JPWO2012105699A1 - Production of antibodies with high complement-dependent biological activity - Google Patents

Production of antibodies with high complement-dependent biological activity Download PDF

Info

Publication number
JPWO2012105699A1
JPWO2012105699A1 JP2012555996A JP2012555996A JPWO2012105699A1 JP WO2012105699 A1 JPWO2012105699 A1 JP WO2012105699A1 JP 2012555996 A JP2012555996 A JP 2012555996A JP 2012555996 A JP2012555996 A JP 2012555996A JP WO2012105699 A1 JPWO2012105699 A1 JP WO2012105699A1
Authority
JP
Japan
Prior art keywords
antibody
activity
complement
sugar chain
b4gal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012555996A
Other languages
Japanese (ja)
Inventor
賢蔵 高田
賢蔵 高田
款冬 中島
款冬 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evec Inc
Original Assignee
Evec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evec Inc filed Critical Evec Inc
Publication of JPWO2012105699A1 publication Critical patent/JPWO2012105699A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2887Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01038Beta-N-acetylglucosaminylglycopeptide beta-1,4-galactosyltransferase (2.4.1.38)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/734Complement-dependent cytotoxicity [CDC]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、補体依存性生物活性を有する抗体を各種動物細胞で生産するに際して、高い生物活性有する抗体を産生する方法を提供し、特に、高い補体依存性生物活性を有する抗体を動物細胞で産生するに際して、β-1,4-ガラクトシルトランスフェラーゼ(B4Gal−T)活性を有するタンパク質をコードする遺伝子が発現した宿主動物細胞を用いることを特徴とする、抗体の産生法、その方法により産生される抗体、そのような抗体を安定的に発現する宿主細胞系を提供する。The present invention provides a method for producing an antibody having a high complement-dependent biological activity when producing an antibody having a complement-dependent biological activity in various animal cells. A method for producing an antibody, characterized in that a host animal cell expressing a gene encoding a protein having β-1,4-galactosyltransferase (B4Gal-T) activity is used. And host cell lines that stably express such antibodies.

Description

本発明は、補体依存性生物活性の高い抗体の産生方法に関する。特に、本発明は、高い補体依存性生物活性を有する抗体を動物細胞で産生するに際して、β-1,4-ガラクトシルトランスフェラーゼ(B4Gal−TまたはB1,4GTと称する場合がある。)活性を有するタンパク質をコードする遺伝子が安定的に発現した宿主動物細胞を用いることを特徴とする、抗体の産生法、その方法により産生される抗体、そのような抗体を安定的に発現する宿主細胞系に関する。   The present invention relates to a method for producing an antibody having a high complement-dependent biological activity. In particular, the present invention has β-1,4-galactosyltransferase (sometimes referred to as B4Gal-T or B1,4GT) activity when producing an antibody having high complement-dependent biological activity in animal cells. The present invention relates to a method for producing an antibody, an antibody produced by the method, and a host cell system that stably expresses such an antibody, characterized by using a host animal cell in which a gene encoding a protein is stably expressed.

抗体は、その高い特異性、および高い結合活性を有することから、研究、各種診断薬、更には各種疾病の予防及び治療薬として広く使用されてきている。米国では、癌、自己免疫疾患、感染症、アレルギー疾患などの分野で既に20種類を超える抗体医薬品が承認され使用されており、データモニター社の推計によると、その世界市場は2015年には600億ドルを超すと予想されている。更にまた、現在、140種類以上のヒトモノクローナル抗体の臨床試験が進行中である(非特許文献1)。   Because of their high specificity and high binding activity, antibodies have been widely used as research, various diagnostic agents, and as preventive and therapeutic agents for various diseases. In the United States, more than 20 antibody drugs have already been approved and used in the fields of cancer, autoimmune diseases, infectious diseases, allergic diseases, etc., and according to estimates by Data Monitor, the global market is 600 in 2015. It is expected to exceed $ 100 million. Furthermore, more than 140 types of human monoclonal antibodies are currently undergoing clinical trials (Non-patent Document 1).

例えば、癌の分野では、近年になり、モノクローナル抗体医薬による癌治療の臨床応用が活発に進んでおり、各種化学療法剤との併用などにより一定の成果をあげるに至った(非特許文献2、3)。これらには、抗Her2/neu抗体(trastuzumab/Herceptin)、抗CD20抗体(rituximab/Rituxan)、抗EGFR抗体(cetuximab/Erbitux)、抗VEGF抗体(bevacizumab/Avastin)などが含まれ、乳癌、リンパ腫、大腸癌、肺癌などの一部の癌患者において効果を示している。   For example, in the field of cancer, in recent years, clinical application of cancer treatment with monoclonal antibody drugs has been actively progressed, and certain results have been achieved by the combined use with various chemotherapeutic agents (Non-patent Document 2, 3). These include anti-Her2 / neu antibodies (trastuzumab / Herceptin), anti-CD20 antibodies (rituximab / Rituxan), anti-EGFR antibodies (cetuximab / Erbitux), anti-VEGF antibodies (bevacizumab / Avastin), breast cancer, lymphoma, It is effective in some cancer patients such as colorectal cancer and lung cancer.

また、自己免疫疾患の分野では、抗CD20抗体(rituximab/Rituxan)、抗TNFα抗体 (remicade/ Infliximab および humira/Adalimumab)、および抗IL-6R抗体(actemura/ Tocirizumab)、等が、関節リウマチ、多発性硬化症、クローン病、および全身性エリトマトーデス等の分野で、臨床使用され大きな市場を形成している。更に、アレルギー疾患の分野では、抗IgE抗体(xolair/Omalizumab)が気管支喘息やアレルギー性鼻炎に使用されている。   In the field of autoimmune diseases, anti-CD20 antibodies (rituximab / Rituxan), anti-TNFα antibodies (remicade / Infliximab and humira / Adalimumab), and anti-IL-6R antibodies (actemura / Tocirizumab), etc. It is used clinically and forms a large market in areas such as systemic sclerosis, Crohn's disease, and systemic lupus erythematosus. Furthermore, in the field of allergic diseases, anti-IgE antibodies (xolair / Omalizumab) are used for bronchial asthma and allergic rhinitis.

一方、感染症分野では、抗RSV抗体(synagis/Palivizumab)がRSV感染予防薬として使用され大きな市場を形成している。更に、現在では、HIV、インフルエンザウイルス、狂犬病ウイルス、更には肝炎ウイルスに対しても、抗体医薬の臨床開発が進んでいる。   On the other hand, in the field of infectious diseases, anti-RSV antibodies (synagis / Palivizumab) are used as a preventive agent for RSV infection and form a large market. Furthermore, clinical development of antibody drugs against HIV, influenza virus, rabies virus, and hepatitis virus is now underway.

しかしながら、上に挙げた抗体医薬を始め、現在開発されている抗体医薬についても、従来の薬剤に比較して改善されたとはいえ、その薬効はまだ限られたものであり、満足できる程度に達しているとは到底いえない。すなわち、より優れた生物活性を有する新たな抗体医薬、もしくは既存の抗体医薬の活性増強法の開発が強く要望されている状況である。   However, the antibody drugs currently developed, including the antibody drugs listed above, have been improved compared to conventional drugs, but their drug efficacy is still limited and have reached a satisfactory level. It cannot be said that it is. That is, there is a strong demand for the development of a new antibody drug having superior biological activity or a method for enhancing the activity of an existing antibody drug.

そのような中、近年は、より生物活性の高い抗体の探索、既存の抗体の活性増強法の研究開発、および血中での半減期を延ばす方法等の研究開発等がなされている。具体的には、抗体の糖鎖修飾による抗体依存性細胞障害活性(antibody-dependent cellular cytotoxicity)(以下、「ADCC活性」と称する場合がある。)の増強法(特許文献1、2、3、非特許文献4、5、6)や抗体の定常領域(Fc領域)のIgG1/IgG3の組換法による補体依存性細胞障害活性(complement dependent cytotoxicity)(以下、「CDC活性」と称する場合がある。)の増強法(特許文献4、非特許文献7)などが、その代表的な事例である。しかしながら、高い補体依存性生物活性を有する抗体もしくはその工業化容易な産生法が、まだまだ、切望されているのが現状である。   Under such circumstances, in recent years, search for antibodies with higher biological activity, research and development of methods for enhancing the activity of existing antibodies, research and development of methods for extending the half-life in blood, and the like have been made. Specifically, a method for enhancing antibody-dependent cellular cytotoxicity (hereinafter sometimes referred to as “ADCC activity”) by modifying the sugar chain of the antibody (Patent Documents 1, 2, 3, Non-Patent Documents 4, 5, and 6) and complement dependent cytotoxicity (hereinafter referred to as “CDC activity”) by the IgG1 / IgG3 recombination method of the antibody constant region (Fc region). A typical example is the enhancement method (Patent Document 4, Non-Patent Document 7). However, the present situation is that there is still a strong demand for antibodies having high complement-dependent biological activity or methods for their easy industrialization.

ところで、抗体のエフェクター活性の発現には、Fc領域の重要性が指摘されており、Fc領域を介したADCC活性、およびCDC活性が重要視されている。ADCC活性に関してみると、その活性増強のアプローチとして、抗体のFc領域に結合している糖鎖を修飾する事例、およびFc領域のペプチド配列を修飾する事例が報告されている。前者の事例としては、抗体のFc領域のN−グリコシド結合複合型糖鎖の還元末端に結合しているフコースの欠失が高活性をもたらすことが報告されている(非特許文献4, 5, 8)。また、後者の事例としては、抗体のFc領域のペプチド配列中の特定の部位のアミノ酸置換によっても、高いADCC活性をもたらすことが報告されている(非特許文献10)。   By the way, the importance of the Fc region has been pointed out for the expression of the effector activity of the antibody, and ADCC activity and CDC activity via the Fc region are regarded as important. Regarding ADCC activity, as an approach for enhancing the activity, there have been reported cases in which a sugar chain bound to an Fc region of an antibody is modified and a peptide sequence in the Fc region is modified. In the former case, it has been reported that deletion of fucose bound to the reducing end of the N-glycoside-linked complex type sugar chain in the Fc region of the antibody results in high activity (Non-Patent Documents 4, 5, 8). In the latter case, it has been reported that high ADCC activity is also caused by amino acid substitution at a specific site in the peptide sequence of the Fc region of an antibody (Non-patent Document 10).

一方、CDC活性に関しても、大きく分類して(i) Fc領域もしくはその他の領域のペプチド配列を修飾する事例、および(ii) Fc領域の糖鎖を修飾する事例がある。(i)の事例としては、前に述べたIgG1/IgG3の組換法によるCDC活性の増強法(特許文献4、非特許文献7)が代表的であるが、IgG3抗体が本来持つ課題(血液中での半減期の短さ、プロテインAへの結合の弱さに由来する精製の困難さ、および凝集し易さ等)もあり、Fc領域のアミノ酸置換の事例(特許文献5)、CDR(相補性決定領域)のアミノ酸置換の事例(特許文献6)、更にはヒンジ領域のアミノ酸置換の事例(特許文献7)などが相次いで報告されている。一方、(ii)の観点での事例としては、ガラクトースがN−グリコシド結合複合型糖鎖の非還元末端に結合している糖鎖の割合の増加が、補体依存性生物活性に影響することが報告されているが、それらの増加がCDC活性を亢進するという報告(非特許文献9)と、増加がCDC活性の亢進に必ずしもつながらないとする報告(非特許文献8)があり、その活性の変化も2倍以内のためか明確な見解には至っていない。また、非特許文献8および9に開示されている糖鎖修飾法は、in vitroで酵素処理をする方法であり、到底、大量生産には適さない。   On the other hand, the CDC activity is roughly classified into (i) a case where the peptide sequence of the Fc region or other region is modified, and (ii) a case where the sugar chain of the Fc region is modified. As an example of (i), the method for enhancing CDC activity by the recombination method of IgG1 / IgG3 described above (Patent Document 4, Non-Patent Document 7) is representative, but the problem inherent in IgG3 antibody (blood Short of half-life, difficulty of purification due to weak binding to protein A, and ease of aggregation, etc.), Fc region amino acid substitution (Patent Document 5), CDR ( Examples of amino acid substitution (complementarity determining region) (patent document 6) and further examples of amino acid substitution of hinge region (patent document 7) have been reported one after another. On the other hand, as an example from the viewpoint of (ii), an increase in the proportion of sugar chains in which galactose is bound to the non-reducing end of an N-glycoside-linked complex sugar chain affects the complement-dependent biological activity. However, there are reports that these increases enhance CDC activity (Non-patent Document 9) and reports that increases do not necessarily lead to enhancement of CDC activity (Non-patent Document 8). It is not clear that the change is less than twice. In addition, the sugar chain modification methods disclosed in Non-Patent Documents 8 and 9 are enzyme treatment methods in vitro and are not suitable for mass production.

特許4290423Patent 4290423 特許4368530Patent 4368530 特開2009−275049JP2009-275049 WO2007/011041WO2007 / 011041 WO2011/091078WO2011 / 091078 WO2009/018411WO2009 / 018411 WO2009/006520WO2009 / 006520

Nature reviews, 9, p767-774 (2010)Nature reviews, 9, p767-774 (2010) Lancet Oncol., 5, p.292-302(2004)Lancet Oncol., 5, p.292-302 (2004) J. Clin. Oncology, 17, p268-276(1999)J. Clin. Oncology, 17, p268-276 (1999) J. Biol. Chem.,277, p26733-26740 (2002)J. Biol. Chem., 277, p26733-26740 (2002) BMC Biotechnology, 7:84, p1-13(2007)BMC Biotechnology, 7:84, p1-13 (2007) Biotechnology and Bioengineering, 87, p614-622(2004)Biotechnology and Bioengineering, 87, p614-622 (2004) Cancer Res.,68,p3863-3872(2008)Cancer Res., 68, p3863-3872 (2008) Biotechnol. Prog. 21, 1644-1652(2005)Biotechnol. Prog. 21, 1644-1652 (2005) Current Opinion in Immunology, 20, p471-478(2008)Current Opinion in Immunology, 20, p471-478 (2008) Mol. Cancer Ther. 7, p2517-2527(2008)Mol. Cancer Ther. 7, p2517-2527 (2008)

上記のような背景の中、より有効で安価な抗体医薬を社会に供給するために、各種動物細胞で産生する抗体の補体依存性生物活性を高める大量生産が容易な抗体産生法を提供することが求められている。さらに、抗体医薬はその高い治療費のみならず、必要生産量の増加、種類の増加が相俟って世界的にも製造設備の不足が大きな問題となっており、これらの課題を解決するためにも抗体医薬には高い生物活性が求められている。   In order to supply more effective and inexpensive antibody drugs to society in the background as described above, the present invention provides an antibody production method that facilitates mass production that enhances complement-dependent biological activity of antibodies produced in various animal cells. It is demanded. Furthermore, the shortage of manufacturing equipment is a major problem worldwide because antibody drugs are not only expensive, but also due to an increase in the required production volume and increase in types. In order to solve these problems, In addition, antibody drugs are required to have high biological activity.

上記の課題を達成するために、種々の異なった宿主細胞で産生した抗体の補体依存性生物活性を調査し、特に顕著に違いがあった抗体に関しては、それらのFc領域に結合している糖鎖の構造を解析、その生物活性の差異の原因を究明、対応策を検討した。その結果、高い補体依存性生物活性を有する抗体を得るには、β-1,4-ガラクトシルトランスフェラーゼ(B4Gal−T)活性を有するタンパク質をコードする遺伝子が安定的に発現している細胞(好ましくは、脊椎動物細胞、特に哺乳動物細胞)、もしくはB4Gal−T活性を有するタンパク質をコードする遺伝子を導入した動物細胞(好ましくは、脊椎動物細胞、特に哺乳動物細胞)を宿主細胞として用いることが有効であることを見出し、本発明を完成した。   In order to achieve the above-mentioned problems, the complement-dependent biological activities of antibodies produced in various different host cells were investigated, and in particular, antibodies that were significantly different were bound to their Fc regions. The structure of the sugar chain was analyzed, the cause of the difference in its biological activity was investigated, and countermeasures were examined. As a result, in order to obtain an antibody having high complement-dependent biological activity, a cell in which a gene encoding a protein having β-1,4-galactosyltransferase (B4Gal-T) activity is stably expressed (preferably It is effective to use vertebrate cells, particularly mammalian cells), or animal cells into which a gene encoding a protein having B4Gal-T activity is introduced (preferably vertebrate cells, particularly mammalian cells) as host cells. As a result, the present invention was completed.

即ち、本発明は、以下に記載する抗体の産生法、その方法により産生された抗体、およびそのような抗体を安定的に発現する宿主細胞系に関する。   That is, the present invention relates to an antibody production method described below, an antibody produced by the method, and a host cell system that stably expresses such an antibody.

[1]β-1,4-ガラクトシルトランスフェラーゼ(B4Gal−T)活性を有するタンパク質をコードする遺伝子および補体依存性生物活性を有する抗体をコードする遺伝子を発現する宿主動物細胞を培養する工程、および
培養した上記宿主動物細胞から、発現したB4Gal−T活性によりFc領域に結合しているN−グリコシド結合複合型糖鎖が修飾された上記抗体を精製する工程
を含む、補体依存性生物活性を有する抗体を産生する方法。
[2]上記培養する工程が、
(i) β-1,4-ガラクトシルトランスフェラーゼ(B4Gal−T)活性を有するタンパク質をコードする遺伝子が安定的に発現している宿主動物細胞に補体依存性生物活性を有する抗体をコードする遺伝子を発現可能に導入した該細胞を培養すること、または
(ii) β-1,4-ガラクトシルトランスフェラーゼ(B4Gal−T)活性を有するタンパク質をコードする遺伝子および補体依存性生物活性を有する抗体をコードする遺伝子の両方を発現可能に導入した宿主動物細胞を培養すること、
を含む、上記[1]に記載の方法。
[3]上記タンパク質をコードする遺伝子が、
(i) 配列番号7のポリヌクレオチド;
(ii) 配列番号7のポリヌクレオチドとストリンジェントな条件でハイブリダイズし、かつB4Gal−T活性を有するタンパク質をコードするポリヌクレオチド;
(iii) 配列番号8のアミノ酸配列をコードするポリヌクレオチド;または
(iv) 配列番号8のアミノ酸配列と80%以上の同一性を有するアミノ酸配列からなり、かつB4Gal−T活性を有するタンパク質をコードするポリヌクレオチド
からなる、上記[1]または[2]に記載の方法。
[4]上記宿主動物細胞が、脊椎動物細胞、哺乳動物細胞、またはCHO細胞である、上記[1]〜[3]のいずれか一項に記載の方法。
[5]さらに、
(i) 上記抗体のFc領域に結合しているN−グリコシド結合複合型糖鎖の中で、G1およびG2複合型糖鎖の割合が50%以上である抗体を単離する工程;または
(ii) 上記抗体のFc領域に結合しているN−グリコシド結合複合型糖鎖の中で、G2複合型糖鎖の割合が50%以上である抗体を単離する工程
を含む、上記[1]〜[4]のいずれか一項に記載の方法。
[6]上記補体依存性生物活性が、補体依存性細胞障害活性、補体依存性のウイルス中和活性、補体依存性のCMVの中和活性、および抗CD20抗体の補体依存性細胞障害活性からなる群から選択される活性である、上記[1]〜[5]のいずれか一項に記載の方法。
[7]さらに、
(i) 糖鎖が修飾されていない抗体と比較して3倍以上高い補体依存性生物活性を示す抗体を単離する工程;または
(ii) 糖鎖が修飾されていない抗体と比較して10倍以上高い補体依存性生物活性を示す抗体を単離する工程
を含む、上記[1]〜[6]のいずれか一項に記載の方法。
[8]上記抗体がモノクローナル抗体である、上記[1]〜[7]のいずれか一項に記載の方法。
[9]上記抗体がIgGまたはIgG1である、上記[1]〜[8]のいずれか一項に記載の方法。
[10]上記[1]〜[9]のいずれか一項に記載の方法により産生された抗体。
[11]上記[5]または[7]に記載の方法により産生された抗体。
[12]上記[11]に記載の抗体を安定的に発現する宿主細胞系。
[1] culturing a host animal cell expressing a gene encoding a protein having β-1,4-galactosyltransferase (B4Gal-T) activity and a gene encoding an antibody having complement-dependent biological activity; and Complement-dependent biological activity comprising the step of purifying the above-mentioned antibody in which the N-glycoside-linked complex sugar chain bound to the Fc region is modified by the expressed B4Gal-T activity from the cultured host animal cell. A method for producing an antibody comprising:
[2] The culturing step comprises:
(i) a gene encoding an antibody having complement-dependent biological activity in a host animal cell in which a gene encoding a protein having β-1,4-galactosyltransferase (B4Gal-T) activity is stably expressed. Culturing the cells introduced in an expressible manner, or
(ii) a host animal cell into which both a gene encoding a protein having β-1,4-galactosyltransferase (B4Gal-T) activity and a gene encoding an antibody having complement-dependent biological activity can be expressed. Culturing,
The method according to [1] above, comprising:
[3] The gene encoding the protein is
(i) the polynucleotide of SEQ ID NO: 7;
(ii) a polynucleotide that hybridizes with the polynucleotide of SEQ ID NO: 7 under a stringent condition and encodes a protein having B4Gal-T activity;
(iii) a polynucleotide encoding the amino acid sequence of SEQ ID NO: 8; or
(iv) The above-mentioned [1] or [2], which comprises an amino acid sequence having 80% or more identity with the amino acid sequence of SEQ ID NO: 8, and comprising a polynucleotide encoding a protein having B4Gal-T activity Method.
[4] The method according to any one of [1] to [3] above, wherein the host animal cell is a vertebrate cell, a mammalian cell, or a CHO cell.
[5] Furthermore,
(i) a step of isolating an antibody in which the proportion of G1 and G2 complex type sugar chains is 50% or more among N-glycoside-linked complex type sugar chains bound to the Fc region of the antibody; or
(ii) including the step of isolating an antibody having a G2 complex type sugar chain ratio of 50% or more among N-glycoside-linked complex type sugar chains bound to the Fc region of the antibody. ] The method as described in any one of [4].
[6] The complement-dependent biological activity is complement-dependent cytotoxic activity, complement-dependent virus neutralizing activity, complement-dependent CMV neutralizing activity, and complement-dependent anti-CD20 antibody. The method according to any one of [1] to [5] above, which is an activity selected from the group consisting of cytotoxic activity.
[7] Furthermore,
(i) isolating an antibody exhibiting complement-dependent biological activity that is at least 3 times higher than an antibody whose sugar chain is not modified; or
(ii) The method according to any one of the above [1] to [6], comprising a step of isolating an antibody exhibiting a complement-dependent biological activity that is 10 times or more higher than an antibody whose sugar chain is not modified. The method described.
[8] The method according to any one of [1] to [7], wherein the antibody is a monoclonal antibody.
[9] The method according to any one of [1] to [8] above, wherein the antibody is IgG or IgG1.
[10] An antibody produced by the method according to any one of [1] to [9] above.
[11] An antibody produced by the method according to [5] or [7] above.
[12] A host cell system that stably expresses the antibody according to [11] above.

本発明の方法で産生した抗体は、補体依存性生物活性が大幅に増強するため、抗腫瘍抗体のみならず病原微生物に対する抗体などの場合でも、それらの各種疾患に対する治療効果の増大が期待される。   Since the antibody produced by the method of the present invention greatly enhances complement-dependent biological activity, it is expected to increase the therapeutic effect on various diseases not only for anti-tumor antibodies but also for antibodies against pathogenic microorganisms. The

本発明に係る補体依存性生物活性の高い抗体の産生法は、各種補体依存性の生物活性を有する抗体を工業規模で製造する際に、特に有益な方法である。また、本発明の方法の好ましい態様では、産生される抗体のFc領域に結合する糖鎖はヒト型であり、該抗体を医薬として使用した場合に抗原性の観点からも問題がない点で有利である。   The method for producing an antibody with high complement-dependent biological activity according to the present invention is a particularly useful method when producing antibodies having various complement-dependent biological activities on an industrial scale. Further, in a preferred embodiment of the method of the present invention, the sugar chain bound to the Fc region of the produced antibody is human type, and it is advantageous in that there is no problem from the viewpoint of antigenicity when the antibody is used as a medicine. It is.

以上の性質より、本発明に係る生産法は、補体依存性の生物活性を有する抗腫瘍抗体、抗ウイルス抗体の産生に広く有効な方法である。また、本発明の方法により産生されるモノクローナル抗体を含む医薬組成物は、少ない量で有効であり、有効性の増大、副作用の軽減、もしくは医療費の軽減につながる可能性がある。   Due to the above properties, the production method according to the present invention is a widely effective method for producing antitumor antibodies and antiviral antibodies having complement-dependent biological activity. In addition, a pharmaceutical composition containing a monoclonal antibody produced by the method of the present invention is effective in a small amount, and may increase efficacy, reduce side effects, or reduce medical costs.

N−グリコシド結合糖鎖の基本構造((A))、およびIgG抗体中に認められるN-グリコシド結合複合型糖鎖の代表的な構造((B)〜(E))を示す。The basic structure of an N-glycoside-linked sugar chain ((A)) and the typical structures ((B) to (E)) of N-glycoside-linked complex-type sugar chains found in IgG antibodies are shown. 抗CMV抗体の糖鎖解析の結果をまとめた表を示す。A table summarizing the results of sugar chain analysis of anti-CMV antibodies is shown. 抗CMV抗体の中和活性の評価結果を表す(A)グラフおよび(B)表を示す。The (A) graph and (B) table showing the evaluation result of the neutralization activity of an anti-CMV antibody are shown. Rituxanの補体依存性細胞障害活性(CDC)の評価結果を示す。The evaluation result of the complement dependent cytotoxic activity (CDC) of Rituxan is shown.

以下、本願発明に係る補体依存性生物活性の高い抗体の産生法およびその方法により産生される抗体に関して詳述する。   Hereinafter, a method for producing an antibody having high complement-dependent biological activity according to the present invention and an antibody produced by the method will be described in detail.

1.用語の説明
(抗体)
本明細書において「抗体」とは、通常の抗体(antibody)を意味し、リンパ球のうちB細胞の産生する糖タンパク分子で、特定のタンパク質などの分子(抗原)を認識して結合する働きを有する分子を意味する。なお、「抗体」という名称は抗原に結合するという機能を重視した名称であり、物質としては免疫グロブリン(immunoglobulin)と呼ばれ、「Ig(アイジー)」と略される。特に、抗体医薬として使用されているIgGは、4本のポリペプチド鎖、すなわち、2本の重(H)鎖および2本の軽(L)鎖であってジスルフィド結合によって相互接続されたものからなる免疫グロブリン分子である。本願発明におけるモノクローナル抗体も、各々2本の軽鎖(L鎖)および重鎖(H鎖)を含む免疫グロブリン分子からなる。各H鎖は、H鎖可変部領域(「HCVR」または「VH」と称す場合がある)およびH鎖定常領域(H鎖定常領域は3つのドメインからなり、それぞれ「CH1」、「CH2」、「CH3」と称す場合がある(総称:CH))からなる。尚、H鎖にはヒンジ領域がCH1とCH2の間に存在する。一方、各L鎖は、L鎖可変部領域(「LCVR」または「VL」と称す場合がある)およびL鎖定常領域(L鎖定常領域は1つのドメインからなり、「CL」と称す場合がある)からなる。また、IgGをパパインで処理すると2個のFab断片と1個のFc断片に切断されるが、Fc領域と言った場合主として上記の「CH2」と「CH3」を合わせた部分を指す。ヒト型のIgG抗体の場合、各H鎖の297番目のAsn残基にN−グリコシド結合でそれぞれ1本の糖鎖が結合している。
1. Explanation of terms (antibody)
In the present specification, “antibody” means a normal antibody (antibody), which is a glycoprotein molecule produced by B cells in lymphocytes, and recognizes and binds to a molecule (antigen) such as a specific protein. Means a molecule having The name “antibody” is a name that emphasizes the function of binding to an antigen, and the substance is called an immunoglobulin and is abbreviated as “Ig”. In particular, IgG used as an antibody drug is composed of four polypeptide chains, ie, two heavy (H) chains and two light (L) chains interconnected by disulfide bonds. Is an immunoglobulin molecule. The monoclonal antibody in the present invention is also composed of immunoglobulin molecules each containing two light chains (L chains) and heavy chains (H chains). Each heavy chain consists of a heavy chain variable region (sometimes referred to as “HCVR” or “VH”) and a heavy chain constant region (the heavy chain constant region is composed of three domains, “CH1”, “CH2”, It may be referred to as “CH3” (generic name: CH)). The H chain has a hinge region between CH1 and CH2. On the other hand, each L chain has an L chain variable region (sometimes referred to as “LCVR” or “VL”) and an L chain constant region (the L chain constant region is composed of one domain and may be referred to as “CL”). Is). In addition, when IgG is treated with papain, it is cleaved into two Fab fragments and one Fc fragment. When the Fc region is referred to, it mainly refers to the portion where the above “CH2” and “CH3” are combined. In the case of a human IgG antibody, one sugar chain is bound to the 297th Asn residue of each H chain by an N-glycoside bond.

また、抗体は定常領域の構造の違いにより、いくつかのクラス(アイソタイプ)に分けられる。哺乳動物では、定常領域の構造の違いによりIgG、IgA、IgM、IgD、IgEの5種類のクラスの免疫グロブリンに分類される。ヒトの場合、IgGにはIgG1〜IgG4の4つのサブクラスが、IgAにはIgA1とIgA2の2つのサブクラスがあり、それぞれ少しずつ構造が異なっている。IgM、IgD、IgEにはサブクラスはない。なお、本明細書では、「抗体」とは、上述のクラス・サブクラスの総称を意味し、さらにマウス抗体、キメラ抗体、ヒト化抗体、ヒト抗体(完全ヒト型)、およびFc領域を有する二重特異性抗体、多重特異性抗体などが含まれる。   Antibodies are divided into several classes (isotypes) depending on the structure of the constant region. Mammals are classified into five classes of immunoglobulins, IgG, IgA, IgM, IgD, and IgE, depending on the structure of the constant region. In humans, IgG has four subclasses IgG1 to IgG4, and IgA has two subclasses IgA1 and IgA2, each having a slightly different structure. There are no subclasses in IgM, IgD, and IgE. In the present specification, the “antibody” means a generic name of the above-mentioned classes and subclasses, and further includes a mouse antibody, a chimeric antibody, a humanized antibody, a human antibody (fully human type), and a double antibody having an Fc region. Specific antibodies, multispecific antibodies and the like are included.

抗体の「エフェクター機能」とは、抗体のFc領域が担う機能であり、抗体クラスに大きく依存する。補体を活性化する機能はIgMとIgGクラスの抗体に限られ、抗体の可変領域が結合した細胞を溶解させる機能を特にCDC(補体依存性細胞障害)と呼ぶ。また、IgG、IgE、IgAクラスの抗体のFc領域はそれぞれに特異的なFc受容体に結合し、Fc受容体をもつ細胞を活性化したり、抗体の細胞間トランスポートに働く。特に、IgGクラス抗体がT細胞、NK細胞、好中球、マクロファージ上のFc受容体を介して、これらのエフェクター細胞を活性化し,抗体の可変領域が結合した標的細胞を殺すことをADCC(抗体依存性細胞障害)とよぶ。NK細胞を活性化する機能をADCC、マクロファージを活性化する機能をADMCと区別して使用する場合がある。(<URL:http://www.yodosha.co.jp/jikkenigaku/keyword/139.html>(最終閲覧日:2012年1月27日))   The “effector function” of an antibody is a function carried by the Fc region of the antibody and largely depends on the antibody class. The function of activating complement is limited to IgM and IgG class antibodies, and the function of lysing cells to which antibody variable regions are bound is particularly called CDC (complement dependent cytotoxicity). In addition, Fc regions of IgG, IgE, and IgA class antibodies bind to specific Fc receptors, respectively, and activate cells having Fc receptors or act on intercellular transport of antibodies. In particular, it is known that IgG class antibodies activate these effector cells via Fc receptors on T cells, NK cells, neutrophils, and macrophages and kill target cells to which antibody variable regions are bound. Dependent cell damage). The function of activating NK cells may be used in distinction from ADCC and the function of activating macrophages from ADMC. (<URL: http://www.yodosha.co.jp/jikkenigaku/keyword/139.html> (Last browse date: January 27, 2012))

(タンパク質)
本明細書において、「タンパク質」とは、アミド結合(ペプチド結合)によって互いに結合した複数個のアミノ酸残基から構成された分子を意味する。抗体もタンパク質であり、「組換え抗体」とは、遺伝子工学的手法を用いて製造される抗体を意味する。
(protein)
In the present specification, “protein” means a molecule composed of a plurality of amino acid residues linked to each other by amide bonds (peptide bonds). An antibody is also a protein, and “recombinant antibody” means an antibody produced using genetic engineering techniques.

(糖タンパク質)
本明細書において、「糖タンパク質」とは、通常の糖タンパク質(glycoprotein)を意味し、タンパク質を構成するアミノ酸の一部に糖鎖が結合したものである。動物においては、細胞表面や細胞外に分泌されているタンパク質のほとんどが糖タンパク質であるといわれている。タンパク質の修飾では、アスパラギンに結合したもの(N結合型)とセリンやスレオニンに結合したもの(O結合型、ムチン型)の2種類が頻繁に観察される。
(Glycoprotein)
In the present specification, the “glycoprotein” means a normal glycoprotein, and a sugar chain is bound to a part of amino acids constituting the protein. In animals, it is said that most proteins secreted to the cell surface or extracellularly are glycoproteins. Two types of protein modifications are frequently observed: those bound to asparagine (N-linked type) and those linked to serine and threonine (O-linked type and mucin type).

糖タンパク質に結合している糖鎖を成す糖の種類はそれほど多くなく、よく見られるものは、グルコース、ガラクトース、マンノース、フコース、N−アセチルグルコサミン、N−アセチルガラクトサミン、N−アセチルノイラミン酸、キシロースなど7〜8種程度である。構造様式もある程度限られており、その中のわずかな構造の違いが識別され、様々な生命現象が制御されている。抗体も代表的な糖タンパク質であり、それらの糖鎖構造と機能に関する研究も大いに進んでいる。特に、IgGのFc領域に存在するN−グリコシド結合糖鎖の構造と機能に関しては、ADCC活性への影響等多くの報告がある。   There are not so many kinds of sugars constituting the sugar chain bound to the glycoprotein, and common ones are glucose, galactose, mannose, fucose, N-acetylglucosamine, N-acetylgalactosamine, N-acetylneuraminic acid, There are about 7-8 types such as xylose. The structural style is also limited to some extent, and slight structural differences among them are identified, and various life phenomena are controlled. Antibodies are also representative glycoproteins, and research on their sugar chain structures and functions has been greatly advanced. In particular, regarding the structure and function of the N-glycoside-linked sugar chain present in the Fc region of IgG, there are many reports such as the effect on ADCC activity.

(N−グリコシド結合糖鎖の構造)
N−グリコシド結合糖鎖(N−結合型糖鎖、もしくはN結合型糖鎖とも称する。)においては、タンパク質のAsn残基の窒素原子(N)にN−アセチルグルコサミン(GlcNAc)を介してN−グリコシド結合で糖鎖が結合している。Asnならどれでもよいわけではなく、Asn−(任意アミノ酸)−Ser/Thrという配列に限られる。ヒト型のIgG抗体の場合、各H鎖の297番目のAsn残基にN−グリコシド結合でそれぞれ1本の糖鎖が結合しており、それらには多くの種類の糖鎖構造が存在する。
(Structure of N-glycoside-linked sugar chain)
In an N-glycoside-linked sugar chain (also referred to as N-linked sugar chain or N-linked sugar chain), N is attached to the nitrogen atom (N) of the Asn residue of the protein via N-acetylglucosamine (GlcNAc). -Sugar chains are linked by glycosidic bonds. Any Asn may be used, and the sequence is limited to Asn- (arbitrary amino acid) -Ser / Thr. In the case of a human IgG antibody, one sugar chain is bonded to the 297th Asn residue of each H chain by an N-glycoside bond, and there are many types of sugar chain structures.

N−グリコシド結合糖鎖は、大きく「高マンノース型」、「複合型」および「ハイブリッド型」に分かれるが、抗体のFc領域に結合しているN−グリコシド結合糖鎖の大部分は、「複合型」と呼ばれる糖鎖構造を有する。図1は、N−グリコシド結合糖鎖の基本構造((A))、およびIgG抗体中に認められるN−グリコシド結合複合型糖鎖の代表的な構造((B)〜(E))を示す。基本構造(A)は、還元末端側に2分子のN−アセチルグルコサミン(GlcNAc)が結合しその先にマンノース(Man)が1分子、さらにその先にマンノース(Man)が2分子、2つに枝分かれして結合している構造を有する。(B)の糖鎖は、N−グリコシド結合糖鎖の基本構造の還元末端のN−アセチルグルコサミン(GlcNAc)にフコースが結合し、非還元末端の2分子のマンノース(Man)には、N−アセチルグルコサミン(GlcNAc)がそれぞれ1分子ずつ結合している構造で、非還元末端にガラクトース(Gal)は存在していない構造である。(C)〜(E)の糖鎖は、(B)の糖鎖の非還元末端のGlcNAcにGalが1分子もしくは2分子結合した構造を有する。これらGalが付加されるにはB4Gal-Tが重要な働きをする。CHO細胞で産生されるIgG抗体においては、還元末端のGlcNAcにフコースが結合した糖鎖の割合が高いが、IgG抗体中に認められる複合型糖鎖にはフコースが結合していないものも含まれる。それら以外にもまた、IgG抗体中に認められる複合型糖鎖には、糖鎖構造(E)の非還元末端のGalに、更に、シアル酸(N−アセチルノイラミン酸)が1分子または2分子結合した糖鎖や、糖鎖が枝分かれしている部分のマンノースに、更に、GlcNACが結合している「バイセクティング」という構造を有する糖鎖も含まれる。本明細書においては、特にその中で、非還元末端側のGlcNAcにガラクトースが1分子結合した糖鎖構造を「G1複合型糖鎖(またはG1)」(代表例:図1の(C)および(D))と、ガラクトースが2分子結合した糖鎖構造を「G2複合型糖鎖(またはG2)」(代表例:図1の(E))と、それら以外のガラクトースが全く結合していない場合を「G0複合型糖鎖(またはG0)」と称することとする。   N-glycoside-linked sugar chains are roughly divided into “high mannose type”, “complex type” and “hybrid type”, but most of N-glycoside-linked sugar chains bound to the Fc region of an antibody are “complexed”. It has a sugar chain structure called “type”. FIG. 1 shows the basic structure of an N-glycoside-linked sugar chain ((A)) and representative structures ((B) to (E)) of N-glycoside-linked complex sugar chains found in IgG antibodies. . In the basic structure (A), two molecules of N-acetylglucosamine (GlcNAc) are bound to the reducing end side, one mannose (Man) molecule is ahead of it, and two mannose (Man) molecules are further ahead. It has a structure that is branched and connected. In the sugar chain of (B), fucose is bound to N-acetylglucosamine (GlcNAc) at the reducing end of the basic structure of the N-glycoside-linked sugar chain, and N-acetylated to two molecules of mannose (Man) at the non-reducing end. This is a structure in which one molecule of acetylglucosamine (GlcNAc) is bonded to each other, and galactose (Gal) is not present at the non-reducing end. The sugar chains of (C) to (E) have a structure in which one molecule or two molecules of Gal are bonded to GlcNAc at the non-reducing end of the sugar chain of (B). To add these Gals, B4Gal-T plays an important role. The IgG antibody produced in CHO cells has a high proportion of sugar chains in which fucose is bound to GlcNAc at the reducing end, but some of the complex sugar chains found in IgG antibodies do not have fucose bound . In addition to these, the complex type sugar chains found in IgG antibodies include one or two molecules of sialic acid (N-acetylneuraminic acid) in addition to Gal at the non-reducing end of the sugar chain structure (E). A sugar chain having a structure called “bisecting” in which GlcNAC is further bonded to a molecularly bonded sugar chain or a mannose where the sugar chain is branched is also included. In the present specification, in particular, a sugar chain structure in which one molecule of galactose is bonded to GlcNAc on the non-reducing end side is referred to as “G1 complex type sugar chain (or G1)” (typical example: (C) in FIG. 1 and (D)), and the sugar chain structure in which two molecules of galactose are bonded is the “G2 complex type sugar chain (or G2)” (typical example: (E) of FIG. 1) and no other galactose is bonded. The case is referred to as “G0 complex type sugar chain (or G0)”.

尚、本明細書中の図1では、哺乳動物由来の抗体に見られる代表的なN-グリコシド結合複合型糖鎖の構造を示したが、これら糖鎖構造の還元末端のN−アセチルグルコサミン(GlcNAc)にフコースが結合していない糖鎖の場合も、CDC活性は同等であることが既に示されており(非特許文献6)、特に断りが無い限り、本明細書で「G1複合型糖鎖」もしくは「G2複合型糖鎖」といった場合、フコースがない糖鎖も含めることとする。また、図1には記載がないが、上記のバイセクティング構造を有する場合もG1、およびG2の分類は、上記と同様とする。また、図2の中で示しているように、糖鎖構造(E)の非還元末端のガラクトースにシアル酸が付加した糖鎖構造も、「G2]に含めることとする。   In addition, in FIG. 1 in this specification, the structure of a typical N-glycoside-bonded complex type sugar chain found in an antibody derived from a mammal is shown, but N-acetylglucosamine ( In the case of a sugar chain in which fucose is not bound to (GlcNAc), it has already been shown that CDC activity is equivalent (Non-patent Document 6). In the case of “chain” or “G2 complex type sugar chain”, a sugar chain without fucose is also included. Although not shown in FIG. 1, the classification of G1 and G2 is the same as above even when the bisecting structure is provided. Further, as shown in FIG. 2, a sugar chain structure in which sialic acid is added to galactose at the non-reducing end of the sugar chain structure (E) is also included in “G2”.

これらN−グリコシド結合糖鎖も含めた抗体のFc部分の構造は、当該抗体の抗原性に影響するのみならず、エフェクター機能を発現するためにも重要な部分であるとされている。   The structure of the Fc part of an antibody including these N-glycoside-linked sugar chains is considered to be an important part not only for affecting the antigenicity of the antibody but also for expressing an effector function.

本発明の補体依存性生物活性を有する抗体を産生する方法によって産生される抗体としては、例えば、
(i) 抗体のFc領域に結合しているN−グリコシド結合複合型糖鎖の中で、G1およびG2複合型糖鎖の割合(該糖鎖の非還元末端の2つのN−アセチルグルコサミンの少なくとも一方にガラクトースが1分子結合しているものの割合)が少なくとも40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、またはそれ以上である抗体;および
(ii) 抗体のFc領域に結合しているN−グリコシド結合複合型糖鎖の中で、G2複合型糖鎖の割合(該糖鎖の非還元末端の2つのN−アセチルグルコサミンの両方にガラクトースがそれぞれ1分子結合しているものの割合)が少なくとも40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、またはそれ以上である抗体が含まれる。
As an antibody produced by the method for producing an antibody having complement-dependent biological activity of the present invention, for example,
(i) The proportion of G1 and G2 complex type sugar chains in the N-glycoside-linked complex type sugar chains bound to the Fc region of the antibody (at least of the two N-acetylglucosamines at the non-reducing ends of the sugar chains) On the other hand, the proportion of those having one molecule of galactose) is at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91% An antibody that is 92%, 93%, 94%, 95%, 96%, 97%, 98%, or more; and
(ii) The proportion of the G2 complex type sugar chain in the N-glycoside-bonded complex sugar chain bound to the Fc region of the antibody (galactose in both of the two N-acetylglucosamines at the non-reducing end of the sugar chain) At least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92 %, 93%, 94%, 95%, 96%, 97%, 98%, or more.

(N−グリコシド結合糖鎖の生合成経路)
抗体に結合しているN−グリコシド結合糖鎖の生合成経路は、大きく3つのプロセスから構成されていると考えられている。すなわち、1)「リピド中間体またはコアオリゴ糖」と呼ばれる14個の糖がドリコールリン酸に結合した糖鎖の前駆体 ((Glc)3-(Man)9-(GlcNAc)2-P-P-Dol)の生合成のプロセス、2)オリゴ糖転移酵素によりリピド中間体から糖鎖部分((Glc)3-(Man)9-(GlcNAc)2)をタンパク質のアスパラギン残基へ転移(オリゴ糖転移)を行うプロセス、そして、3)種々のグリコシダーゼ(糖加水分解酵素)および糖転移酵素により、タンパク上で糖鎖の修飾を行うプロセスで、それらが順次・連続的に進行する。このうち、1)および2)の過程は細胞内の小胞体という細胞内小器官で行われ、3)のプロセスは小胞体およびゴルジ体(同じく、細胞内小器官の一つ)で行われる。
(Biosynthetic pathway of N-glycoside-linked sugar chain)
The biosynthetic pathway of the N-glycoside-linked sugar chain bound to the antibody is considered to consist of three processes. That is, 1) a sugar chain precursor ((Glc) 3- (Man) 9- (GlcNAc) 2-PP-Dol) in which 14 sugars called “lipid intermediates or core oligosaccharides” are linked to dolichol phosphate 2) Biosynthetic process of 2) Transfer of sugar chain part ((Glc) 3- (Man) 9- (GlcNAc) 2) from lipid intermediate to protein asparagine residue by oligosaccharide transferase (oligosaccharide transfer) And 3) a process of modifying sugar chains on proteins with various glycosidases (sugar hydrolases) and glycosyltransferases, which proceed sequentially and continuously. Among these, the processes 1) and 2) are performed in an intracellular organelle called an endoplasmic reticulum, and the process 3) is performed in the endoplasmic reticulum and the Golgi apparatus (also one of the organelles).

特に、3)のプロセスでの修飾は種特異性があり、それぞれの種に固有の糖転移酵素が作用するため、下等な真核生物、植物、および動物で大きな違いがある。動物のN−グリコシド結合糖鎖は、5〜9個 のマンノース残基が付加した高マンノース型、GlcNAcや ガラクトース(Gal)、N-アセチルガラクトサミン(GalNAc)、フコース(Fuc)、シアル酸(Sia) などによって修飾された複合型、その中間体のような構造を持つ混成型などに分けられる。動物の中でもバイアンテナやトリアンテナなどの複合型糖鎖は、脊椎動物以外では見当たらない。   In particular, the modification in the process of 3) is species-specific and has a great difference among lower eukaryotes, plants, and animals because glycosyltransferases specific to each species act. The N-glycoside-linked sugar chain of animals is a high mannose type with 5-9 mannose residues added, GlcNAc, galactose (Gal), N-acetylgalactosamine (GalNAc), fucose (Fuc), sialic acid (Sia) It can be divided into composite types modified by the above, and mixed moldings having a structure like the intermediate. Among animals, complex sugar chains such as biantenna and bird antenna are not found except in vertebrates.

上記3)のプロセスでは、まず小胞体部分でαグルコシダーゼI およびII、α-マンノシダーゼIおよびII等が作用し、次にゴルジ体部分に移ってα-マンノシダーゼIが作用し、Man残基が5個にまで減少した糖タンパク質が生成される。更に、ゴルジ体部分では、GlcNAcを付加するN-アセチルグルコサミン転移酵素I(GnTI)、2個のManを除去するα-マンノシダーゼII、およびN-アセチルグルコサミン転移酵素II(GnTII)が作用し、複合型糖鎖の基本構造((Glc NAc)2-(Man)3-(GlcNAc)2 )が形成される。更に、ゴルジ体部分では、還元末端のN-アセチルグルコサミンにフコースを付加するα-1,6-フコシルトランスフェラーゼ、ガラクトースを付加するガラクトース転移酵素(Gal-T)、シアル酸を付加するN-アセチルノイラミン酸などのシアル酸転移酵素等が存在し、このような各種酵素の作用を受けてN-グリコシド結合糖鎖が生合成されることが知られている(Biol. Pharm. Bull., 2009 (vol.32) p767)。   In the process of 3) above, α-glucosidase I and II, α-mannosidase I and II, etc. act on the endoplasmic reticulum part first, then move to the Golgi part and α-mannosidase I acts, and the Man residue is 5 Glycoproteins reduced to individual are produced. Furthermore, N-acetylglucosaminyltransferase I (GnTI) that adds GlcNAc, α-mannosidase II that removes two Mans, and N-acetylglucosaminyltransferase II (GnTII) act on the Golgi body part to form a complex The basic structure of the type sugar chain ((GlcNAc) 2- (Man) 3- (GlcNAc) 2) is formed. Furthermore, in the Golgi portion, α-1,6-fucosyltransferase that adds fucose to N-acetylglucosamine at the reducing end, galactose transferase that adds galactose (Gal-T), and N-acetylneuron that adds sialic acid. It is known that sialyltransferases such as laminic acid exist, and N-glycoside-linked sugar chains are biosynthesized by the action of such enzymes (Biol. Pharm. Bull., 2009 ( vol.32) p767).

一般に、糖タンパク質の糖鎖構造の改変には、(i)糖鎖の生合成酵素の阻害剤の応用、(ii)突然変異体の選択、および(iii)糖鎖生合成に関連する遺伝子の導入または欠失などが考えられる。ちなみに、(i)の事例としては、糖鎖のプロセシングに関与している各種グリコシダーゼの阻害剤に関する研究(J.Appl.Glycosci., 2006 (vol.53) p149 )等がある。(ii)の事例としては、レクチン耐性株によるN-グリコシド結合糖鎖修飾の事例(特許第4741011)などがある。   In general, glycoprotein glycosylation can be modified by (i) application of inhibitors of glycosynthetic enzymes, (ii) selection of mutants, and (iii) genes associated with glycosynthetic biosynthesis. Introduction or deletion can be considered. Incidentally, examples of (i) include studies on inhibitors of various glycosidases involved in sugar chain processing (J. Appl. Glycosci., 2006 (vol. 53) p149). Examples of (ii) include a case of N-glycoside-linked sugar chain modification by a lectin resistant strain (Patent No. 4741011).

本発明では、生産される抗体に付加された糖鎖の構造を改変(抗体の糖鎖組成を、G2 またはG1+G2の割合を増加)させるために、上記N−グリコシド結合糖鎖の生合成経路の「3)のプロセス」の糖鎖修飾に係るガラクトース転移酵素(Gal-T)の安定発現を狙ったものである。本明細書の中では、遺伝子工学的な手法でヒト由来のβ-1,4-ガラクトシルトランスフェラーゼ(B4Gal−T)活性を有するたんぱく質をコードする遺伝子を哺乳動物由来の宿主細胞に導入する手法を用いたが、本目的と同じ効果が期待できる手法であれば、遺伝子の変異手法、阻害物質/活性化物質による酵素反応の修飾なども本発明に含まれる。   In the present invention, in order to modify the structure of the sugar chain added to the antibody to be produced (increasing the ratio of G2 or G1 + G2 in the sugar chain composition of the antibody), the N-glycoside-linked sugar chain biosynthetic pathway It aims at stable expression of galactose transferase (Gal-T) related to sugar chain modification in “Process 3”. In the present specification, a method of introducing a gene encoding a protein having a human-derived β-1,4-galactosyltransferase (B4Gal-T) activity into a host cell derived from a mammal by a genetic engineering method is used. However, as long as it is a technique that can be expected to have the same effect as this purpose, a gene mutation technique, an enzyme reaction modification by an inhibitor / activator, and the like are also included in the present invention.

(β-1,4-ガラクトシルトランスフェラーゼ(B4Gal−T))
本明細書では、「β-1,4-ガラクトシルトランスフェラーゼ(B4Gal−T)」とは、UDP−GalからGalを糖鎖末端のGlcNAc残基に転移する酵素のことを意味する。この酵素には、Galβ1→4GlcNAcという構造を形成する働きがある。本明細書中では、この酵素活性をβ-1,4-ガラクトシルトランスフェラーゼ(B4Gal−T)活性と呼ぶものとする。この酵素については、アミノ酸配列のホモロジーや遺伝子バンクに登録された遺伝子断片の配列情報を利用して多くのファミリー遺伝子がクローニングされている。特に、B4Gal−T活性を有するヒト由来酵素に関しては、ヒトB4Gal−T1のアミノ酸配列(配列番号8)(Swiss-Prot Accession No.: P15291)のホモログが存在し、B4Gal−T1との同一性の順番に従ってB4Gal−T2(Swiss-Prot Accession No.: O60909),T3(GenBank Accession No.:CAH72145),T4(GenBank Accession No.:AAQ89367),T5(NCBI Accession No.:NP_004767),T6(NCBI Accession No.:NP_004766)と命名され、最近はB4Gal−T7(NCBI Accession No.:NM_007255)も報告されている。それらのアミノ酸配列は、ヒトB4Gal−T1のアミノ酸配列(配列番号8)と比較し、55%〜25%の同一性があると報告されている(Glycobiology, 1998 (vol.8) p517;Curr. Drug Targets, 2008 (vol.9) p292)。
(Β-1,4-galactosyltransferase (B4Gal-T))
In the present specification, “β-1,4-galactosyltransferase (B4Gal-T)” means an enzyme that transfers Gal from UDP-Gal to a GlcNAc residue at the end of a sugar chain. This enzyme has a function of forming a structure of Galβ1 → 4GlcNAc. In the present specification, this enzyme activity is referred to as β-1,4-galactosyltransferase (B4Gal-T) activity. For this enzyme, many family genes have been cloned using amino acid sequence homology and sequence information of gene fragments registered in gene banks. In particular, for human-derived enzymes having B4Gal-T activity, there is a homologue of the amino acid sequence of human B4Gal-T1 (SEQ ID NO: 8) (Swiss-Prot Accession No .: P15291), which is identical to B4Gal-T1. B4Gal-T2 (Swiss-Prot Accession No .: O60909), T3 (GenBank Accession No .: CAH72145), T4 (GenBank Accession No .: AAQ89367), T5 (NCBI Accession No .: NP_004767), T6 (NCBI Accession) No .: NP_004766), and recently B4Gal-T7 (NCBI Accession No .: NM_007255) has also been reported. Their amino acid sequences are reported to be 55% to 25% identical compared to the amino acid sequence of human B4Gal-T1 (SEQ ID NO: 8) (Glycobiology, 1998 (vol. 8) p517; Curr. Drug Targets, 2008 (vol.9) p292).

また、各種動物由来のB4Gal−T1ホモログも報告されており、例えば、ラット、マウス、ウシ、ブタ、パンダ等の各種哺乳動物のB4Gal−T1ホモログ(NCBI Accession No.:NP_445739(ラット)、Swiss-Prot Accession No.: P15535(マウス)、Swiss-Prot Accession No.: P08037(ウシ)、NCBI Accession No.: XP_003130728(ブタ)、NCBI Accession No.: XP_002926218(パンダ))は、ヒトB4Gal−T1のアミノ酸配列(配列番号8)と80%以上の同一性を有する。   In addition, B4Gal-T1 homologues derived from various animals have also been reported. For example, B4Gal-T1 homologues (NCBI Accession No .: NP_445739 (rat), Swiss-, etc.) of various mammals such as rats, mice, cows, pigs, and pandas have been reported. Prot Accession No .: P15535 (mouse), Swiss-Prot Accession No .: P08037 (bovine), NCBI Accession No .: XP_003130728 (pig), NCBI Accession No .: XP_002926218 (panda)) is an amino acid of human B4Gal-T1 It has 80% or more identity with the sequence (SEQ ID NO: 8).

本明細書で、「β-1,4-ガラクトシルトランスフェラーゼ(B4Gal−T)活性を有するタンパク質」という場合、ヒト由来のB4Gal−T1に限らず、B4Gal−T2,3,4,5,6等、各種動物由来のB4Gal−T1活性を有する全ての酵素が含まれる。そのような酵素には、配列番号8のアミノ酸配列に対して、少なくとも20%、30%、40%、50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、または99%の同一性を有するアミノ酸配列からなるタンパク質であって、元のタンパク質と実質的に同質の活性(すなわち、B4Gal−T活性)を有するタンパク質が含まれる。   In the present specification, the term “protein having β-1,4-galactosyltransferase (B4Gal-T) activity” is not limited to human-derived B4Gal-T1, but B4Gal-T2, 3, 4, 5, 6, etc. All enzymes having B4Gal-T1 activity derived from various animals are included. Such enzymes include at least 20%, 30%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% relative to the amino acid sequence of SEQ ID NO: 8. , 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the amino acid sequence, which is substantially the same as the original protein Specifically, proteins having the same quality of activity (ie, B4Gal-T activity).

本発明の1つの実施形態では、β-1,4-ガラクトシルトランスフェラーゼ(B4Gal−T)活性を有するタンパク質は、配列番号8のアミノ酸配列を有するタンパク質;または配列番号8のアミノ酸配列に対して少なくとも80%(例えば、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、または99%)の同一性を有するタンパク質であって、B4Gal−T活性を有するタンパク質である。   In one embodiment of the invention, the protein having β-1,4-galactosyltransferase (B4Gal-T) activity is a protein having the amino acid sequence of SEQ ID NO: 8; or at least 80 relative to the amino acid sequence of SEQ ID NO: 8 % (Eg, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) , A protein having B4Gal-T activity.

「実質的に同質の活性」とは、それらの活性が性質的に同等であることを示す。したがって、酵素活性が同等(例えば、約0.01〜100倍、好ましくは約0.5〜20倍、より好ましくは約0.5〜2倍)であることが好ましいが、これらの活性の程度やタンパク質の分子量などの量的要素は異なっていてもよい。B4Gal−T活性の測定は、Proc.Natl.Acad.Sci.USA 96: 4692−4697,1999やGlycobiology 12:589−597,2002などの文献に記載の公知の方法により、またはそれに準じる方法により行うことができる。   “Substantially the same activity” indicates that these activities are qualitatively equivalent. Therefore, it is preferable that the enzyme activities are equivalent (for example, about 0.01 to 100 times, preferably about 0.5 to 20 times, more preferably about 0.5 to 2 times). And quantitative factors such as the molecular weight of the protein may be different. The measurement of B4Gal-T activity was performed according to Proc. Natl. Acad. Sci. USA 96: 4692-4697, 1999 and Glycobiology 12: 589-597, 2002, etc., or a method analogous thereto.

なお、アミノ酸配列やヌクレオチド配列の同一性は、カーリンおよびアルチュールによるアルゴリズムBLAST(Proc.Natl.Acad.Sci.USA 87:2264−2268,1990; Proc.Natl.Acad.Sci USA 90: 5873, 1993)を用いて決定できる。BLASTのアルゴリズムに基づいたBLASTNやBLASTXと呼ばれるプログラムが開発されている(Altschul SF, et al: J Mol Biol 215: 403,1990)。BLASTNを用いてヌクレオチド配列を解析する場合は、パラメーターは、例えばscore=100、wordlength=12とする。また、BLASTXを用いてアミノ酸配列を解析する場合は、パラメーターは、例えばscore=50、wordlength=3とする。BLASTとGapped BLASTプログラムを用いる場合は、各プログラムのデフォルトパラメーターを用いる。   The identity of the amino acid sequence and nucleotide sequence is determined by the algorithm BLAST (Proc. Natl. Acad. Sci. USA 87: 2264-2268, 1990; Proc. Natl. Acad. Sci USA 90: 5873, 1993 by Carlin and Arthur. ). Programs called BLASTN and BLASTX based on the BLAST algorithm have been developed (Altschul SF, et al: J Mol Biol 215: 403, 1990). When analyzing a nucleotide sequence using BLASTN, parameters are set to, for example, score = 100 and wordlength = 12. When analyzing an amino acid sequence using BLASTX, parameters are set to score = 50 and wordlength = 3, for example. When using BLAST and Gapped BLAST programs, the default parameters of each program are used.

(ガラクトース)
本明細書では、「ガラクトース」とは、通常のガラクトース(Galactose)を意味し、化学式および分子量は、それぞれ、グルコースと同じC12および180.08である。立体配置は2位(Fischer投影式で上から2番目)および5位の−OHが同じ方向、3位および4位がその反対方向であり、D−ガラクトースは5位D−グリセルアルデヒドと同じ配向を有している。グルコースの4−エピマーである。天然ではD−ガラクトースがほとんどである。
(Galactose)
As used herein, “galactose” means normal galactose, and the chemical formula and molecular weight are C 6 H 12 O 6 and 180.08, respectively, which are the same as glucose. The configuration is the 2nd position (second from the top in the Fischer projection formula) and the -OH at the 5th position is the same direction, the 3rd and 4th positions are the opposite direction, and D-galactose is the same as the 5th position D-glyceraldehyde Has an orientation. It is the 4-epimer of glucose. In nature, D-galactose is almost all.

(N−アセチルグルコサミン)
本明細書では、「N−アセチルグルコサミン」とは、通常のN−アセチルグルコサミン(N−アセチル−D−グルコサミン、GlcNAc、NAG)を意味し、化学式および分子量は、それぞれC15NOおよび221.21である。グルコースから誘導された単糖で、いくつかの生化学的機構にとって重要な物質である。化学的にはこの物質はグルコサミンと酢酸の間のアミドである。N−アセチルグルコサミンは、哺乳動物においては、糖タンパク質、ヒアルロン酸などグリコサミノグリカン(ムコ多糖)の成分となっている。N−アセチルグルコサミンは、アスパラギンマンノースを中心とするオリゴ糖鎖が結合するN結合型糖タンパク質の骨格をなすほか(キトビオース構造)、更に複雑構造を有する糖鎖の主要構成糖である。
(N-acetylglucosamine)
As used herein, “N-acetylglucosamine” means normal N-acetylglucosamine (N-acetyl-D-glucosamine, GlcNAc, NAG), and the chemical formula and molecular weight thereof are C 8 H 15 NO 6 and 221.21. A monosaccharide derived from glucose and an important substance for several biochemical mechanisms. Chemically this material is an amide between glucosamine and acetic acid. N-acetylglucosamine is a component of glycosaminoglycan (mucopolysaccharide) such as glycoprotein and hyaluronic acid in mammals. N-acetylglucosamine forms the skeleton of an N-linked glycoprotein to which oligosaccharide chains centering on asparagine mannose bind (chitobiose structure) and is the main constituent sugar of sugar chains having a more complex structure.

(フコース)
本明細書では、「フコース」とは、通常のフコース(fucose)を意味し、デオキシ糖の一種である6−デオキシ−ガラクトースであり、化学式C12、分子量164.16で六炭糖、単糖に分類される。天然にはL型がL−フコシドの形で、動植物に幅広く存在する。哺乳動物および植物では細胞表面のN結合糖鎖上で見つかる。
(Fucose)
In this specification, “fucose” means normal fucose, which is 6-deoxy-galactose which is a kind of deoxy sugar, and has a chemical formula of C 6 H 12 O 5 and a molecular weight of 164.16. It is classified into sugar and monosaccharide. Naturally, the L form is in the form of L-fucoside and exists widely in animals and plants. In mammals and plants, it is found on cell surface N-linked sugar chains.

(ポリヌクレオチド)
本明細書では、「ポリヌクレオチド」とは、プリンまたはピリミジンが糖にβ−N−グリコシド結合したヌクレオシドのリン酸エステル(ATP、GTP、CTP、UTP;またはdATP、dGTP、dCTP、dTTP)が2個以上結合した分子を意味する。ポリヌクレオチドと他のポリヌクレオチドが「機能的に連結されている」とは、各々のポリヌクレオチドが有する機能が損なわれることなく、しかも連結によって所望の機能が発揮しうる状態が確保されている状態を意味する。具体的には、一方のポリヌクレオチドの3’端ヌクレオチドと他方のポリヌクレオチドの5’端ヌクレオチドが直接、または他のリンカー配列を介して結合している状態をいう。
(Polynucleotide)
As used herein, “polynucleotide” refers to a nucleoside phosphate ester (ATP, GTP, CTP, UTP; or dATP, dGTP, dCTP, dTTP) in which purine or pyrimidine is β-N-glycoside-linked to a sugar. It means a molecule that is bound more than one. A polynucleotide and another polynucleotide are “functionally linked” means that the function of each polynucleotide is not impaired and a state in which a desired function can be exerted by the linkage is ensured. Means. Specifically, it refers to a state in which the 3 ′ terminal nucleotide of one polynucleotide and the 5 ′ terminal nucleotide of the other polynucleotide are linked directly or via another linker sequence.

(タンパク質をコードする遺伝子)
本明細書では、「タンパク質をコードする遺伝子」とは、タンパク質をコードする領域(open reading frame:ORF)を含むポリヌクレオチドであり、例えばタンパク質遺伝子のcDNAである。そのため、「抗体のH鎖をコードする遺伝子」または、「抗体のL鎖をコードする遺伝子」とは、抗体のH鎖またはL鎖をコードする領域(open reading frame:ORF)を含むポリヌクレオチドであり、例えばこれらをコードする遺伝子のcDNAである。
(Genes encoding proteins)
In the present specification, the “gene encoding a protein” is a polynucleotide containing a protein-coding region (open reading frame: ORF), for example, a protein gene cDNA. Therefore, the “gene encoding the H chain of an antibody” or the “gene encoding the L chain of an antibody” is a polynucleotide containing a region (open reading frame: ORF) encoding the H chain or L chain of an antibody. For example, cDNA of genes encoding these.

本発明において使用されるB4Gal−Tタンパク質をコードする遺伝子には、配列番号7のヌクレオチド配列を有する遺伝子、または配列番号7のヌクレオチドにストリンジェントなハイブリダイゼーション条件下でハイブリダイズするヌクレオチド配列を有する遺伝子が含まれる。   The gene encoding the B4Gal-T protein used in the present invention includes a gene having the nucleotide sequence of SEQ ID NO: 7 or a gene having a nucleotide sequence that hybridizes to the nucleotide of SEQ ID NO: 7 under stringent hybridization conditions. Is included.

(ハイブリダイゼーション条件)
ハイブリダイゼーションは、公知の方法あるいはそれに準じる方法、例えば、モレキュラー・クローニング(Molecular Cloning Third Edition,J.Sambrook et al.,Cold Spring Harbor Lab. Press. 2001)に記載の方法などに従って行うことができる。また、市販のライブラリを使用する場合、添付の使用説明書に記載の方法に従って行うことができる。ここで、「ストリンジェントな条件」は、低ストリンジェントな条件、中ストリンジェントな条件及び高ストリンジェントな条件のいずれでもよい。「低ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、32℃の条件である。また、「中ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、42℃の条件である。「高ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、50℃の条件である。これらの条件において、温度を上げるほど高い相同性を有するDNAが効率的に得られることが期待できる。ただし、ハイブリダイゼーションのストリンジェンシーに影響する要素としては温度、プローブ濃度、プローブの長さ、イオン強度、時間、塩濃度など複数の要素が考えられ、当業者であればこれら要素を適宜選択することで同様のストリンジェンシーを実現することが可能である。
(Hybridization conditions)
Hybridization can be performed according to a known method or a method analogous thereto, for example, the method described in Molecular Cloning Third Edition, J. Sambrook et al., Cold Spring Harbor Lab. Press. 2001). Moreover, when using a commercially available library, it can carry out according to the method as described in an attached instruction manual. Here, the “stringent conditions” may be any of low stringent conditions, medium stringent conditions, and high stringent conditions. “Low stringent conditions” are, for example, conditions of 5 × SSC, 5 × Denhardt's solution, 0.5% SDS, 50% formamide, and 32 ° C. The “medium stringent conditions” are, for example, conditions of 5 × SSC, 5 × Denhardt's solution, 0.5% SDS, 50% formamide, and 42 ° C. “High stringent conditions” are, for example, conditions of 5 × SSC, 5 × Denhardt's solution, 0.5% SDS, 50% formamide, 50 ° C. Under these conditions, it can be expected that DNA having higher homology can be efficiently obtained as the temperature is increased. However, factors affecting the stringency of hybridization include multiple factors such as temperature, probe concentration, probe length, ionic strength, time, and salt concentration. Those skilled in the art will select these factors as appropriate. It is possible to achieve similar stringency.

本発明において使用されるB4Gal−T1タンパク質をコードする遺伝子にハイブリダイズ可能なポリヌクレオチドとしては、FASTA、BLASTなどの相同性検索ソフトウェアにより、デフォルトのパラメーターを用いて計算したときに、配列番号7の塩基配列と、少なくとも50%、60%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、または99%の同一性を有するポリヌクレオチドを挙げることができる。   As a polynucleotide capable of hybridizing to the gene encoding the B4Gal-T1 protein used in the present invention, SEQ ID NO: 7 of SEQ ID NO: 7 was calculated using homology search software such as FASTA and BLAST using default parameters. Base sequence and at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, Alternatively, a polynucleotide having 99% identity can be mentioned.

(RT-PCR)
RT-PCRとは、逆転写ポリメラーゼ連鎖反応(Reverse Transcription Polymerase Chain Reaction)のことで、mRNA を鋳型に逆転写を行い、生成された cDNA に対して PCR を行う方法である。PCR法では鋳型となる DNA にプライマーを付着させ、DNAポリメラーゼによって目的のプライマー配列にはさまれる DNA を特異的に検出する。PCR法は DNA の検出に用いることは可能であるが、RNA の検出をすることができない。そこで、RNA を逆転写によって cDNA に変換し、その cDNA に対して PCR法を行う。本手法は、 例えば、レトロウイルスなどのRNAウイルスの検出、特定の遺伝子の遺伝子発現(mRNAへの転写)の検出等の目的に用いられる。
(RT-PCR)
RT-PCR is a reverse transcription polymerase chain reaction (Reverse Transcription Polymerase Chain Reaction), in which reverse transcription is performed using mRNA as a template, and PCR is performed on the generated cDNA. In the PCR method, a primer is attached to DNA as a template, and DNA contained in the target primer sequence is specifically detected by DNA polymerase. PCR can be used to detect DNA, but it cannot detect RNA. Therefore, RNA is converted into cDNA by reverse transcription, and PCR is performed on the cDNA. This technique is used for the purpose of, for example, detection of RNA viruses such as retroviruses, detection of gene expression of specific genes (transcription to mRNA), and the like.

(補体および補体依存性生物活性)
補体(complement)は、動物血液中に含まれる免疫反応を媒介する血中タンパク質の一群で、補体成分はC1〜C9で表され、C1にはさらにC1q、C1r、C1sの3つの、その他はC5a、C5bといったように2つのそれぞれサブタイプが存在する。さらに、C1〜C9の補体タンパク質以外にB因子、D因子などを含めた16種類のタンパク質、液性の5つの調節因子、および細胞膜上の4種類の調節因子などのタンパク質も補体の機能の発現・調節に関与しており、これらを総称して補体系と呼ぶ。補体系は、生体が病原体を排除する際それを補助する生化学的カスケードである。補体系の活性化には3つの生化学的プロセスがある:古典経路、副経路、マンノース結合レクチン経路である。特に、古典(的)経路(classical pathway)とは、C1の活性化に始まる経路のことで、抗体抗原複合体に補体C1qが結合することでC1が活性化する。以降も基本的に数字順に活性化するが、C4は例外的に2番目に来る。『C1→C4→C2→C3b→C5b』まで活性化され、あとはC5bにC6〜C9が次々と結合、最終的にC5b6789にまでなる。C5b6789は「細胞膜障害性複合体」といわれ、病原微生物等の表面に取り付き細胞膜を破壊する。リツキシマブなどの抗腫瘍抗体の有する補体依存性細胞障害作用においても、同様な補体系の活性化がおき、補体の「細胞膜障害性複合体」による作用で最終的には細胞膜に穴があき、細胞を破壊すると考えられている。
(Complement and complement dependent biological activity)
Complement is a group of blood proteins that mediate the immune response contained in animal blood. Complement components are represented by C1 to C9, and C1 further includes C1q, C1r, and C1s. There are two subtypes such as C5a and C5b. In addition to C1-C9 complement proteins, 16 proteins including factor B and factor D, 5 humoral regulators, and 4 regulators on the cell membrane also function complement. Are collectively referred to as the complement system. The complement system is a biochemical cascade that assists the organism in eliminating pathogens. There are three biochemical processes for activation of the complement system: the classical pathway, the alternative pathway, and the mannose-binding lectin pathway. In particular, the classical pathway is a pathway that begins with C1 activation, and C1 is activated by binding of complement C1q to the antibody-antigen complex. After that, it is basically activated in numerical order, but C4 comes exceptionally second. It is activated from “C1 → C4 → C2 → C3b → C5b”, and then C6 to C9 are coupled to C5b one after another, and finally C5b6789 is reached. C5b6789 is said to be a “cell membrane disorder complex” and attaches to the surface of pathogenic microorganisms and destroys the cell membrane. The complement-dependent cytotoxicity of anti-tumor antibodies such as rituximab also activates the similar complement system, resulting in pores in the cell membrane due to the action of the complement's “cytoplasmic complex”. It is thought to destroy cells.

本明細書において、「補体依存性生物活性」とは、補体依存性細胞障害作用、補体依存性のウイルス中和活性など、上記の様に抗体抗原複合体が、補体系の活性化を引き起こし、生じた補体系の成分が癌細胞や病原微生物もしくはそれらが感染した細胞を障害することにより認められる生物活性を指す。   In the present specification, “complement-dependent biological activity” refers to complement-dependent cytotoxicity, complement-dependent virus neutralization activity, etc., in which the antibody-antigen complex activates the complement system as described above. And the resulting complement system component refers to the biological activity observed by damaging cancer cells, pathogenic microorganisms, or cells infected by them.

(CDC活性)
本明細書において、「補体依存性細胞障害活性(complement-dependent cytotoxicity:CDC活性)」とは、補体依存性生物活性の1つで抗体抗原複合体により活性化した補体系による細胞障害活性を意味する。また「細胞障害活性」とは、個々の細胞の増殖を遅くすることであってもよいし、細胞の死を誘導することであってもよい。その活性は、当業者であれば、通常の生細胞数の測定法などで、評価可能である。
(CDC activity)
In this specification, “complement-dependent cytotoxicity (CDC activity)” is one of complement-dependent biological activities and is a cytotoxic activity caused by the complement system activated by an antibody-antigen complex. Means. The “cytotoxic activity” may be to slow the growth of individual cells or to induce cell death. Those skilled in the art can evaluate the activity by a usual method for measuring the number of living cells.

(ウイルス中和活性)
本明細書において、抗体の「ウイルス中和活性」とは、抗体によりウイルスの宿主細胞に感染・増殖する能力が阻害される活性であり、当該活性が補体依存的に認められる場合を、補体依存性ウイルス中和活性と呼ぶ。本活性は、通常のウイルス中和活性評価法で測定が可能である。ウイルスの中和活性評価においては、ウイルスの感染能力を50%阻害する抗体濃度(IC50)でその活性の強さを表示する。抗体医薬分野で好ましい抗ウイルス抗体とは、通常IC50が10μg/ml以下、好ましくは5μg/ml以下、より好ましくは1μg/ml以下である。
(Virus neutralization activity)
In the present specification, the “virus neutralizing activity” of an antibody is an activity that inhibits the ability of the antibody to infect and proliferate the host cell of the virus. This is called body-dependent virus neutralizing activity. This activity can be measured by an ordinary evaluation method for virus neutralization activity. In the evaluation of the neutralizing activity of the virus, the strength of the activity is indicated by the antibody concentration (IC50) that inhibits the infectivity of the virus by 50%. The antiviral antibody preferable in the antibody pharmaceutical field usually has an IC50 of 10 μg / ml or less, preferably 5 μg / ml or less, more preferably 1 μg / ml or less.

(補体依存性生物活性を有する抗体)
本明細書において、「補体依存性生物活性を有する抗体」とは、補体依存性細胞障害作用、補体依存性のウイルス中和活性などを有する抗体で、それらはin vitroで評価する際、補体依存的に中和活性・細胞障害活性を有する抗体群をさす。各種文献では、complement-dependent cytotoxicityのみならずcomplement-mediated cytotoxicityとの表現で記載されている場合もある。これら補体依存性生物活性を有する抗体には、多くの抗腫瘍活性を有する抗体、抗アレルギー/抗炎症性活性を有する抗体、および抗感染症/抗ウイルス活性を有する抗体などが含まれる。
(Antibodies with complement-dependent biological activity)
In the present specification, the “antibody having complement-dependent biological activity” is an antibody having complement-dependent cytotoxicity, complement-dependent virus neutralizing activity, etc., which are evaluated in vitro. It refers to a group of antibodies having neutralizing activity / cytotoxic activity in a complement-dependent manner. In various literatures, not only complement-dependent cytotoxicity but also the expression complement-mediated cytotoxicity may be described. These antibodies having complement-dependent biological activity include antibodies having many antitumor activities, antibodies having antiallergic / antiinflammatory activity, antibodies having antiinfection / antiviral activity, and the like.

例えば、抗腫瘍活性を有する抗体の例としては、抗CD20抗体(非特許文献10)、抗GD2抗体(Cancer Res., 2005 (vol.65) p10562)、抗GD3抗体(Cancer Immunity, 2002 (vol.2) p13)、抗HER2抗体(British J. Cancer, 2004 (vol.91) p1195)、抗CD52抗体(Clin. Cancer Res., 2008 (vol.14) p569)、抗EGFR(Cancer Res., 1986 (vol.46) p5592、抗HLA-DR抗体(Mol. Cancer, 2011 (vol.10);42)などがあげられる。また、抗アレルギー/抗炎症性活性を有する抗体としては、抗TNF-α抗体(Arthritis & Rheumatism, 2008 (vol.58) p1248)などがあげられる。   For example, examples of antibodies having antitumor activity include anti-CD20 antibody (Non-patent Document 10), anti-GD2 antibody (Cancer Res., 2005 (vol.65) p10562), anti-GD3 antibody (Cancer Immunity, 2002 (vol. .2) p13), anti-HER2 antibody (British J. Cancer, 2004 (vol.91) p1195), anti-CD52 antibody (Clin. Cancer Res., 2008 (vol.14) p569), anti-EGFR (Cancer Res., 1986 (vol. 46) p5592, anti-HLA-DR antibody (Mol. Cancer, 2011 (vol. 10); 42), etc. In addition, as an antibody having anti-allergic / anti-inflammatory activity, anti-TNF- α antibody (Arthritis & Rheumatism, 2008 (vol.58) p1248).

さらにまた、抗感染症/抗ウイルス活性を有する抗体としては、抗VZV抗体(J. Gen. Virol., 1991 (vol.72) p2065), 抗CMV抗体(WO2007/084423, Virology, 1993 (vol.197) p143)、抗gp120抗体(J. Virol., 1996 (vol.70)p1100)、抗GM2抗体(J. Immunol., 1999 (vol.162) p533)などがあげられる。   Furthermore, anti-VZV antibodies (J. Gen. Virol., 1991 (vol. 72) p2065), anti-CMV antibodies (WO 2007/084423, Virology, 1993 (vol. 197) p143), anti-gp120 antibody (J. Virol., 1996 (vol. 70) p1100), anti-GM2 antibody (J. Immunol., 1999 (vol. 162) p533) and the like.

なお、抗体の「補体依存性生物活性」は、例えば、後述する実施例に示すような方法によって測定することができる。   The “complement-dependent biological activity” of an antibody can be measured, for example, by a method as shown in the examples described later.

N−グリコシド結合複合型糖鎖がB4Gal−T活性により修飾されている本発明の補体依存性生物活性を有する抗体を産生する方法によって産生される抗体としては、例えば、N−グリコシド結合複合型糖鎖がB4Gal−T活性により修飾されていない抗体と比較して、少なくとも1.25倍、1.5倍、1.75倍、2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、20倍、またはそれ以上高い補体依存性生物活性を示す抗体が含まれる。   Examples of the antibody produced by the method for producing an antibody having complement-dependent biological activity of the present invention in which an N-glycoside-linked complex type sugar chain is modified by B4Gal-T activity include, for example, N-glycoside-linked complex type Compared to an antibody whose sugar chain is not modified by B4Gal-T activity, at least 1.25 times, 1.5 times, 1.75 times, 2 times, 3 times, 4 times, 5 times, 6 times, 7 times Antibodies that exhibit complement-dependent biological activity that are fold, 8 fold, 9 fold, 10 fold, 20 fold, or more are included.

(安定的に発現する細胞)
本明細書中、ある遺伝子またはタンパク質の「発現」とは遺伝子に担持された特定タンパク質の遺伝情報がmRNAに転写され、タンパク質として翻訳されることを意味する。また、ある遺伝子またはタンパク質を「安定的に発現する」とは、ある遺伝子またはタンパク質を一過性にのみ発現することと対比する意味で用いられる。したがって、ある遺伝子またはタンパク質を「安定的に発現する細胞」とは、ある遺伝子またはタンパク質を一過性ではなく安定的に(継続的に)発現する細胞を意味する。そのような細胞には、人為的に外部からある遺伝子を導入した細胞であって該遺伝子を安定的に発現している細胞、および元々(または内因的に)ある遺伝子を安定的に発現している細胞が含まれる。
(Cells that stably express)
In the present specification, “expression” of a gene or protein means that genetic information of a specific protein carried by the gene is transcribed into mRNA and translated as a protein. Further, “stable expression” of a certain gene or protein is used in the sense of contrasting to expressing a certain gene or protein only transiently. Therefore, a “cell stably expressing a gene or protein” means a cell that stably (continuously) express a gene or protein rather than transiently. Such cells include cells that have been artificially introduced with a gene that stably expresses the gene, and that have stably expressed the original (or endogenous) gene. Cells are included.

(宿主細胞)
本発明の宿主細胞としては、抗体分子のFc領域に結合するN-グリコシド結合糖鎖の修飾に係わる酵素または酵素群の遺伝子を、遺伝子工学的な手法を用いて導入した、酵母、植物細胞、昆虫細胞、脊椎動物細胞等の細胞を宿主細胞として用いることもできる。しかしながら、酵母、カビ、植物、および昆虫等の下等な真核生物では、糖タンパクを修飾する糖鎖が哺乳動物とはあまりにもかけ離れており、脊椎動物由来の細胞(本明細書中、単に「動物細胞」ということがある。)がより好ましい。さらにまた、各種動物由来のイムノグロブリンの糖鎖構造の類似性を考慮すると、哺乳動物由来の細胞がさらにより好ましい。特に、哺乳動物細胞の中でも、ヒトの細胞であるナマルバ(Namalwa)細胞、サルの細胞であるCOS細胞、チャイニーズ・ハムスター卵巣組織由来の細胞であるCHO細胞、ラットミエローマ細胞(例えばYB2/3HL細胞)、マウスミエローマ細胞(例えばNSO細胞、SP2/0細胞)、シリアンハムスター腎臓由来細胞(例えばBHK細胞)、胚性幹細胞、受精卵細胞等などがさらに好ましい。
(Host cell)
Examples of the host cell of the present invention include yeast, plant cells, which are introduced using a genetic engineering technique, an enzyme or a group of enzymes involved in modification of an N-glycoside-linked sugar chain that binds to the Fc region of an antibody molecule, Cells such as insect cells and vertebrate cells can also be used as host cells. However, in lower eukaryotes such as yeasts, molds, plants, and insects, sugar chains that modify glycoproteins are so far away from mammals that cells derived from vertebrates (in this specification, simply “Animal cells” are sometimes preferred). Furthermore, in view of the similarity in the sugar chain structure of immunoglobulins derived from various animals, cells derived from mammals are even more preferable. In particular, among mammalian cells, human cells such as Namalwa cells, COS cells that are monkey cells, CHO cells that are cells derived from Chinese hamster ovary tissue, rat myeloma cells (eg, YB2 / 3HL cells) Mouse myeloma cells (for example, NSO cells, SP2 / 0 cells), Syrian hamster kidney-derived cells (for example, BHK cells), embryonic stem cells, fertilized egg cells, and the like are more preferable.

以下に、本発明の主要な部分の操作方法(遺伝子の取得、安定発現株の作製、細胞培養、およびタンパク質精製等)に関して、それらの限られた事例を概説するが、必ずしも以下に記載の方法に限定されず、本発明の意図を実現するために、現在の科学・技術水準で当業者が使用可能な方法であれば、いずれの方法でもよい。   In the following, with regard to the operation methods of the main parts of the present invention (acquisition of genes, production of stable expression strains, cell culture, protein purification, etc.), those limited examples will be outlined, but the methods described below are not necessarily limited. However, any method may be used as long as it can be used by those skilled in the art at the current scientific and technical level in order to realize the intention of the present invention.

2.抗体遺伝子の取得
抗体遺伝子の取得には抗体を産生する細胞を材料とする。材料となる細胞にはヒトのBリンパ球やマウスの脾臓リンパ球など抗体を産生する細胞があげられ、また、そのような細胞とミエローマ細胞とのハイブリドーマも材料となる。
2. Obtaining antibody genes Antibody genes are obtained using cells that produce antibodies. Examples of cells that can be used include cells that produce antibodies such as human B lymphocytes and mouse spleen lymphocytes, and hybridomas of such cells and myeloma cells can also be used as materials.

例えば、ヒトの血液からBリンパ球を分離し、該Bリンパ球の増殖を誘導する。増殖誘導の方法自体は公知であり、例えば、誘導に必要なサイトカインや刺激剤を使用したり、ガンの誘因因子となる「エプスタイン・バールウイルス(EBウイルス)」(Epstein−Barr virus)(以下、EBVと称す)を用いたトランスフォーム法(D.Kozborら)により、行うことができる。即ち、上記Bリンパ球をEBVに感染させて増殖誘導し、増殖させた細胞を抗体産生細胞ライブラリとする。   For example, B lymphocytes are separated from human blood, and proliferation of the B lymphocytes is induced. Methods for inducing proliferation are known per se, such as the use of cytokines and stimulants necessary for induction, and “Epstein-Barr virus” (hereinafter referred to as “Epstein-Barr virus”), which is an inducing factor for cancer It can be carried out by a transformation method (referred to as EBV) (D. Kozbor et al.). That is, the above-mentioned B lymphocytes are infected with EBV to induce proliferation, and the proliferated cells are used as an antibody-producing cell library.

増殖誘導させた細胞からモノクローナル抗体を回収する方法はモノクローナル抗体の作製において常用されている周知の方法により行うことができる。前記抗体産生細胞ライブラリの中から特定の抗原に結合する抗体を産生するリンパ球を選別する。選別の方法は、限界希釈法によりクローン化する方法や、セルマイクロアレイ法により単個細胞を回収する方法、FACSソーティング法により目的の抗体を産生する細胞を染色し、ソーティングで回収する方法などがあげられる。   The method of recovering the monoclonal antibody from the proliferation-induced cells can be performed by a well-known method commonly used in the production of monoclonal antibodies. A lymphocyte producing an antibody that binds to a specific antigen is selected from the antibody-producing cell library. Selection methods include cloning by limiting dilution, collection of single cells by cell microarray, and staining of cells producing the desired antibody by FACS sorting and collection by sorting. It is done.

特定の抗原と結合する画分の検出には、特定の抗原を用いたELISAや免疫染色、特定の抗原を発現する細胞を用いた免疫染色、また、特定の抗原に結合することによって発現する抗体の活性(中和活性)を測定する方法を採用できる。   For detection of a fraction that binds to a specific antigen, ELISA or immunostaining using a specific antigen, immunostaining using cells that express a specific antigen, or an antibody expressed by binding to a specific antigen A method for measuring the activity (neutralizing activity) of the selenium can be employed.

上記で得られた目的の抗体を産生する細胞集団からtotal−RNAを抽出し、Oligo-dTプライマーを用いて逆転写反応によりcDNAを合成する。このcDNAを鋳型としてPCR法による抗体遺伝子の増幅を行う。PCRに使用するプライマーは、抗体のH鎖およびL鎖をコードする遺伝子情報のデータベースをもとに設計する。抗体の遺伝子は全長を増幅してもよいし、可変部領域のみを増幅し、既知の定常部領域遺伝子と機能的に連結してもよい。   Total-RNA is extracted from the cell population producing the target antibody obtained above, and cDNA is synthesized by reverse transcription reaction using Oligo-dT primer. The antibody gene is amplified by PCR using this cDNA as a template. Primers used for PCR are designed based on a database of genetic information encoding antibody H and L chains. The full length of the antibody gene may be amplified, or only the variable region may be amplified and functionally linked to a known constant region gene.

上記は、新規なヒト抗体をクローニングする事例であるが、抗体の遺伝子配列が既知であるモノクローナル抗体に関しては、当業者であれば、例えばGenBankに登録され公開されている当該遺伝子情報、公開特許情報等をもとに構築することが可能である。   The above is an example of cloning a new human antibody. Regarding a monoclonal antibody whose antibody gene sequence is known, those skilled in the art can, for example, describe the gene information registered in GenBank and published patent information. It is possible to build based on the above.

3.塩基配列に基づく抗体のアミノ酸配列の決定
PCR法により増幅した抗体H鎖およびL鎖のcDNAをプラスミドベクターに挿入し、ABIシークエンサーによりそれぞれの塩基配列を確認する。得られた塩基配列より、抗体H鎖およびL鎖のアミノ酸配列を決定する。
3. Determination of antibody amino acid sequence based on nucleotide sequence
The antibody H chain and L chain cDNAs amplified by the PCR method are inserted into a plasmid vector, and each base sequence is confirmed by an ABI sequencer. The amino acid sequences of the antibody H chain and L chain are determined from the obtained base sequence.

4.β1,4−galactosyltransferase(B4Gal-T)遺伝子の取得
B4Gal-T遺伝子は、B4Gal-Tを発現している動物細胞のcDNAからPCR法により増幅する。選択する酵素により、当該酵素をコードする遺伝子を増幅するのに適したプライマーを作製、PCRにより増幅する。B4Gal-T遺伝子を適切なプラスミドベクターに挿入し、シークエンサーにより塩基配列を確認する。
4). Acquisition of β1,4-galactosyltransferase (B4Gal-T) gene
The B4Gal-T gene is amplified by PCR from cDNA of animal cells expressing B4Gal-T. A primer suitable for amplifying a gene encoding the enzyme is prepared by the enzyme to be selected, and amplified by PCR. Insert the B4Gal-T gene into an appropriate plasmid vector, and confirm the nucleotide sequence using a sequencer.

5.抗体安定発現株の作製法
取得したH鎖およびL鎖の遺伝子は、ダブルジーンベクター作製用に構築されたベクターに挿入する。ダブルジーンベクターは適切な細胞に導入し、当該ダブルジーンベクター上の選択マーカーを使用して、ベクターの導入に成功した細胞クローンを選抜する。
5. Method for preparing antibody stable expression strain The obtained H chain and L chain genes are inserted into a vector constructed for the preparation of a double gene vector. The double gene vector is introduced into an appropriate cell, and a cell clone having been successfully introduced into the vector is selected using a selection marker on the double gene vector.

例えば、ダブルジーンベクター作製用に構築されたベクターにH鎖およびL鎖の遺伝子を挿入後、抗体産生に適した細胞(例えばCHO-K1やNS0)に導入し、当該ダブルジーンベクター上の選択マーカー(例えば、GS選択)で、ベクターの導入に成功した細胞クローンを選抜する。   For example, after inserting the H chain and L chain genes into a vector constructed for the production of a double gene vector, the gene is introduced into a cell suitable for antibody production (eg, CHO-K1 or NS0), and a selection marker on the double gene vector. In (eg, GS selection), a cell clone that has successfully introduced the vector is selected.

選抜した細胞は目的の抗体を産生しているかを確認する。抗体産生の確認には、上記で示した特定の抗原と結合する画分の検出方法や抗体定量ELISAが使用できる。   The selected cells are confirmed to produce the desired antibody. For confirmation of antibody production, a method for detecting a fraction that binds to the specific antigen shown above or an antibody quantitative ELISA can be used.

6.B4Gal-T安定発現株の作製法
取得したB4Gal-T遺伝子は適切な発現ベクターに挿入する。B4Gal-T発現ベクターは、適切な細胞に導入し、ベクター上の選択マーカーを使用して、ベクターの導入に成功した細胞クローンを選抜する。
例えば、遺伝子発現に適したベクター(pcDNA3.1,Invitrogen)にB4Gal-T遺伝子を挿入し、上記と同様に抗体産生に適した細胞(例えばCHO-K1やNS0)に導入し、当該ダブルジーンベクター上の選択マーカー(Geneticin)でベクターの導入に成功した細胞クローンを選抜する。
選抜した細胞はB4Gal-T遺伝子を発現しているかを確認する。
6). Method for preparing B4Gal-T stable expression strain The obtained B4Gal-T gene is inserted into an appropriate expression vector. The B4Gal-T expression vector is introduced into an appropriate cell, and a cell clone that has been successfully introduced into the vector is selected using a selection marker on the vector.
For example, the B4Gal-T gene is inserted into a vector suitable for gene expression (pcDNA3.1, Invitrogen) and introduced into a cell suitable for antibody production (for example, CHO-K1 or NS0) in the same manner as described above. Cell clones that have successfully introduced the vector are selected using the above selection marker (Geneticin).
Check whether the selected cells express the B4Gal-T gene.

7.β1,4−galactosyltransferase(B4Gal-T)遺伝子発現の確認
B4Gal-T遺伝子の発現を確認する方法としてはRT-PCRをもちいる。具体的には、B4Gal-T発現ベクターを導入し、選抜した細胞からtotal-RNAを分離し、逆転写酵素によりcDNAに変換後、B4Gal-T遺伝子をPCRにより増幅し検出する。
7). Confirmation of β1,4-galactosyltransferase (B4Gal-T) gene expression
RT-PCR is used as a method for confirming the expression of the B4Gal-T gene. Specifically, a B4Gal-T expression vector is introduced, total-RNA is isolated from the selected cells, converted to cDNA by reverse transcriptase, and then amplified by PCR to detect the B4Gal-T gene.

例えば、cDNAの合成にはCells-to-cDNA IIKit (Ambion)を使用し、合成したcDNAを鋳型にして、B4Gal-T1遺伝子のPCRによる増幅を行う。また同時に、GAPDH遺伝子のPCRによる増幅を行う。GAPDH遺伝子は発現量が一定していることからRT-PCRにおいて発現量を比較するためのコントロールとする。   For example, Cells-to-cDNA II Kit (Ambion) is used for cDNA synthesis, and the B4Gal-T1 gene is amplified by PCR using the synthesized cDNA as a template. At the same time, the GAPDH gene is amplified by PCR. Since the expression level of the GAPDH gene is constant, it is used as a control for comparing the expression level in RT-PCR.

尚、増幅に使用するPrimerを以下に示す(表1)。B4Gal-T1遺伝子の増幅にはクローニングに使用した2種のPrimer(配列番号1/配列番号2)を使用し全長を増幅するか、もしくは、Primer(配列番号3/配列番号4)を使用してB4Gal-T1遺伝子の一部を増幅する。GAPDHの増幅にはPrimer(配列番号5/配列番号6)を使用し、GAPDH遺伝子の一部を増幅する。Primer(配列番号5/配列番号6)はヒトGAPDH増幅用であるが、CHO由来GAPDHの増幅に適用できる。
The primers used for amplification are shown below (Table 1). For amplification of B4Gal-T1 gene, use two types of Primers (SEQ ID NO: 1 / SEQ ID NO: 2) used for cloning to amplify the full length, or use Primer (SEQ ID NO: 3 / SEQ ID NO: 4) A part of the B4Gal-T1 gene is amplified. For amplification of GAPDH, Primer (SEQ ID NO: 5 / SEQ ID NO: 6) is used to amplify a part of the GAPDH gene. Primer (SEQ ID NO: 5 / SEQ ID NO: 6) is for human GAPDH amplification, but can be applied to amplification of CHO-derived GAPDH.

8.抗体/B4Gal-T同時安定発現株の作製法
抗体/B4Gal-T同時安定発現株は上記、抗体安定発現株の作製法とB4Gal-T安定発現株作製法を2段階に分けて行う。即ち、作製した抗体安定発現株にB4Gal-T遺伝子を導入し、選抜するか、もしくは作製したB4Gal-T安定発現株に抗体遺伝子を導入し、選抜する。この際、2段階の選抜で使用する選択マーカーは異なるものを使用する。但し、1つの発現ベクターに抗体のH鎖/L鎖の遺伝子およびB4Gal-T遺伝子をすべて挿入した場合は、上記、抗体安定発現株の作製法と同様に、1段階1選択マーカーで抗体/B4Gal-T同時安定発現株を選抜することが可能である。
8). Method for preparing antibody / B4Gal-T co-stable expression strain Antibody / B4Gal-T co-stable expression strain is divided into two steps: the method for producing antibody stable expression strain and the method for producing B4Gal-T stable expression strain. That is, the B4Gal-T gene is introduced into the produced antibody stable expression strain and selected, or the antibody gene is introduced into the produced B4Gal-T stable expression strain and selected. At this time, use different selection markers for the two-stage selection. However, when all of the antibody H chain / L chain gene and the B4Gal-T gene are inserted into one expression vector, the antibody / B4Gal is selected with a one-step 1 selection marker in the same manner as in the above-described method for producing an antibody stable expression strain. -T Simultaneously stable expression strains can be selected.

9.抗体の産生および精製法
上記で得られた抗体安定発現株を用いて抗体を産生・精製する工程としては、一般的な抗体の生産・精製方法を用いることにより、均一な抗体を取得することができる。例えば、上記抗体安定発現株もしくは抗体/B4Gal-T同時安定発現株は無血清培地中で培養し、抗体を含む培養上清を回収し、精製の材料とする。抗体の精製は、ProteinAもしくはProteinGカラムを使用し、アフィニティー精製により行う。精製条件はカラムメーカー推奨条件とする。また、スモールスケールで抗体精製を行う場合は、ProteinAもしくはProteinGの磁気ビーズを使用する。精製条件は磁気ビーズメーカーの推奨条件とする。
9. Antibody production and purification method As a step of producing and purifying an antibody using the antibody stable expression strain obtained above, a uniform antibody can be obtained by using a general antibody production and purification method. it can. For example, the antibody stable expression strain or the antibody / B4Gal-T simultaneous stable expression strain is cultured in a serum-free medium, and the culture supernatant containing the antibody is collected and used as a purification material. The antibody is purified by affinity purification using a Protein A or Protein G column. The purification conditions are those recommended by the column manufacturer. For antibody purification on a small scale, use Protein A or Protein G magnetic beads. The purification conditions are those recommended by the magnetic bead manufacturer.

10.糖鎖の解析法
本発明における糖鎖の解析には、糖鎖を同定と定量することが含まれる。糖鎖の同定とは、解析対象試料に含まれる1つまたは複数の糖鎖成分を特定することである。糖タンパク質の糖鎖を同定する方法としては、糖タンパク質から糖鎖を分離し、得られた糖鎖の質量分析を行い、次いで得られた検出結果に基づいて糖鎖解析を行い、糖鎖を同定する方法があげられる。
10. Sugar chain analysis method The analysis of sugar chains in the present invention includes identification and quantification of sugar chains. The sugar chain identification is to specify one or a plurality of sugar chain components contained in the sample to be analyzed. As a method for identifying the sugar chain of the glycoprotein, the sugar chain is separated from the glycoprotein, mass analysis of the obtained sugar chain is performed, and then the sugar chain analysis is performed based on the obtained detection result. A method for identification is given.

また、糖鎖を定量には、例えば分析の対象となる試料に含まれる2以上の糖鎖の量比(モル比)を求めることを包含する。具体的にはIgGまたはそのFcに結合する2以上の糖鎖の量比を求めることをいう。   In addition, quantification of sugar chains includes, for example, determining the amount ratio (molar ratio) of two or more sugar chains contained in a sample to be analyzed. Specifically, it refers to determining the ratio of two or more sugar chains that bind to IgG or its Fc.

本発明における糖鎖の検出とは、例えば質量分析で検出されたFc部分由来の糖ペプチドのピークの大きさの比を計算することにより、IgGまたはそのFcに結合する糖鎖の定量を行うことができる。ピークの大きさは、例えば、ピークのある質量範囲の面積またはピーク全部の面積を指標として測定してもよいし、ピークの高さを指標として測定してもよい。   The detection of a sugar chain in the present invention means, for example, quantification of IgG or a sugar chain binding to the Fc thereof by calculating a ratio of peak sizes of glycopeptides derived from the Fc part detected by mass spectrometry. Can do. The size of the peak may be measured using, for example, the area of the mass range having the peak or the area of the entire peak, or may be measured using the height of the peak as an index.

本発明において使用される糖鎖の質量分析の方法は当該分野において周知であり(丹羽、最新のマススペクトロメトリー、化学同人(1995))、エレクトロスプレー(ESI)法、マトリックス支援レーザー脱離イオン化(MALDI)法を始めとした任意のイオン化手法を使用することができる。また質量分析には、飛行時間型(TOF)、四重極型、磁場型など、任意の質量分離方式を使用することができるが、TOFを用いた方法が好ましく用いられる。   The method of mass spectrometry of glycans used in the present invention is well known in the art (Niwa, latest mass spectrometry, Chemical Dojin (1995)), electrospray (ESI) method, matrix-assisted laser desorption ionization ( Any ionization technique can be used, including the MALDI method. For mass spectrometry, any mass separation method such as time-of-flight (TOF), quadrupole, or magnetic field can be used, but a method using TOF is preferably used.

本発明においてMALDI−TOF−MSとは、Matrix Assisted Laser Desorption Ionization Time−of−Flight Mass Spectrometerの略語である。MALDIとは、田中らによって見いだされ、Hillenkampらによって開発された質量分析の技法である。この方法では、試料とマトリックス溶液を混合した後、混合溶液をプレート上で乾固し、結晶状態にする。パルスレーザー照射により、大きなエネルギーがマトリックス上に与えられ、(M+H)+、(M+Na)+などの試料由来イオンとマトリックス由来イオンとが脱離する。   In the present invention, MALDI-TOF-MS is an abbreviation for Matrix Assisted Laser Deposition Ionization Time-of-Flight Mass Spectrometer. MALDI is a mass spectrometry technique found by Tanaka et al. And developed by Hillenkamp et al. In this method, after mixing a sample and a matrix solution, the mixed solution is dried on a plate to obtain a crystalline state. Large energy is given to the matrix by pulse laser irradiation, and sample-derived ions such as (M + H) + and (M + Na) + are desorbed from the matrix-derived ions.

MALDI−TOF−MSは、MALDIを利用して飛行時間を元に質量を測定するものであり、島津製作所のMALDI−TOFMS AXIMAシリーズの機種やBruker社の AUTOFLEXなどの質量分析計を使用することができる。   MALDI-TOF-MS uses MALDI to measure mass based on time of flight, and may use Shimadzu's MALDI-TOFMS AXIMA series models or a mass spectrometer such as Bruker's AUTOFLEX. it can.

11.抗体の活性の評価法
抗体がどの様な抗原と結合するか、どの様な生物活性を有するかにより、その活性測定法は決められる。例えば、ウイルスに対する抗体の活性評価法としては、「免疫染色法」と「プラーク法」によるウイルス中和活性評価法が代表的な方法である。また、抗腫瘍性抗体のように細胞膜上に存在する抗原を認識する抗体の場合、当該抗原を特異的に発現している細胞を用い活性を評価する。以下、それらについて述べるが、あくまでも1事例である。補体依存性の生物活性を求める際は、下記の系に抗体と同時もしくは抗体添加の後に補体を添加して評価する。
11. Method for evaluating activity of antibody The activity measurement method is determined by what kind of antigen the antibody binds to and what kind of biological activity it has. For example, as a method for evaluating the activity of an antibody against a virus, a virus neutralizing activity evaluation method by “immunostaining method” and “plaque method” is a typical method. In the case of an antibody that recognizes an antigen present on the cell membrane, such as an anti-tumor antibody, the activity is evaluated using cells that specifically express the antigen. These are described below, but only one case. When determining complement-dependent biological activity, the complement is added to the following system at the same time as the antibody or after the addition of the antibody and evaluated.

(1)免疫染色法
抗ウイルス抗体中和活性評価法の1つとして、免疫染色法が知られている。方法を要約すると以下の通りである。ウイルス液に精製抗体と補体を加えて適切な温度で1時間おき、その後、宿主細胞に接種する。接種後適切な時間培養し、その後、細胞は2回洗浄する。続けて適切な時間培養した後、ウイルス感染細胞で発現する特定のタンパク質に対する抗体で免疫染色を行い、染色された細胞を感染細胞数としてカウントする。感染細胞数の減少で感染阻止率を評価する。
(1) Immunostaining method As one of the antiviral antibody neutralizing activity evaluation methods, an immunostaining method is known. The method is summarized as follows. Purified antibody and complement are added to the virus solution for 1 hour at an appropriate temperature, and then inoculated into host cells. Incubate for an appropriate time after inoculation and then wash the cells twice. Subsequently, after culturing for an appropriate time, immunostaining is performed with an antibody against a specific protein expressed in virus-infected cells, and the stained cells are counted as the number of infected cells. The infection inhibition rate is evaluated by reducing the number of infected cells.

(2)プラーク法
ウイルスの中和活性評価法の1つとして、プラーク法が知られている。古典的な方法で、細胞を塗布したプレート上で増殖したウイルスがプラークを形成することをもちいる。方法を要約すると以下の通りである。ウイルス液に精製抗体と補体を加えて適切な温度で1時間おき、その後、宿主細胞に接種する。適切な時間培養後、細胞は2回洗浄する。次に細胞は寒天もしくはメチルセルロースを含む培地を重層し、培養する。
(2) Plaque method The plaque method is known as one of the methods for evaluating the neutralizing activity of a virus. In a classical way, it is used that viruses grown on cells-coated plates form plaques. The method is summarized as follows. Purified antibody and complement are added to the virus solution for 1 hour at an appropriate temperature, and then inoculated into host cells. After incubation for an appropriate time, the cells are washed twice. Next, the cells are overlaid with agar or a medium containing methylcellulose and cultured.

ウイルス感染細胞の死による明瞭なプラークの形成が確認されるまで培養した後、細胞を固定化し、適切な染色試薬で染色する。染色後、プラーク数をカウントし、プラークの減少で感染阻止率を評価する。   After culturing until clear plaque formation due to the death of virus-infected cells is confirmed, the cells are fixed and stained with an appropriate staining reagent. After staining, the number of plaques is counted, and the inhibition rate of infection is evaluated by the reduction of plaques.

(3)抗体のCDC活性評価法
抗体のCDC活性の評価法は、細胞膜上に存在する抗原を認識する抗体について行い、当該抗原を特異的に発現している細胞を用い活性を評価する。対象となる細胞は培地で2回洗浄後、適当数をプレートに播種する。細胞に抗体を添加後、適切な温度で30分〜1時間インキュベーター内に置く。その後、補体を添加し、2〜3時間インキュベーター内に置く。その後、MTTアッセイ法やWST-1アッセイ法による生細胞数評価を行い、抗体の補体依存性細胞障害活性により死滅した細胞数を評価する。
(3) CDC activity evaluation method of antibody The CDC activity evaluation method of an antibody is performed on an antibody that recognizes an antigen present on a cell membrane, and the activity is evaluated using cells that specifically express the antigen. The target cells are washed twice with a medium, and then an appropriate number is seeded on a plate. After adding the antibody to the cells, place it in an incubator at an appropriate temperature for 30 minutes to 1 hour. Thereafter, complement is added and placed in the incubator for 2-3 hours. Thereafter, the number of living cells is evaluated by MTT assay or WST-1 assay, and the number of cells killed by the complement-dependent cytotoxic activity of the antibody is evaluated.

以下、本発明を、全く異なった抗原に対する2種類の抗体での実施例によりさらに具体的に説明するが、本発明はこれらの実施例により何ら制限されるものではない。本実施例において使用する手順は、特に言及しない限り、Molecular Cloning: A Laboratory Manual (Third Edition) (Sambrookら、Cold Spring Harbour Laboratory Press,2001)で参照することができる。   Hereinafter, the present invention will be described in more detail by way of examples using two kinds of antibodies against completely different antigens, but the present invention is not limited to these examples. Unless otherwise stated, procedures used in this example can be referred to in Molecular Cloning: A Laboratory Manual (Third Edition) (Sambrook et al., Cold Spring Harbor Laboratory Press, 2001).

(抗CMV抗体における定常領域Nグリコシド結合糖鎖の修飾の効果)
材料と方法
1.抗体遺伝子クローニングと抗体安定発現株の作製
抗CMV抗体産生LCL(lymphoblastoid Cell Line)からtotal-RNAを抽出し(TRIzol試薬,Invitrogen)、逆転写反応によりcDNAを合成した(SuperScriptII,Invitrogen)。PCRで増幅した抗体遺伝子(H鎖およびL鎖)はTAクローニングし(pGEM-T easy,Promega)、抗体遺伝子配列を決定した(WO2007/094423中の「G3D No.9」の配列参照)。その後、抗体遺伝子(H鎖およびL鎖)はダブルジーンベクター作製用に構築されたベクターに挿入した。当該ダブルジーンベクターはCHO-K1細胞に導入し、Glutamine Synthetase(GS)選択培地(SAFC)で選抜を行い、抗体安定発現株をクローニングした。CHO-K1細胞の選抜にはGS阻害剤であるMethionine Sulfoximine(MSX, SIGMA)(final 2.5μM)を添加した。
(Effect of modification of constant region N glycoside-linked sugar chain in anti-CMV antibody)
Materials and methods
1. Antibody gene cloning and production of stable antibody expression strain Total-RNA was extracted from anti-CMV antibody-producing LCL (lymphoblastoid Cell Line) (TRIzol reagent, Invitrogen), and cDNA was synthesized by reverse transcription (SuperScript II, Invitrogen). Antibody genes (H chain and L chain) amplified by PCR were TA cloned (pGEM-T easy, Promega), and the antibody gene sequence was determined (see the sequence of “G3D No. 9” in WO2007 / 094423). Thereafter, the antibody genes (H chain and L chain) were inserted into a vector constructed for preparing a double gene vector. The double gene vector was introduced into CHO-K1 cells, selected with Glutamine Synthetase (GS) selective medium (SAFC), and an antibody stable expression strain was cloned. For selection of CHO-K1 cells, GS inhibitor Methionine Sulfoximine (MSX, SIGMA) (final 2.5 μM) was added.

2.CHO-K1細胞産生抗CMV抗体の糖鎖修飾
β1,4−galactosyltransferase(B4Gal-T1)遺伝子は抗CMV抗体産生LCLのcDNAからPCR法により増幅した。使用したプライマー配列は以下のとおり。
B1,4GT-Fw: 5’-CACCCTTCTTAAAGCGGCGG-3’ (配列番号1)
B1,4GT-Rv: 5’-GTACCAAAACGCTAGCTCGG-3’ (配列番号2)
2. Sugar chain modification of CHO-K1 cell-produced anti-CMV antibody The β1,4-galactosyltransferase (B4Gal-T1) gene was amplified by PCR from cDNA of anti-CMV antibody-produced LCL. The primer sequences used are as follows.
B1,4GT-Fw: 5'-CACCCTTCTTAAAGCGGCGG-3 '(SEQ ID NO: 1)
B1,4GT-Rv: 5'-GTACCAAAACGCTAGCTCGG-3 '(SEQ ID NO: 2)

PCR産物はpcDNA3.1D/V5-His-TOPOベクター(Invitrogen)にクローニングし、シークエンスを解析し(配列番号7および8)、B4Gal-T1タンパク(Swiss-Prot Accession No.: P15291)をコードする遺伝子(NCBI Accession No.:NM_001497)であることを確認した。B4Gal-T1発現ベクターは抗CMV抗体安定発現クローン(CHO-K1細胞)に導入し、MSX添加GS選択培地中でGeneticin(Gibco)(final 800μg/ml)による選抜を行い、抗CMV抗体およびB4Gal-T1を同時安定的に発現するクローンを得た。B4Gal-T1の発現確認はRT-PCRで行った。その中からB4Gal-T1の発現が良好な1クローンを選択し、産生抗体の精製を行った。また、B4Gal-T1発現ベクター導入前の抗CMV抗体安定発現クローンの産生する抗体についても同様に精製を行った。   The PCR product is cloned into pcDNA3.1D / V5-His-TOPO vector (Invitrogen), the sequence is analyzed (SEQ ID NOs: 7 and 8), and the gene encoding B4Gal-T1 protein (Swiss-Prot Accession No .: P15291) (NCBI Accession No .: NM_001497). The B4Gal-T1 expression vector is introduced into an anti-CMV antibody stable expression clone (CHO-K1 cell) and selected with Geneticin (Gibco) (final 800 μg / ml) in MSX-added GS selection medium, and anti-CMV antibody and B4Gal- A clone was obtained that expressed T1 simultaneously and stably. The expression of B4Gal-T1 was confirmed by RT-PCR. Among them, one clone with good expression of B4Gal-T1 was selected, and the produced antibody was purified. The antibody produced by the anti-CMV antibody stable expression clone before introduction of the B4Gal-T1 expression vector was purified in the same manner.

3.抗体精製
抗体精製はアフィニティーカラム(HiTrap rProteinA FF,GE Healthcare)を使用し、推奨の方法で行った。カラム溶出後の抗体はPBS(-)で透析し、UV法により濃度を決定した。精製後の抗体はSDS-PAGEに供し、抗体重鎖(約50kDa)および軽鎖(約25kDa)を確認した。
3. Antibody purification Antibody purification was carried out using an affinity column (HiTrap rProtein A FF, GE Healthcare) by the recommended method. The antibody after column elution was dialyzed against PBS (-) and the concentration was determined by the UV method. The purified antibody was subjected to SDS-PAGE to confirm the antibody heavy chain (about 50 kDa) and light chain (about 25 kDa).

4.糖鎖解析
抗体の糖鎖解析は株式会社グライエンスに外注した。解析は抗体を前処理後(脱塩,減圧乾燥)、タンパク質を変性させ、グリコペプチダーゼAによるタンパク質からの糖鎖の分離とペプシンによるタンパク質分解を同時に行った。さらにプロナーゼによるタンパク分解を経て、P2ゲル濾過カラムにより糖鎖とアミノ酸を分離した。オルシノール硫酸法により糖鎖画分を確認し、回収後、減圧乾燥した。分離した糖鎖はピリジルアミノ化(PA化)するため、糖鎖と2-アミノピリジンを結合させ、還元後にSephadex-G15ゲル濾過カラムでPA化糖鎖と余剰2-アミノピリジンを分離した。
Four. Sugar chain analysis The analysis of antibody sugar chains was outsourced to Glience Corporation. In the analysis, the antibody was pretreated (desalted and dried under reduced pressure), the protein was denatured, and glycosylation from the protein by glycopeptidase A and proteolysis by pepsin were simultaneously performed. Furthermore, after proteolysis with pronase, sugar chains and amino acids were separated by a P2 gel filtration column. The sugar chain fraction was confirmed by the orcinol-sulfuric acid method, recovered and dried under reduced pressure. Since the separated sugar chain was pyridylaminated (PA-ized), the sugar chain and 2-aminopyridine were combined, and after the reduction, the PA sugar chain and excess 2-aminopyridine were separated using a Sephadex-G15 gel filtration column.

1次解析として、PA化糖鎖はDEAE陰イオン交換クロマトグラフィーにより中性糖とモノシアリル化糖、ジシアリル化糖の分離を行った。さらに、各画分は減圧乾燥後、ODSクロマトグラフィーにより糖鎖の分離を行い、各ピークをMALDI-TOF-MSにかけ、分子量から糖鎖か否かを確認した。   As the primary analysis, PA sugar chains were separated from neutral sugars, monosialylated sugars, and disialylated sugars by DEAE anion exchange chromatography. Furthermore, each fraction was dried under reduced pressure, and then sugar chains were separated by ODS chromatography, and each peak was subjected to MALDI-TOF-MS to confirm whether or not it was a sugar chain from the molecular weight.

2次解析として、糖鎖と判定した各ピークは順相Amideクロマトグラフィーにより分離した。ODSカラムとAmideカラムにより求めたGlc.Unit(GU)値と分子量から、糖鎖解析ソフトGALAXYにより候補糖鎖の絞り込みを行った。最終的にODSクロマトグラフィーに標準品と各ピークを共打ちし、糖鎖構造を同定した。   As a secondary analysis, each peak determined to be a sugar chain was separated by normal phase Amide chromatography. Glc. Determined by ODS column and Amide column. Candidate sugar chains were narrowed down by the sugar chain analysis software GALAXY from the Unit (GU) value and molecular weight. Finally, ODS chromatography was used to strike each peak with the standard product, and the sugar chain structure was identified.

5. CMVの調製
HEL細胞は10%FCS添加イーグルMEMを使用し、75mlフラスコで培養した。培地を除去後、5-10倍希釈したウイルス液(CMV AD169株)を1ml添加し、インキュベーター内で1時間ウイルスを吸着させた。ウイルス液を除去後、5%FCS添加イーグルMEMを15ml添加し、細胞変性効果(CPE)がみられるまで、2-3日毎に培地を交換しながら培養した。90%以上の細胞にCPEが観察されたら培地を交換し、さらに1日間培養した。感染細胞は培地の半量を除去後、滅菌ガラスビーズでフラスコから剥離して浮遊させ、プラスチックチューブに移した。その後、氷上で冷却しながら30秒間超音波処理して細胞を破砕し、3000rpm、15分間の遠心分離後、上清(ウイルス液)を回収した。回収したウイルス液は終濃度35%となるようソルビトールを添加し、分注後、−80℃に保存した。
Five. Preparation of CMV
HEL cells were cultured in 75 ml flasks using Eagle MEM supplemented with 10% FCS. After removing the medium, 1 ml of a virus solution (CMV AD169 strain) diluted 5 to 10 times was added, and the virus was adsorbed in an incubator for 1 hour. After removing the virus solution, 15 ml of 5% FCS-added Eagle MEM was added, and cultured while changing the medium every 2-3 days until a cytopathic effect (CPE) was observed. When CPE was observed in 90% or more of the cells, the medium was changed, and the cells were further cultured for 1 day. Infected cells were removed from the flask with sterile glass beads after removing half of the medium, and transferred to a plastic tube. Thereafter, the cells were disrupted by sonication for 30 seconds while cooling on ice, and the supernatant (virus solution) was recovered after centrifugation at 3000 rpm for 15 minutes. Sorbitol was added to the collected virus solution to a final concentration of 35%, and after dispensing, it was stored at -80 ° C.

6.中和活性評価
プラークアッセイ: CMV(AD169株)は10%FCS添加イーグルMEM(10%FCS-MEM)で1000PFU/100μlとなるように希釈した。精製抗CMV抗体は10%FCS-MEMで4倍段階希釈した。補体存在下での測定の場合は、抗体の希釈は10%モルモット補体を加えた10%FCS-MEMで同様に抗体を希釈した。ウイルスと抗体を等量で混和し、37℃で1時間反応させた。HEL細胞は10%FCS-MEM を使用して35mmシャーレで培養し、ウイルス接種前に培地を除き、0.3mlの10%FCS-MEMを添加した。ウイルスと抗体の反応液はHEL細胞に50μlずつ接種し、37℃で1時間の吸着後、10%FCS-MEMで洗浄し、1%メチルセルロースを含む10%FCS-MEMを重層して10日間培養した。測定はメチルセルロースを除去後、メチレンブルーで染色し、顕微鏡下でプラーク数をカウントした(参考文献:Masuho,Y.et al., J. Gen. Virol., 68,p1457-1461(1987))。アッセイは3回ずつ行い、プラーク数の平均を算出した。
6. Neutralization activity evaluation
Plaque assay : CMV (AD169 strain) was diluted with 10% FCS-added Eagle MEM (10% FCS-MEM) to 1000 PFU / 100 μl. The purified anti-CMV antibody was diluted 4-fold with 10% FCS-MEM. In the case of measurement in the presence of complement, the antibody was diluted in the same manner with 10% FCS-MEM supplemented with 10% guinea pig complement. Virus and antibody were mixed in equal amounts and reacted at 37 ° C for 1 hour. HEL cells were cultured in a 35 mm dish using 10% FCS-MEM, the medium was removed before virus inoculation, and 0.3 ml of 10% FCS-MEM was added. Viral and antibody reaction solutions are inoculated into HEL cells in 50 μl aliquots, adsorbed at 37 ° C for 1 hour, washed with 10% FCS-MEM, and overlaid with 10% FCS-MEM containing 1% methylcellulose for 10 days. did. After removing methylcellulose, the measurement was stained with methylene blue, and the number of plaques was counted under a microscope (reference: Masuho, Y. et al., J. Gen. Virol., 68, p1457-1461 (1987)). The assay was performed in triplicate and the average number of plaques was calculated.

免疫染色: CMV(AD169株)は希釈バッファー[5%FCS添加PBS(-)]で2000PFU/100μlとなるように希釈した。精製抗CMV抗体は希釈バッファーで4倍段階希釈した。モルモット補体は希釈バッファーで5倍に希釈した。抗体と補体を等量で混和したものをウイルス液と等量で混和し、4℃で1時間反応させた。MRC-5細胞は10%FCS添加MEM-αを使用し、96ウェルハーフエリアプレートにおいて100μl/wellで培養した。ウイルスと抗体の反応液はMRC-5細胞に25μlずつ接種し、 37℃で1時間の吸着後、10%FCS添加MEM-αで2回洗浄し、20時間培養した。感染細胞の検出はCMV-IE1の染色で行った。細胞から培地を除去し、100%エタノールで20分間固定後、PBS(-)で10分間浸水化し、ブロッキング試薬[PBS(-),1%BSA,0.1%Tween20]で10分間ブロッキングした。IE1抗体(MAB810R,Millipore)は抗体希釈バッファー[PBS(-),0.1%Goat Serum,0.1%Tween200] で0.1μg/mlに希釈し、1次抗体として1ウェル25μlずつ添加して37℃で1時間反応させた。洗浄バッファー[PBS(-), 0.1%Tween200]で3回洗浄後、2次抗体としてビオチン化標識anti-mouse IgG(115-065-062,Jackson)を抗体希釈バッファーで1000倍に希釈し、1ウェル25μlずつ添加して37℃で30分間反応させた、洗浄バッファーで3回洗浄後、Streptavidin-peroxidase(SIGMA)を抗体希釈バッファーで1000倍に希釈し、1ウェル25μlずつ添加して37℃で30分間反応させた。洗浄バッファーで3回洗浄後、True Blue peroxidase substrate(KPL)を1ウェル25μlずつ添加して室温で15分間発色させた。蒸留水で洗浄後、100%エタノールで1回洗浄し、暗所で乾燥させた。感染細胞(CMV-IE1陽性細胞)は顕微鏡下でカウントした(参考文献:Abai, et al., J. of Immunol. Methods 322 p82-93(2007))。アッセイは2回行い、感染細胞数の平均を算出した。 Immunostaining : CMV (AD169 strain) was diluted with a dilution buffer [PBS containing 5% FCS (−)] to 2000 PFU / 100 μl. The purified anti-CMV antibody was diluted 4-fold with dilution buffer. Guinea pig complement was diluted 5-fold with dilution buffer. An equal amount of antibody and complement was mixed with the virus solution and reacted at 4 ° C. for 1 hour. MRC-5 cells were cultured at 100 μl / well in 96-well half area plates using 10% FCS-added MEM-α. The virus / antibody reaction solution was inoculated into 25 μl each of MRC-5 cells, adsorbed at 37 ° C. for 1 hour, washed twice with 10% FCS-added MEM-α, and cultured for 20 hours. Infected cells were detected by CMV-IE1 staining. The medium was removed from the cells, fixed with 100% ethanol for 20 minutes, submerged with PBS (−) for 10 minutes, and blocked with blocking reagent [PBS (−), 1% BSA, 0.1% Tween20] for 10 minutes. IE1 antibody (MAB810R, Millipore) is diluted to 0.1 μg / ml with antibody dilution buffer [PBS (−), 0.1% Goat Serum, 0.1% Tween200], and 25 μl of 1 well is added as a primary antibody at 37 ° C. Reacted for hours. After washing 3 times with washing buffer [PBS (-), 0.1% Tween200], biotinylated labeled anti-mouse IgG (115-065-062, Jackson) as secondary antibody was diluted 1000 times with antibody dilution buffer. 25 μl of wells were added and allowed to react at 37 ° C. for 30 minutes. After washing 3 times with washing buffer, Streptavidin-peroxidase (SIGMA) was diluted 1000 times with antibody dilution buffer, and 25 μl of 1 well was added at 37 ° C. Reacted for 30 minutes. After washing 3 times with the washing buffer, True Blue peroxidase substrate (KPL) was added in a volume of 25 μl per well and allowed to develop for 15 minutes at room temperature. After washing with distilled water, it was washed once with 100% ethanol and dried in the dark. Infected cells (CMV-IE1-positive cells) were counted under a microscope (reference: Abai, et al., J. of Immunol. Methods 322 p82-93 (2007)). The assay was performed twice and the average number of infected cells was calculated.

結果
抗CMV抗体(G3D-LCL:LCL由来抗体,G3D-CHO:CHO-K1細胞由来抗体,G3D-CHO+Gal:糖鎖にガラクトースを付加したCHO-K1細胞由来抗体)の抗体定常領域のNグリコシド結合糖鎖の構造を解析した。結果を図2に示す。各糖鎖の割合を百分率で示す。1%以下の糖鎖はその他に分類した。糖鎖構造はガラクトース末端数に応じてG0、G1、およびG2に分類した。混成型糖鎖と推定される糖鎖は区分ごとに1つに分類した。糖鎖構造の表記はフコース(★)、 Nアセチルグルコサミン(●)、マンノース(■)、ガラクトース(▲)、シアル酸(Nアセチルノイラミン酸)(◆)とした。複合型糖鎖の結合様式の表記は省略した。アセチルノイラミン酸の結合様式はα2-6結合であった。
Results N of antibody constant region of anti-CMV antibody (G3D-LCL: LCL-derived antibody, G3D-CHO: CHO-K1 cell-derived antibody, G3D-CHO + Gal: CHO-K1 cell-derived antibody with galactose added to the sugar chain) The structure of glycosidic linkage sugar chain was analyzed. The results are shown in FIG. The ratio of each sugar chain is shown as a percentage. Sugar chains of 1% or less were classified as other. The sugar chain structure was classified into G0, G1, and G2 according to the number of galactose terminals. The sugar chains estimated to be hybrid sugar chains were classified into one for each category. The sugar chain structure is expressed as fucose (*), N acetylglucosamine (●), mannose (■), galactose (▲), sialic acid (N acetylneuraminic acid) (♦). The description of the binding mode of the complex type sugar chain was omitted. The binding mode of acetylneuraminic acid was α2-6 bond.

抗体定常領域に結合するNグリコシド結合糖鎖の末端構造はLCL由来抗体(G3D-LCL)では大半をG2が占めていた。また、モノシアリル化糖が25%存在した。一方、CHO-K1細胞由来抗体(G3D-CHO)では大半がG0であったが、糖鎖修飾後(G3D-CHO+Gal)では7割以上がG2となり、糖鎖修飾に成功した。   In the LCL-derived antibody (G3D-LCL), G2 accounted for most of the terminal structure of the N glycoside-linked sugar chain that binds to the antibody constant region. In addition, 25% monosialylated saccharide was present. On the other hand, most of the antibodies derived from CHO-K1 cells (G3D-CHO) were G0, but after sugar chain modification (G3D-CHO + Gal), more than 70% became G2, and the sugar chain modification was successful.

抗CMV抗体(G3D-LCL:LCL由来抗体,G3D-CHO:CHO-K1細胞由来抗体,G3D-CHO+Gal:糖鎖にガラクトースを付加したCHO-K1細胞由来抗体)およびコントロール抗体(hIgG)の中和活性評価を補体存在下で行った(プラークアッセイおよび免疫染色)。プラーク数および感染細胞数はコントロールアッセイでの数を100として百分率で算出した。   Anti-CMV antibody (G3D-LCL: LCL-derived antibody, G3D-CHO: CHO-K1 cell-derived antibody, G3D-CHO + Gal: CHO-K1 cell-derived antibody with galactose added to the sugar chain) and control antibody (hIgG) Neutralizing activity was evaluated in the presence of complement (plaque assay and immunostaining). The number of plaques and the number of infected cells were calculated as percentages with the number in the control assay being 100.

図3に、中和活性評価の結果を示す。 G3D-LCLのIC50は1.2μg/mlであったのに対し、G3D-CHOのIC50は46.2μg/mlとなり、中和活性に大きな違いが認められた。しかし、 G3D-CHO+Galでは中和活性はIC50で2.5μg/mlにまで回復した。よって、B4Gal-T1導入細胞では、CHO-K1細胞由来抗体へのガラクトース付加により、中和活性が増強し得ることが示された。   In FIG. 3, the result of neutralization activity evaluation is shown. The IC50 of G3D-LCL was 1.2 μg / ml, whereas the IC50 of G3D-CHO was 46.2 μg / ml, indicating a large difference in neutralizing activity. However, with G3D-CHO + Gal, the neutralizing activity recovered to 2.5 μg / ml with an IC50. Therefore, it was shown that neutralization activity can be enhanced in B4Gal-T1 introduced cells by adding galactose to CHO-K1 cell-derived antibodies.

(抗CD20キメラ抗体における定常領域Nグリコシド結合糖鎖の修飾の効果)
材料と方法
1.抗CD20キメラ抗体(Rituxan)遺伝子の合成と抗体安定発現株の作製

抗CD20キメラ抗体(Rituxan)をコードする遺伝子をクローニングするため、当該抗体H鎖の可変領域のヌクレオチド配列(GenBank Accession No.AR000013)を16本のDNA断片として合成した(表2)。各DNA断片は約45塩基からなり、奇数番号のDNA断片はセンス方向、偶数番号のDNA断片はアンチセンス方向とし、それぞれ隣り合うDNA断片と15塩基が相補的に重なるように設計した。これらのDNA断片をすべて混合し、RTX-H01とRTX-H16を増幅Primerとして、全長をPCR法により増幅した。また、当該抗体L鎖の可変領域(GenBank Accession No.AR015962)およびヒトκ鎖の一部定常領域のヌクレオチド配列も同様に合成し(表3)、RTX-K01とRTX-K20を増幅PrimerとしてPCR法により増幅した。H鎖の増幅断片は制限酵素処理(HindIII,ApaI)後、ヒトIgG1 H鎖の定常領域を含むベクターに組み換え、キメラ抗体遺伝子としてクローニングした。一方、L鎖の増幅断片は制限酵素処理(HindIII,BbvCI)後、ヒトκ鎖の定常領域の一部を含むベクターに組み換え、キメラ抗体遺伝子としてクローニングした。その後、キメラ抗体遺伝子(H鎖およびL鎖)はダブルジーンベクター作製用に構築されたベクターに挿入した。
(Effect of modification of constant region N glycoside-linked sugar chain in anti-CD20 chimeric antibody)
Materials and Methods Synthesis of anti-CD20 chimeric antibody (Rituxan) gene and production of antibody stable expression strain

In order to clone the gene encoding the anti-CD20 chimeric antibody (Rituxan), the nucleotide sequence (GenBank Accession No. AR000013) of the variable region of the antibody H chain was synthesized as 16 DNA fragments (Table 2). Each DNA fragment was composed of about 45 bases, the odd-numbered DNA fragment was in the sense direction, and the even-numbered DNA fragment was in the antisense direction, and each adjacent DNA fragment was designed to overlap 15 bases in a complementary manner. All of these DNA fragments were mixed, and the full length was amplified by PCR using RTX-H01 and RTX-H16 as amplification primers. Similarly, the nucleotide sequence of the variable region of the antibody L chain (GenBank Accession No. AR015962) and the partial constant region of the human κ chain was synthesized in the same manner (Table 3), and PCR was performed using RTX-K01 and RTX-K20 as amplification primers. Amplified by the method. The amplified fragment of H chain was subjected to restriction enzyme treatment (HindIII, ApaI), then recombined into a vector containing the constant region of human IgG1 H chain, and cloned as a chimeric antibody gene. On the other hand, the amplified fragment of the L chain was subjected to restriction enzyme treatment (HindIII, BbvCI), recombined into a vector containing a part of the constant region of human κ chain, and cloned as a chimeric antibody gene. Thereafter, the chimeric antibody gene (H chain and L chain) was inserted into a vector constructed for preparation of a double gene vector.

次に、当該ダブルジーンベクターをCHO-K1細胞に導入し、Glutamine Synthetase(GS)選択培地(SAFC)で選抜を行い、Rituxan安定発現株をクローニングした。CHO-K1細胞の選抜にはGS阻害剤であるMethionine Sulfoximine(MSX, SIGMA)(final 2.5μM)を添加した。
Next, the double gene vector was introduced into CHO-K1 cells and selected with Glutamine Synthetase (GS) selective medium (SAFC) to clone a Rituxan stable expression strain. For selection of CHO-K1 cells, GS inhibitor Methionine Sulfoximine (MSX, SIGMA) (final 2.5 μM) was added.

2.CHO-K1細胞産生Rituxanの糖鎖修飾
B4Gal-T1発現ベクター(実施例1,材料と方法2.)はRituxan安定発現クローン(CHO-K1細胞)に導入し,MSX添加GS選択培地中でGeneticin(Gibco)(final 1200μg/ml)による選抜を行い、RituxanおよびB4Gal-T1を同時安定的に発現するクローンを得た。B4Gal-T1の発現の確認はRT-PCRで行った。その中からB4Gal-T1の発現が良好な2クローン(RTX-1,RTX-2)を選択し、産生抗体の精製を行った。また、B4Gal-T1発現ベクター導入前のRituxan安定発現クローンの産生する抗体についても同様に精製を行った。
2. Glycosylation of Rituxan produced by CHO-K1 cells
B4Gal-T1 expression vector (Example 1, Materials and Methods 2.) was introduced into Rituxan stable expression clone (CHO-K1 cells) and selected with Geneticin (Gibco) (final 1200 μg / ml) in MSX-added GS selection medium And a clone expressing Rituxan and B4Gal-T1 simultaneously and stably was obtained. Confirmation of B4Gal-T1 expression was performed by RT-PCR. Among them, 2 clones (RTX-1, RTX-2) with good expression of B4Gal-T1 were selected, and the produced antibody was purified. In addition, the antibody produced by the Rituxan stable expression clone before introduction of the B4Gal-T1 expression vector was similarly purified.

3.Rituxanおよび糖鎖修飾Rituxanの精製
いずれの抗体も、精製にはProteinA Magnetic Beads(PureProteome,Millipore)を使用し、推奨の方法で行った。詳しくは、抗体産生細胞は無血清培地で培養し、回収した培養上清にビーズを添加し、室温で1時間反応させた。ビーズを回収し、PBS(-)で3回洗浄後、0.1M Citrate Buffer pH3.0により抗体を溶出し、1M Tris-HCl pH9.0で中和した。精製抗体はUV法およびELISA法により濃度を決定した。
3. Purification of Rituxan and glycosylated Rituxan All antibodies were purified using ProteinA Magnetic Beads (PureProteome, Millipore) as recommended. Specifically, antibody-producing cells were cultured in a serum-free medium, beads were added to the collected culture supernatant, and reacted at room temperature for 1 hour. The beads were collected, washed 3 times with PBS (-), and the antibody was eluted with 0.1 M Citrate Buffer pH 3.0 and neutralized with 1 M Tris-HCl pH 9.0. The concentration of the purified antibody was determined by UV method and ELISA method.

4.Rituxanの補体依存性細胞障害活性(CDC活性)評価
Rituxan安定発現クローン由来の糖鎖修飾していないRituxan(Original)およびRituxanおよびB4Gal-T1同時安定発現クローン由来の糖鎖にガラクトースを付加したRituxan(RTX-1,RTX-2)について、CDC活性の評価を行った。対象にはCD20陽性細胞であるDaudi細胞を使用した(BioTechnol.Prog. 2005, 21 1644-1652)。
Four. Rituxan's complement-dependent cytotoxic activity (CDC activity) evaluation
Rituxan (Original) from Rituxan stably expressing clones and Rituxan (RTX-1, RTX-2) with galactose added to sugar chains derived from Rituxan and B4Gal-T1 co-stable expression clones Evaluation was performed. Daudi cells, which are CD20 positive cells, were used as subjects (BioTechnol. Prog. 2005, 21 1644-1652).

Daudi細胞は10%FCS添加RPMI1640(SIGMA)で1回洗浄、RPMIで再度洗浄し、RPMIに懸濁して、5×104cells/wellとなるよう25μl/wellで96ウェルプレートに播種した。次にRituxan(Original,RTX-1,RTX-2)の2倍希釈系列をRPMI1640で作製し(最終濃度2μg/mlから7段階)、25μl/wellでDaudi細胞に添加し、インキュベーター(37℃,5%CO2)で30分間反応させた。次に、RPMI1640で20%に希釈したヒト補体(SIGMA)を50μl/wellで添加し(最終濃度10%)、インキュベーター(37℃,5%CO2)で3時間培養した。また、コントロールとして抗体無添加ウェルを、ブランクとして細胞無添加ウェルを用意した。その後、各ウェルにはWST-1(Cell counting kit, 同仁化学)を10μl/wellで添加し、インキュベーター(37℃,5%CO2)で3‐5時間反応させた。反応終了後、吸光度(OD450nm-OD620nm)を測定した。アッセイは3回行い、結果は平均値で示した。CDC活性(%)は以下の式を用いて算出した。
CDC(%) = 100×{1-(S-B)/(C-B)}
S : サンプルウェルの吸光度、B : ブランクウェルの吸光度、C :コントロールの吸光度
Daudi cells were washed once with 10% FCS-added RPMI1640 (SIGMA), washed again with RPMI, suspended in RPMI, and seeded in a 96-well plate at 25 μl / well to 5 × 10 4 cells / well. Next, a 2-fold dilution series of Rituxan (Original, RTX-1, RTX-2) was prepared with RPMI1640 (7 steps from the final concentration of 2 μg / ml), added to Daudi cells at 25 μl / well, and incubator (37 ° C, The reaction was carried out at 5% CO 2 ) for 30 minutes. Next, human complement (SIGMA) diluted to 20% with RPMI1640 was added at 50 μl / well (final concentration 10%), and cultured in an incubator (37 ° C., 5% CO 2 ) for 3 hours. In addition, antibody-free wells were prepared as controls, and cell-free wells were prepared as blanks. Thereafter, WST-1 (Cell counting kit, Dojindo Chemical Co., Ltd.) was added to each well at 10 μl / well and reacted in an incubator (37 ° C., 5% CO 2 ) for 3-5 hours. After completion of the reaction, the absorbance (OD450nm-OD620nm) was measured. The assay was performed in triplicate and results are shown as average values. CDC activity (%) was calculated using the following formula.
CDC (%) = 100 × {1- (SB) / (CB)}
S: Absorbance of sample well, B: Absorbance of blank well, C: Absorbance of control

結果
糖鎖修飾していないRituxan(Original)および糖鎖にガラクトースを付加したRituxan(RTX-1, RTX -2)のCDC評価結果を図4に示す。CDC活性評価の結果、RTX-1, RTX -2はOriginalと比較してCDC活性が高く、抗体濃度0.125μg/mlにおいて、およそ4−5倍高い結果となった。
Results Fig. 4 shows the CDC evaluation results of Rituxan (Original) without sugar chain modification and Rituxan (RTX-1, RTX -2) with galactose added to the sugar chain. As a result of CDC activity evaluation, RTX-1 and RTX-2 had higher CDC activity than Original, and were about 4-5 times higher at an antibody concentration of 0.125 μg / ml.

上記の実施例では、抗CMV抗体(完全ヒト型抗体)および抗CD20抗体(キメラ抗体)での各1事例を取り上げて説明したが、実施例1で示したように得られた抗体は、ヒト由来リンパ芽球様細胞株(lymphoblastoid cell line:LCL)での糖鎖と非常に似た糖鎖組成であり、また、実施例1及び2で示したように、補体依存性生物活性が4−5倍から数十倍活性の上昇が認められた。即ち、本発明では、高い補体依存性生物活性を有する活性抗体で、かつヒト由来宿主細胞に近似した糖鎖組成を有する抗体を、遺伝子組み換え手法で産生するに際して、優れた宿主細胞系、および工業化容易な生産系を見出すことができたといえる。   In the above-described examples, one example of each of the anti-CMV antibody (fully human antibody) and the anti-CD20 antibody (chimeric antibody) was taken up and explained. However, the antibody obtained as shown in Example 1 is human. The sugar chain composition is very similar to the sugar chain in the lymphoblastoid cell line (LCL) derived from the cells, and the complement-dependent biological activity is 4 as shown in Examples 1 and 2. An increase in activity of -5 to several tens of times was observed. That is, in the present invention, an excellent host cell system for producing an active antibody having a high complement-dependent biological activity and a sugar chain composition similar to a human-derived host cell by a genetic recombination technique, and It can be said that a production system that can be easily industrialized has been found.

また、抗体の起源に関しても、マウス由来抗体、ハイブリドーマ由来抗体、キメラ抗体、およびヒト化抗体により抗体遺伝子の取得経緯はそれぞれ異なるが、本発明がそれら抗体の由来に拘らず適用しうることは、当業者に明らかである。   In addition, regarding the origin of the antibody, the acquisition history of the antibody gene varies depending on the mouse-derived antibody, hybridoma-derived antibody, chimeric antibody, and humanized antibody, but the present invention can be applied regardless of the origin of these antibodies. It will be apparent to those skilled in the art.

本発明によれば、これまでの抗体医薬と比較し高い補体依存性生物活性を示す遺伝子組換え抗体を産生する宿主細胞系、該細胞を用いた抗体の大規模生産が容易な製造方法、および高い補体依存性生物活性を有する抗体が提供される。   According to the present invention, a host cell system that produces a recombinant antibody that exhibits high complement-dependent biological activity compared to conventional antibody drugs, a production method that facilitates large-scale production of antibodies using the cells, And antibodies with high complement dependent biological activity are provided.

本発明の抗体の産生方法、該方法により産生される抗体、およびそのような抗体を安定的に発現する宿主細胞系は、研究、または、各種疾患の予防及び/又は治療薬等の抗体医薬等の分野において有用である。   The antibody production method of the present invention, the antibody produced by the method, and the host cell system that stably expresses such an antibody can be used for research or antibody drugs such as preventive and / or therapeutic agents for various diseases, etc. It is useful in the field of

配列番号1:プライマー配列(B1,4GT-Fw)
配列番号2:プライマー配列(B1,4GT-Rv)
配列番号3および4:プライマー配列(B4Gal−T1遺伝子の一部増幅用)
配列番号5および6:プライマー配列(GAPDH遺伝子の一部増幅用)
配列番号7:B4Gal−T1遺伝子
配列番号8:B4Gal−T1のアミノ酸配列
配列番号9−24:Rituxanの重鎖可変領域をクローニングするためのヌクレオチド配列
配列番号25−44:Rituxanの軽鎖可変領域及び一部定常領域をクローニングするためのヌクレオチド配列
Sequence number 1: Primer sequence (B1,4GT-Fw)
SEQ ID NO: 2: Primer sequence (B1,4GT-Rv)
SEQ ID NOs: 3 and 4: Primer sequence (for partial amplification of B4Gal-T1 gene)
SEQ ID NOs: 5 and 6: Primer sequence (for partial amplification of GAPDH gene)
SEQ ID NO: 7: B4Gal-T1 gene SEQ ID NO: 8: Amino acid sequence of B4Gal-T1
SEQ ID NOs: 9-24: Nucleotide sequences for cloning the heavy chain variable region of Rituxan
SEQ ID NOs: 25-44: Nucleotide sequences for cloning the light chain variable region and partial constant region of Rituxan

Claims (12)

β-1,4-ガラクトシルトランスフェラーゼ(B4Gal−T)活性を有するタンパク質をコードする遺伝子および補体依存性生物活性を有する抗体をコードする遺伝子を発現する宿主動物細胞を培養する工程、および
培養した前記宿主動物細胞から、発現したB4Gal−T活性により前記抗体のFc領域に結合しているN−グリコシド結合複合型糖鎖が修飾された該抗体を精製する工程
を含む、補体依存性生物活性を有する抗体を産生する方法。
a step of culturing a host animal cell expressing a gene encoding a protein having β-1,4-galactosyltransferase (B4Gal-T) activity and a gene encoding an antibody having complement-dependent biological activity; Complement-dependent biological activity comprising the step of purifying the antibody in which the N-glycoside-linked complex sugar chain bound to the Fc region of the antibody is modified from the host animal cell by the expressed B4Gal-T activity. A method for producing an antibody comprising:
前記培養する工程が、
(i) β-1,4-ガラクトシルトランスフェラーゼ(B4Gal−T)活性を有するタンパク質をコードする遺伝子が安定的に発現している宿主動物細胞に補体依存性生物活性を有する抗体をコードする遺伝子を発現可能に導入した該細胞を培養すること、または
(ii) β-1,4-ガラクトシルトランスフェラーゼ(B4Gal−T)活性を有するタンパク質をコードする遺伝子および補体依存性生物活性を有する抗体をコードする遺伝子の両方を発現可能に導入した宿主動物細胞を培養すること、
を含む、請求項1に記載の方法。
The culturing step comprises:
(i) a gene encoding an antibody having complement-dependent biological activity in a host animal cell in which a gene encoding a protein having β-1,4-galactosyltransferase (B4Gal-T) activity is stably expressed. Culturing the cells introduced in an expressible manner, or
(ii) a host animal cell into which both a gene encoding a protein having β-1,4-galactosyltransferase (B4Gal-T) activity and a gene encoding an antibody having complement-dependent biological activity can be expressed. Culturing,
The method of claim 1 comprising:
前記タンパク質をコードする遺伝子が、
(i) 配列番号7のポリヌクレオチド;
(ii) 配列番号7のポリヌクレオチドとストリンジェントな条件でハイブリダイズし、かつB4Gal−T活性を有するタンパク質をコードするポリヌクレオチド;
(iii) 配列番号8のアミノ酸配列をコードするポリヌクレオチド;または
(iv) 配列番号8のアミノ酸配列と80%以上の同一性を有するアミノ酸配列からなり、かつB4Gal−T活性を有するタンパク質をコードするポリヌクレオチド
からなる、請求項1または2に記載の方法。
The gene encoding the protein is
(i) the polynucleotide of SEQ ID NO: 7;
(ii) a polynucleotide that hybridizes with the polynucleotide of SEQ ID NO: 7 under a stringent condition and encodes a protein having B4Gal-T activity;
(iii) a polynucleotide encoding the amino acid sequence of SEQ ID NO: 8; or
(iv) The method according to claim 1 or 2, comprising a polynucleotide comprising an amino acid sequence having 80% or more identity with the amino acid sequence of SEQ ID NO: 8, and encoding a protein having B4Gal-T activity.
前記宿主動物細胞が、脊椎動物細胞、哺乳動物細胞、またはCHO細胞である、請求項1〜3のいずれか一項に記載の方法。   The method according to any one of claims 1 to 3, wherein the host animal cell is a vertebrate cell, a mammalian cell, or a CHO cell. さらに、
(i) 前記抗体のFc領域に結合しているN−グリコシド結合複合型糖鎖の中で、G1およびG2複合型糖鎖の割合(該糖鎖の非還元末端の2つのN−アセチルグルコサミンの少なくとも一方にガラクトースが1分子結合しているものの割合)が50%以上である抗体を単離する工程;または
(ii) 前記抗体のFc領域に結合しているN−グリコシド結合複合型糖鎖の中で、G2複合型糖鎖の割合(該糖鎖の非還元末端の2つのN−アセチルグルコサミンの両方にガラクトースがそれぞれ1分子結合しているものの割合)が50%以上である抗体を単離する工程
を含む、請求項1〜4のいずれか一項に記載の方法。
further,
(i) The proportion of G1 and G2 complex type sugar chains in the N-glycoside-linked complex type sugar chains bound to the Fc region of the antibody (of the two N-acetylglucosamines at the non-reducing end of the sugar chain) Isolating an antibody having a ratio of at least one molecule of galactose bound to one molecule) of 50% or more; or
(ii) The proportion of the G2 complex type sugar chain in the N-glycoside-linked complex type sugar chain bound to the Fc region of the antibody (both the two N-acetylglucosamines at the non-reducing end of the sugar chain) The method according to any one of claims 1 to 4, which comprises a step of isolating an antibody having a ratio of 50% or more of each galactose bonded to one molecule.
前記補体依存性生物活性が、補体依存性細胞障害活性、補体依存性のウイルス中和活性、補体依存性のCMVの中和活性、および抗CD20抗体の補体依存性細胞障害活性からなる群から選択される活性である、請求項1〜5のいずれか一項に記載の方法。   The complement-dependent biological activity includes complement-dependent cytotoxic activity, complement-dependent virus neutralizing activity, complement-dependent CMV neutralizing activity, and complement-dependent cytotoxic activity of anti-CD20 antibodies. 6. The method according to any one of claims 1 to 5, wherein the activity is selected from the group consisting of: さらに、
(i) 糖鎖が修飾されていない抗体と比較して3倍以上高い補体依存性生物活性を示す抗体を単離する工程;または
(ii) 糖鎖が修飾されていない抗体と比較して10倍以上高い補体依存性生物活性を示す抗体を単離する工程
を含む、請求項1〜6のいずれか一項に記載の方法。
further,
(i) isolating an antibody exhibiting complement-dependent biological activity that is at least 3 times higher than an antibody whose sugar chain is not modified; or
(ii) The method according to any one of claims 1 to 6, comprising a step of isolating an antibody exhibiting complement-dependent biological activity that is 10 times or more higher than an antibody whose sugar chain is not modified. .
前記抗体がモノクローナル抗体である、請求項1〜7のいずれか一項に記載の方法。   The method according to any one of claims 1 to 7, wherein the antibody is a monoclonal antibody. 前記抗体がIgGまたはIgG1である、請求項1〜8のいずれか一項に記載の方法。   The method according to claim 1, wherein the antibody is IgG or IgG1. 請求項1〜9のいずれか一項に記載の方法により産生された抗体。   An antibody produced by the method according to any one of claims 1-9. 請求項5または7に記載の方法により産生された抗体。   An antibody produced by the method according to claim 5 or 7. 請求項11に記載の抗体を安定的に発現する宿主細胞系。
A host cell system stably expressing the antibody of claim 11.
JP2012555996A 2011-02-03 2012-02-03 Production of antibodies with high complement-dependent biological activity Pending JPWO2012105699A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011022103 2011-02-03
JP2011022103 2011-02-03
PCT/JP2012/052543 WO2012105699A1 (en) 2011-02-03 2012-02-03 Method for production of antibody having high complement-dependent biological activity

Publications (1)

Publication Number Publication Date
JPWO2012105699A1 true JPWO2012105699A1 (en) 2014-07-03

Family

ID=46602899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012555996A Pending JPWO2012105699A1 (en) 2011-02-03 2012-02-03 Production of antibodies with high complement-dependent biological activity

Country Status (2)

Country Link
JP (1) JPWO2012105699A1 (en)
WO (1) WO2012105699A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2900912A1 (en) * 2013-02-13 2014-08-21 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Highly galactosylated anti-her2 antibodies and uses thereof
EP3594231A1 (en) * 2013-02-13 2020-01-15 Laboratoire Français du Fractionnement et des Biotechnologies Highly galactosylated anti-tnf-alpha antibodies and uses thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2542885T3 (en) * 2003-01-22 2015-08-12 Roche Glycart Ag Fusion constructs and use thereof to produce antibodies with greater affinity for Fc receptor binding and effector function
FR2861080B1 (en) * 2003-10-20 2006-02-17 Lab Francais Du Fractionnement ANTIBODIES HAVING AN OPTIMIZED FUCOSE AND GALACTOSE RATE

Also Published As

Publication number Publication date
WO2012105699A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
US11267899B2 (en) Afucosylated protein, cell expressing said protein and associated methods
JP5583908B2 (en) Antibody-based therapeutics with enhanced ADCC activity
US8025879B2 (en) Modified glycoproteins and uses thereof
CN101646775B (en) For producing method and the carrier of asialylated immunoglobulins
KR102232348B1 (en) Cells producing fc containing molecules having altered glycosylation patterns and methods and use thereof
EP2714732A1 (en) METHOD FOR PREPARING Fc-CONTAINING POLYPEPTIDES HAVING IMPROVED PROPERTIES
EP3559248B1 (en) In vitro glycoengineering of antibodies
EP3194583B1 (en) Non-fucosylated protein and methods thereof
EP2791164B1 (en) Non-fucosylated glycoprotein comprising the Fc domain of an antibody
TW201837177A (en) Method for in vitro glycoengineering of antibodies
US20170321240A1 (en) Glycosylation mutants for producing galactose-free and fucose-free polypeptides
WO2012105699A1 (en) Method for production of antibody having high complement-dependent biological activity
WO2005035578A1 (en) Antibody composition specifically binding to ganglioside gm2
US20150210777A1 (en) Glycoprotein
EP4450081A1 (en) Anti-immunoglobulin degrading enzyme-digested fc variant