JPWO2013018685A1 - Lactam derivatives and their pharmaceutical use - Google Patents

Lactam derivatives and their pharmaceutical use Download PDF

Info

Publication number
JPWO2013018685A1
JPWO2013018685A1 JP2012534458A JP2012534458A JPWO2013018685A1 JP WO2013018685 A1 JPWO2013018685 A1 JP WO2013018685A1 JP 2012534458 A JP2012534458 A JP 2012534458A JP 2012534458 A JP2012534458 A JP 2012534458A JP WO2013018685 A1 JPWO2013018685 A1 JP WO2013018685A1
Authority
JP
Japan
Prior art keywords
fibrosis
compound
lactam derivative
solvent
pirfenidone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012534458A
Other languages
Japanese (ja)
Inventor
新之助 林
新之助 林
拓実 青木
拓実 青木
庸平 宮本
庸平 宮本
克彦 伊関
克彦 伊関
陽介 井浦
陽介 井浦
千紗 久家
千紗 久家
俊介 岩野
俊介 岩野
晃央 前田
晃央 前田
目黒 裕之
裕之 目黒
戒能 美枝
美枝 戒能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012534458A priority Critical patent/JPWO2013018685A1/en
Publication of JPWO2013018685A1 publication Critical patent/JPWO2013018685A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/451Non condensed piperidines, e.g. piperocaine having a carbocyclic group directly attached to the heterocyclic ring, e.g. glutethimide, meperidine, loperamide, phencyclidine, piminodine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/45Non condensed piperidines, e.g. piperocaine having oxo groups directly attached to the heterocyclic ring, e.g. cycloheximide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/68Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D211/72Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D211/74Oxygen atoms
    • C07D211/76Oxygen atoms attached in position 2 or 6

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Hydrogenated Pyridines (AREA)

Abstract

本発明は、光毒性を有さず、肝毒性及び消化器系障害が軽減された、安全性の高い線維症の治療剤又は予防剤を提供することを目的としている。本発明は、下記の化学式(I)で示されるラクタム誘導体を提供する。The object of the present invention is to provide a highly safe treatment or prevention agent for fibrosis that has no phototoxicity and has reduced hepatotoxicity and gastrointestinal disorders. The present invention provides a lactam derivative represented by the following chemical formula (I).

Description

本発明は、ラクタム誘導体及びその医薬用途に関する。   The present invention relates to a lactam derivative and its pharmaceutical use.

線維症は、線維芽細胞の過剰増殖並びに細胞外マトリックス成分の過剰生産及び蓄積が主な原因となって、種々の臓器の機能に悪影響を及ぼす疾患であり、特に、肺、皮膚、消化管、腎臓及び肝臓で発症する。   Fibrosis is a disease that adversely affects the function of various organs, mainly due to the overproliferation of fibroblasts and the overproduction and accumulation of extracellular matrix components, particularly the lungs, skin, digestive tract, It affects the kidneys and liver.

線維症が一旦発症すると、線維化を受けた臓器の機能が低下するのみならず、全身にまで大きな損傷を与えることが知られている。例えば、皮膚に発症する線維症の場合、重症例においては、皮膚における瘢痕組織の増殖が患部の外見的異常では留まらず手足の運動機能にまで影響が及ぶとされている。   It is known that once fibrosis develops, not only the function of the fibrotic organ is reduced, but also the whole body is seriously damaged. For example, in the case of fibrosis that develops on the skin, in severe cases, the growth of scar tissue in the skin is not limited to the appearance abnormality of the affected area, but affects the motor function of the limbs.

また、腎線維症では、末期には腎不全に至り、人工透析又は腎臓移植による治療が必要とされ、肝線維症では、末期には肝硬化症及び肝硬変に至り、その多くが肝癌にまで進展し、肺線維症では、呼吸不全が起こり、最悪の場合は死に至るとされている。   Renal fibrosis leads to renal failure at the end stage, requiring treatment by artificial dialysis or kidney transplantation. Liver fibrosis leads to liver sclerosis and cirrhosis at the end stage, many of which progress to liver cancer. However, in pulmonary fibrosis, respiratory failure occurs, and in the worst case, death occurs.

現在、線維症の治療には、主にコルチコステロイドなどの免疫抑制剤や抗炎症剤が使用されている。   Currently, immunosuppressants and anti-inflammatory agents such as corticosteroids are mainly used for the treatment of fibrosis.

近年、特発性肺線維症に有効な薬剤として、ピルフェニドン(Pirfenidone)が世界で初めて製造販売承認を取得した。ピルフェニドンは、各種線維化疾患動物モデルの罹患臓器において、抗線維化作用が認められている(非特許文献1〜4)。   In recent years, as a drug effective for idiopathic pulmonary fibrosis, pirfenidone has obtained the world's first manufacturing and marketing approval. Pirfenidone has been recognized to have an antifibrotic effect in affected organs of various fibrotic disease animal models (Non-Patent Documents 1 to 4).

Okuら、European Journal of Pharmacology、2008年、第590巻、p.400−408Oku et al., European Journal of Pharmacology, 2008, 590, p. 400-408 Garciaら、Journal of Hepatology、2002年、第37巻、p.797−805Garcia et al., Journal of Hepatology, 2002, 37, p. 797-805 Shimizuら、Kidney International、1998年、第54巻、p.99−109Shimizu et al., Kidney International, 1998, 54, p. 99-109 Shetlarら、Journal of Laboratory and Clinical Medicine、1998年、第132巻、p.491−496Shetlar et al., Journal of Laboratory and Clinical Medicine, 1998, vol. 132, p. 491-496

しかしながら、線維化の制御に関与するメカニズムと免疫抑制剤や抗炎症剤の作用メカニズムとは異なるものであるため、線維化疾患の治療に処方されている免疫抑制剤や抗炎症剤では線維化そのものを根本的に阻止・改善できないのが実状であり、線維化の軽減又は予防においても常に有効といえるものではなかった。   However, the mechanism involved in the control of fibrosis is different from the mechanism of action of immunosuppressants and anti-inflammatory agents, so fibrosis itself is not possible with immunosuppressive and anti-inflammatory agents prescribed for the treatment of fibrotic diseases. In reality, it cannot be fundamentally prevented or improved, and it has not always been effective in reducing or preventing fibrosis.

また、特発性肺線維症治療薬のピルフェニドンは、重篤な副作用として光毒性、肝毒性及び消化器系障害が知られており、これらの副作用が認められた場合には、投薬を中止せざるを得ないのが現状であった。   In addition, pirfenidone, a therapeutic agent for idiopathic pulmonary fibrosis, is known to have phototoxicity, hepatotoxicity, and digestive system disorders as serious side effects. If these side effects are observed, the drug must be discontinued. It was the present situation that we did not get.

そこで本発明は、光毒性を有さず、肝毒性及び消化器系障害が軽減された、安全性の高い線維症の治療剤又は予防剤を提供することを目的とする。   Accordingly, an object of the present invention is to provide a highly safe treatment or prevention agent for fibrosis that has no phototoxicity and has reduced hepatotoxicity and digestive system disorders.

本発明者らは上記課題を解決するために鋭意検討した結果、抗線維化作用を有し、かつ、光毒性を有さず、肝毒性及び消化器系障害が軽減されたラクタム誘導体を見出すことに成功し、本発明の完成に至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found a lactam derivative having an antifibrotic effect, having no phototoxicity, and having reduced hepatotoxicity and digestive system damage. Successfully completed the present invention.

すなわち、本発明は、下記の化学式(I)で示されるラクタム誘導体を提供する。

Figure 2013018685
That is, the present invention provides a lactam derivative represented by the following chemical formula (I).
Figure 2013018685

また本発明は、上記の式(I)で示されるラクタム誘導体を有効成分として含有する、医薬、特に線維症の治療剤又は予防剤を提供する。   The present invention also provides a medicament, particularly a therapeutic or prophylactic agent for fibrosis, containing the lactam derivative represented by the above formula (I) as an active ingredient.

本発明のラクタム誘導体は、線維症のin vitroモデル及び病態動物モデルに対して抗線維化作用を有し、光毒性を有さず、かつ、肝毒性及び消化器系障害が軽減されているため、安全性が高い線維症の治療剤又は予防剤として利用できる。   The lactam derivative of the present invention has an antifibrotic effect on in vitro models and animal models of fibrosis, has no phototoxicity, and has reduced hepatotoxicity and digestive system damage. It can be used as a highly safe treatment or prevention agent for fibrosis.

マウスブレオマイシン誘発肺線維症モデルにおける実施例1の化合物の肺組織中ハイドロキシプロリン量に対する抑制効果を示す図である。It is a figure which shows the inhibitory effect with respect to the amount of hydroxyproline in the lung tissue of the compound of Example 1 in a mouse bleomycin-induced pulmonary fibrosis model.

本発明のラクタム誘導体は、下記の化学式(I)で示されることを特徴としている。

Figure 2013018685
The lactam derivative of the present invention is characterized by being represented by the following chemical formula (I).
Figure 2013018685

上記のラクタム誘導体は、特に指定しない限り、不斉炭素の存在による異性体(R体、S体、α体、β体、エナンチオマー)、旋光性を有する光学異性体(D体、L体、d体、l体、(+)体、(−)体)、これらの任意の割合の混合物、ラセミ混合物を、すべて包含する。   Unless otherwise specified, the above lactam derivatives are isomers due to the presence of asymmetric carbon (R-form, S-form, α-form, β-form, enantiomer), optical isomers having optical activity (D-form, L-form, d Body, l-form, (+)-form, (-)-form), a mixture of these in any ratio, and a racemic mixture.

上記のラクタム誘導体は、例えば、スキーム1に示される製造法に従って合成できる。   The above lactam derivative can be synthesized, for example, according to the production method shown in Scheme 1.

下記の製造法により得られた上記のラクタム誘導体は、公知の手段によって単離精製できる。公知の単離精製法としては、例えば、溶媒抽出、再結晶又はクロマトグラフィーが挙げられる。

Figure 2013018685
The above lactam derivative obtained by the following production method can be isolated and purified by known means. Known isolation and purification methods include, for example, solvent extraction, recrystallization, or chromatography.
Figure 2013018685

上記のスキーム1中、Xは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。   In the above scheme 1, X represents a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.

〔第1工程〕
式(IV)で示されるN−アリールピリドン化合物は、式(II)で示されるヒドロキシピリジンに対して、金属触媒、配位子及び塩基存在下、適当な溶媒中で、一般式(III)で表されるハロゲン化アリールを作用させるカップリング反応により合成できる。
[First step]
The N-arylpyridone compound represented by the formula (IV) is represented by the general formula (III) in the presence of a metal catalyst, a ligand, and a base in a suitable solvent with respect to the hydroxypyridine represented by the formula (II). It can be synthesized by a coupling reaction in which the represented aryl halide is allowed to act.

上記のハロゲン化アリールとしては、カップリング反応がスムーズに進行する脱離基を有するもの、例えば、ヨードベンゼン、ブロモベンゼン又はクロロベンゼンが挙げられるが、ヨードベンゼン又はブロモベンゼンが好ましい。   Examples of the aryl halide include those having a leaving group that allows the coupling reaction to proceed smoothly, such as iodobenzene, bromobenzene, or chlorobenzene, with iodobenzene or bromobenzene being preferred.

上記のハロゲン化アリールの使用量は、式(II)で示されるヒドロキシピリジン1モルに対して1〜20モルが好ましく、1〜10モルがより好ましい。   1-20 mol is preferable with respect to 1 mol of hydroxy pyridine shown by a formula (II), and, as for the usage-amount of said aryl halide, 1-10 mol is more preferable.

金属触媒としては、例えば、トリス(ジベンジリデンアセトン)ジパラジウム、酢酸パラジウム若しくはテトラキス(トリフェニルホスフィン)パラジウムなどのパラジウム触媒又は酸化第一銅、ヨウ化銅若しくは銅粉末などの銅触媒が挙げられるが、銅触媒が好ましい。   Examples of the metal catalyst include a palladium catalyst such as tris (dibenzylideneacetone) dipalladium, palladium acetate or tetrakis (triphenylphosphine) palladium, or a copper catalyst such as cuprous oxide, copper iodide or copper powder. Copper catalysts are preferred.

金属触媒の使用量は、式(II)で示されるヒドロキシピリジン1モルに対して0.001〜1モルが好ましく、0.01〜0.5モルがより好ましい。   The amount of the metal catalyst used is preferably 0.001 to 1 mol, more preferably 0.01 to 0.5 mol, per 1 mol of hydroxypyridine represented by the formula (II).

配位子は、金属触媒に合わせて適宜選択され、パラジウム触媒の配位子としては、例えば、トリフェニルホスフィン、2,2’−ビス(ジフェニルホスフィノ)−1,1’−ビナフチル又は4,5−ビス(ジフェニルホスフィノ)−9,9−ジメチルキサンテンなどのホスフィン誘導体が挙げられるが、4,5−ビス(ジフェニルホスフィノ)−9,9−ジメチルキサンテンが好ましい。また、銅触媒を使用する場合には、配位子を添加しないことが好ましい。   The ligand is appropriately selected according to the metal catalyst. Examples of the ligand for the palladium catalyst include triphenylphosphine, 2,2′-bis (diphenylphosphino) -1,1′-binaphthyl, and 4, Examples include phosphine derivatives such as 5-bis (diphenylphosphino) -9,9-dimethylxanthene, and 4,5-bis (diphenylphosphino) -9,9-dimethylxanthene is preferable. Moreover, when using a copper catalyst, it is preferable not to add a ligand.

配位子の使用量は、式(II)で示されるヒドロキシピリジン1モルに対して0〜1モルが好ましく、0〜0.5モルがより好ましい。   0-1 mol is preferable with respect to 1 mol of hydroxypyridines represented by Formula (II), and, as for the usage-amount of a ligand, 0-0.5 mol is more preferable.

塩基としては、例えば、炭酸ナトリウム若しくは炭酸カリウムなどの炭酸アルカリ金属類、炭酸水素ナトリウム若しくは炭酸水素カリウムなどの炭酸水素アルカリ金属類、リン酸ナトリウム若しくはリン酸カリウムなどのリン酸アルカリ金属塩類又はリン酸水素ナトリウム、リン酸水素カリウム、リン酸二水素ナトリウム若しくはリン酸二水素カリウムなどのリン酸水素アルカリ金属類が挙げられるが、炭酸アルカリ金属類が好ましい。   Examples of the base include alkali metal carbonates such as sodium carbonate and potassium carbonate, alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate, alkali metal phosphates such as sodium phosphate and potassium phosphate, and phosphoric acid. Alkali metal hydrogen phosphates such as sodium hydrogen phosphate, potassium hydrogen phosphate, sodium dihydrogen phosphate or potassium dihydrogen phosphate are listed, and alkali metal carbonates are preferred.

塩基の使用量は、式(II)で示されるヒドロキシピリジン1モルに対して0.5〜10モルが好ましく、1〜5モルがより好ましい。   0.5-10 mol is preferable with respect to 1 mol of hydroxypyridines represented by Formula (II), and, as for the usage-amount of a base, 1-5 mol is more preferable.

反応溶媒は、通常反応を阻害しない溶媒が適宜選択され、例えば、テトラヒドロフラン(以下、THF)、1,4−ジオキサン若しくはエチレングリコールジメチルエーテルなどのエーテル系溶媒、ベンゼン若しくはトルエンなどの芳香族炭化水素系溶媒、N,N−ジメチルホルムアミド(以下、DMF)若しくはジメチルスルホキシド(以下、DMSO)などの非プロトン性極性溶媒又は無溶媒が挙げられるが、無溶媒が好ましい。   As the reaction solvent, a solvent that does not normally inhibit the reaction is appropriately selected. For example, ether solvents such as tetrahydrofuran (hereinafter referred to as THF), 1,4-dioxane or ethylene glycol dimethyl ether, and aromatic hydrocarbon solvents such as benzene or toluene. An aprotic polar solvent such as N, N-dimethylformamide (hereinafter referred to as DMF) or dimethyl sulfoxide (hereinafter referred to as DMSO) or the absence of a solvent may be mentioned.

反応温度は、0〜200℃が好ましく、30〜150℃がより好ましい。   0-200 degreeC is preferable and, as for reaction temperature, 30-150 degreeC is more preferable.

反応時間は、反応温度などの条件に応じて適宜選択されるが、通常1〜72時間程度で満足すべき結果が得られる。   The reaction time is appropriately selected according to conditions such as the reaction temperature, but satisfactory results are usually obtained in about 1 to 72 hours.

〔第2工程〕
上記のラクタム誘導体は、適当な溶媒中で、式(IV)で示されるN−アリールピリドン化合物のジエンを還元する還元反応によって合成できる。還元反応としては、例えば、水素ガス雰囲気下、金属触媒を作用させる接触水素化が挙げられる。
[Second step]
The above lactam derivative can be synthesized by a reduction reaction for reducing the diene of the N-arylpyridone compound represented by the formula (IV) in an appropriate solvent. Examples of the reduction reaction include catalytic hydrogenation in which a metal catalyst is allowed to act in a hydrogen gas atmosphere.

接触水素化に用いる金属触媒としては、例えば、二酸化白金、パラジウム/活性炭又は水酸化パラジウム/活性炭が挙げられるが、二酸化白金が好ましい。   Examples of the metal catalyst used for catalytic hydrogenation include platinum dioxide, palladium / activated carbon, and palladium hydroxide / activated carbon, with platinum dioxide being preferred.

上記の金属触媒の使用量は、式(IV)で示されるN−アリールピリドン化合物1モルの重量に対して0.05〜200重量%が好ましく、1〜100重量%がより好ましい。   The amount of the metal catalyst used is preferably 0.05 to 200% by weight, more preferably 1 to 100% by weight, based on 1 mole of the N-arylpyridone compound represented by the formula (IV).

水素ガスの圧力は、1〜10気圧が好ましく、1〜5気圧がより好ましい。   The pressure of hydrogen gas is preferably 1 to 10 atm, and more preferably 1 to 5 atm.

反応溶媒は、通常反応を阻害しない溶媒が適宜選択され、例えば、メタノール、エタノール若しくは2−プロパノールなどのアルコール系溶媒、酢酸エチル若しくは酢酸n−プロピルなどのエステル系溶媒、THF、1,4−ジオキサン若しくはエチレングリコールジメチルエーテルなどのエーテル系溶媒、ジクロロメタン、クロロホルム若しくは1,2−ジクロロエタンなどのハロゲン系溶媒若しくは水又はそれらの混合溶媒が挙げられるが、アルコール系溶媒が好ましい。   As the reaction solvent, a solvent that does not normally inhibit the reaction is appropriately selected. For example, an alcohol solvent such as methanol, ethanol or 2-propanol, an ester solvent such as ethyl acetate or n-propyl acetate, THF, 1,4-dioxane. Alternatively, an ether solvent such as ethylene glycol dimethyl ether, a halogen solvent such as dichloromethane, chloroform or 1,2-dichloroethane, water, or a mixed solvent thereof can be used, and an alcohol solvent is preferable.

式(IV)で示されるN−アリールピリドン化合物の反応液中の濃度は、0.001〜5mol/Lが好ましく、0.05〜2mol/Lがより好ましい。   The concentration of the N-arylpyridone compound represented by the formula (IV) in the reaction solution is preferably 0.001 to 5 mol / L, and more preferably 0.05 to 2 mol / L.

反応温度は、0〜100℃が好ましく、10〜60℃がより好ましい。   0-100 degreeC is preferable and, as for reaction temperature, 10-60 degreeC is more preferable.

反応時間は、反応温度などの条件に応じて適宜選択されるが、通常30分間〜48時間程度で満足すべき結果が得られる。   The reaction time is appropriately selected according to conditions such as the reaction temperature, but satisfactory results are usually obtained in about 30 minutes to 48 hours.

上記のラクタム誘導体は、優れた抗線維化作用を有し、光毒性を有さず、肝毒性及び消化器系障害も軽減されていることから、安全性の高い医薬として用いることができ、線維症の治療剤又は予防剤として好ましく用いることができる。   The above lactam derivative has an excellent antifibrotic effect, does not have phototoxicity, has reduced liver toxicity and gastrointestinal disorders, and can be used as a highly safe pharmaceutical. It can be preferably used as a therapeutic or prophylactic agent for symptom.

線維症とは、線維芽細胞の過剰増殖並びに細胞外マトリックス成分の過剰生産及び蓄積が主な原因で、組織に線維化病変が形成され、種々の臓器の機能に悪影響を及ぼす疾患であり、例えば、肝線維症、肝硬変、肝臓の壊死、慢性閉塞性肺疾患、肺線維症、心筋線維症、腎線維症、血管線維症又は皮膚瘢痕が挙げられるが、上記のラクタム誘導体は、特に肺線維症の治療又は予防に好ましく用いられる。   Fibrosis is a disease in which fibrotic lesions are formed in tissues mainly due to overproliferation of fibroblasts and overproduction and accumulation of extracellular matrix components, and adversely affect the function of various organs, for example, , Liver fibrosis, cirrhosis, liver necrosis, chronic obstructive pulmonary disease, pulmonary fibrosis, myocardial fibrosis, renal fibrosis, vascular fibrosis or skin scars, but the above lactam derivatives are especially pulmonary fibrosis It is preferably used for treatment or prevention.

肺線維症とは、種々の刺激により肺胞上皮又は基底膜が傷害され、その修復過程における線維芽細胞の過剰増殖並びに細胞外マトリックス成分の過剰生産及び蓄積が原因で、肺に線維化病変が形成される疾患であり、例えば、ウイルス感染による肺炎の後期に見られる肺の線維化、過敏性肺炎の進行により生じる肺線維症、特発性肺線維症又は放射線肺線維症が挙げられるが、上記のラクタム誘導体は、特に特発性肺線維症の治療又は予防に好ましく用いられる。   Pulmonary fibrosis is caused by various stimuli that damage the alveolar epithelium or basement membrane, resulting in fibrotic lesions in the lungs due to overproliferation of fibroblasts and overproduction and accumulation of extracellular matrix components during the repair process. Diseases that are formed, such as lung fibrosis seen late in pneumonia due to viral infection, pulmonary fibrosis caused by the progression of hypersensitivity pneumonia, idiopathic pulmonary fibrosis or radiation pulmonary fibrosis, The lactam derivative is preferably used particularly for the treatment or prevention of idiopathic pulmonary fibrosis.

上記のラクタム誘導体が線維症の治療又は予防に有効であることは、in vitroモデル試験を用いて評価できる。用いるin vitroモデル試験としては、例えば、肺、肝臓、腎臓、皮膚などの各種臓器由来の線維芽細胞を包理培養したコラーゲンゲルを用いた試験(Pulmonary Pharmacology & Therapeutics、2009年、第22巻、p.487−491、British Journal of Pharmacology、2010年、第159巻、p.304−315、Kidney International、2006年、第70巻、p.298−305、Archives of Dermatological、Research、2012年、第304巻、p.217−222)が挙げられる。線維芽細胞は組織の線維化過程で活性化されると、過剰増殖及び細胞外マトリックス成分を過剰に産生するようになる他、収縮能を獲得する。線維芽細胞をコラーゲンゲル内で包埋培養すると、線維芽細胞の活性化(例えば、TGF−β1の添加)により生じる線維芽細胞の収縮に伴いコラーゲンゲルが収縮し、コラーゲンゲル面積は縮小する。したがって、コラーゲンゲル面積を測定することで線維芽細胞の収縮能、すなわち、線維芽細胞の活性化を評価できる。   The effectiveness of the above lactam derivative for treating or preventing fibrosis can be evaluated using an in vitro model test. Examples of in vitro model tests to be used include, for example, a test using collagen gel in which fibroblasts derived from various organs such as lung, liver, kidney, and skin are cultivated (Pulmonary Pharmacology & Therapeutics, 2009, Vol. 22, p.487-491, British Journal of Pharmacology, 2010, 159, 304-315, Kidney International, 2006, 70, p.298-305, Archives of Dermatological, Research 20, Year 20. 304, p.217-222). When activated in the process of tissue fibrosis, fibroblasts become hyperproliferative and produce excessive amounts of extracellular matrix components and acquire contractility. When fibroblasts are embedded and cultured in a collagen gel, the collagen gel contracts as the fibroblasts contract due to fibroblast activation (for example, addition of TGF-β1), and the collagen gel area decreases. Therefore, by measuring the collagen gel area, the contractility of fibroblasts, that is, the activation of fibroblasts can be evaluated.

また、上記のラクタム誘導体が線維症の治療又は予防に有効であることは、病態モデル動物を用いて評価できる。用いる病態モデル動物としては、例えば、ブレオマイシンによるブレオマイシン誘発肺線維症モデル(European Journal of Pharmacology、2008年、第590巻、p.400−408)、四塩化炭素による肝硬変モデル(Journal of Hepatology、2002年、第37巻、p.797−805)、メタバナジン酸アンモニウムによる腎線維症モデル(Biochemical Pharmacology、2002年、第64巻、p.517−525)、慢性腎不全モデル(Kidney International、1998年、第54巻、p.99−109)又はケロイドモデル(Journal of Laboratory and Clinical Medicine、1998年、第132巻、p.491−496)が挙げられる。ブレオマイシン誘発肺線維症モデルは、肺線維症のモデルとして一般的であるが、その病態は特発性肺線維症に近いとされている。   Moreover, it can be evaluated using a disease state model animal that the above lactam derivative is effective in treating or preventing fibrosis. Examples of pathological model animals used include bleomycin-induced pulmonary fibrosis model with bleomycin (European Journal of Pharmacology, 2008, 590, pp. 400-408), carbon tetrachloride cirrhosis model (Journal of Hepatology, 2002) 37, p. 797-805), renal fibrosis model with ammonium metavanadate (Biochemical Pharmacology, 2002, 64, p. 517-525), chronic renal failure model (Kidney International, 1998, 54, p. 99-109) or keloid model (Journal of Laboratory and Clinical Medicine, 1 1998, No. 132 Vol., P.491-496) and the like. The bleomycin-induced pulmonary fibrosis model is a common model of pulmonary fibrosis, but its pathological condition is considered to be close to idiopathic pulmonary fibrosis.

上記のラクタム誘導体の線維症の治療又は予防に対する有効性は、上記のin vitroモデル試験を用いて、例えば、線維芽細胞の収縮能の指標であるコラーゲンゲル面積を測定し、面積の縮小を指標に評価することができる。また、上記の病態モデル動物を用いて、例えば、線維化の特徴的指標である組織中ハイドロキシプロリン量の低下を指標に評価することができる。   The effectiveness of the above lactam derivative for treating or preventing fibrosis is measured by measuring the area of the collagen gel, which is an index of fibroblast contractility, using the above in vitro model test. Can be evaluated. Further, by using the above-mentioned disease state model animal, for example, a decrease in the amount of tissue hydroxyproline, which is a characteristic index of fibrosis, can be evaluated as an index.

光毒性とは、一般的には皮膚内に吸収された薬剤が、光エネルギーによって光化学反応を起こし活性化された結果、毒性を獲得して組織を傷害する性質をいう。   Phototoxicity generally refers to the property that a drug absorbed in the skin, when activated by a photochemical reaction caused by light energy, acquires toxicity and damages tissue.

上記のラクタム誘導体が光毒性を有していないことは、例えば、マウスを用いた光毒性試験又はモルモット若しくはウサギを用いた光毒性試験で評価できる。   The fact that the above lactam derivative does not have phototoxicity can be evaluated by, for example, a phototoxicity test using mice or a phototoxicity test using guinea pigs or rabbits.

肝毒性とは、服用した薬剤に肝臓が暴露されることにより、局所痛、関節痛、胃腸障害、全身倦怠感、黄疸、肝腫大、腹水、脾臓腫大、浮腫、肝性脳症、肝性昏睡又は圧痛などの症状を引き起こすものであり、ピルフェニドンで認められる肝毒性はチトクロムP450(以下、CYP)誘導に起因するとの報告がある(EUROPEAN MEDICINES AGENCY、CHMP assessment report、2010年、Procedure No.EMEA/H/C/002154)。   Hepatotoxicity refers to local pain, joint pain, gastrointestinal disorders, general malaise, jaundice, hepatomegaly, ascites, spleen enlargement, edema, hepatic encephalopathy, hepatic sensation due to exposure of the liver to the drug taken. It causes symptoms such as coma or tenderness, and it has been reported that hepatotoxicity observed with pirfenidone is caused by induction of cytochrome P450 (hereinafter, CYP) (EUROPEAN MEDICINES AGENCY, CHMP assessment report, 2010, Procedure No. EMEA). / H / C / 002154).

上記のラクタム誘導体の薬物代謝酵素CYP誘導作用が低いことは、例えば、ヒト凍結肝細胞を用いたCYP誘導試験(日薬理誌、2009年、第134巻、p.330−333)で評価できる。   The low drug metabolizing enzyme CYP-inducing action of the lactam derivative can be evaluated, for example, in a CYP induction test using human frozen hepatocytes (Nippon Pharmacology, 2009, Vol. 134, p. 330-333).

消化器系障害とは、服用した薬剤により、上腹部不快感、腹痛、腹部膨満感、食欲不振、悪心、嘔吐又は下痢などの症状を引き起こすものである。   Gastrointestinal disorders are those that cause symptoms such as upper abdominal discomfort, abdominal pain, abdominal bloating, loss of appetite, nausea, vomiting or diarrhea depending on the drugs taken.

上記のラクタム誘導体の消化器系障害作用が低いことは、例えば、ラットにおける色素を用いた胃排泄能に関する試験若しくは炭素末を用いた小腸輸送能に関する試験又はフェレット催吐に関する試験で評価できる。   The low digestive system damage action of the lactam derivative can be evaluated by, for example, a test on gastric excretion ability using a pigment in rats, a test on small intestine transport ability using carbon powder, or a test on ferret emesis.

上記のラクタム誘導体は、哺乳動物(例えば、マウス、ラット、ハムスター、ウサギ、ネコ、イヌ、ウシ、ヒツジ、サル又はヒト)、特にヒトに対して投与した場合に、線維症の病態の改善、治療又は予防効果を発揮できる。   The above lactam derivative improves or treats the pathology of fibrosis when administered to mammals (eg, mice, rats, hamsters, rabbits, cats, dogs, cows, sheep, monkeys or humans), particularly humans. Or a preventive effect can be exhibited.

上記のラクタム誘導体は、無添加の状態で又は医薬として許容される担体を配合した製剤として、経口的又は非経口的に投与できる。   The above lactam derivative can be administered orally or parenterally in a non-added state or as a preparation containing a pharmaceutically acceptable carrier.

上記のラクタム誘導体を含有する製剤を経口投与する場合の剤形としては、例えば、錠剤(糖衣錠及びフィルムコーティング錠を含む)、丸剤、顆粒剤、散剤、カプセル剤(ソフトカプセル剤及びマイクロカプセル剤を含む)、シロップ剤、乳剤又は懸濁剤が挙げられ、非経口投与する場合の剤形としては、例えば、注射剤、注入剤、点滴剤又は坐剤が挙げられる。また、上記のラクタム誘導体は、適当な基剤(例えば、酪酸の重合体、グリコール酸の重合体、酪酸−グリコール酸の共重合体、酪酸の重合体とグリコール酸の重合体との混合物又はポリグリセロール脂肪酸エステル)と組み合わせて、徐放性製剤とすることも可能であり、線維症の治療に有効である。また、上記のラクタム誘導体のバイオアベイラビリティーや安定性を向上させるために、マイクロカプセル、微粉末化又は包装化などの製剤技術を含むドラッグデリバリーシステムを用いることもできる。   Examples of dosage forms for oral administration of the above-mentioned preparations containing lactam derivatives include tablets (including sugar-coated tablets and film-coated tablets), pills, granules, powders, capsules (soft capsules and microcapsules). ), Syrups, emulsions or suspensions. Examples of dosage forms for parenteral administration include injections, infusions, drops, and suppositories. In addition, the above lactam derivative may be a suitable base (eg, butyric acid polymer, glycolic acid polymer, butyric acid-glycolic acid copolymer, butyric acid polymer and glycolic acid polymer mixture or poly In combination with glycerol fatty acid ester), it is possible to obtain a sustained-release preparation, which is effective in treating fibrosis. In addition, in order to improve the bioavailability and stability of the lactam derivative, a drug delivery system including a preparation technique such as microcapsule, micronization or packaging can be used.

上記のラクタム誘導体を有効成分として含有する医薬の剤形は、製剤分野で一般的に用いられている方法に従って調製できる。この場合、必要に応じて、製剤分野において一般的に用いられる賦形剤、結合剤、滑沢剤、崩壊剤、甘味剤、界面活性剤、懸濁化剤又は乳化剤などを含有させて調製できる。   A pharmaceutical dosage form containing the above lactam derivative as an active ingredient can be prepared according to a method generally used in the pharmaceutical field. In this case, it can be prepared by containing excipients, binders, lubricants, disintegrating agents, sweeteners, surfactants, suspending agents, emulsifiers and the like that are generally used in the pharmaceutical field as necessary. .

錠剤の調製は、例えば、賦形剤、結合剤、崩壊剤又は滑沢剤を含有させて行うことができ、丸剤及び顆粒剤の調製は、例えば、賦形剤、結合剤又は崩壊剤を含有させて行うことができる。また、散剤及びカプセル剤の調製は、例えば、賦形剤を含有させて行うことができ、シロップ剤の調製は、例えば、甘味剤を含有させて行うことができ、乳剤及び懸濁剤の調製は、例えば、界面活性剤、懸濁化剤又は乳化剤を含有させて行うことができる。   Tablets can be prepared, for example, containing excipients, binders, disintegrants or lubricants, and pills and granules can be prepared, for example, with excipients, binders or disintegrants. It can be made to contain. The preparation of powders and capsules can be carried out, for example, by containing excipients, and the preparation of syrups can be carried out, for example, by containing sweeteners, and preparation of emulsions and suspensions. Can be carried out, for example, by containing a surfactant, a suspending agent or an emulsifier.

賦形剤としては、例えば、乳糖、ブドウ糖、デンプン、ショ糖、微結晶セルロース、カンゾウ末、マンニトール、炭酸水素ナトリウム、リン酸カルシウム又は硫酸カルシウムが挙げられる。結合剤としては、例えば、デンプンのり液、アラビアゴム液、ゼラチン液、トラガント液、カルボキシメチルセルロース液、アルギン酸ナトリウム液又はグリセリンが挙げられる。崩壊剤としては、例えば、デンプン又は炭酸カルシウムが挙げられる。滑沢剤としては、例えば、ステアリン酸マグネシウム、ステアリン酸、ステアリン酸カルシウム又は精製タルクが挙げられる。甘味剤としては、例えば、ブドウ糖、果糖、転化糖、ソルビトール、キシリトール、グリセリン又は単シロップが挙げられる。界面活性剤としては、例えば、ラウリル硫酸ナトリウム、ポリソルベート80、ソルビタンモノ脂肪酸エステル又はステアリン酸ポリオキシル40が挙げられる。懸濁化剤としては、例えば、アラビアゴム、アルギン酸ナトリウム、カルボキシメチルセルロースナトリウム、メチルセルロース又はベントナイトが挙げられる。乳化剤としては、例えば、アラビアゴム、トラガント、ゼラチン又はポリソルベート80が挙げられる。   Examples of the excipient include lactose, glucose, starch, sucrose, microcrystalline cellulose, licorice powder, mannitol, sodium bicarbonate, calcium phosphate or calcium sulfate. Examples of the binder include starch paste, gum arabic, gelatin, tragacanth, carboxymethylcellulose, sodium alginate, and glycerin. Examples of the disintegrant include starch and calcium carbonate. Examples of the lubricant include magnesium stearate, stearic acid, calcium stearate, and purified talc. Examples of the sweetening agent include glucose, fructose, invert sugar, sorbitol, xylitol, glycerin, and simple syrup. Examples of the surfactant include sodium lauryl sulfate, polysorbate 80, sorbitan monofatty acid ester or polyoxyl 40 stearate. Examples of the suspending agent include gum arabic, sodium alginate, sodium carboxymethyl cellulose, methyl cellulose, and bentonite. Examples of the emulsifier include gum arabic, tragacanth, gelatin, and polysorbate 80.

さらに、上記のラクタム誘導体を含有する製剤を上記の剤形に調製する場合は、製剤分野において一般的に用いられる、着色剤、保存剤、芳香剤、矯味剤、安定剤、粘稠剤などを添加してもよい。   Furthermore, when preparing a preparation containing the above lactam derivative into the above dosage form, colorants, preservatives, fragrances, flavoring agents, stabilizers, thickeners and the like that are commonly used in the pharmaceutical field are added. It may be added.

上記のラクタム誘導体の投与量は、目標とする治療効果、投与方法、年齢又は体重などによって変化するので一概には規定できないが、通常一日の経口的な投与量は、有効成分として100〜10000mgが好ましく、200〜8000mgがより好ましい。これを1日に1〜5回に分割して投与すればよい。   The dose of the above lactam derivative varies depending on the target therapeutic effect, administration method, age or body weight, and thus cannot be defined unconditionally. However, the daily oral dose is usually 100 to 10,000 mg as an active ingredient. Is preferable, and 200-8000 mg is more preferable. What is necessary is just to divide and administer this 1 to 5 times a day.

以下、実施例を示して本発明を具体的に詳述するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is explained in full detail, this invention is not limited to these.

(実施例1) 5−メチル−1−フェニルピペリジン−2−オンの合成:
〔第1工程〕 5−メチル−1−フェニルピリジン−2(1H)−オンの合成:
2−ヒドロキシ−5−メチルピリジン(10.0g、92.0mmol)と酸化第一銅(0.656g、4.58mmol)と炭酸カリウム(13.9g、101mmol)の混合物にブロモベンゼン(28.8mL、275mmol)を加え、反応容器内をアルゴン置換した後、120℃で17時間撹拌した。反応混合液に酸化第一銅(0.197g、1.38mmol)と炭酸カリウム(4.18g、30.2mmol)とブロモベンゼン(8.64mL、82.5mmol)を追加し、反応容器内をアルゴン置換した後、120℃で24時間撹拌した。反応混合物をセライトろ過し、得られたろ液を減圧濃縮し、残渣に水を加えた。ジクロロメタンで抽出した後、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣にジクロロメタン、ヘキサン、ジエチルエーテルを加えて再結晶を行い、析出した固体をろ取した。得られた固体及びろ液をそれぞれアミンシリカゲルカラムクロマトグラフィー(酢酸エチル/n−ヘキサン=3/7〜17/3)にて精製し、まとめて乾燥して、以下の化学式で示される5−メチル−1−フェニルピリジン−2(1H)−オンを15.2g(収率89%)得た。

Figure 2013018685
1H-NMR (400MHz, CDCl3)δ: 7.51-7.46 (2H, m), 7.43-7.36 (3H, m), 7.27 (1H, dd, J=9.3, 2.7 Hz), 7.12-7.10 (1H, m), 6.61 (1H, d, J=9.3 Hz), 2.11 (3H, s).
MS (ESI): 186 ([M+H]+).Example 1 Synthesis of 5-methyl-1-phenylpiperidin-2-one:
[Step 1] Synthesis of 5-methyl-1-phenylpyridin-2 (1H) -one:
Bromobenzene (28.8 mL) was added to a mixture of 2-hydroxy-5-methylpyridine (10.0 g, 92.0 mmol), cuprous oxide (0.656 g, 4.58 mmol) and potassium carbonate (13.9 g, 101 mmol). 275 mmol) was added and the inside of the reaction vessel was purged with argon, followed by stirring at 120 ° C. for 17 hours. Cuprous oxide (0.197 g, 1.38 mmol), potassium carbonate (4.18 g, 30.2 mmol) and bromobenzene (8.64 mL, 82.5 mmol) were added to the reaction mixture, and the reaction vessel was filled with argon. After the replacement, the mixture was stirred at 120 ° C. for 24 hours. The reaction mixture was filtered through celite, the obtained filtrate was concentrated under reduced pressure, and water was added to the residue. After extraction with dichloromethane, it was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Dichloromethane, hexane and diethyl ether were added to the resulting residue for recrystallization, and the precipitated solid was collected by filtration. The obtained solid and filtrate were purified by amine silica gel column chromatography (ethyl acetate / n-hexane = 3/7 to 17/3), dried together, and 5-methyl represented by the following chemical formula. 15.2 g (yield 89%) of -1-phenylpyridin-2 (1H) -one was obtained.
Figure 2013018685
1 H-NMR (400MHz, CDCl 3 ) δ: 7.51-7.46 (2H, m), 7.43-7.36 (3H, m), 7.27 (1H, dd, J = 9.3, 2.7 Hz), 7.12-7.10 (1H, m), 6.61 (1H, d, J = 9.3 Hz), 2.11 (3H, s).
MS (ESI): 186 ([M + H] + ).

〔第2工程〕 5−メチル−1−フェニルピペリジン−2−オンの合成:
5−メチル−1−フェニルピリジン−2(1H)−オン(3.00g、16.2mmol)のエタノール(30mL)溶液に二酸化白金(0.368g、1.62mmol)を加え、水素雰囲気下室温で13時間撹拌した。反応混合物をセライトろ過し、得られたろ液を減圧濃縮した。残査をシリカゲルカラムクロマトグラフィー(酢酸エチル/n−ヘキサン=9/11〜3/1)にて精製して以下の化学式で示される5−メチル−1−フェニルピペリジン−2−オン(以下、実施例1の化合物)を3.06g(定量的)得た。

Figure 2013018685
1H-NMR (400MHz, CDCl3)δ: 7.42-7.36 (2H, m), 7.27-7.23 (3H, m), 3.57 (1H, ddd, J=11.9, 4.9, 1.8 Hz), 3.33 (1H, dd, J=11.9, 10.2 Hz), 2.66-2.50 (2H, m), 2.21-2.09 (1H, m), 2.01-1.93 (1H, m), 1.67-1.57 (1H, m), 1.07 (3H, d, J=6.8 Hz).
MS (ESI): 190 ([M+H]+).
IR (KBr, cm-1): 3050, 2935, 2899, 2873, 2827, 1646, 1589, 1490, 1458, 1412, 1354, 1277, 1219, 1181, 1149, 1076, 1027, 774, 737.
Mp: 61-62 ℃[Second Step] Synthesis of 5-methyl-1-phenylpiperidin-2-one:
To a solution of 5-methyl-1-phenylpyridin-2 (1H) -one (3.00 g, 16.2 mmol) in ethanol (30 mL) was added platinum dioxide (0.368 g, 1.62 mmol) and at room temperature under a hydrogen atmosphere. Stir for 13 hours. The reaction mixture was filtered through Celite, and the obtained filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 9 / 11-3 / 1) and represented by the following chemical formula: 5-methyl-1-phenylpiperidin-2-one (hereinafter, implementation) 3.06 g (quantitative) of the compound of Example 1) was obtained.
Figure 2013018685
1 H-NMR (400MHz, CDCl 3 ) δ: 7.42-7.36 (2H, m), 7.27-7.23 (3H, m), 3.57 (1H, ddd, J = 11.9, 4.9, 1.8 Hz), 3.33 (1H, dd, J = 11.9, 10.2 Hz), 2.66-2.50 (2H, m), 2.21-2.09 (1H, m), 2.01-1.93 (1H, m), 1.67-1.57 (1H, m), 1.07 (3H, d, J = 6.8 Hz).
MS (ESI): 190 ([M + H] + ).
IR (KBr, cm -1 ): 3050, 2935, 2899, 2873, 2827, 1646, 1589, 1490, 1458, 1412, 1354, 1277, 1219, 1181, 1149, 1076, 1027, 774, 737.
Mp: 61-62 ℃

(実施例2) 肺線維芽細胞を包理培養したコラーゲンゲルの収縮に対する作用:
ヒト肺線維芽細胞human fetal lung fibroblastであるHFL−1細胞を包埋培養したコラーゲンゲルの収縮に対する実施例1の化合物の作用を検討した。コラーゲンゲル収縮は、Pulmonary Pharmacology & Therapeutics、2009年、第22巻、p.487−491に記載の方法を一部改変して評価した。
(Example 2) Effect on contraction of collagen gel in which lung fibroblasts are embedded and cultured:
The effect of the compound of Example 1 on the contraction of collagen gel in which HFL-1 cells, human lung fibroblast HFL-1 cells, were cultured. Collagen gel contraction is described in Pulmonary Pharmacology & Therapeutics, 2009, Vol. 22, p. The method described in 487-491 was partially modified and evaluated.

0.02N酢酸に溶解したラット尾由来I型コラーゲン(ベクトン・ディッキンソン)を、ペニシリン/ストレプトマイシン含有低グルコースDulbecco’s Modified Eagle Medium(以下、DMEM)で希釈し、同培地に懸濁したHFL−1細胞(ヒューマンサイエンス研究資源バンク)と混和した。混和液を1N NaOHで中和し、24ウェル平底プレートの各ウェルに0.5mL(コラーゲン濃度2.5mg/mL、細胞密度3×10個/mL)を分注した後、37℃、30分間インキュベーションし、混和液をゲル化させた。DMEMをコラーゲンゲル上部に添加し、さらに37℃、24時間インキュベーションした。Rat type I collagen (Becton Dickinson) dissolved in 0.02N acetic acid was diluted with penicillin / streptomycin-containing low glucose Dulbecco's Modified Eagle Medium (hereinafter DMEM) and suspended in the same medium. Mixed with cells (Human Science Research Resource Bank). The mixture was neutralized with 1N NaOH and 0.5 mL (collagen concentration: 2.5 mg / mL, cell density: 3 × 10 5 cells / mL) was dispensed into each well of a 24-well flat bottom plate. Incubated for minutes to allow the mixture to gel. DMEM was added to the top of the collagen gel and further incubated at 37 ° C. for 24 hours.

その後、DMEMを0.96mL添加した12ウェル平底プレートの各ウェルにコラーゲンゲルを移して浮遊させ、デジタルカメラで各ウェルのコラーゲンゲルを撮影した。続いて、DMSOで溶解後、DMEMで希釈した実施例1の化合物を0.12mL各ウェルに加え(化合物最終濃度3000μmol/L、DMSO最終濃度0.5%)、37℃で1時間インキュベーションした。その後、TGF−β1(R&D Systems)を0.12mL各ウェルに添加し(最終濃度3ng/mL)、さらに37℃、24時間インキュベーションした後、デジタルカメラでコラーゲンゲルを撮影した。なお、TGF−β1非添加かつ化合物非添加を無処置対照とし、TGF−β1添加かつ化合物非添加をTGF−β1処置対照とした。   Thereafter, the collagen gel was transferred to each well of a 12-well flat bottom plate to which 0.96 mL of DMEM was added and floated, and the collagen gel in each well was photographed with a digital camera. Subsequently, 0.12 mL of the compound of Example 1 diluted with DMSO and diluted with DMEM was added to each well (final compound concentration 3000 μmol / L, DMSO final concentration 0.5%), and incubated at 37 ° C. for 1 hour. Thereafter, 0.12 mL of TGF-β1 (R & D Systems) was added to each well (final concentration: 3 ng / mL), further incubated at 37 ° C. for 24 hours, and then the collagen gel was photographed with a digital camera. In addition, TGF-β1 non-added and compound non-added were used as untreated controls, and TGF-β1 added and no compounds added were used as TGF-β1-treated controls.

撮影したコラーゲンゲル画像の面積を、粒子解析version3(住友金属テクノロジー)を用いて計測した。得られた面積値から、各ゲルについて化合物添加前を1としたときの化合物添加後の面積比を求め、下記式にて、TGF−β1添加で生じたコラーゲンゲル収縮に対する抑制率(%)を算出した。
抑制率(%)=(1−([無処置対照の面積比]−[各ゲルの面積比])
/([無処置対照の面積比]−[TGF−β1処置対照の面積比]))×100
The area of the photographed collagen gel image was measured using particle analysis version 3 (Sumitomo Metal Technology). From the obtained area values, the area ratio after addition of the compound was determined for each gel when the addition before compound addition was 1, and the inhibition rate (%) against the collagen gel contraction caused by the addition of TGF-β1 was calculated using the following formula. Calculated.
Inhibition rate (%) = (1 − ([area ratio of untreated control] − [area ratio of each gel])
/ ([Area ratio of untreated control] − [area ratio of TGF-β1 treated control])) × 100

その結果、TGF−β1添加により生じたコラーゲンゲルの収縮は、実施例1の化合物の3000μmol/L添加により統計学的に有意に抑制された(抑制率75.4±28.1%(平均値±標準偏差);P<0.01、t検定)。   As a result, the shrinkage of the collagen gel caused by the addition of TGF-β1 was statistically significantly suppressed by the addition of 3000 μmol / L of the compound of Example 1 (suppression rate 75.4 ± 28.1% (average value). ± standard deviation); P <0.01, t test).

この結果から、実施例1の化合物は肺線維芽細胞の収縮を抑制し、ひいては線維化抑制作用を示すことが明らかとなった。   From this result, it was clarified that the compound of Example 1 inhibits the contraction of lung fibroblasts, and thus exhibits a fibrosis inhibiting action.

(実施例3) マウスブレオマイシン誘発肺線維症モデルにおける評価:
マウスブレオマイシン誘発肺線維症モデルの肺組織中ハイドロキシプロリン量に対する実施例1の化合物の作用を検討した。マウスブレオマイシン誘発肺線維症モデルとして、European Journal of Pharmacology、2008年、第590巻、p.400−408に記載の方法を一部改変して用いた。
Example 3 Evaluation in a mouse bleomycin-induced pulmonary fibrosis model:
The effect of the compound of Example 1 on the amount of hydroxyproline in lung tissue of a mouse bleomycin-induced pulmonary fibrosis model was examined. As a mouse bleomycin-induced pulmonary fibrosis model, European Journal of Pharmacology, 2008, Vol. 590, p. The method described in 400-408 was used with some modifications.

ICR系マウス(雄、13週齢、日本チャールス・リバー)にブレオマイシン(日本化薬)を10mg/kgの用量で、5日間連日、1日1回尾静脈内投与し、線維化を惹起した。線維化を惹起しないマウス(正常群)には、生理食塩水を同様に投与した。   Bleomycin (Nippon Kayaku) was administered to ICR mice (male, 13 weeks old, Nippon Charles River) at a dose of 10 mg / kg once daily for 5 days in the tail vein to induce fibrosis. Mice that did not induce fibrosis (normal group) were similarly administered with physiological saline.

線維化を惹起したマウスに、ブレオマイシン投与開始日から10日間連日、実施例1の化合物を33mg/kgの用量で、1日3回経口投与した(100mg/kg/day)。なお、実施例1の化合物は、0.5%メチルセルロース溶液に懸濁して用いた。正常群及び溶媒群には、0.5%メチルセルロース溶液を同様に投与した。   To the mice in which fibrosis was induced, the compound of Example 1 was orally administered three times a day (100 mg / kg / day) at a dose of 33 mg / kg for 10 days from the start of bleomycin administration. The compound of Example 1 was used after being suspended in a 0.5% methylcellulose solution. A 0.5% methylcellulose solution was similarly administered to the normal group and the solvent group.

実施例1の化合物投与終了日の翌日に、イソフルラン麻酔下にて放血致死後、左肺を採取した。線維化の指標である肺組織中ハイドロキシプロリン量は、Woessner法(Archives of Biochemistry and Biophysics、1961年、第93巻、p.440−447)を一部改変して以下の通り定量した。採取した左肺(全部)に蒸留水を1mL加えホモジナイズし、これに濃塩酸を1mL加えて、120℃にて24時間加熱した。その後、5N NaOHを2.4mL加えて中和し、これを測定用試料とした。測定用試料を蒸留水で適宜希釈し、1.4%クロラミンT溶液を1mL加えて室温にて20分間反応させた後、3.15M過塩素酸及び20%パラジメチルアミノベンズアルデヒド/2−メトキシエタノール溶液を各々1mL加えて60℃にて20分間反応させた。その後、直ちに水浴中で冷却し、吸光度を測定した。吸光度は、マイクロプレートリーダー(Bio−Rad、Model 680)にて測定波長570nmを測定した。肺組織(左肺)中のハイドロキシプロリン量は、直線回帰解析により得られた検量線(1〜15μg)から算出した。   The day after the administration of the compound of Example 1, the left lung was collected after exsanguination under isoflurane anesthesia. The amount of hydroxyproline in lung tissue, which is an index of fibrosis, was quantified as follows by partially modifying the Woessner method (Archives of Biochemistry and Biophysics, 1961, Vol. 93, p. 440-447). 1 mL of distilled water was added to the collected left lung (total) and homogenized, and 1 mL of concentrated hydrochloric acid was added thereto and heated at 120 ° C. for 24 hours. Thereafter, 2.4 mL of 5N NaOH was added for neutralization, and this was used as a measurement sample. A sample for measurement was appropriately diluted with distilled water, 1 mL of a 1.4% chloramine T solution was added and reacted at room temperature for 20 minutes, and then 3.15 M perchloric acid and 20% paradimethylaminobenzaldehyde / 2-methoxyethanol. 1 mL of each solution was added and reacted at 60 ° C. for 20 minutes. Then, it immediately cooled in the water bath and measured the light absorbency. The absorbance was measured at a measurement wavelength of 570 nm with a microplate reader (Bio-Rad, Model 680). The amount of hydroxyproline in the lung tissue (left lung) was calculated from a calibration curve (1 to 15 μg) obtained by linear regression analysis.

肺組織中ハイドロキシプロリン量の定量結果を図1に示す。図中の値は平均値±標準誤差(n=10)を示す。図中の「正常」は、線維化を惹起しないマウスに0.5%メチルセルロース溶液を経口投与した群(正常群)を示し、「溶媒」は、線維化を惹起したマウスに0.5%メチルセルロース溶液を経口投与した群(溶媒群)を示し、「実施例1の化合物」は、線維化を惹起したマウスに実施例1の化合物100mg/kg/dayを経口投与した群を示す。#印は正常群との比較(Aspin−Welchのt検定)で統計学的に有意であることを示し(#:P<0.05)、*印は溶媒群との比較(Aspin−Welchのt検定)で統計学的に有意であることを示す(**:P<0.01)。   The results of quantitative determination of the amount of hydroxyproline in lung tissue are shown in FIG. The values in the figure are average values ± standard error (n = 10). “Normal” in the figure indicates a group (normal group) in which 0.5% methylcellulose solution was orally administered to mice that do not induce fibrosis, and “solvent” represents 0.5% methylcellulose in mice that have induced fibrosis. The group (solvent group) to which the solution was orally administered is shown, and the “compound of Example 1” represents the group in which 100 mg / kg / day of the compound of Example 1 was orally administered to mice in which fibrosis was induced. # Indicates a statistically significant comparison with the normal group (Aspin-Welch t-test) (#: P <0.05), and * indicates a comparison with the solvent group (Aspin-Welch's t-test). t-test) indicates statistical significance (**: P <0.01).

溶媒群の肺組織中ハイドロキシプロリン量は、正常群に比べ統計学的に有意に増加し、ブレオマイシン投与により肺線維化が惹起されていることが示された。ブレオマイシン投与により線維化を惹起したマウスに、実施例1の化合物を投与することにより、肺組織中ハイドロキシプロリン量は、正常群と同等のレベルにまで抑制され、その値は溶媒群に比べ統計学的に有意に減少した。   The amount of hydroxyproline in the lung tissue of the solvent group was statistically significantly higher than that of the normal group, indicating that bleomycin administration caused lung fibrosis. By administering the compound of Example 1 to mice in which fibrosis was induced by bleomycin administration, the amount of hydroxyproline in lung tissue was suppressed to a level equivalent to that in the normal group, and the value was statistically higher than that in the solvent group. Significantly decreased.

この結果から、実施例1の化合物は優れた線維化抑制効果を示すことが明らかとなった。   From this result, it was revealed that the compound of Example 1 exhibits an excellent fibrosis inhibiting effect.

(実施例4) マウスにおける化合物の光毒性評価:
マウスにおける実施例1の化合物の光毒性作用を、ピルフェニドンと比較検討した。BALB/c系マウス(雌、7週齢、日本チャールス・リバー)に、実施例1の化合物を500及び1000mg/kg、又はピルフェニドンを500mg/kgの用量で単回経口投与した。なお、実施例1の化合物及びピルフェニドンは0.5%メチルセルロース溶液に懸濁して用いた。溶媒群には、0.5%メチルセルロース溶液を同様に投与した。
Example 4 Phototoxicity assessment of compounds in mice:
The phototoxic effect of the compound of Example 1 in mice was compared with pirfenidone. BALB / c mice (female, 7 weeks old, Charles River, Japan) were orally administered at a dose of 500 and 1000 mg / kg of the compound of Example 1 or 500 mg / kg of pirfenidone. The compound of Example 1 and pirfenidone were used in suspension in a 0.5% methylcellulose solution. The solvent group was similarly administered with a 0.5% methylcellulose solution.

投与直後、各群10例のうち5例は紫外線照射装置(デルマレイ−200 タイプA・NB及びデルマレイ−200 タイプA・B;テルモクリニカル・サプライ社)下にセットして、紫外線(照射総線量約20J/cm:放射照度約1.4mW/cm、4時間照射)を照射し(紫外線照射動物)、各群の残りの5例は非照射とした(非照射動物)。紫外線の照射終了後(0.5、24、48及び72時間後)、耳介の皮膚に発現した紅斑及び浮腫の程度を肉眼的に観察し、紫外線照射動物の観察時に、相応する各群の非照射動物についても観察し、両者を比較して光毒性の有無を評価した。Immediately after administration, 5 out of 10 patients in each group were placed under an ultraviolet irradiation device (Dermalley-200 Type A / NB and Delmale-200 Type A / B; Terumo Clinical Supply Co., Ltd.). 20 J / cm 2 : Irradiance of about 1.4 mW / cm 2 , irradiation for 4 hours) (ultraviolet irradiation animals), and the remaining 5 cases in each group were not irradiated (non-irradiated animals). After completion of UV irradiation (after 0.5, 24, 48 and 72 hours), the degree of erythema and edema that developed on the skin of the auricle was visually observed. Non-irradiated animals were also observed and compared to evaluate the presence or absence of phototoxicity.

溶媒群及び実施例1の化合物の500及び1000mg/kg投与群では、紫外線照射動物及び非照射動物のいずれにも紅斑及び浮腫はみられなかった。一方、ピルフェニドンの500mg/kg投与群では、非照射動物の全てにおいて紅斑及び浮腫はみられなかったが、紫外線照射動物の5例中4例で照射後24時間に紅斑がみられた。   In the solvent group and the 500 and 1000 mg / kg administration groups of the compound of Example 1, erythema and edema were not observed in both the ultraviolet-irradiated animals and the non-irradiated animals. On the other hand, in the 500 mg / kg administration group of pirfenidone, erythema and edema were not observed in all non-irradiated animals, but erythema was observed 24 hours after irradiation in 4 out of 5 animals irradiated with ultraviolet rays.

この結果から、ピルフェニドンが光毒性を示すのに対し、実施例1の化合物は、光毒性を示さないことが明らかとなった。   From this result, it was revealed that pirfenidone exhibits phototoxicity, whereas the compound of Example 1 does not exhibit phototoxicity.

(実施例5) ヒト凍結肝細胞を用いた薬物代謝酵素CYP誘導試験:
ヒト凍結肝細胞を用いた薬物代謝酵素CYP誘導試験を実施し、実施例1の化合物の薬物代謝酵素CYPに対する誘導作用を評価した。
(Example 5) Drug metabolism enzyme CYP induction test using frozen human hepatocytes:
A drug metabolizing enzyme CYP induction test using frozen human hepatocytes was carried out, and the inducing action of the compound of Example 1 on the drug metabolizing enzyme CYP was evaluated.

Hepatocyte Isolation Kit(Xenotech社)を用いてヒト凍結肝細胞(Xenotech社)の懸濁液を調製した。48ウェルプレートに、1ウェルあたり1.2×10個の細胞を播種し、48時間の前培養を行った。前培養後、実施例1の化合物及びピルフェニドンそれぞれを10、100及び1000μmol/L含むCP培地(Celsis社)で24時間培養した。陰性対照群は、0.1(v/v)%DMSOを含むCP培地(Celsis社)で24時間培養した。A suspension of human frozen hepatocytes (Xenotech) was prepared using Hepatocyte Isolation Kit (Xenotech). A 48-well plate was seeded with 1.2 × 10 5 cells per well and pre-cultured for 48 hours. After the preculture, the compound of Example 1 and pirfenidone were cultured in CP medium (Celsis) containing 10, 100 and 1000 μmol / L, respectively, for 24 hours. The negative control group was cultured in CP medium (Celsis) containing 0.1 (v / v)% DMSO for 24 hours.

実施例1の化合物及びピルフェニドンの暴露24時間後に、KHB Buffer(Celsis社)で細胞を洗浄した。洗浄後、125μmol/L Testosterone含有KHB Bufferを0.3mL加え、37℃で30分間反応させた。反応後の上清を20μL分取し、氷冷したKHB Buffer 180μLで希釈し、これを測定用試料とした。   Cells were washed with KHB Buffer (Celsis) 24 hours after exposure to the compound of Example 1 and pirfenidone. After washing, 0.3 mL of 125 μmol / L Testosterone-containing KHB Buffer was added and reacted at 37 ° C. for 30 minutes. 20 μL of the supernatant after the reaction was collected and diluted with 180 μL of ice-cooled KHB Buffer, which was used as a measurement sample.

測定用試料を20μL分取し、0.1%ギ酸水溶液180μLを添加して、撹拌後、LC/MS/MS分析に供した。HPLCによる分析は以下の条件で実施した。HPLC systemはAgilent 1100 series(Agilent社)を使用した。カラムはCAPCELL PAK MGIII 2.0mm ID×50mm C18(Shiseido社)を使用した。移動相は0.1%ギ酸/アセトニトリルを用いた。MS/MS systemはAPI−4000(Applied Biosystems社)を用いた。LC/MS/MS分析により得られたクロマトグラムから、testosteroneの代謝物である6β−hydroxytestosterone量を定量し、CYP3A4酵素活性(pmol/min/10 cells)を算出した。20 μL of a sample for measurement was collected, 180 μL of 0.1% formic acid aqueous solution was added, and after stirring, the sample was subjected to LC / MS / MS analysis. Analysis by HPLC was performed under the following conditions. For the HPLC system, Agilent 1100 series (Agilent) was used. CAPCELL PAK MGIII 2.0 mm ID × 50 mm C18 (Shisei) was used for the column. The mobile phase was 0.1% formic acid / acetonitrile. As the MS / MS system, API-4000 (Applied Biosystems) was used. From the chromatogram obtained by LC / MS / MS analysis, the amount of 6β-hydroxytestosterone, which is a metabolite of testosterone, was quantified, and CYP3A4 enzyme activity (pmol / min / 10 6 cells) was calculated.

その結果を表1に示す。なお、CYP3A4酵素活性の値が大きいほど、化合物の薬物代謝酵素CYPに対する誘導作用が高いことを示す。また、化合物を暴露していない陰性対照群のCYP3A4酵素活性を1.00とした場合における化合物で処理した際のCYP3A4酵素活性を誘導倍率として示した。   The results are shown in Table 1. In addition, it shows that the induction | guidance | derivation effect | action with respect to the drug metabolizing enzyme CYP of a compound is so high that the value of CYP3A4 enzyme activity is large. In addition, the CYP3A4 enzyme activity when treated with a compound when the CYP3A4 enzyme activity of the negative control group not exposed to the compound was set to 1.00 was shown as the induction ratio.

Figure 2013018685
Figure 2013018685

この結果から、実施例1の化合物はピルフェニドンより薬物代謝酵素CYPに対する誘導作用が低いことが明らかとなった。これは、実施例1の化合物の肝毒性が低いことを示唆するものであった。   From this result, it was clarified that the compound of Example 1 has a lower inducing action on the drug metabolizing enzyme CYP than pirfenidone. This suggested that the compound of Example 1 had low liver toxicity.

(実施例6) ラットにおける化合物の消化器系障害評価:
実施例1の化合物の消化器系障害作用を、ラットにおける胃排泄能試験によりピルフェニドンと比較検討した。SD系ラット(雄、6週齢、日本チャールス・リバー)に、実施例1の化合物を30mg/kg、又はピルフェニドンを30mg/kgの用量で単回経口投与した。なお、実施例1の化合物及びピルフェニドンは0.5%メチルセルロース溶液に懸濁して用いた。溶媒群には、0.5%メチルセルロース溶液を同様に投与した。
Example 6 Evaluation of Compound Gastrointestinal Disorders in Rats:
The effects of the compound of Example 1 on the digestive system damage were compared with pirfenidone by a gastric emptying ability test in rats. A single dose of 30 mg / kg of the compound of Example 1 or 30 mg / kg of pirfenidone was orally administered to SD rats (male, 6 weeks old, Charles River, Japan). The compound of Example 1 and pirfenidone were used in suspension in a 0.5% methylcellulose solution. The solvent group was similarly administered with a 0.5% methylcellulose solution.

被験化合物投与前日から18時間以上ラットを絶食させた。被験化合物投与60分後に0.1%エバンスブルー溶液を0.2mLの容量(200μg)で経口投与した。0.1%エバンスブルー溶液投与30分後に頸椎脱臼によりラットを安楽死させ、直ちに開腹し、胃を摘出した。摘出した胃を6.3mol/Lの尿素液4mL中に浸漬、振とうした。さらにアセトン 8mL、20%ZnSO 0.4mL、1N NaOH 0.4mLの順に添加し、振とうを繰り返した。その後、溶液から胃を取り出し、メスシリンダーを用いて溶液の容量を測定した。溶液を濾紙で濾過後、波長620nmにおける吸光度をマイクロプレートリーダー(VersaMax、Molecular Devices Corp.)で測定した。検量線用標準液から作成した検量線を用いて、溶液中のエバンスブルー色素の濃度を求めた。溶液中に含まれるエバンスブルー色素量を算出し、胃残存色素量とした。胃残存色素量及び胃排泄能は下記式より算出した。
胃残存色素量(μg)=濃度(μg/mL)×容量(mL)
胃排泄能(%)=(1−胃内残存色素量(μg)/投与したエバンスブルーの量(μg))×100
Rats were fasted for 18 hours or more from the day before administration of the test compound. Sixty minutes after administration of the test compound, a 0.1% Evans blue solution was orally administered in a volume of 0.2 mL (200 μg). 30 minutes after administration of the 0.1% Evans blue solution, the rats were euthanized by cervical dislocation, immediately laparotomized, and the stomach was removed. The extracted stomach was immersed in 4 mL of 6.3 mol / L urea solution and shaken. Further acetone 8mL, 20% ZnSO 4 0.4mL, was added in the order of 1N NaOH 0.4 mL, repeated shaking. Thereafter, the stomach was removed from the solution, and the volume of the solution was measured using a graduated cylinder. The solution was filtered through filter paper, and the absorbance at a wavelength of 620 nm was measured with a microplate reader (VersaMax, Molecular Devices Corp.). The concentration of Evans blue dye in the solution was determined using a calibration curve prepared from the standard solution for the calibration curve. The amount of Evans blue pigment contained in the solution was calculated and used as the amount of pigment remaining in the stomach. The amount of pigment remaining in the stomach and the stomach excretion ability were calculated from the following formulas.
Gastric residual pigment amount (μg) = concentration (μg / mL) × volume (mL)
Stomach excretion (%) = (1−residual pigment amount (μg) / amount of Evans blue administered (μg)) × 100

また、実施例1の化合物の消化器系障害作用を、ラットにおける小腸輸送能試験によりピルフェニドンと比較検討した。SD系ラット(雄、6週齢、日本チャールス・リバー)に、実施例1の化合物を30mg/kg、又はピルフェニドンを30mg/kgの用量で単回経口投与した。なお、実施例1の化合物及びピルフェニドンは0.5%メチルセルロース溶液に懸濁して用いた。溶媒群には、0.5%メチルセルロース溶液を同様に投与した。   Further, the digestive system damage action of the compound of Example 1 was compared with pirfenidone by a small intestine transportability test in rats. A single dose of 30 mg / kg of the compound of Example 1 or 30 mg / kg of pirfenidone was orally administered to SD rats (male, 6 weeks old, Charles River, Japan). The compound of Example 1 and pirfenidone were used in suspension in a 0.5% methylcellulose solution. The solvent group was similarly administered with a 0.5% methylcellulose solution.

被験化合物投与前日から18時間以上ラットを絶食させた。被験化合物投与60分後に5%炭素末懸濁液(10%アラビアゴム(和光純薬工業)に炭素末(和光純薬工業)を5%の割合で懸濁させた液)を1mLの容量で経口投与した。5%炭素末懸濁液投与30分後に頸椎脱臼によりラットを安楽死させ、直ちに開腹し、胃及び腸管を、腸間膜を剥離しながら摘出した。腸管をのばして、小腸全長(胃幽門部から盲腸開口部まで)及び胃幽門部から炭素末懸濁液先端部までの距離を、メジャーを用いて測定した。小腸全長に対する5%炭素末懸濁液の移行率を小腸輸送能(%)として、下記式により算出した。
小腸輸送能(%)=胃幽門部から炭素末懸濁液先端部までの距離/小腸全長×100
Rats were fasted for 18 hours or more from the day before administration of the test compound. 60 minutes after administration of the test compound, 5% carbon powder suspension (liquid obtained by suspending carbon powder (Wako Pure Chemical Industries) at a ratio of 5% in 10% gum arabic (Wako Pure Chemical Industries)) in a volume of 1 mL. Orally administered. Thirty minutes after administration of the 5% carbon powder suspension, the rats were euthanized by cervical dislocation and immediately laparotomized, and the stomach and intestinal tract were excised while removing the mesentery. The intestinal tract was stretched, and the entire length of the small intestine (from the stomach pylorus to the cecal opening) and the distance from the stomach pylorus to the tip of the carbon powder suspension were measured using a measure. The transfer rate of 5% carbon powder suspension with respect to the entire length of the small intestine was calculated as the small intestine transport ability (%) by the following formula.
Small intestine transportability (%) = distance from stomach pylorus to tip of carbon powder suspension / total length of small intestine x 100

胃排泄能試験及び小腸輸送能試験の結果を表2に示す。表中の値は平均値±標準誤差(n=8)を示す。表中の「溶媒」は0.5%メチルセルロース溶液を経口投与した群(溶媒群)を示し、「実施例1の化合物」は実施例1の化合物30mg/kgを経口投与した群を示し、「ピルフェニドン」はピルフェニドン30mg/kgを経口投与した群を示す。   Table 2 shows the results of the gastric emptying ability test and the small intestine transport ability test. The values in the table represent mean values ± standard error (n = 8). “Solvent” in the table indicates a group (solvent group) orally administered with a 0.5% methylcellulose solution, “Compound of Example 1” indicates a group orally administered with 30 mg / kg of the compound of Example 1, and “ “Pirfenidone” indicates a group to which 30 mg / kg of pirfenidone was orally administered.

Figure 2013018685
Figure 2013018685

この結果から、実施例1の化合物はピルフェニドンより胃排泄能及び小腸輸送能に及ぼす影響が低いことが明らかとなった。これは、実施例1の化合物の消化器系障害作用が低いことを示唆するものであった。   From this result, it was clarified that the compound of Example 1 had less influence on gastric excretion ability and small intestine transport ability than pirfenidone. This suggested that the compound of Example 1 had a low digestive system disorder action.

本発明の新規なラクタム誘導体は、優れた抗線維化作用を有し、光毒性を有さず、肝毒性及び消化器系障害も軽減されていることから、安全性の高い医薬として用いることができ、特に、線維症の治療剤又は予防剤として利用できる。   The novel lactam derivative of the present invention has an excellent antifibrotic effect, does not have phototoxicity, and has reduced liver toxicity and gastrointestinal disorders. Therefore, it can be used as a highly safe pharmaceutical. In particular, it can be used as a therapeutic or prophylactic agent for fibrosis.

Claims (4)

下記の化学式(I)で示される、ラクタム誘導体。
Figure 2013018685
A lactam derivative represented by the following chemical formula (I):
Figure 2013018685
請求項1記載のラクタム誘導体を有効成分として含有する、医薬。   A pharmaceutical comprising the lactam derivative according to claim 1 as an active ingredient. 請求項1記載のラクタム誘導体を有効成分として含有する、線維症の治療剤又は予防剤。   A therapeutic or prophylactic agent for fibrosis comprising the lactam derivative according to claim 1 as an active ingredient. 請求項1記載のラクタム誘導体を有効成分として含有する、肺線維症の治療剤又は予防剤。   A therapeutic or prophylactic agent for pulmonary fibrosis comprising the lactam derivative according to claim 1 as an active ingredient.
JP2012534458A 2011-07-29 2012-07-27 Lactam derivatives and their pharmaceutical use Pending JPWO2013018685A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012534458A JPWO2013018685A1 (en) 2011-07-29 2012-07-27 Lactam derivatives and their pharmaceutical use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011167538 2011-07-29
JP2011167538 2011-07-29
JP2012534458A JPWO2013018685A1 (en) 2011-07-29 2012-07-27 Lactam derivatives and their pharmaceutical use

Publications (1)

Publication Number Publication Date
JPWO2013018685A1 true JPWO2013018685A1 (en) 2015-03-05

Family

ID=47629209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012534458A Pending JPWO2013018685A1 (en) 2011-07-29 2012-07-27 Lactam derivatives and their pharmaceutical use

Country Status (2)

Country Link
JP (1) JPWO2013018685A1 (en)
WO (1) WO2013018685A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR092742A1 (en) 2012-10-02 2015-04-29 Intermune Inc ANTIFIBROTIC PYRIDINONES
CN110452216B (en) 2014-04-02 2022-08-26 英特穆恩公司 Anti-fibrotic pyridinones
CN105906558A (en) * 2016-05-04 2016-08-31 河南师范大学 Anti-fibrosis drug pirfenidone crystal forms and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504669B1 (en) * 1969-01-27 1975-02-22
GB1366405A (en) * 1971-07-27 1974-09-11 Ceskoslovenska Akademie Ved Method of manufacturing polyamides by anionic polymerization of lac tams

Also Published As

Publication number Publication date
WO2013018685A1 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP3815496B2 (en) Overactive bladder therapeutic agent containing an anilide acetate derivative as an active ingredient
WO2016159577A2 (en) 1,2-naphthoquinone derivative and method for preparing same
JP2004528351A (en) Triazole compounds useful for treating diseases associated with undesirable cytokine activity
JP5290190B2 (en) Salt of imidazole-5-carboxylic acid derivative, production method and pharmaceutical composition thereof
WO2013018685A1 (en) Lactam derivative and use thereof for medical purposes
US11028111B2 (en) Compound for treating metabolic diseases and preparation method and use thereof
CN100364989C (en) Prazole derivative and its salt and use
AU2015298377B2 (en) Synthesis of benzothiazepines
US6790846B2 (en) Isoxazolone compounds useful in treating diseases associated with unwanted cytokine activity
KR101630432B1 (en) Pharmaceutical composition comprising 2,6-substituted 3-nitropyridine derivatives or thereof salt for preventing or treatment of cancer
RU2310652C2 (en) Tenatopazol (-)-enantiomer, pharmaceutical composition based on thereof and its using
US20230120914A1 (en) Formulations of a farnesoid x receptor agonist
EP4305026A1 (en) Anti-inflammatory carboxamide derivatives
CN109602734A (en) For treating the Compounds and methods for of leukaemia
JP4658332B2 (en) Polycyclic 2-aminodihydrothiazole, its production method and use as a medicine
WO2014129513A1 (en) Agent for preventing or treating ulcerative colitis and novel fullerene derivative
TWI488626B (en) A novel acetate compound or a salt
US20140128418A1 (en) Pyrazole derivatives, preparation method thereof, and composition for preventing and treating osteoporosis containing same
KR20150091011A (en) Benzoxazole derivatives for pruritis amelioration
KR20210044803A (en) Substituted benzamide and its use in therapy
CA2446763A1 (en) Novel 5-thio-ss-d-xylopyranoside derivatives, preparation method thereof, pharmaceutical compositions containing same and the therapeutic use thereof
JP2014141441A (en) Use of lactam derivatives for pharmaceutical purposes
TWI571459B (en) A novel fluorinated diphenyl glycolate compound or a salt
WO2022222686A1 (en) Lignan derivative, preparation method therefor and use thereof
JP5099692B2 (en) Novel trihalomethionine derivative and pharmaceutical containing the same