JPWO2012111140A1 - Optical receiver, nonlinear equalization circuit, and digital signal processing circuit - Google Patents

Optical receiver, nonlinear equalization circuit, and digital signal processing circuit Download PDF

Info

Publication number
JPWO2012111140A1
JPWO2012111140A1 JP2012557753A JP2012557753A JPWO2012111140A1 JP WO2012111140 A1 JPWO2012111140 A1 JP WO2012111140A1 JP 2012557753 A JP2012557753 A JP 2012557753A JP 2012557753 A JP2012557753 A JP 2012557753A JP WO2012111140 A1 JPWO2012111140 A1 JP WO2012111140A1
Authority
JP
Japan
Prior art keywords
complex
phase rotation
digital signal
unit
weighted average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012557753A
Other languages
Japanese (ja)
Other versions
JP5523591B2 (en
Inventor
吉田 剛
剛 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5523591B2 publication Critical patent/JP5523591B2/en
Publication of JPWO2012111140A1 publication Critical patent/JPWO2012111140A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6163Compensation of non-linear effects in the fiber optic link, e.g. self-phase modulation [SPM], cross-phase modulation [XPM], four wave mixing [FWM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/223Demodulation in the optical domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • H04L2027/0038Correction of carrier offset using an equaliser
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0004Modulated-carrier systems using wavelets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/04Channels characterised by the type of signal the signals being represented by different amplitudes or polarities, e.g. quadriplex

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

光受信器は、デジタル信号処理集積回路を少なくとも設けた。また、デジタル信号処理集積回路は、4つのデジタル信号に対して、非線形等化デジタル信号処理を適用する非線形等化回路を少なくとも含む。さらに、非線形等化回路は、N段(N≧1)のデジタル信号処理回路で構成され、N段のデジタル信号処理回路のうち、m段目のデジタル信号処理回路は、入力する複素デジタル信号系列dx[m,i]に対し、線形歪みを付加する第1の線形歪み付加部と、複素位相回転を与えられた複素デジタル信号に対して波形歪みを付加することで、第1の線形歪み付加部における波形歪みを除去する第1の線形歪み除去部などを有する。The optical receiver is provided with at least a digital signal processing integrated circuit. The digital signal processing integrated circuit includes at least a nonlinear equalization circuit that applies nonlinear equalization digital signal processing to four digital signals. Further, the non-linear equalization circuit is composed of N-stage (N ≧ 1) digital signal processing circuits, and among the N-stage digital signal processing circuits, the m-th stage digital signal processing circuit is an input complex digital signal sequence. A first linear distortion addition unit that adds linear distortion to dx [m, i] and a waveform distortion added to the complex digital signal given the complex phase rotation. A first linear distortion removing unit for removing waveform distortion in the unit.

Description

この発明は、デジタルコヒーレント方式を用いた光伝送システムの光受信器、及びN(N≧1)段のデジタル信号処理回路から構成される非線形等化回路に関するものである。   The present invention relates to an optical receiver of an optical transmission system using a digital coherent system and a non-linear equalization circuit including N (N ≧ 1) stages of digital signal processing circuits.

40Gbit/sや100Gbit/sのような大容量光伝送のためには、光信号対雑音電力限界の克服や高密度波長多重化が課題である。光信号対雑音電力限界を克服する技術として、従来のオンオフキーイング(OOK:On-Off Keying)に対して、2値位相偏移変調(BPSK:Binary Phase-Shift Keying)や4値PSK(QPSK:Quaternary Phase-Shift Keying)の利用が知られている。また、高密度波長多重化のために、直交する2つの偏波成分に独立の信号を割り当てる偏波多重によって、1シンボル当たりの伝送ビット数を2倍に増やす方式や、QPSKや16値直交振幅変調(16QAM:16 Quadrature Amplitude Modulation)のように、信号多重度を上げて、1シンボル当たりの伝送ビット数を増やす方式が知られている。QPSKや16QAMは、光伝送システムの送信側の光送信器において、同位相軸(I軸:In-Phase軸)と、直交位相軸(Q軸:Quadrature-Phase軸)とに信号を割り当てて伝送する。   For high-capacity optical transmission such as 40 Gbit / s and 100 Gbit / s, overcoming the optical signal-to-noise power limit and high-density wavelength multiplexing are problems. As a technique for overcoming the optical signal-to-noise power limit, binary phase-shift keying (BPSK) or quaternary PSK (QPSK) is used in contrast to conventional on-off keying (OOK). Quaternary Phase-Shift Keying) is known. For high-density wavelength multiplexing, a method of doubling the number of transmission bits per symbol by polarization multiplexing that assigns independent signals to two orthogonal polarization components, QPSK, 16-value orthogonal amplitude, etc. A method of increasing the signal multiplicity and increasing the number of transmission bits per symbol is known, such as modulation (16QAM: 16 Quadrature Amplitude Modulation). QPSK and 16QAM are transmitted by assigning signals to the same phase axis (I axis: In-Phase axis) and quadrature phase axis (Q axis: Quadrature-Phase axis) in the optical transmitter on the transmission side of the optical transmission system. To do.

光信号の検波方式としては、従来、二乗検波方式や遅延検波方式のような直接検波方式が利用されてきた。これらの方式では、光受信器に局部発振光源を持つことなく光信号の検波が可能であり、簡素かつ低コストで光受信器の実装が可能である。一方、光受信器に局部発振光源を持つ同期検波方式にデジタル信号処理を組み合わせて受信するデジタルコヒーレント方式が注目されている(例えば、非特許文献1参照)。   Conventionally, a direct detection method such as a square detection method or a delay detection method has been used as a detection method of an optical signal. In these methods, an optical signal can be detected without having a local oscillation light source in the optical receiver, and the optical receiver can be mounted simply and at low cost. On the other hand, a digital coherent system that receives digital signal processing in combination with a synchronous detection system having a local oscillation light source in an optical receiver has attracted attention (for example, see Non-Patent Document 1).

このデジタルコヒーレント方式では、同期検波による線形な光電気変換と、デジタル信号処理による固定的、半固定的及び適応的な線形等化により、光受信器における安定な偏波多重信号の分離や、波形歪みの補償が可能となる。このため、光伝送路で生じる波長分散や偏波モード分散(PMD:Polarization-Mode Dispersion)等に起因する線形な波形歪みに対する優れた等化特性や優れた雑音耐力を実現できる。   In this digital coherent method, linear photoelectric conversion by synchronous detection and fixed, semi-fixed, and adaptive linear equalization by digital signal processing enable stable polarization multiplexed signal separation and waveform in optical receivers. Distortion compensation is possible. For this reason, it is possible to realize excellent equalization characteristics and excellent noise tolerance against linear waveform distortion caused by chromatic dispersion and polarization mode dispersion (PMD) generated in the optical transmission line.

図9は、多中継光伝送路の構成例と順方向伝搬の逐次計算方法の概念を示す図である。図9に示すように、光増幅器91が挿入された光ファイバ92中を高い光パワーで伝送する際には、ファイバ非線形光学効果が伝送品質に顕著な劣化をもたらす。光ファイバ中の伝搬は非線形シュレディンガー方程式により記述され、逐次計算法としてスプリット・ステップ・フーリエ法(SSFM:Split-Step Fourier Method)が用いられる。通常、SSFMでは、光伝送路を短区間(多中継システムの1中継区間より十分短い区間)に分割し、伝送損失や波長分散(CD)のような線形効果と、自己位相変調である非線形位相回転(NL)のような非線形効果とを交互に取り込む逐次計算を行う(図9参照)。   FIG. 9 is a diagram illustrating a configuration example of a multi-relay optical transmission line and a concept of a sequential calculation method for forward propagation. As shown in FIG. 9, when transmitting with high optical power through an optical fiber 92 in which an optical amplifier 91 is inserted, the fiber nonlinear optical effect causes a significant deterioration in transmission quality. Propagation in an optical fiber is described by a non-linear Schrodinger equation, and a split-step Fourier method (SSFM) is used as a sequential calculation method. Usually, in SSFM, an optical transmission line is divided into short sections (sections that are sufficiently shorter than one relay section of a multi-relay system), linear effects such as transmission loss and chromatic dispersion (CD), and nonlinear phase that is self-phase modulation. Sequential calculation that alternately incorporates non-linear effects such as rotation (NL) is performed (see FIG. 9).

ファイバ非線形光学効果による伝送品質劣化を等化する方法として、例えば、非特許文献2に示されるデジタル逆伝搬方式が検討されてきた。図10は、デジタル逆伝搬方式の概念を示す図である。このデジタル逆伝搬方式は、図10に示すように、伝送方向とは逆方向の伝搬計算をSSFMにより行うことにより、送信端での歪みのない光波形を得る方法である。デジタル逆伝搬方式におけるSSFMでは、信号処理にかかる負荷を考慮して、通常、高々、数区間/中継〜10区間/中継で信号処理される。このとき、波長分割多重された他のチャネルからの非線形干渉成分を除去することが困難であるため、通常はチャネル内の非線形効果である自己位相変調である非線形位相回転による波形歪みを等化する(図10参照)。   As a method for equalizing the transmission quality deterioration due to the fiber nonlinear optical effect, for example, the digital back propagation method shown in Non-Patent Document 2 has been studied. FIG. 10 is a diagram illustrating the concept of the digital back propagation method. As shown in FIG. 10, this digital back-propagation method is a method of obtaining an optical waveform without distortion at the transmission end by performing propagation calculation in the direction opposite to the transmission direction by SSFM. In SSFM in the digital back-propagation method, signal processing is normally performed at most at several sections / relays to 10 sections / relays in consideration of a load on signal processing. At this time, since it is difficult to remove nonlinear interference components from other wavelength division multiplexed channels, the waveform distortion due to nonlinear phase rotation, which is self-phase modulation, which is usually a nonlinear effect in the channel, is equalized. (See FIG. 10).

Optical Internetworking Forum, "100G Ultra Long Haul DWDM Framework Document", http://www.oiforum.com/public/documents/OIF-FD-100G-DWDM-01.0.pdf, June 2009.Optical Internetworking Forum, "100G Ultra Long Haul DWDM Framework Document", http://www.oiforum.com/public/documents/OIF-FD-100G-DWDM-01.0.pdf, June 2009. T.Hoshida, "A question of diminishing returns?", ECOC (European Conference on Optical Communication)2010, Workshop 11,2010.T. Hoshida, "A question of diminishing returns?", ECOC (European Conference on Optical Communication) 2010, Workshop 11, 2010.

しかしながら、上記の従来技術(非特許文献2)によれば、SSFMを伝送方向と逆方向に解くため、中継数に比例して回路規模が増大するという問題点があった。   However, according to the above prior art (Non-Patent Document 2), since the SSFM is solved in the direction opposite to the transmission direction, the circuit scale increases in proportion to the number of relays.

この発明は、上述のような課題を解決するためになされたもので、デジタル逆伝搬方式よりも小さな回路規模と消費電力でファイバ非線形光学効果に起因する波形歪みを等化することができ、伝送品質を向上させることができる光受信器及び非線形等化回路を得ることを目的とする。   The present invention has been made to solve the above-described problems, and is capable of equalizing waveform distortion caused by the fiber nonlinear optical effect with a circuit scale and power consumption smaller than those of the digital back propagation method. An object of the present invention is to obtain an optical receiver and a non-linear equalization circuit capable of improving the quality.

この発明に係る光受信器は、受信光信号と同一の中心波長で発振する光信号を生成する局部発振光源と、前記受信光信号と前記局部発振光源から出力される光信号とを混合する偏波ダイバーシチ型の光90度ハイブリッド回路と、前記光90度ハイブリッド回路から出力される4対の光信号を検波する4つのバランス型の光子検出器と、前記4つの光子検出器から出力される4つの電気信号をアナログデジタル変換する4つのアナログデジタル変換器と、前記4つのアナログデジタル変換器に接続されたデジタル信号処理集積回路とを設けた。   An optical receiver according to the present invention includes a local oscillation light source that generates an optical signal that oscillates at the same center wavelength as a received optical signal, and a polarization that mixes the received optical signal and an optical signal output from the local oscillation light source. Wave diversity optical 90 degree hybrid circuit, four balanced photon detectors that detect four pairs of optical signals output from the optical 90 degree hybrid circuit, and 4 output from the four photon detectors Four analog-digital converters for analog-digital conversion of two electrical signals and a digital signal processing integrated circuit connected to the four analog-digital converters are provided.

また、この発明に係る光受信器のデジタル信号処理集積回路は、4つのデジタル信号に対して、光伝送路の波長分散を補償する波長分散補償回路と、4つのデジタル信号に対して、非線形等化デジタル信号処理を適用する非線形等化回路と、4つのデジタル信号に対して、伝送路の偏波モード分散を補償し、偏波多重信号を分離する適応等化回路と、4つのデジタル信号に対して、前記受信光信号と前記局部発振光源から出力される光信号との間の中心周波数差を補償する搬送波周波数オフセット補償回路と、4つのデジタル信号に対して、前記受信光信号と前記局部発振光源から出力される光信号との間の光位相差を補償する搬送波位相オフセット補償回路とを少なくとも含む。   The digital signal processing integrated circuit of the optical receiver according to the present invention includes a chromatic dispersion compensation circuit that compensates for chromatic dispersion of an optical transmission line for four digital signals, and a non-linear function for the four digital signals. A non-linear equalization circuit that applies optimized digital signal processing, an adaptive equalization circuit that compensates for polarization mode dispersion of a transmission line and separates polarization multiplexed signals for four digital signals, and four digital signals On the other hand, a carrier frequency offset compensation circuit that compensates for a center frequency difference between the received optical signal and the optical signal output from the local oscillation light source, and the received optical signal and the local for four digital signals. And at least a carrier phase offset compensation circuit that compensates for an optical phase difference with an optical signal output from the oscillation light source.

さらに、この発明に係る光受信器のデジタル信号処理集積回路の非線形等化回路は、N段(N≧1)のデジタル信号処理回路で構成され、前記N段のデジタル信号処理回路のうち、m段目のデジタル信号処理回路は、入力する第1の複素デジタル信号系列dx[m,i]に対し、伝達関数Hpre,x[m](f)の線形歪みを付加する第1の線形歪み付加部と、入力する第2の複素デジタル信号系列dy[m,i]に対し、伝達関数Hpre,y[m](f)の線形歪みを付加する第2の線形歪み付加部と、線形歪みを付加された前記第1の複素デジタル信号系列の絶対値の二乗である、電力Px[m,i]を計算する第1の電力計算部と、線形歪みを付加された前記第2の複素デジタル信号系列の絶対値の二乗である、電力Py[m,i]を計算する第2の電力計算部と、前記電力Px[m,i]の重み付け平均電力Pavg,xx[m,i]=αxx[−a]Px[m,i−a]+αxx[−a+1]Px[m,i−a+1]+・・・+αxx[0]Px[m,i]+・・・+αxx[b]Px[m,i+b]を計算する第1の重み付け平均部と、前記電力Py[m,i]の重み付け平均電力Pavg,xy[m,i]=αxy[−a]Py[m,i−a]+αxy[−a+1]Py[m,i−a+1]+・・・+αxy[0]Py[m,i]+・・・+αxy[b]Py[m,i+b]を計算する第2の重み付け平均部と、前記電力Px[m,i]の重み付け平均電力Pavg,yx[m,i]=αyx[−a]Px[m,i−a]+αyx[−a+1]Px[m,i−a+1]+・・・+αyx[0]Px[m,i]+・・・+αyx[b]Px[m,i+b]を計算する第3の重み付け平均部と、前記電力Py[m,i]の重み付け平均電力Pavg,yy[m,i]=αyy[−a]Py[m,i−a]+αyy[−a+1]Py[m,i−a+1]+・・・+αyy[0]Py[m,i]+・・・+αyy[b]Py[m,i+b]を計算する第4の重み付け平均部と、前記重み付け平均電力Pavg,xx[m,i]に第1の効率γxxを乗算して位相回転量φxx[m,i]=γxx[m,i]Pavg,xx[m,i]を生成する第1の位相回転量生成部と、前記重み付け平均電力Pavg,xy[m,i]に第2の効率γxyを乗算して位相回転量φxy[m,i]=γxy[m,i]Pavg,xy[m,i]を生成する第2の位相回転量生成部と、前記重み付け平均電力Pavg,yx[m,i]に第3の効率γyxを乗算して位相回転量φyx[m,i]=γyx[m,i]Pavg,yx[m,i]を生成する第3の位相回転量生成部と、前記重み付け平均電力Pavg,yy[m,i]に第4の効率γyyを乗算して位相回転量φyy[m,i]=γyy[m,i]Pavg,yy[m,i]を生成する第4の位相回転量生成部と、前記位相回転量φxx[m,i]とφxy[m,i]とを加算して複素位相回転量φx[m,i]=φxx[m,i]+φxy[m,i]を計算する第1の加算部と、前記位相回転量φyx[m,i]とφyy[m,i]とを加算して複素位相回転量φy[m,i]=φyx[m,i]+φyy[m,i]を計算する第2の加算部と、前記複素位相回転量φx[m,i]を複素信号exp(−jφx[m,i])に変換する第1の複素位相回転用信号生成部と、前記複素位相回転量φy[m,i]を複素信号exp(−jφy[m,i])に変換する第2の複素位相回転用信号生成部と、線形歪みを付加された前記第1の複素デジタル信号系列に前記複素信号exp(−jφx[m,i])を乗算することで複素位相回転を与える第1の複素位相回転部と、線形歪みを付加された前記第2の複素デジタル信号系列に前記複素信号exp(−jφy[m,i])を乗算することで複素位相回転を与える第2の複素位相回転部と、前記第1の複素位相回転部により複素位相回転を与えられた複素デジタル信号に対して前記線形な波形歪みの伝達関数Hpre,x[m](f)の逆関数Hpre,x[m]-1(f)もしくは複素共役関数Hpre,x[m]*(f)を伝達関数Hpost,x[m](f)として有する波形歪みを付加することで、前記第1の線形歪み付加部における波形歪みを除去する第1の線形歪み除去部と、前記第2の複素位相回転部により複素位相回転を与えられた複素デジタル信号に対して前記線形な波形歪みの伝達関数Hpre,y[m](f)の逆関数Hpre,y[m]-1(f)もしくは複素共役関数Hpre,y[m]*(f)を伝達関数Hpost,y[m](f)として有する波形歪みを付加することで、前記第2の線形歪み付加部における波形歪みを除去する第2の線形歪み除去部とを有する。Furthermore, the non-linear equalization circuit of the digital signal processing integrated circuit of the optical receiver according to the present invention is composed of N stages (N ≧ 1) of digital signal processing circuits. The digital signal processing circuit at the stage adds the first linear distortion that adds the linear distortion of the transfer function Hpre, x [m] (f) to the input first complex digital signal sequence dx [m, i]. A second linear distortion adding unit that adds a linear distortion of the transfer function Hpre, y [m] (f) to the input second complex digital signal sequence dy [m, i], and a linear distortion. A first power calculator that calculates power Px [m, i], which is the square of the absolute value of the added first complex digital signal sequence, and the second complex digital signal to which linear distortion is added Power Py [m, i, which is the square of the absolute value of the series And a weighted average power Pavg, xx [m, i] = αxx [−a] Px [m, i−a] + αxx [−a + 1] of the power Px [m, i] Px [m, i−a + 1] +... + Αxx [0] Px [m, i] +... + Αxx [b] Px [m, i + b] and the power Py [M, i] weighted average power Pavg, xy [m, i] = αxy [−a] Py [m, i−a] + αxy [−a + 1] Py [m, i−a + 1] +... + Αxy [ 0] Py [m, i] +... + Αxy [b] Py [m, i + b] and a weighted average power Pavg, yx [m of the power Px [m, i]. , I] = αyx [−a] Px [m, i−a] + αyx [−a + 1] Px [m, i−a + 1] + ... + Αyx [0] Px [m, i] +... + Αyx [b] Px [m, i + b] and a weighted average power of the power Py [m, i] Pavg, yy [m, i] = αyy [−a] Py [m, i−a] + αyy [−a + 1] Py [m, i−a + 1] +... + Αyy [0] Py [m, i] + ... + αyy [b] Py [m, i + b] for calculating the fourth weighted average unit, and the weighted average power Pavg, xx [m, i] is multiplied by the first efficiency γxx to obtain the phase rotation amount φxx. [M, i] = γxx [m, i] Pavg, xx [m, i] for generating a first phase rotation amount generator, and the weighted average power Pavg, xy [m, i] with a second efficiency. Multiplying γxy, phase rotation amount φxy [m, i] = γxy [m, i] Pavg, xy [m, i] A second phase rotation amount generation unit to generate, and the weighted average power Pavg, yx [m, i] is multiplied by a third efficiency γyx to obtain a phase rotation amount φyx [m, i] = γyx [m, i]. A third phase rotation amount generating unit for generating Pavg, yx [m, i], and multiplying the weighted average power Pavg, yy [m, i] by a fourth efficiency γyy to obtain a phase rotation amount φyy [m, i] = γyy [m, i] Pavg, yy [m, i] for generating a fourth phase rotation amount generator, and adding the phase rotation amounts φxx [m, i] and φxy [m, i] A first addition unit for calculating complex phase rotation amount φx [m, i] = φxx [m, i] + φxy [m, i], and the phase rotation amounts φyx [m, i] and φyy [m, i] is added to calculate a complex phase rotation amount φy [m, i] = φyx [m, i] + φyy [m, i] An adder, a first complex phase rotation signal generation unit that converts the complex phase rotation amount φx [m, i] into a complex signal exp (−jφx [m, i]), and the complex phase rotation amount φy [ m, i] is converted to a complex signal exp (-jφy [m, i]), and the complex signal is added to the first complex digital signal sequence to which linear distortion is added. A first complex phase rotation unit that gives a complex phase rotation by multiplying exp (−jφx [m, i]), and the complex signal exp (− jφy [m, i]) is multiplied by a second complex phase rotator that gives a complex phase rotation, and the complex digital signal is given the complex phase rotation by the first complex phase rotator. Waveform distortion transfer function Hpre, x [m] (f Inverse function Hpre, by adding x [m] -1 (f) or the complex conjugate function Hpre, x [m] * ( f) the transfer function Hpost, x [m] waveform distortion with a (f) of, The first linear distortion removing unit for removing waveform distortion in the first linear distortion adding unit, and the linear waveform distortion with respect to the complex digital signal given the complex phase rotation by the second complex phase rotating unit. The transfer function Hpre, y [m] (f) of the inverse function Hpre, y [m] −1 (f) or the complex conjugate function Hpre, y [m] * (f) a second linear distortion removing unit that removes the waveform distortion in the second linear distortion adding unit by adding the waveform distortion included in f).

この発明に係る光受信器は、デジタル逆伝搬方式よりも小さな回路規模と消費電力でファイバ非線形光学効果に起因する波形歪みを等化することができ、伝送品質を向上させることができる。   The optical receiver according to the present invention can equalize waveform distortion caused by the fiber nonlinear optical effect with a circuit scale and power consumption smaller than those of the digital back propagation method, and can improve transmission quality.

この発明の実施例1に係る光受信器の構成を示すブロック図である。It is a block diagram which shows the structure of the optical receiver which concerns on Example 1 of this invention. この発明の実施例1に係る光受信器のデジタル信号処理集積回路の構成を示すブロック図である。It is a block diagram which shows the structure of the digital signal processing integrated circuit of the optical receiver which concerns on Example 1 of this invention. この発明の実施例1に係る非線形等化回路の構成を示すブロック図である。1 is a block diagram showing a configuration of a nonlinear equalizer circuit according to Embodiment 1 of the present invention. FIG. この発明の実施例1に係るデジタル信号処理回路の構成を示すブロック図である。1 is a block diagram showing a configuration of a digital signal processing circuit according to Embodiment 1 of the present invention. この発明の実施例1に係るデジタル信号処理回路の波長分散値と積算された非線形位相回転量との関係及びその簡略化を示す図である。It is a figure which shows the relationship between the chromatic dispersion value of the digital signal processing circuit which concerns on Example 1 of this invention, and the integrated nonlinear phase rotation amount, and its simplification. この発明の実施例1に係るデジタル信号処理回路の波長分散値と積算された非線形位相回転量との関係及びその簡略化を示す図である。It is a figure which shows the relationship between the chromatic dispersion value of the digital signal processing circuit which concerns on Example 1 of this invention, and the integrated nonlinear phase rotation amount, and its simplification. この発明の実施例1に係るデジタル信号処理回路の波長分散値と積算された非線形位相回転量との関係及びその簡略化を示す図である。It is a figure which shows the relationship between the chromatic dispersion value of the digital signal processing circuit which concerns on Example 1 of this invention, and the integrated nonlinear phase rotation amount, and its simplification. この発明の実施例1に係る非線形等化回路の非線形等化の概念を示す図である。It is a figure which shows the concept of the nonlinear equalization of the nonlinear equalization circuit based on Example 1 of this invention. この発明の実施例1に係る光受信器のデジタル信号処理集積回路の機能をシミュレートした構成を示すブロック図である。It is a block diagram which shows the structure which simulated the function of the digital signal processing integrated circuit of the optical receiver which concerns on Example 1 of this invention. この発明の実施例1に係る非線形等化回路の等化段数依存性を示す図である。It is a figure which shows the equalization stage number dependence of the nonlinear equalization circuit based on Example 1 of this invention. 多中継光伝送路の構成例と順方向伝搬の逐次計算方法の概念を示す図である。It is a figure which shows the concept of the structural example of a multi-relay optical transmission line, and the sequential calculation method of a forward propagation. デジタル逆伝搬方式の概念を示す図である。It is a figure which shows the concept of a digital back propagation system.

この発明の実施例1について以下説明する。   Embodiment 1 of the present invention will be described below.

この発明の実施例1に係る光受信器、非線形等化回路及びデジタル信号処理回路について図1から図8までを参照しながら説明する。図1は、この発明の実施例1に係る光受信器の構成を示すブロック図である。なお、各図中、同一符号は同一又は相当部分を示す。   An optical receiver, a nonlinear equalization circuit, and a digital signal processing circuit according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 is a block diagram showing a configuration of an optical receiver according to Embodiment 1 of the present invention. In addition, in each figure, the same code | symbol shows the same or equivalent part.

図1において、光受信器は、局部発振光源100と、偏波ダイバーシチ型の光90度ハイブリッド回路200と、4つのバランス型の光子検出器300A、300B、300C、300Dと、4つのアナログデジタル変換器(ADC)400A、400B、400C、400Dと、デジタル信号処理集積回路500とが設けられている。   In FIG. 1, an optical receiver includes a local oscillation light source 100, a polarization diversity optical 90-degree hybrid circuit 200, four balanced photon detectors 300A, 300B, 300C, and 300D, and four analog-to-digital conversions. A device (ADC) 400A, 400B, 400C, 400D and a digital signal processing integrated circuit 500 are provided.

図2は、この発明の実施例1に係る光受信器のデジタル信号処理集積回路の構成を示すブロック図である。   FIG. 2 is a block diagram showing the configuration of the digital signal processing integrated circuit of the optical receiver according to Embodiment 1 of the present invention.

図2において、デジタル信号処理集積回路500は、前処理回路502と、波長分散補償回路503と、非線形等化回路504と、タイミング抽出回路505と、適応等化回路506と、搬送波周波数オフセット補償回路507と、搬送波位相オフセット補償回路508と、識別回路509とが設けられている。   In FIG. 2, a digital signal processing integrated circuit 500 includes a preprocessing circuit 502, a chromatic dispersion compensation circuit 503, a nonlinear equalization circuit 504, a timing extraction circuit 505, an adaptive equalization circuit 506, and a carrier frequency offset compensation circuit. 507, a carrier phase offset compensation circuit 508, and an identification circuit 509 are provided.

図3は、この発明の実施例1に係る非線形等化回路の構成を示すブロック図である。   FIG. 3 is a block diagram showing the configuration of the nonlinear equalization circuit according to Embodiment 1 of the present invention.

図3において、非線形等化回路504は、N段(N≧1)のデジタル信号処理回路で構成され、1段目のデジタル信号処理回路11と、2段目のデジタル信号処理回路12と、m(m<N)段目のデジタル信号処理回路1mと、N段目のデジタル信号処理回路1Nとが設けられている。   In FIG. 3, a non-linear equalization circuit 504 is composed of N stages (N ≧ 1) of digital signal processing circuits, and includes a first stage digital signal processing circuit 11, a second stage digital signal processing circuit 12, and m. An (m <N) -th stage digital signal processing circuit 1m and an N-th stage digital signal processing circuit 1N are provided.

図4は、この発明の実施例1に係るデジタル信号処理回路の構成を示すブロック図である。この図4は、非線形等化回路504を構成するN段のデジタル信号処理回路のうち、1段分(m段目)を示す。   FIG. 4 is a block diagram showing the configuration of the digital signal processing circuit according to Embodiment 1 of the present invention. FIG. 4 shows one stage (m-th stage) of N stages of digital signal processing circuits constituting the nonlinear equalization circuit 504.

図4において、デジタル信号処理回路1mは、2つの波長分散付加部1A、1Bと、2つの電力計算部2A、2Bと、4つの重み付け平均部3A、3B、3C、3Dと、4つの効率乗算部4A、4B、4C、4Dと、2つの加算部5A、5Bと、2つの複素位相回転用信号生成部6A、6Bと、2つの複素位相回転部7A、7Bと、2つの波長分散除去部8A、8Bとが設けられている。   In FIG. 4, the digital signal processing circuit 1m includes two chromatic dispersion addition units 1A and 1B, two power calculation units 2A and 2B, four weighted averaging units 3A, 3B, 3C, and 3D, and four efficiency multiplications. 4A, 4B, 4C, 4D, two adders 5A, 5B, two complex phase rotation signal generation units 6A, 6B, two complex phase rotation units 7A, 7B, and two chromatic dispersion removal units 8A and 8B are provided.

なお、波長分散付加部1A、1Bや、波長分散除去部8A、8Bは、時間領域もしくは周波数領域での有限長インパルス応答フィルタにより実現可能である。   The chromatic dispersion adding units 1A and 1B and the chromatic dispersion removing units 8A and 8B can be realized by a finite-length impulse response filter in the time domain or the frequency domain.

また、N≧2の場合、m段目の波長分散除去部8A(波長分散付加量pxとする)とm+1段目の波長分散付加部1A(波長分散付加量qxとする)とは、あえて2つの機能ブロックに分割せず、波長分散付加量px+qxの単一の波長分散付加部としてもよい。同様に、m段目の波長分散除去部8B(波長分散付加量pyとする)とm+1段目の波長分散付加部1B(波長分散付加量qyとする)とは、あえて2つの機能ブロックに分割せず、波長分散付加量py+qyの単一の波長分散付加部としてもよい。すなわち、N段(N≧2)のデジタル信号処理回路のうち、m(m<N)段目のデジタル信号処理回路は、伝達関数Hpost,z[m](f)とHpre,z[m+1](f)で表される2つの線形フィルタ(z∈{x,y})を、単一の線形フィルタHjoint,z[m:m+1](f)として実現してもよい。   When N ≧ 2, the m-th stage chromatic dispersion removal unit 8A (referred to as chromatic dispersion addition amount px) and the m + 1-th stage chromatic dispersion addition unit 1A (referred to as chromatic dispersion addition amount qx) are 2 Instead of being divided into two functional blocks, a single chromatic dispersion addition unit having a chromatic dispersion addition amount px + qx may be used. Similarly, the m-th stage chromatic dispersion removal unit 8B (referred to as chromatic dispersion addition amount py) and the m + 1-th stage chromatic dispersion addition unit 1B (referred to as chromatic dispersion addition amount qy) are intentionally divided into two functional blocks. Alternatively, a single chromatic dispersion addition unit having a chromatic dispersion addition amount py + qy may be used. That is, among the N-stage (N ≧ 2) digital signal processing circuits, the m (m <N) -th stage digital signal processing circuit has the transfer functions Hpost, z [m] (f) and Hpre, z [m + 1]. The two linear filters (zε {x, y}) represented by (f) may be realized as a single linear filter Hjoint, z [m: m + 1] (f).

つぎに、この実施例1に係る光受信器、非線形等化回路及びデジタル信号処理回路の動作について図面を参照しながら説明する。   Next, operations of the optical receiver, the nonlinear equalization circuit, and the digital signal processing circuit according to the first embodiment will be described with reference to the drawings.

図1において、光受信器の局部発振光源100は、図示しない光伝送路から入力される光信号(受信光信号)の中心波長と概略一致した中心波長で発振し、単一波長のCW(Continuous Wave)光信号を生成して、このCW光信号を偏波ダイバーシチ型の光90度ハイブリッド回路200に出力する。   In FIG. 1, a local oscillation light source 100 of an optical receiver oscillates at a center wavelength approximately coincident with the center wavelength of an optical signal (received optical signal) input from an optical transmission line (not shown), and has a single wavelength CW (Continuous Wave) optical signal is generated, and this CW optical signal is output to the polarization diversity optical 90-degree hybrid circuit 200.

光90度ハイブリッド回路200は、図示しない光伝送路から入力される受信光信号と、局部発振光源100から入力されるCW光信号とを混合し、8通りの干渉を生じさせた光信号を出力する。   The optical 90-degree hybrid circuit 200 mixes a received optical signal input from an optical transmission line (not shown) and a CW optical signal input from the local oscillation light source 100, and outputs an optical signal in which eight kinds of interference are generated. To do.

すなわち、光90度ハイブリッド回路200は、受信光信号の直交する2つの偏波モード(X/Y)と、受信光信号とCW光信号との間の位相差(0度/180度/90度/270度)について、X偏波(0度)の干渉光信号と、X偏波(180度)の干渉光信号とをバランス型の光子検出器300Aに出力する。   That is, the optical 90-degree hybrid circuit 200 includes two orthogonal polarization modes (X / Y) of the received optical signal and a phase difference (0 degree / 180 degree / 90 degree) between the received optical signal and the CW optical signal. / 270 degrees), an X polarization (0 degree) interference light signal and an X polarization (180 degrees) interference light signal are output to the balanced photon detector 300A.

同様に、光90度ハイブリッド回路200は、X偏波(90度)の干渉光信号と、X偏波(270度)の干渉光信号とをバランス型の光子検出器300Bに出力し、Y偏波(0度)の干渉光信号と、Y偏波(180度)の干渉光信号とをバランス型の光子検出器300Cに出力し、Y偏波(90度)の干渉光信号と、Y偏波(270度)の干渉光信号とをバランス型の光子検出器300Dに出力する。   Similarly, the optical 90-degree hybrid circuit 200 outputs an X-polarized (90 degrees) interference optical signal and an X-polarized (270 degrees) interference optical signal to the balanced photon detector 300B, and outputs a Y-polarized light. The wave (0 degree) interference light signal and the Y polarization (180 degree) interference light signal are output to the balanced photon detector 300C, and the Y polarization (90 degree) interference light signal and the Y polarization The interference light signal of the wave (270 degrees) is output to the balanced photon detector 300D.

光子検出器300Aは、光90度ハイブリッド回路200から入力されるX偏波(0度)の干渉光信号と、X偏波(180度)の干渉光信号とをそれぞれ二乗検波して電気信号に変換し、各電気信号の差分をアナログデジタル変換器400Aに出力する。   The photon detector 300A square-detects the X-polarized (0 degree) interference optical signal and the X-polarized (180 degree) interference optical signal input from the optical 90-degree hybrid circuit 200, respectively, and converts them into electrical signals. Then, the difference between each electric signal is output to the analog-to-digital converter 400A.

同様に、光子検出器300Bは、光90度ハイブリッド回路200から入力されるX偏波(90度)の干渉光信号と、X偏波(270度)の干渉光信号とをそれぞれ二乗検波し電気信号に変換し、各電気信号の差分をアナログデジタル変換器400Bに出力する。また、光子検出器300Cは、光90度ハイブリッド回路200から入力されるY偏波(0度)の干渉光信号と、Y偏波(180度)の干渉光信号とをそれぞれ二乗検波し電気信号に変換し、各電気信号の差分をアナログデジタル変換器400Cに出力する。さらに、光子検出器300Dは、光90度ハイブリッド回路200から入力されるY偏波(90度)の干渉光信号と、Y偏波(270度)の干渉光信号とをそれぞれ二乗検波し電気信号に変換し、各電気信号の差分をアナログデジタル変換器400Dに出力する。   Similarly, the photon detector 300B square-detects the X-polarized (90 degrees) interference optical signal and the X-polarized (270 degrees) interference optical signal input from the optical 90-degree hybrid circuit 200, respectively. It converts into a signal and outputs the difference of each electric signal to the analog-digital converter 400B. The photon detector 300C square-detects the Y-polarization (0 degree) interference optical signal and the Y-polarization (180 degree) interference optical signal input from the optical 90-degree hybrid circuit 200, respectively, and performs an electrical signal detection. And the difference between the electric signals is output to the analog-to-digital converter 400C. Further, the photon detector 300D square-detects the Y-polarization (90 degrees) interference optical signal and the Y-polarization (270 degrees) interference optical signal input from the optical 90-degree hybrid circuit 200, respectively, and performs electrical detection. And the difference between the electric signals is output to the analog-to-digital converter 400D.

アナログデジタル変換器400Aは、光子検出器300Aから入力される電気信号をサンプリングすることで離散時間化及び量子化したデジタル信号XIをデジタル信号処理集積回路500に出力する。   The analog-to-digital converter 400A samples the electrical signal input from the photon detector 300A and outputs a digital signal XI that has been discrete-timed and quantized to the digital signal processing integrated circuit 500.

同様に、アナログデジタル変換器400Bは、光子検出器300Bから入力される電気信号をサンプリングすることで離散時間化及び量子化したデジタル信号XQをデジタル信号処理集積回路500に出力する。また、アナログデジタル変換器400Cは、光子検出器300Cから入力される電気信号をサンプリングすることで離散時間化及び量子化したデジタル信号YIをデジタル信号処理集積回路500に出力する。さらに、アナログデジタル変換器400Dは、光子検出器300Dから入力される電気信号をサンプリングすることで離散時間化及び量子化したデジタル信号YQをデジタル信号処理集積回路500に出力する。   Similarly, the analog-to-digital converter 400B samples the electrical signal input from the photon detector 300B and outputs a digital signal XQ that has been discrete-timed and quantized to the digital signal processing integrated circuit 500. Further, the analog-to-digital converter 400C samples the electrical signal input from the photon detector 300C, and outputs the digital signal YI that has been discrete time and quantized to the digital signal processing integrated circuit 500. Further, the analog-to-digital converter 400D samples the electrical signal input from the photon detector 300D, and outputs the digital signal YQ that has been discrete time and quantized to the digital signal processing integrated circuit 500.

図2において、デジタル信号処理集積回路500の前処理回路502は、アナログデジタル変換器400Aから入力されるデジタル信号XI、アナログデジタル変換器400Bから入力されるデジタル信号XQ、アナログデジタル変換器400Cから入力されるデジタル信号YI、アナログデジタル変換器400Dから入力されるデジタル信号YQに対して、4つのデジタル信号の振幅ばらつきを抑圧するための振幅正規化や、遅延差補正のためのデスキュー等の前処理を行い、処理後の4つのデジタル信号を波長分散補償回路503に出力する。   In FIG. 2, the pre-processing circuit 502 of the digital signal processing integrated circuit 500 includes a digital signal XI input from the analog-digital converter 400A, a digital signal XQ input from the analog-digital converter 400B, and an input from the analog-digital converter 400C. Pre-processing such as amplitude normalization for suppressing amplitude variations of the four digital signals and deskew for delay difference correction with respect to the digital signal YI and the digital signal YQ input from the analog-digital converter 400D And outputs the four processed digital signals to the chromatic dispersion compensation circuit 503.

波長分散補償回路503は、前処理回路502から入力される4つのデジタル信号に対して、時間領域等化若しくは周波数領域等化による線形波形等化を行うことで、伝送路で生じる波長分散を概略100%補償し、波長分散補償後の4つのデジタル信号を非線形等化回路504に出力する。   The chromatic dispersion compensation circuit 503 roughly performs chromatic dispersion generated in the transmission path by performing linear waveform equalization by time domain equalization or frequency domain equalization on the four digital signals input from the preprocessing circuit 502. Four digital signals after 100% compensation and chromatic dispersion compensation are output to the nonlinear equalization circuit 504.

非線形等化回路504は、波長分散補償回路503から入力される4つのデジタル信号(2対の複素信号とみなす)に対して後述する非線形等化デジタル信号処理を適用し、非線形等化後の4つのデジタル信号(2対の複素信号とみなす)をタイミング抽出回路505に出力する。   The non-linear equalization circuit 504 applies non-linear equalization digital signal processing, which will be described later, to the four digital signals (considered as two pairs of complex signals) input from the chromatic dispersion compensation circuit 503, so that the non-linear equalization 4 Two digital signals (considered as two pairs of complex signals) are output to the timing extraction circuit 505.

タイミング抽出回路505は、非線形等化回路504から入力される4つのデジタル信号に対して識別タイミングの抽出を適応的に行い、アナログデジタル変換器400A〜400Dのサンプリングタイミングをフィードバック制御することで、オーバサンプリング比2倍のサンプリングレートの4つのデジタルデータを適応等化回路506に出力する。   The timing extraction circuit 505 adaptively extracts the identification timing from the four digital signals input from the nonlinear equalization circuit 504, and performs feedback control on the sampling timing of the analog-to-digital converters 400A to 400D. Four digital data having a sampling rate of twice the sampling ratio are output to the adaptive equalization circuit 506.

適応等化回路506は、タイミング抽出回路505から入力される4つのデジタル信号に対して、包絡線一定化規範のようなアルゴリズムを用いて、偏波多重分離を適応的に行い、なおかつ、伝送路のPMD(偏波モード分散)等を補償した4つのデジタル信号を搬送波周波数オフセット補償回路507に出力する。   The adaptive equalization circuit 506 adaptively performs polarization multiplexing / demultiplexing on the four digital signals input from the timing extraction circuit 505 using an algorithm such as an envelope stabilization standard, and further, a transmission line The four digital signals compensated for PMD (polarization mode dispersion) and the like are output to the carrier frequency offset compensation circuit 507.

搬送波周波数オフセット補償回路507は、適応等化回路506から入力される4つのデジタル信号における、局部発振光源100から出力されるCW光信号と受信光信号との中心周波数差を補償し、補償後の4つのデジタル信号を搬送波位相オフセット補償回路508に出力する。   The carrier frequency offset compensation circuit 507 compensates for the center frequency difference between the CW optical signal output from the local oscillation light source 100 and the received optical signal in the four digital signals input from the adaptive equalization circuit 506, and after compensation. The four digital signals are output to the carrier phase offset compensation circuit 508.

搬送波位相オフセット補償回路508は、搬送波周波数オフセット補償回路507から入力される4つのデジタル信号に対して、X偏波成分とY偏波成分それぞれについて信号点がI軸及びQ軸を軸とする複素平面において、信号点が45度、135度、−45度、−135度の4点に概略収束するよう、適応的に位相オフセット補償を行い、位相オフセット補償後のデジタル信号を識別回路509に出力する。   The carrier phase offset compensation circuit 508 is a complex that uses the four digital signals input from the carrier frequency offset compensation circuit 507 as signal points for the X polarization component and the Y polarization component. On the plane, adaptively perform phase offset compensation so that the signal points converge to four points of 45 degrees, 135 degrees, -45 degrees, and -135 degrees, and output the digital signal after the phase offset compensation to the identification circuit 509. To do.

識別回路509は、搬送波位相オフセット補償回路508から入力される4つのデジタル信号に対して2値識別を行い、識別後の4つの2値信号を図示しない外部に出力する。   The identification circuit 509 performs binary identification on the four digital signals input from the carrier phase offset compensation circuit 508, and outputs the four binary signals after identification to the outside (not shown).

図3において、N段(N≧1)のデジタル信号処理回路で構成された非線形等化回路504の1段目のデジタル信号処理回路11は、波長分散補償回路503から複素デジタル信号dx[0]=Exi[0]+jExq[0]と、dy[0]=Eyi[0]+jEyq[0]が入力され、1段分の非線形等化を行った後に、等化後の複素デジタル信号d’x[0]=E’xi[0]+jE’xq[0]と、d’y[0]=E’yi[0]+jE’yq[0]を2段目のデジタル信号処理回路12に出力する。   In FIG. 3, the digital signal processing circuit 11 in the first stage of the non-linear equalization circuit 504 composed of N stages (N ≧ 1) of the digital signal processing circuit includes a complex digital signal dx [0] from the chromatic dispersion compensation circuit 503. = Exi [0] + jExq [0] and dy [0] = Eyi [0] + jEyq [0] are input, and after performing one-stage nonlinear equalization, the equalized complex digital signal d′ x [0] = E′xi [0] + jE′xq [0] and d′ y [0] = E′yi [0] + jE′yq [0] are output to the second-stage digital signal processing circuit 12. .

2段目のデジタル信号処理回路12は、1段目のデジタル信号処理回路11から複素デジタル信号dx[1](=d’x[0])と、dy[1](=d’y[0])が入力され、1段分の非線形等化を行った後に、等化後の複素デジタル信号d’x[1]=E’xi[1]+jE’xq[1]と、d’y[1]=E’yi[1]+jE’yq[1]を3段目のデジタル信号処理回路(図示せず)に出力する。   The second-stage digital signal processing circuit 12 receives the complex digital signal dx [1] (= d′ x [0]) and dy [1] (= d′ y [0] from the first-stage digital signal processing circuit 11. ]) Is input, and after performing one-stage nonlinear equalization, the equalized complex digital signal d′ x [1] = E′xi [1] + jE′xq [1] and d′ y [ 1] = E′yi [1] + jE′yq [1] is output to the third-stage digital signal processing circuit (not shown).

m(m<N)段目のデジタル信号処理回路1mは、m−1段目のデジタル信号処理回路(図示せず)から複素デジタル信号dx[m−1](=d’x[m−2])と、dy[m−1](=d’y[m−2])とが入力され、1段分の非線形等化を行った後に、等化後の複素デジタル信号d’x[m−1]=E’xi[m−1]+jE’xq[m−1]と、d’y[m−1]=E’yi[m−1]+jE’yq[m−1]をm+1段目のデジタル信号処理回路(図示せず)に出力する。   The m (m <N) stage digital signal processing circuit 1m receives a complex digital signal dx [m−1] (= d′ x [m−2] from an m−1 stage digital signal processing circuit (not shown). )) And dy [m−1] (= d′ y [m−2]) are input, and after performing nonlinear equalization for one stage, the equalized complex digital signal d′ x [m −1] = E′xi [m−1] + jE′xq [m−1] and d′ y [m−1] = E′yi [m−1] + jE′yq [m−1] in m + 1 stages. Output to a digital signal processing circuit (not shown).

N段目のデジタル信号処理回路1Nは、N−1段目のデジタル信号処理回路(図示せず)から複素デジタル信号dx[N−1](=d’x[N−2])と、dy[N−1](=d’y[N−2])が入力され、1段分の非線形等化を行った後に、等化後の複素デジタル信号d’x[N−1]=E’xi[N−1]+jE’xq[N−1]と、d’y[N−1]=E’yi[N−1]+jE’yq[N−1]をタイミング抽出回路505に出力する。   The N-th stage digital signal processing circuit 1N receives a complex digital signal dx [N-1] (= d'x [N-2]) from the N-1th stage digital signal processing circuit (not shown), and dy. After [N−1] (= d′ y [N−2]) is input and nonlinear equalization for one stage is performed, the equalized complex digital signal d′ x [N−1] = E ′ xi [N−1] + jE′xq [N−1] and d′ y [N−1] = E′yi [N−1] + jE′yq [N−1] are output to the timing extraction circuit 505.

図4において、波長分散付加部1Aは、前段から入力される複素デジタル信号系列dx[m,i]=Exi[m]+jExq[m]に対して波長分散を付加し、複素位相回転部7Aと、電力計算部2Aに出力する。同様に、波長分散付加部1Bは、前段から入力される複素デジタル信号系列dy[m,i]=Eyi[m]+jEyq[m]に対して波長分散を付加し、複素位相回転部7Bと、電力計算部2Bに出力する。例えば、波長分散付加部1A、1Bの波長分散量は−600ps/nmとする。すなわち、第1の線形歪み付加部(波長分散付加部1A)は、入力する複素デジタル信号系列dx[m,i]に対し、伝達関数Hpre,x[m](f)の線形な波形歪みを付加する。同様に、第2の線形歪み付加部(波長分散付加部1B)は、入力する複素デジタル信号系列dy[m,i]に対し、伝達関数Hpre,y[m](f)の線形な波形歪みを付加する。   In FIG. 4, the chromatic dispersion adding unit 1A adds chromatic dispersion to the complex digital signal sequence dx [m, i] = Exi [m] + jExq [m] input from the previous stage, and the complex phase rotation unit 7A And output to the power calculator 2A. Similarly, the chromatic dispersion adding unit 1B adds chromatic dispersion to the complex digital signal sequence dy [m, i] = Eyi [m] + jEyq [m] input from the previous stage, and the complex phase rotation unit 7B. It outputs to the electric power calculation part 2B. For example, the chromatic dispersion amount of the chromatic dispersion adding units 1A and 1B is set to −600 ps / nm. That is, the first linear distortion adding unit (wavelength dispersion adding unit 1A) performs linear waveform distortion of the transfer function Hpre, x [m] (f) on the input complex digital signal sequence dx [m, i]. Append. Similarly, the second linear distortion adding unit (wavelength dispersion adding unit 1B) performs linear waveform distortion of the transfer function Hpre, y [m] (f) with respect to the input complex digital signal sequence dy [m, i]. Is added.

電力計算部2Aは、波長分散付加部1Aから入力される波長分散付加後の複素デジタル信号系列の絶対値の二乗、すなわち電力Px[m,i]を計算し、重み付け平均部3Aと、重み付け平均部3Cに出力する。同様に、電力計算部2Bは、波長分散付加部1Bから入力される波長分散付加後の複素デジタル信号系列の絶対値の二乗、すなわち電力Py[m,i]を計算し、重み付け平均部3Bと、重み付け平均部3Dに出力する。   The power calculation unit 2A calculates the square of the absolute value of the complex digital signal sequence after wavelength dispersion addition input from the wavelength dispersion addition unit 1A, that is, the power Px [m, i], and the weighted average unit 3A and the weighted average Output to part 3C. Similarly, the power calculation unit 2B calculates the square of the absolute value of the complex digital signal sequence after wavelength dispersion addition input from the wavelength dispersion addition unit 1B, that is, the power Py [m, i], and the weighted average unit 3B. To the weighted average unit 3D.

重み付け平均部3Aは、電力Px[m,i]について、その重み付け平均電力Pavg,xx[m,i]=αxx[−a]Px[m,i−a]+αxx[−a+1]Px[m,i−a+1]+・・・+αxx[0]Px[m,i]+・・・+αxx[b]Px[m,i+b]を計算し、Pavg,xx[m,i]を効率乗算部4Aに出力する。αxx[−a],αxx[−a+1],αxx[b]が重みに相当する。   The weighted average unit 3A, for the power Px [m, i], the weighted average power Pavg, xx [m, i] = αxx [−a] Px [m, i−a] + αxx [−a + 1] Px [m, i−a + 1] +... + αxx [0] Px [m, i] +... + αxx [b] Px [m, i + b] is calculated, and Pavg, xx [m, i] is input to the efficiency multiplier 4A. Output. αxx [−a], αxx [−a + 1], and αxx [b] correspond to weights.

重み付け平均部3Bは、電力Py[m,i]について、その重み付け平均電力Pavg,xy[m,i]=αxy[−a]Py[m,i−a]+αxy[−a+1]Py[m,i−a+1]+・・・+αxy[0]Py[m,i]+・・・+αxy[b]Py[m,i+b]を計算し、Pavg,xy[m,i]を効率乗算部4Bに出力する。αxy[−a],αxy[−a+1],αxy[b]が重みに相当する。   The weighted average unit 3B, for the power Py [m, i], the weighted average power Pavg, xy [m, i] = αxy [−a] Py [m, i−a] + αxy [−a + 1] Py [m, i−a + 1] +... + αxy [0] Py [m, i] +... + αxy [b] Py [m, i + b] is calculated, and Pavg, xy [m, i] is calculated in the efficiency multiplier 4B. Output. αxy [−a], αxy [−a + 1], and αxy [b] correspond to weights.

重み付け平均部3Cは、電力Px[m,i]について、その重み付け平均電力Pavg,yx[m,i]=αyx[−a]Px[m,i−a]+αyx[−a+1]Px[m,i−a+1]+・・・+αyx[0]Px[m,i]+・・・+αyx[b]Px[m,i+b]を計算し、Pavg,yx[m,i]を効率乗算部4Cに出力する。αyx[−a],αyx[−a+1],αyx[b]が重みに相当する。   The weighted average unit 3C, for the power Px [m, i], the weighted average power Pavg, yx [m, i] = αyx [−a] Px [m, i−a] + αyx [−a + 1] Px [m, i−a + 1] +... + αyx [0] Px [m, i] +... + αyx [b] Px [m, i + b] is calculated, and Pavg, yx [m, i] is input to the efficiency multiplier 4C. Output. αyx [−a], αyx [−a + 1], and αyx [b] correspond to weights.

重み付け平均部3Dは、電力Py[m,i]について、その重み付け平均電力Pavg,yy[m,i]=αyy[−a]Py[m,i−a]+αyy[−a+1]Py[m,i−a+1]+・・・+αyy[0]Py[m,i]+・・・+αyy[b]Py[m,i+b]を計算し、Pavg,yy[m,i]を効率乗算部4Dに出力する。αyy[−a],αyy[−a+1],αyy[b]が重みに相当する。   The weighted average unit 3D, for the power Py [m, i], the weighted average power Pavg, yy [m, i] = αyy [−a] Py [m, i−a] + αyy [−a + 1] Py [m, i−a + 1] +... + αyy [0] Py [m, i] +... + αyy [b] Py [m, i + b] is calculated, and Pavg, yy [m, i] is input to the efficiency multiplier 4D. Output. αyy [−a], αyy [−a + 1], and αyy [b] correspond to weights.

平均区間−a〜bは、例えばa=b=4とし、重みは、例えばαxx[−a]=αxx[−a+1]=・・・=αxx[b]=1/9、αxy[−a]=αxy[−a+1]=・・・=αxy[b]=1/9、αyx[−a]=αyx[−a+1]=・・・=αyx[b]=1/9、αyy[−a]=αyy[−a+1]=・・・=αyy[b]=1/9とすればよい。   The average interval −a to b is, for example, a = b = 4, and the weights are, for example, αxx [−a] = αxx [−a + 1] =... = Αxx [b] = 1/9, αxy [−a]. = Αxy [−a + 1] =... = Αxy [b] = 1/9, αyx [−a] = αyx [−a + 1] =... = Αyx [b] = 1/9, αyy [−a] = Αyy [−a + 1] =... = Αyy [b] = 1/9.

効率乗算部4Aは、重み付け平均部3Aから入力される重み付け平均電力Pavg,xx[m,i]に非線形位相回転効率γxx[m]を乗算し、乗算結果φxx[m,i]=γxx[m]Pavg,xx[m,i]を加算部5Aに出力する。   The efficiency multiplier 4A multiplies the weighted average power Pavg, xx [m, i] input from the weighted average unit 3A by the nonlinear phase rotation efficiency γxx [m], and the multiplication result φxx [m, i] = γxx [m ] Pavg, xx [m, i] is output to the adder 5A.

効率乗算部4Bは、重み付け平均部3Bから入力される重み付け平均電力Pavg,xy[m,i]に非線形位相回転効率γxy[m]を乗算し、乗算結果φxy[m,i]=γxy[m]Pavg,xy[m,i]を加算部5Aに出力する。   The efficiency multiplier 4B multiplies the weighted average power Pavg, xy [m, i] input from the weighted average unit 3B by the nonlinear phase rotation efficiency γxy [m], and the multiplication result φxy [m, i] = γxy [m ] Pavg, xy [m, i] is output to the adder 5A.

効率乗算部4Cは、重み付け平均部3Cから入力される重み付け平均電力Pavg,yx[m,i]に非線形位相回転効率γyx[m]を乗算し、乗算結果φyx[m,i]=γyx[m]Pavg,yx[m,i]を加算部5Bに出力する。   The efficiency multiplier 4C multiplies the weighted average power Pavg, yx [m, i] input from the weighted average unit 3C by the nonlinear phase rotation efficiency γyx [m], and the multiplication result φyx [m, i] = γyx [m ] Pavg, yx [m, i] is output to the adder 5B.

効率乗算部4Dは、重み付け平均部3Dから入力される重み付け平均電力Pavg,yy[m,i]に非線形位相回転効率γyy[m]を乗算し、乗算結果φyy[m,i]=γyy[m]Pavg,yy[m,i]を加算部5Bに出力する。   The efficiency multiplier 4D multiplies the weighted average power Pavg, yy [m, i] input from the weighted average unit 3D by the nonlinear phase rotation efficiency γyy [m], and the multiplication result φyy [m, i] = γyy [m. ] Pavg, yy [m, i] is output to the adder 5B.

すなわち、第1の位相回転量生成部(効率乗算部4A)は、重み付け平均電力Pavg,xx[m,i]に第1の効率γxxを乗算して位相回転量φxx[m,i]=γxx[m,i]Pavg,xx[m,i]を生成する。また、第2の位相回転量生成部(効率乗算部4B)は、重み付け平均電力Pavg,xy[m,i]に第2の効率γxyを乗算して位相回転量φxy[m,i]=γxy[m,i]Pavg,xy[m,i]を生成する。また、第3の位相回転量生成部(効率乗算部4C)は、重み付け平均電力Pavg,yx[m,i]に第3の効率γyxを乗算して位相回転量φyx[m,i]=γyx[m,i]Pavg,yx[m,i]を生成する。さらに、第4の位相回転量生成部(効率乗算部4D)は、重み付け平均電力Pavg,yy[m,i]に第4の効率γyyを乗算して位相回転量φyy[m,i]=γyy[m,i]Pavg,yy[m,i]を生成する。   That is, the first phase rotation amount generation unit (efficiency multiplication unit 4A) multiplies the weighted average power Pavg, xx [m, i] by the first efficiency γxx to obtain the phase rotation amount φxx [m, i] = γxx. [M, i] Pavg, xx [m, i] is generated. Further, the second phase rotation amount generation unit (efficiency multiplication unit 4B) multiplies the weighted average power Pavg, xy [m, i] by the second efficiency γxy to obtain the phase rotation amount φxy [m, i] = γxy. [M, i] Pavg, xy [m, i] is generated. Further, the third phase rotation amount generation unit (efficiency multiplication unit 4C) multiplies the weighted average power Pavg, yx [m, i] by the third efficiency γyx to obtain the phase rotation amount φyx [m, i] = γyx. [M, i] Pavg, yx [m, i] is generated. Further, the fourth phase rotation amount generation unit (efficiency multiplication unit 4D) multiplies the weighted average power Pavg, yy [m, i] by the fourth efficiency γyy to obtain a phase rotation amount φyy [m, i] = γyy. [M, i] Pavg, yy [m, i] is generated.

加算部5Aは、重み付け平均部4Aから入力される非線形位相回転量φxx[m,i]と、重み付け平均部4Bから入力される非線形位相回転量φxy[m,i]との加算を行い、加算結果φx[m,i]=φxx[m,i]+φxy[m,i]を複素位相回転用信号生成部6Aに出力する。同様に、加算部5Bは、重み付け平均部4Cから入力される非線形位相回転量φyx[m,i]と、重み付け平均部4Dから入力される非線形位相回転量φyy[m,i]との加算を行い、加算結果φy[m,i]=φyx[m,i]+φyy[m,i]を複素位相回転用信号生成部6Bに出力する。   The adding unit 5A adds the nonlinear phase rotation amount φxx [m, i] input from the weighted average unit 4A and the nonlinear phase rotation amount φxy [m, i] input from the weighted average unit 4B. The result φx [m, i] = φxx [m, i] + φxy [m, i] is output to the complex phase rotation signal generation unit 6A. Similarly, the adding unit 5B adds the nonlinear phase rotation amount φyx [m, i] input from the weighted average unit 4C and the nonlinear phase rotation amount φyy [m, i] input from the weighted average unit 4D. Then, the addition result φy [m, i] = φyx [m, i] + φyy [m, i] is output to the complex phase rotation signal generation unit 6B.

複素位相回転用信号生成部6Aは、加算部5Aから入力されるφx[m,i]を複素信号exp(−jφx[m,i])に変換して複素位相回転部7Aに出力する。同様に、複素位相回転用信号生成部6Bは、加算部5Bから入力されるφy[m,i]を複素信号exp(−jφy[m,i])に変換して複素位相回転部7に出力する。   The complex phase rotation signal generation unit 6A converts φx [m, i] input from the addition unit 5A into a complex signal exp (−jφx [m, i]) and outputs the complex signal to the complex phase rotation unit 7A. Similarly, the complex phase rotation signal generation unit 6B converts φy [m, i] input from the addition unit 5B into a complex signal exp (−jφy [m, i]) and outputs it to the complex phase rotation unit 7. To do.

複素位相回転部7Aは、波長分散付加部1Aから入力される波長分散を付加された複素デジタル信号系列と、複素位相回転用信号生成部6Aから入力される複素信号exp(−jφx[m,i])との乗算を行うことで、伝送路の非線形位相回転の逆演算を行い、演算後の信号を波長分散除去部8Aに出力する。同様に、複素位相回転部7Bは、波長分散付加部1Bから入力される波長分散を付加された複素デジタル信号系列と、複素位相回転用信号生成部6Bから入力される複素信号exp(−jφy[m,i])との乗算を行うことで、伝送路の非線形位相回転の逆演算を行い、演算後の複素デジタル信号を波長分散除去部8Bに出力する。   The complex phase rotation unit 7A includes a complex digital signal sequence added with the chromatic dispersion input from the chromatic dispersion addition unit 1A and a complex signal exp (−jφx [m, i) input from the complex phase rotation signal generation unit 6A. ]), The inverse operation of the nonlinear phase rotation of the transmission line is performed, and the calculated signal is output to the chromatic dispersion removing unit 8A. Similarly, the complex phase rotation unit 7B includes the complex digital signal sequence to which the chromatic dispersion is input input from the chromatic dispersion addition unit 1B and the complex signal exp (−jφy [ m, i]) is multiplied by the inverse operation of the non-linear phase rotation of the transmission line, and the calculated complex digital signal is output to the chromatic dispersion removing unit 8B.

波長分散除去部8Aは、複素位相回転部7Aから入力される複素デジタル信号に、波長分散付加部1Aで付加した波長分散を除去するよう、逆極性の波長分散を与え、波長分散付加後の複素デジタル信号d’x「m」=E’xi[m]+jE’xq[m]を次段に出力する。同様に、波長分散除去部8Bは、複素位相回転部7Bから入力される複素デジタル信号に、波長分散付加部1Bで付加した波長分散を除去するよう、逆極性の波長分散を与え、波長分散付加後の複素デジタル信号d’y「m」=E’yi[m]+jE’yq[m]を次段に出力する。   The chromatic dispersion removing unit 8A gives the chromatic dispersion of opposite polarity to the complex digital signal input from the complex phase rotating unit 7A so as to remove the chromatic dispersion added by the chromatic dispersion adding unit 1A, and the complex signal after adding the chromatic dispersion is added. The digital signal d′ x “m” = E′xi [m] + jE′xq [m] is output to the next stage. Similarly, the chromatic dispersion removal unit 8B gives chromatic dispersion of opposite polarity to the complex digital signal input from the complex phase rotation unit 7B so as to remove the chromatic dispersion added by the chromatic dispersion addition unit 1B, and adds chromatic dispersion. The subsequent complex digital signal d′ y “m” = E′yi [m] + jE′yq [m] is output to the next stage.

すなわち、第1の線形歪み除去部(波長分散除去部8A)は、複素位相回転部7Aにより複素位相回転を与えられた複素デジタル信号に対して線形な波形歪みの伝達関数Hpre,x[m](f)の逆関数Hpre,x[m]-1(f)もしくは複素共役関数Hpre,x[m]*(f)を伝達関数Hpost,x[m](f)として有する波形歪みを付加することで、第1の線形歪み付加部における波形歪みを除去する。同様に、第2の線形歪み除去部(波長分散除去部8B)は、複素位相回転部7Bにより複素位相回転を与えられた複素デジタル信号に対して線形な波形歪みの伝達関数Hpre,y[m](f)の逆関数Hpre,y[m]-1(f)もしくは複素共役関数Hpre,y[m]*(f)を伝達関数Hpost,y[m](f)として有する波形歪みを付加することで、第2の線形歪み付加部における波形歪みを除去する。That is, the first linear distortion removing unit (wavelength dispersion removing unit 8A) has a linear waveform distortion transfer function Hpre, x [m] with respect to the complex digital signal given the complex phase rotation by the complex phase rotating unit 7A. Waveform distortion having the inverse function Hpre, x [m] −1 (f) of (f) or the complex conjugate function Hpre, x [m] * (f) as the transfer function Hpost, x [m] (f) is added. Thus, the waveform distortion in the first linear distortion adding unit is removed. Similarly, the second linear distortion removal unit (wavelength dispersion removal unit 8B) has a linear waveform distortion transfer function Hpre, y [m] with respect to the complex digital signal given the complex phase rotation by the complex phase rotation unit 7B. ] Add waveform distortion having inverse function Hpre, y [m] −1 (f) or complex conjugate function Hpre, y [m] * (f) as transfer function Hpost, y [m] (f) By doing so, the waveform distortion in the second linear distortion adding section is removed.

例えば、波長分散付加部1A及び波長分散付加部1Bで−600ps/nmの波長分散を付加していた場合、波長分散除去部8A及び波長分散除去部8Bは、+600ps/nmの波長分散を付加する。   For example, when chromatic dispersion of −600 ps / nm is added by the chromatic dispersion adding unit 1A and the chromatic dispersion adding unit 1B, the chromatic dispersion removing unit 8A and the chromatic dispersion removing unit 8B add chromatic dispersion of +600 ps / nm. .

図5A、図5B及び図5Cは、この発明の実施例1に係るデジタル信号処理回路の波長分散値と積算された非線形位相回転量との関係及びその簡略化を示す図である。また、図6は、この発明の実施例1に係る非線形等化回路の非線形等化の概念を示す図である。   5A, 5B and 5C are diagrams showing the relationship between the chromatic dispersion value of the digital signal processing circuit according to the first embodiment of the present invention and the accumulated nonlinear phase rotation amount and simplification thereof. FIG. 6 is a diagram showing the concept of nonlinear equalization of the nonlinear equalizer circuit according to Embodiment 1 of the present invention.

この発明の実施例1に係るデジタル信号処理回路では、ある特定の符号間干渉条件(例えば、特定の波長分散値CD[i])において与えられた非線形位相回転量の積算値(∫φNL[i])をそれぞれ補償する。最も正確には、図5Aのように、波長分散値(横軸:CD Value)と積算非線形位相回転量(縦軸:∫φNL)との関係が得られる。実際上は、図5Bに示すように離散化が可能であり、最も簡単には、図5Cに示すように、単一の波長分散値で代表させることも可能である。むろん、波長分散値の離散化の度合いが大きくなると等化能力が低下する。   In the digital signal processing circuit according to the first embodiment of the present invention, the integrated value (∫φNL [i] of the nonlinear phase rotation amount given under a specific intersymbol interference condition (for example, the specific chromatic dispersion value CD [i]). ]) Respectively. Most accurately, as shown in FIG. 5A, the relationship between the chromatic dispersion value (horizontal axis: CD Value) and the integrated nonlinear phase rotation amount (vertical axis: ∫φNL) is obtained. In practice, discretization is possible as shown in FIG. 5B, and most simply, it can be represented by a single chromatic dispersion value as shown in FIG. 5C. Of course, if the degree of discretization of the chromatic dispersion value increases, the equalization ability decreases.

上記の概念に基づき、図6に示される非線形等化回路を構成するデジタル信号処理回路のブロック構成により、簡易に非線形等化を行うことが可能である。ある特定の符号間干渉条件を作り出すために、まず、波長分散値CDaを付加してパルスを広げ、非線形位相回転(非線形位相回転量:φNLa)を与え、波長分散値−CDaを付加して事前に広げたパルスを元に戻す。これを1段とし、同様のデジタル信号処理回路を複数段設けることで非線形等化を実現する。この方法によれば、デジタル逆伝搬方式のように、1中継区間を複数区間に分割し、全中継区間をSSFM(スプリット・ステップ・フーリエ法)により逆方向伝搬する必要がない。非線形な伝送過程を忠実に再現することが不可能であり、等化能力ではやや劣る可能性があるが、デジタル信号処理回路を大幅に簡素化できる可能性がある。   Based on the above concept, it is possible to easily perform non-linear equalization by the block configuration of the digital signal processing circuit constituting the non-linear equalization circuit shown in FIG. In order to create a specific intersymbol interference condition, first, a chromatic dispersion value CDa is added to broaden a pulse, a nonlinear phase rotation (nonlinear phase rotation amount: φNLa) is given, and a chromatic dispersion value −CDa is added in advance. Return the pulse spread to. Non-linear equalization is realized by providing a single stage and providing a plurality of stages of similar digital signal processing circuits. According to this method, it is not necessary to divide one relay section into a plurality of sections and reversely propagate all relay sections by SSFM (split step Fourier method) unlike the digital back propagation method. Although it is impossible to faithfully reproduce the non-linear transmission process and the equalization ability may be slightly inferior, the digital signal processing circuit may be greatly simplified.

ここで、光受信器のデジタル信号処理集積回路500の機能を計算機でシミュレートし、非線形等化回路504の等化段数依存性について図7及び図8を参照しながら説明する。   Here, the function of the digital signal processing integrated circuit 500 of the optical receiver is simulated by a computer, and the dependence of the nonlinear equalization circuit 504 on the number of equalization stages will be described with reference to FIGS.

図7は、この発明の実施例1に係る光受信器のデジタル信号処理集積回路の機能をシミュレートした構成を示すブロック図である。また、図8は、この発明の実施例1に係る非線形等化回路の等化段数依存性を示す図である。   FIG. 7 is a block diagram showing a configuration simulating the function of the digital signal processing integrated circuit of the optical receiver according to the first embodiment of the present invention. FIG. 8 is a diagram showing the equalization stage number dependency of the nonlinear equalization circuit according to the first embodiment of the present invention.

この図7は、オフライン解析に用いたデジタル信号処理集積回路500全体の機能ブロック構成を示す。レート変換部501と、前処理部502Aと、波長分散補償部503Aと、非線形等化部504Aと、タイミング抽出部505Aと、適応等化部506Aと、搬送波周波数オフセット補償部507Aと、搬送波位相オフセット補償部508Aと、識別部509Aと、Q値計算部510とが設けられている。以下、各部の動作について説明する。   FIG. 7 shows a functional block configuration of the entire digital signal processing integrated circuit 500 used for off-line analysis. Rate conversion unit 501, preprocessing unit 502A, chromatic dispersion compensation unit 503A, nonlinear equalization unit 504A, timing extraction unit 505A, adaptive equalization unit 506A, carrier frequency offset compensation unit 507A, carrier phase offset A compensation unit 508A, an identification unit 509A, and a Q value calculation unit 510 are provided. Hereinafter, the operation of each unit will be described.

レート変換部501は、図示しない外部(デジタルサンプリングオシロスコープでの取得データ)から入力される4つのデジタル信号を、43Gb/sのビットレートに同期した速度にサンプリングレート変換し、レート変換後の4つのデジタル信号を前処理部502Aに出力した。   The rate converter 501 converts the sampling rate of four digital signals input from outside (not shown) (data acquired by a digital sampling oscilloscope) to a speed synchronized with the bit rate of 43 Gb / s, and converts the four digital signals after the rate conversion. The digital signal was output to the preprocessing unit 502A.

前処理部502Aは、4つのデジタル信号の振幅ばらつきを抑圧するための振幅正規化や、遅延差補正のためのデスキュー等の前処理を行い、処理後の4つのデジタル信号を波長分散補償部503Aに出力した。   The pre-processing unit 502A performs pre-processing such as amplitude normalization for suppressing amplitude variations of the four digital signals and deskew for delay difference correction, and the four digital signals after processing are processed into the chromatic dispersion compensation unit 503A. Output to.

波長分散補償部503Aは、前処理部502Aから入力される4つのデジタル信号に対して伝送路で生じた波長分散を補償し、波長分散補償後の4つのデジタル信号を非線形等化部504Aに出力した。   The chromatic dispersion compensation unit 503A compensates chromatic dispersion generated in the transmission path for the four digital signals input from the preprocessing unit 502A, and outputs the four digital signals after chromatic dispersion compensation to the nonlinear equalization unit 504A. did.

非線形等化部504Aは、波長分散補償部503Aから入力される4つのデジタル信号(2対の複素信号とみなす)に対して、非線形等化回路504の処理に相当する非線形等化デジタル信号処理を適用し、非線形等化後の4つのデジタル信号(2対の複素信号とみなす)をタイミング抽出部505Aに出力した。   The nonlinear equalization unit 504A performs nonlinear equalization digital signal processing corresponding to the processing of the nonlinear equalization circuit 504 on the four digital signals (considered as two pairs of complex signals) input from the chromatic dispersion compensation unit 503A. The four digital signals after application of nonlinear equalization (considered as two pairs of complex signals) were output to the timing extraction unit 505A.

タイミング抽出部505Aは、非線形等化部504Aから入力される4つのデジタル信号に対して識別タイミングの抽出を適応的に行い、オーバサンプリング比2倍のサンプリングレートの4つのデジタルデータを適応等化部506Aに出力した。   The timing extraction unit 505A adaptively extracts identification timings from the four digital signals input from the nonlinear equalization unit 504A and adaptively equalizes four digital data having a sampling rate of twice the oversampling ratio. Output to 506A.

適応等化部506Aは、タイミング抽出部505Aから入力される4つのデジタル信号に対して、包絡線一定化規範のようなアルゴリズムを用いて、偏波多重分離を適応的に行い、なおかつ、伝送路のPMD等を補償した4つのデジタル信号を搬送波周波数オフセット補償部507Aに出力した。   The adaptive equalization unit 506A adaptively performs polarization multiplexing / demultiplexing on the four digital signals input from the timing extraction unit 505A by using an algorithm such as an envelope constant standard, and further, a transmission line The four digital signals compensated for PMD and the like are output to the carrier frequency offset compensation unit 507A.

搬送波周波数オフセット補償部507Aは、適応等化部506Aから入力される4つのデジタル信号における、局部発振光源100から出力される連続光信号と受信光信号との中心周波数差を補償し、補償後の4つのデジタル信号を搬送波位相オフセット補償部508Aに出力した。   The carrier frequency offset compensation unit 507A compensates for the center frequency difference between the continuous optical signal output from the local oscillation light source 100 and the received optical signal in the four digital signals input from the adaptive equalization unit 506A. Four digital signals were output to the carrier phase offset compensation unit 508A.

搬送波位相オフセット補償部508Aは、搬送波周波数オフセット補償部507Aから入力される4つのデジタル信号に対して、X偏波成分とY偏波成分それぞれについて信号点がI軸及びQ軸を軸とする複素平面において、信号点が45度、135度、−45度、−135度の4点に概略収束するよう、適応的に位相オフセット補償を行い、位相オフセット補償後のデジタル信号を識別部509Aに出力した。   The carrier phase offset compensator 508A has a complex signal centered on the I axis and the Q axis for the X polarization component and the Y polarization component for the four digital signals input from the carrier frequency offset compensation unit 507A. In the plane, phase offset compensation is adaptively performed so that the signal points substantially converge to four points of 45 degrees, 135 degrees, -45 degrees, and -135 degrees, and the digital signal after the phase offset compensation is output to the identification unit 509A. did.

識別部509Aは、搬送波位相オフセット補償部508Aから入力される4つのデジタル信号に対して2値識別を行い、識別後の4つの2値信号をQ値計算部510に出力した。   The identification unit 509A performs binary identification on the four digital signals input from the carrier phase offset compensation unit 508A, and outputs the four binary signals after identification to the Q value calculation unit 510.

Q値計算部510は、識別部509Aから入力される4つの2値信号の符号誤り率を計算し、光通信における伝送性能の指標であるQ値を計算した。   The Q value calculation unit 510 calculates the code error rate of the four binary signals input from the identification unit 509A, and calculates a Q value that is an index of transmission performance in optical communication.

図8は、等化段数、つまり、デジタル信号処理回路の段数Nに対して、光通信の伝送性能を示す指標であるQ値の改善量の例をプロットした結果を示す。変調方式を偏波多重QPSKとし、ビットレートを43Gb/sとし、周回伝送試験により5000km伝送を行った場合について、光受信器において局部発振光源100から出力される連続光信号と受信光信号とを混合した後に4つのバランス型の光子検出器300A−Dで検波した。次に、X偏波I軸、X偏波Q軸、Y偏波I軸、Y偏波Q軸の各信号を、4つのアナログデジタル変換器400A−Dでアナログデジタル変換し、デジタルサンプリングオシロスコープにより、40Gsample/sのサンプリングレートで4つのシリアルデータを蓄積した。そして、計算機上でオフライン解析することにより等化能力を確認した。図8の横軸において、段数N=0は非線形等化を行わない場合であり、1段、2段、・・・と段数Nを増やすごとにQ値改善量が増える。   FIG. 8 shows the result of plotting an example of the improvement amount of the Q value, which is an index indicating the transmission performance of optical communication, with respect to the number of equalization stages, that is, the number of stages N of the digital signal processing circuit. In the case where the modulation method is polarization multiplexed QPSK, the bit rate is 43 Gb / s, and 5000 km transmission is performed by the cyclic transmission test, the continuous optical signal and the received optical signal output from the local oscillation light source 100 in the optical receiver are After mixing, detection was performed by four balanced photon detectors 300A-D. Next, each signal of the X polarization I axis, the X polarization Q axis, the Y polarization I axis, and the Y polarization Q axis is analog-to-digital converted by the four analog-to-digital converters 400A-D, and the digital sampling oscilloscope is used. 4 serial data were accumulated at a sampling rate of 40 Gsample / s. The equalization ability was confirmed by off-line analysis on a computer. In the horizontal axis of FIG. 8, the number of stages N = 0 is a case where non-linear equalization is not performed, and the Q value improvement amount increases as the number of stages N is increased to 1, 2,.

段数Nがそれぞれの場合における付加又は除去する波長分散量は、X偏波とY偏波で同一の値に設定した。また、波長分散付加部1A、1Bで付加される波長分散値Xに対して、波長分散除去部8A、8Bで付加される波長分散値を−Xとした。   The chromatic dispersion amount to be added or removed in each case where the number of stages N is set to the same value for the X polarization and the Y polarization. The chromatic dispersion value added by the chromatic dispersion removal units 8A and 8B is -X with respect to the chromatic dispersion value X added by the chromatic dispersion addition units 1A and 1B.

N=1の場合、波長分散量を−600ps/nmとした。N=2の場合、1段目、2段目の波長分散量を−700ps/nm、−500ps/nmとした。N=3の場合、1段目、2段目、3段目の波長分散量を−800ps/nm、−600ps/nm、−400ps/nmとした。   In the case of N = 1, the chromatic dispersion amount was set to −600 ps / nm. In the case of N = 2, the amount of chromatic dispersion in the first and second stages was set to −700 ps / nm and −500 ps / nm. In the case of N = 3, the chromatic dispersion amounts in the first, second, and third stages were −800 ps / nm, −600 ps / nm, and −400 ps / nm.

N=4の場合、1段目、2段目、3段目、4段目の波長分散量を−900ps/nm、−700ps/nm、−500ps/nm、−300ps/nmとした。N=5の場合、1段目、2段目、3段目、4段目、5段目の波長分散量を−1000ps/nm、−800ps/nm、−600ps/nm、−400ps/nm、−200ps/nmとした。N=6の場合、1段目、2段目、3段目、4段目、5段目、6段目の波長分散量を−1100ps/nm、−900ps/nm、−700ps/nm、−500ps/nm、−300ps/nm、−100ps/nmとした。これらの設定方法が最適という訳ではなく、一例である。   In the case of N = 4, the chromatic dispersion amounts of the first, second, third, and fourth stages were −900 ps / nm, −700 ps / nm, −500 ps / nm, and −300 ps / nm. When N = 5, the chromatic dispersion amounts of the first, second, third, fourth, and fifth stages are −1000 ps / nm, −800 ps / nm, −600 ps / nm, −400 ps / nm, −200 ps / nm. When N = 6, the chromatic dispersion amounts of the first stage, the second stage, the third stage, the fourth stage, the fifth stage, and the sixth stage are −1100 ps / nm, −900 ps / nm, −700 ps / nm, − 500 ps / nm, −300 ps / nm, and −100 ps / nm. These setting methods are not optimal and are examples.

それぞれの場合における効率は、以下のように設定した。効率γxx[m]=γyy[m]=const/N、γxy[m]=γyx[0]=0とした(const:定数)。これらの設定方法が最適という訳ではなく、一例である。   The efficiency in each case was set as follows. Efficiency γxx [m] = γyy [m] = const / N and γxy [m] = γyx [0] = 0 (const: constant). These setting methods are not optimal and are examples.

以上の設定により、図8に示すように、N=5の場合にQ値改善量1.5dBが得られた。   With the above settings, as shown in FIG. 8, when N = 5, a Q value improvement amount of 1.5 dB was obtained.

1A、1B 波長分散付加部、2A、2B 電力計算部、3A、3B、3C、3D 重み付け平均部、4A、4B、4C、4D 効率乗算部、5A、5B 加算部、6A、6B 複素位相回転用信号生成部、7A、7B 複素位相回転部、8A、8B 波長分散除去部、11、12、1m、1N デジタル信号処理回路、100 局部発振光源、200 光90度ハイブリッド回路、300A、300B、300C、300D 光子検出器、400A、400B、400C、400D アナログデジタル変換器、500 デジタル信号処理集積回路、502 前処理回路、503 波長分散補償回路、504 非線形等化回路、505 タイミング抽出回路、506 適応等化回路、507 搬送波周波数オフセット補償回路、508 搬送波位相オフセット補償回路、509 識別回路。   1A, 1B Chromatic dispersion adder, 2A, 2B Power calculator, 3A, 3B, 3C, 3D Weighted average unit, 4A, 4B, 4C, 4D Efficiency multiplier, 5A, 5B Adder, 6A, 6B For complex phase rotation Signal generation unit, 7A, 7B complex phase rotation unit, 8A, 8B wavelength dispersion removal unit, 11, 12, 1m, 1N digital signal processing circuit, 100 local oscillation light source, 200 optical 90 degree hybrid circuit, 300A, 300B, 300C, 300D photon detector, 400A, 400B, 400C, 400D analog to digital converter, 500 digital signal processing integrated circuit, 502 preprocessing circuit, 503 chromatic dispersion compensation circuit, 504 nonlinear equalization circuit, 505 timing extraction circuit, 506 adaptive equalization Circuit, 507 carrier frequency offset compensation circuit, 508 carrier phase offset Compensation circuit, 509 identification circuit.

Claims (5)

受信光信号と同一の中心波長で発振する光信号を生成する局部発振光源と、
前記受信光信号と前記局部発振光源から出力される光信号とを混合する偏波ダイバーシチ型の光90度ハイブリッド回路と、
前記光90度ハイブリッド回路から出力される4対の光信号を検波する4つのバランス型の光子検出器と、
前記4つの光子検出器から出力される4つの電気信号をアナログデジタル変換する4つのアナログデジタル変換器と、
前記4つのアナログデジタル変換器に接続されたデジタル信号処理集積回路とを備えた光受信器であって、
前記デジタル信号処理集積回路は、
4つのデジタル信号に対して、光伝送路の波長分散を補償する波長分散補償回路と、
4つのデジタル信号に対して、非線形等化デジタル信号処理を適用する非線形等化回路と、
4つのデジタル信号に対して、伝送路の偏波モード分散を補償し、偏波多重信号を分離する適応等化回路と、
4つのデジタル信号に対して、前記受信光信号と前記局部発振光源から出力される光信号との間の中心周波数差を補償する搬送波周波数オフセット補償回路と、
4つのデジタル信号に対して、前記受信光信号と前記局部発振光源から出力される光信号との間の光位相差を補償する搬送波位相オフセット補償回路とを少なくとも含み、
前記非線形等化回路は、
N段(N≧1)のデジタル信号処理回路で構成され、
前記N段のデジタル信号処理回路のうち、m段目のデジタル信号処理回路は、
入力する第1の複素デジタル信号系列dx[m,i]に対し、伝達関数Hpre,x[m](f)の線形歪みを付加する第1の線形歪み付加部と、
入力する第2の複素デジタル信号系列dy[m,i]に対し、伝達関数Hpre,y[m](f)の線形歪みを付加する第2の線形歪み付加部と、
線形歪みを付加された前記第1の複素デジタル信号系列の絶対値の二乗である、電力Px[m,i]を計算する第1の電力計算部と、
線形歪みを付加された前記第2の複素デジタル信号系列の絶対値の二乗である、電力Py[m,i]を計算する第2の電力計算部と、
前記電力Px[m,i]の重み付け平均電力Pavg,xx[m,i]=αxx[−a]Px[m,i−a]+αxx[−a+1]Px[m,i−a+1]+・・・+αxx[0]Px[m,i]+・・・+αxx[b]Px[m,i+b]を計算する第1の重み付け平均部と、
前記電力Py[m,i]の重み付け平均電力Pavg,xy[m,i]=αxy[−a]Py[m,i−a]+αxy[−a+1]Py[m,i−a+1]+・・・+αxy[0]Py[m,i]+・・・+αxy[b]Py[m,i+b]を計算する第2の重み付け平均部と、
前記電力Px[m,i]の重み付け平均電力Pavg,yx[m,i]=αyx[−a]Px[m,i−a]+αyx[−a+1]Px[m,i−a+1]+・・・+αyx[0]Px[m,i]+・・・+αyx[b]Px[m,i+b]を計算する第3の重み付け平均部と、
前記電力Py[m,i]の重み付け平均電力Pavg,yy[m,i]=αyy[−a]Py[m,i−a]+αyy[−a+1]Py[m,i−a+1]+・・・+αyy[0]Py[m,i]+・・・+αyy[b]Py[m,i+b]を計算する第4の重み付け平均部と、
前記重み付け平均電力Pavg,xx[m,i]に第1の効率γxxを乗算して位相回転量φxx[m,i]=γxx[m,i]Pavg,xx[m,i]を生成する第1の位相回転量生成部と、
前記重み付け平均電力Pavg,xy[m,i]に第2の効率γxyを乗算して位相回転量φxy[m,i]=γxy[m,i]Pavg,xy[m,i]を生成する第2の位相回転量生成部と、
前記重み付け平均電力Pavg,yx[m,i]に第3の効率γyxを乗算して位相回転量φyx[m,i]=γyx[m,i]Pavg,yx[m,i]を生成する第3の位相回転量生成部と、
前記重み付け平均電力Pavg,yy[m,i]に第4の効率γyyを乗算して位相回転量φyy[m,i]=γyy[m,i]Pavg,yy[m,i]を生成する第4の位相回転量生成部と、
前記位相回転量φxx[m,i]とφxy[m,i]とを加算して複素位相回転量φx[m,i]=φxx[m,i]+φxy[m,i]を計算する第1の加算部と、
前記位相回転量φyx[m,i]とφyy[m,i]とを加算して複素位相回転量φy[m,i]=φyx[m,i]+φyy[m,i]を計算する第2の加算部と、
前記複素位相回転量φx[m,i]を複素信号exp(−jφx[m,i])に変換する第1の複素位相回転用信号生成部と、
前記複素位相回転量φy[m,i]を複素信号exp(−jφy[m,i])に変換する第2の複素位相回転用信号生成部と、
線形歪みを付加された前記第1の複素デジタル信号系列に前記複素信号exp(−jφx[m,i])を乗算することで複素位相回転を与える第1の複素位相回転部と、
線形歪みを付加された前記第2の複素デジタル信号系列に前記複素信号exp(−jφy[m,i])を乗算することで複素位相回転を与える第2の複素位相回転部と、
前記第1の複素位相回転部により複素位相回転を与えられた複素デジタル信号に対して前記線形な波形歪みの伝達関数Hpre,x[m](f)の逆関数Hpre,x[m]-1(f)もしくは複素共役関数Hpre,x[m]*(f)を伝達関数Hpost,x[m](f)として有する波形歪みを付加することで、前記第1の線形歪み付加部における波形歪みを除去する第1の線形歪み除去部と、
前記第2の複素位相回転部により複素位相回転を与えられた複素デジタル信号に対して前記線形な波形歪みの伝達関数Hpre,y[m](f)の逆関数Hpre,y[m]-1(f)もしくは複素共役関数Hpre,y[m]*(f)を伝達関数Hpost,y[m](f)として有する波形歪みを付加することで、前記第2の線形歪み付加部における波形歪みを除去する第2の線形歪み除去部とを有する、
光受信器。
A local oscillation light source that generates an optical signal that oscillates at the same center wavelength as the received optical signal;
A polarization diversity optical 90-degree hybrid circuit that mixes the received optical signal and the optical signal output from the local oscillation light source;
Four balanced photon detectors for detecting four pairs of optical signals output from the optical 90-degree hybrid circuit;
Four analog-to-digital converters for analog-to-digital conversion of the four electrical signals output from the four photon detectors;
An optical receiver comprising a digital signal processing integrated circuit connected to the four analog-digital converters,
The digital signal processing integrated circuit includes:
A chromatic dispersion compensation circuit for compensating chromatic dispersion of an optical transmission line for four digital signals;
A non-linear equalization circuit that applies non-linear equalization digital signal processing to four digital signals;
An adaptive equalization circuit that compensates the polarization mode dispersion of the transmission path and separates the polarization multiplexed signal for four digital signals;
A carrier frequency offset compensation circuit for compensating a center frequency difference between the received optical signal and the optical signal output from the local oscillation light source for four digital signals;
A carrier phase offset compensation circuit that compensates for an optical phase difference between the received optical signal and an optical signal output from the local oscillation light source with respect to four digital signals;
The nonlinear equalization circuit is:
It is composed of N stages (N ≧ 1) of digital signal processing circuits,
Among the N-stage digital signal processing circuits, the m-th stage digital signal processing circuit is:
A first linear distortion addition unit for adding linear distortion of a transfer function Hpre, x [m] (f) to an input first complex digital signal sequence dx [m, i];
A second linear distortion addition unit for adding linear distortion of the transfer function Hpre, y [m] (f) to the input second complex digital signal sequence dy [m, i];
A first power calculator that calculates power Px [m, i], which is the square of the absolute value of the first complex digital signal sequence to which linear distortion has been added;
A second power calculator that calculates power Py [m, i], which is the square of the absolute value of the second complex digital signal sequence to which linear distortion has been added;
Weighted average power Pavg, xx [m, i] = αxx [−a] Px [m, i−a] + αxx [−a + 1] Px [m, i−a + 1] +. A first weighted average unit that calculates + αxx [0] Px [m, i] +... + Αxx [b] Px [m, i + b];
Weighted average power Pavg, xy [m, i] = αxy [−a] Py [m, i−a] + αxy [−a + 1] Py [m, i−a + 1] +. A second weighted average unit for calculating + αxy [0] Py [m, i] +... + Αxy [b] Py [m, i + b];
Weighted average power Pavg, yx [m, i] = αyx [−a] Px [m, i−a] + αyx [−a + 1] Px [m, i−a + 1] +. A third weighted average unit for calculating + αyx [0] Px [m, i] +... + Αyx [b] Px [m, i + b];
Weighted average power of the power Py [m, i] Pavg, yy [m, i] = αyy [−a] Py [m, i−a] + αyy [−a + 1] Py [m, i−a + 1] + A fourth weighted average unit that calculates + αyy [0] Py [m, i] +... + Αyy [b] Py [m, i + b];
The weighted average power Pavg, xx [m, i] is multiplied by a first efficiency γxx to generate a phase rotation amount φxx [m, i] = γxx [m, i] Pavg, xx [m, i]. 1 phase rotation amount generation unit;
The weighted average power Pavg, xy [m, i] is multiplied by a second efficiency γxy to generate a phase rotation amount φxy [m, i] = γxy [m, i] Pavg, xy [m, i]. Two phase rotation amount generation units;
The weighted average power Pavg, yx [m, i] is multiplied by a third efficiency γyx to generate a phase rotation amount φyx [m, i] = γyx [m, i] Pavg, yx [m, i]. 3 phase rotation amount generator,
The weighted average power Pavg, yy [m, i] is multiplied by a fourth efficiency γyy to generate a phase rotation amount φyy [m, i] = γyy [m, i] Pavg, yy [m, i]. 4 phase rotation amount generation unit;
The phase rotation amount φxx [m, i] and φxy [m, i] are added to calculate the complex phase rotation amount φx [m, i] = φxx [m, i] + φxy [m, i] The addition part of
The phase rotation amount φyx [m, i] and φyy [m, i] are added to calculate a complex phase rotation amount φy [m, i] = φyx [m, i] + φyy [m, i] The addition part of
A first complex phase rotation signal generation unit that converts the complex phase rotation amount φx [m, i] into a complex signal exp (−jφx [m, i]);
A second complex phase rotation signal generation unit that converts the complex phase rotation amount φy [m, i] into a complex signal exp (−jφy [m, i]);
A first complex phase rotation unit that provides a complex phase rotation by multiplying the first complex digital signal sequence to which linear distortion has been added by the complex signal exp (−jφx [m, i]);
A second complex phase rotation unit that provides a complex phase rotation by multiplying the second complex digital signal sequence to which linear distortion has been added by the complex signal exp (−jφy [m, i]);
The inverse function Hpre, x [m] −1 of the linear waveform distortion transfer function Hpre, x [m] (f) with respect to the complex digital signal given the complex phase rotation by the first complex phase rotation unit. (F) or a waveform distortion in the first linear distortion adding unit by adding a waveform distortion having a complex conjugate function Hpre, x [m] * (f) as a transfer function Hpost, x [m] (f) A first linear distortion removing unit for removing
The inverse function Hpre, y [m] −1 of the linear waveform distortion transfer function Hpre, y [m] (f) with respect to the complex digital signal given the complex phase rotation by the second complex phase rotation unit. (F) or a waveform distortion in the second linear distortion adding unit by adding a waveform distortion having a complex conjugate function Hpre, y [m] * (f) as a transfer function Hpost, y [m] (f) A second linear distortion removing unit for removing
Optical receiver.
前記非線形等化回路は、
N段(N≧2)のデジタル信号処理回路で構成され、
前記N段のデジタル信号処理回路のうち、m(m<N)段目のデジタル信号処理回路は、
伝達関数Hpost,z[m](f)とHpre,z[m+1](f)で表される2つの線形フィルタ(z∈{x,y})を、単一の線形フィルタHjoint,z[m:m+1](f)として実現する
請求項1記載の光受信器。
The nonlinear equalization circuit is:
It is composed of N stages (N ≧ 2) of digital signal processing circuits,
Among the N stages of digital signal processing circuits, the m (m <N) stage digital signal processing circuit is:
Two linear filters (z∈ {x, y}) represented by the transfer functions Hpost, z [m] (f) and Hpre, z [m + 1] (f) are converted into a single linear filter Hjoint, z [m : M + 1] (f). The optical receiver according to claim 1.
N段(N≧1)のデジタル信号処理回路で構成された非線形等化回路であって、
前記N段のデジタル信号処理回路のうち、m段目のデジタル信号処理回路は、
入力する第1の複素デジタル信号系列dx[m,i]に対し、伝達関数Hpre,x[m](f)の線形歪みを付加する第1の線形歪み付加部と、
入力する第2の複素デジタル信号系列dy[m,i]に対し、伝達関数Hpre,y[m](f)の線形歪みを付加する第2の線形歪み付加部と、
線形歪みを付加された前記第1の複素デジタル信号系列の絶対値の二乗である、電力Px[m,i]を計算する第1の電力計算部と、
線形歪みを付加された前記第2の複素デジタル信号系列の絶対値の二乗である、電力Py[m,i]を計算する第2の電力計算部と、
前記電力Px[m,i]の重み付け平均電力Pavg,xx[m,i]=αxx[−a]Px[m,i−a]+αxx[−a+1]Px[m,i−a+1]+・・・+αxx[0]Px[m,i]+・・・+αxx[b]Px[m,i+b]を計算する第1の重み付け平均部と、
前記電力Py[m,i]の重み付け平均電力Pavg,xy[m,i]=αxy[−a]Py[m,i−a]+αxy[−a+1]Py[m,i−a+1]+・・・+αxy[0]Py[m,i]+・・・+αxy[b]Py[m,i+b]を計算する第2の重み付け平均部と、
前記電力Px[m,i]の重み付け平均電力Pavg,yx[m,i]=αyx[−a]Px[m,i−a]+αyx[−a+1]Px[m,i−a+1]+・・・+αyx[0]Px[m,i]+・・・+αyx[b]Px[m,i+b]を計算する第3の重み付け平均部と、
前記電力Py[m,i]の重み付け平均電力Pavg,yy[m,i]=αyy[−a]Py[m,i−a]+αyy[−a+1]Py[m,i−a+1]+・・・+αyy[0]Py[m,i]+・・・+αyy[b]Py[m,i+b]を計算する第4の重み付け平均部と、
前記重み付け平均電力Pavg,xx[m,i]に第1の効率γxxを乗算して位相回転量φxx[m,i]=γxx[m,i]Pavg,xx[m,i]を生成する第1の位相回転量生成部と、
前記重み付け平均電力Pavg,xy[m,i]に第2の効率γxyを乗算して位相回転量φxy[m,i]=γxy[m,i]Pavg,xy[m,i]を生成する第2の位相回転量生成部と、
前記重み付け平均電力Pavg,yx[m,i]に第3の効率γyxを乗算して位相回転量φyx[m,i]=γyx[m,i]Pavg,yx[m,i]を生成する第3の位相回転量生成部と、
前記重み付け平均電力Pavg,yy[m,i]に第4の効率γyyを乗算して位相回転量φyy[m,i]=γyy[m,i]Pavg,yy[m,i]を生成する第4の位相回転量生成部と、
前記位相回転量φxx[m,i]とφxy[m,i]とを加算して複素位相回転量φx[m,i]=φxx[m,i]+φxy[m,i]を計算する第1の加算部と、
前記位相回転量φyx[m,i]とφyy[m,i]とを加算して複素位相回転量φy[m,i]=φyx[m,i]+φyy[m,i]を計算する第2の加算部と、
前記複素位相回転量φx[m,i]を複素信号exp(−jφx[m,i])に変換する第1の複素位相回転用信号生成部と、
前記複素位相回転量φy[m,i]を複素信号exp(−jφy[m,i])に変換する第2の複素位相回転用信号生成部と、
線形歪みを付加された前記第1の複素デジタル信号系列に前記複素信号exp(−jφx[m,i])を乗算することで複素位相回転を与える第1の複素位相回転部と、
線形歪みを付加された前記第2の複素デジタル信号系列に前記複素信号exp(−jφy[m,i])を乗算することで複素位相回転を与える第2の複素位相回転部と、
前記第1の複素位相回転部により複素位相回転を与えられた複素デジタル信号に対して前記線形な波形歪みの伝達関数Hpre,x[m](f)の逆関数Hpre,x[m]-1(f)もしくは複素共役関数Hpre,x[m]*(f)を伝達関数Hpost,x[m](f)として有する波形歪みを付加することで、前記第1の線形歪み付加部における波形歪みを除去する第1の線形歪み除去部と、
前記第2の複素位相回転部により複素位相回転を与えられた複素デジタル信号に対して前記線形な波形歪みの伝達関数Hpre,y[m](f)の逆関数Hpre,y[m]-1(f)もしくは複素共役関数Hpre,y[m]*(f)を伝達関数Hpost,y[m](f)として有する波形歪みを付加することで、前記第2の線形歪み付加部における波形歪みを除去する第2の線形歪み除去部とを有する、
非線形等化回路。
A non-linear equalization circuit composed of N stages (N ≧ 1) of digital signal processing circuits,
Among the N-stage digital signal processing circuits, the m-th stage digital signal processing circuit is:
A first linear distortion addition unit for adding linear distortion of a transfer function Hpre, x [m] (f) to an input first complex digital signal sequence dx [m, i];
A second linear distortion addition unit for adding linear distortion of the transfer function Hpre, y [m] (f) to the input second complex digital signal sequence dy [m, i];
A first power calculator that calculates power Px [m, i], which is the square of the absolute value of the first complex digital signal sequence to which linear distortion has been added;
A second power calculator that calculates power Py [m, i], which is the square of the absolute value of the second complex digital signal sequence to which linear distortion has been added;
Weighted average power Pavg, xx [m, i] = αxx [−a] Px [m, i−a] + αxx [−a + 1] Px [m, i−a + 1] +. A first weighted average unit that calculates + αxx [0] Px [m, i] +... + Αxx [b] Px [m, i + b];
Weighted average power Pavg, xy [m, i] = αxy [−a] Py [m, i−a] + αxy [−a + 1] Py [m, i−a + 1] +. A second weighted average unit for calculating + αxy [0] Py [m, i] +... + Αxy [b] Py [m, i + b];
Weighted average power Pavg, yx [m, i] = αyx [−a] Px [m, i−a] + αyx [−a + 1] Px [m, i−a + 1] +. A third weighted average unit for calculating + αyx [0] Px [m, i] +... + Αyx [b] Px [m, i + b];
Weighted average power of the power Py [m, i] Pavg, yy [m, i] = αyy [−a] Py [m, i−a] + αyy [−a + 1] Py [m, i−a + 1] + A fourth weighted average unit that calculates + αyy [0] Py [m, i] +... + Αyy [b] Py [m, i + b];
The weighted average power Pavg, xx [m, i] is multiplied by a first efficiency γxx to generate a phase rotation amount φxx [m, i] = γxx [m, i] Pavg, xx [m, i]. 1 phase rotation amount generation unit;
The weighted average power Pavg, xy [m, i] is multiplied by a second efficiency γxy to generate a phase rotation amount φxy [m, i] = γxy [m, i] Pavg, xy [m, i]. Two phase rotation amount generation units;
The weighted average power Pavg, yx [m, i] is multiplied by a third efficiency γyx to generate a phase rotation amount φyx [m, i] = γyx [m, i] Pavg, yx [m, i]. 3 phase rotation amount generator,
The weighted average power Pavg, yy [m, i] is multiplied by a fourth efficiency γyy to generate a phase rotation amount φyy [m, i] = γyy [m, i] Pavg, yy [m, i]. 4 phase rotation amount generation unit;
The phase rotation amount φxx [m, i] and φxy [m, i] are added to calculate the complex phase rotation amount φx [m, i] = φxx [m, i] + φxy [m, i] The addition part of
The phase rotation amount φyx [m, i] and φyy [m, i] are added to calculate a complex phase rotation amount φy [m, i] = φyx [m, i] + φyy [m, i] The addition part of
A first complex phase rotation signal generation unit that converts the complex phase rotation amount φx [m, i] into a complex signal exp (−jφx [m, i]);
A second complex phase rotation signal generation unit that converts the complex phase rotation amount φy [m, i] into a complex signal exp (−jφy [m, i]);
A first complex phase rotation unit that provides a complex phase rotation by multiplying the first complex digital signal sequence to which linear distortion has been added by the complex signal exp (−jφx [m, i]);
A second complex phase rotation unit that provides a complex phase rotation by multiplying the second complex digital signal sequence to which linear distortion has been added by the complex signal exp (−jφy [m, i]);
The inverse function Hpre, x [m] −1 of the linear waveform distortion transfer function Hpre, x [m] (f) with respect to the complex digital signal given the complex phase rotation by the first complex phase rotation unit. (F) or a waveform distortion in the first linear distortion adding unit by adding a waveform distortion having a complex conjugate function Hpre, x [m] * (f) as a transfer function Hpost, x [m] (f) A first linear distortion removing unit for removing
The inverse function Hpre, y [m] −1 of the linear waveform distortion transfer function Hpre, y [m] (f) with respect to the complex digital signal given the complex phase rotation by the second complex phase rotation unit. (F) or a waveform distortion in the second linear distortion adding unit by adding a waveform distortion having a complex conjugate function Hpre, y [m] * (f) as a transfer function Hpost, y [m] (f) A second linear distortion removing unit for removing
Nonlinear equalization circuit.
N段(N≧2)のデジタル信号処理回路で構成された非線形等化回路であって、
前記N段のデジタル信号処理回路のうち、m(m<N)段目のデジタル信号処理回路は、
伝達関数Hpost,z[m](f)とHpre,z[m+1](f)で表される2つの線形フィルタ(z∈{x,y})を、単一の線形フィルタHjoint,z[m:m+1](f)として実現する
請求項3記載の非線形等化回路。
A non-linear equalization circuit composed of N stages (N ≧ 2) of digital signal processing circuits,
Among the N stages of digital signal processing circuits, the m (m <N) stage digital signal processing circuit is:
Two linear filters (zε {x, y}) represented by the transfer functions Hpost, z [m] (f) and Hpre, z [m + 1] (f) are converted into a single linear filter Hjoint, z [m : M + 1] (f). The nonlinear equalizer circuit according to claim 3.
入力する第1の複素デジタル信号系列dx[m,i]に対し、伝達関数Hpre,x[m](f)の線形歪みを付加する第1の線形歪み付加部と、
入力する第2の複素デジタル信号系列dy[m,i]に対し、伝達関数Hpre,y[m](f)の線形歪みを付加する第2の線形歪み付加部と、
線形歪みを付加された前記第1の複素デジタル信号系列の絶対値の二乗である、電力Px[m,i]を計算する第1の電力計算部と、
線形歪みを付加された前記第2の複素デジタル信号系列の絶対値の二乗である、電力Py[m,i]を計算する第2の電力計算部と、
前記電力Px[m,i]の重み付け平均電力Pavg,xx[m,i]=αxx[−a]Px[m,i−a]+αxx[−a+1]Px[m,i−a+1]+・・・+αxx[0]Px[m,i]+・・・+αxx[b]Px[m,i+b]を計算する第1の重み付け平均部と、
前記電力Py[m,i]の重み付け平均電力Pavg,xy[m,i]=αxy[−a]Py[m,i−a]+αxy[−a+1]Py[m,i−a+1]+・・・+αxy[0]Py[m,i]+・・・+αxy[b]Py[m,i+b]を計算する第2の重み付け平均部と、
前記電力Px[m,i]の重み付け平均電力Pavg,yx[m,i]=αyx[−a]Px[m,i−a]+αyx[−a+1]Px[m,i−a+1]+・・・+αyx[0]Px[m,i]+・・・+αyx[b]Px[m,i+b]を計算する第3の重み付け平均部と、
前記電力Py[m,i]の重み付け平均電力Pavg,yy[m,i]=αyy[−a]Py[m,i−a]+αyy[−a+1]Py[m,i−a+1]+・・・+αyy[0]Py[m,i]+・・・+αyy[b]Py[m,i+b]を計算する第4の重み付け平均部と、
前記重み付け平均電力Pavg,xx[m,i]に第1の効率γxxを乗算して位相回転量φxx[m,i]=γxx[m,i]Pavg,xx[m,i]を生成する第1の位相回転量生成部と、
前記重み付け平均電力Pavg,xy[m,i]に第2の効率γxyを乗算して位相回転量φxy[m,i]=γxy[m,i]Pavg,xy[m,i]を生成する第2の位相回転量生成部と、
前記重み付け平均電力Pavg,yx[m,i]に第3の効率γyxを乗算して位相回転量φyx[m,i]=γyx[m,i]Pavg,yx[m,i]を生成する第3の位相回転量生成部と、
前記重み付け平均電力Pavg,yy[m,i]に第4の効率γyyを乗算して位相回転量φyy[m,i]=γyy[m,i]Pavg,yy[m,i]を生成する第4の位相回転量生成部と、
前記位相回転量φxx[m,i]とφxy[m,i]とを加算して複素位相回転量φx[m,i]=φxx[m,i]+φxy[m,i]を計算する第1の加算部と、
前記位相回転量φyx[m,i]とφyy[m,i]とを加算して複素位相回転量φy[m,i]=φyx[m,i]+φyy[m,i]を計算する第2の加算部と、
前記複素位相回転量φx[m,i]を複素信号exp(−jφx[m,i])に変換する第1の複素位相回転用信号生成部と、
前記複素位相回転量φy[m,i]を複素信号exp(−jφy[m,i])に変換する第2の複素位相回転用信号生成部と、
線形歪みを付加された前記第1の複素デジタル信号系列に前記複素信号exp(−jφx[m,i])を乗算することで複素位相回転を与える第1の複素位相回転部と、
線形歪みを付加された前記第2の複素デジタル信号系列に前記複素信号exp(−jφy[m,i])を乗算することで複素位相回転を与える第2の複素位相回転部と、
前記第1の複素位相回転部により複素位相回転を与えられた複素デジタル信号に対して前記線形な波形歪みの伝達関数Hpre,x[m](f)の逆関数Hpre,x[m]-1(f)もしくは複素共役関数Hpre,x[m]*(f)を伝達関数Hpost,x[m](f)として有する波形歪みを付加することで、前記第1の線形歪み付加部における波形歪みを除去する第1の線形歪み除去部と、
前記第2の複素位相回転部により複素位相回転を与えられた複素デジタル信号に対して前記線形な波形歪みの伝達関数Hpre,y[m](f)の逆関数Hpre,y[m]-1(f)もしくは複素共役関数Hpre,y[m]*(f)を伝達関数Hpost,y[m](f)として有する波形歪みを付加することで、前記第2の線形歪み付加部における波形歪みを除去する第2の線形歪み除去部と
を有するデジタル信号処理回路。
A first linear distortion addition unit for adding linear distortion of a transfer function Hpre, x [m] (f) to an input first complex digital signal sequence dx [m, i];
A second linear distortion addition unit for adding linear distortion of the transfer function Hpre, y [m] (f) to the input second complex digital signal sequence dy [m, i];
A first power calculator that calculates power Px [m, i], which is the square of the absolute value of the first complex digital signal sequence to which linear distortion has been added;
A second power calculator that calculates power Py [m, i], which is the square of the absolute value of the second complex digital signal sequence to which linear distortion has been added;
Weighted average power Pavg, xx [m, i] = αxx [−a] Px [m, i−a] + αxx [−a + 1] Px [m, i−a + 1] +. A first weighted average unit that calculates + αxx [0] Px [m, i] +... + Αxx [b] Px [m, i + b];
Weighted average power Pavg, xy [m, i] = αxy [−a] Py [m, i−a] + αxy [−a + 1] Py [m, i−a + 1] +. A second weighted average unit for calculating + αxy [0] Py [m, i] +... + Αxy [b] Py [m, i + b];
Weighted average power Pavg, yx [m, i] = αyx [−a] Px [m, i−a] + αyx [−a + 1] Px [m, i−a + 1] +. A third weighted average unit for calculating + αyx [0] Px [m, i] +... + Αyx [b] Px [m, i + b];
Weighted average power of the power Py [m, i] Pavg, yy [m, i] = αyy [−a] Py [m, i−a] + αyy [−a + 1] Py [m, i−a + 1] + A fourth weighted average unit that calculates + αyy [0] Py [m, i] +... + Αyy [b] Py [m, i + b];
The weighted average power Pavg, xx [m, i] is multiplied by a first efficiency γxx to generate a phase rotation amount φxx [m, i] = γxx [m, i] Pavg, xx [m, i]. 1 phase rotation amount generation unit;
The weighted average power Pavg, xy [m, i] is multiplied by a second efficiency γxy to generate a phase rotation amount φxy [m, i] = γxy [m, i] Pavg, xy [m, i]. Two phase rotation amount generation units;
The weighted average power Pavg, yx [m, i] is multiplied by a third efficiency γyx to generate a phase rotation amount φyx [m, i] = γyx [m, i] Pavg, yx [m, i]. 3 phase rotation amount generator,
The weighted average power Pavg, yy [m, i] is multiplied by a fourth efficiency γyy to generate a phase rotation amount φyy [m, i] = γyy [m, i] Pavg, yy [m, i]. 4 phase rotation amount generation unit;
The phase rotation amount φxx [m, i] and φxy [m, i] are added to calculate the complex phase rotation amount φx [m, i] = φxx [m, i] + φxy [m, i] The addition part of
The phase rotation amount φyx [m, i] and φyy [m, i] are added to calculate a complex phase rotation amount φy [m, i] = φyx [m, i] + φyy [m, i] The addition part of
A first complex phase rotation signal generation unit that converts the complex phase rotation amount φx [m, i] into a complex signal exp (−jφx [m, i]);
A second complex phase rotation signal generation unit that converts the complex phase rotation amount φy [m, i] into a complex signal exp (−jφy [m, i]);
A first complex phase rotation unit that provides a complex phase rotation by multiplying the first complex digital signal sequence to which linear distortion has been added by the complex signal exp (−jφx [m, i]);
A second complex phase rotation unit that provides a complex phase rotation by multiplying the second complex digital signal sequence to which linear distortion has been added by the complex signal exp (−jφy [m, i]);
The inverse function Hpre, x [m] −1 of the linear waveform distortion transfer function Hpre, x [m] (f) with respect to the complex digital signal given the complex phase rotation by the first complex phase rotation unit. (F) or a waveform distortion in the first linear distortion adding unit by adding a waveform distortion having a complex conjugate function Hpre, x [m] * (f) as a transfer function Hpost, x [m] (f) A first linear distortion removing unit for removing
The inverse function Hpre, y [m] −1 of the linear waveform distortion transfer function Hpre, y [m] (f) with respect to the complex digital signal given the complex phase rotation by the second complex phase rotation unit. (F) or a waveform distortion in the second linear distortion adding unit by adding a waveform distortion having a complex conjugate function Hpre, y [m] * (f) as a transfer function Hpost, y [m] (f) A digital signal processing circuit comprising: a second linear distortion removing unit that removes.
JP2012557753A 2011-02-18 2011-02-18 Optical receiver, nonlinear equalization circuit, and digital signal processing circuit Active JP5523591B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053499 WO2012111140A1 (en) 2011-02-18 2011-02-18 Optical receiver, non-linear equalisation circuit, and digital signal processing circuit

Publications (2)

Publication Number Publication Date
JP5523591B2 JP5523591B2 (en) 2014-06-18
JPWO2012111140A1 true JPWO2012111140A1 (en) 2014-07-03

Family

ID=46672101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012557753A Active JP5523591B2 (en) 2011-02-18 2011-02-18 Optical receiver, nonlinear equalization circuit, and digital signal processing circuit

Country Status (2)

Country Link
JP (1) JP5523591B2 (en)
WO (1) WO2012111140A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655433B (en) * 2011-03-04 2016-03-30 富士通株式会社 Nonlinear impairments compensation method and device
WO2013042345A1 (en) * 2011-09-22 2013-03-28 日本電気株式会社 Optical signal processing device, polarization processing device, and optical signal processing method
JP6287866B2 (en) * 2013-02-07 2018-03-07 日本電気株式会社 Signal processing apparatus and signal processing method
WO2014167897A1 (en) * 2013-04-09 2014-10-16 日本電気株式会社 Signal processing device and signal processing method
US20150256264A1 (en) * 2014-03-07 2015-09-10 Futurewei Technologies, Inc. System and Method for Chromatic Dispersion Tolerant Direct Optical Detection
JP6322074B2 (en) * 2014-07-22 2018-05-09 日本電信電話株式会社 Coherent optical receiver
WO2021210259A1 (en) * 2020-04-14 2021-10-21 日本電気株式会社 Filter coefficient updating device, filter device, demodulating device, receiving device, transmitting and receiving system, filter coefficient updating method, and recording medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5088271B2 (en) * 2008-08-19 2012-12-05 富士通株式会社 Distortion compensator, optical receiver, control method thereof, and optical transmission system
JP5312190B2 (en) * 2009-05-14 2013-10-09 日本電信電話株式会社 Optical receiving apparatus and optical receiving method
JP5407595B2 (en) * 2009-06-30 2014-02-05 富士通株式会社 Signal processing circuit, optical receiver, detector, and waveform distortion compensation method

Also Published As

Publication number Publication date
WO2012111140A1 (en) 2012-08-23
JP5523591B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5523591B2 (en) Optical receiver, nonlinear equalization circuit, and digital signal processing circuit
JP5146285B2 (en) Frequency offset compensation apparatus and method, and optical coherent receiver
US8909066B2 (en) Optical transfer system, optical transmission device, and optical reception device
JP5842472B2 (en) Self-phase modulation noise calculation device, self-phase modulation noise elimination device, and optical coherent receiver
WO2011052423A1 (en) Pre-equalisation optical transmitter and pre-equalisation optical fibre transmission system
Füllner et al. Transmission of 80-GBd 16-QAM over 300 km and Kramers-Kronig reception using a low-complexity FIR Hilbert filter approximation
US8718474B2 (en) Chromatic dispersion compensation using sign operations and lookup tables
JPWO2012029613A1 (en) DIGITAL FILTER DEVICE, DIGITAL FILTERING METHOD, AND DIGITAL FILTER DEVICE CONTROL PROGRAM
JP6720877B2 (en) Digital signal processing device, digital optical receiver using the same, and digital signal processing method
US9369213B1 (en) Demultiplexing processing for a receiver
Killey et al. Electronic dispersion compensation by signal predistortion
US20150256267A1 (en) Optical receiver having a digital chromatic-dispersion compensator based on real-valued arithmetic
EP2136486B1 (en) Optical receiving apparatus and method
Nambath et al. First demonstration of an all analog adaptive equalizer for coherent DP-QPSK links
Rosenkranz et al. Electrical equalization for advanced optical communication systems
Kottke et al. Coherent UDWDM PON with joint subcarrier reception at OLT
JP6380403B2 (en) Carrier frequency deviation estimation apparatus and carrier frequency deviation estimation method
Hoshida et al. Digital nonlinear compensation techniques for high-speed DWDM transmission systems
JP6116001B2 (en) Optical transmitter and optical receiver
Liu et al. Electronic dispersion compensation based on optical field reconstruction with orthogonal differential direct-detection and digital signal processing
Faruk et al. Frequency-domain adaptive equalizer with rational oversampling rates in coherent optical receivers
Börjesson Implementation of Blind Carrier Phase Recovery for Coherent Fiber-Optical Receivers
Fattah et al. Electronic signal processing for cancelation of optical systems impairments
Borkowski et al. Experimental demonstration of the maximum likelihood-based chromatic dispersion estimator for coherent receivers
Hamja et al. DSP aided chromatic dispersion reckoning in single carrier high speed coherent optical communications

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140408

R150 Certificate of patent or registration of utility model

Ref document number: 5523591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250