmission window from a heating device disposed outside the film formation chamber. As heating conditions, a CO 2 laser was used, the beam diameter was 6 mm, the scanning speed was 0.5 mm / s, one way was 20 mm × 1 time, and the output was adjusted so that the film on the seed substrate was about 1050 ° C. Further, the width of the film-formed region between the film formation execution region and the heating execution region, that is, the interval between the film formation execution region and the heat execution region was 5 mm. The film formation execution process and the heat execution process for the regions 1 to 4 were performed 100 cycles to produce a 400 μm thick crystal. In this one cycle film formation, the carrier gas set pressure was adjusted to 0.06 MPa, the flow rate was set to 6 L / min, the pressure adjusting gas flow rate was set to 0 L / min, and the chamber pressure was adjusted to 100 Pa or less. In one cycle of film formation at room temperature under these conditions, a film structure having a crystallite diameter of 100 nm or less and a density of 95% or more was obtained. The film-forming crystallization process was executed under these injection conditions. By this step, crystals were obtained on the seed substrate.

[実施例2]
原料粉体としてZnO粉体(高純度化学研究所製、平均一次粒径0.5μm)、種基板としてZnO単結晶基板(20mm×20mm角、(002)面)を用いた。結晶製造には、実施例1と同様の装置を用い、AD法による成膜条件は、搬送ガス及び圧力調整ガスをHeとした以外は実施例1と同様である。このとき、室温での1サイクルの成膜では、結晶子径100nm以下、緻密度98%以上の膜組織が得られた。また、上記レーザーの出力は、種基板上の膜が1250℃となるよう調節した。この工程により、種基板上に結晶が得られた。
[Example 2]
ZnO powder (manufactured by High Purity Chemical Laboratory, average primary particle size 0.5 μm) was used as a raw material powder, and a ZnO single crystal substrate (20 mm × 20 mm square, (002) plane) was used as a seed substrate. For crystal production, the same apparatus as in Example 1 was used, and the film formation conditions by the AD method were the same as in Example 1 except that the carrier gas and the pressure adjusting gas were He. At this time, in one cycle of film formation at room temperature, a film structure having a crystallite diameter of 100 nm or less and a density of 98% or more was obtained. The laser output was adjusted so that the film on the seed substrate would be 1250 ° C. By this step, crystals were obtained on the seed substrate.

[実施例3]
原料粉体としてZnO粉体(高純度化学研究所製、平均一次粒径0.5μm)、種基板としてサファイア基板(20mm×20mm角、c面)を用いた。結晶製造には、実施例1と同様の装置を用い、AD法による成膜条件は、実施例2と同様である。このとき、室温での1サイクルの成膜では、結晶子径100nm以下、緻密度98%以上の膜組織が得られた。また、上記レーザーの出力は、種基板上の膜が1250℃となるよう調節した。この工程により、種基板上に結晶が得られた。
[Example 3]
ZnO powder (manufactured by High Purity Chemical Laboratory, average primary particle size 0.5 μm) was used as the raw material powder, and a sapphire substrate (20 mm × 20 mm square, c-plane) was used as the seed substrate. For crystal production, the same apparatus as in Example 1 was used, and the film formation conditions by the AD method were the same as in Example 2. At this time, in one cycle of film formation at room temperature, a film structure having a crystallite diameter of 100 nm or less and a density of 98% or more was obtained. The laser output was adjusted so that the film on the seed substrate would be 1250 ° C. By this step, crystals were obtained on the seed substrate.

[実施例4]
原料粉体・種基板は実施例2と同様とし、結晶製造には、実施例1と同様の装置を用いた。AD法による成膜条件は、種基板を配置する基板設置ステージを400℃で予備加熱し、噴射ノズルをスリット短辺方向に2つ隣接させて並べ、ノズルのスキャン条件を以下のようにした以外は、実施例2と同様である。ノズルのスキャンは、走査速度を1mm/sで片道20mm×1回とした。ノズルの数を増やしたことにより、片道のスキャンのみで、厚さ4μmの膜が成膜できた。加熱条件は、走査速度を1mm/sとした以外は、実施例2と同様である。このとき、室温での1サイクルの成膜では、結晶子径100nm以下、緻密度98%以上の膜組織が得られた。また、上記レーザーの出力は、種基板上の膜が約1250℃となるよう調整した。この工程により、種基板上に結晶が得られた。このように、複数のノズルを使用することにより成膜速度を向上できると共に、種基板を予備加熱することでレーザー加熱による単結晶化温度までの到達時間が短縮化され、レーザー走査速度を上げることが可能となり、実施例1と同等の単結晶を1/2の時間で作製することができた。この実施例4の結果により、単結晶の成長速度を増大することができることがわかった。
[Example 4]
The raw material powder and seed substrate were the same as in Example 2, and the same apparatus as in Example 1 was used for crystal production. The film forming conditions by the AD method are other than preheating the substrate setting stage on which the seed substrate is placed at 400 ° C., arranging two injection nozzles adjacent to each other in the slit short side direction, and setting the nozzle scanning conditions as follows: These are the same as in Example 2. Nozzle scanning was performed at a scanning speed of 1 mm / s and one time 20 mm × 1. By increasing the number of nozzles, a film having a thickness of 4 μm could be formed by only one-way scanning. The heating conditions are the same as in Example 2 except that the scanning speed is 1 mm / s. At this time, in one cycle of film formation at room temperature, a film structure having a crystallite diameter of 100 nm or less and a density of 98% or more was obtained. The laser output was adjusted so that the film on the seed substrate was about 1250 ° C. By this step, crystals were obtained on the seed substrate. In this way, the deposition rate can be improved by using multiple nozzles, and the time to reach the single crystallization temperature by laser heating can be shortened by preheating the seed substrate, thereby increasing the laser scanning speed. Thus, a single crystal equivalent to that in Example 1 could be produced in half the time. From the results of Example 4, it was found that the growth rate of the single crystal can be increased.

[比較例1]
原料粉体・種基板は実施例2と同様とし、結晶製造には、実施例1と同様の装置を用いた。製造条件は、成膜実行領域と加熱実行領域とを隣接させた(成膜実行領域と加熱実行領域との間の幅を0mmとした)以外は、実施例2と同様である。成膜実行領域と加熱実行領域が隣接していることから、種基板と原料粉体の気流との温度差による熱泳動効果が生じ、安定な成膜が困難となり、成膜速度も低下した。
[Comparative Example 1]
The raw material powder and seed substrate were the same as in Example 2, and the same apparatus as in Example 1 was used for crystal production. The manufacturing conditions are the same as in Example 2 except that the film formation execution region and the heating execution region are adjacent to each other (the width between the film formation execution region and the heat execution region is 0 mm). Since the film formation execution region and the heat execution region are adjacent to each other, a thermophoresis effect due to a temperature difference between the seed substrate and the air flow of the raw material powder occurs, making it difficult to form a stable film and reducing the film formation speed.

[電子顕微鏡(SEM)撮影]
作製した実施例1〜4及び比較例1の評価として、断面のSEM撮影を行った。SEM撮影は、走査型電子顕微鏡(日本電子製JSM−6390)を用いた。試料は、膜面に沿って研磨し、倍率1000倍で観察した。このとき、実施例1では空隙が確認できなかったのに対し、比較例1では空隙が20個以上観察された。また、実施例2〜4の単結晶について、実施例1と同様の方法で断面のSEM観察を行ったところ、実施例2〜4についても空隙は確認されなかった。また、膜面に対するXRD測定装置(ブルカーAXS社製、「D8ADVANCE」)によりXRDプロファイルを測定したところ、実施例1では、(002)面による回折ピークのみが観測され、さらに膜表面に現れるモフォロジーである正六角形の面内の向きが揃っていることから、単結晶化が確認された。また、実施例2〜4の膜面に対するXRDプロファイルを測定したところ、(002)面による回折ピークのみが観測され、さらに膜表面に現れるモフォロジーである正六角形の面内の向きが揃っていることから、実施例2〜4についても単結晶化が確認された。一方、比較例1では(002)以外の回折ピークも観測され、単結晶化の度合いが低いことが確認された。
[Electron microscope (SEM) photography]
As evaluation of Examples 1 to 4 and Comparative Example 1 produced, cross-sectional SEM imaging was performed. For SEM photography, a scanning electron microscope (JEOL JSM-6390) was used. The sample was polished along the film surface and observed at a magnification of 1000 times. At this time, in Example 1, no voids could be confirmed, whereas in Comparative Example 1, 20 or more voids were observed. Moreover, about the single crystal of Examples 2-4, when the SEM observation of the cross section was performed by the method similar to Example 1, the space | gap was not confirmed also about Examples 2-4. In addition, when the XRD profile was measured with an XRD measurement device (Bruker AXS, “D8ADVANCE”) for the film surface, only the diffraction peak due to the (002) plane was observed in Example 1, and the morphology appeared on the film surface. Single crystallization was confirmed because the in-plane directions of a regular hexagon were aligned. Further, when the XRD profiles for the film surfaces of Examples 2 to 4 were measured, only the diffraction peak due to the (002) plane was observed, and the in-plane orientation of the regular hexagon as the morphology appearing on the film surface was aligned. Thus, single crystallization was also confirmed in Examples 2 to 4. On the other hand, in Comparative Example 1, diffraction peaks other than (002) were also observed, and it was confirmed that the degree of single crystallization was low.

本出願は、2011年9月7日に出願された日本国特許出願第2011−194756号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。   This application is based on Japanese Patent Application No. 2011-194756 filed on Sep. 7, 2011, the contents of which are incorporated herein by reference in their entirety.

本発明は、単結晶を製造する技術分野に利用可能である。   The present invention can be used in the technical field of manufacturing a single crystal.

10 成膜体、12 成膜実行領域、13 成膜済領域、14 加熱実行領域、15 結晶化済領域、20 結晶製造装置、21 種基板、22 エアロゾル生成部、23 エアロゾル生成室、24 原料供給管、30 結晶生成部、31 成膜室、32 透過窓、33 X−Yステージ、34 基板設置ステージ、36 噴射ノズル、37 スリット、38 真空ポンプ、40 加熱装置、41 光学系、42 レーザー発生装置、45 加熱領域、50 結晶製造装置、51 種基板、52 ジェットパウダー生成部、53 圧力タンク、54 原料供給管、60 結晶生成部、61 成膜室、62 透過窓、63 X−Yステージ、64 基板設置ステージ、66 噴射ノズル、67 スリット、70 加熱装置、71 光学系、72 レーザー発生装置。   DESCRIPTION OF SYMBOLS 10 Film-forming body, 12 Film-forming execution area | region, 13 Film-forming area | region, 14 Heating execution area | region, 15 Crystallized area | region, 20 Crystal manufacturing apparatus, 21 seed | species board | substrate, 22 Aerosol production | generation part, 23 Aerosol production | generation chamber, 24 Raw material supply Tube, 30 Crystal generation unit, 31 Film formation chamber, 32 Transmission window, 33 XY stage, 34 Substrate installation stage, 36 Injection nozzle, 37 Slit, 38 Vacuum pump, 40 Heating device, 41 Optical system, 42 Laser generator , 45 heating region, 50 crystal production apparatus, 51 seed substrate, 52 jet powder generation unit, 53 pressure tank, 54 raw material supply pipe, 60 crystal generation unit, 61 film formation chamber, 62 transmission window, 63 XY stage, 64 Substrate installation stage, 66 injection nozzle, 67 slit, 70 heating device, 71 optical system, 72 laser generator.

Claims (9)

単結晶を含む種基板上に原料成分を含む原料粉体をノズルから噴射して該原料成分を含む膜の形成を実行する成膜実行領域と、前記種基板上に前記原料成分を含む膜を形成済みである成膜済領域と、前記種基板上に形成された前記膜を照射熱により加熱を実行し該膜を結晶化させる加熱実行領域と、が前記種基板上に存在し、
前記成膜実行領域と前記加熱実行領域との間に、前記成膜済領域又は前記結晶化を実行済みの結晶化済領域が存在する状態で、前記種基板の前記成膜実行領域上に前記原料粉体を前記ノズルから噴射する成膜処理と、前記種基板上に前記膜が形成された前記加熱実行領域を照射熱により加熱し該膜を結晶化させる加熱処理とを並行して実行する成膜結晶化工程、
を含む、結晶製造方法。
A film forming execution region in which a raw material powder containing a raw material component is sprayed from a nozzle on a seed substrate containing a single crystal to form a film containing the raw material component, and a film containing the raw material component on the seed substrate A film-formed region that has been formed, and a heating execution region in which the film formed on the seed substrate is heated by irradiation heat to crystallize the film exist on the seed substrate,
The film formation region or the crystallized region that has been crystallized is present between the film formation region and the heating execution region on the film formation region of the seed substrate. A film forming process for injecting raw material powder from the nozzle and a heating process for heating the heating execution region where the film is formed on the seed substrate by irradiation heat to crystallize the film are executed in parallel. Film-forming crystallization process,
A crystal production method comprising:
前記成膜結晶化工程では、前記成膜実行領域と前記加熱実行領域との間に5mm以上の幅を有する領域が存在する状態で、前記成膜処理及び前記加熱処理を実行する、請求項1に記載の結晶製造方法。   2. The film formation crystallization step is performed in a state in which a region having a width of 5 mm or more exists between the film formation execution region and the heating execution region. The crystal production method according to 1. 前記成膜結晶化工程では、前記種基板と同一成分を含む前記原料粉体を噴射する前記成膜処理を実行する、請求項1又は2に記載の結晶製造方法。   3. The crystal manufacturing method according to claim 1, wherein in the film formation crystallization step, the film formation process for injecting the raw material powder containing the same component as the seed substrate is executed. 前記成膜結晶化工程では、前記原料粉体に含まれる原料成分及び前記種基板が窒化物又は酸化物である前記成膜処理を実行する、請求項1〜3のいずれか1項に記載の結晶製造方法。   The said film-forming crystallization process of any one of Claims 1-3 which performs the said film-forming process whose raw material component and the said seed substrate which are contained in the said raw material powder are nitride or an oxide. Crystal manufacturing method. 前記成膜結晶化工程では、前記原料粉体に含まれる原料成分が窒化ガリウム又は酸化亜鉛である前記成膜処理を実行する、請求項1〜4のいずれか1項に記載の結晶製造方法。   5. The crystal manufacturing method according to claim 1, wherein in the film formation crystallization step, the film formation process in which a raw material component contained in the raw material powder is gallium nitride or zinc oxide is executed. 前記成膜実行領域、前記成膜済領域、前記加熱実行領域及び前記結晶化済領域は、矩形状の領域であり、
前記成膜結晶化工程では、前記矩形状の成膜実行領域に前記原料粉体を噴射する前記成膜処理を実行し、前記矩形状の加熱実行領域を照射熱により加熱する前記加熱処理を実行する、請求項1〜5のいずれか1項に記載の結晶製造方法。
The film formation region, the film formation region, the heating execution region, and the crystallized region are rectangular regions,
In the film-forming crystallization step, the film-forming process for injecting the raw material powder to the rectangular film-forming execution area is executed, and the heating process for heating the rectangular heating-execution area with irradiation heat is executed. The crystal manufacturing method according to any one of claims 1 to 5.
前記成膜結晶化工程では、長辺及び短辺を有するスリット状の前記ノズルから前記原料粉体を噴射すると共に該長辺に対して垂直方向に該ノズルと該種基板とを相対的に走査し該種基板の前記成膜実行領域上に前記膜を形成する前記成膜処理を実行して新たな前記成膜済領域を形成したのち、該長辺方向に該ノズルと該種基板とを相対的に走査し、前記新たな成膜済領域に隣接する領域を新たな前記成膜実行領域として前記成膜処理を実行すると共に、前記新たな成膜済領域に隣接する前回形成した成膜済領域を前記加熱実行領域として前記加熱処理を実行する処理、を繰り返し実行する、請求項1〜6のいずれか1項に記載の結晶製造方法。   In the film-forming crystallization step, the raw material powder is ejected from the slit-shaped nozzle having a long side and a short side, and the nozzle and the seed substrate are relatively scanned in a direction perpendicular to the long side. Then, after the film formation process for forming the film is performed on the film formation execution region of the seed substrate to form a new film formation region, the nozzle and the seed substrate are moved in the long side direction. The film forming process is performed by relatively scanning and using the region adjacent to the new film-formed region as the new film-forming execution region, and the previously formed film adjacent to the new film-formed region. The crystal manufacturing method according to any one of claims 1 to 6, wherein a process of executing the heat treatment is performed repeatedly using a finished region as the heating execution region. 前記成膜結晶化工程では、大気圧より低い気圧の雰囲気中で前記原料粉体を前記種基板上に噴射するエアロゾルデポジション法により前記成膜処理を実行する、
請求項1〜7のいずれか1項に記載の結晶製造方法。
In the film formation and crystallization step, the film formation process is performed by an aerosol deposition method in which the raw material powder is sprayed onto the seed substrate in an atmosphere at a pressure lower than atmospheric pressure.
The crystal manufacturing method according to claim 1.
前記成膜結晶化工程では、大気圧又は大気圧以上の気圧の雰囲気中で前記原料粉体を前記種基板上に噴射するパウダージェットデポジション法により前記成膜処理を実行する、請求項1〜7のいずれか1項に記載の結晶製造方法。   In the film formation crystallization step, the film formation process is performed by a powder jet deposition method in which the raw material powder is injected onto the seed substrate in an atmosphere of atmospheric pressure or atmospheric pressure. 8. The method for producing a crystal according to any one of 7 above.
JP2013532465A 2011-09-07 2012-02-28 Crystal manufacturing method Pending JPWO2013035356A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013532465A JPWO2013035356A1 (en) 2011-09-07 2012-02-28 Crystal manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011194756 2011-09-07
JP2011194756 2011-09-07
JP2013532465A JPWO2013035356A1 (en) 2011-09-07 2012-02-28 Crystal manufacturing method

Publications (1)

Publication Number Publication Date
JPWO2013035356A1 true JPWO2013035356A1 (en) 2015-03-23

Family

ID=47831823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013532465A Pending JPWO2013035356A1 (en) 2011-09-07 2012-02-28 Crystal manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2013035356A1 (en)
WO (1) WO2013035356A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2906076B2 (en) * 1990-06-08 1999-06-14 真空冶金株式会社 Method for forming high temperature superconductor thick film by gas deposition method and its forming apparatus
JP3084286B2 (en) * 1990-11-22 2000-09-04 真空冶金株式会社 Ceramic dielectric thick film capacitor, method of manufacturing the same, and manufacturing apparatus
WO2005031036A1 (en) * 2003-09-26 2005-04-07 National Institute Of Advanced Industrial Science And Technology Ceramic film structure and forming method and device therefor
JP4949668B2 (en) * 2004-12-09 2012-06-13 富士フイルム株式会社 Manufacturing method of ceramic film and structure including ceramic film
JP4682054B2 (en) * 2005-03-22 2011-05-11 富士フイルム株式会社 Alignment film manufacturing method and liquid discharge head manufacturing method
JP4921242B2 (en) * 2007-05-15 2012-04-25 国立大学法人島根大学 Ceramic film, light emitting element, and method for manufacturing ceramic film
WO2012060309A1 (en) * 2010-11-02 2012-05-10 日本碍子株式会社 Crystal production method

Also Published As

Publication number Publication date
WO2013035356A1 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP5914348B2 (en) Crystal manufacturing method
Zhang et al. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids
CN102272891B (en) Inside reforming substrate for epitaxial growth,crystal film forming element,device,and bulk substrate produced using the same,and method for producing the same
KR101564929B1 (en) Method for making oxide crystal thin film
CN102753737B (en) Epitaxial growth inter-modification substrate, the inter-modification substrate being with multilayer film, semiconductor device, semiconductor bulk substrate and their manufacture method
CN101786653A (en) Preparation method and applications of rare earth element-doped zinc oxide one-dimensional nanomaterial
JP2009519193A5 (en)
JP2021525308A (en) Fine crystal grain 3C-SiC thick film and process for preparing it
JP2017509578A5 (en)
WO2014091968A1 (en) Single-crystal production method, and single crystal produced using said method
WO2013035356A1 (en) Crystal production method
KR101161172B1 (en) Manufacturing method of ceramic bracket for the orthodontics
CN109524511B (en) A kind of nano wire coupling quantum point structure and preparation method thereof
JP4803674B2 (en) Molybdenum or tungsten particles, or a thin film comprising the particles, and a method for producing the same
CN101517134A (en) Process for producing gan single-crystal, gan thin-film template substrate and gan single-crystal growing apparatus
KR20100135107A (en) Method of producing nanoparticle beam of two-layered structure
JP6614651B2 (en) Method and apparatus for producing silicon nanoparticles
CN106298443B (en) A kind of preparation method of GaN substrate
JP2008053665A (en) Semiconductor substrate, and manufacturing method and manufacturing apparatus thereof
Kawakami et al. Tungsten microcone arrays grown using nanosecond pulsed-Nd: YAG laser in a low-pressure He-gas atmosphere
JP2022537983A (en) Method for producing improved coatings with increased crystallinity and high density
Mavier et al. Pulsed arc plasma jet synchronized with drop-on-demand dispenser
JP7439117B2 (en) Underlying substrate and its manufacturing method
RU141978U1 (en) DEVICE FOR PRODUCING CARBON NANOTUBES
EP2154271A1 (en) Method and apparatus for growing III-nitride-bulk crystals