JPWO2012164847A1 - COMPOUND SEMICONDUCTOR SUBSTRATE, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE USING THE COMPOUND SEMICONDUCTOR SUBSTRATE - Google Patents

COMPOUND SEMICONDUCTOR SUBSTRATE, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE USING THE COMPOUND SEMICONDUCTOR SUBSTRATE Download PDF

Info

Publication number
JPWO2012164847A1
JPWO2012164847A1 JP2013517844A JP2013517844A JPWO2012164847A1 JP WO2012164847 A1 JPWO2012164847 A1 JP WO2012164847A1 JP 2013517844 A JP2013517844 A JP 2013517844A JP 2013517844 A JP2013517844 A JP 2013517844A JP WO2012164847 A1 JPWO2012164847 A1 JP WO2012164847A1
Authority
JP
Japan
Prior art keywords
layer
light emitting
compound semiconductor
semiconductor substrate
cladding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013517844A
Other languages
Japanese (ja)
Other versions
JP5768879B2 (en
Inventor
高橋 雅宣
雅宣 高橋
健滋 酒井
健滋 酒井
篠原 政幸
政幸 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2013517844A priority Critical patent/JP5768879B2/en
Publication of JPWO2012164847A1 publication Critical patent/JPWO2012164847A1/en
Application granted granted Critical
Publication of JP5768879B2 publication Critical patent/JP5768879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02461Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)

Abstract

本発明は、第2GaP窓層上に、(AlxGa1−x)yIn1−yP(ただし、0<x<1、0<y<1)で示される下クラッド層、活性層、及び上クラッド層のダブルへテロ構造からなる発光層を有し、該発光層上に第1GaP窓層を有する化合物半導体基板であって、前記下クラッド層、前記活性層、及び前記上クラッド層の(400)面でのブラッグ角とGaAs単結晶の(400)面でのブラッグ角の差Δωが室温でそれぞれ50″〜200″となるように、前記下クラッド層、前記活性層、及び前記上クラッド層の格子定数が整合されたものであることを特徴とする化合物半導体基板である。これにより、発光寿命特性が増大され、発光寿命特性の面内のバラツキが改善され、更に輝度が改善された高品質の化合物半導体基板を提供することを目的とする。In the present invention, a double layer of a lower cladding layer, an active layer, and an upper cladding layer represented by (AlxGa1-x) yIn1-yP (where 0 <x <1, 0 <y <1) is formed on the second GaP window layer. A compound semiconductor substrate having a light-emitting layer having a heterostructure and having a first GaP window layer on the light-emitting layer, wherein the lower clad layer, the active layer, and the upper clad layer on the (400) plane The lattice constants of the lower cladding layer, the active layer, and the upper cladding layer are such that the difference Δω between the Bragg angle and the (400) plane of the GaAs single crystal is 50 ″ to 200 ″ at room temperature. A compound semiconductor substrate characterized by being aligned. Accordingly, an object of the present invention is to provide a high-quality compound semiconductor substrate in which the emission lifetime characteristics are increased, the in-plane variation of the emission lifetime characteristics is improved, and the luminance is further improved.

Description

本発明は、化合物半導体基板、及びその製造方法、並びにその化合物半導体基板を用いた発光素子に関する。
The present invention relates to a compound semiconductor substrate, a manufacturing method thereof, and a light-emitting element using the compound semiconductor substrate.

近年、例えば緑色から赤色の範囲にわたって比較的高輝度の発光が得られやすいことから、発光素子として、GaAs基板上に(AlGa1−xIn1−yP(以下、単にAlGaInPと記載することがある)4元混晶からなる発光層をエピタキシャル成長させた化合物半導体基板から製造されたものがよく利用されている。In recent years, for example, since it is easy to obtain light with relatively high luminance over a range from green to red, as a light emitting element, (Al x Ga 1-x ) y In 1-y P (hereinafter simply referred to as AlGaInP) is formed on a GaAs substrate. A material manufactured from a compound semiconductor substrate obtained by epitaxial growth of a light-emitting layer made of a quaternary mixed crystal is often used.

しかしながら、このようにAlGaInP等のGaAsと格子定数が異なる発光層をGaAs基板上に形成する場合、その格子定数の差が大きいほど、例えば発光素子の輝度や発光寿命特性に与える影響は大きく、それらの諸特性が低下してしまっていた。また、化合物半導体基板に転位が発生してしまうことがあった。   However, when a light emitting layer having a lattice constant different from that of GaAs such as AlGaInP is formed on a GaAs substrate as described above, the larger the difference in the lattice constant, the greater the influence on the luminance and light emission lifetime characteristics of the light emitting element. The various characteristics of the were deteriorated. Also, dislocations may occur in the compound semiconductor substrate.

そこで、従来では、例えば特許文献1に開示されているように、AlGaInPをエピタキシャル成長させる時において、AlGaInPとGaAsの格子面(400)のブラッグ角の差Δωが0″〜低角となるように、AlGaInPとGaAsとの格子定数を整合させて、AlGaInPの組成を調整し、発光層を形成する方法が行われていた。   Therefore, conventionally, as disclosed in Patent Document 1, for example, when AlGaInP is epitaxially grown, the difference Δω between the Bragg angles of the lattice plane (400) of AlGaInP and GaAs is 0 ″ to a low angle. A method of forming a light emitting layer by adjusting the composition of AlGaInP by matching the lattice constants of AlGaInP and GaAs has been performed.

また、GaAsからAlGaInPの格子定数まで徐々に混晶率が変化する層を形成したり、不整合を緩和する層を形成したりすることにより、エピタキシャル成長させたAlGaInP層の格子定数をGaAsの格子定数に近づける試みが行われていた。   In addition, the lattice constant of the epitaxially grown AlGaInP layer can be changed to the lattice constant of GaAs by forming a layer whose mixed crystal ratio gradually changes from GaAs to the lattice constant of AlGaInP or by forming a layer that relaxes mismatch. An attempt was made to bring it closer to.

しかしながら、このような従来のエピタキシャル成長温度における格子定数を考慮した製造方法や、AlGaInPとGaAsとの格子定数の差を小さくするための層を間に形成する製造方法のみでは、製造された発光素子(化合物半導体基板)の輝度および発光寿命特性等の諸特性が不安定であり、必ずしも満足する結果が得られていなかった。
However, only the conventional manufacturing method in consideration of the lattice constant at the epitaxial growth temperature or the manufacturing method in which a layer for reducing the difference in lattice constant between AlGaInP and GaAs is formed between the manufactured light-emitting elements ( Various characteristics such as luminance and light emission lifetime characteristics of the compound semiconductor substrate) are unstable, and satisfactory results have not always been obtained.

特開平9−186360号公報JP-A-9-186360

さらに、AlGaInPをエピタキシャル成長させる時において、AlGaInPとGaAsの格子面(400)のブラッグ角の差Δωが0″〜低角となるように、AlGaInPとGaAsとの格子定数を整合させて、AlGaInPの組成を調整し、発光層を形成する方法の場合には、発光層へ転位が伝播しやすいため、化合物半導体基板全体の発光寿命特性の劣化や、化合物半導体基板面内における発光寿命特性のバラツキが生じ、またその劣化やバラツキの程度もバッチ間で不安定となることが分かった。   Further, when epitaxially growing AlGaInP, the lattice constant of AlGaInP and GaAs is matched so that the difference Δω between the Bragg angles of the lattice planes (400) of AlGaInP and GaAs is 0 ″ to the low angle, and the composition of AlGaInP is adjusted. In the case of the method of adjusting the light emission and forming the light emitting layer, dislocations are easily propagated to the light emitting layer, so that deterioration of the light emitting life characteristics of the entire compound semiconductor substrate and variations in the light emitting life characteristics in the surface of the compound semiconductor substrate occur. Also, it was found that the degree of deterioration and variation becomes unstable between batches.

本発明は、上記課題を解決するためになされたもので、発光層への転位の伝播が抑制されることで、発光寿命特性が増大され、発光寿命特性の面内のバラツキが改善され、更に輝度が改善された高品質の化合物半導体基板、及びその製造方法を提供することを目的とする。更に、本発明では、前記化合物半導体基板を用いた発光素子を提供することを目的とする。   The present invention has been made in order to solve the above problems, and by suppressing the propagation of dislocations to the light emitting layer, the light emission life characteristics are increased, and the in-plane variation of the light emission life characteristics is improved. It is an object of the present invention to provide a high-quality compound semiconductor substrate with improved luminance and a method for manufacturing the same. Furthermore, an object of the present invention is to provide a light emitting device using the compound semiconductor substrate.

本発明では、第2GaP窓層上に、(AlGa1−xIn1−yP(ただし、0<x<1、0<y<1)で示される下クラッド層、活性層、及び上クラッド層のダブルへテロ構造からなる発光層を有し、該発光層上に第1GaP窓層を有する化合物半導体基板であって、
前記下クラッド層、前記活性層、及び前記上クラッド層の(400)面でのブラッグ角とGaAs単結晶の(400)面でのブラッグ角の差Δω(以下、単にΔωと記載することがある)が室温でそれぞれ50″〜200″となるように、前記下クラッド層、前記活性層、及び前記上クラッド層の格子定数が整合されたものであることを特徴とする化合物半導体基板を提供する。
In the present invention, on the second GaP window layer, an under cladding layer represented by (Al x Ga 1-x ) y In 1-y P (where 0 <x <1, 0 <y <1), an active layer, And a compound semiconductor substrate having a light emitting layer having a double hetero structure of an upper cladding layer and having a first GaP window layer on the light emitting layer,
A difference Δω between the Bragg angle at the (400) plane of the lower cladding layer, the active layer, and the upper cladding layer and the (400) plane of the GaAs single crystal (hereinafter, simply referred to as Δω). ) Having a lattice constant of the lower clad layer, the active layer, and the upper clad layer so as to be 50 ″ to 200 ″ at room temperature, respectively. .

このように、Δωが室温でそれぞれ50″〜200″となるように、下クラッド層、活性層、及び上クラッド層の格子定数を整合された化合物半導体基板であれば、化合物半導体基板の各層間の応力緩和が有効に働き、ミスフィット転位等の転位の発光層各層への伝播が抑制されたものとなるため、発光寿命特性が増大され、発光寿命特性の面内のバラツキが改善され、更に輝度が改善された化合物半導体基板となる。   Thus, if the compound semiconductor substrate has the lattice constants of the lower cladding layer, the active layer, and the upper cladding layer matched such that Δω is 50 ″ to 200 ″ at room temperature, each layer of the compound semiconductor substrate Stress relaxation effectively works, and dislocations such as misfit dislocations are suppressed from propagating to each layer of the light emitting layer, so that the light emission life characteristics are increased, and the variation in the light emission life characteristics is improved. The compound semiconductor substrate has improved luminance.

また、Δωが室温でそれぞれ50″〜150″、特には50″〜100″となるように、下クラッド層、活性層、及び上クラッド層の格子定数が整合されたものであることが好ましい。   Further, it is preferable that the lattice constants of the lower cladding layer, the active layer, and the upper cladding layer are matched so that Δω is 50 ″ to 150 ″, particularly 50 ″ to 100 ″, at room temperature.

このようなΔωの範囲であれば、化合物半導体基板の各層間の応力緩和がより有効に働き、ミスフィット転位等の転位の発光層各層への伝播が抑制されたものとなるため、一層、発光寿命特性が増大され、発光寿命特性の面内のバラツキが改善され、更に輝度が改善された化合物半導体基板となる。   In such a range of Δω, the stress relaxation between the layers of the compound semiconductor substrate works more effectively, and the propagation of dislocations such as misfit dislocations to the light emitting layers is suppressed, so that further emission The lifetime characteristics are increased, the in-plane variation of the emission lifetime characteristics is improved, and the compound semiconductor substrate is further improved in luminance.

さらに、本発明では、前記化合物半導体基板から製造されたものであることを特徴とする発光素子を提供する。   Furthermore, the present invention provides a light-emitting element manufactured from the compound semiconductor substrate.

このような発光素子であれば、発光寿命特性が増大され、発光素子間で発光寿命特性のバラツキが改善され、更に輝度が改善された発光素子となる。   With such a light emitting element, the light emitting lifetime characteristics are increased, the variation in the light emitting lifetime characteristics among the light emitting elements is improved, and the luminance is further improved.

また、本発明では、GaAs基板上に、(AlGa1−xIn1−yP(ただし、0<x<1、0<y<1)で示される下クラッド層、活性層、及び上クラッド層のダブルへテロ構造からなる発光層をエピタキシャル成長する発光層成長工程と、
前記発光層上に第1GaP窓層をエピタキシャル成長する第1GaP窓層成長工程と、
前記GaAs基板をエッチング除去し、前記下クラッド層を露出させるエッチング工程と、
前記露出した下クラッド層上に第2GaP窓層を形成する第2GaP窓層形成工程とを含む化合物半導体基板の製造方法であって、
前記発光層成長工程において、前記下クラッド層、前記活性層、及び前記上クラッド層の(400)面でのブラッグ角と前記GaAs基板の(400)面でのブラッグ角の差Δωが室温でそれぞれ50″〜200″となるように、前記GaAs基板上に前記発光層をエピタキシャル成長することを特徴とする化合物半導体基板の製造方法を提供する。
In the present invention, a lower cladding layer represented by (Al x Ga 1-x ) y In 1-y P (where 0 <x <1, 0 <y <1), an active layer, And a light emitting layer growth step of epitaxially growing a light emitting layer comprising a double hetero structure of the upper cladding layer,
A first GaP window layer growth step of epitaxially growing a first GaP window layer on the light emitting layer;
Etching to remove the GaAs substrate and expose the lower cladding layer;
A second GaP window layer forming step of forming a second GaP window layer on the exposed lower cladding layer, comprising:
In the light emitting layer growth step, the difference Δω between the Bragg angle at the (400) plane of the lower cladding layer, the active layer, and the upper cladding layer and the Bragg angle at the (400) plane of the GaAs substrate is at room temperature, respectively. Provided is a method of manufacturing a compound semiconductor substrate, wherein the light emitting layer is epitaxially grown on the GaAs substrate so as to be 50 ″ to 200 ″.

このような発光層成長工程を有する化合物半導体基板の製造方法であれば、製造時において、化合物半導体基板の各層間の応力緩和が有効に働き、ミスフィット転位等の転位が発光層各層に伝播しにくいため、発光寿命特性が増大され、発光寿命特性の面内のバラツキが改善され、更に輝度が改善された化合物半導体基板を製造することができる方法となる。   If the manufacturing method of the compound semiconductor substrate having such a light emitting layer growth step, stress relaxation between each layer of the compound semiconductor substrate works effectively during manufacturing, and dislocation such as misfit dislocation propagates to each layer of the light emitting layer. Therefore, it is possible to manufacture a compound semiconductor substrate in which the emission lifetime characteristics are increased, the in-plane variation of the emission lifetime characteristics is improved, and the luminance is further improved.

また、発光層成長工程において、前記Δωが室温でそれぞれ50″〜150″、特には50″〜100″となるように、GaAs基板上に発光層をエピタキシャル成長することが好ましい。   In the light emitting layer growth step, it is preferable to epitaxially grow the light emitting layer on the GaAs substrate so that the Δω is 50 ″ to 150 ″, particularly 50 ″ to 100 ″, respectively, at room temperature.

このような発光層成長工程であれば、製造時において、化合物半導体基板の各層間の応力緩和がより有効に働き、ミスフィット転位等の転位が発光層各層により伝播しにくくなるため、一層、発光寿命特性が増大され、発光寿命特性の面内のバラツキが改善され、更に輝度が改善された化合物半導体基板を製造することができる方法となる。   With such a light emitting layer growth step, stress relaxation between each layer of the compound semiconductor substrate works more effectively during manufacturing, and dislocations such as misfit dislocations are less likely to propagate through each layer of the light emitting layer. This is a method capable of producing a compound semiconductor substrate having an improved lifetime characteristic, an improved in-plane variation in the emission lifetime characteristic, and a further improved luminance.

以上説明したように、下クラッド層、活性層、及び上クラッド層の(400)面でのブラッグ角とGaAs単結晶の(400)面でのブラッグ角の差Δωが室温でそれぞれ50″〜200″となるように、下クラッド層、活性層、及び上クラッド層の格子定数を整合する本発明の化合物半導体基板であれば、化合物半導体基板の各層間の応力が緩和され、ミスフィット転位等の転位の発光層各層への伝播が抑制されたものとなるので、発光寿命特性が増大され、発光寿命特性の面内のバラツキが改善され、更に輝度が改善された化合物半導体基板となる。
As described above, the difference Δω between the Bragg angle at the (400) plane of the lower cladding layer, the active layer, and the upper cladding layer and the Bragg angle at the (400) plane of the GaAs single crystal is 50 ″ to 200 at room temperature, respectively. In the compound semiconductor substrate of the present invention in which the lattice constants of the lower cladding layer, the active layer, and the upper cladding layer are matched so that the stress between the layers of the compound semiconductor substrate is relaxed, misfit dislocation, etc. Since propagation of dislocations to each layer of the light emitting layer is suppressed, the light emission lifetime characteristics are increased, the in-plane variation of the light emission lifetime characteristics is improved, and the compound semiconductor substrate is further improved in luminance.

本発明の化合物半導体基板の概略断面図である。It is a schematic sectional drawing of the compound semiconductor substrate of this invention. (a)Δωが室温でそれぞれ0″〜低角となるように、下クラッド層、活性層、及び上クラッド層の格子定数を整合した場合の化合物半導体基板の概略断面図に、内部応力に伴う転位の伝播方向を示した図であり、(b)Δωが室温でそれぞれ50″〜200″となるように、下クラッド層、活性層、及び上クラッド層の格子定数を整合した場合の化合物半導体基板の概略断面図に、内部応力に伴う転位の伝播方向を示した図である。(A) A schematic cross-sectional view of a compound semiconductor substrate when the lattice constants of the lower cladding layer, the active layer, and the upper cladding layer are matched so that Δω is 0 ″ to a low angle at room temperature, respectively, with internal stress. FIG. 6 is a diagram showing the dislocation propagation direction, and (b) a compound semiconductor in which lattice constants of the lower cladding layer, the active layer, and the upper cladding layer are matched so that Δω is 50 ″ to 200 ″ at room temperature, respectively. It is the figure which showed the propagation direction of the dislocation accompanying internal stress in the schematic sectional drawing of a board | substrate. (a)Δωが室温でそれぞれ0″となるように、下クラッド層、活性層、及び上クラッド層の格子定数を整合した場合の化合物半導体基板の活性層のX線トポグラフィ写真であり、(b)Δωが室温でそれぞれ100″となるように、下クラッド層、活性層、及び上クラッド層の格子定数を整合した場合の化合物半導体基板の活性層のX線トポグラフィ写真である。(A) X-ray topographic photograph of the active layer of the compound semiconductor substrate when the lattice constants of the lower cladding layer, the active layer, and the upper cladding layer are matched so that Δω is 0 ″ at room temperature, ) An X-ray topographic photograph of the active layer of the compound semiconductor substrate when the lattice constants of the lower cladding layer, the active layer, and the upper cladding layer are matched so that Δω is 100 ″ at room temperature. 本発明の化合物半導体基板の製造方法のフロー図である。It is a flowchart of the manufacturing method of the compound semiconductor substrate of this invention. 実施例1〜5及び比較例1〜2の発光素子の発光寿命特性、及び面内の発光寿命特性のバラツキを表わしたグラフである。It is the graph showing the variation of the light emission lifetime characteristic of the light emitting element of Examples 1-5 and Comparative Examples 1-2, and the light emission lifetime characteristic in a surface.

以下、本発明をより詳細に説明するが、本発明はこれに限定されるものではない。前述のように、発光層への転位の伝播が抑制された化合物半導体基板が望まれていた。   Hereinafter, the present invention will be described in more detail, but the present invention is not limited thereto. As described above, a compound semiconductor substrate in which dislocation propagation to the light emitting layer is suppressed has been desired.

本発明者らは、上記課題に対し鋭意検討を重ねた結果、下クラッド層、活性層、及び上クラッド層の(400)面でのブラッグ角とGaAs単結晶の(400)面でのブラッグ角の差Δωが室温でそれぞれ50″〜200″となるように、下クラッド層、活性層、及び上クラッド層の格子定数を整合された化合物半導体基板であれば、化合物半導体基板の各層間の応力が緩和されることを見出し、これにより発光層へのミスフィット転位等の転位の伝播が抑制され、発光寿命特性、面内の発光寿命特性のバラツキ、及び輝度が改善されることを見出して、本発明を完成させた。以下、図1〜5を参照して、詳細に説明する。   As a result of intensive studies on the above problems, the present inventors have found that the Bragg angle at the (400) plane of the lower cladding layer, the active layer, and the upper cladding layer and the Bragg angle at the (400) plane of the GaAs single crystal. As long as the compound semiconductor substrate has the lattice constants of the lower cladding layer, the active layer, and the upper cladding layer matched so that the difference Δω is 50 ″ to 200 ″ at room temperature, the stress between each layer of the compound semiconductor substrate It is found that the propagation of dislocations such as misfit dislocations to the light emitting layer is suppressed by this, and the light emission lifetime characteristics, variation in the in-plane emission lifetime characteristics, and luminance are improved, The present invention has been completed. Hereinafter, a detailed description will be given with reference to FIGS.

[化合物半導体基板]
本発明では、第2GaP窓層上に、(AlGa1−xIn1−yP(ただし、0<x<1、0<y<1)で示される下クラッド層、活性層、及び上クラッド層のダブルへテロ構造からなる発光層を有し、該発光層上に第1GaP窓層を有する化合物半導体基板であって、
前記下クラッド層、前記活性層、及び前記上クラッド層の(400)面でのブラッグ角とGaAs単結晶の(400)面でのブラッグ角の差Δωが室温でそれぞれ50″〜200″となるように、前記下クラッド層、前記活性層、及び前記上クラッド層の格子定数が整合されたものであることを特徴とする化合物半導体基板を提供する。
[Compound semiconductor substrate]
In the present invention, on the second GaP window layer, an under cladding layer represented by (Al x Ga 1-x ) y In 1-y P (where 0 <x <1, 0 <y <1), an active layer, And a compound semiconductor substrate having a light emitting layer having a double hetero structure of an upper cladding layer and having a first GaP window layer on the light emitting layer,
The difference Δω between the Bragg angle at the (400) plane of the lower cladding layer, the active layer, and the upper cladding layer and the (400) plane of the GaAs single crystal is 50 ″ to 200 ″ at room temperature, respectively. Thus, the compound semiconductor substrate is characterized in that the lattice constants of the lower cladding layer, the active layer, and the upper cladding layer are matched.

〔第1GaP窓層及び第2GaP窓層〕
本発明における第1GaP窓層1及び第2GaP窓層6は、GaPからなる透明導電性膜であれば特に限定されない(図1)。第1GaP窓層及び第2GaP窓層は、例えば厚膜透明導電性膜とすることができ、第1GaP窓層の厚さとしては、10μm〜100μmが好ましい。また、第2GaP窓層の厚さとしては、10μm〜100μmが好ましい。このように厚膜の第1GaP窓層及び第2GaP窓層であっても、本発明の化合物半導体基板であれば発光寿命特性、面内の発光寿命特性のバラツキ、及び輝度が改善されたものとなる。
[First GaP window layer and second GaP window layer]
The first GaP window layer 1 and the second GaP window layer 6 in the present invention are not particularly limited as long as they are transparent conductive films made of GaP (FIG. 1). The first GaP window layer and the second GaP window layer can be, for example, thick transparent conductive films, and the thickness of the first GaP window layer is preferably 10 μm to 100 μm. Moreover, as thickness of a 2nd GaP window layer, 10 micrometers-100 micrometers are preferable. Thus, even with the thick first GaP window layer and the second GaP window layer, the compound semiconductor substrate of the present invention has improved emission lifetime characteristics, in-plane emission lifetime characteristics variations, and luminance. Become.

また、第1GaP窓層及び第2GaP窓層は電流拡散層であることが好ましい。第1GaP窓層及び第2GaP窓層が電流拡散層であれば、電極の近傍だけでなく、広い範囲で効率よく発光させることが可能となる。   The first GaP window layer and the second GaP window layer are preferably current spreading layers. If the first GaP window layer and the second GaP window layer are current diffusion layers, light can be efficiently emitted not only in the vicinity of the electrodes but also in a wide range.

〔発光層〕
本発明における発光層5は、(AlGa1−xIn1−yP(ただし、0<x<1、0<y<1)で示される下クラッド層4、活性層3、及び上クラッド層2のダブルへテロ構造からなる(図1)。
[Light emitting layer]
Emitting layer 5 in the present invention, (Al x Ga 1-x ) y In 1-y P ( However, 0 <x <1,0 <y <1) lower cladding layer 4 shown, the active layer 3 and, It consists of a double heterostructure of the upper cladding layer 2 (FIG. 1).

下クラッド層4、活性層3、及び上クラッド層2の格子定数は、下クラッド層4、活性層3、及び上クラッド層2の(400)面でのブラッグ角とGaAs単結晶の(400)面でのブラッグ角の差Δωが室温でそれぞれ50″〜200″、好ましくは50″〜150″、より好ましくは50″〜100″となるように、整合されたものである。   The lattice constants of the lower cladding layer 4, the active layer 3, and the upper cladding layer 2 are the Bragg angles at the (400) plane of the lower cladding layer 4, the active layer 3, and the upper cladding layer 2 and (400) of the GaAs single crystal. The difference between the Bragg angles at the surface Δω is 50 ″ to 200 ″, preferably 50 ″ to 150 ″, and more preferably 50 ″ to 100 ″ at room temperature.

Δωの算出としては、測定用のX線として波長λ=1.5405ÅのCuKα1線を用い、GaAs基板の(400)面でのブラッグ角ωとAlGaInP下クラッド層、活性層、上クラッド層の(400)面でのブラッグ角ω’をそれぞれ測定し、その差Δω(=ω’−ω)を求めることで行うことができる。   For the calculation of Δω, CuKα1 ray having a wavelength of λ = 1.5405 mm is used as measurement X-ray, Bragg angle ω on the (400) plane of the GaAs substrate, and the AlGaInP lower cladding layer, active layer, upper cladding layer ( 400), and the difference Δω (= ω′−ω) is obtained.

このように、Δωが室温でそれぞれ50″〜200″、好ましくは50″〜150″、より好ましくは50″〜100″となるように、下クラッド層、活性層、及び上クラッド層の格子定数を整合されることにより、化合物半導体基板の各層間の応力緩和が有効に働き、ミスフィット転位等の転位の発光層各層への伝播が抑制されたものとなる。そのため、発光寿命特性が増大され、発光寿命特性の面内のバラツキが改善され、更に輝度が改善された化合物半導体基板となる。以下、図2、3を参照してより詳細に説明する。   Thus, the lattice constants of the lower cladding layer, the active layer, and the upper cladding layer so that Δω is 50 ″ to 200 ″, preferably 50 ″ to 150 ″, more preferably 50 ″ to 100 ″, respectively, at room temperature. As a result, the stress relaxation between the layers of the compound semiconductor substrate works effectively, and the propagation of dislocations such as misfit dislocations to the light emitting layers is suppressed. As a result, the emission lifetime characteristics are increased, the in-plane variation of the emission lifetime characteristics is improved, and the brightness of the compound semiconductor substrate is further improved. Hereinafter, a more detailed description will be given with reference to FIGS.

Δωが室温でそれぞれ0″〜低角となるように、下クラッド層、活性層、及び上クラッド層の格子定数を整合した場合の化合物半導体基板の概略断面図図2(a)に、内部応力に伴う転位の伝播方向を示した。また、Δωが室温でそれぞれ50″〜200″となるように、下クラッド層、活性層、及び上クラッド層の格子定数を整合した場合の化合物半導体基板の概略断面図図2(b)に、内部応力に伴う転位の伝播方向を示した。   FIG. 2A is a schematic cross-sectional view of a compound semiconductor substrate in which the lattice constants of the lower cladding layer, the active layer, and the upper cladding layer are matched so that Δω is 0 ° to a low angle at room temperature. In addition, the propagation direction of dislocation accompanying the above is shown, and the lattice constants of the lower cladding layer, the active layer, and the upper cladding layer are matched so that Δω is 50 ″ to 200 ″ at room temperature. FIG. 2B is a schematic cross-sectional view showing the propagation direction of dislocation accompanying internal stress.

図2(a)に示すようにΔωが室温でそれぞれ0″〜低角であると、(AlGa1−xIn1−yP(ただし、0<x<1、0<y<1)で示される下クラッド層、活性層、及び上クラッド層に圧縮圧力がかかり、下クラッド層、活性層、及び上クラッド層にミスフィット転位等の転位が伝播する。これにより、従来は化合物半導体基板の発光寿命特性が劣化し、化合物半導体基板面内の発光寿命特性のバラツキが生じ、更に輝度が悪化していた。一方で、図2(b)に示すようにΔωが室温でそれぞれ50″〜200″であると、下クラッド層、活性層、及び上クラッド層にかかる応力は緩和され、下クラッド層、活性層、及び上クラッド層のミスフィット転位などの転位の伝播は抑制される。これにより、本発明の化合物半導体基板では発光寿命特性が増大され、発光寿命特性の面内のバラツキが改善され、更に輝度が改善されたものとなる。As shown in FIG. 2A, when Δω is 0 ″ to a low angle at room temperature, (Al x Ga 1-x ) y In 1-y P (where 0 <x <1, 0 <y < A compression pressure is applied to the lower cladding layer, the active layer, and the upper cladding layer shown in 1), and dislocations such as misfit dislocations propagate in the lower cladding layer, the active layer, and the upper cladding layer. The emission lifetime characteristics of the semiconductor substrate deteriorated, the emission lifetime characteristics varied within the surface of the compound semiconductor substrate, and the luminance was further deteriorated, while Δω was 50 at room temperature as shown in FIG. If it is "-200", the stress applied to the lower cladding layer, the active layer, and the upper cladding layer is relaxed, and the propagation of dislocations such as misfit dislocations in the lower cladding layer, the active layer, and the upper cladding layer is suppressed. Thereby, the compound semiconductor of the present invention In the substrate, the light emission life characteristics are increased, the variation in the light emission life characteristics is improved, and the luminance is further improved.

Δωと転位の関係を示すために、化合物半導体基板の下クラッド層と第2GaP窓層の界面のX線トポグラフィ写真を撮影した。Δωが室温でそれぞれ0″となるように、下クラッド層、活性層、及び上クラッド層の格子定数を整合した場合の化合物半導体基板の活性層のX線トポグラフィ写真を図3(a)に示す。また、Δωが室温でそれぞれ100″となるように、下クラッド層、活性層、及び上クラッド層の格子定数を整合した場合の化合物半導体基板の活性層のX線トポグラフィ写真を図3(b)に示す。   In order to show the relationship between Δω and dislocation, an X-ray topographic photograph of the interface between the lower cladding layer of the compound semiconductor substrate and the second GaP window layer was taken. FIG. 3A shows an X-ray topography photograph of the active layer of the compound semiconductor substrate when the lattice constants of the lower cladding layer, the active layer, and the upper cladding layer are matched so that Δω is 0 ″ at room temperature. Further, an X-ray topographic photograph of the active layer of the compound semiconductor substrate when the lattice constants of the lower cladding layer, the active layer, and the upper cladding layer are matched so that Δω is 100 ″ at room temperature is shown in FIG. ).

Δωが室温でそれぞれ0″であると下クラッド層、活性層、及び上クラッド層に圧縮圧力がかかり、化合物半導体基板の各層間の内部応力バランスが悪くなる。これにより、転位(ミスフィット等)が下クラッド層/GaAs基板除去面(第2GaP層)界面から発光層方向に伸びる(図2(a)参照)。その結果、図3(a)に示すように活性層など発光層各層に転位が生じ、発光寿命特性の悪化、面内のバラツキ、輝度の低下が生じることとなる。   When Δω is 0 ″ at room temperature, compression pressure is applied to the lower cladding layer, the active layer, and the upper cladding layer, and the internal stress balance between the layers of the compound semiconductor substrate is deteriorated. As a result, dislocation (misfit, etc.) occurs. Extends from the lower clad layer / GaAs substrate removal surface (second GaP layer) interface in the direction of the light emitting layer (see FIG. 2A), resulting in dislocations in each layer of the light emitting layer such as the active layer as shown in FIG. As a result, the light emission lifetime characteristics deteriorate, the in-plane variation and the luminance decrease.

一方で、本発明の化合物半導体基板のようにΔωが室温でそれぞれ100″であると、Δωを50″〜200″にする事で内部応力が緩和され、転位が下クラッド層/GaAs基板除去面(第2GaP層)界面から発光層方向へ伸びるのに代わり、第2GaP層方向に伸びやすい(図2(b)参照)。その結果、図3(b)に示すように、活性層など発光層各層のミスフィット転位などの転位は抑制される。そのため、本発明の化合物半導体基板は発光寿命特性が増大され、発光寿命特性の面内のバラツキが改善され、更に輝度が改善されたものとなる。   On the other hand, when Δω is 100 ″ at room temperature as in the compound semiconductor substrate of the present invention, the internal stress is relaxed by setting Δω to 50 ″ to 200 ″, and dislocations are removed from the lower cladding layer / GaAs substrate removal surface. (Second GaP layer) Instead of extending from the interface in the direction of the light emitting layer, the second GaP layer tends to extend in the direction of the second GaP layer (see FIG. 2B) As a result, as shown in FIG. Dislocations such as misfit dislocations in each layer are suppressed, so that the compound semiconductor substrate of the present invention has increased emission lifetime characteristics, improved in-plane variations in emission lifetime characteristics, and further improved luminance. .

[化合物半導体基板の製造方法]
また、本発明では、GaAs基板上に、(AlGa1−xIn1−yP(ただし、0<x<1、0<y<1)で示される下クラッド層、活性層、及び上クラッド層のダブルへテロ構造からなる発光層をエピタキシャル成長する発光層成長工程と、
前記発光層上に第1GaP窓層をエピタキシャル成長する第1GaP窓層成長工程と、
前記GaAs基板をエッチング除去し、前記下クラッド層を露出させるエッチング工程と、
前記露出した下クラッド層上に第2GaP窓層を形成する第2GaP窓層形成工程とを含む化合物半導体基板の製造方法であって、
前記発光層成長工程において、前記下クラッド層、前記活性層、及び前記上クラッド層の(400)面でのブラッグ角と前記GaAs基板の(400)面でのブラッグ角の差Δωが室温でそれぞれ50″〜200″となるように、前記GaAs基板上に前記発光層をエピタキシャル成長することを特徴とする化合物半導体基板の製造方法を提供する。以下、図4を参照して詳細に説明する。
[Method of manufacturing compound semiconductor substrate]
In the present invention, a lower cladding layer represented by (Al x Ga 1-x ) y In 1-y P (where 0 <x <1, 0 <y <1), an active layer, And a light emitting layer growth step of epitaxially growing a light emitting layer comprising a double hetero structure of the upper cladding layer,
A first GaP window layer growth step of epitaxially growing a first GaP window layer on the light emitting layer;
Etching to remove the GaAs substrate and expose the lower cladding layer;
A second GaP window layer forming step of forming a second GaP window layer on the exposed lower cladding layer, comprising:
In the light emitting layer growth step, the difference Δω between the Bragg angle at the (400) plane of the lower cladding layer, the active layer, and the upper cladding layer and the Bragg angle at the (400) plane of the GaAs substrate is at room temperature, respectively. Provided is a method of manufacturing a compound semiconductor substrate, wherein the light emitting layer is epitaxially grown on the GaAs substrate so as to be 50 ″ to 200 ″. Hereinafter, this will be described in detail with reference to FIG.

〔GaAs基板の準備(図4の(I)工程)〕
GaAs基板としては、一般にAlGaInP混晶を成長させる基板となるものであれば特に制限されないが、例えば面方位(100)のオフアングル2〜15度のものを用いることができる。このGaAs基板上に、GaAs、AlGaAs、AlGaInP、InGaP、GaP、GaAsPなどの化合物半導体膜が形成されたGaAs基板も用いることができる。これらの化合物半導体膜をMOVPE法でGaAs基板上に形成する場合は、TMG(トリメチルガリウム)、TMA(トリメチルアルミニウム)、TMI(トリメチルインジウム)、AsH、PHなどの原料ガスが用いられ、また、導電型を制御するための半導体不純物用ガスとしては、DMZ(ジメチルジンク)、DEZ(ジエチルジンク)やCpMg、SiH、HSeなどが用いられる。このようにして形成される化合物半導体膜は、例えば発光ダイオードなどの発光素子等の用途に応じて適宜選択することができる。
[Preparation of GaAs substrate (step (I) in FIG. 4)]
The GaAs substrate is not particularly limited as long as it is generally a substrate on which an AlGaInP mixed crystal is grown. For example, a substrate having an off-angle of 2 to 15 degrees with a plane orientation (100) can be used. A GaAs substrate in which a compound semiconductor film such as GaAs, AlGaAs, AlGaInP, InGaP, GaP, and GaAsP is formed on the GaAs substrate can also be used. When these compound semiconductor films are formed on a GaAs substrate by the MOVPE method, source gases such as TMG (trimethylgallium), TMA (trimethylaluminum), TMI (trimethylindium), AsH 3 , and PH 3 are used. As the semiconductor impurity gas for controlling the conductivity type, DMZ (dimethyl zinc), DEZ (diethyl zinc), Cp 2 Mg, SiH 4 , H 2 Se, or the like is used. The compound semiconductor film thus formed can be appropriately selected depending on the use of a light emitting element such as a light emitting diode.

〔発光層成長工程(図4の(II)工程)〕
本発明における発光層成長工程では、GaAs基板上に、(AlGa1−xIn1−yP(ただし、0<x<1、0<y<1)で示される下クラッド層、活性層、及び上クラッド層のダブルへテロ構造からなる発光層をエピタキシャル成長する。この発光層成長工程では、下クラッド層、活性層、及び上クラッド層の(400)面でのブラッグ角と前記GaAs基板の(400)面でのブラッグ角の差Δωが室温でそれぞれ50″〜200″、好ましくは50″〜150″、より好ましくは50″〜100″となるように、GaAs基板上に発光層をエピタキシャル成長する。発光層の成長方法としては特に制限されないが、減圧200mbar以下、600℃以上の条件でMOVPE法を用いて行うことができる。例えば、原料ガスとしてはTMG(トリメチルガリウム)、TMA(トリメチルアルミニウム)、TMI(トリメチルインジウム)、PHなどが用いられ、また、導電型を制御するための半導体不純物用ガスとしては、DMZ(ジメチルジンク)、DEZ(ジエチルジンク)やCpMg、SiH、HSeなどが用いられる。
[Light-Emitting Layer Growth Step (Step (II) in FIG. 4)]
In the light emitting layer growth step of the present invention, a lower cladding layer represented by (Al x Ga 1-x ) y In 1-y P (where 0 <x <1, 0 <y <1) is formed on a GaAs substrate, A light emitting layer having a double hetero structure of an active layer and an upper cladding layer is epitaxially grown. In this light emitting layer growth step, the difference Δω between the Bragg angle at the (400) plane of the lower cladding layer, the active layer, and the upper cladding layer and the Bragg angle at the (400) plane of the GaAs substrate is 50 ″ ˜ The light emitting layer is epitaxially grown on the GaAs substrate so as to be 200 ″, preferably 50 ″ to 150 ″, more preferably 50 ″ to 100 ″. Although the growth method of the light emitting layer is not particularly limited, the light emitting layer can be grown using the MOVPE method under conditions of a reduced pressure of 200 mbar or less and 600 ° C. or more. For example, as the raw material gas TMG (trimethyl gallium), TMA (trimethyl aluminum), TMI (trimethyl indium), and PH 3 is used also as a semiconductor impurity gas for controlling the conductivity type, DMZ (dimethyl Zinc), DEZ (diethyl zinc), Cp 2 Mg, SiH 4 , H 2 Se and the like are used.

AlGaInPからなる発光層各層の調整条件は、例えば、GaAsの格子面(400)の室温でのブラッグ角と(AlGa1−xIn1−yP(ただし、0<x<1、0<y<1)の格子面(400)の室温におけるブラッグ角を測定しておき、これらを比較してΔωが50″〜200″の範囲になるような調整条件を予め特定することで決定することができる。The adjustment conditions for each layer of the light emitting layer made of AlGaInP are, for example, the Bragg angle of the lattice plane (400) of GaAs and (Al x Ga 1-x ) y In 1-y P (where 0 <x <1, It is determined by measuring the Bragg angle of the lattice plane (400) of 0 <y <1) at room temperature and comparing these to specify the adjustment conditions so that Δω is in the range of 50 ″ to 200 ″. can do.

〔第1GaP窓層成長工程(図4の(III)工程)〕
本発明における第1GaP窓層成長工程では、発光層上に第1GaP窓層をエピタキシャル成長する。成長方法は特に限定されないが、例えば600℃以上の条件でVPE法により厚膜透明導電性膜(GaP)をエピタキシャル成長させることができる。第1GaP窓層の厚さとしては、特に制限されないが10μm〜100μmが好ましい。このように厚膜の第1GaP窓層であっても、本発明の化合物半導体基板の製造方法であれば発光寿命特性、面内の発光寿命特性のバラツキ、及び輝度が改善された化合物半導体基板を製造することができる。
[First GaP Window Layer Growth Step (Step (III) in FIG. 4)]
In the first GaP window layer growth step in the present invention, the first GaP window layer is epitaxially grown on the light emitting layer. Although the growth method is not particularly limited, for example, a thick transparent conductive film (GaP) can be epitaxially grown by a VPE method under conditions of 600 ° C. or higher. The thickness of the first GaP window layer is not particularly limited, but is preferably 10 μm to 100 μm. As described above, even if the first GaP window layer is a thick film, the compound semiconductor substrate having improved emission lifetime characteristics, in-plane emission lifetime characteristics variations, and brightness can be obtained by the method of manufacturing a compound semiconductor substrate of the present invention. Can be manufactured.

〔エッチング工程(図4の(VI)工程)〕
本発明におけるエッチング工程では、GaAs基板をエッチング除去し、下クラッド層を露出させる。
[Etching process (process (VI) in FIG. 4)]
In the etching process according to the present invention, the GaAs substrate is removed by etching to expose the lower cladding layer.

〔第2GaP窓層形成工程(図4の(V)工程)〕
本発明における第2GaP窓層形成工程では、露出した下クラッド層上に第2GaP窓層をエピタキシャル成長し、又は透明導電性GaP基板を接合することで第2GaP窓層を形成することができる。エピタキシャル成長方法は特に限定されず、例えば600℃以上の条件でVPE法により行うことができる。また、接合方法も特に制限されず、100℃以上で熱処理することで接合することができる。
[Second GaP Window Layer Formation Step (Step (V) in FIG. 4)]
In the second GaP window layer forming step in the present invention, the second GaP window layer can be formed by epitaxially growing the second GaP window layer on the exposed lower cladding layer or bonding a transparent conductive GaP substrate. The epitaxial growth method is not particularly limited, and for example, it can be performed by the VPE method under conditions of 600 ° C. or higher. The bonding method is not particularly limited, and the bonding can be performed by heat treatment at 100 ° C. or higher.

[発光素子]
さらに、本発明では上記化合物半導体基板から製造されたものであることを特徴とする発光素子を提供する。特に制限されないが、上記化合物半導体基板にAu系P型及びN型のオーミック電極を形成し、任意のサイズ、例えば250μm〜300μm角にチップ化して発光素子を製造することができる(図4の(VI)工程)。このような発光素子であれば、発光寿命特性が増大され、発光素子間で発光寿命特性のバラツキが改善され、更に輝度が改善された発光素子となる。
[Light emitting element]
Furthermore, the present invention provides a light emitting device manufactured from the above compound semiconductor substrate. Although not particularly limited, Au-based P-type and N-type ohmic electrodes are formed on the compound semiconductor substrate, and light-emitting elements can be manufactured by forming chips into any size, for example, 250 μm to 300 μm square (( VI) Step). With such a light emitting element, the light emitting lifetime characteristics are increased, the variation in the light emitting lifetime characteristics among the light emitting elements is improved, and the luminance is further improved.

以下、本発明の実施例および比較例をあげてさらに詳細に説明するが、本発明は下記の実施例に限定されるものではない。
EXAMPLES Hereinafter, although the Example and comparative example of this invention are given and demonstrated further in detail, this invention is not limited to the following Example.

(実施例1)
GaAs基板上に、MOVPE法によってN型Siドープ(キャリア濃度1×1018/cm)、厚さ0.5μmのGaAsバッファー層とN型Siドープ(キャリア濃度1×1018/cm)、厚さ1μmのAlGaInP下クラッド層をエピタキシャル成長させ、ノンドープ、厚さ1μmのAlGaInP活性層をエピタキシャル成長させ、P型Mgドープ(キャリア濃度1×1017/cm)、厚さ1μmのAlGaInP上クラッド層をエピタキシャル成長させた(発光層成長工程)。
(Example 1)
On the GaAs substrate, N-type Si doping (carrier concentration 1 × 10 18 / cm 3 ) by MOVPE method, 0.5 μm thick GaAs buffer layer and N-type Si doping (carrier concentration 1 × 10 18 / cm 3 ), An AlGaInP lower cladding layer having a thickness of 1 μm is epitaxially grown, an AlGaInP active layer having a thickness of 1 μm is epitaxially grown without doping, and a P-type Mg doped (carrier concentration 1 × 10 17 / cm 3 ) and an AlGaInP upper cladding layer having a thickness of 1 μm are formed. Epitaxial growth was performed (light emitting layer growth step).

この発光層成長工程において、下クラッド層、活性層、及び上クラッド層の(400)面でのブラッグ角と前記GaAs基板の(400)面でのブラッグ角の差Δωが室温でそれぞれ50″となるように、発光層の結晶組成を調整して、GaAs基板上に発光層をエピタキシャル成長させた。   In this light emitting layer growth step, the difference Δω between the Bragg angle at the (400) plane of the lower cladding layer, the active layer and the upper cladding layer and the Bragg angle at the (400) plane of the GaAs substrate is 50 ″ at room temperature. Thus, the crystal composition of the light emitting layer was adjusted, and the light emitting layer was epitaxially grown on the GaAs substrate.

続いて、第1GaP窓層としてP型Mgドープ(キャリア濃度3×1017/cm)、厚さ2μmのGaP層をエピタキシャル成長させ、その後VPE法でP型Znドープ(キャリア濃度8×1017/cm)、厚さ50μmの厚膜透明導電性GaP層をエピタキシャル成長させ(第1GaP窓層成長工程)、その後にGaAs基板をエッチング除去した(エッチング工程)。最後に、VPE法で第2GaP窓層としてN型Sドープ(キャリア濃度5×1017/cm)、厚さ100μmのGaP層をエピタキシャル成長させて(第2GaP窓層形成工程)化合物半導体基板を作製した。Subsequently, a P-type Mg doped (carrier concentration 3 × 10 17 / cm 3 ) and a GaP layer having a thickness of 2 μm are epitaxially grown as the first GaP window layer, and then P-type Zn doped (carrier concentration 8 × 10 17 /) by the VPE method. cm 3 ), a thick transparent conductive GaP layer having a thickness of 50 μm was epitaxially grown (first GaP window layer growth step), and then the GaAs substrate was removed by etching (etching step). Finally, an N-type S-doped (carrier concentration 5 × 10 17 / cm 3 ) and GaP layer having a thickness of 100 μm is epitaxially grown as a second GaP window layer by VPE (second GaP window layer forming step) to produce a compound semiconductor substrate. did.

この化合物半導体基板にAu系P型及びN型のオーミック電極を形成し、任意のサイズにチップ化して発光素子を製造した。このようにして製造された本発明の発光素子の輝度および発光寿命特性を測定した。測定時の温度は85℃、湿度は45%とし、電流20mAでの発光出力Po(mW)を測定し、また、50mA以上の電流を100時間通電させた後に再度発光出力を測定し、発光寿命特性(%)を算出した。その測定結果を表1に示す。   Au-based P-type and N-type ohmic electrodes were formed on the compound semiconductor substrate, and a light-emitting device was manufactured by making chips into an arbitrary size. The luminance and light emission lifetime characteristics of the light emitting device of the present invention thus manufactured were measured. Measure the light emission output Po (mW) at a current of 20 mA at a temperature of 85 ° C. and humidity of 45%, and measure the light emission output again after energizing a current of 50 mA or more for 100 hours. Characteristics (%) were calculated. The measurement results are shown in Table 1.

また、2結晶X線回折法により測定したAlGaInP活性層の格子面(400)のブラッグ角、該ブラッグ角から算出した変形格子定数並びに緩和格子定数、及びGaAs単結晶とAlGaInP活性層の格子不整合率の結果も表1に示す。なお、2結晶X線回折法では測定用のX線として波長λ=1.5405ÅのCuKα1線を用いた。   Also, the Bragg angle of the lattice plane (400) of the AlGaInP active layer measured by two-crystal X-ray diffraction method, the deformation lattice constant and relaxation lattice constant calculated from the Bragg angle, and the lattice mismatch between the GaAs single crystal and the AlGaInP active layer The rate results are also shown in Table 1. In the two-crystal X-ray diffraction method, CuKα1 rays having a wavelength λ = 1.54051.5 were used as X-rays for measurement.

なお、変形格子定数、緩和格子定数、及び格子不整合率は下記式(1)、(2)、(3)で求めることができる。
変形格子定数=2×CuKα1線の波長λ/sin(AlGaInP活性層の(400)面でのブラッグ角ω’π/180) ……(1)
緩和格子定数=0.47×GaAs格子定数+0.53×変形格子定数 ……(2)
格子不整合率=(緩和格子定数−GaAs格子定数)/GaAs格子定数……(3)
ここで、GaAs格子定数は5.65325Åとした。
In addition, a deformation | transformation lattice constant, a relaxation lattice constant, and a lattice mismatch rate can be calculated | required by following formula (1), (2), (3).
Deformation lattice constant = 2 × wavelength λ / sin of CuKα1 line (Bragg angle ω′π / 180 at the (400) plane of the AlGaInP active layer) (1)
Relaxation lattice constant = 0.47 × GaAs lattice constant + 0.53 × deformed lattice constant (2)
Lattice mismatch factor = (relaxation lattice constant−GaAs lattice constant) / GaAs lattice constant (3)
Here, the GaAs lattice constant was 5.6532565.

(実施例2)
Δωが室温でそれぞれ75″となるように、発光層の結晶組成を調整して、GaAs基板上に発光層をエピタキシャル成長させた以外は実施例1と同様にして発光素子を作製した。
(Example 2)
A light emitting device was fabricated in the same manner as in Example 1 except that the crystal composition of the light emitting layer was adjusted so that Δω was 75 ″ at room temperature, and the light emitting layer was epitaxially grown on the GaAs substrate.

(実施例3)
Δωが室温でそれぞれ100″となるように、発光層の結晶組成を調整して、GaAs基板上に発光層をエピタキシャル成長させた以外は実施例1と同様にして発光素子を作製した。
Example 3
A light emitting device was fabricated in the same manner as in Example 1 except that the crystal composition of the light emitting layer was adjusted so that Δω was 100 ″ at room temperature, and the light emitting layer was epitaxially grown on the GaAs substrate.

(実施例4)
Δωが室温でそれぞれ150″となるように、発光層の結晶組成を調整して、GaAs基板上に発光層をエピタキシャル成長させた以外は実施例1と同様にして発光素子を作製した。
Example 4
A light emitting device was fabricated in the same manner as in Example 1 except that the crystal composition of the light emitting layer was adjusted so that Δω was 150 ″ at room temperature, and the light emitting layer was epitaxially grown on the GaAs substrate.

(実施例5)
Δωが室温でそれぞれ200″となるように、発光層の結晶組成を調整して、GaAs基板上に発光層をエピタキシャル成長させた以外は実施例1と同様にして発光素子を作製した。
(Example 5)
A light emitting device was fabricated in the same manner as in Example 1 except that the crystal composition of the light emitting layer was adjusted so that Δω was 200 ″ at room temperature, and the light emitting layer was epitaxially grown on the GaAs substrate.

(比較例1)
Δωが室温でそれぞれ−100″となるように、発光層の結晶組成を調整して、GaAs基板上に発光層をエピタキシャル成長させた以外は実施例1と同様にして発光素子を作製した。
(Comparative Example 1)
A light emitting device was fabricated in the same manner as in Example 1 except that the crystal composition of the light emitting layer was adjusted so that Δω was −100 ″ at room temperature, and the light emitting layer was epitaxially grown on the GaAs substrate.

(比較例2)
Δωが室温でそれぞれ0″となるように、発光層の結晶組成を調整して、GaAs基板上に発光層をエピタキシャル成長させた以外は実施例1と同様にして発光素子を作製した。
(Comparative Example 2)
A light emitting device was fabricated in the same manner as in Example 1 except that the crystal composition of the light emitting layer was adjusted so that Δω was 0 ″ at room temperature, and the light emitting layer was epitaxially grown on the GaAs substrate.

以上のようにして製造された実施例1〜5、比較例1〜2の発光素子の出力Po(mW)、発光寿命特性(%)、AlGaInP活性層の格子面(400)でのブラッグ角、変形格子定数、緩和格子定数、格子不整合率を表1に示す。   Output Po (mW) of the light emitting elements of Examples 1 to 5 and Comparative Examples 1 and 2 manufactured as described above, emission lifetime characteristics (%), Bragg angle at the lattice plane (400) of the AlGaInP active layer, Table 1 shows the deformation lattice constant, relaxation lattice constant, and lattice mismatch rate.

さらに、実施例1〜5、比較例1〜2の発光素子の発光寿命特性と、面内での発光寿命特性のバラツキを測定した結果を図5に示す。図5の横軸は化合物半導体基板の面内位置を示し、縦軸はその面内位置に対応する発光寿命特性を示す。   Furthermore, the result of having measured the light emission lifetime characteristic of the light emitting element of Examples 1-5 and Comparative Examples 1-2, and the variation of the light emission lifetime characteristic in a surface is shown in FIG. The horizontal axis of FIG. 5 shows the in-plane position of the compound semiconductor substrate, and the vertical axis shows the light emission lifetime characteristics corresponding to the in-plane position.

Figure 2012164847
Figure 2012164847

以上のように、下クラッド層、活性層、及び上クラッド層の(400)面でのブラッグ角と前記GaAs基板の(400)面でのブラッグ角の室温付近での差Δωを−100″から+200″まで振って比較すると、Δωが50″〜200″のときに発光寿命特性が上昇していることがわかる(表1)。さらに、Δωが50″〜200″である本発明の化合物半導体基板の実施例1〜5では発光寿命特性の向上と同時に面内のバラツキ、出力(輝度)も改善されていることが示された(図5)。   As described above, the difference Δω between the Bragg angle at the (400) plane of the lower cladding layer, the active layer, and the upper cladding layer and the Bragg angle at the (400) plane of the GaAs substrate near room temperature is from −100 ″. A comparison with shaking up to +200 ″ shows that the light emission lifetime characteristics are increased when Δω is 50 ″ to 200 ″ (Table 1). Further, in Examples 1 to 5 of the compound semiconductor substrate of the present invention in which Δω is 50 ″ to 200 ″, it was shown that in-plane variation and output (luminance) were improved at the same time as improvement of the light emission lifetime characteristics. (FIG. 5).

一方で、GaAs基板とAlGaInP活性層の(400)面でのブラッグ角の差Δωが0″から低角側の比較例1及び比較例2では、化合物半導体基板の各層間の内部応力バランスが悪く、転位(ミスフィット等)が下クラッド層/GaAs基板除去面(第2GaP層)界面から発光層方向に伸びるため、発光層に転位が生じ発光寿命特性の悪化、面内のバラツキ、輝度の低下が生じていることが示された。   On the other hand, in Comparative Example 1 and Comparative Example 2 in which the difference Δω between the GaAs substrate and the AlGaInP active layer at the (400) plane is 0 ″ to the low angle side, the internal stress balance between the layers of the compound semiconductor substrate is poor. Because dislocations (misfits, etc.) extend from the lower clad layer / GaAs substrate removal surface (second GaP layer) interface toward the light emitting layer, dislocations occur in the light emitting layer, resulting in deterioration of light emission lifetime characteristics, in-plane variation, and reduction in luminance. Was shown to occur.

以上説明したように、クラッド層、活性層、及び上クラッド層の(400)面でのブラッグ角とGaAs単結晶の(400)面でのブラッグ角の差Δωが室温でそれぞれ50″〜200″となるように、下クラッド層、活性層、及び上クラッド層の格子定数を整合する本発明の化合物半導体基板であれば、化合物半導体基板の各層間の応力が緩和され、ミスフィット転位等の転位の発光層各層への伝播が抑制されたものとなるので、発光寿命特性が増大され、発光寿命特性の面内のバラツキが改善され、更に輝度が改善された化合物半導体基板となる。   As described above, the difference Δω between the Bragg angle at the (400) plane of the cladding layer, the active layer, and the upper cladding layer and the Bragg angle at the (400) plane of the GaAs single crystal is 50 ″ to 200 ″ at room temperature, respectively. If the compound semiconductor substrate of the present invention matches the lattice constants of the lower cladding layer, the active layer, and the upper cladding layer, the stress between each layer of the compound semiconductor substrate is relaxed, and dislocations such as misfit dislocations Therefore, the light emitting layer is suppressed from propagating to the respective layers, so that the light emitting lifetime characteristics are increased, the in-plane variation of the light emitting lifetime characteristics is improved, and the luminance is further improved.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Claims (7)

第2GaP窓層上に、(AlGa1−xIn1−yP(ただし、0<x<1、0<y<1)で示される下クラッド層、活性層、及び上クラッド層のダブルへテロ構造からなる発光層を有し、該発光層上に第1GaP窓層を有する化合物半導体基板であって、
前記下クラッド層、前記活性層、及び前記上クラッド層の(400)面でのブラッグ角とGaAs単結晶の(400)面でのブラッグ角の差Δωが室温でそれぞれ50″〜200″となるように、前記下クラッド層、前記活性層、及び前記上クラッド層の格子定数が整合されたものであることを特徴とする化合物半導体基板。
To a 2GaP window layer, (Al x Ga 1-x ) y In 1-y P ( However, 0 <x <1,0 <y <1) lower cladding layer represented by the active layer, and upper cladding layer A compound semiconductor substrate having a light-emitting layer having a double heterostructure and having a first GaP window layer on the light-emitting layer,
The difference Δω between the Bragg angle at the (400) plane of the lower cladding layer, the active layer, and the upper cladding layer and the (400) plane of the GaAs single crystal is 50 ″ to 200 ″ at room temperature, respectively. Thus, the compound semiconductor substrate is characterized in that lattice constants of the lower cladding layer, the active layer, and the upper cladding layer are matched.
前記Δωが室温でそれぞれ50″〜150″となるように、前記下クラッド層、前記活性層、及び前記上クラッド層の格子定数が整合されたものであることを特徴とする請求項1に記載の化合物半導体基板。
2. The lattice constants of the lower cladding layer, the active layer, and the upper cladding layer are matched so that the Δω is 50 ″ to 150 ″ at room temperature, respectively. Compound semiconductor substrate.
前記Δωが室温でそれぞれ50″〜100″となるように、前記下クラッド層、前記活性層、及び前記上クラッド層の格子定数が整合されたものであることを特徴とする請求項1又は請求項2に記載の化合物半導体基板。
The lattice constants of the lower cladding layer, the active layer, and the upper cladding layer are matched so that the Δω is 50 ″ to 100 ″ at room temperature, respectively. Item 3. A compound semiconductor substrate according to Item 2.
請求項1乃至請求項3のいずれか一項に記載の化合物半導体基板から製造されたものであることを特徴とする発光素子。
A light emitting device manufactured from the compound semiconductor substrate according to any one of claims 1 to 3.
GaAs基板上に、(AlGa1−xIn1−yP(ただし、0<x<1、0<y<1)で示される下クラッド層、活性層、及び上クラッド層のダブルへテロ構造からなる発光層をエピタキシャル成長する発光層成長工程と、
前記発光層上に第1GaP窓層をエピタキシャル成長する第1GaP窓層成長工程と、
前記GaAs基板をエッチング除去し、前記下クラッド層を露出させるエッチング工程と、
前記露出した下クラッド層上に第2GaP窓層を形成する第2GaP窓層形成工程とを含む化合物半導体基板の製造方法であって、
前記発光層成長工程において、前記下クラッド層、前記活性層、及び前記上クラッド層の(400)面でのブラッグ角と前記GaAs基板の(400)面でのブラッグ角の差Δωが室温でそれぞれ50″〜200″となるように、前記GaAs基板上に前記発光層をエピタキシャル成長することを特徴とする化合物半導体基板の製造方法。
On a GaAs substrate, (Al x Ga 1-x ) y In 1-y P ( However, 0 <x <1,0 <y <1) lower cladding layer represented by a double active layer, and upper cladding layer A light emitting layer growth step for epitaxially growing a light emitting layer having a heterostructure;
A first GaP window layer growth step of epitaxially growing a first GaP window layer on the light emitting layer;
Etching to remove the GaAs substrate and expose the lower cladding layer;
A second GaP window layer forming step of forming a second GaP window layer on the exposed lower cladding layer, comprising:
In the light emitting layer growth step, the difference Δω between the Bragg angle at the (400) plane of the lower cladding layer, the active layer, and the upper cladding layer and the Bragg angle at the (400) plane of the GaAs substrate is at room temperature, respectively. A method for producing a compound semiconductor substrate, comprising epitaxially growing the light emitting layer on the GaAs substrate so as to be 50 ″ to 200 ″.
前記発光層成長工程において、前記Δωが室温でそれぞれ50″〜150″となるように、前記GaAs基板上に前記発光層をエピタキシャル成長することを特徴とする請求項5に記載の化合物半導体基板の製造方法。
6. The compound semiconductor substrate according to claim 5, wherein, in the light emitting layer growth step, the light emitting layer is epitaxially grown on the GaAs substrate so that the Δω is 50 ″ to 150 ″ at room temperature, respectively. Method.
前記発光層成長工程において、前記Δωが室温でそれぞれ50″〜100″となるように、前記GaAs基板上に前記発光層をエピタキシャル成長することを特徴とする請求項5又は請求項6に記載の化合物半導体基板の製造方法。   7. The compound according to claim 5, wherein in the light emitting layer growth step, the light emitting layer is epitaxially grown on the GaAs substrate so that the Δω is 50 ″ to 100 ″ at room temperature. A method for manufacturing a semiconductor substrate.
JP2013517844A 2011-06-02 2012-05-16 COMPOUND SEMICONDUCTOR SUBSTRATE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE USING THE COMPOUND SEMICONDUCTOR SUBSTRATE Active JP5768879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013517844A JP5768879B2 (en) 2011-06-02 2012-05-16 COMPOUND SEMICONDUCTOR SUBSTRATE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE USING THE COMPOUND SEMICONDUCTOR SUBSTRATE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011124564 2011-06-02
JP2011124564 2011-06-02
JP2013517844A JP5768879B2 (en) 2011-06-02 2012-05-16 COMPOUND SEMICONDUCTOR SUBSTRATE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE USING THE COMPOUND SEMICONDUCTOR SUBSTRATE
PCT/JP2012/003192 WO2012164847A1 (en) 2011-06-02 2012-05-16 Compound semiconductor substrate, method for manufacturing same, and light emitting element using compound semiconductor substrate

Publications (2)

Publication Number Publication Date
JPWO2012164847A1 true JPWO2012164847A1 (en) 2015-02-23
JP5768879B2 JP5768879B2 (en) 2015-08-26

Family

ID=47258724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013517844A Active JP5768879B2 (en) 2011-06-02 2012-05-16 COMPOUND SEMICONDUCTOR SUBSTRATE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE USING THE COMPOUND SEMICONDUCTOR SUBSTRATE

Country Status (3)

Country Link
JP (1) JP5768879B2 (en)
TW (1) TW201316378A (en)
WO (1) WO2012164847A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186360A (en) * 1995-12-28 1997-07-15 Showa Denko Kk Algainp light-emitting diode
JP2005093895A (en) * 2003-09-19 2005-04-07 Sumitomo Electric Ind Ltd ZnSe-BASED LIGHT-EMITTING ELEMENT
JP2010141201A (en) * 2008-12-12 2010-06-24 Shin Etsu Handotai Co Ltd Compound semiconductor substrate, light emitting element, method of manufacturing compound semiconductor substrate, and method of manufacturing light emitting element
JP2010245362A (en) * 2009-04-08 2010-10-28 Shin Etsu Handotai Co Ltd Method of manufacturing light-emitting element
JP2011077496A (en) * 2009-04-28 2011-04-14 Shin Etsu Handotai Co Ltd Light-emitting element, and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186360A (en) * 1995-12-28 1997-07-15 Showa Denko Kk Algainp light-emitting diode
JP2005093895A (en) * 2003-09-19 2005-04-07 Sumitomo Electric Ind Ltd ZnSe-BASED LIGHT-EMITTING ELEMENT
JP2010141201A (en) * 2008-12-12 2010-06-24 Shin Etsu Handotai Co Ltd Compound semiconductor substrate, light emitting element, method of manufacturing compound semiconductor substrate, and method of manufacturing light emitting element
JP2010245362A (en) * 2009-04-08 2010-10-28 Shin Etsu Handotai Co Ltd Method of manufacturing light-emitting element
JP2011077496A (en) * 2009-04-28 2011-04-14 Shin Etsu Handotai Co Ltd Light-emitting element, and method of manufacturing the same

Also Published As

Publication number Publication date
TW201316378A (en) 2013-04-16
WO2012164847A1 (en) 2012-12-06
JP5768879B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
US7514707B2 (en) Group III nitride semiconductor light-emitting device
JP2000133842A (en) Semiconductor element and manufacture thereof
JP5425284B1 (en) Semiconductor wafer, semiconductor device, and method for manufacturing nitride semiconductor layer
US8465997B2 (en) Manufacturing method of group III nitride semiconductor
US11621371B2 (en) Epitaxial structure, preparation method thereof, and LED
JP2017506434A (en) Optoelectronic semiconductor chip manufacturing method and optoelectronic semiconductor chip
JP5401145B2 (en) Method for producing group III nitride laminate
CN105742435A (en) Light emitting diode and preparation method therefor
WO2007114033A1 (en) Method for manufacturing light emitting element, compound semiconductor wafer, and light emitting element
JP6242238B2 (en) Method for producing nitride semiconductor multi-element mixed crystal
JP2013207046A (en) Group iii nitride compound semiconductor light-emitting element and manufacturing method of the same
JP5768879B2 (en) COMPOUND SEMICONDUCTOR SUBSTRATE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE USING THE COMPOUND SEMICONDUCTOR SUBSTRATE
JP5309949B2 (en) Compound semiconductor substrate, light emitting element, compound semiconductor substrate manufacturing method, and light emitting element manufacturing method
TWI446574B (en) A compound semiconductor substrate, a light-emitting element using the same, and a method for producing a compound semiconductor substrate
WO2020209014A1 (en) Light emitting element and method of manufacturing light emitting element
JP5898656B2 (en) Group III nitride semiconductor device
JP5996489B2 (en) Nitride semiconductor wafer, nitride semiconductor device, and method of manufacturing nitride semiconductor wafer
JP2010278262A (en) Method of manufacturing epitaxial wafer for light-emitting diode
TWI596797B (en) Gallium nitride-based crystal and semiconductor device manufacturing method, and light-emitting device and method of manufacturing the light-emitting device
JP2011198807A (en) Compound semiconductor substrate, light emitting element, method of manufacturing compound semiconductor substrate, and method of manufacturing light emitting element
JP2010287818A (en) Method of manufacturing epitaxial wafer for semiconductor light-emitting device
JP2014063988A (en) Semiconductor wafer, semiconductor element, and method for manufacturing nitride semiconductor layer
JP2010141195A (en) Compound semiconductor substrate, light emitting element, method of manufacturing the compound semiconductor substrate, and method of manufacturing the light emitting element
JP2014068018A (en) Semiconductor light-emitting element and method of manufacturing semiconductor light-emitting element
JP5326538B2 (en) Compound semiconductor substrate, light emitting element, compound semiconductor substrate manufacturing method, and light emitting element manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5768879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250