JPWO2013002075A1 - Direct blow bottle - Google Patents

Direct blow bottle Download PDF

Info

Publication number
JPWO2013002075A1
JPWO2013002075A1 JP2013522778A JP2013522778A JPWO2013002075A1 JP WO2013002075 A1 JPWO2013002075 A1 JP WO2013002075A1 JP 2013522778 A JP2013522778 A JP 2013522778A JP 2013522778 A JP2013522778 A JP 2013522778A JP WO2013002075 A1 JPWO2013002075 A1 JP WO2013002075A1
Authority
JP
Japan
Prior art keywords
acid
mol
group
polyamide compound
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013522778A
Other languages
Japanese (ja)
Other versions
JP5971244B2 (en
Inventor
尚史 小田
尚史 小田
大滝 良二
良二 大滝
健太郎 石井
健太郎 石井
翔太 荒川
翔太 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of JPWO2013002075A1 publication Critical patent/JPWO2013002075A1/en
Application granted granted Critical
Publication of JP5971244B2 publication Critical patent/JP5971244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • B65D1/0215Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features multilayered
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Abstract

ポリアミド化合物(A)及び樹脂(B)を含有する樹脂組成物から形成される層を含むダイレクトブローボトルであって、前記ポリアミド化合物(A)が、特定のジアミン単位を50モル%以上含むジアミン単位25〜50モル%と、特定のジカルボン酸単位を50モル%以上含むジカルボン酸単位25〜50モル%と、特定の構成単位0.1〜50モル%とを含有する、ダイレクトブローボトル。A direct blow bottle comprising a layer formed from a resin composition comprising a polyamide compound (A) and a resin (B), wherein the polyamide compound (A) comprises a specific diamine unit of 50 mol% or more. A direct blow bottle containing 25 to 50 mol%, 25 to 50 mol% of a dicarboxylic acid unit containing 50 mol% or more of a specific dicarboxylic acid unit, and 0.1 to 50 mol% of a specific structural unit.

Description

本発明は、酸素バリア性能及び酸素吸収性能を有するダイレクトブローボトルに関する。   The present invention relates to a direct blow bottle having oxygen barrier performance and oxygen absorption performance.

キシリレンジアミンと脂肪族ジカルボン酸との重縮合反応から得られるポリアミド、例えばメタキシリレンジアミンとアジピン酸とから得られるポリアミド(以下ナイロンMXD6という)は、高強度、高弾性率、並びに酸素、炭酸ガス、臭気及びフレーバー等のガス状物質に対する低い透過性を示すことから、包装材料分野におけるガスバリア材料として広く利用されている。ナイロンMXD6は、その他のガスバリア性樹脂と比べて溶融時の熱安定性が良好であることから、ポリエチレンテレフタレート(以下PETと省略する)、ナイロン6及びポリプロピレン等の熱可塑性樹脂との共押出や共射出成形等が可能である。そのため、ナイロンMXD6は、多層構造物を構成するガスバリア層として積極的に利用されている。   Polyamide obtained from polycondensation reaction of xylylenediamine and aliphatic dicarboxylic acid, for example, polyamide obtained from metaxylylenediamine and adipic acid (hereinafter referred to as nylon MXD6) has high strength, high elastic modulus, oxygen, carbonic acid Since it shows low permeability to gaseous substances such as gas, odor and flavor, it is widely used as a gas barrier material in the field of packaging materials. Nylon MXD6 has better thermal stability when melted than other gas barrier resins, and therefore coextruded or coextruded with thermoplastic resins such as polyethylene terephthalate (hereinafter abbreviated as PET), nylon 6 and polypropylene. Injection molding or the like is possible. Therefore, nylon MXD6 is actively used as a gas barrier layer constituting a multilayer structure.

近年、ナイロンMXD6に少量の遷移金属化合物を添加、混合して、ナイロンMXD6に酸素吸収機能を付与し、これを容器や包装材料を構成する酸素バリア材料として利用することで、容器外部から透過してくる酸素をナイロンMXD6が吸収すると共に容器内部に残存する酸素をもナイロンMXD6が吸収することにより、従来の酸素バリア性熱可塑性樹脂を利用した容器以上に内容物の保存性を高める方法が実用化されつつある(例えば特許文献1及び2を参照)。   In recent years, nylon MXD6 is added and mixed with a small amount of transition metal compound to give nylon MXD6 an oxygen-absorbing function, and this is used as an oxygen barrier material constituting containers and packaging materials. Nylon MXD6 absorbs the incoming oxygen and nylon MXD6 also absorbs oxygen remaining inside the container, so that a method for improving the storage stability of the contents over conventional containers using oxygen-barrier thermoplastic resin is practical. (See, for example, Patent Documents 1 and 2).

一方、容器内の酸素を除去するため、酸素吸収剤の使用は古くから行われている。例えば、特許文献3及び4には、鉄粉等の酸素吸収剤を樹脂中に分散させた酸素吸収多層体および酸素吸収フィルムが記載されている。特許文献5には、ポリブタジエン等のエチレン性不飽和化合物及びコバルト等の遷移金属触媒を含む酸素掃除去層と、ポリアミド等の酸素遮断層とを有する製品が記載されている。
また、特許文献6には、酸素バリア材料として、ポリエステル樹脂層とポリグリコール酸層を積層した、ダイレクトブロー成形した多層ボトルが開示されている。
On the other hand, oxygen absorbers have been used for a long time to remove oxygen in the container. For example, Patent Documents 3 and 4 describe an oxygen-absorbing multilayer body and an oxygen-absorbing film in which an oxygen absorbent such as iron powder is dispersed in a resin. Patent Document 5 describes a product having an oxygen scavenging layer containing an ethylenically unsaturated compound such as polybutadiene and a transition metal catalyst such as cobalt, and an oxygen barrier layer such as polyamide.
Patent Document 6 discloses a direct blow molded multilayer bottle in which a polyester resin layer and a polyglycolic acid layer are laminated as an oxygen barrier material.

特開2003−341747号公報JP 2003-341747 A 特許第2991437号公報Japanese Patent No. 2991437 特開平2−72851号公報JP-A-2-72851 特開平4−90848号公報Japanese Patent Laid-Open No. 4-90848 特開平5−115776号公報Japanese Patent Laid-Open No. 5-115776 特開2003−266527号公報JP 2003-266527 A

鉄粉等の酸素吸収剤を樹脂中に分散させた酸素吸収多層体および容器は、鉄粉等の酸素吸収剤により樹脂が着色して不透明であるため、透明性が要求される包装の分野には使用できないという用途上の制約がある。
一方、コバルト等の遷移金属を含有する樹脂組成物は、透明性が必要な包装容器にも適用可能である利点を有するが、遷移金属触媒によって樹脂組成物が着色されるため好ましくない。また、これらの樹脂組成物では、遷移金属触媒によって、酸素を吸収することで樹脂が酸化される。具体的には、ナイロンMXD6では、遷移金属原子によるポリアミド樹脂のアリーレン基に隣接するメチレン鎖から水素原子の引き抜きに起因するラジカルの発生、前記ラジカルに酸素分子が付加することによるパーオキシラジカルの発生、パーオキシラジカルによる水素原子の引き抜き等の各反応により起こるものと考えられている。このような機構による酸素吸収により樹脂が酸化されるため、分解物が発生して容器内容物に好ましくない臭気が発生したり、樹脂の酸化劣化により容器の色調や強度等が損なわれるという問題がある。
Oxygen-absorbing multilayers and containers in which oxygen absorbents such as iron powder are dispersed in the resin are opaque because the resin is colored by the oxygen absorbent such as iron powder, and therefore, in the packaging field where transparency is required. There is a limitation in usage that cannot be used.
On the other hand, a resin composition containing a transition metal such as cobalt has an advantage that it can be applied to packaging containers that require transparency, but is not preferred because the resin composition is colored by a transition metal catalyst. In these resin compositions, the resin is oxidized by absorbing oxygen by the transition metal catalyst. Specifically, in nylon MXD6, generation of radicals due to extraction of hydrogen atoms from the methylene chain adjacent to the arylene group of the polyamide resin by transition metal atoms, and generation of peroxy radicals by addition of oxygen molecules to the radicals It is thought to occur by various reactions such as extraction of hydrogen atoms by peroxy radicals. Since the resin is oxidized by oxygen absorption by such a mechanism, a decomposition product is generated and an unpleasant odor is generated in the contents of the container, or the color tone or strength of the container is impaired due to oxidative degradation of the resin. is there.

本発明が解決しようとする課題は、酸素バリア性能を発現するとともに、遷移金属を含有せずに酸素吸収性能を発現することができ、内容物の酸化劣化を抑制できるボトルであって、内容物の風味を損なわず、長期の保存においても酸素吸収バリア層の強度低下がないボトルを提供することにある。   The problem to be solved by the present invention is a bottle that exhibits oxygen barrier performance, can exhibit oxygen absorption performance without containing a transition metal, and can suppress oxidative deterioration of the contents, An object of the present invention is to provide a bottle that does not deteriorate the flavor of the oxygen absorbing barrier layer and does not deteriorate the strength of the oxygen-absorbing barrier layer even during long-term storage.

本発明は、以下のダイレクトブローボトルを提供する。
ポリアミド化合物(A)及び樹脂(B)を含有する樹脂組成物から形成される層を含むダイレクトブローボトルであって、
前記ポリアミド化合物(A)が、
下記一般式(I−1)で表される芳香族ジアミン単位、下記一般式(I−2)で表される脂環族ジアミン単位、及び下記一般式(I−3)で表される直鎖脂肪族ジアミン単位からなる群から選ばれる少なくとも1つのジアミン単位を合計で50モル%以上含むジアミン単位25〜50モル%と、
下記一般式(II−1)で表される直鎖脂肪族ジカルボン酸単位及び/又は下記一般式(II−2)で表される芳香族ジカルボン酸単位を合計で50モル%以上含むジカルボン酸単位25〜50モル%と、
下記一般式(III)で表される構成単位0.1〜50モル%と
を含有する、ダイレクトブローボトル。

Figure 2013002075
[前記一般式(I−3)中、mは2〜18の整数を表す。前記一般式(II−1)中、nは2〜18の整数を表す。前記一般式(II−2)中、Arはアリーレン基を表す。前記一般式(III)中、Rは置換もしくは無置換のアルキル基又は置換もしくは無置換のアリール基を表す。]The present invention provides the following direct blow bottles.
A direct blow bottle including a layer formed from a resin composition containing a polyamide compound (A) and a resin (B),
The polyamide compound (A) is
An aromatic diamine unit represented by the following general formula (I-1), an alicyclic diamine unit represented by the following general formula (I-2), and a straight chain represented by the following general formula (I-3) 25 to 50 mol% of diamine units containing at least 50 mol% in total of at least one diamine unit selected from the group consisting of aliphatic diamine units;
A dicarboxylic acid unit containing a total of 50 mol% or more of a linear aliphatic dicarboxylic acid unit represented by the following general formula (II-1) and / or an aromatic dicarboxylic acid unit represented by the following general formula (II-2) 25 to 50 mol%,
The direct blow bottle containing 0.1-50 mol% of structural units represented with the following general formula (III).
Figure 2013002075
[In the general formula (I-3), m represents an integer of 2 to 18. In the general formula (II-1), n represents an integer of 2 to 18. In the general formula (II-2), Ar represents an arylene group. In the general formula (III), R represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. ]

本発明のダイレクトブローボトルは、酸素バリア性能を発現するとともに、遷移金属を含有せずに酸素吸収性能を発現することができ、かつ、酸素吸収が進行するにつれての強度低下が極めて小さい。したがって、本発明のダイレクトブローボトルは、内容物の酸化劣化の抑制に優れるとともに、異臭や風味変化の原因となるような物質の発生がほとんど無く、風味保持性にも優れる。   The direct blow bottle of the present invention exhibits oxygen barrier performance, can exhibit oxygen absorption performance without containing a transition metal, and has a very small decrease in strength as oxygen absorption proceeds. Therefore, the direct blow bottle of the present invention is excellent in suppressing oxidative deterioration of the contents, hardly generating substances that cause off-flavors and flavor changes, and excellent in flavor retention.

<<ダイレクトブローボトル>>
本発明のダイレクトブローボトルは、ポリアミド化合物(A)及び樹脂(B)を含有する樹脂組成物から形成される層(以後、「酸素吸収バリア層」と称することもある)を少なくとも含むボトルである。本発明のボトルは、単層ボトルでもよく、必要に応じて、更に任意の層を含む多層ボトルでもよい。
本発明のダイレクトブローボトルが多層ボトルの場合、その層構成は特に限定されず、層の数や種類は特に限定されない。例えば、前記酸素吸収バリア層を層(X)、他の樹脂層を層(Y)とした場合、1層の層(X)及び1層の層(Y)からなるX/Y構成、Y/X構成であってもよく、1層の層(X)及び2層の層(Y)からなるY/X/Yの3層構成であってもよい。また、1層の層(X)並びに層(Y1)及び層(Y2)の2種4層の層(Y)からなるY1/Y2/X/Y2/Y1の5層構成であってもよい。さらに、本発明のダイレクトブローボトルは、必要に応じて接着層(AD)等の任意の層を含んでもよく、例えば、Y1/AD/Y2/X/Y2/AD/Y1の7層構成であってもよい。
また、多層構成の場合、酸素吸収バリア層の位置は、内層に近い方が、トリガーとなる内容物の水分により、酸素吸収速度が高まり、早期に酸素吸収を開始する。さらに、酸素吸収バリア層の外側に、高バリアの樹脂層を設けることで、容器外側からの酸素を遮断するとともに、容器内に残存する酸素を酸素吸収バリア層が効率良く、吸収することができる。
<< Direct blow bottle >>
The direct blow bottle of the present invention is a bottle including at least a layer formed from a resin composition containing the polyamide compound (A) and the resin (B) (hereinafter also referred to as “oxygen absorption barrier layer”). . The bottle of the present invention may be a single-layer bottle, or may be a multilayer bottle further including an optional layer as necessary.
When the direct blow bottle of the present invention is a multilayer bottle, the layer configuration is not particularly limited, and the number and type of layers are not particularly limited. For example, when the oxygen absorption barrier layer is the layer (X) and the other resin layer is the layer (Y), an X / Y configuration including one layer (X) and one layer (Y), Y / An X configuration may be used, and a Y / X / Y three-layer configuration including one layer (X) and two layers (Y) may be used. Alternatively, a five-layer configuration of Y1 / Y2 / X / Y2 / Y1 composed of one layer (X) and two types and four layers (Y) of the layer (Y1) and the layer (Y2) may be used. Furthermore, the direct blow bottle of the present invention may include an arbitrary layer such as an adhesive layer (AD) as necessary, and has, for example, a seven-layer configuration of Y1 / AD / Y2 / X / Y2 / AD / Y1. May be.
In the case of a multilayer structure, the oxygen absorption barrier layer is positioned closer to the inner layer, the oxygen absorption rate is increased due to the moisture of the contents serving as a trigger, and oxygen absorption starts early. Furthermore, by providing a high barrier resin layer outside the oxygen absorption barrier layer, oxygen from the outside of the container can be blocked and the oxygen absorption barrier layer can efficiently absorb oxygen remaining in the container. .

1.ポリアミド化合物(A)及び樹脂(B)を含有する樹脂組成物から形成される層(酸素吸収バリア層)
本発明において、酸素吸収バリア層は樹脂組成物から形成されるものであり、当該樹脂組成物が、従来公知の樹脂(以後「樹脂(B)」と呼ぶこともある)に加えて、後述する特定のポリアミド化合物(以後「ポリアミド化合物(A)」と呼ぶこともある)を含有することで酸素吸収性能及び酸素バリア性能を発揮することができる。
本発明において、樹脂組成物に含有されるポリアミド化合物(A)は1種であってもよいし、2種以上の組合せであってもよい。また、樹脂組成物に含有される樹脂(B)は、1種であってもよいし、2種以上の組み合わせであってもよい。
1. Layer formed from a resin composition containing a polyamide compound (A) and a resin (B) (oxygen absorption barrier layer)
In the present invention, the oxygen absorption barrier layer is formed from a resin composition, and the resin composition will be described later in addition to a conventionally known resin (hereinafter also referred to as “resin (B)”). By containing a specific polyamide compound (hereinafter also referred to as “polyamide compound (A)”), oxygen absorption performance and oxygen barrier performance can be exhibited.
In the present invention, the polyamide compound (A) contained in the resin composition may be one type or a combination of two or more types. Moreover, 1 type may be sufficient as resin (B) contained in a resin composition, and 2 or more types of combinations may be sufficient as it.

本発明に用いられる樹脂組成物中におけるポリアミド化合物(A)と樹脂(B)の質量比の好適な範囲は、ポリアミド化合物(A)の相対粘度に応じて異なる。
ポリアミド化合物(A)の相対粘度が1.8以上4.2以下である場合、ポリアミド化合物(A)/樹脂(B)の質量比は、5/95〜95/5の範囲から選択することが好ましい。酸素吸収性能及び酸素バリア性能の観点からは、ポリアミド化合物(A)と樹脂(B)の合計100質量部に対して、ポリアミド化合物(A)の含有量が10質量部以上であることがより好ましく、30質量部以上であることがさらに好ましい。
ポリアミド化合物(A)の相対粘度が1.01以上1.8未満である場合、成形加工性の観点から樹脂(B)を比較的多量に含有しておくことが望ましく、ポリアミド化合物(A)/樹脂(B)の質量比は、5/95〜50/50の範囲から選択することが好ましい。酸素吸収性能及び酸素バリア性能の観点からは、ポリアミド化合物(A)と樹脂(B)の合計100質量部に対して、ポリアミド化合物(A)の含有量が10質量部以上であることがより好ましく、30質量部以上であることがさらに好ましい。
The suitable range of the mass ratio of the polyamide compound (A) and the resin (B) in the resin composition used in the present invention varies depending on the relative viscosity of the polyamide compound (A).
When the relative viscosity of the polyamide compound (A) is 1.8 or more and 4.2 or less, the mass ratio of the polyamide compound (A) / resin (B) may be selected from the range of 5/95 to 95/5. preferable. From the viewpoint of oxygen absorption performance and oxygen barrier performance, the content of the polyamide compound (A) is more preferably 10 parts by mass or more with respect to a total of 100 parts by mass of the polyamide compound (A) and the resin (B). More preferably, it is 30 parts by mass or more.
When the relative viscosity of the polyamide compound (A) is 1.01 or more and less than 1.8, it is desirable to contain a relatively large amount of the resin (B) from the viewpoint of moldability, and the polyamide compound (A) / The mass ratio of the resin (B) is preferably selected from the range of 5/95 to 50/50. From the viewpoint of oxygen absorption performance and oxygen barrier performance, the content of the polyamide compound (A) is more preferably 10 parts by mass or more with respect to a total of 100 parts by mass of the polyamide compound (A) and the resin (B). More preferably, it is 30 parts by mass or more.

本発明に用いられる樹脂組成物は、ポリアミド化合物(A)及び樹脂(B)に加えて、所望する性能等に応じて、後述する添加剤(以後“添加剤(C)”と呼ぶこともある)を含んでいてもよいが、樹脂組成物中のポリアミド化合物(A)及び樹脂(B)の合計の含有量は、成形加工性や酸素吸収性能、酸素バリア性能の観点から90質量%〜100質量%であることが好ましく、95質量%〜100質量%であることがより好ましい。
酸素吸収バリア層の厚みは、酸素吸収性能及び酸素バリア性能を高めつつ、ダイレクトブローボトルの加工性を確保するという観点から、2〜100μmとすることが好ましく、より好ましくは5〜90μmであり、更に好ましくは10〜80μmである。
In addition to the polyamide compound (A) and the resin (B), the resin composition used in the present invention may be referred to as an additive described later (hereinafter referred to as “additive (C)”) depending on the desired performance and the like. However, the total content of the polyamide compound (A) and the resin (B) in the resin composition is 90% by mass to 100% from the viewpoint of molding processability, oxygen absorption performance, and oxygen barrier performance. It is preferable that it is mass%, and it is more preferable that it is 95 mass%-100 mass%.
The thickness of the oxygen absorption barrier layer is preferably 2 to 100 μm, more preferably 5 to 90 μm, from the viewpoint of securing the workability of the direct blow bottle while improving the oxygen absorption performance and the oxygen barrier performance. More preferably, it is 10-80 micrometers.

1−1.ポリアミド化合物(A)
<ポリアミド化合物(A)の構成>
本発明において、ポリアミド化合物(A)は、下記一般式(I−1)で表される芳香族ジアミン単位、下記一般式(I−2)で表される脂環族ジアミン単位、及び下記一般式(I−3)で表される直鎖脂肪族ジアミン単位からなる群から選ばれる少なくとも1つのジアミン単位を合計で50モル%以上含むジアミン単位25〜50モル%と、下記一般式(II−1)で表される直鎖脂肪族ジカルボン酸単位及び/又は下記一般式(II−2)で表される芳香族ジカルボン酸単位を合計で50モル%以上含むジカルボン酸単位25〜50モル%と、3級水素含有カルボン酸単位(好ましくは下記一般式(III)で表される構成単位)0.1〜50モル%とを含有する。
1-1. Polyamide compound (A)
<Configuration of polyamide compound (A)>
In the present invention, the polyamide compound (A) is an aromatic diamine unit represented by the following general formula (I-1), an alicyclic diamine unit represented by the following general formula (I-2), and the following general formula. 25 to 50 mol% of diamine units containing at least 50 mol% in total of at least one diamine unit selected from the group consisting of linear aliphatic diamine units represented by (I-3), and the following general formula (II-1) 25 to 50 mol% of dicarboxylic acid units including a total of 50 mol% or more of the linear aliphatic dicarboxylic acid units represented by formula (II) and the aromatic dicarboxylic acid units represented by the following general formula (II-2): A tertiary hydrogen-containing carboxylic acid unit (preferably a structural unit represented by the following general formula (III)) is contained in an amount of 0.1 to 50 mol%.

Figure 2013002075
Figure 2013002075

[前記一般式(I−3)中、mは2〜18の整数を表す。前記一般式(II−1)中、nは2〜18の整数を表す。前記一般式(II−2)中、Arはアリーレン基を表す。前記一般式(III)中、Rは置換もしくは無置換のアルキル基又は置換もしくは無置換のアリール基を表す。]
ただし、前記ジアミン単位、前記ジカルボン酸単位、前記3級水素含有カルボン酸単位の合計は100モル%を超えないものとする。ポリアミド化合物(A)は、本発明の効果を損なわない範囲で、前記以外の構成単位を更に含んでいてもよい。
[In the general formula (I-3), m represents an integer of 2 to 18. In the general formula (II-1), n represents an integer of 2 to 18. In the general formula (II-2), Ar represents an arylene group. In the general formula (III), R represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. ]
However, the total of the diamine unit, the dicarboxylic acid unit, and the tertiary hydrogen-containing carboxylic acid unit shall not exceed 100 mol%. The polyamide compound (A) may further contain structural units other than those described above as long as the effects of the present invention are not impaired.

ポリアミド化合物(A)において、3級水素含有カルボン酸単位の含有量は0.1〜50モル%である。3級水素含有カルボン酸単位の含有量が0.1モル%未満では十分な酸素吸収性能を発現しない。一方、3級水素含有カルボン酸単位の含有量が50モル%を超えると、3級水素含有量が多すぎるため、ポリアミド化合物(A)のガスバリア性や機械物性等の物性が低下し、特に3級水素含有カルボン酸がアミノ酸である場合は、ペプチド結合が連続するため耐熱性が十分でなくなるだけでなく、アミノ酸の2量体からなる環状物ができ、重合を阻害する。3級水素含有カルボン酸単位の含有量は、酸素吸収性能やポリアミド化合物(A)の性状の観点から、好ましくは0.2モル%以上、より好ましくは1モル%以上であり、また、好ましくは40モル%以下であり、より好ましくは30モル%以下である。   In the polyamide compound (A), the content of the tertiary hydrogen-containing carboxylic acid unit is 0.1 to 50 mol%. If the content of the tertiary hydrogen-containing carboxylic acid unit is less than 0.1 mol%, sufficient oxygen absorption performance is not exhibited. On the other hand, when the content of the tertiary hydrogen-containing carboxylic acid unit exceeds 50 mol%, the tertiary hydrogen content is too large, and the physical properties such as gas barrier properties and mechanical properties of the polyamide compound (A) are deteriorated. When the secondary hydrogen-containing carboxylic acid is an amino acid, the peptide bond is continuous, so that the heat resistance is not sufficient, and a cyclic product composed of a dimer of amino acids is formed, thereby inhibiting polymerization. The content of the tertiary hydrogen-containing carboxylic acid unit is preferably 0.2 mol% or more, more preferably 1 mol% or more, and preferably from the viewpoint of oxygen absorption performance and properties of the polyamide compound (A). It is 40 mol% or less, More preferably, it is 30 mol% or less.

ポリアミド化合物(A)において、ジアミン単位の含有量は25〜50モル%であり、酸素吸収性能やポリマー性状の観点から、好ましくは30〜50モル%である。同様に、ポリアミド化合物(A)において、ジカルボン酸単位の含有量は25〜50モル%であり、好ましくは30〜50モル%である。
ジアミン単位とジカルボン酸単位との含有量の割合は、重合反応の観点から、ほぼ同量であることが好ましく、ジカルボン酸単位の含有量がジアミン単位の含有量の±2モル%であることがより好ましい。ジカルボン酸単位の含有量がジアミン単位の含有量の±2モル%の範囲を超えると、ポリアミド化合物(A)の重合度が上がりにくくなるため重合度を上げるのに多くの時間を要し、熱劣化が生じやすくなる。
In the polyamide compound (A), the content of diamine units is 25 to 50 mol%, and preferably 30 to 50 mol% from the viewpoint of oxygen absorption performance and polymer properties. Similarly, in the polyamide compound (A), the content of the dicarboxylic acid unit is 25 to 50 mol%, preferably 30 to 50 mol%.
The proportion of the content of the diamine unit and the dicarboxylic acid unit is preferably substantially the same from the viewpoint of the polymerization reaction, and the content of the dicarboxylic acid unit is ± 2 mol% of the content of the diamine unit. More preferred. If the content of the dicarboxylic acid unit exceeds the range of ± 2 mol% of the content of the diamine unit, the degree of polymerization of the polyamide compound (A) becomes difficult to increase, so it takes a lot of time to increase the degree of polymerization, Deterioration is likely to occur.

[ジアミン単位]
ポリアミド化合物(A)中のジアミン単位は、前記一般式(I−1)で表される芳香族ジアミン単位、前記一般式(I−2)で表される脂環族ジアミン単位、及び前記一般式(I−3)で表される直鎖脂肪族ジアミン単位からなる群から選ばれる少なくとも1つのジアミン単位を、ジアミン単位中に合計で50モル%以上含み、当該含有量は、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。
[Diamine unit]
The diamine unit in the polyamide compound (A) is an aromatic diamine unit represented by the general formula (I-1), an alicyclic diamine unit represented by the general formula (I-2), and the general formula. The total content of at least one diamine unit selected from the group consisting of linear aliphatic diamine units represented by (I-3) is 50 mol% or more in the diamine units, and the content is preferably 70 mol%. Above, more preferably 80 mol% or more, still more preferably 90 mol% or more, and preferably 100 mol% or less.

前記一般式(I−1)で表される芳香族ジアミン単位を構成しうる化合物としては、オルトキシリレンジアミン、メタキシリレンジアミン、及びパラキシリレンジアミンが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。   Examples of the compound that can constitute the aromatic diamine unit represented by the general formula (I-1) include orthoxylylenediamine, metaxylylenediamine, and paraxylylenediamine. These can be used alone or in combination of two or more.

前記式(I−2)で表される脂環族ジアミン単位を構成しうる化合物としては、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン等のビス(アミノメチル)シクロヘキサン類が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
ビス(アミノメチル)シクロヘキサン類は、構造異性体を持つが、cis体比率を高くすることで、結晶性が高く、良好な成形性を得られる。一方、cis体比率を低くすれば、結晶性が低い、透明なものが得られる。したがって、結晶性を高くしたい場合は、ビス(アミノメチル)シクロヘキサン類におけるcis体含有比率を70モル%以上とすることが好ましく、より好ましくは80モル%以上、更に好ましくは90モル%以上とする。一方、結晶性を低くしたい場合は、ビス(アミノメチル)シクロヘキサン類におけるcis体含有比率を50モル%以下とすることが好ましく、より好ましくは40モル%以下、更に好ましくは30モル%以下とする。
Examples of the compound that can constitute the alicyclic diamine unit represented by the formula (I-2) include bis (amino) such as 1,3-bis (aminomethyl) cyclohexane and 1,4-bis (aminomethyl) cyclohexane. Methyl) cyclohexanes. These can be used alone or in combination of two or more.
Bis (aminomethyl) cyclohexanes have structural isomers, but by increasing the cis-isomer ratio, the crystallinity is high and good moldability can be obtained. On the other hand, if the cis-isomer ratio is lowered, a transparent material with low crystallinity can be obtained. Therefore, when it is desired to increase the crystallinity, the cis-isomer content ratio in the bis (aminomethyl) cyclohexane is preferably 70 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more. . On the other hand, when it is desired to lower the crystallinity, the cis body content ratio in the bis (aminomethyl) cyclohexanes is preferably 50 mol% or less, more preferably 40 mol% or less, still more preferably 30 mol% or less. .

前記一般式(I−3)中、mは2〜18の整数を表し、好ましくは3〜16、より好ましくは4〜14、更に好ましくは6〜12である。
前記一般式(I−3)で表される直鎖脂肪族ジアミン単位を構成しうる化合物としては、エチレンジアミン、1,3−プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等の脂肪族ジアミンを例示できるが、これらに限定されるものではない。これらの中でも、ヘキサメチレンジアミンが好ましい。これらは単独で又は2種以上を組み合わせて用いることができる。
In said general formula (I-3), m represents the integer of 2-18, Preferably it is 3-16, More preferably, it is 4-14, More preferably, it is 6-12.
Examples of the compound that can constitute the linear aliphatic diamine unit represented by the general formula (I-3) include ethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, and heptamethylenediamine. And aliphatic diamines such as octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, and dodecamethylene diamine, but are not limited thereto. Among these, hexamethylenediamine is preferable. These can be used alone or in combination of two or more.

ポリアミド化合物(A)中のジアミン単位としては、ポリアミド化合物(A)に優れたガスバリア性を付与することに加え、透明性や色調の向上や、汎用的な熱可塑性樹脂の成形性を容易にする観点からは、前記一般式(I−1)で表される芳香族ジアミン単位及び/又は前記一般式(I−2)で表される脂環族ジアミン単位を含むことが好ましく、ポリアミド化合物(A)に適度な結晶性を付与する観点からは、前記一般式(I−3)で表される直鎖脂肪族ジアミン単位を含むことが好ましい。特に、酸素吸収性能やポリアミド化合物(A)の性状の観点からは、前記一般式(I−1)で表される芳香族ジアミン単位を含むことが好ましい。   As a diamine unit in the polyamide compound (A), in addition to imparting excellent gas barrier properties to the polyamide compound (A), it improves transparency and color tone and facilitates moldability of general-purpose thermoplastic resins. From the viewpoint, it preferably contains an aromatic diamine unit represented by the general formula (I-1) and / or an alicyclic diamine unit represented by the general formula (I-2). From the viewpoint of imparting appropriate crystallinity to (A), it is preferable to include a linear aliphatic diamine unit represented by the general formula (I-3). In particular, from the viewpoint of oxygen absorption performance and properties of the polyamide compound (A), it is preferable that the aromatic diamine unit represented by the general formula (I-1) is included.

ポリアミド化合物(A)中のジアミン単位は、ポリアミド化合物(A)に優れたガスバリア性を発現させることに加え、汎用的な熱可塑性樹脂の成形性を容易にする観点から、メタキシリレンジアミン単位を50モル%以上含むことが好ましく、当該含有量は、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。   The diamine unit in the polyamide compound (A) is a metaxylylenediamine unit from the viewpoint of facilitating moldability of a general-purpose thermoplastic resin in addition to exhibiting excellent gas barrier properties in the polyamide compound (A). The content is preferably 50 mol% or more, and the content is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and preferably 100 mol% or less.

前記一般式(I−1)〜(I−3)のいずれかで表されるジアミン単位以外のジアミン単位を構成しうる化合物としては、パラフェニレンジアミン等の芳香族ジアミン、1,3−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン等の脂環族ジアミン、N−メチルエチレンジアミン、2−メチル−1,5−ペンタンジアミン、1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサン等の脂肪族ジアミン、ハンツマン社製のジェファーミンやエラスタミン(いずれも商品名)に代表されるエーテル結合を有するポリエーテル系ジアミン等を例示できるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。   Examples of the compound that can constitute a diamine unit other than the diamine unit represented by any one of the general formulas (I-1) to (I-3) include aromatic diamines such as paraphenylenediamine, and 1,3-diaminocyclohexane. Alicyclic diamines such as 1,4-diaminocyclohexane, N-methylethylenediamine, 2-methyl-1,5-pentanediamine, and 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane Examples include, but are not limited to, group diamines, polyether diamines having ether bonds represented by Huntsman's Jeffamine and elastamine (both are trade names), and the like. These can be used alone or in combination of two or more.

[ジカルボン酸単位]
ポリアミド化合物(A)中のジカルボン酸単位は、重合時の反応性、並びにポリアミド化合物(A)の結晶性及び成形性の観点から、前記一般式(II−1)で表される直鎖脂肪族ジカルボン酸単位及び/又は前記一般式(II−2)で表される芳香族ジカルボン酸単位を、ジカルボン酸単位に合計で50モル%以上含み、当該含有量は、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。
[Dicarboxylic acid unit]
The dicarboxylic acid unit in the polyamide compound (A) is a linear aliphatic group represented by the general formula (II-1) from the viewpoints of reactivity during polymerization and crystallinity and moldability of the polyamide compound (A). The dicarboxylic acid unit and / or the aromatic dicarboxylic acid unit represented by the general formula (II-2) is contained in the dicarboxylic acid unit in a total of 50 mol% or more, and the content is preferably 70 mol% or more, more Preferably it is 80 mol% or more, More preferably, it is 90 mol% or more, Preferably it is 100 mol% or less.

前記一般式(II−1)で表される直鎖脂肪族ジカルボン酸単位は、ポリアミド化合物(A)に適度なガラス転移温度や結晶性を付与することに加え、包装材料や包装容器として必要な柔軟性を付与できる点で好ましい。
前記一般式(II−1)中、nは2〜18の整数を表し、好ましくは3〜16、より好ましくは4〜12、更に好ましくは4〜8である。
前記一般式(II−1)で表される直鎖脂肪族ジカルボン酸単位を構成しうる化合物としては、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,10−デカンジカルボン酸、1,11−ウンデカンジカルボン酸、1,12−ドデカンジカルボン酸等を例示できるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。
The linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) is necessary as a packaging material and a packaging container in addition to imparting an appropriate glass transition temperature and crystallinity to the polyamide compound (A). It is preferable at the point which can provide a softness | flexibility.
In said general formula (II-1), n represents the integer of 2-18, Preferably it is 3-16, More preferably, it is 4-12, More preferably, it is 4-8.
Examples of the compound that can constitute the linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1, Examples thereof include, but are not limited to, 10-decanedicarboxylic acid, 1,11-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, and the like. These can be used alone or in combination of two or more.

前記一般式(II−1)で表される直鎖脂肪族ジカルボン酸単位の種類は用途に応じて適宜決定される。ポリアミド化合物(A)中の直鎖脂肪族ジカルボン酸単位は、ポリアミド化合物(A)に優れたガスバリア性を付与することに加え、包装材料や包装容器の加熱殺菌後の耐熱性を保持する観点から、アジピン酸単位、セバシン酸単位、及び1,12−ドデカンジカルボン酸単位からなる群から選ばれる少なくとも1つを、直鎖脂肪族ジカルボン酸単位中に合計で50モル%以上含むことが好ましく、当該含有量は、より好ましくは70モル%以上、更に好ましくは80モル%以上、特に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。   The kind of the linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) is appropriately determined according to the use. The linear aliphatic dicarboxylic acid unit in the polyamide compound (A) provides excellent gas barrier properties to the polyamide compound (A), and from the viewpoint of maintaining heat resistance after heat sterilization of packaging materials and packaging containers. It is preferable that at least one selected from the group consisting of an adipic acid unit, a sebacic acid unit, and a 1,12-dodecanedicarboxylic acid unit is contained in a total of 50 mol% or more in the linear aliphatic dicarboxylic acid unit, The content is more preferably 70 mol% or more, still more preferably 80 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less.

ポリアミド化合物(A)中の直鎖脂肪族ジカルボン酸単位は、ポリアミド化合物(A)のガスバリア性及び適切なガラス転移温度や融点等の熱的性質の観点からは、アジピン酸単位を直鎖脂肪族ジカルボン酸単位中に50モル%以上含むことが好ましい。また、ポリアミド化合物(A)中の直鎖脂肪族ジカルボン酸単位は、ポリアミド化合物(A)に適度なガスバリア性及び成形加工適性を付与する観点からは、セバシン酸単位を直鎖脂肪族ジカルボン酸単位中に50モル%以上含むことが好ましく、ポリアミド化合物(A)が低吸水性、耐候性、耐熱性を要求される用途に用いられる場合は、1,12−ドデカンジカルボン酸単位を直鎖脂肪族ジカルボン酸単位中に50モル%以上含むことが好ましい。   The linear aliphatic dicarboxylic acid unit in the polyamide compound (A) is a linear aliphatic unit from the viewpoint of gas barrier properties of the polyamide compound (A) and thermal properties such as an appropriate glass transition temperature and melting point. It is preferable to contain 50 mol% or more in the dicarboxylic acid unit. In addition, the linear aliphatic dicarboxylic acid unit in the polyamide compound (A) is converted from the sebacic acid unit to the linear aliphatic dicarboxylic acid unit from the viewpoint of imparting appropriate gas barrier properties and molding processability to the polyamide compound (A). When the polyamide compound (A) is used for applications requiring low water absorption, weather resistance, and heat resistance, the 1,12-dodecanedicarboxylic acid unit is a linear aliphatic group. It is preferable to contain 50 mol% or more in the dicarboxylic acid unit.

前記一般式(II−2)で表される芳香族ジカルボン酸単位は、ポリアミド化合物(A)に更なるガスバリア性を付与することに加え、包装材料や包装容器の成形加工性を容易にすることができる点で好ましい。
前記一般式(II−2)中、Arはアリーレン基を表す。前記アリーレン基は、好ましくは炭素数6〜30、より好ましくは炭素数6〜15のアリーレン基であり、例えば、フェニレン基、ナフチレン基などが挙げられる。
前記一般式(II−2)で表される芳香族ジカルボン酸単位を構成しうる化合物としては、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸等を例示できるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。
The aromatic dicarboxylic acid unit represented by the general formula (II-2) facilitates molding processability of packaging materials and packaging containers in addition to imparting further gas barrier properties to the polyamide compound (A). It is preferable in that
In the general formula (II-2), Ar represents an arylene group. The arylene group is preferably an arylene group having 6 to 30 carbon atoms, more preferably 6 to 15 carbon atoms, and examples thereof include a phenylene group and a naphthylene group.
Examples of the compound that can constitute the aromatic dicarboxylic acid unit represented by the general formula (II-2) include terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid, but are not limited thereto. is not. These can be used alone or in combination of two or more.

前記一般式(II−2)で表される芳香族ジカルボン酸単位の種類は用途に応じて適宜決定される。ポリアミド化合物(A)中の芳香族ジカルボン酸単位は、イソフタル酸単位、テレフタル酸単位、及び2,6−ナフタレンジカルボン酸単位からなる群から選ばれる少なくとも1つを、芳香族ジカルボン酸単位中に合計で50モル%以上含むことが好ましく、当該含有量は、より好ましくは70モル%以上、更に好ましくは80モル%以上、特に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。また、これらの中でもイソフタル酸及び/又はテレフタル酸を芳香族ジカルボン酸単位中に含むことが好ましい。イソフタル酸単位とテレフタル酸単位との含有比(イソフタル酸単位/テレフタル酸単位)は、特に制限はなく、用途に応じて適宜決定される。例えば、適度なガラス転移温度や結晶性を下げる観点からは、両単位の合計を100としたとき、モル比で好ましくは0/100〜100/0、より好ましくは0/100〜60/40、更に好ましくは0/100〜40/60、更に好ましくは0/100〜30/70である。   The kind of the aromatic dicarboxylic acid unit represented by the general formula (II-2) is appropriately determined according to the use. The aromatic dicarboxylic acid unit in the polyamide compound (A) is a total of at least one selected from the group consisting of an isophthalic acid unit, a terephthalic acid unit, and a 2,6-naphthalenedicarboxylic acid unit in the aromatic dicarboxylic acid unit. The content is preferably 70 mol% or more, more preferably 80 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less. is there. Among these, it is preferable to contain isophthalic acid and / or terephthalic acid in the aromatic dicarboxylic acid unit. The content ratio of the isophthalic acid unit to the terephthalic acid unit (isophthalic acid unit / terephthalic acid unit) is not particularly limited and is appropriately determined according to the application. For example, from the viewpoint of reducing the appropriate glass transition temperature and crystallinity, when the total of both units is 100, the molar ratio is preferably 0/100 to 100/0, more preferably 0/100 to 60/40, More preferably, it is 0 / 100-40 / 60, More preferably, it is 0 / 100-30 / 70.

ポリアミド化合物(A)中のジカルボン酸単位において、前記直鎖脂肪族ジカルボン酸単位と前記芳香族ジカルボン酸単位との含有比(直鎖脂肪族ジカルボン酸単位/芳香族ジカルボン酸単位)は、特に制限はなく、用途に応じて適宜決定される。例えば、ポリアミド化合物(A)のガラス転移温度を上げて、ポリアミド化合物(A)の結晶性を低下させることを目的とした場合、直鎖脂肪族ジカルボン酸単位/芳香族ジカルボン酸単位は、両単位の合計を100としたとき、モル比で好ましくは0/100〜60/40、より好ましくは0/100〜40/60、更に好ましくは0/100〜30/70である。また、ポリアミド化合物(A)のガラス転移温度を下げてポリアミド化合物(A)に柔軟性を付与することを目的とした場合、直鎖脂肪族ジカルボン酸単位/芳香族ジカルボン酸単位は、両単位の合計を100としたとき、モル比で好ましくは40/60〜100/0、より好ましくは60/40〜100/0、更に好ましくは70/30〜100/0である。   In the dicarboxylic acid unit in the polyamide compound (A), the content ratio of the linear aliphatic dicarboxylic acid unit to the aromatic dicarboxylic acid unit (linear aliphatic dicarboxylic acid unit / aromatic dicarboxylic acid unit) is particularly limited. Rather, it is determined appropriately according to the application. For example, when the purpose is to increase the glass transition temperature of the polyamide compound (A) to lower the crystallinity of the polyamide compound (A), the linear aliphatic dicarboxylic acid unit / aromatic dicarboxylic acid unit is When the total is 100, the molar ratio is preferably 0/100 to 60/40, more preferably 0/100 to 40/60, and still more preferably 0/100 to 30/70. Further, when the purpose is to lower the glass transition temperature of the polyamide compound (A) to impart flexibility to the polyamide compound (A), the linear aliphatic dicarboxylic acid unit / aromatic dicarboxylic acid unit is When the total is 100, the molar ratio is preferably 40/60 to 100/0, more preferably 60/40 to 100/0, and still more preferably 70/30 to 100/0.

前記一般式(II−1)又は(II−2)で表されるジカルボン酸単位以外のジカルボン酸単位を構成しうる化合物としては、シュウ酸、マロン酸、フマル酸、マレイン酸、1,3−ベンゼン二酢酸、1,4−ベンゼン二酢酸等のジカルボン酸を例示できるが、これらに限定されるものではない。   Examples of the compound that can constitute a dicarboxylic acid unit other than the dicarboxylic acid unit represented by the general formula (II-1) or (II-2) include oxalic acid, malonic acid, fumaric acid, maleic acid, 1,3- Examples of the dicarboxylic acid include benzenediacetic acid and 1,4-benzenediacetic acid, but are not limited thereto.

[3級水素含有カルボン酸単位]
本発明において、ポリアミド化合物(A)における3級水素含有カルボン酸単位は、ポリアミド化合物(A)の重合の観点から、アミノ基及びカルボキシル基を少なくとも1つずつ有するか、又はカルボキシル基を2つ以上有する。具体例としては、下記一般式(III)、(IV)又は(V)のいずれかで表される構成単位が挙げられる。
[Tertiary hydrogen-containing carboxylic acid unit]
In the present invention, the tertiary hydrogen-containing carboxylic acid unit in the polyamide compound (A) has at least one amino group and one carboxyl group or two or more carboxyl groups from the viewpoint of polymerization of the polyamide compound (A). Have. Specific examples include structural units represented by any of the following general formulas (III), (IV), or (V).

Figure 2013002075
Figure 2013002075

[前記一般式(III)〜(V)中、R、R1及びR2はそれぞれ置換基を表し、A1〜A3はそれぞれ単結合又は2価の連結基を表す。ただし、前記一般式(IV)においてA1及びA2がともに単結合である場合を除く。][In the general formulas (III) to (V), R, R 1 and R 2 each represent a substituent, and A 1 to A 3 each represent a single bond or a divalent linking group. However, the case where both A 1 and A 2 in the general formula (IV) are single bonds is excluded. ]

本発明において、ポリアミド化合物(A)は、3級水素含有カルボン酸単位を含む。このような3級水素含有カルボン酸単位を共重合成分として含有することで、ポリアミド化合物(A)は、遷移金属を含有せずとも優れた酸素吸収性能を発揮することができる。   In the present invention, the polyamide compound (A) includes a tertiary hydrogen-containing carboxylic acid unit. By containing such a tertiary hydrogen-containing carboxylic acid unit as a copolymerization component, the polyamide compound (A) can exhibit excellent oxygen absorption performance without containing a transition metal.

本発明において、3級水素含有カルボン酸単位を有するポリアミド化合物(A)が良好な酸素吸収性能を示す機構についてはまだ明らかにされていないが以下のように推定される。3級水素含有カルボン酸単位を構成しうる化合物は、同一炭素原子上に電子求引性基と電子供与性基とが結合しているため、その炭素原子上に存在する不対電子がエネルギー的に安定化されるキャプトデーティブ(Captodative)効果と呼ばれる現象によって非常に安定なラジカルが生成すると考えられる。すなわち、カルボキシル基は電子求引性基であり、それに隣接する3級水素が結合している炭素が電子不足(δ+)になるため、当該3級水素も電子不足(δ+)となり、プロトンとして解離してラジカルを形成する。ここに酸素及び水が存在したときに、酸素がこのラジカルと反応することで、酸素吸収性能を示すと考えられる。また、高湿度かつ高温の環境であるほど、反応性は高いことが判明している。In the present invention, the mechanism by which the polyamide compound (A) having a tertiary hydrogen-containing carboxylic acid unit exhibits good oxygen absorption performance has not yet been clarified, but is estimated as follows. In a compound that can constitute a tertiary hydrogen-containing carboxylic acid unit, an electron-withdrawing group and an electron-donating group are bonded to the same carbon atom, so that unpaired electrons existing on the carbon atom are energetic. It is considered that a very stable radical is generated by a phenomenon called a captodative effect that is stabilized in a stable manner. That is, the carboxyl group is an electron withdrawing group, and the carbon to which the adjacent tertiary hydrogen is bonded becomes electron deficient (δ + ), so the tertiary hydrogen also becomes electron deficient (δ + ) Dissociates as a radical. When oxygen and water are present here, it is considered that oxygen reacts with this radical to show oxygen absorption performance. It has also been found that the higher the humidity and temperature, the higher the reactivity.

前記一般式(III)〜(V)中、R、R1及びR2はそれぞれ置換基を表す。本発明におけるR、R1及びR2で表される置換基としては、例えば、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子)、アルキル基(1〜15個、好ましくは1〜6個の炭素原子を有する直鎖、分岐又は環状アルキル基、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、t−ブチル基、n−オクチル基、2−エチルヘキシル基、シクロプロピル基、シクロペンチル基)、アルケニル基(2〜10個、好ましくは2〜6個の炭素原子を有する直鎖、分岐又は環状アルケニル基、例えば、ビニル基、アリル基)、アルキニル基(2〜10個、好ましくは2〜6個の炭素原子を有するアルキニル基、例えば、エチニル基、プロパルギル基)、アリール基(6〜16個、好ましくは6〜10個の炭素原子を有するアリール基、例えば、フェニル基、ナフチル基)、複素環基(5員環又は6員環の芳香族又は非芳香族の複素環化合物から1個の水素原子を取り除くことによって得られる、1〜12個、好ましくは2〜6個の炭素原子を有する一価の基、例えば1−ピラゾリル基、1−イミダゾリル基、2−フリル基)、シアノ基、水酸基、ニトロ基、アルコキシ基(1〜10個、好ましくは1〜6個の炭素原子を有する直鎖、分岐又は環状アルコキシ基、例えば、メトキシ基、エトキシ基)、アリールオキシ基(6〜12個、好ましくは6〜8個の炭素原子を有するアリールオキシ基、例えば、フェノキシ基)、アシル基(ホルミル基、2〜10個、好ましくは2〜6個の炭素原子を有するアルキルカルボニル基、或いは7〜12個、好ましくは7〜9個の炭素原子を有するアリールカルボニル基、例えば、アセチル基、ピバロイル基、ベンゾイル基)、アミノ基(アミノ基、1〜10個、好ましくは1〜6個の炭素原子を有するアルキルアミノ基、6〜12個、好ましくは6〜8個の炭素原子を有するアニリノ基、或いは1〜12個、好ましくは2〜6個の炭素原子を有する複素環アミノ基、例えば、アミノ基、メチルアミノ基、アニリノ基)、メルカプト基、アルキルチオ基(1〜10個、好ましくは1〜6個の炭素原子を有するアルキルチオ基、例えば、メチルチオ基、エチルチオ基)、アリールチオ基(6〜12個、好ましくは6〜8個の炭素原子を有するアリールチオ基、例えば、フェニルチオ基)、複素環チオ基(2〜10個、好ましくは2〜6個の炭素原子を有する複素環チオ基、例えば2−ベンゾチアゾリルチオ基)、イミド基(2〜10個、好ましくは4〜8個の炭素原子を有するイミド基、例えば、N−スクシンイミド基、N−フタルイミド基)等が挙げられる。In the general formulas (III) to (V), R, R 1 and R 2 each represent a substituent. Examples of the substituent represented by R, R 1 and R 2 in the present invention include a halogen atom (for example, chlorine atom, bromine atom, iodine atom), alkyl group (1 to 15, preferably 1 to 6). Linear, branched or cyclic alkyl groups having the following carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, t-butyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl Group), an alkenyl group (a linear, branched or cyclic alkenyl group having 2 to 10 carbon atoms, preferably 2 to 6 carbon atoms, such as a vinyl group, an allyl group), an alkynyl group (2 to 10, preferably Alkynyl group having 2 to 6 carbon atoms, for example, ethynyl group, propargyl group), aryl group (6 to 16, preferably 6 to 10 carbon atoms) Group, for example, phenyl group, naphthyl group), heterocyclic group (obtained by removing one hydrogen atom from 5- or 6-membered aromatic or non-aromatic heterocyclic compound, 1 to 12 , Preferably monovalent groups having 2 to 6 carbon atoms, such as 1-pyrazolyl group, 1-imidazolyl group, 2-furyl group, cyano group, hydroxyl group, nitro group, alkoxy group (1-10, Preferably a linear, branched or cyclic alkoxy group having 1 to 6 carbon atoms, for example, a methoxy group, an ethoxy group, an aryloxy group (6 to 12, preferably 6 to 8 carbon atoms) An oxy group, such as a phenoxy group, an acyl group (formyl group, 2-10, preferably an alkylcarbonyl group having 2-6 carbon atoms, or 7-12, preferably 7-9 carbon atoms. Arylcarbonyl group having, for example, acetyl group, pivaloyl group, benzoyl group), amino group (amino group, 1-10, preferably alkylamino group having 1-6 carbon atoms, 6-12, preferably Is an anilino group having 6 to 8 carbon atoms, or a heterocyclic amino group having 1 to 12, preferably 2 to 6 carbon atoms, such as an amino group, a methylamino group, an anilino group), a mercapto group An alkylthio group (an alkylthio group having 1 to 10, preferably 1 to 6 carbon atoms, such as a methylthio group, an ethylthio group), an arylthio group (6 to 12, preferably 6 to 8 carbon atoms). An arylthio group having, for example, a phenylthio group), a heterocyclic thio group (2 to 10, preferably 2 to 6 carbon atoms having a heterocyclic thio group, for example, - benzothiazolylthio group), an imido group (2 to 10, preferably an imido group having 4 to 8 carbon atoms, for example, N- succinimido group, N- phthalimido group).

これらの官能基の中で水素原子を有するものは更に上記の基で置換されていてもよく、例えば、水酸基で置換されたアルキル基(例えば、ヒドロキシエチル基)、アルコキシ基で置換されたアルキル基(例えば、メトキシエチル基)、アリール基で置換されたアルキル基(例えば、ベンジル基)、アルキル基で置換されたアリール基(例えば、p−トリル基)、アルキル基で置換されたアリールオキシ基(例えば、2−メチルフェノキシ基)等を挙げられるが、これらに限定されるものではない。
なお、官能基が更に置換されている場合、上述した炭素数には、更なる置換基の炭素数は含まれないものとする。例えば、ベンジル基は、フェニル基で置換された炭素数1のアルキル基と見なし、フェニル基で置換された炭素数7のアルキル基とは見なさない。以降の炭素数に記載についても、特に断りが無い限り、同様に解するものとする。
Among these functional groups, those having a hydrogen atom may be further substituted with the above groups, for example, an alkyl group substituted with a hydroxyl group (for example, hydroxyethyl group), an alkyl group substituted with an alkoxy group (For example, methoxyethyl group), an alkyl group substituted with an aryl group (for example, benzyl group), an aryl group substituted with an alkyl group (for example, p-tolyl group), an aryloxy group substituted with an alkyl group ( Examples thereof include, but are not limited to, 2-methylphenoxy group.
In addition, when a functional group is further substituted, the carbon number mentioned above shall not include the carbon number of the further substituent. For example, a benzyl group is regarded as a C 1 alkyl group substituted with a phenyl group, and is not regarded as a C 7 alkyl group substituted with a phenyl group. The following description of the number of carbon atoms shall be similarly understood unless otherwise specified.

前記一般式(IV)及び(V)中、A1〜A3はそれぞれ単結合又は2価の連結基を表す。ただし、前記一般式(IV)においてA1及びA2がともに単結合である場合を除く。2価の連結基としては、例えば、直鎖、分岐もしくは環状のアルキレン基(炭素数1〜12、好ましくは炭素数1〜4のアルキレン基、例えばメチレン基、エチレン基)、アラルキレン基(炭素数7〜30、好ましくは炭素数7〜13のアラルキレン基、例えばベンジリデン基)、アリーレン基(炭素数6〜30、好ましくは炭素数6〜15のアリーレン基、例えば、フェニレン基)等が挙げられる。これらは更に置換基を有していてもよく、当該置換基としては、R、R1及びR2で表される置換基として上記に例示した官能基が挙げられる。例えば、アルキル基で置換されたアリーレン基(例えば、キシリレン基)等を挙げられるが、これらに限定されるものではない。In the general formulas (IV) and (V), A 1 to A 3 each represents a single bond or a divalent linking group. However, the case where both A 1 and A 2 in the general formula (IV) are single bonds is excluded. Examples of the divalent linking group include a linear, branched or cyclic alkylene group (C1-C12, preferably C1-C4 alkylene group such as a methylene group or ethylene group), an aralkylene group (carbon number). Examples thereof include aralkylene groups having 7 to 30 carbon atoms, preferably 7 to 13 carbon atoms, such as benzylidene groups, arylene groups (arylene groups having 6 to 30 carbon atoms, preferably 6 to 15 carbon atoms such as phenylene groups), and the like. These may further have a substituent, and examples of the substituent include the functional groups exemplified above as substituents represented by R, R 1 and R 2 . Examples thereof include, but are not limited to, an arylene group substituted with an alkyl group (for example, a xylylene group).

本発明において、ポリアミド化合物(A)は、前記一般式(III)、(IV)又は(V)のいずれかで表される構成単位の少なくとも1種を含むことが好ましい。これらの中でも、原料の入手性や酸素吸収性向上の観点から、α炭素(カルボキシル基に隣接する炭素原子)に3級水素を有するカルボン酸単位がより好ましく、前記一般式(III)で表される構成単位が特に好ましい。   In this invention, it is preferable that a polyamide compound (A) contains at least 1 sort (s) of the structural unit represented by either of the said general formula (III), (IV) or (V). Among these, from the viewpoint of improving the availability of raw materials and oxygen absorption, a carboxylic acid unit having tertiary hydrogen on the α-carbon (carbon atom adjacent to the carboxyl group) is more preferable, and is represented by the general formula (III). The structural unit is particularly preferred.

前記一般式(III)中におけるRについては上述した通りであるが、その中でも置換もしくは無置換のアルキル基及び置換もしくは無置換のアリール基がより好ましく、置換もしくは無置換の炭素数1〜6のアルキル基及び置換もしくは無置換の炭素数6〜10のアリール基が更に好ましく、置換もしくは無置換の炭素数1〜4のアルキル基及び置換もしくは無置換のフェニル基が特に好ましい。
好ましいRの具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、1−メチルプロピル基、2−メチルプロピル基、ヒドロキシメチル基、1−ヒドロキシエチル基、メルカプトメチル基、メチルスルファニルエチル基、フェニル基、ナフチル基、ベンジル基、4−ヒドロキシベンジル基等を例示できるが、これらに限定されるものではない。これらの中でも、メチル基、エチル基、イソプロピル基、2−メチルプロピル基、及びベンジル基がより好ましい。
R in the general formula (III) is as described above. Among them, a substituted or unsubstituted alkyl group and a substituted or unsubstituted aryl group are more preferable, and a substituted or unsubstituted C 1-6 carbon atom is more preferable. An alkyl group and a substituted or unsubstituted aryl group having 6 to 10 carbon atoms are more preferred, and a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms and a substituted or unsubstituted phenyl group are particularly preferred.
Specific examples of preferable R include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, 1-methylpropyl group, 2-methylpropyl group, hydroxymethyl group, 1- Examples thereof include, but are not limited to, a hydroxyethyl group, a mercaptomethyl group, a methylsulfanylethyl group, a phenyl group, a naphthyl group, a benzyl group, and a 4-hydroxybenzyl group. Among these, a methyl group, an ethyl group, an isopropyl group, a 2-methylpropyl group, and a benzyl group are more preferable.

前記一般式(III)で表される構成単位を構成しうる化合物としては、アラニン、2−アミノ酪酸、バリン、ノルバリン、ロイシン、ノルロイシン、tert−ロイシン、イソロイシン、セリン、トレオニン、システイン、メチオニン、2−フェニルグリシン、フェニルアラニン、チロシン、ヒスチジン、トリプトファン、プロリン等のα−アミノ酸を例示できるが、これらに限定されるものではない。
また、前記一般式(IV)で表される構成単位を構成しうる化合物としては、3−アミノ酪酸等のβ−アミノ酸を例示でき、前記一般式(V)で表される構成単位を構成しうる化合物としては、メチルマロン酸、メチルコハク酸、リンゴ酸、酒石酸等のジカルボン酸を例示できるが、これらに限定されるものではない。
これらはD体、L体、ラセミ体のいずれであってもよく、アロ体であってもよい。また、これらは単独で又は2種以上を組み合わせて用いることができる。
Compounds that can constitute the structural unit represented by the general formula (III) include alanine, 2-aminobutyric acid, valine, norvaline, leucine, norleucine, tert-leucine, isoleucine, serine, threonine, cysteine, methionine, 2 -Although alpha-amino acids, such as phenylglycine, phenylalanine, tyrosine, histidine, tryptophan, proline, can be illustrated, it is not limited to these.
Moreover, as a compound which can comprise the structural unit represented by the said general formula (IV), (beta) -amino acids, such as 3-aminobutyric acid, can be illustrated, and the structural unit represented by the said general formula (V) is comprised. Examples of the compound that can be used include, but are not limited to, dicarboxylic acids such as methylmalonic acid, methylsuccinic acid, malic acid, and tartaric acid.
These may be any of D-form, L-form and racemate, or allo-form. Moreover, these can be used individually or in combination of 2 or more types.

これらの中でも、原料の入手性や酸素吸収性向上等の観点から、α炭素に3級水素を有するα−アミノ酸が特に好ましい。また、α−アミノ酸の中でも、供給しやすさ、安価な価格、重合しやすさ、ポリマーの黄色度(YI)の低さといった点から、アラニンが最も好ましい。アラニンは、分子量が比較的低く、ポリアミド化合物(A)1g当たりの共重合率が高いため、ポリアミド化合物(A)1g当たりの酸素吸収性能は良好である。   Among these, α-amino acids having tertiary hydrogen in the α carbon are particularly preferable from the viewpoints of availability of raw materials and oxygen absorption improvement. Among α-amino acids, alanine is most preferable from the viewpoints of ease of supply, inexpensive price, ease of polymerization, and low yellowness (YI) of the polymer. Since alanine has a relatively low molecular weight and a high copolymerization rate per 1 g of the polyamide compound (A), oxygen absorption performance per 1 g of the polyamide compound (A) is good.

また、前記3級水素含有カルボン酸単位を構成しうる化合物の純度は、重合速度の遅延等の重合に及ぼす影響やポリマーの黄色度等の品質面への影響の観点から、95%以上であることが好ましく、より好ましくは98.5%以上、更に好ましくは99%以上である。また、不純物として含まれる硫酸イオンやアンモニウムイオンは、500ppm以下が好ましく、より好ましくは200ppm以下、更に好ましくは50ppm以下である。   Further, the purity of the compound that can constitute the tertiary hydrogen-containing carboxylic acid unit is 95% or more from the viewpoint of the influence on the polymerization such as the delay of the polymerization rate and the influence on the quality such as the yellowness of the polymer. Preferably, it is 98.5% or more, more preferably 99% or more. Further, sulfate ions and ammonium ions contained as impurities are preferably 500 ppm or less, more preferably 200 ppm or less, and still more preferably 50 ppm or less.

[ω−アミノカルボン酸単位]
本発明において、ポリアミド化合物(A)は、ポリアミド化合物(A)に柔軟性等が必要な場合には、前記ジアミン単位、前記ジカルボン酸単位及び前記3級水素含有カルボン酸単位に加えて、下記一般式(X)で表されるω−アミノカルボン酸単位を更に含有してもよい。
[Ω-aminocarboxylic acid unit]
In the present invention, when the polyamide compound (A) needs flexibility and the like, in addition to the diamine unit, the dicarboxylic acid unit and the tertiary hydrogen-containing carboxylic acid unit, You may further contain the omega-aminocarboxylic acid unit represented by Formula (X).

Figure 2013002075
[前記一般式(X)中、pは2〜18の整数を表す。]
前記ω−アミノカルボン酸単位の含有量は、ポリアミド化合物(A)の全構成単位中、好ましくは0.1〜49.9モル%、より好ましくは3〜40モル%、更に好ましくは5〜35モル%である。ただし、前記のジアミン単位、ジカルボン酸単位、3級水素含有カルボン酸単位、及びω−アミノカルボン酸単位の合計は100モル%を超えないものとする。
前記一般式(X)中、pは2〜18の整数を表し、好ましくは3〜16、より好ましくは4〜14、更に好ましくは5〜12である。
Figure 2013002075
[In said general formula (X), p represents the integer of 2-18. ]
The content of the ω-aminocarboxylic acid unit is preferably from 0.1 to 49.9 mol%, more preferably from 3 to 40 mol%, still more preferably from 5 to 35 in all the structural units of the polyamide compound (A). Mol%. However, the total of the diamine unit, dicarboxylic acid unit, tertiary hydrogen-containing carboxylic acid unit, and ω-aminocarboxylic acid unit shall not exceed 100 mol%.
In said general formula (X), p represents the integer of 2-18, Preferably it is 3-16, More preferably, it is 4-14, More preferably, it is 5-12.

前記一般式(X)で表されるω−アミノカルボン酸単位を構成しうる化合物としては、炭素数5〜19のω−アミノカルボン酸や炭素数5〜19のラクタムが挙げられる。炭素数5〜19のω−アミノカルボン酸としては、6−アミノヘキサン酸及び12−アミノドデカン酸等が挙げられ、炭素数5〜19のラクタムとしては、ε−カプロラクタム及びラウロラクタムを挙げることができるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。   Examples of the compound that can constitute the ω-aminocarboxylic acid unit represented by the general formula (X) include ω-aminocarboxylic acid having 5 to 19 carbon atoms and lactam having 5 to 19 carbon atoms. Examples of the ω-aminocarboxylic acid having 5 to 19 carbon atoms include 6-aminohexanoic acid and 12-aminododecanoic acid, and examples of the lactam having 5 to 19 carbon atoms include ε-caprolactam and laurolactam. However, it is not limited to these. These can be used alone or in combination of two or more.

前記ω−アミノカルボン酸単位は、6−アミノヘキサン酸単位及び/又は12−アミノドデカン酸単位を、ω−アミノカルボン酸単位中に合計で50モル%以上含むことが好ましく、当該含有量は、より好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。   The ω-aminocarboxylic acid unit preferably contains 6-aminohexanoic acid units and / or 12-aminododecanoic acid units in a total of 50 mol% or more in the ω-aminocarboxylic acid unit, and the content is More preferably, it is 70 mol% or more, More preferably, it is 80 mol% or more, More preferably, it is 90 mol% or more, Preferably it is 100 mol% or less.

[ポリアミド化合物(A)の重合度]
ポリアミド化合物(A)の重合度については、相対粘度が使われる。ポリアミド化合物(A)の相対粘度は、成形品の強度や外観、成形加工性の観点から、特に限定されるわけではないが、好ましくは1.01〜4.2である。
上述したように、ポリアミド化合物(A)/樹脂(B)の質量比の好適な範囲は、ポリアミド化合物(A)の相対粘度に応じて異なり、ポリアミド化合物(A)の相対粘度が1.8以上4.2以下である場合、ポリアミド化合物(A)/樹脂(B)の質量比は、5/95〜95/5の範囲から選択することが好ましく、ポリアミド化合物(A)の相対粘度が1.01以上1.8未満である場合、ポリアミド化合物(A)/樹脂(B)の質量比は、5/95〜50/50の範囲から選択することが好ましい。
なお、ここでいう相対粘度は、ポリアミド化合物(A)1gを96%硫酸100mLに溶解し、キャノンフェンスケ型粘度計にて25℃で測定した落下時間(t)と、同様に測定した96%硫酸そのものの落下時間(t0)の比であり、次式で示される。
相対粘度=t/t0
[Polymerization degree of polyamide compound (A)]
Relative viscosity is used for the degree of polymerization of the polyamide compound (A). Although the relative viscosity of a polyamide compound (A) is not specifically limited from a viewpoint of the intensity | strength of a molded article, an external appearance, and moldability, Preferably it is 1.01-4.2.
As described above, the suitable range of the mass ratio of the polyamide compound (A) / resin (B) varies depending on the relative viscosity of the polyamide compound (A), and the relative viscosity of the polyamide compound (A) is 1.8 or more. When the ratio is 4.2 or less, the mass ratio of the polyamide compound (A) / resin (B) is preferably selected from the range of 5/95 to 95/5, and the relative viscosity of the polyamide compound (A) is 1. When it is 01 or more and less than 1.8, the mass ratio of polyamide compound (A) / resin (B) is preferably selected from the range of 5/95 to 50/50.
The relative viscosity here is 96% measured in the same manner as the dropping time (t) measured at 25 ° C. with a Cannon Fenceke viscometer by dissolving 1 g of polyamide compound (A) in 100 mL of 96% sulfuric acid. It is the ratio of the drop time (t 0 ) of sulfuric acid itself, and is represented by the following formula.
Relative viscosity = t / t 0

[末端アミノ基濃度]
ポリアミド化合物(A)の酸素吸収速度、及び酸素吸収によるポリアミド化合物(A)の酸化劣化は、ポリアミド化合物(A)の末端アミノ基濃度を変えることで制御することが可能である。本発明では、酸素吸収速度と酸化劣化のバランスの観点から、ポリアミド化合物(A)の末端アミノ基濃度は5〜150μeq/gの範囲が好ましく、より好ましくは10〜100μeq/g、更に好ましくは15〜80μeq/gである。
[Terminal amino group concentration]
The oxygen absorption rate of the polyamide compound (A) and the oxidative deterioration of the polyamide compound (A) due to oxygen absorption can be controlled by changing the terminal amino group concentration of the polyamide compound (A). In the present invention, from the viewpoint of the balance between oxygen absorption rate and oxidative degradation, the terminal amino group concentration of the polyamide compound (A) is preferably in the range of 5 to 150 μeq / g, more preferably 10 to 100 μeq / g, and still more preferably 15 ˜80 μeq / g.

<ポリアミド化合物(A)の製造方法>
ポリアミド化合物(A)は、前記ジアミン単位を構成しうるジアミン成分と、前記ジカルボン酸単位を構成しうるジカルボン酸成分と、前記3級水素含有カルボン酸単位を構成しうる3級水素含有カルボン酸成分と、必要により前記ω−アミノカルボン酸単位を構成しうるω−アミノカルボン酸成分とを重縮合させることで製造することができ、重縮合条件等を調整することで重合度を制御することができる。重縮合時に分子量調整剤として少量のモノアミンやモノカルボン酸を加えてもよい。また、重縮合反応を抑制して所望の重合度とするために、ポリアミド化合物(A)を構成するジアミン成分とカルボン酸成分との比率(モル比)を1からずらして調整してもよい。
<Production method of polyamide compound (A)>
The polyamide compound (A) includes a diamine component that can constitute the diamine unit, a dicarboxylic acid component that can constitute the dicarboxylic acid unit, and a tertiary hydrogen-containing carboxylic acid component that can constitute the tertiary hydrogen-containing carboxylic acid unit. And, if necessary, it can be produced by polycondensation with the ω-aminocarboxylic acid component that can constitute the ω-aminocarboxylic acid unit, and the degree of polymerization can be controlled by adjusting the polycondensation conditions and the like. it can. A small amount of monoamine or monocarboxylic acid may be added as a molecular weight modifier during polycondensation. Further, in order to suppress the polycondensation reaction and obtain a desired degree of polymerization, the ratio (molar ratio) between the diamine component and the carboxylic acid component constituting the polyamide compound (A) may be adjusted from 1.

ポリアミド化合物(A)の重縮合方法としては、反応押出法、加圧塩法、常圧滴下法、加圧滴下法等が挙げられるが、これらに限定されない。また、反応温度は出来る限り低い方が、ポリアミド化合物(A)の黄色化やゲル化を抑制でき、安定した性状のポリアミド化合物(A)が得られる。   Examples of the polycondensation method of the polyamide compound (A) include, but are not limited to, a reactive extrusion method, a pressurized salt method, an atmospheric pressure dropping method, and a pressure dropping method. Moreover, the one where reaction temperature is as low as possible can suppress the yellowing and gelatinization of a polyamide compound (A), and the polyamide compound (A) of the stable property is obtained.

[反応押出法]
反応押出法では、ジアミン成分及びジカルボン酸成分からなるポリアミド(ポリアミド化合物(A)の前駆体に相当するポリアミド)又はジアミン成分、ジカルボン酸成分及びω−アミノカルボン酸成分からなるポリアミド(ポリアミド化合物(A)の前駆体に相当するポリアミド)と、3級水素含有カルボン酸成分とを押出機で溶融混練して反応させる方法である。3級水素含有カルボン酸成分をアミド交換反応により、ポリアミドの骨格中に組み込む方法であり、十分に反応させるためには、反応押出に適したスクリューを用い、L/Dの大きい2軸押出機を用いるのが好ましい。少量の3級水素含有カルボン酸単位を含むポリアミド化合物(A)を製造する場合に、簡便な方法であり好適である。
[Reactive extrusion method]
In the reactive extrusion method, a polyamide composed of a diamine component and a dicarboxylic acid component (polyamide corresponding to the precursor of the polyamide compound (A)) or a polyamide composed of a diamine component, a dicarboxylic acid component and an ω-aminocarboxylic acid component (polyamide compound (A And a tertiary hydrogen-containing carboxylic acid component are melt-kneaded with an extruder and reacted. This is a method of incorporating a tertiary hydrogen-containing carboxylic acid component into a polyamide skeleton by an amide exchange reaction. In order to sufficiently react, a screw suitable for reactive extrusion is used, and a twin screw extruder having a large L / D is used. It is preferable to use it. When producing a polyamide compound (A) containing a small amount of a tertiary hydrogen-containing carboxylic acid unit, it is a simple method and suitable.

[加圧塩法]
加圧塩法では、ナイロン塩を原料として加圧下にて溶融重縮合を行う方法である。具体的には、ジアミン成分と、ジカルボン酸成分と、3級水素含有カルボン酸成分と、必要に応じてω−アミノカルボン酸成分とからなるナイロン塩水溶液を調製した後、該水溶液を濃縮し、次いで加圧下にて昇温し、縮合水を除去しながら重縮合させる。缶内を徐々に常圧に戻しながら、ポリアミド化合物(A)の融点+10℃程度まで昇温し、保持した後、更に、−0.02MPaGまで徐々に減圧しつつ、そのままの温度で保持し、重縮合を継続する。一定の撹拌トルクに達したら、缶内を窒素で0.3MPaG程度に加圧してポリアミド化合物(A)を回収する。
加圧塩法は、揮発性成分をモノマーとして使用する場合に有用であり、3級水素含有カルボン酸成分の共重合率が高い場合には好ましい重縮合方法である、特に、3級水素含有カルボン酸単位をポリアミド化合物(A)の全構成単位中に15モル%以上含むポリアミド化合物(A)を製造する場合に、好適である。加圧塩法を用いることで、3級水素含有カルボン酸成分の蒸散を防ぎ、更には、3級水素含有カルボン酸成分同士の重縮合を抑制でき、重縮合反応をスムーズに進めることが可能であるため、性状に優れたポリアミド化合物(A)が得られる。
[Pressure salt method]
The pressurized salt method is a method of performing melt polycondensation under pressure using a nylon salt as a raw material. Specifically, after preparing a nylon salt aqueous solution consisting of a diamine component, a dicarboxylic acid component, a tertiary hydrogen-containing carboxylic acid component, and an ω-aminocarboxylic acid component as necessary, the aqueous solution is concentrated, Next, the temperature is raised under pressure, and polycondensation is performed while removing condensed water. While gradually returning the inside of the can to normal pressure, the temperature was raised to about the melting point of polyamide compound (A) + 10 ° C. and held, and then the pressure was gradually reduced to −0.02 MPaG while being kept at the same temperature. Continue polycondensation. When a certain stirring torque is reached, the inside of the can is pressurized to about 0.3 MPaG with nitrogen to recover the polyamide compound (A).
The pressurized salt method is useful when a volatile component is used as a monomer, and is a preferred polycondensation method when the copolymerization rate of the tertiary hydrogen-containing carboxylic acid component is high. It is suitable for producing a polyamide compound (A) containing 15 mol% or more of acid units in all structural units of the polyamide compound (A). By using the pressurized salt method, transpiration of the tertiary hydrogen-containing carboxylic acid component can be prevented, and further, polycondensation between the tertiary hydrogen-containing carboxylic acid components can be suppressed, and the polycondensation reaction can proceed smoothly. Therefore, the polyamide compound (A) excellent in properties can be obtained.

[常圧滴下法]
常圧滴下法では、常圧下にて、ジカルボン酸成分と、3級水素含有カルボン酸成分と、必要に応じてω−アミノカルボン酸成分とを加熱溶融した混合物に、ジアミン成分を連続的に滴下し、縮合水を除去しながら重縮合させる。なお、生成するポリアミド化合物(A)の融点よりも反応温度が下回らないように、反応系を昇温しながら重縮合反応を行う。
常圧滴下法は、前記加圧塩法と比較すると、塩を溶解するための水を使用しないため、バッチ当たりの収量が大きく、また、原料成分の気化・凝縮を必要としないため、反応速度の低下が少なく、工程時間を短縮できる。
[Normal pressure dropping method]
In the normal pressure dropping method, a diamine component is continuously dropped into a mixture obtained by heating and melting a dicarboxylic acid component, a tertiary hydrogen-containing carboxylic acid component, and, if necessary, a ω-aminocarboxylic acid component under normal pressure. Then, polycondensation is performed while removing condensed water. The polycondensation reaction is performed while raising the temperature of the reaction system so that the reaction temperature does not fall below the melting point of the polyamide compound (A) to be produced.
Compared with the pressurized salt method, the atmospheric pressure dropping method does not use water to dissolve the salt, so the yield per batch is large, and the reaction rate is not required for vaporization / condensation of raw material components. The process time can be shortened.

[加圧滴下法]
加圧滴下法では、まず、重縮合缶にジカルボン酸成分と、3級水素含有カルボン酸成分と、必要に応じてω−アミノカルボン酸成分とを仕込み、各成分を撹拌して溶融混合し混合物を調製する。次いで、缶内を好ましくは0.3〜0.4MPaG程度に加圧しながら混合物にジアミン成分を連続的に滴下し、縮合水を除去しながら重縮合させる。この際、生成するポリアミド化合物(A)の融点よりも反応温度が下回らないように、反応系を昇温しながら重縮合反応を行う。設定モル比に達したらジアミン成分の滴下を終了し、缶内を徐々に常圧に戻しながら、ポリアミド化合物(A)の融点+10℃程度まで昇温し、保持した後、更に、−0.02MPaGまで徐々に減圧しつつ、そのままの温度で保持し、重縮合を継続する。一定の撹拌トルクに達したら、缶内を窒素で0.3MPaG程度に加圧してポリアミド化合物(A)を回収する。
加圧滴下法は、加圧塩法と同様に、揮発性成分をモノマーとして使用する場合に有用であり、3級水素含有カルボン酸成分の共重合率が高い場合には好ましい重縮合方法である。特に、3級水素含有カルボン酸単位をポリアミド化合物(A)の全構成単位中に15モル%以上含むポリアミド化合物(A)を製造する場合に、好適である。加圧滴下法を用いることで3級水素含有カルボン酸成分の蒸散を防ぎ、更には、3級水素含有カルボン酸成分同士の重縮合を抑制でき、重縮合反応をスムーズに進めることが可能であるため、性状に優れたポリアミド化合物(A)が得られる。更に、加圧滴下法は、加圧塩法に比べて、塩を溶解するための水を使用しないため、バッチ当たりの収量が大きく、常圧滴下法と同様に反応時間を短くできることから、ゲル化等を抑制し、黄色度が低いポリアミド化合物(A)を得ることができる。
[Pressure drop method]
In the pressure drop method, first, a dicarboxylic acid component, a tertiary hydrogen-containing carboxylic acid component, and, if necessary, a ω-aminocarboxylic acid component are charged into a polycondensation can, and the components are stirred, melted and mixed. To prepare. Next, the diamine component is continuously dropped into the mixture while the inside of the can is preferably pressurized to about 0.3 to 0.4 MPaG, and polycondensation is performed while removing condensed water. At this time, the polycondensation reaction is carried out while raising the temperature of the reaction system so that the reaction temperature does not fall below the melting point of the resulting polyamide compound (A). When the set molar ratio is reached, the dropping of the diamine component is terminated, the temperature inside the can is gradually returned to normal pressure, the temperature is raised to about the melting point of the polyamide compound (A) + 10 ° C., and then held, and further −0.02 MPaG The pressure is gradually reduced until it is maintained at the same temperature, and the polycondensation is continued. When a certain stirring torque is reached, the inside of the can is pressurized to about 0.3 MPaG with nitrogen to recover the polyamide compound (A).
Like the pressurized salt method, the pressure dropping method is useful when a volatile component is used as a monomer, and is a preferred polycondensation method when the copolymerization rate of the tertiary hydrogen-containing carboxylic acid component is high. . In particular, it is suitable for producing a polyamide compound (A) containing 15 mol% or more of tertiary hydrogen-containing carboxylic acid units in all structural units of the polyamide compound (A). By using the pressure dropping method, the transpiration of the tertiary hydrogen-containing carboxylic acid component can be prevented, and further, the polycondensation between the tertiary hydrogen-containing carboxylic acid components can be suppressed, and the polycondensation reaction can proceed smoothly. Therefore, a polyamide compound (A) excellent in properties can be obtained. Furthermore, since the pressure drop method does not use water for dissolving the salt compared to the pressure salt method, the yield per batch is large, and the reaction time can be shortened as in the atmospheric pressure drop method. The polyamide compound (A) having a low yellowness can be obtained.

[重合度を高める工程]
上記重縮合方法で製造されたポリアミド化合物(A)は、そのまま使用することもできるが、更に重合度を高めるための工程を経てもよい。更に重合度を高める工程としては、押出機内での反応押出や固相重合等が挙げられる。固相重合で用いられる加熱装置としては、連続式の加熱乾燥装置やタンブルドライヤー、コニカルドライヤー、ロータリードライヤー等と称される回転ドラム式の加熱装置およびナウタミキサーと称される内部に回転翼を備えた円錐型の加熱装置が好適に使用できるが、これらに限定されることなく公知の方法、装置を使用することができる。特にポリアミド化合物(A)の固相重合を行う場合は、上述の装置の中で回転ドラム式の加熱装置が、系内を密閉化でき、着色の原因となる酸素を除去した状態で重縮合を進めやすいことから好ましく用いられる。
[Process of increasing the degree of polymerization]
The polyamide compound (A) produced by the polycondensation method can be used as it is, but may be subjected to a step for further increasing the degree of polymerization. Further examples of the step of increasing the degree of polymerization include reactive extrusion in an extruder and solid phase polymerization. As a heating device used in solid phase polymerization, a continuous heating drying device, a tumble dryer, a conical dryer, a rotary drum heating device called a rotary dryer, etc., and a rotary blade inside a nauta mixer are provided. A conical heating device can be preferably used, but a known method and device can be used without being limited thereto. In particular, when solid-phase polymerization of the polyamide compound (A) is performed, a rotating drum type heating device in the above-described device can seal the inside of the system and perform polycondensation in a state where oxygen that causes coloring is removed. It is preferably used because it is easy to proceed.

[リン原子含有化合物、アルカリ金属化合物]
ポリアミド化合物(A)の重縮合においては、アミド化反応を促進する観点から、リン原子含有化合物を添加することが好ましい。
リン原子含有化合物としては、ジメチルホスフィン酸、フェニルメチルホスフィン酸等のホスフィン酸化合物;次亜リン酸、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム、次亜リン酸マグネシウム、次亜リン酸カルシウム、次亜リン酸エチル等のジ亜リン酸化合物;ホスホン酸、ホスホン酸ナトリウム、ホスホン酸カリウム、ホスホン酸リチウム、ホスホン酸マグネシウム、ホスホン酸カルシウム、フェニルホスホン酸、エチルホスホン酸、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸リチウム、フェニルホスホン酸ジエチル、エチルホスホン酸ナトリウム、エチルホスホン酸カリウム等のホスホン酸化合物;亜ホスホン酸、亜ホスホン酸ナトリウム、亜ホスホン酸リチウム、亜ホスホン酸カリウム、亜ホスホン酸マグネシウム、亜ホスホン酸カルシウム、フェニル亜ホスホン酸、フェニル亜ホスホン酸ナトリウム、フェニル亜ホスホン酸カリウム、フェニル亜ホスホン酸リチウム、フェニル亜ホスホン酸エチル等の亜ホスホン酸化合物;亜リン酸、亜リン酸水素ナトリウム、亜リン酸ナトリウム、亜リン酸リチウム、亜リン酸カリウム、亜リン酸マグネシウム、亜リン酸カルシウム、亜リン酸トリエチル、亜リン酸トリフェニル、ピロ亜リン酸等の亜リン酸化合物等が挙げられる。
これらの中でも特に次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム等の次亜リン酸金属塩が、アミド化反応を促進する効果が高くかつ着色防止効果にも優れるため好ましく用いられ、特に次亜リン酸ナトリウムが好ましい。なお、本発明で使用できるリン原子含有化合物はこれらの化合物に限定されない。
リン原子含有化合物の添加量は、ポリアミド化合物(A)中のリン原子濃度換算で0.1〜1000ppmであることが好ましく、より好ましくは1〜600ppmであり、更に好ましくは5〜400ppmである。0.1ppm以上であれば、重合中にポリアミド化合物(A)が着色しにくく透明性が高くなる。1000ppm以下であれば、ポリアミド化合物(A)がゲル化しにくく、また、リン原子含有化合物に起因すると考えられるフィッシュアイの成形品中への混入も低減でき、成形品の外観が良好となる。
[Phosphorus atom-containing compound, alkali metal compound]
In the polycondensation of the polyamide compound (A), it is preferable to add a phosphorus atom-containing compound from the viewpoint of promoting the amidation reaction.
Examples of the phosphorus atom-containing compound include phosphinic acid compounds such as dimethylphosphinic acid and phenylmethylphosphinic acid; hypophosphorous acid, sodium hypophosphite, potassium hypophosphite, lithium hypophosphite, magnesium hypophosphite, Diphosphite compounds such as calcium hypophosphite and ethyl hypophosphite; phosphonic acid, sodium phosphonate, potassium phosphonate, lithium phosphonate, magnesium phosphonate, calcium phosphonate, phenylphosphonic acid, ethylphosphonic acid, phenylphosphone Phosphonic acid compounds such as sodium phosphate, potassium phenylphosphonate, lithium phenylphosphonate, diethyl phenylphosphonate, sodium ethylphosphonate, potassium ethylphosphonate; phosphonous acid, sodium phosphonite, lithium phosphonite, Phosphonous compounds such as potassium sulfonate, magnesium phosphonite, calcium phosphonite, phenylphosphonite, sodium phenylphosphonite, potassium phenylphosphonite, lithium phenylphosphonite, ethyl phenylphosphonite; Phosphorous acid, sodium hydrogen phosphite, sodium phosphite, lithium phosphite, potassium phosphite, magnesium phosphite, calcium phosphite, triethyl phosphite, triphenyl phosphite, pyrophosphorous acid, etc. A phosphoric acid compound etc. are mentioned.
Among these, hypophosphite metal salts such as sodium hypophosphite, potassium hypophosphite, lithium hypophosphite and the like are particularly preferable because they are highly effective in promoting amidation reaction and excellent in anti-coloring effect. In particular, sodium hypophosphite is preferred. In addition, the phosphorus atom containing compound which can be used by this invention is not limited to these compounds.
The addition amount of the phosphorus atom-containing compound is preferably 0.1 to 1000 ppm, more preferably 1 to 600 ppm, still more preferably 5 to 400 ppm in terms of the phosphorus atom concentration in the polyamide compound (A). If it is 0.1 ppm or more, the polyamide compound (A) is difficult to be colored during the polymerization, and the transparency becomes high. If it is 1000 ppm or less, the polyamide compound (A) is hardly gelled, and it is possible to reduce the mixing of fish eyes considered to be caused by the phosphorus atom-containing compound, and the appearance of the molded product is improved.

また、ポリアミド化合物(A)の重縮合系内には、リン原子含有化合物と併用してアルカリ金属化合物を添加することが好ましい。重縮合中のポリアミド化合物(A)の着色を防止するためには十分な量のリン原子含有化合物を存在させる必要があるが、場合によってはポリアミド化合物(A)のゲル化を招くおそれがあるため、アミド化反応速度を調整するためにもアルカリ金属化合物を共存させることが好ましい。
アルカリ金属化合物としては、アルカリ金属水酸化物やアルカリ金属酢酸塩、アルカリ金属炭酸塩、アルカリ金属アルコキシド等が好ましい。本発明で用いることのできるアルカリ金属化合物の具体例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸ルビジウム、酢酸セシウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシド、ナトリウムブトキシド、カリウムメトキシド、リチウムメトキシド、炭酸ナトリウム等が挙げられるが、これらの化合物に限定されることなく用いることができる。なお、リン原子含有化合物とアルカリ金属化合物の比率(モル比)は、重合速度制御の観点や、黄色度を低減する観点から、リン原子含有化合物/アルカリ金属化合物=1.0/0.05〜1.0/1.5の範囲が好ましく、より好ましくは、1.0/0.1〜1.0/1.2、更に好ましくは、1.0/0.2〜1.0/1.1である。
Moreover, it is preferable to add an alkali metal compound in combination with the phosphorus atom-containing compound in the polycondensation system of the polyamide compound (A). In order to prevent the polyamide compound (A) from being colored during the polycondensation, it is necessary that a sufficient amount of the phosphorus atom-containing compound is present, but in some cases, the polyamide compound (A) may be gelled. In order to adjust the amidation reaction rate, it is preferable to coexist an alkali metal compound.
As the alkali metal compound, alkali metal hydroxide, alkali metal acetate, alkali metal carbonate, alkali metal alkoxide, and the like are preferable. Specific examples of the alkali metal compound that can be used in the present invention include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, lithium acetate, sodium acetate, potassium acetate, rubidium acetate, cesium acetate. Sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide, potassium methoxide, lithium methoxide, sodium carbonate and the like, but can be used without being limited to these compounds. The ratio (molar ratio) between the phosphorus atom-containing compound and the alkali metal compound is such that the phosphorus atom-containing compound / alkali metal compound = 1.0 / 0.05 to from the viewpoint of controlling the polymerization rate and reducing the yellowness. The range of 1.0 / 1.5 is preferable, more preferably 1.0 / 0.1 to 1.0 / 1.2, and still more preferably 1.0 / 0.2 to 1.0 / 1. 1.

1−2.樹脂(B)
本発明において、樹脂(B)としては任意の樹脂を使用することができ、特に限定されない。樹脂(B)としては、例えば熱可塑性樹脂を用いることができ、具体的にはポリオレフィン、ポリエステル、ポリアミド、エチレン−ビニルアルコール共重合体及び植物由来樹脂を挙げることができる。本発明において樹脂(B)としては、これら樹脂からなる群から選ばれる少なくとも一種を含むことが好ましい。
これらの中でも、酸素吸収効果を効果的に発揮するためには、ポリエステル、ポリアミド及びエチレン−ビニルアルコール共重合体のような酸素バリア性の高い樹脂がより好ましい。
ポリアミド化合物(A)と樹脂(B)との混合は、従来公知の方法を用いることができ、乾式混合や溶融混合が例示される。ポリアミド化合物(A)と樹脂(B)とを溶融混合し、所望のペレット、成形体を製造する場合、押出機等を用いて溶融ブレンドすることができる。押出機は単軸押出機、2軸押出機などの公知の押出機を用いることができるが、これらに限定されない。
1-2. Resin (B)
In the present invention, any resin can be used as the resin (B) and is not particularly limited. As the resin (B), for example, a thermoplastic resin can be used, and specific examples thereof include polyolefin, polyester, polyamide, ethylene-vinyl alcohol copolymer, and plant-derived resin. In the present invention, the resin (B) preferably contains at least one selected from the group consisting of these resins.
Among these, a resin having high oxygen barrier properties such as polyester, polyamide, and ethylene-vinyl alcohol copolymer is more preferable in order to effectively exhibit the oxygen absorption effect.
A conventionally well-known method can be used for mixing of the polyamide compound (A) and the resin (B), and dry mixing and melt mixing are exemplified. When the polyamide compound (A) and the resin (B) are melt-mixed to produce desired pellets and molded bodies, they can be melt-blended using an extruder or the like. The extruder may be a known extruder such as a single screw extruder or a twin screw extruder, but is not limited thereto.

[ポリオレフィン]
ポリオレフィンの具体例としては、ポリエチレン(低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン)、ポリプロピレン、ポリブテン−1、ポリ−4−メチルペンテン−1等のオレフィン単独重合体;エチレン−プロピレンランダム共重合体、エチレン−プロピレンブロック共重合体、エチレン−プロピレン−ポリブテン−1共重合体、エチレン−環状オレフィン共重合体等のエチレンとα−オレフィンとの共重合体;エチレン−(メタ)アクリル酸共重合体等のエチレン−α,β−不飽和カルボン酸共重合体、エチレン−(メタ)アクリル酸エチル共重合体等のエチレン−α,β−不飽和カルボン酸エステル共重合体、エチレン−α,β−不飽和カルボン酸共重合体のイオン架橋物、エチレン−酢酸ビニル共重合体等のその他のエチレン共重合体;これらのポリオレフィンを無水マレイン酸等の酸無水物等でグラフト変性したグラフト変性ポリオレフィン等を挙げることができる。
[Polyolefin]
Specific examples of polyolefin include olefins such as polyethylene (low density polyethylene, medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene), polypropylene, polybutene-1, and poly-4-methylpentene-1. Homopolymer; Copolymer of ethylene and α-olefin such as ethylene-propylene random copolymer, ethylene-propylene block copolymer, ethylene-propylene-polybutene-1 copolymer, ethylene-cyclic olefin copolymer Ethylene-α, β-unsaturated carboxylic acid copolymer such as ethylene- (meth) acrylic acid copolymer, ethylene-α, β-unsaturated carboxylic acid such as ethylene- (meth) acrylic acid ethyl copolymer Ester copolymer, ionic cross-linked product of ethylene-α, β-unsaturated carboxylic acid copolymer, ethylene - Other ethylene copolymers such as vinyl acetate copolymer; may be mentioned graft-modified polyolefin grafted modifying these polyolefins with an acid anhydride such as maleic anhydride.

[ポリエステル]
本発明において、ポリエステルとは、ジカルボン酸を含む多価カルボン酸およびこれらのエステル形成性誘導体から選ばれる一種又は二種以上とグリコールを含む多価アルコールから選ばれる一種又は二種以上とからなるもの、又はヒドロキシカルボン酸およびこれらのエステル形成性誘導体からなるもの、又は環状エステルからなるものをいう。
[polyester]
In the present invention, the polyester is composed of one or more selected from polycarboxylic acids containing dicarboxylic acids and ester-forming derivatives thereof, and one or more selected from polyhydric alcohols containing glycol. Or a hydroxycarboxylic acid and an ester-forming derivative thereof, or a cyclic ester.

ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、3−シクロブタンジカルボン酸、1,3−シクロペンタンジカルボン酸、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、2,5−ノルボルナンジカルボン酸、ダイマー酸等に例示される飽和脂肪族ジカルボン酸又はこれらのエステル形成性誘導体、フマル酸、マレイン酸、イタコン酸等に例示される不飽和脂肪族ジカルボン酸又はこれらのエステル形成性誘導体、オルソフタル酸、イソフタル酸、テレフタル酸、1,3−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、4,4’−ビフェニルジカルボン酸、4,4’−ビフェニルスルホンジカルボン酸、4,4’−ビフェニルエーテルジカルボン酸、1,2−ビス(フェノキシ)エタン−p,p’−ジカルボン酸、アントラセンジカルボン酸等に例示される芳香族ジカルボン酸又はこれらのエステル形成性誘導体、5−ナトリウムスルホイソフタル酸、2−ナトリウムスルホテレフタル酸、5−リチウムスルホイソフタル酸、2−リチウムスルホテレフタル酸、5−カリウムスルホイソフタル酸、2−カリウムスルホテレフタル酸等に例示される金属スルホネート基含有芳香族ジカルボン酸又はそれらの低級アルキルエステル誘導体などが挙げられる。   Examples of dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, 3- Exemplified as cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornanedicarboxylic acid, dimer acid, etc. Saturated aliphatic dicarboxylic acids or ester-forming derivatives thereof, unsaturated aliphatic dicarboxylic acids exemplified by fumaric acid, maleic acid, itaconic acid or the like, or ester-forming derivatives thereof, orthophthalic acid, isophthalic acid, terephthalic acid 1,3-na Taleenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4′- Aromatic dicarboxylic acids exemplified by biphenylsulfone dicarboxylic acid, 4,4′-biphenyl ether dicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p′-dicarboxylic acid, anthracene dicarboxylic acid, etc. or ester formation thereof Metal, exemplified by 5-sodium sulfoisophthalic acid, 2-sodium sulfoterephthalic acid, 5-lithium sulfoisophthalic acid, 2-lithium sulfoterephthalic acid, 5-potassium sulfoisophthalic acid, 2-potassium sulfoterephthalic acid, etc. Sulfonate group-containing aromatic dicarboxylic acid or Including lower alkyl esters thereof derivative.

上記のジカルボン酸のなかでも、特に、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸の使用が、得られるポリエステルの物理特性等の点で好ましく、必要に応じて他のジカルボン酸を共重合してもよい。   Among the above dicarboxylic acids, the use of terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid is particularly preferable in terms of the physical properties of the resulting polyester, and other dicarboxylic acids may be copolymerized as necessary. .

これらジカルボン酸以外の多価カルボン酸として、エタントリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3,4,3’,4’−ビフェニルテトラカルボン酸、およびこれらのエステル形成性誘導体等が挙げられる。   As polyvalent carboxylic acids other than these dicarboxylic acids, ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3 ′, 4′-biphenyltetracarboxylic acid, And ester-forming derivatives thereof.

グリコールとしてはエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−ブチレングリコール、1,3−ブチレングリコール、2,3−ブチレングリコール、1,4−ブチレングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、1,4−シクロヘキサンジエタノール、1,10−デカメチレングリコール、1,12−ドデカンジオール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール等に例示される脂肪族グリコール、ヒドロキノン、4,4’−ジヒドロキシビスフェノ−ル、1,4−ビス(β−ヒドロキシエトキシ)ベンゼン、1,4−ビス(β−ヒドロキシエトキシフェニル)スルホン、ビス(p−ヒドロキシフェニル)エーテル、ビス(p−ヒドロキシフェニル)スルホン、ビス(p−ヒドロキシフェニル)メタン、1,2−ビス(p−ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールC、2,5−ナフタレンジオール、これらのグリコールにエチレンオキシドが付加されたグリコール等に例示される芳香族グリコールが挙げられる。   As glycols, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,4 -Butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 1,10-decamethylene glycol, 1,12-dodecanediol, polyethylene glycol, polytrimethyl Aliphatic glycols exemplified by tylene glycol and polytetramethylene glycol, hydroquinone, 4,4′-dihydroxybisphenol, 1,4-bis (β-hydroxyethoxy) benzene, 1,4-bis (β- Hydroxyethoxyphenyl) sulfone, bis (p-hydroxyphenyl) ether, bis (p-hydroxyphenyl) sulfone, bis (p-hydroxyphenyl) methane, 1,2-bis (p-hydroxyphenyl) ethane, bisphenol A, bisphenol Examples thereof include aromatic glycols exemplified by C, 2,5-naphthalenediol, glycols obtained by adding ethylene oxide to these glycols, and the like.

上記のグリコールのなかでも、特に、エチレングリコール、1,3−プロピレングリコール、1,4−ブチレングリコール、1,4−シクロヘキサンジメタノールを主成分として使用することが好適である。これらグリコール以外の多価アルコールとして、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロ−ル、ヘキサントリオール等が挙げられる。ヒドロキシカルボン酸としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3−ヒドロキシ酪酸、p−ヒドロキシ安息香酸、p−(2−ヒドロキシエトキシ)安息香酸、4−ヒドロキシシクロヘキサンカルボン酸、又はこれらのエステル形成性誘導体等が挙げられる。   Among the above glycols, it is particularly preferable to use ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, and 1,4-cyclohexanedimethanol as the main component. Examples of polyhydric alcohols other than these glycols include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, hexanetriol, and the like. Examples of hydroxycarboxylic acids include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid, 4-hydroxycyclohexanecarboxylic acid, or these And ester-forming derivatives thereof.

環状エステルとしては、ε−カプロラクトン、β−プロピオラクトン、β−メチル−β−プロピオラクトン、δ−バレロラクトン、グリコリド、ラクチド等が挙げられる。   Examples of the cyclic ester include ε-caprolactone, β-propiolactone, β-methyl-β-propiolactone, δ-valerolactone, glycolide, and lactide.

多価カルボン酸、ヒドロキシカルボン酸のエステル形成性誘導体としては、これらのアルキルエステル、酸クロライド、酸無水物等が例示される。   Examples of ester-forming derivatives of polyvalent carboxylic acids and hydroxycarboxylic acids include these alkyl esters, acid chlorides, acid anhydrides and the like.

本発明で用いられるポリエステルとしては、主たる酸成分がテレフタル酸またはそのエステル形成性誘導体もしくはナフタレンジカルボン酸またはそのエステル形成性誘導体であり、主たるグリコール成分がアルキレングリコールであるポリエステルが好ましい。   The polyester used in the present invention is preferably a polyester in which the main acid component is terephthalic acid or an ester-forming derivative thereof or naphthalenedicarboxylic acid or an ester-forming derivative thereof, and the main glycol component is alkylene glycol.

主たる酸成分がテレフタル酸またはそのエステル形成性誘導体であるポリエステルとは、全酸成分に対してテレフタル酸またはそのエステル形成性誘導体を合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。主たる酸成分がナフタレンジカルボン酸またはそのエステル形成性誘導体であるポリエステルも同様に、ナフタレンジカルボン酸またはそのエステル形成性誘導体を合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。   The polyester in which the main acid component is terephthalic acid or an ester-forming derivative thereof is preferably a polyester containing 70 mol% or more of terephthalic acid or an ester-forming derivative thereof in total with respect to the total acid component. A polyester containing 80 mol% or more is preferable, and a polyester containing 90 mol% or more is more preferable. Similarly, the polyester in which the main acid component is naphthalenedicarboxylic acid or an ester-forming derivative thereof is also preferably a polyester containing 70 mol% or more of naphthalenedicarboxylic acid or an ester-forming derivative thereof, more preferably 80 Polyesters containing at least mol%, more preferably polyesters containing at least 90 mol%.

本発明で用いられるナフタレンジカルボン酸またはそのエステル形成性誘導体としては、上述のジカルボン酸類に例示した1,3−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、またはこれらのエステル形成性誘導体が好ましい。   Examples of the naphthalenedicarboxylic acid or ester-forming derivative thereof used in the present invention include 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid exemplified in the above dicarboxylic acids, 2, 6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, or ester-forming derivatives thereof are preferred.

主たるグリコール成分がアルキレングリコールであるポリエステルとは、全グリコール成分に対してアルキレングリコールを合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。ここで言うアルキレングリコールは、分子鎖中に置換基や脂環構造を含んでいてもよい。   The polyester whose main glycol component is an alkylene glycol is preferably a polyester containing 70 mol% or more of the total amount of alkylene glycol with respect to all glycol components, more preferably a polyester containing 80 mol% or more, More preferably, it is a polyester containing 90 mol% or more. The alkylene glycol here may contain a substituent or an alicyclic structure in the molecular chain.

上記テレフタル酸/エチレングリコール以外の共重合成分は、イソフタル酸、2,6−ナフタレンジカルボン酸、ジエチレングリコール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、1,2−プロパンジオール、1,3−プロパンジオールおよび2−メチル−1,3−プロパンジオールからなる群より選ばれる少なくとも1種以上であることが、透明性と成形性を両立する上で好ましく、特にイソフタル酸、ジエチレングリコール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノールからなる群より選ばれる少なくとも1種以上であることがより好ましい。   The copolymer components other than the terephthalic acid / ethylene glycol are isophthalic acid, 2,6-naphthalenedicarboxylic acid, diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,2-propanediol, 1,3-propane. It is preferably at least one selected from the group consisting of diol and 2-methyl-1,3-propanediol in order to achieve both transparency and moldability. In particular, isophthalic acid, diethylene glycol, neopentyl glycol, 1 More preferred is at least one selected from the group consisting of 1,4-cyclohexanedimethanol.

本発明に用いられるポリエステルの好ましい一例は、主たる繰り返し単位がエチレンテレフタレートから構成されるポリエステルであり、より好ましくはエチレンテレフタレート単位を70モル%以上含む線状ポリエステルであり、さらに好ましくはエチレンテレフタレート単位を80モル%以上含む線状ポリエステルであり、特に好ましいのはエチレンテレフタレート単位を90モル%以上含む線状ポリエステルである。   A preferred example of the polyester used in the present invention is a polyester whose main repeating unit is composed of ethylene terephthalate, more preferably a linear polyester containing 70 mol% or more of ethylene terephthalate units, and still more preferably an ethylene terephthalate unit. A linear polyester containing 80 mol% or more is preferable, and a linear polyester containing 90 mol% or more of ethylene terephthalate units is particularly preferable.

また本発明に用いられるポリエステルの好ましい他の一例は、主たる繰り返し単位がエチレン−2,6−ナフタレートから構成されるポリエステルであり、より好ましくはエチレン−2,6−ナフタレート単位を70モル%以上含む線状ポリエステルであり、さらに好ましくはエチレン−2,6−ナフタレート単位を80モル%以上含む線状ポリエステルであり、特に好ましいのは、エチレン−2,6−ナフタレート単位を90モル%以上含む線状ポリエステルである。   Another preferred example of the polyester used in the present invention is a polyester in which the main repeating unit is composed of ethylene-2,6-naphthalate, more preferably 70 mol% or more of ethylene-2,6-naphthalate unit. It is a linear polyester, more preferably a linear polyester containing 80 mol% or more of ethylene-2,6-naphthalate units, and particularly preferable is a linear polyester containing 90 mol% or more of ethylene-2,6-naphthalate units. Polyester.

また本発明に用いられるポリエステルの好ましいその他の例としては、プロピレンテレフタレート単位を70モル%以上含む線状ポリエステル、プロピレンナフタレート単位を70モル%以上含む線状ポリエステル、1,4−シクロヘキサンジメチレンテレフタレート単位を70モル%以上含む線状ポリエステル、ブチレンナフタレート単位を70モル%以上含む線状ポリエステル、またはブチレンテレフタレート単位を70モル%以上含む線状ポリエステルである。   Other preferable examples of the polyester used in the present invention include linear polyesters containing 70 mol% or more of propylene terephthalate units, linear polyesters containing 70 mol% or more of propylene naphthalate units, and 1,4-cyclohexanedimethylene terephthalate. A linear polyester containing 70 mol% or more of units, a linear polyester containing 70 mol% or more of butylene naphthalate units, or a linear polyester containing 70 mol% or more of butylene terephthalate units.

特にポリエステル全体の組成として、テレフタル酸/イソフタル酸//エチレングリコールの組合せ、テレフタル酸//エチレングリコール/1,4−シクロヘキサンジメタノールの組合せ、テレフタル酸//エチレングリコール/ネオペンチルグリコールの組合せは透明性と成形性とを両立する上で好ましい。なお、当然ではあるが、エステル化(エステル交換)反応、重縮合反応中に、エチレングリコールの二量化により生じるジエチレングリコールを少量(5モル%以下)含んでもよいことは言うまでもない。   In particular, the composition of the whole polyester is a combination of terephthalic acid / isophthalic acid // ethylene glycol, terephthalic acid // ethylene glycol / 1,4-cyclohexanedimethanol, and terephthalic acid // ethylene glycol / neopentyl glycol. This is preferable in order to satisfy both the moldability and the moldability. Needless to say, a small amount (5 mol% or less) of diethylene glycol produced by dimerization of ethylene glycol may be included in the esterification (transesterification) reaction or polycondensation reaction.

また本発明に用いられるポリエステルの好ましいその他の例としては、グリコール酸やグリコール酸メチルの重縮合もしくは、グリコリドの開環重縮合にて得られるポリグリコール酸が挙げられる。このポリグリコール酸には、ラクチド等の他成分を共重合しても構わない。   Other preferable examples of the polyester used in the present invention include polyglycolic acid obtained by polycondensation of glycolic acid or methyl glycolate or ring-opening polycondensation of glycolide. This polyglycolic acid may be copolymerized with other components such as lactide.

[ポリアミド]
本発明で使用するポリアミド(ここで言う“ポリアミド”は、本発明の“ポリアミド化合物(A)”と混合されるポリアミド樹脂を指すものであり、本発明の“ポリアミド化合物(A)”自体を指すものではない)は、ラクタムもしくはアミノカルボン酸から誘導される単位を主構成単位とするポリアミドや、脂肪族ジアミンと脂肪族ジカルボン酸とから誘導される単位を主構成単位とする脂肪族ポリアミド、脂肪族ジアミンと芳香族ジカルボン酸とから誘導される単位を主構成単位とする部分芳香族ポリアミド、芳香族ジアミンと脂肪族ジカルボン酸とから誘導される単位を主構成単位とする部分芳香族ポリアミド等が挙げられ、必要に応じて、主構成単位以外のモノマー単位を共重合してもよい。
[polyamide]
Polyamide used in the present invention (herein, “polyamide” refers to a polyamide resin mixed with “polyamide compound (A)” of the present invention, and refers to “polyamide compound (A)” of the present invention itself. Is not a polyamide having a unit derived from a lactam or an aminocarboxylic acid as a main structural unit, an aliphatic polyamide having a unit derived from an aliphatic diamine and an aliphatic dicarboxylic acid as a main structural unit, Partially aromatic polyamides whose main constituent units are units derived from aromatic diamines and aromatic dicarboxylic acids, partially aromatic polyamides whose main constituent units are units derived from aromatic diamines and aliphatic dicarboxylic acids, etc. As necessary, monomer units other than the main structural unit may be copolymerized.

前記ラクタムもしくはアミノカルボン酸としては、ε−カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等のアミノカルボン酸類、パラ−アミノメチル安息香酸のような芳香族アミノカルボン酸等が使用できる。   Examples of the lactam or aminocarboxylic acid include lactams such as ε-caprolactam and laurolactam, aminocarboxylic acids such as aminocaproic acid and aminoundecanoic acid, and aromatic aminocarboxylic acids such as para-aminomethylbenzoic acid. .

前記脂肪族ジアミンとしては、炭素数2〜12の脂肪族ジアミンあるいはその機能的誘導体が使用できる。さらに、脂環族のジアミンであってもよい。脂肪族ジアミンは直鎖状の脂肪族ジアミンであっても分岐を有する鎖状の脂肪族ジアミンであってもよい。このような直鎖状の脂肪族ジアミンの具体例としては、エチレンジアミン、1−メチルエチレンジアミン、1,3−プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等の脂肪族ジアミンが挙げられる。また、脂環族ジアミンの具体例としては、シクロヘキサンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン等が挙げられる。   As the aliphatic diamine, an aliphatic diamine having 2 to 12 carbon atoms or a functional derivative thereof can be used. Furthermore, an alicyclic diamine may be used. The aliphatic diamine may be a linear aliphatic diamine or a branched chain aliphatic diamine. Specific examples of such linear aliphatic diamines include ethylenediamine, 1-methylethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, Examples include aliphatic diamines such as nonamethylenediamine, decamethylenediamine, undecamethylenediamine, and dodecamethylenediamine. Specific examples of the alicyclic diamine include cyclohexanediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, and the like.

また、前記脂肪族ジカルボン酸としては、直鎖状の脂肪族ジカルボン酸や脂環族ジカルボン酸が好ましく、さらに炭素数4〜12のアルキレン基を有する直鎖状脂肪族ジカルボン酸が特に好ましい。このような直鎖状脂肪族ジカルボン酸の例としては、アジピン酸、セバシン酸、マロン酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、ウンデカン酸、ウンデカジオン酸、ドデカンジオン酸、ダイマー酸およびこれらの機能的誘導体等を挙げることができる。脂環族ジカルボン酸としては、1,4−シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等の脂環式ジカルボン酸が挙げられる。   Moreover, as said aliphatic dicarboxylic acid, linear aliphatic dicarboxylic acid and alicyclic dicarboxylic acid are preferable, and also linear aliphatic dicarboxylic acid which has a C4-C12 alkylene group is especially preferable. Examples of such linear aliphatic dicarboxylic acids include adipic acid, sebacic acid, malonic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, undecanoic acid, undecadioic acid, dodecanedioic acid, dimer Examples thereof include acids and functional derivatives thereof. Examples of the alicyclic dicarboxylic acid include alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid.

また、前記芳香族ジアミンとしては、メタキシリレンジアミン、パラキシリレンジアミン、パラ−ビス(2−アミノエチル)ベンゼン等が挙げられる。   Examples of the aromatic diamine include metaxylylenediamine, paraxylylenediamine, para-bis (2-aminoethyl) benzene, and the like.

また、前記芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸、ジフェニル−4,4’−ジカルボン酸、ジフェノキシエタンジカルボン酸およびその機能的誘導体等が挙げられる。   Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, and functional derivatives thereof. It is done.

具体的なポリアミドとしては、ポリアミド4、ポリアミド6、ポリアミド10、ポリアミド11、ポリアミド12、ポリアミド4,6、ポリアミド6,6、ポリアミド6,10、ポリアミド6T、ポリアミド9T、ポリアミド6IT、ポリメタキシリレンアジパミド(ポリアミドMXD6)、イソフタル酸共重合ポリメタキシリレンアジパミド(ポリアミドMXD6I)、ポリメタキシリレンセバカミド(ポリアミドMXD10)、ポリメタキシリレンドデカナミド(ポリアミドMXD12)、ポリ1,3−ビス(アミノメチル)シクロヘキサンアジパミド(ポリアミドBAC6)、ポリパラキシリレンセバカミド(ポリアミドPXD10)等がある。より好ましいポリアミドとしては、ポリアミド6、ポリアミドMXD6、ポリアミドMXD6Iが挙げられる。   Specific polyamides include polyamide 4, polyamide 6, polyamide 10, polyamide 11, polyamide 12, polyamide 4, 6, polyamide 6, 6, polyamide 6, 10, polyamide 6T, polyamide 9T, polyamide 6IT, polymetaxylylene azide. Pamide (Polyamide MXD6), Isophthalic acid copolymer polymetaxylylene adipamide (Polyamide MXD6I), Polymetaxylylene sebamide (Polyamide MXD10), Polymetaxylylene decanamide (Polyamide MXD12), Poly 1,3-bis (Aminomethyl) cyclohexane adipamide (polyamide BAC6), polyparaxylylene sebacamide (polyamide PXD10) and the like. More preferable polyamides include polyamide 6, polyamide MXD6, and polyamide MXD6I.

また、前記ポリアミドの共重合成分として、少なくとも一つの末端アミノ基、もしくは末端カルボキシル基を有する数平均分子量が2000〜20000のポリエーテル、又は前記末端アミノ基を有するポリエーテルの有機カルボン酸塩、又は前記末端カルボキシル基を有するポリエーテルのアミノ塩を用いることもできる。具体的な例としては、ビス(アミノプロピル)ポリ(エチレンオキシド)(数平均分子量が2000〜20000のポリエチレングリコール)が挙げられる。   Further, as a copolymerization component of the polyamide, a polyether having at least one terminal amino group or a terminal carboxyl group and a number average molecular weight of 2000 to 20000, or an organic carboxylate of the polyether having the terminal amino group, or An amino salt of a polyether having a terminal carboxyl group can also be used. Specific examples include bis (aminopropyl) poly (ethylene oxide) (polyethylene glycol having a number average molecular weight of 2000 to 20000).

また、前記部分芳香族ポリアミドは、トリメリット酸、ピロメリット酸等の3塩基以上の多価カルボン酸から誘導される構成単位を実質的に線状である範囲内で含有していてもよい。   The partially aromatic polyamide may contain a structural unit derived from a polybasic carboxylic acid having 3 or more bases such as trimellitic acid and pyromellitic acid within a substantially linear range.

前記ポリアミドは、基本的には従来公知の、水共存下での溶融重縮合法あるいは水不存在下の溶融重縮合法や、これらの溶融重縮合法で得られたポリアミドを更に固相重合する方法等によって製造することができる。溶融重縮合反応は1段階で行ってもよいし、また多段階に分けて行ってもよい。これらは回分式反応装置から構成されていてもよいし、また連続式反応装置から構成されていてもよい。また溶融重縮合工程と固相重合工程は連続的に運転してもよいし、分割して運転してもよい。   The polyamide is basically a conventionally known melt polycondensation method in the presence of water or a melt polycondensation method in the absence of water, or a polyamide obtained by these melt polycondensation methods. It can be manufactured by a method or the like. The melt polycondensation reaction may be performed in one step or may be performed in multiple steps. These may be comprised from a batch-type reaction apparatus, and may be comprised from the continuous-type reaction apparatus. The melt polycondensation step and the solid phase polymerization step may be operated continuously or may be operated separately.

[エチレン−ビニルアルコール共重合体]
本発明で使用されるエチレンビニルアルコール共重合体としては、特に限定されないが、好ましくはエチレン含量15〜60モル%、更に好ましくは20〜55モル%、より好ましくは29〜44モル%であり、酢酸ビニル成分のケン化度が好ましくは90モル%以上、更に好ましくは95モル%以上のものである。
またエチレンビニルアルコール共重合体には、本発明の効果に悪影響を与えない範囲で、更に少量のプロピレン、イソブテン、α−オクテン、α−ドデセン、α−オクタデセン等のα−オレフィン、不飽和カルボン酸又はその塩・部分アルキルエステル・完全アルキルエステル・ニトリル・アミド・無水物、不飽和スルホン酸又はその塩等のコモノマーを含んでいてもよい。
[Ethylene-vinyl alcohol copolymer]
Although it does not specifically limit as an ethylene vinyl alcohol copolymer used by this invention, Preferably it is 15-60 mol%, More preferably, it is 20-55 mol%, More preferably, it is 29-44 mol%, The degree of saponification of the vinyl acetate component is preferably 90 mol% or more, more preferably 95 mol% or more.
Further, the ethylene vinyl alcohol copolymer has a smaller amount of an α-olefin such as propylene, isobutene, α-octene, α-dodecene, α-octadecene, and unsaturated carboxylic acid as long as the effects of the present invention are not adversely affected. Alternatively, it may contain a comonomer such as a salt, a partial alkyl ester, a complete alkyl ester, a nitrile, an amide, an anhydride, an unsaturated sulfonic acid or a salt thereof.

[植物由来樹脂]
植物由来樹脂の具体例としては、上記樹脂と重複する部分もあるが、特に限定されることなく公知の種々の石油以外を原料とする脂肪族ポリエステル系生分解性樹脂が挙げられる。脂肪族ポリエステル系生分解性樹脂としては、例えば、ポリグリコール酸(PGA)、ポリ乳酸(PLA)等のポリ(α−ヒドロキシ酸);ポリブチレンサクシネート(PBS)、ポリエチレンサクシネート(PES)等のポリアルキレンアルカノエート等が挙げられる。
[Plant-derived resin]
Specific examples of the plant-derived resin include a portion overlapping with the above resin, but are not particularly limited, and examples thereof include aliphatic polyester-based biodegradable resins other than various known petroleum materials. Examples of the aliphatic polyester-based biodegradable resin include poly (α-hydroxy acids) such as polyglycolic acid (PGA) and polylactic acid (PLA); polybutylene succinate (PBS), polyethylene succinate (PES), and the like. And polyalkylene alkanoates.

[その他の樹脂]
本発明の目的を阻害しない範囲で、酸素吸収バリア層に付与したい性能等に応じて、従来公知の種々の樹脂を樹脂(B)として添加してもよい。例えば、耐衝撃性、耐ピンホール性、柔軟性、接着性を付与する観点からは、ポリエチレンやポリプロピレン等のポリオレフィンやそれらの各種変性物、ポリオレフィン系エラストマー、ポリアミド系エラストマー、スチレン−ブタジエン共重合樹脂やその水素添加処理物、ポリエステル系エラストマー等に代表される各種熱可塑性エラストマー、ナイロン6,66,12、ナイロン12等の各種ポリアミド等が挙げられ、酸素吸収性能をさらに付与する観点からは、ポリブタジエンや変性ポリブタジエン等の炭素−炭素不飽和二重結合含有樹脂、を挙げることができる。
[Other resins]
Various conventionally known resins may be added as the resin (B) in accordance with the performance desired to be imparted to the oxygen-absorbing barrier layer as long as the object of the present invention is not impaired. For example, from the viewpoint of imparting impact resistance, pinhole resistance, flexibility and adhesion, polyolefins such as polyethylene and polypropylene, and various modified products thereof, polyolefin-based elastomers, polyamide-based elastomers, styrene-butadiene copolymer resins And other hydrogenated products thereof, various thermoplastic elastomers typified by polyester elastomers, various polyamides such as nylon 6, 66, 12, nylon 12, etc. From the viewpoint of further imparting oxygen absorption performance, polybutadiene And carbon-carbon unsaturated double bond-containing resins such as modified polybutadiene.

1−3.添加剤(C)
本発明において、酸素吸収バリア層を形成するための樹脂組成物には、前述したポリアミド化合物(A)及び樹脂(B)以外に、必要に応じて更に添加剤(C)を含有してもよい。添加剤(C)は1種であってもよいし、2種以上の組合せであってもよい。樹脂組成物中における添加剤(C)の含有量は、添加剤の種類にもよるが、10質量%以下が好ましく、5質量%以下がより好ましい。
1-3. Additive (C)
In the present invention, the resin composition for forming the oxygen absorption barrier layer may further contain an additive (C) as necessary in addition to the polyamide compound (A) and the resin (B) described above. . One type of additive (C) may be used, or a combination of two or more types may be used. The content of the additive (C) in the resin composition is preferably 10% by mass or less, more preferably 5% by mass or less, although it depends on the type of additive.

[白化防止剤]
本発明においては、熱水処理後や長時間の経時後の白化抑制として、ジアミド化合物及び/又はジエステル化合物を樹脂組成物に添加することが好ましい。ジアミド化合物及び/又はジエステル化合物は、オリゴマーの析出による白化の抑制に効果がある。ジアミド化合物とジエステル化合物を単独で用いてもよいし、併用してもよい。
[Anti-whitening agent]
In the present invention, it is preferable to add a diamide compound and / or a diester compound to the resin composition as a suppression of whitening after the hot water treatment or after a long period of time. The diamide compound and / or diester compound is effective in suppressing whitening due to precipitation of oligomers. A diamide compound and a diester compound may be used alone or in combination.

本発明に用いられるジアミド化合物としては、炭素数8〜30の脂肪族ジカルボン酸と炭素数2〜10のジアミンから得られるジアミド化合物が好ましい。脂肪族ジカルボン酸の炭素数が8以上、ジアミンの炭素数が2以上であると白化防止効果が期待できる。また、脂肪族ジカルボン酸の炭素数が30以下、ジアミンの炭素数が10以下で酸素吸収バリア層中への均一分散が良好となる。脂肪族ジカルボン酸は側鎖や二重結合があってもよいが、直鎖飽和脂肪族ジカルボン酸が好ましい。ジアミド化合物は1種類でもよいし、2種以上を併用してもよい。   The diamide compound used in the present invention is preferably a diamide compound obtained from an aliphatic dicarboxylic acid having 8 to 30 carbon atoms and a diamine having 2 to 10 carbon atoms. When the aliphatic dicarboxylic acid has 8 or more carbon atoms and the diamine has 2 or more carbon atoms, a whitening prevention effect can be expected. In addition, when the aliphatic dicarboxylic acid has 30 or less carbon atoms and the diamine has 10 or less carbon atoms, uniform dispersion in the oxygen-absorbing barrier layer is good. The aliphatic dicarboxylic acid may have a side chain or a double bond, but a linear saturated aliphatic dicarboxylic acid is preferred. One kind of diamide compound may be used, or two or more kinds may be used in combination.

前記脂肪族ジカルボン酸としては、ステアリン酸(C18)、エイコサン酸(C20)、ベヘン酸(C22)、モンタン酸(C28)、トリアコンタン酸(C30)等が例示できる。前記ジアミンとしては、エチレンジアミン、ブチレンジアミン、ヘキサンジアミン、キシリレンジアミン、ビス(アミノメチル)シクロヘキサン等が例示できる。これらを組み合わせて得られるジアミド化合物が好ましい。
炭素数8〜30の脂肪族ジカルボン酸と主としてエチレンジアミンからなるジアミンから得られるジアミド化合物、または主としてモンタン酸からなる脂肪族ジカルボン酸と炭素数2〜10のジアミンから得られるジアミド化合物が好ましく、特に好ましくは主としてステアリン酸からなる脂肪族ジカルボン酸と主としてエチレンジアミンからなるジアミンから得られるジアミド化合物である。
Examples of the aliphatic dicarboxylic acid include stearic acid (C18), eicosanoic acid (C20), behenic acid (C22), montanic acid (C28), and triacontanoic acid (C30). Examples of the diamine include ethylenediamine, butylenediamine, hexanediamine, xylylenediamine, and bis (aminomethyl) cyclohexane. A diamide compound obtained by combining these is preferred.
A diamide compound obtained from an aliphatic dicarboxylic acid having 8 to 30 carbon atoms and a diamine mainly comprising ethylenediamine, or a diamide compound obtained from an aliphatic dicarboxylic acid mainly comprising montanic acid and a diamine having 2 to 10 carbon atoms is particularly preferred. Is a diamide compound obtained from an aliphatic dicarboxylic acid mainly composed of stearic acid and a diamine mainly composed of ethylenediamine.

本発明に用いられるジエステル化合物としては、炭素数8〜30の脂肪族ジカルボン酸と炭素数2〜10のジオールから得られるジエステル化合物が好ましい。脂肪族ジカルボン酸の炭素数が8以上、ジオールの炭素数が2以上であると白化防止効果が期待できる。また、脂肪族ジカルボン酸の炭素数が30以下、ジオールの炭素数が10以下で酸素吸収バリア層中への均一分散が良好となる。脂肪族ジカルボン酸は側鎖や二重結合があってもよいが、直鎖飽和脂肪族ジカルボン酸が好ましい。ジエステル化合物は1種類でもよいし、2種以上を併用してもよい。
前記脂肪族ジカルボン酸としては、ステアリン酸(C18)、エイコサン酸(C20)、ベヘン酸(C22)、モンタン酸(C28)、トリアコンタン酸(C30)等が例示できる。前記ジオールとしては、エチレングリコール、プロパンジオール、ブタンジオール、ヘキサンジオール、キシリレングリコール、シクロヘキサンジメタノール等が例示できる。これらを組み合わせて得られるジエステル化合物が好ましい。
特に好ましくは主としてモンタン酸からなる脂肪族ジカルボン酸と主としてエチレングリコール及び/又は1,3−ブタンジオールからなるジオールから得られるジエステル化合物である。
The diester compound used in the present invention is preferably a diester compound obtained from an aliphatic dicarboxylic acid having 8 to 30 carbon atoms and a diol having 2 to 10 carbon atoms. When the aliphatic dicarboxylic acid has 8 or more carbon atoms and the diol has 2 or more carbon atoms, an effect of preventing whitening can be expected. Further, when the aliphatic dicarboxylic acid has 30 or less carbon atoms and the diol has 10 or less carbon atoms, uniform dispersion in the oxygen-absorbing barrier layer is good. The aliphatic dicarboxylic acid may have a side chain or a double bond, but a linear saturated aliphatic dicarboxylic acid is preferred. One type of diester compound may be used, or two or more types may be used in combination.
Examples of the aliphatic dicarboxylic acid include stearic acid (C18), eicosanoic acid (C20), behenic acid (C22), montanic acid (C28), and triacontanoic acid (C30). Examples of the diol include ethylene glycol, propanediol, butanediol, hexanediol, xylylene glycol, and cyclohexanedimethanol. A diester compound obtained by combining these is preferred.
Particularly preferred are diester compounds obtained from an aliphatic dicarboxylic acid mainly composed of montanic acid and a diol mainly composed of ethylene glycol and / or 1,3-butanediol.

本発明において、ジアミド化合物及び/又はジエステル化合物の添加量は、樹脂組成物中に好ましくは0.005〜0.5質量%、より好ましくは0.05〜0.5質量%、さらに好ましくは0.12〜0.5質量%である。樹脂組成物中に0.005質量%以上添加し、かつ結晶化核剤と併用することにより白化防止の相乗効果が期待できる。また、添加量が樹脂組成物中に0.5質量%以下であると、当該樹脂組成物を成形して得られる成形体の曇値を低く保つことが可能となる。   In the present invention, the amount of the diamide compound and / or diester compound added is preferably 0.005 to 0.5% by mass, more preferably 0.05 to 0.5% by mass, and still more preferably 0 in the resin composition. .12 to 0.5% by mass. A synergistic effect of preventing whitening can be expected by adding 0.005% by mass or more to the resin composition and using it together with the crystallization nucleating agent. Moreover, it becomes possible to keep the fog value of the molded object obtained by shape | molding the said resin composition low as the addition amount is 0.5 mass% or less in a resin composition.

[層状珪酸塩]
本発明において、酸素吸収バリア層は層状珪酸塩を含有してもよい。層状珪酸塩を添加することで、酸素ガスバリア性だけでなく、炭酸ガス等のガスに対するバリア性を付与することができる。
[Layered silicate]
In the present invention, the oxygen absorption barrier layer may contain a layered silicate. By adding the layered silicate, not only the oxygen gas barrier property but also a barrier property against a gas such as carbon dioxide gas can be imparted.

層状珪酸塩は、0.25〜0.6の電荷密度を有する2−八面体型や3−八面体型の層状珪酸塩であり、2−八面体型としては、モンモリロナイト、バイデライト等、3−八面体型としてはヘクトライト、サボナイト等が挙げられる。これらの中でも、モンモリロナイトが好ましい。   The layered silicate is a 2-octahedral or 3-octahedral layered silicate having a charge density of 0.25 to 0.6. Examples of the 2-octahedral type include montmorillonite, beidellite, and the like. Examples of the octahedron type include hectorite and saponite. Among these, montmorillonite is preferable.

層状珪酸塩は、高分子化合物や有機系化合物等の有機膨潤化剤を予め層状珪酸塩に接触させて、層状珪酸塩の層間を拡げたものとすることが好ましい。有機膨潤化剤として、第4級アンモニウム塩が好ましく使用できるが、好ましくは、炭素数12以上のアルキル基又はアルケニル基を少なくとも一つ以上有する第4級アンモニウム塩が用いられる。   The layered silicate is preferably obtained by expanding an interlayer of the layered silicate by previously bringing an organic swelling agent such as a polymer compound or an organic compound into contact with the layered silicate. As the organic swelling agent, a quaternary ammonium salt can be preferably used. Preferably, a quaternary ammonium salt having at least one alkyl group or alkenyl group having 12 or more carbon atoms is used.

有機膨潤化剤の具体例として、トリメチルドデシルアンモニウム塩、トリメチルテトラデシルアンモニウム塩、トリメチルヘキサデシルアンモニウム塩、トリメチルオクタデシルアンモニウム塩、トリメチルエイコシルアンモニウム塩等のトリメチルアルキルアンモニウム塩;トリメチルオクタデセニルアンモニウム塩、トリメチルオクタデカジエニルアンモニウム塩等のトリメチルアルケニルアンモニウム塩;トリエチルドデシルアンモニウム塩、トリエチルテトラデシルアンモニウム塩、トリエチルヘキサデシルアンモニウム塩、トリエチルオクタデシルアンモニウム等のトリエチルアルキルアンモニウム塩;トリブチルドデシルアンモニウム塩、トリブチルテトラデシルアンモニウム塩、トリブチルヘキサデシルアンモニウム塩、トリブチルオクタデシルアンモニウム塩等のトリブチルアルキルアンモニウム塩;ジメチルジドデシルアンモニウム塩、ジメチルジテトラデシルアンモニウム塩、ジメチルジヘキサデシルアンモニウム塩、ジメチルジオクタデシルアンモニウム塩、ジメチルジタロウアンモニウム塩等のジメチルジアルキルアンモニウム塩;ジメチルジオクタデセニルアンモニウム塩、ジメチルジオクタデカジエニルアンモニウム塩等のジメチルジアルケニルアンモニウム塩;ジエチルジドデジルアンモニウム塩、ジエチルジテトラデシルアンモニウム塩、ジエチルジヘキサデシルアンモニウム塩、ジエチルジオクタデシルアンモニウム等のジエチルジアルキルアンモニウム塩;ジブチルジドデシルアンモニウム塩、ジブチルジテトラデシルアンモニウム塩、ジブチルジヘキサデシルアンモニウム塩、ジブチルジオクタデシルアンモニウム塩等のジブチルジアルキルアンモニウム塩;メチルベンジルジヘキサデシルアンモニウム塩等のメチルベンジルジアルキルアンモニウム塩;ジベンジルジヘキサデシルアンモニウム塩等のジベンジルジアルキルアンモニウム塩;トリドデシルメチルアンモニウム塩、トリテトラデシルメチルアンモニウム塩、トリオクタデシルメチルアンモニウム塩等のトリアルキルメチルアンモニウム塩;トリドデシルエチルアンモニウム塩等のトリアルキルエチルアンモニウム塩;トリドデシルブチルアンモニウム塩等のトリアルキルブチルアンモニウム塩;4−アミノ−n−酪酸、6−アミノ−n−カプロン酸、8−アミノカプリル酸、10−アミノデカン酸、12−アミノドデカン酸、14−アミノテトラデカン酸、16−アミノヘキサデカン酸、18−アミノオクタデカン酸等のω−アミノ酸等が挙げられる。また、水酸基及び/又はエーテル基含有のアンモニウム塩、中でも、メチルジアルキル(PAG)アンモニウム塩、エチルジアルキル(PAG)アンモニウム塩、ブチルジアルキル(PAG)アンモニウム塩、ジメチルビス(PAG)アンモニウム塩、ジエチルビス(PAG)アンモニウム塩、ジブチルビス(PAG)アンモニウム塩、メチルアルキルビス(PAG)アンモニウム塩、エチルアルキルビス(PAG)アンモニウム塩、ブチルアルキルビス(PAG)アンモニウム塩、メチルトリ(PAG)アンモニウム塩、エチルトリ(PAG)アンモニウム塩、ブチルトリ(PAG)アンモニウム塩、テトラ(PAG)アンモニウム塩(ただし、アルキルはドデシル、テトラデシル、ヘキサデシル、オクタデシル、エイコシル等の炭素数12以上のアルキル基を表し、PAGはポリアルキレングリコール残基、好ましくは、炭素数20以下のポリエチレングリコール残基またはポリプロピレングリコール残基を表す)等の少なくとも一のアルキレングリコール残基を含有する4級アンモニウム塩も有機膨潤化剤として使用することができる。中でもトリメチルドデシルアンモニウム塩、トリメチルテトラデシルアンモニウム塩、トリメチルヘキサデシルアンモニウム塩、トリメチルオクタデシルアンモニウム塩、ジメチルジドデシルアンモニウム塩、ジメチルジテトラデシルアンモニウム塩、ジメチルジヘキサデシルアンモニウム塩、ジメチルジオクタデシルアンモニウム塩、ジメチルジタロウアンモニウム塩が好ましい。なお、これらの有機膨潤化剤は、単独でも複数種類の混合物としても使用できる。   Specific examples of organic swelling agents include trimethyl dodecyl ammonium salt, trimethyl tetradecyl ammonium salt, trimethyl hexadecyl ammonium salt, trimethyl octadecyl ammonium salt, trimethyl alkyl decyl ammonium salt, trimethyl alkyl decyl ammonium salt; trimethyl octadecenyl ammonium salt Trimethylalkenylammonium salts such as trimethyloctadecadienylammonium salt; triethylalkylammonium salts such as triethyldodecylammonium salt, triethyltetradecylammonium salt, triethylhexadecylammonium salt, triethyloctadecylammonium salt; tributyldodecylammonium salt, tributyltetradecyl Ammonium salt, tributyl hexadecyl ammonium salt, tri Tributylalkylammonium salts such as tiloctadecylammonium salt; dimethyldialkylammonium salts such as dimethyldidodecylammonium salt, dimethylditetradecylammonium salt, dimethyldihexadecylammonium salt, dimethyldioctadecylammonium salt, dimethylditallowammonium salt Dioctadecenyl ammonium salt, dimethyl dialkenyl ammonium salt such as dimethyl dioctadecadienyl ammonium salt; diethyl didodecyl ammonium salt, diethyl ditetradecyl ammonium salt, diethyl dihexadecyl ammonium salt, diethyl dioctadecyl ammonium salt, etc. Diethyl dialkyl ammonium salt; dibutyl didodecyl ammonium salt, dibutyl ditetradecyl ammonium salt, dibu Dibutyl dialkyl ammonium salts such as rudihexadecyl ammonium salt and dibutyl dioctadecyl ammonium salt; Methyl benzyl dialkyl ammonium salts such as methyl benzyl dihexadecyl ammonium salt; Dibenzyl dialkyl ammonium salts such as dibenzyl dihexadecyl ammonium salt; Tridodecyl Trialkylmethylammonium salts such as methylammonium salt, tritetradecylmethylammonium salt, trioctadecylmethylammonium salt; trialkylethylammonium salts such as tridodecylethylammonium salt; trialkylbutylammonium salts such as tridodecylbutylammonium salt; 4-amino-n-butyric acid, 6-amino-n-caproic acid, 8-aminocaprylic acid, 10-aminodecanoic acid, 12-aminodode Examples include ω-amino acids such as canic acid, 14-aminotetradecanoic acid, 16-aminohexadecanoic acid, and 18-aminooctadecanoic acid. In addition, hydroxyl group and / or ether group-containing ammonium salts, among them, methyl dialkyl (PAG) ammonium salt, ethyl dialkyl (PAG) ammonium salt, butyl dialkyl (PAG) ammonium salt, dimethyl bis (PAG) ammonium salt, diethyl bis (PAG) ) Ammonium salt, dibutyl bis (PAG) ammonium salt, methyl alkyl bis (PAG) ammonium salt, ethyl alkyl bis (PAG) ammonium salt, butyl alkyl bis (PAG) ammonium salt, methyl tri (PAG) ammonium salt, ethyl tri (PAG) ammonium Salt, butyltri (PAG) ammonium salt, tetra (PAG) ammonium salt (wherein alkyl is carbon number such as dodecyl, tetradecyl, hexadecyl, octadecyl, eicosyl, etc.) A quaternary ammonium containing at least one alkylene glycol residue such as a polyalkylene glycol residue, preferably a polyethylene glycol residue or a polypropylene glycol residue having 20 or less carbon atoms). Salts can also be used as organic swelling agents. Among them, trimethyldodecyl ammonium salt, trimethyl tetradecyl ammonium salt, trimethyl hexadecyl ammonium salt, trimethyl octadecyl ammonium salt, dimethyl didodecyl ammonium salt, dimethyl ditetradecyl ammonium salt, dimethyl dihexadecyl ammonium salt, dimethyl dioctadecyl ammonium salt, dimethyl A ditallow ammonium salt is preferred. These organic swelling agents can be used alone or as a mixture of a plurality of types.

本発明では、有機膨潤化剤で処理した層状珪酸塩を樹脂組成物中に0.5〜8質量%添加したものが好ましく用いられ、より好ましくは1〜6質量%、更に好ましくは2〜5質量%である。層状珪酸塩の添加量が0.5質量%以上であればガスバリア性の改善効果が十分に得られ、8質量%以下であれば酸素吸収バリア層の柔軟性が悪化することによるピンホールの発生等の問題が生じにくい。   In this invention, what added 0.5-8 mass% of layered silicate processed with the organic swelling agent to the resin composition is used preferably, More preferably, it is 1-6 mass%, More preferably, it is 2-5. % By mass. If the amount of layered silicate added is 0.5% by mass or more, the effect of improving the gas barrier property is sufficiently obtained, and if it is 8% by mass or less, pinholes are generated due to deterioration of the flexibility of the oxygen absorption barrier layer. Such problems are unlikely to occur.

酸素吸収バリア層において、層状珪酸塩は局所的に凝集することなく均一に分散していることが好ましい。ここでいう均一分散とは、酸素吸収バリア層中において層状珪酸塩が平板状に分離し、それらの50%以上が5nm以上の層間距離を有することをいう。ここで層間距離とは平板状物の重心間距離のことをいう。この距離が大きい程分散状態が良好となり、透明性等の外観が良好で、かつ酸素、炭酸ガス等のガスバリア性を向上させることができる。   In the oxygen absorption barrier layer, the layered silicate is preferably uniformly dispersed without locally agglomerating. The uniform dispersion here means that the layered silicate is separated into a flat plate in the oxygen absorption barrier layer, and 50% or more of them have an interlayer distance of 5 nm or more. Here, the interlayer distance refers to the distance between the centers of gravity of the flat objects. The larger the distance, the better the dispersion state, the better the appearance such as transparency, and the better the gas barrier properties such as oxygen and carbon dioxide.

[酸化反応促進剤]
酸素吸収バリア層の酸素吸収性能を更に高めるために、本発明の効果を損なわない範囲で従来公知の酸化反応促進剤を添加してもよい。酸化反応促進剤はポリアミド化合物(A)が有する酸素吸収性能を促進することで、酸素吸収バリア層の酸素吸収性能を高めることができる。酸化反応促進剤としては、鉄、コバルト、ニッケル等の周期律表第VIII族金属、銅や銀等の第I族金属、スズ、チタン、ジルコニウム等の第IV族金属、バナジウムの第V族、クロム等の第VI族、マンガン等の第VII族の金属の低価数の無機酸塩もしくは有機酸塩、又は上記遷移金属の錯塩を例示することができる。これらの中でも、酸素反応促進効果に優れるコバルト塩やコバルト塩とマンガン塩との組合せが好ましい。
本発明において、酸素反応促進剤の添加量は、樹脂組成物中に好ましくは金属原子濃度として10〜800ppm、より好ましくは50〜600ppm、さらに好ましくは100〜400ppmである。
[Oxidation reaction accelerator]
In order to further enhance the oxygen absorption performance of the oxygen absorption barrier layer, a conventionally known oxidation reaction accelerator may be added as long as the effects of the present invention are not impaired. The oxidation reaction accelerator can enhance the oxygen absorption performance of the oxygen absorption barrier layer by promoting the oxygen absorption performance of the polyamide compound (A). Examples of the oxidation reaction accelerator include Group VIII metals such as iron, cobalt and nickel, Group I metals such as copper and silver, Group IV metals such as tin, titanium and zirconium, Group V of vanadium, Examples thereof include low-valent inorganic or organic acid salts of Group VI metals such as chromium and Group VII metals such as manganese, or complex salts of the above transition metals. Among these, a cobalt salt excellent in an oxygen reaction promoting effect or a combination of a cobalt salt and a manganese salt is preferable.
In the present invention, the addition amount of the oxygen reaction accelerator is preferably 10 to 800 ppm, more preferably 50 to 600 ppm, and still more preferably 100 to 400 ppm as a metal atom concentration in the resin composition.

[酸素吸収剤]
酸素吸収バリア層の酸素吸収性能を更に高めるために、本発明の効果を損なわない範囲で従来公知の酸素吸収剤を添加してもよい。酸素吸収剤はポリアミド化合物(A)が有する酸素吸収性能と別に酸素吸収バリア層に酸素吸収性能を付与することで、酸素吸収バリア層の酸素吸収性能を高めることができる。酸素吸収剤としては、ビタミンCやビタミンE、ブタジエンやイソプレンのように分子内に炭素−炭素二重結合をもつ化合物に代表される酸化性有機化合物を例示することできる。
本発明において、酸素吸収剤の添加量は、樹脂組成物中に好ましくは0.01〜5質量%、より好ましくは0.1〜4質量%、さらに好ましくは0.5〜3質量%である。
[Oxygen absorber]
In order to further enhance the oxygen absorption performance of the oxygen absorption barrier layer, a conventionally known oxygen absorbent may be added within a range not impairing the effects of the present invention. The oxygen absorbent can enhance the oxygen absorption performance of the oxygen absorption barrier layer by imparting oxygen absorption performance to the oxygen absorption barrier layer separately from the oxygen absorption performance of the polyamide compound (A). Examples of the oxygen absorbent include oxidizable organic compounds typified by compounds having a carbon-carbon double bond in the molecule, such as vitamin C, vitamin E, butadiene, and isoprene.
In the present invention, the addition amount of the oxygen absorbent is preferably 0.01 to 5% by mass, more preferably 0.1 to 4% by mass, and further preferably 0.5 to 3% by mass in the resin composition. .

[ゲル化防止・フィッシュアイ低減剤]
本発明においては、酸素吸収バリア層に、酢酸ナトリウム、酢酸カルシウム、酢酸マグネシウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸ナトリウムおよびそれらの誘導体から選択される1種以上のカルボン酸塩類を添加することが好ましい。ここで該誘導体としては、12−ヒドロキシステアリン酸カルシウム、12−ヒドロキシステアリン酸マグネシウム、12−ヒドロキシステアリン酸ナトリウム等の12−ヒドロキシステアリン酸金属塩等が挙げられる。前記カルボン酸塩類を添加することで、成形加工中に起こるポリアミド化合物(A)のゲル化防止や成形体中のフィッシュアイを低減することができ、成形加工の適性が向上する。
[Anti-gelling / Fish Eye Reducing Agent]
In the present invention, one or more carboxylates selected from sodium acetate, calcium acetate, magnesium acetate, calcium stearate, magnesium stearate, sodium stearate and derivatives thereof may be added to the oxygen absorption barrier layer. preferable. Examples of the derivative include 12-hydroxystearic acid metal salts such as calcium 12-hydroxystearate, magnesium 12-hydroxystearate, and sodium 12-hydroxystearate. By adding the carboxylates, it is possible to prevent gelation of the polyamide compound (A) that occurs during the molding process and to reduce fish eyes in the molded article, thereby improving the suitability of the molding process.

前記カルボン酸塩類の添加量としては、樹脂組成物中の濃度として、好ましくは400〜10000ppm、より好ましくは800〜5000ppm、更に好ましくは1000〜3000ppmである。400ppm以上であれば、ポリアミド化合物(A)の熱劣化を抑制でき、ゲル化を防止できる。また、10000ppm以下であれば、ポリアミド化合物(A)が成形不良を起こさず、着色や白化することもない。溶融したポリアミド化合物(A)中に塩基性物質であるカルボン酸塩類が存在すると、ポリアミド化合物(A)の熱による変性が遅延し、最終的な変性物と考えられるゲルの生成を抑制すると推測される。
なお、前述のカルボン酸塩類はハンドリング性に優れ、この中でもステアリン酸金属塩は安価である上、滑剤としての効果を有しており、成形加工をより安定化することができるため好ましい。更に、カルボン酸塩類の形状に特に制限はないが、粉体でかつその粒径が小さい方が乾式混合する場合、樹脂組成物中に均一に分散させることが容易であるため、その粒径は0.2mm以下が好ましい。
さらに、より効果的なゲル化防止、フィッシュアイ低減、更にはコゲ防止処方として、1g当たりの金属塩濃度が高い酢酸ナトリウムを用いることが好ましい。酢酸ナトリウムを用いる場合、ポリアミド化合物(A)及び樹脂(B)と乾式混合して成形加工してもよいが、ハンドリング性や酢酸臭の低減等の観点から、ポリアミド化合物(A)と樹脂(B)と酢酸ナトリウムとからなるマスターバッチを、ポリアミド化合物(A)及び樹脂(B)と乾式混合して成形加工することが好ましい。マスターバッチに用いる酢酸ナトリウムは、樹脂組成物中に均一に分散させることが容易であるため、その粒径は、0.2mm以下が好ましく、0.1mm以下がより好ましい。
The addition amount of the carboxylates is preferably 400 to 10,000 ppm, more preferably 800 to 5000 ppm, and still more preferably 1000 to 3000 ppm as the concentration in the resin composition. If it is 400 ppm or more, the thermal deterioration of the polyamide compound (A) can be suppressed, and gelation can be prevented. Moreover, if it is 10000 ppm or less, a polyamide compound (A) will not raise | generate a shaping | molding defect, and neither coloring nor whitening will occur. It is speculated that the presence of carboxylates, which are basic substances, in the molten polyamide compound (A) delays the modification of the polyamide compound (A) by heat and suppresses the formation of a gel that is considered to be the final modified product. The
The carboxylates described above are excellent in handling properties, and among them, metal stearate is preferable because it is inexpensive and has an effect as a lubricant, and can stabilize the molding process. Further, the shape of the carboxylates is not particularly limited, but when the powder and the smaller particle size are dry-mixed, it is easy to uniformly disperse in the resin composition, so the particle size is 0.2 mm or less is preferable.
Furthermore, it is preferable to use sodium acetate having a high metal salt concentration per gram as a more effective gelling prevention, fisheye reduction, and kogation prevention formulation. In the case of using sodium acetate, it may be dry mixed with the polyamide compound (A) and the resin (B) and molded, but from the viewpoint of handling property and reduction of acetic acid odor, the polyamide compound (A) and the resin (B ) And sodium acetate are preferably dry mixed with the polyamide compound (A) and the resin (B) for molding. Since it is easy to disperse | distribute sodium acetate used for a masterbatch uniformly in a resin composition, 0.2 mm or less is preferable and its particle size is more preferable.

[酸化防止剤]
本発明においては、酸素吸収性能を制御する観点や機械物性低下を抑える観点から酸化防止剤を添加することが好ましい。酸化防止剤としては、銅系酸化防止剤、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、リン系酸化防止剤、チオ系酸化防止剤等を例示することができ、中でもヒンダードフェノール系酸化防止剤、リン系酸化防止剤が好ましい。
[Antioxidant]
In the present invention, it is preferable to add an antioxidant from the viewpoint of controlling oxygen absorption performance and suppressing deterioration of mechanical properties. Examples of the antioxidant include copper-based antioxidants, hindered phenol-based antioxidants, hindered amine-based antioxidants, phosphorus-based antioxidants, and thio-based antioxidants. Antioxidants and phosphorus antioxidants are preferred.

ヒンダードフェノール系酸化防止剤の具体例としては、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2−チオビス(4−メチル−6−1−ブチルフェノール)、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロキシンナマミド)、3,5−ジ−t−ブチル−4−ヒドロキシ−ベンジルホスホネート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−ブチル−4−ヒドロキシベンジル)ベンゼン、ビス(3,5−ジ−t−ブチル−4−ヒドロキシベンジルスルホン酸エチルカルシウム、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレート、2,6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−4−エチルフェノール、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2’−メチレンビス−(4−メチル−6−t−ブチルフェノール)、2,2’−メチレン−ビス−(4−エチル−6−t−ブチルフェノール)、4,4’−チオビス−(3−メチル−6−t−ブチルフェノール)、オクチル化ジフェニルアミン、2,4−ビス[(オクチルチオ)メチル]−O−クレゾール、イソオクチル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール、3,9−ビス[1,1−ジメチル−2−[β−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル]2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、ビス[3,3’−ビス−(4’−ヒドロキシ−3’−T−ブチルフェニル)ブチリックアシッド]グリコールエステル、1,3,5−トリス(3’,5’−ジ−t−ブチル−4’−ヒドロキシベンジル)−sec−トリアジン−2,4,6−(1H,3H,5H)トリオン、d−α−トコフェロール等が挙げられる。これらは単独であるいはこれらの混合物で用いることができる。ヒンダードフェノール化合物の市販品の具体例としては、BASF社製のIrganox1010やIrganox1098が挙げられる(いずれも商品名)。   Specific examples of the hindered phenol antioxidant include triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate, 4,4′-butylidenebis (3-methyl- 6-t-butylphenol), 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,4-bis- (n-octylthio) -6 (4-Hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3 5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2-thiobis (4-methyl-6-1-butylphenol), N, N′-hexamethylenebis (3,5-di-t-butyl) -4-hydroxy-hydroxynamamide), 3,5-di-t-butyl-4-hydroxy-benzylphosphonate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris (3,5 -Di-butyl-4-hydroxybenzyl) benzene, ethyl calcium bis (3,5-di-t-butyl-4-hydroxybenzylsulfonate, tris- (3,5-di-t-butyl-4-hydroxybenzyl) ) -Isocyanurate, 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-4-ethylphenol, Thearyl-β- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2′-methylenebis- (4-methyl-6-tert-butylphenol), 2,2′-methylene-bis- (4-ethyl-6-t-butylphenol), 4,4'-thiobis- (3-methyl-6-t-butylphenol), octylated diphenylamine, 2,4-bis [(octylthio) methyl] -O-cresol , Isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 4,4′-butylidenebis (3-methyl-6-tert-butylphenol, 3,9-bis [1,1- Dimethyl-2- [β- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] 2,4,8,10-tetraoxaspir [5,5] undecane, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3 5-di-t-butyl-4-hydroxybenzyl) benzene, bis [3,3′-bis- (4′-hydroxy-3′-T-butylphenyl) butyric acid] glycol ester, 1,3,5 -Tris (3 ', 5'-di-t-butyl-4'-hydroxybenzyl) -sec-triazine-2,4,6- (1H, 3H, 5H) trione, d-α-tocopherol, etc. . These can be used alone or as a mixture thereof. Specific examples of commercially available hindered phenol compounds include Irganox 1010 and Irganox 1098 manufactured by BASF (both are trade names).

リン系酸化防止剤の具体例としては、トリフェニルホスファイト、トリオクタデシルホスファイト、トリデシルホスファイト、トリノニルフェニルホスファイト、ジフェニルイソデシルホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、テトラ(トリデシル−4,4’−イソプロピリデンジフェニルジホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト等の有機リン化合物が挙げられる。これらは単独であるいはこれらの混合物で用いることができる。   Specific examples of phosphorus antioxidants include triphenyl phosphite, trioctadecyl phosphite, tridecyl phosphite, trinonylphenyl phosphite, diphenylisodecyl phosphite, bis (2,6-di-tert-butyl- 4-methylphenyl) pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, tris (2,4-di-tert-butylphenyl) phosphite, distearyl pentaerythritol Examples include organic phosphorus compounds such as diphosphite, tetra (tridecyl-4,4′-isopropylidene diphenyl diphosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite. Is alone or It can be used in a mixture of these.

酸化防止剤の含有量は、組成物の各種性能を損なわない範囲であれば特に制限無く使用できるが、酸素吸収性能を制御する観点や機械物性低下を抑える観点から、樹脂組成物中に好ましくは0.001〜3質量%、より好ましくは0.01〜1質量%である。   The content of the antioxidant can be used without particular limitation as long as it does not impair the various performances of the composition, but from the viewpoint of controlling the oxygen absorption performance and suppressing the deterioration of mechanical properties, it is preferably in the resin composition. It is 0.001-3 mass%, More preferably, it is 0.01-1 mass%.

[その他の添加剤]
酸素吸収バリア層を形成するための樹脂組成物には、要求される用途や性能に応じて、滑剤、艶消剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、可塑剤、難燃剤、帯電防止剤、着色防止剤、結晶化核剤等の添加剤を添加させてもよい。これらの添加剤は、本発明の効果を損なわない範囲で、必要に応じて添加することができる。
[Other additives]
The resin composition for forming the oxygen absorption barrier layer includes a lubricant, a matting agent, a heat stabilizer, a weather stabilizer, an ultraviolet absorber, a plasticizer, a flame retardant, and a charge depending on the required application and performance. Additives such as an inhibitor, an anti-coloring agent, and a crystallization nucleating agent may be added. These additives can be added as necessary within a range not impairing the effects of the present invention.

2.任意の層
2−1.融着層
本発明において、ダイレクトブローボトルは酸素吸収バリア層に加えて、融着層をダイレクトブローボトルの表面(片側表面又は両側表面)に更に含んでいてもよい。
前記融着性を有する熱可塑性樹脂としては、熱によって溶融し相互に融着し得る各種ポリオレフィン系樹脂や、その他熱可塑性樹脂等を使用することができ、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、メタロセン触媒を使用して重合したエチレン−α・オレフィン共重合体、ポリプロピレン、エチレン−酢酸ビニル共重合体、アイオノマー樹脂、エチレン−アクリル酸共重合体、エチレン−アクリル酸エチル共重合体、エチレン−メタクリル酸共重合体、エチレン−プロピレン共重合体、メチルペンテンポリマー、ポリブテンポリマー、ポリ酢酸ビニル系樹脂、ポリ(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリエチレンまたはポリプロピレン等のポリオレフィン系樹脂をアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン樹脂等を挙げることができ、それらは単独で使用してもよく、2種類以上の材料を混合したものとしてもよい。これらの中でも成形加工性や衛生性、臭気等の観点から低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、メタロセン触媒を使用して重合したエチレン−α・オレフィン共重合体が好ましく使用される。
また融着層はその効果を損なわない範囲で滑剤、結晶化核剤、白化防止剤、艶消剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、可塑剤、難燃剤、帯電防止剤、着色防止剤、酸化防止剤、耐衝撃性改良材等の添加剤を含んでもよい。
なお、ダイレクトブローボトルの両面に融着層が設けられる場合、両融着層の構成は互いに異なっていてもよいが、主成分となる熱可塑性樹脂を同一のものとすることが安定した融着性を発揮することができるので好ましい。
また、外側の融着層には、種類の異なる樹脂をブレンドすることで、フロスト状の外観を出すことも可能である。
2. Optional layer 2-1. In the present invention, in addition to the oxygen absorption barrier layer, the direct blow bottle may further include a fusion layer on the surface (one side surface or both side surfaces) of the direct blow bottle.
As the thermoplastic resin having the fusibility, various polyolefin resins that can be melted by heat and fused to each other, other thermoplastic resins, and the like can be used. For example, low density polyethylene, medium density polyethylene, High density polyethylene, linear (linear) low density polyethylene, ethylene-α-olefin copolymer polymerized using metallocene catalyst, polypropylene, ethylene-vinyl acetate copolymer, ionomer resin, ethylene-acrylic acid copolymer Polymer, ethylene-ethyl acrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-propylene copolymer, methylpentene polymer, polybutene polymer, polyvinyl acetate resin, poly (meth) acrylic resin, polychlorinated Polyolefin such as vinyl resin, polyethylene or polypropylene Acid-modified polyolefin resins modified with unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, etc., may be used alone Two or more kinds of materials may be mixed. Among these, low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear (linear) low-density polyethylene, and ethylene-α · polymerized using a metallocene catalyst from the viewpoint of moldability, hygiene, odor, etc. Olefin copolymers are preferably used.
In addition, the fused layer is a lubricant, crystallization nucleating agent, anti-whitening agent, matting agent, heat stabilizer, weathering stabilizer, ultraviolet absorber, plasticizer, flame retardant, antistatic agent, coloring as long as the effect is not impaired. Additives such as inhibitors, antioxidants, impact resistance improvers and the like may be included.
In addition, when the fusion layer is provided on both surfaces of the direct blow bottle, the configuration of both the fusion layers may be different from each other, but it is stable fusion that the thermoplastic resin as the main component is the same. It is preferable because it can exhibit its properties.
Moreover, it is also possible to produce a frost-like appearance by blending different types of resins in the outer fusion layer.

本発明における融着層の厚みは、実用的な融着強度を発揮しつつ、ダイレクトブローボトルの加工性を確保するという観点から、5〜200μmとすることが好ましく、より好ましくは10〜150μmであり、更に好ましくは15〜100μmである。   The thickness of the fusion layer in the present invention is preferably 5 to 200 μm, more preferably 10 to 150 μm from the viewpoint of ensuring the workability of the direct blow bottle while exhibiting practical fusion strength. More preferably, it is 15-100 micrometers.

2−2.接着層
本発明において、ダイレクトブローボトルは酸素吸収バリア層に加えて、接着層を更に含んでもよい。ダイレクトブローボトルにおいて、隣接する2つの層(例えば、酸素吸収バリア層と融着層)の間で実用的な層間接着強度が得られない場合に、当該2つの層の間に接着剤層を設けることが好ましい。
接着層は接着性を有する熱可塑性樹脂を含むことが好ましい。接着性を有する熱可塑性樹脂としては、例えば、ポリエチレンまたはポリプロピレン等のポリオレフィン系樹脂をアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン樹脂が挙げられる。融着性を有する熱可塑性樹脂と同種の樹脂を変性したものを、接着性を有する熱可塑性樹脂として選択することが好ましい。
2-2. Adhesive Layer In the present invention, the direct blow bottle may further include an adhesive layer in addition to the oxygen absorption barrier layer. In a direct blow bottle, when practical interlayer adhesive strength cannot be obtained between two adjacent layers (for example, an oxygen absorption barrier layer and a fusion layer), an adhesive layer is provided between the two layers. It is preferable.
The adhesive layer preferably contains a thermoplastic resin having adhesiveness. As the thermoplastic resin having adhesiveness, for example, an acid modification obtained by modifying a polyolefin resin such as polyethylene or polypropylene with an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid or itaconic acid Examples include polyolefin resins. It is preferable to select a modified resin of the same type as the thermoplastic resin having a fusibility as the thermoplastic resin having adhesiveness.

接着層の厚みは、実用的な接着強度を発揮しつつ、ダイレクトブローボトルの加工性を確保するという観点から、好ましくは2〜100μm、より好ましくは5〜90μm、更に好ましくは10〜80μmである。   The thickness of the adhesive layer is preferably 2 to 100 μm, more preferably 5 to 90 μm, and still more preferably 10 to 80 μm from the viewpoint of ensuring the workability of the direct blow bottle while exhibiting practical adhesive strength. .

2−3.リサイクル層
内層または外層と中間層の間にリサイクル性の観点から再生樹脂からなる層を追加することができる。成形時に発生するスクラップ樹脂を粉砕し、再生樹脂として利用することは、製造コストの低減のみでなく、資源の有効利用の観点からも重要である。再生樹脂を用いる場合、強度面から酸素吸収バリア層より外側層に配置することが好適である。
2-3. Recycle layer A layer made of recycled resin can be added between the inner layer or the outer layer and the intermediate layer from the viewpoint of recyclability. It is important from the viewpoint of effective use of resources as well as reduction of manufacturing costs to grind scrap resin generated during molding and use it as a recycled resin. When using the recycled resin, it is preferable to dispose the recycled resin in the outer layer from the oxygen absorption barrier layer in terms of strength.

2−4.その他の任意の層
本発明において、ダイレクトブローボトルは所望する性能等に応じて上述以外の任意の層を更に含んでもよい。これ以外にも各種性能を持たせるための任意の層を構成する材料としては、上述の各種ポリオレフィン類、ナイロン6やナイロンMXD6等の各種ポリアミド類、ポリエチレンテレフタレート、ポリグリコール酸等の各種ポリエステル類、エチレンビニルアルコール共重合体等の熱可塑性樹脂を単独で又は混合したものが挙げられる。
2-4. Other optional layers In the present invention, the direct blow bottle may further include optional layers other than those described above depending on the desired performance and the like. In addition to this, as a material constituting an arbitrary layer for imparting various performances, the above-mentioned various polyolefins, various polyamides such as nylon 6 and nylon MXD6, various polyesters such as polyethylene terephthalate and polyglycolic acid, The thing which mixed thermoplastic resins, such as an ethylene vinyl alcohol copolymer, individually or mixed is mentioned.

3.ダイレクトブローボトルの製造方法
本発明のダイレクトブローボトルの製造方法については特に限定されず、任意の方法で製造することができる。例えば、複数の押出機と円筒ダイとからなるダイレクトブロー装置を用いてポリアミド化合物(A)とポリオレフィン等のその他の樹脂(B)との材料からなる円筒状パリソンを形成し、該パリソンをチューブ状に押出し、該パリソンを10℃〜80℃程度に温調した金型で挟み、パリソン下部をピンチオフするとともに融着させ、冷却しないうちに高圧の空気等によってブローして、該パリソンを膨らませてボトル状、チューブ状、タンク状等の容器の形状に成形される。
ここで、用いるダイレクトブロー装置は、特に限定されず単一の円筒ダイと単一の金型とからなる装置、複数の円筒ダイと複数の金型とを持ち合わせた装置、又は、ロータリー式のダイレクトブロー装置であってもよい。
また、あらかじめ、金型内にインモールドラベルを挿入し、容器表面に、ラベルを貼付するインモールドラベル法を用いてもよい。また、インモールドラベル法に関わらず、ラベルを貼付ける場合、ラベル貼付け前に、フレーム処理やコロナ処理をすることが好ましい。さらに、金型内にサンドブラスト加工を施しフロスト状の外観にすることも可能である。
3. Method for Producing Direct Blow Bottle The method for producing the direct blow bottle of the present invention is not particularly limited, and can be produced by any method. For example, a cylindrical parison made of a material of a polyamide compound (A) and other resin (B) such as polyolefin is formed using a direct blow apparatus comprising a plurality of extruders and a cylindrical die, and the parison is formed into a tube shape The parison is sandwiched between molds adjusted to about 10 ° C. to 80 ° C., the lower part of the parison is pinched off and fused, and blown by high-pressure air or the like before being cooled, so that the parison is inflated It is formed into a container shape such as a shape, a tube shape, or a tank shape.
Here, the direct blow device to be used is not particularly limited, a device comprising a single cylindrical die and a single mold, a device having a plurality of cylindrical dies and a plurality of dies, or a rotary direct A blow device may be used.
Alternatively, an in-mold label method may be used in which an in-mold label is inserted into a mold in advance and the label is attached to the surface of the container. Regardless of the in-mold labeling method, when applying a label, it is preferable to perform a frame treatment or a corona treatment before applying the label. Furthermore, it is possible to give a frosted appearance by sandblasting the mold.

本発明のダイレクトブローボトルには、無機物又は無機酸化物の蒸着膜や、アモルファスカーボン膜をコーティングしてもよい。
無機物又は無機酸化物としては、アルミニウムやアルミナ、酸化珪素等が挙げられる。無機物又は無機酸化物の蒸着膜は、本発明のダイレクトブローボトルから、アセトアルデヒドやホルムアルデヒド等の溶出物を遮蔽できる。蒸着膜の形成方法は特に限定されず、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法や、PECVD等の化学蒸着法等が挙げられる。蒸着膜の厚みは、ガスバリア性、遮光性及び耐屈曲性等の観点から、好ましくは5〜500nm、より好ましくは5〜200nmである。
アモルファスカーボン膜はダイヤモンド状炭素膜で、iカーボン膜または水素化アモルファスカーボン膜とも呼ばれる硬質炭素膜である。膜の形成法としては、排気により中空成形体の内部を真空にし、そこへ炭素源ガスを供給し、プラズマ発生用エネルギーを供給することにより、その炭素源ガスをプラズマ化させる方法が例示され、これにより、容器内面にアモルファスカーボン膜を形成させることができる。アモルファスカーボン膜は酸素や二酸化炭素のような低分子無機ガスの透過度を著しく減少させることができるだけでなく、臭いを有する各種の低分子有機化合物の収着を抑制することができる。アモルファスカーボン膜の厚みは、低分子有機化合物の収着抑制効果、ガスバリア性の向上効果、プラスチックとの密着性、耐久性および透明性等の観点から、50〜5000nmが好ましい。
The direct blow bottle of the present invention may be coated with an inorganic or inorganic oxide vapor deposition film or an amorphous carbon film.
Examples of the inorganic substance or inorganic oxide include aluminum, alumina, and silicon oxide. The vapor deposition film of an inorganic substance or an inorganic oxide can shield eluents such as acetaldehyde and formaldehyde from the direct blow bottle of the present invention. The formation method of a vapor deposition film is not specifically limited, For example, physical vapor deposition methods, such as a vacuum evaporation method, sputtering method, and an ion plating method, Chemical vapor deposition methods, such as PECVD, etc. are mentioned. The thickness of the deposited film is preferably 5 to 500 nm, more preferably 5 to 200 nm, from the viewpoints of gas barrier properties, light shielding properties, bending resistance, and the like.
The amorphous carbon film is a diamond-like carbon film, which is a hard carbon film also called i-carbon film or hydrogenated amorphous carbon film. Examples of the method for forming the film include a method in which the inside of the hollow molded body is evacuated by evacuation, a carbon source gas is supplied thereto, and plasma generating energy is supplied by supplying plasma generating energy, Thereby, an amorphous carbon film can be formed on the inner surface of the container. The amorphous carbon film not only can remarkably reduce the permeability of low-molecular inorganic gases such as oxygen and carbon dioxide, but can also suppress the sorption of various low-molecular organic compounds having an odor. The thickness of the amorphous carbon film is preferably 50 to 5000 nm from the viewpoint of the effect of suppressing the sorption of the low molecular organic compound, the effect of improving the gas barrier property, the adhesion to the plastic, the durability and the transparency.

本発明のダイレクトブローボトルは、酸素吸収性能及び酸素バリア性能に優れ、かつ内容物の風味保持性に優れるため、種々の物品の包装に適している。
被保存物としては、牛乳、乳製品、ジュース、コーヒー、茶類、アルコール飲料等の飲料;ソース、醤油、ドレッシング等の液体調味料、スープ、シチュー、カレー、乳幼児用調理食品、介護調理食品等の調理食品;ジャム、マヨネーズ等のペースト状食品;ツナ、魚貝等の水産製品;チーズ、バター等の乳加工品;肉、サラミ、ソーセージ、ハム等の畜肉加工品;にんじん、じゃがいも等の野菜類;卵;麺類;調理前の米類、調理された炊飯米、米粥等の加工米製品;粉末調味料、粉末コーヒー、乳幼児用粉末ミルク、粉末ダイエット食品、乾燥野菜、せんべい等の乾燥食品;農薬、殺虫剤等の化学品;医薬品;化粧品;ペットフード;シャンプー、リンス、洗剤等の雑貨品;種々の物品を挙げることができる。
Since the direct blow bottle of the present invention is excellent in oxygen absorption performance and oxygen barrier performance and excellent in flavor retention of contents, it is suitable for packaging various articles.
Preserved items include milk, dairy products, juice, coffee, tea, alcoholic beverages; liquid seasonings such as sauces, soy sauce, dressings, soups, stews, curries, infant foods, nursing foods, etc. Cooked foods; pasty foods such as jam and mayonnaise; marine products such as tuna and fish shellfish; dairy products such as cheese and butter; processed meat products such as meat, salami, sausage and ham; vegetables such as carrots Eggs, noodles, cooked rice, cooked rice, processed rice products such as rice bran; powdered seasonings, powdered coffee, powdered milk for infants, powdered diet foods, dried vegetables, rice crackers, and other dried foods Chemicals such as agricultural chemicals and insecticides; pharmaceuticals; cosmetics; pet foods; miscellaneous goods such as shampoos, rinses and detergents; and various articles.

また、これらの被保存物の充填前後に、被保存物に適した形で、ダイレクトブローボトルや被保存物の殺菌を施すことができる。殺菌方法としては、100℃以下での熱水処理、100℃以上の加圧熱水処理、130℃以上の超高温加熱処理等の加熱殺菌、紫外線、マイクロ波、ガンマ線等の電磁波殺菌、エチレンオキサイド等のガス処理、過酸化水素や次亜塩素酸等の薬剤殺菌等が挙げられる。   In addition, the direct blow bottle and the storage object can be sterilized in a form suitable for the storage object before and after the filling of the storage object. Sterilization methods include hot water treatment at 100 ° C. or lower, pressurized hot water treatment at 100 ° C. or higher, heat sterilization such as ultra-high temperature heat treatment at 130 ° C. or higher, electromagnetic wave sterilization of ultraviolet rays, microwaves, gamma rays, etc., ethylene oxide And gas sterilization such as hydrogen peroxide and hypochlorous acid.

以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、以下の実施例において、共重合体を構成する単位に関して、
メタキシリレンジアミンに由来する単位を「MXDA」、
1,3−ビス(アミノメチル)シクロヘキサンに由来する単位を「1,3BAC」、
ヘキサメチレンジアミンに由来する単位を「HMDA」、
アジピン酸に由来する単位を「AA」、
イソフタル酸に由来する単位を「IPA」、
DL−アラニンに由来する単位を「DL−Ala」、
DL−ロイシンに由来する単位を「DL−Leu」、
ε−カプロラクタムに由来する単位を「ε−CL」という。
また、ポリメタキシリレンアジパミドを「N−MXD6」、
ポリプロピレンを「PP」、
ポリエチレンテレフタレートを「PET」、
接着層を「AD」、
エチレン−ビニルアルコール共重合体を「EVOH」という。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
In the following examples, regarding the units constituting the copolymer,
The unit derived from metaxylylenediamine is “MXDA”,
A unit derived from 1,3-bis (aminomethyl) cyclohexane is referred to as “1,3BAC”,
The unit derived from hexamethylenediamine is “HMDA”,
The unit derived from adipic acid is “AA”,
The unit derived from isophthalic acid is “IPA”,
The unit derived from DL-alanine is “DL-Ala”,
The unit derived from DL-leucine is “DL-Leu”,
A unit derived from ε-caprolactam is referred to as “ε-CL”.
In addition, polymetaxylylene adipamide "N-MXD6",
Polypropylene "PP",
Polyethylene terephthalate is PET
Adhesive layer "AD",
The ethylene-vinyl alcohol copolymer is referred to as “EVOH”.

製造例で得られたポリアミド化合物のα−アミノ酸含有率、相対粘度、末端アミノ基濃度、ガラス転移温度及び融点は以下の方法で測定した。また、製造例で得られたポリアミド化合物からフィルムを作製し、その酸素吸収量を以下の方法で測定した。   The α-amino acid content, relative viscosity, terminal amino group concentration, glass transition temperature and melting point of the polyamide compound obtained in Production Example were measured by the following methods. Moreover, the film was produced from the polyamide compound obtained by the manufacture example, and the oxygen absorption amount was measured with the following method.

(1)α−アミノ酸含有率
1H−NMR(400MHz,日本電子(株)製、商品名:JNM−AL400、測定モード:NON(1H))を用いて、ポリアミド化合物のα−アミノ酸含有率の定量を実施した。具体的には、溶媒としてギ酸−dを用いてポリアミド化合物の5質量%の溶液を調製し、1H−NMR測定を実施した。
(1) α-amino acid content
Quantification of the α-amino acid content of the polyamide compound was performed using 1 H-NMR (400 MHz, manufactured by JEOL Ltd., trade name: JNM-AL400, measurement mode: NON ( 1 H)). Specifically, a 5 mass% solution of a polyamide compound was prepared using formic acid-d as a solvent, and 1 H-NMR measurement was performed.

(2)相対粘度
ポリアミド化合物1gを精秤し、96%硫酸100mlに20〜30℃で撹拌溶解した。完全に溶解した後、速やかにキャノンフェンスケ型粘度計に溶液5mlを取り、25℃の恒温漕中で10分間放置後、落下時間(t)を測定した。また、96%硫酸そのものの落下時間(t0)も同様に測定した。t及びt0から次式により相対粘度を算出した。
相対粘度=t/t0
(2) Relative viscosity 1 g of polyamide compound was precisely weighed and dissolved in 100 ml of 96% sulfuric acid with stirring at 20-30 ° C. After completely dissolving, 5 ml of the solution was quickly taken into a Cannon-Fenceke viscometer and allowed to stand for 10 minutes in a constant temperature bath at 25 ° C., and then the drop time (t) was measured. Further, the dropping time (t 0 ) of 96% sulfuric acid itself was measured in the same manner. The relative viscosity was calculated from t and t 0 according to the following formula.
Relative viscosity = t / t 0

(3)末端アミノ基濃度〔NH2
ポリアミド化合物を精秤し、フェノール/エタノール=4/1容量溶液に20〜30℃で撹拌溶解させ、完全に溶解した後、撹拌しつつ、メタノール5mlで容器内壁を洗い流し、0.01mol/L塩酸水溶液で中和滴定して末端アミノ基濃度〔NH2〕を求めた。
(3) Terminal amino group concentration [NH 2 ]
The polyamide compound is precisely weighed and dissolved in a phenol / ethanol = 4/1 volume solution by stirring at 20-30 ° C. After complete dissolution, the inner wall of the container is washed with 5 ml of methanol while stirring, and 0.01 mol / L hydrochloric acid is dissolved. The terminal amino group concentration [NH 2 ] was determined by neutralization titration with an aqueous solution.

(4)ガラス転移温度及び融点
示差走査熱量計((株)島津製作所製、商品名:DSC−60)を用い、昇温速度10℃/分で窒素気流下にDSC測定(示差走査熱量測定)を行い、ガラス転移温度(Tg)及び融点(Tm)を求めた。
(4) Glass transition temperature and melting point DSC measurement (differential scanning calorimetry) using a differential scanning calorimeter (manufactured by Shimadzu Corporation, trade name: DSC-60) under a nitrogen stream at a heating rate of 10 ° C / min. The glass transition temperature (Tg) and the melting point (Tm) were determined.

(5)酸素吸収量
Tダイを設置した30mmφ二軸押出機((株)プラスチック工学研究所製)を用い、(ポリアミド化合物の融点+20℃)のシリンダー・Tダイ温度にて、ポリアミド化合物から厚さ約100μmの無延伸単層フィルムを成形した。
製造した無延伸単層フィルムから切り出した10cm×10cmの試験片2枚を、アルミ箔積層フィルムからなる25cm×18cmの3方シール袋に、水10mlを含ませた綿と共に仕込み、袋内空気量が400mlとなるようにして密封した。袋内の湿度は100%RH(相対湿度)とした。40℃下で7日保存後、14日保存後、28日保存後のそれぞれに袋内の酸素濃度を酸素濃度計(東レエンジニアリング(株)製、商品名:LC−700F)で測定し、この酸素濃度から酸素吸収量を計算した。
なお、製造例11〜14で得られたポリアミド化合物については、上記フィルムサンプルに代えて、ポリアミド化合物のペレットまたは粉砕物を粉砕機で細かくした粉状サンプル2gを薬包紙に包んだものを用いて、上記と同様に酸素吸収量を計算した。
(5) Oxygen absorption amount Using a 30mmφ twin screw extruder (manufactured by Plastic Engineering Laboratory Co., Ltd.) equipped with a T die, the thickness of the polyamide compound is increased from the polyamide compound melting point (+ 20 ° C) to the cylinder T die temperature. An unstretched single layer film having a thickness of about 100 μm was formed.
Two test pieces of 10 cm x 10 cm cut out from the produced unstretched single layer film were charged into a 25 cm x 18 cm three-side sealed bag made of an aluminum foil laminated film together with cotton containing 10 ml of water, and the amount of air in the bag Was sealed to 400 ml. The humidity in the bag was 100% RH (relative humidity). After storing at 40 ° C. for 7 days, after 14 days, and after 28 days, the oxygen concentration in the bag was measured with an oxygen concentration meter (trade name: LC-700F, manufactured by Toray Engineering Co., Ltd.). The amount of oxygen absorbed was calculated from the oxygen concentration.
In addition, about the polyamide compound obtained by manufacture examples 11-14, it replaced with the said film sample, and used what wrapped the powdery sample 2g which made the pellet or pulverized material of the polyamide compound fine with the grinder, The oxygen absorption amount was calculated in the same manner as described above.

製造例1(ポリアミド化合物1の製造)
撹拌機、分縮器、全縮器、圧力調整器、温度計、滴下槽及びポンプ、アスピレーター、窒素導入管、底排弁、ストランドダイを備えた内容積50Lの耐圧反応容器に、精秤したアジピン酸(旭化成ケミカルズ(株)製)13000g(88.96mol)、DL−アラニン((株)武蔵野化学研究所製)880.56g(9.88mol)、次亜リン酸ナトリウム11.7g(0.11mol)、酢酸ナトリウム6.06g(0.074mol)を入れ、十分に窒素置換した後、反応容器内を密閉し、容器内を0.4MPaに保ちながら撹拌下170℃まで昇温した。170℃に到達した後、反応容器内の溶融した原料へ滴下槽に貯めたメタキシリレンジアミン(三菱ガス化学(株)製)12082.2g(88.71mol)の滴下を開始し、容器内を0.4MPaに保ちながら生成する縮合水を系外へ除きながら反応槽内を連続的に240℃まで昇温した。メタキシリレンジアミンの滴下終了後、反応容器内を徐々に常圧に戻し、次いでアスピレーターを用いて反応槽内を80kPaに減圧して縮合水を除いた。減圧中に撹拌機の撹拌トルクを観察し、所定のトルクに達した時点で撹拌を止め、反応槽内を窒素で加圧し、底排弁を開け、ストランドダイからポリマーを抜き出してストランド化した後、冷却してペレタイザーによりペレット化した。次にこのペレットをステンレス製の回転ドラム式の加熱装置に仕込み、5rpmで回転させた。十分窒素置換し、さらに少量の窒素気流下にて反応系内を室温から140℃まで昇温した。反応系内温度が140℃に達した時点で1torr以下まで減圧を行い、更に系内温度を110分間で180℃まで昇温した。系内温度が180℃に達した時点から、同温度にて180分間、固相重合反応を継続した。反応終了後、減圧を終了し窒素気流下にて系内温度を下げ、60℃に達した時点でペレットを取り出すことにより、MXDA/AA/DL−Ala共重合体(ポリアミド化合物1)を得た。
なお、各モノマーの仕込み組成比は、メタキシリレンジアミン:アジピン酸:DL−アラニン=47.3:47.4:5.3(mol%)であった。
Production Example 1 (Production of polyamide compound 1)
Weighed precisely in a pressure-resistant reaction vessel with an internal volume of 50 L equipped with a stirrer, partial condenser, full condenser, pressure regulator, thermometer, dripping tank and pump, aspirator, nitrogen inlet pipe, bottom exhaust valve, and strand die. Adipic acid (Asahi Kasei Chemicals Corporation) 13000 g (88.96 mol), DL-alanine (Musashino Chemical Laboratory Co., Ltd.) 880.56 g (9.88 mol), sodium hypophosphite 11.7 g (0. 11 mol) and 6.06 g (0.074 mol) of sodium acetate were added, and after sufficiently purging with nitrogen, the inside of the reaction vessel was sealed, and the temperature was raised to 170 ° C. with stirring while keeping the inside of the vessel at 0.4 MPa. After reaching 170 ° C., dropping of 12082.2 g (88.71 mol) of metaxylylenediamine (manufactured by Mitsubishi Gas Chemical Co., Inc.) stored in the dropping tank into the molten raw material in the reaction vessel was started, While maintaining 0.4 MPa, the temperature inside the reaction vessel was continuously raised to 240 ° C. while removing the condensed water produced outside the system. After completion of the dropwise addition of metaxylylenediamine, the inside of the reaction vessel was gradually returned to normal pressure, and then the inside of the reaction vessel was reduced to 80 kPa using an aspirator to remove condensed water. After observing the stirring torque of the stirrer during decompression, stop stirring when the specified torque is reached, pressurize the inside of the reaction tank with nitrogen, open the bottom drain valve, extract the polymer from the strand die and form a strand Cooled and pelletized with a pelletizer. Next, this pellet was charged into a stainless steel drum-type heating device and rotated at 5 rpm. The atmosphere in the reaction system was raised from room temperature to 140 ° C. under a small nitrogen flow. When the reaction system temperature reached 140 ° C., the pressure was reduced to 1 torr or less, and the system temperature was further increased to 180 ° C. in 110 minutes. From the time when the system temperature reached 180 ° C., the solid state polymerization reaction was continued at the same temperature for 180 minutes. After completion of the reaction, the decompression was terminated, the temperature inside the system was lowered under a nitrogen stream, and the pellet was taken out when the temperature reached 60 ° C. to obtain an MXDA / AA / DL-Ala copolymer (polyamide compound 1). .
In addition, the preparation composition ratio of each monomer was metaxylylenediamine: adipic acid: DL-alanine = 47.3: 47.4: 5.3 (mol%).

製造例2(ポリアミド化合物2の製造)
各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL−アラニン=44.4:44.5:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL−Ala共重合体(ポリアミド化合物2)を得た。
Production Example 2 (Production of polyamide compound 2)
MXDA / AA in the same manner as in Production Example 1 except that the charged composition ratio of each monomer was metaxylylenediamine: adipic acid: DL-alanine = 44.4: 44.5: 11.1 (mol%). / DL-Ala copolymer (polyamide compound 2) was obtained.

製造例3(ポリアミド化合物3の製造)
各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL−アラニン=41.1:41.3:17.6(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL−Ala共重合体(ポリアミド化合物3)を得た。
Production Example 3 (Production of polyamide compound 3)
MXDA / AA in the same manner as in Production Example 1 except that the charged composition ratio of each monomer was metaxylylenediamine: adipic acid: DL-alanine = 41.1: 41.3: 17.6 (mol%). / DL-Ala copolymer (polyamide compound 3) was obtained.

製造例4(ポリアミド化合物4の製造)
各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL−アラニン=33.3:33.4:33.3(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL−Ala共重合体(ポリアミド化合物4)を得た。
Production Example 4 (Production of polyamide compound 4)
MXDA / AA in the same manner as in Production Example 1 except that the composition ratio of each monomer was metaxylylenediamine: adipic acid: DL-alanine = 33.3: 33.4: 33.3 (mol%). / DL-Ala copolymer (polyamide compound 4) was obtained.

製造例5(ポリアミド化合物5の製造)
α−アミノ酸をDL−ロイシン(Ningbo Haishuo Bio−technology製)に変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL−ロイシン=44.3:44.6:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL−Leu共重合体(ポリアミド化合物5)を得た。
Production Example 5 (Production of polyamide compound 5)
The α-amino acid was changed to DL-leucine (manufactured by Ningbo Haishu Bio-technology), and the composition ratio of each monomer was changed to metaxylylenediamine: adipic acid: DL-leucine = 44.3: 44.6: 11.1. An MXDA / AA / DL-Leu copolymer (polyamide compound 5) was obtained in the same manner as in Production Example 1 except that the amount was (mol%).

製造例6(ポリアミド化合物6の製造)
ジカルボン酸成分をイソフタル酸(エイ・ジイ・インタナショナル・ケミカル(株)製)とアジピン酸の混合物に変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:イソフタル酸:DL−アラニン=44.3:39.0:5.6:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/IPA/DL−Ala共重合体(ポリアミド化合物6)を得た。
Production Example 6 (Production of polyamide compound 6)
The dicarboxylic acid component was changed to a mixture of isophthalic acid (manufactured by EI International Chemical Co., Ltd.) and adipic acid, and the composition ratio of each monomer was changed to metaxylylenediamine: adipic acid: isophthalic acid: DL- MXDA / AA / IPA / DL-Ala copolymer (polyamide compound 6) in the same manner as in Production Example 1 except that alanine = 44.3: 39.0: 5.6: 11.1 (mol%). Got.

製造例7(ポリアミド化合物7の製造)
コモノマーとしてε−カプロラクタム(宇部興産(株)製)を使用し、アミノ酸をDL−ロイシンに変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL−ロイシン:ε−カプロラクタム=41.0:41.3:11.8:5.9(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL−Leu/ε−CL共重合体(ポリアミド化合物7)を得た。
Production Example 7 (Production of polyamide compound 7)
Ε-Caprolactam (manufactured by Ube Industries) was used as a comonomer, the amino acid was changed to DL-leucine, and the composition ratio of each monomer was changed to metaxylylenediamine: adipic acid: DL-leucine: ε-caprolactam = MXDA / AA / DL-Leu / ε-CL copolymer (polyamide compound 7) in the same manner as in Production Example 1 except that 41.0: 41.3: 11.8: 5.9 (mol%). Got.

製造例8(ポリアミド化合物8の製造)
ジアミン成分を1,3−ビス(アミノメチル)シクロヘキサン(三菱ガス化学(株)製)とメタキシリレンジアミンの混合物に変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:1,3−ビス(アミノメチル)シクロヘキサン:アジピン酸:DL−アラニン=33.2:11.1:44.6:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/1,3BAC/AA/DL−Ala共重合体(ポリアミド化合物8)を得た。
Production Example 8 (Production of polyamide compound 8)
The diamine component was changed to a mixture of 1,3-bis (aminomethyl) cyclohexane (Mitsubishi Gas Chemical Co., Ltd.) and metaxylylenediamine, and the charge composition ratio of each monomer was changed to metaxylylenediamine: 1,3- MXDA / 1,3BAC in the same manner as in Production Example 1 except that bis (aminomethyl) cyclohexane: adipic acid: DL-alanine = 33.2: 11.1: 44.6: 11.1 (mol%) / AA / DL-Ala copolymer (polyamide compound 8) was obtained.

製造例9(ポリアミド化合物9の製造)
ジアミン成分をヘキサメチレンジアミン(昭和化学(株)製)とメタキシリレンジアミンの混合物に変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:ヘキサメチレンジアミン:アジピン酸:DL−アラニン=33.3:11.1:44.5:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/HMDA/AA/DL−Ala共重合体(ポリアミド化合物9)を得た。
Production Example 9 (Production of polyamide compound 9)
The diamine component was changed to a mixture of hexamethylenediamine (manufactured by Showa Chemical Co., Ltd.) and metaxylylenediamine, and the composition ratio of each monomer was changed to metaxylylenediamine: hexamethylenediamine: adipic acid: DL-alanine = 33. .3: 11.1: 44.5: 11.1 (mol%) Except having been set as the same as manufacture example 1, the MXDA / HMDA / AA / DL-Ala copolymer (polyamide compound 9) was obtained. .

製造例10(ポリアミド化合物10の製造)
DL−アラニンを添加せず、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸=49.8:50.2(mol%)としたこと以外は製造例1と同様にしてN−MXD6(ポリアミド化合物10)を得た。
Production Example 10 (Production of polyamide compound 10)
N-MXD6 was prepared in the same manner as in Production Example 1 except that DL-alanine was not added and the charged composition ratio of each monomer was metaxylylenediamine: adipic acid = 49.8: 50.2 (mol%). (Polyamide compound 10) was obtained.

製造例11(ポリアミド化合物11の製造)
固相重合を実施しなかったこと以外は製造例1と同様にして、MXDA/AA/DL−Ala共重合体(ポリアミド化合物11)を得た。
なお、各モノマーの仕込み組成比は、メタキシリレンジアミン:アジピン酸:DL−アラニン=47.2:47.4:5.3(mol%)であった。
Production Example 11 (Production of polyamide compound 11)
An MXDA / AA / DL-Ala copolymer (polyamide compound 11) was obtained in the same manner as in Production Example 1 except that solid phase polymerization was not performed.
In addition, the preparation composition ratio of each monomer was metaxylylenediamine: adipic acid: DL-alanine = 47.2: 47.4: 5.3 (mol%).

製造例12(ポリアミド化合物12の製造)
固相重合を実施しなかったこと以外は製造例2と同様にして、MXDA/AA/DL−Ala共重合体(ポリアミド化合物12)を得た。
なお、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL−アラニン=44.4:44.5:11.1(mol%)であった。
Production Example 12 (Production of polyamide compound 12)
An MXDA / AA / DL-Ala copolymer (polyamide compound 12) was obtained in the same manner as in Production Example 2 except that solid phase polymerization was not performed.
In addition, the preparation composition ratio of each monomer was metaxylylenediamine: adipic acid: DL-alanine = 44.4: 44.5: 11.1 (mol%).

製造例13(ポリアミド化合物13の製造)
固相重合を実施しなかったこと以外は製造例4と同様にして、MXDA/AA/DL−Ala共重合体(ポリアミド化合物13)を得た。
なお、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL−アラニン=33.3:33.4:33.3(mol%)であった。
Production Example 13 (Production of polyamide compound 13)
An MXDA / AA / DL-Ala copolymer (polyamide compound 13) was obtained in the same manner as in Production Example 4 except that solid phase polymerization was not performed.
In addition, the preparation composition ratio of each monomer was metaxylylenediamine: adipic acid: DL-alanine = 33.3: 33.4: 33.3 (mol%).

製造例14(ポリアミド化合物14の製造)
固相重合を実施しなかったこと以外は製造例6と同様にして、MXDA/AA/IPA/DL−Ala共重合体(ポリアミド化合物14)を得た。
なお、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:イソフタル酸:DL−アラニン=44.3:38.9:5.6:11.1(mol%)であった。
Production Example 14 (Production of polyamide compound 14)
An MXDA / AA / IPA / DL-Ala copolymer (polyamide compound 14) was obtained in the same manner as in Production Example 6 except that solid phase polymerization was not performed.
In addition, the preparation composition ratio of each monomer was metaxylylenediamine: adipic acid: isophthalic acid: DL-alanine = 44.3: 38.9: 5.6: 11.1 (mol%).

表1に、ポリアミド化合物1〜14の仕込みモノマー組成、並びに得られたポリアミド化合物のα−アミノ酸含有率、相対粘度、末端アミノ基濃度、ガラス転移温度、融点及び酸素吸収量の測定結果を示す。   Table 1 shows the charged monomer compositions of polyamide compounds 1 to 14 and the measurement results of the α-amino acid content, relative viscosity, terminal amino group concentration, glass transition temperature, melting point, and oxygen absorption amount of the obtained polyamide compound.

Figure 2013002075
Figure 2013002075

Figure 2013002075
Figure 2013002075

Figure 2013002075
Figure 2013002075

次に、実施例1〜27及び比較例1〜14において、上記ポリアミド化合物1〜14を用いてダイレクトブローボトルを作製した。   Next, in Examples 1-27 and Comparative Examples 1-14, direct blow bottles were produced using the polyamide compounds 1-14.

実施例1
3台の押出機、円筒ダイ、金型を備えた多層ダイレクトブロー装置を用い、1台目の押出機からポリアミド化合物1とN−MXD6(三菱ガス化学(株)製、商品名:MXナイロン、グレード:K7007C)を30:70(質量比)の割合で乾式混合したブレンドペレットを260℃で、2台目の押出機からポリプロピレン(日本ポリプロ(株)製、商品名:ノバテック、グレード:FY6)を230℃で、3台目の押出機から接着性樹脂(三井化学(株)製、商品名:アドマー、グレード:QB515)を220℃で、それぞれ押し出し、金型でブロー成形し、外層からポリプロピレン層/接着性樹脂層/ポリアミド化合物1×N−MXD6ブレンド層/接着性樹脂層/ポリプロピレン層の順に3種5層構造の容量200ccのボトルを製造した。なお、各層の厚みは、300/10/60/10/300(μm)とした。
Example 1
Using a multi-layer direct blow apparatus equipped with three extruders, cylindrical dies and molds, polyamide compound 1 and N-MXD6 (Mitsubishi Gas Chemical Co., Ltd., trade name: MX nylon) from the first extruder Grade: K7007C) was dry blended at a ratio of 30:70 (mass ratio) at 260 ° C. from a second extruder, polypropylene (manufactured by Nippon Polypro Co., Ltd., trade name: Novatec, grade: FY6) At 230 ° C, an adhesive resin (manufactured by Mitsui Chemicals, Inc., trade name: Admer, grade: QB515) was extruded at 220 ° C from a third extruder, blow-molded with a mold, and polypropylene from the outer layer. A 200 cc bottle with a capacity of 3 types and 5 layers in the order of layer / adhesive resin layer / polyamide compound 1 × N-MXD6 blend layer / adhesive resin layer / polypropylene layer And elephants. Each layer had a thickness of 300/10/60/10/300 (μm).

実施例2〜10
表2に記載のポリアミド化合物及びポリアミド化合物×樹脂(B)ブレンド層の混合比に代えた以外は、実施例1と同様にしてボトルを作製した。
Examples 2-10
A bottle was produced in the same manner as in Example 1 except that the mixing ratio of the polyamide compound and the polyamide compound × resin (B) blend layer described in Table 2 was used.

実施例11〜27
表2に記載のポリアミド化合物、樹脂(B)及びポリアミド化合物×樹脂(B)ブレンド層の混合比及び層構成に代えた以外は、実施例1と同様にしてボトルを作製した。
なお、実施例14、18、19、26は、PETとして、東洋紡(株)製、商品名:IP560を、接着性樹脂としては、三菱化学(株)製、商品名:MODIC-AP、F534Aを用いた。
Examples 11-27
A bottle was produced in the same manner as in Example 1 except that the mixing ratio and the layer configuration of the polyamide compound, resin (B) and polyamide compound × resin (B) blend layer described in Table 2 were used.
In Examples 14, 18, 19, and 26, PET manufactured by Toyobo Co., Ltd., trade name: IP560, and adhesive resin, manufactured by Mitsubishi Chemical Corporation, trade names: MODIC-AP, F534A Using.

比較例1〜14
表2に記載のポリアミド化合物、樹脂(B)及びポリアミド化合物×樹脂(B)ブレンド層の混合比及び層構成に代えた以外は、実施例1と同様にしてダイレクトブローボトルを作製した。
なお、比較例2、5、8においては、ステアリン酸コバルト(II)をポリアミド化合物10に対して、コバルト含有量が400ppmとなるように添加した。
また、比較例3、6、9においては、ステアリン酸コバルト(II)をポリアミド化合物10に対して、コバルト含有量が100ppmとなるように添加し、さらに、マレイン酸変性ポリブタジエン(日本石油化学(株)製、商品名:M−2000−20)をポリアミド化合物10の100質量部に対して3質量部添加した。
なお、比較例13〜14は、PETとして、東洋紡(株)製、商品名:IP560を、接着性樹脂としては、三菱化学(株)製、商品名:MODIC-AP、F534Aを用いた。
Comparative Examples 1-14
A direct blow bottle was produced in the same manner as in Example 1 except that the mixing ratio and the layer configuration of the polyamide compound, resin (B) and polyamide compound × resin (B) blend layer described in Table 2 were used.
In Comparative Examples 2, 5, and 8, cobalt (II) stearate was added to the polyamide compound 10 so that the cobalt content was 400 ppm.
In Comparative Examples 3, 6, and 9, cobalt stearate (II) was added to polyamide compound 10 so that the cobalt content was 100 ppm, and maleic acid-modified polybutadiene (Nippon Petrochemical Co., Ltd.) was added. 3 parts by mass with respect to 100 parts by mass of the polyamide compound 10 was added.
In Comparative Examples 13 to 14, Toyobo Co., Ltd., trade name: IP560 was used as PET, and Mitsubishi Chemical Corporation, trade names: MODIC-AP, F534A were used as adhesive resins.

実施例1〜27及び比較例1〜14で作製したダイレクトブローボトルについて、L−アスコルビン酸残存率、開封後の臭気・味覚を以下のようにして評価した。
(1)L−アスコルビン酸残存率
ダイレクトブローボトルの開口部からL−アスコルビン酸10%水溶液を100ml充填し、アルミ箔積層フィルムでヒートシールして開口部を密封した。実施例1〜13、15〜17、20〜25及び27、比較例1〜12では、オートクレーブ(SR−240、商品名、(株)トミー精工製)を用いて121℃30分間、レトルト処理を行なった後、この容器を23℃、50%RHの環境下に1ヶ月間保存した。また、実施例14、18、19、26及び比較例13〜14は、熱処理なしで23℃、50%RHの環境下に3ヶ月間保存したのち、内容液を取り出し、100ml容量のトールビーカーに内容液10mlを入れ、次いでメタリン酸と酢酸の混合水溶液5mlと蒸留水40mlを加えた。次いで、0.05mol/lのヨウ素溶液を滴定液とし、電位差滴定装置を用いて変曲点検出法により滴定を行い、その結果からL−アスコルビン酸残存率を求めた。なお、L−アスコルビン酸の残存率が高ければ、内容物の酸化劣化を抑制する効果に優れていることを意味する。
(2)開封時の臭気及び味覚
得られたダイレクトブローボトルに、ミネラルウォーターを満注充填し、封をした後、40℃50%RHの恒温槽に、1ヶ月間保管した。保管後、5人のパネラーにより、開封直後の容器内の匂いを嗅ぎ、異臭の有無を評価した。
また、開封後、5人のパネラーにより、ミネラルウォーターを口に含み、ミネラルウォーターの味の変化の有無を評価した。
○:異臭が全くなく、かつ、ミネラルウォーターの味の変化がない。
×:少しでも異臭がある、又はミネラルウォーターの味の変化が少しでもある。
表2に評価結果を示す。
About the direct blow bottle produced in Examples 1-27 and Comparative Examples 1-14, L-ascorbic acid residual rate and the odor and taste after opening were evaluated as follows.
(1) L-ascorbic acid residual ratio 100 ml of L-ascorbic acid 10% aqueous solution was filled from the opening of the direct blow bottle, and the opening was sealed by heat sealing with an aluminum foil laminated film. In Examples 1-13, 15-17, 20-25, and 27 and Comparative Examples 1-12, retort treatment was performed at 121 ° C. for 30 minutes using an autoclave (SR-240, trade name, manufactured by Tommy Seiko Co., Ltd.). After this, the container was stored for 1 month in an environment of 23 ° C. and 50% RH. In Examples 14, 18, 19, 26 and Comparative Examples 13-14, after storing for 3 months in an environment of 23 ° C. and 50% RH without heat treatment, the contents were taken out and placed in a 100 ml capacity tall beaker. 10 ml of the content solution was added, and then 5 ml of a mixed aqueous solution of metaphosphoric acid and acetic acid and 40 ml of distilled water were added. Subsequently, 0.05 mol / l iodine solution was used as a titrant, and titration was performed by an inflection point detection method using a potentiometric titration apparatus. The L-ascorbic acid residual rate was determined from the result. In addition, if the residual rate of L-ascorbic acid is high, it means that it is excellent in the effect which suppresses the oxidative degradation of the content.
(2) Odor and taste at the time of opening The obtained direct blow bottle was filled with mineral water and sealed, and then stored in a constant temperature bath at 40 ° C. and 50% RH for 1 month. After storage, five panelists sniffed the scent in the container immediately after opening and evaluated the presence or absence of off-flavors.
In addition, after opening, five panelists included mineral water in their mouths and evaluated the presence or absence of changes in the taste of mineral water.
○: There is no off-flavor and there is no change in the taste of mineral water.
X: There is even a slight odor or there is even a slight change in the taste of mineral water.
Table 2 shows the evaluation results.

Figure 2013002075
Figure 2013002075

実施例1〜27のダイレクトブローボトルは、いずれも、L−アスコルビン酸残存率、開封時の臭気・味覚のすべてに優れていた。比較例1、4、7、10〜14は、L−アスコルビン酸の残存率が低かった。また、ステアリン酸コバルト(II)を用い酸素吸収性能を付与した比較例2、5、8は、ボイル処理後もしくは、熱水充填後に、層間剥離を生じ、バリア性が悪化したため、L−アスコルビン酸残存率の評価ができなかった。さらに、ステアリン酸コバルト(II)及びマレイン酸変性ポリブタジエンを酸素吸収バリア層に添加した比較例3、6、9は、L−アスコルビン酸残存率は良好であるものの、開封時の臭気・味覚が劣っていた。   The direct blow bottles of Examples 1 to 27 were all excellent in the L-ascorbic acid residual rate and the odor and taste at the time of opening. In Comparative Examples 1, 4, 7, and 10 to 14, the residual ratio of L-ascorbic acid was low. In Comparative Examples 2, 5, and 8 using cobalt (II) stearate to give oxygen absorption performance, delamination occurred after boiling or after filling with hot water, and the barrier properties deteriorated. Therefore, L-ascorbic acid The residual rate could not be evaluated. Further, Comparative Examples 3, 6, and 9 in which cobalt (II) stearate and maleic acid-modified polybutadiene were added to the oxygen-absorbing barrier layer had poor L-ascorbic acid residual ratio but poor odor and taste at the time of opening. It was.

本発明のダイレクトブローボトルは、酸素バリア性能及び酸素吸収性能を有するボトル容器として好適に用いることができる。   The direct blow bottle of the present invention can be suitably used as a bottle container having oxygen barrier performance and oxygen absorption performance.

Claims (9)

ポリアミド化合物(A)及び樹脂(B)を含有する樹脂組成物から形成される層を含むダイレクトブローボトルであって、
前記ポリアミド化合物(A)が、
下記一般式(I−1)で表される芳香族ジアミン単位、下記一般式(I−2)で表される脂環族ジアミン単位、及び下記一般式(I−3)で表される直鎖脂肪族ジアミン単位からなる群から選ばれる少なくとも1つのジアミン単位を合計で50モル%以上含むジアミン単位25〜50モル%と、
下記一般式(II−1)で表される直鎖脂肪族ジカルボン酸単位及び/又は下記一般式(II−2)で表される芳香族ジカルボン酸単位を合計で50モル%以上含むジカルボン酸単位25〜50モル%と、
下記一般式(III)で表される構成単位0.1〜50モル%と
を含有する、ダイレクトブローボトル。
Figure 2013002075
[前記一般式(I−3)中、mは2〜18の整数を表す。前記一般式(II−1)中、nは2〜18の整数を表す。前記一般式(II−2)中、Arはアリーレン基を表す。前記一般式(III)中、Rは置換もしくは無置換のアルキル基又は置換もしくは無置換のアリール基を表す。]
A direct blow bottle including a layer formed from a resin composition containing a polyamide compound (A) and a resin (B),
The polyamide compound (A) is
An aromatic diamine unit represented by the following general formula (I-1), an alicyclic diamine unit represented by the following general formula (I-2), and a straight chain represented by the following general formula (I-3) 25 to 50 mol% of diamine units containing at least 50 mol% in total of at least one diamine unit selected from the group consisting of aliphatic diamine units;
A dicarboxylic acid unit containing a total of 50 mol% or more of a linear aliphatic dicarboxylic acid unit represented by the following general formula (II-1) and / or an aromatic dicarboxylic acid unit represented by the following general formula (II-2) 25 to 50 mol%,
The direct blow bottle containing 0.1-50 mol% of structural units represented with the following general formula (III).
Figure 2013002075
[In the general formula (I-3), m represents an integer of 2 to 18. In the general formula (II-1), n represents an integer of 2 to 18. In the general formula (II-2), Ar represents an arylene group. In the general formula (III), R represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. ]
前記一般式(III)におけるRが、置換もしくは無置換の炭素数1〜6のアルキル基又は置換もしくは無置換の炭素数6〜10のアリール基である、請求項1に記載のダイレクトブローボトル。   The direct blow bottle according to claim 1, wherein R in the general formula (III) is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms. 前記ジアミン単位が、メタキシリレンジアミン単位を50モル%以上含む、請求項1又は2に記載のダイレクトブローボトル。   The direct blow bottle of Claim 1 or 2 in which the said diamine unit contains 50 mol% or more of metaxylylene diamine units. 前記直鎖脂肪族ジカルボン酸単位が、アジピン酸単位、セバシン酸単位、及び1,12−ドデカンジカルボン酸単位からなる群から選ばれる少なくとも1つを合計で50モル%以上含む、請求項1〜3のいずれかに記載のダイレクトブローボトル。   The linear aliphatic dicarboxylic acid unit contains at least one selected from the group consisting of an adipic acid unit, a sebacic acid unit, and a 1,12-dodecanedicarboxylic acid unit in total of 50 mol% or more. Direct blow bottle in any one of. 前記芳香族ジカルボン酸単位が、イソフタル酸単位、テレフタル酸単位、及び2,6−ナフタレンジカルボン酸単位からなる群から選ばれる少なくとも1つを合計で50モル%以上含む、請求項1〜4のいずれかに記載のダイレクトブローボトル。   The aromatic dicarboxylic acid unit contains at least one selected from the group consisting of an isophthalic acid unit, a terephthalic acid unit, and a 2,6-naphthalenedicarboxylic acid unit in a total of 50 mol% or more. Direct blow bottle according to crab. 前記ポリアミド化合物(A)が更に、下記一般式(X)で表されるω−アミノカルボン酸単位を、ポリアミド化合物(A)の全構成単位中0.1〜49.9モル%含有する、請求項1〜5のいずれかに記載のダイレクトブローボトル。
Figure 2013002075
[前記一般式(X)中、pは2〜18の整数を表す。]
The polyamide compound (A) further contains an ω-aminocarboxylic acid unit represented by the following general formula (X) in an amount of 0.1 to 49.9 mol% in all the structural units of the polyamide compound (A). Item 6. The direct blow bottle according to any one of Items 1 to 5.
Figure 2013002075
[In said general formula (X), p represents the integer of 2-18. ]
前記ω−アミノカルボン酸単位が、6−アミノヘキサン酸単位及び/又は12−アミノドデカン酸単位を合計で50モル%以上含む、請求項6に記載のダイレクトブローボトル。   The direct blow bottle according to claim 6, wherein the ω-aminocarboxylic acid unit contains a total of 50 mol% or more of 6-aminohexanoic acid units and / or 12-aminododecanoic acid units. 前記ポリアミド化合物(A)の相対粘度が1.8以上4.2以下であり、かつ
前記ポリアミド化合物(A)/前記樹脂(B)の質量比が、5/95〜95/5である、請求項1〜7のいずれかに記載のダイレクトブローボトル。
The relative viscosity of the polyamide compound (A) is 1.8 or more and 4.2 or less, and the mass ratio of the polyamide compound (A) / the resin (B) is 5/95 to 95/5. The direct blow bottle in any one of claim | item 1 -7.
前記ポリアミド化合物(A)の相対粘度が1.01以上1.8未満であり、かつ
前記ポリアミド化合物(A)/前記樹脂(B)の質量比が、5/95〜50/50である、請求項1〜7のいずれかに記載のダイレクトブローボトル。
The relative viscosity of the polyamide compound (A) is 1.01 or more and less than 1.8, and the mass ratio of the polyamide compound (A) / the resin (B) is 5/95 to 50/50, The direct blow bottle in any one of claim | item 1 -7.
JP2013522778A 2011-06-27 2012-06-19 Direct blow bottle Active JP5971244B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011142177 2011-06-27
JP2011142177 2011-06-27
PCT/JP2012/065649 WO2013002075A1 (en) 2011-06-27 2012-06-19 Direct blow bottle

Publications (2)

Publication Number Publication Date
JPWO2013002075A1 true JPWO2013002075A1 (en) 2015-02-23
JP5971244B2 JP5971244B2 (en) 2016-08-17

Family

ID=47423973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013522778A Active JP5971244B2 (en) 2011-06-27 2012-06-19 Direct blow bottle

Country Status (4)

Country Link
JP (1) JP5971244B2 (en)
AR (1) AR086755A1 (en)
TW (1) TW201311819A (en)
WO (1) WO2013002075A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI645965B (en) * 2013-08-09 2019-01-01 日商三菱瓦斯化學股份有限公司 Multilayer formed body
US20190055403A1 (en) * 2016-03-03 2019-02-21 Ube Industries, Ltd. Polyamide resin and film comprising the same
WO2019208500A1 (en) * 2018-04-24 2019-10-31 三菱瓦斯化学株式会社 Multilayered body and multilayered container
KR20210005865A (en) 2018-04-24 2021-01-15 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Multilayer and Multilayer Container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101415A (en) * 1985-10-29 1987-05-11 Teijin Ltd Hollow molded body of polyamide
JPH08319417A (en) * 1995-05-26 1996-12-03 Mitsubishi Chem Corp Polyamide resin composition and film
JP2005112990A (en) * 2003-10-07 2005-04-28 Asahi Kasei Chemicals Corp Thermoplastic resin composition and molded form thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101415A (en) * 1985-10-29 1987-05-11 Teijin Ltd Hollow molded body of polyamide
JPH08319417A (en) * 1995-05-26 1996-12-03 Mitsubishi Chem Corp Polyamide resin composition and film
JP2005112990A (en) * 2003-10-07 2005-04-28 Asahi Kasei Chemicals Corp Thermoplastic resin composition and molded form thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1.I.ARVANITOYANNIS ET AL., POLYMER, vol. 36, no. 15, JPN6015046108, 1995, pages 2957 - 2967, ISSN: 0003196797 *
I.ARVANITOYANNIS, STUDIES IN POLYMERSCIENCE 12(BIODEGRADABLE PLASTICS, JPN6015046109, 1994, pages 562 - 569, ISSN: 0003196798 *

Also Published As

Publication number Publication date
WO2013002075A1 (en) 2013-01-03
TW201311819A (en) 2013-03-16
AR086755A1 (en) 2014-01-22
JP5971244B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5648683B2 (en) Polyamide compound
JP5928462B2 (en) Multi-layer injection molding
JP5975031B2 (en) Film and film packaging container
JP5971243B2 (en) Injection molded body
JP5954324B2 (en) Multi-layer injection molding
JP2015131438A (en) Multilayer injection-molded body
JP5867391B2 (en) Polyamide compound
JP5867388B2 (en) Polyamide compound
JP5954323B2 (en) Multilayer film and film packaging container
JP5971244B2 (en) Direct blow bottle
JP5928463B2 (en) Laminate and paper container
JP2015137295A (en) Injection molded body
JP5954325B2 (en) Multilayer sheet
JP5895935B2 (en) Direct blow multilayer bottle
JP2015142986A (en) Multilayer injection-molded body
JP6011531B2 (en) Tubular container
JP5971245B2 (en) Sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160627

R151 Written notification of patent or utility model registration

Ref document number: 5971244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151