JPWO2012026591A1 - Heat treatment method for structural material and heat treated structural material - Google Patents

Heat treatment method for structural material and heat treated structural material Download PDF

Info

Publication number
JPWO2012026591A1
JPWO2012026591A1 JP2012513793A JP2012513793A JPWO2012026591A1 JP WO2012026591 A1 JPWO2012026591 A1 JP WO2012026591A1 JP 2012513793 A JP2012513793 A JP 2012513793A JP 2012513793 A JP2012513793 A JP 2012513793A JP WO2012026591 A1 JPWO2012026591 A1 JP WO2012026591A1
Authority
JP
Japan
Prior art keywords
structural material
rate
heat treatment
stress
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012513793A
Other languages
Japanese (ja)
Other versions
JP5130498B2 (en
Inventor
卓也 桑山
卓也 桑山
鈴木 規之
規之 鈴木
康信 宮崎
康信 宮崎
川崎 薫
薫 川崎
繁 米村
繁 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012513793A priority Critical patent/JP5130498B2/en
Application granted granted Critical
Publication of JP5130498B2 publication Critical patent/JP5130498B2/en
Publication of JPWO2012026591A1 publication Critical patent/JPWO2012026591A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor

Abstract

この構造材の熱処理方法は、構造材の一方向に延在し、前記一方向に垂直な方向に曲げが与えられた屈曲部を備えた構造材の熱処理方法であって、前記屈曲部の有効幅eを決定し;前記屈曲部から前記一方向に垂直な方向に向かう距離が前記有効幅e以内である前記屈曲部を含む領域を有効幅領域と定義し、この有効幅領域のうち熱処理により硬化された領域が占める割合を硬化率fMと定義した場合に、硬化率fMに対する降伏応力σYの変化率に基づいて硬化率fMの範囲を決定し;前記硬化率fMの範囲を満たすように前記構造材の前記有効幅領域に対して熱処理を行う。The heat treatment method for a structural material is a heat treatment method for a structural material that includes a bent portion that extends in one direction of the structural material and is bent in a direction perpendicular to the one direction. A width e is determined; a region including the bent portion whose distance from the bent portion in a direction perpendicular to the one direction is within the effective width e is defined as an effective width region; When the ratio of the cured region is defined as the curing rate fM, the range of the curing rate fM is determined based on the rate of change of the yield stress σY with respect to the curing rate fM; Heat treatment is performed on the effective width region of the structural material.

Description

本発明は、構造材の熱処理方法及び熱処理された構造材に関する。
本願は、2010年8月27日に、日本に出願された特願2010−190741号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a heat treatment method for a structural material and a heat treated structural material.
This application claims priority on August 27, 2010 based on Japanese Patent Application No. 2010-190741 for which it applied to Japan, and uses the content here.

自動車等の構造材として、多角形断面を有する管状のプレス成形品等が多く用いられている。このような構造材は、大別すると二つの用途で用いられる。一つは、例えばエンジンコンパートメントやトランクルーム等を構成する構造材であって、自動車等が衝突した際に圧潰して衝撃エネルギを吸収するように作用する構造材である。もう一つは、例えばキャビン等を構成する構造材であって、自動車等が衝突した際にも乗員の生存空間確保の観点から変形が抑制されるような構造材である。   As structural materials for automobiles and the like, tubular press-formed products having a polygonal cross section are often used. Such a structural material is roughly used for two purposes. One is a structural material that constitutes, for example, an engine compartment, a trunk room, and the like, and is a structural material that acts to crush and absorb impact energy when an automobile or the like collides. The other is a structural material that constitutes, for example, a cabin or the like, and is a structural material that can be prevented from being deformed from the viewpoint of securing a living space for a passenger even when an automobile or the like collides.

このような構造材では、衝撃エネルギを吸収させるためにも、衝突時の変形を抑制するためにも、構造材の強度を高めることが必要であり、その方法としては、構造材の断面寸法や肉厚を大きくすることが挙げられる。しかしながら、この場合、構造材の体積や重量の増加につながり、燃費の悪化を招くばかりでなく、車両同士の衝突時における相手車両に与えるダメージの増大を招いてしまう。   In such a structural material, it is necessary to increase the strength of the structural material in order to absorb impact energy and to suppress deformation at the time of collision. One example is to increase the wall thickness. However, in this case, not only will the volume and weight of the structural material increase, but fuel consumption will deteriorate, and damage to the opponent vehicle in the event of a collision between vehicles will increase.

一方、構造材の断面寸法や肉厚を大きくせずに構造材の強度を高める方法として、プレス成形品等である構造材に対して部分的にレーザ熱処理を施す手法が種々提案されている(例えば、特許文献1〜4)。ここで、レーザ熱処理とは、エネルギ密度の高いレーザビームを未処理の構造材に照射して構造材を局所的に変態温度又は融点以上の温度まで加熱し、その後、自己冷却作用によって焼入れ硬化を行うことを意味する。   On the other hand, as a method for increasing the strength of a structural material without increasing the cross-sectional dimension or thickness of the structural material, various methods for partially performing laser heat treatment on the structural material such as a press-formed product have been proposed ( For example, Patent Documents 1 to 4). Here, the laser heat treatment means that an untreated structural material is irradiated with a laser beam having a high energy density to locally heat the structural material to a temperature equal to or higher than the transformation temperature or the melting point, and then quench hardening is performed by a self-cooling action. Means to do.

例えば、特許文献1には、レーザによりプレス成形品に局所的な熱処理を行ってプレス成形品の強度上昇を図る手法が開示されている。具体的には、特許文献1では、鋼板を冷間成形後、レーザビームにより所定温度以上に縞状或いは格子状に急速加熱し、その後冷却することで、冷間成形されたプレス成形品を強化している。このような手法を採用することで、プレス成形品全体を一様に熱処理した場合に比べて熱処理後の歪みの発生が抑制される。特に、特許文献1に開示された手法では、プレス成形品の外面上に長手方向への縞状に或いはプレス成形品の全外面上に格子状にレーザ熱処理を行っている。   For example, Patent Document 1 discloses a technique for increasing the strength of a press-formed product by performing a local heat treatment on the press-formed product with a laser. Specifically, in Patent Document 1, after cold forming a steel sheet, a laser beam is rapidly heated to a predetermined temperature or higher in a stripe shape or a lattice shape, and then cooled to strengthen the cold-formed press-formed product. doing. By adopting such a method, the occurrence of distortion after heat treatment is suppressed as compared with the case where the entire press-formed product is uniformly heat-treated. In particular, in the technique disclosed in Patent Document 1, laser heat treatment is performed in the form of stripes in the longitudinal direction on the outer surface of the press-molded product or in a grid pattern on the entire outer surface of the press-molded product.

また、特許文献2に開示された手法にも、歪みの発生を抑制しつつプレス成形品の強度を高めることを目的としてプレス成形品に局所的な熱処理を行うことが開示されている。特に、特許文献2に開示された手法では、プレス成形品の強度が必要とされる部位、例えば車両衝突試験、有限要素法等により解析される高応力部に熱処理を行っている。具体的には、プレス成形品の長手方向全長に亘って延びるようにすじ状或いは格子状にレーザ熱処理を行っている。   Also, the technique disclosed in Patent Document 2 discloses that a local heat treatment is performed on the press-formed product for the purpose of increasing the strength of the press-formed product while suppressing the occurrence of distortion. In particular, in the method disclosed in Patent Document 2, heat treatment is performed on a portion where the strength of the press-formed product is required, for example, a high stress portion analyzed by a vehicle crash test, a finite element method, or the like. Specifically, laser heat treatment is performed in a stripe shape or a lattice shape so as to extend over the entire length in the longitudinal direction of the press-formed product.

さらに、特許文献3には、レーザ熱処理を行う鋼板の含有成分を特定の成分に制御した上でレーザ熱処理を行う手法が開示されており、これにより鋼板の加工性を維持しつつレーザ熱処理された箇所の強度を高めている。特許文献3に開示された手法においても、強度を上昇させる必要のある箇所に対してレーザ熱処理を行っており、具体的にはプレス成形品の長手方向全長に亘って延びる直線状にレーザ熱処理を行っている。   Further, Patent Document 3 discloses a method of performing laser heat treatment after controlling the components contained in the steel plate to be subjected to laser heat treatment to a specific component, whereby the laser heat treatment was performed while maintaining the workability of the steel plate. Increase the strength of the location. Also in the method disclosed in Patent Document 3, laser heat treatment is performed on a portion where the strength needs to be increased. Specifically, the laser heat treatment is performed in a linear shape extending over the entire length in the longitudinal direction of the press-formed product. Is going.

特許文献4には、プレス成形品の衝撃エネルギ吸収能力を高めることを目的として、プレス成形品の外周面に圧縮荷重の負荷方向に沿って線状にレーザ熱処理を行う手法が開示されている。このような手法によれば、衝撃荷重の入力方向と同じ方向に向けてレーザ熱処理が行われることから、変形に対する抵抗を大きくすることができると共に潰れモードを規則的にすることができる。特に、特許文献4に開示された手法では、圧縮荷重の負荷方向に沿ってプレス成形品の長手方向全長に亘って連続的にレーザ熱処理が行われている。   Patent Document 4 discloses a technique of performing a laser heat treatment linearly along the load direction of the compression load on the outer peripheral surface of the press-formed product for the purpose of increasing the impact energy absorption capability of the press-formed product. According to such a method, since the laser heat treatment is performed in the same direction as the input direction of the impact load, the resistance to deformation can be increased and the crushing mode can be made regular. In particular, in the technique disclosed in Patent Document 4, laser heat treatment is continuously performed over the entire length in the longitudinal direction of the press-formed product along the direction of the compression load.

いずれにせよ、特許文献1〜4に開示された手法では、いずれにおいても、プレス成形品の外面のうち強度が必要な部分にレーザ熱処理を行っている。具体的には、プレス成形品の長手方向全長に亘って連続的に延びる線状にレーザ熱処理を行うか、或いはプレス成形品の外面全体に亘って格子状等にレーザ熱処理を行っている。   In any case, in any of the methods disclosed in Patent Documents 1 to 4, laser heat treatment is performed on a portion of the outer surface of the press-formed product that requires strength. Specifically, the laser heat treatment is performed in a linear shape continuously extending over the entire length in the longitudinal direction of the press-formed product, or the laser heat treatment is performed in a lattice shape or the like over the entire outer surface of the press-formed product.

日本国特開昭61−99629号公報Japanese Unexamined Patent Publication No. Sho 61-99629 日本国特開平4−72010号公報Japanese Laid-Open Patent Publication No. 4-72010 日本国特開平6−73439号公報Japanese Unexamined Patent Publication No. 6-73439 日本国特開2004−108541号公報Japanese Unexamined Patent Publication No. 2004-108541

図1には、円筒状の構造材がその軸線方向(x方向)に圧縮荷重を受けた際の、軸線方向の圧縮応力σと圧縮ひずみε(円筒状の構造材の長手方向の長さに対する長手方向の変形量)との関係を模式的に示している。このうち、図中のσ、σ及びσは、ピーク応力を示し、斜線Wで示した領域が、構造材による吸収エネルギ量を示している。特に、σは、初期ピーク応力を示している。FIG. 1 shows the axial compressive stress σ x and compressive strain ε x (longitudinal length of the cylindrical structural material when the cylindrical structural material receives a compressive load in the axial direction (x direction). The relationship with the amount of deformation in the longitudinal direction) is schematically shown. Among these, σ 1 , σ 2, and σ 3 in the figure indicate peak stresses, and a region indicated by diagonal lines W indicates the amount of energy absorbed by the structural material. In particular, σ 1 indicates the initial peak stress.

ここで、上述したように自動車等に用いられる構造材には、衝突の際に衝撃エネルギを吸収する構造材(以下、「衝撃吸収用構造材」という)と、衝突の際にその変形を抑制する構造材(以下、「変形抑制用構造材」)とがある。これらのうち衝撃吸収用構造材では、吸収エネルギ量Wをできるだけ大きくすることが必要であると共に、初期ピーク応力σを比較的小さくすることが必要である。Here, as described above, structural materials used in automobiles and the like include a structural material that absorbs impact energy in the event of a collision (hereinafter referred to as “impact absorbing structural material”), and its deformation is suppressed in the event of a collision. There are structural materials (hereinafter referred to as “structural materials for suppressing deformation”). Among these, in the structural material for absorbing shock, it is necessary to make the absorbed energy amount W as large as possible and to make the initial peak stress σ 1 relatively small.

一方、変形抑制用構造材では、衝撃吸収用構造材とは異なり、初期ピーク応力σをできるだけ大きくすることが必要である。これは、初期ピーク応力σが大きくなれば、構造材に大きな応力が加わっても構造材が座屈しにくくなるためである。したがって、初期ピーク応力σが大きくなるように変形抑制用構造材に対してレーザ熱処理を行う必要がある。On the other hand, unlike the structure for shock absorption, in the structural material for suppressing deformation, it is necessary to make the initial peak stress σ 1 as large as possible. This is because if the initial peak stress σ 1 is increased, the structural material is less likely to buckle even when a large stress is applied to the structural material. Therefore, it is necessary to perform laser heat treatment on the deformation-suppressing structural material so that the initial peak stress σ 1 becomes large.

ところが、上述した特許文献1〜4に開示された手法では、初期ピーク応力σを全く考慮せずにレーザ熱処理を行っており、構造材の変形抑制能力が十分に高められているとは言い難い。However, in the methods disclosed in Patent Documents 1 to 4 described above, laser heat treatment is performed without considering the initial peak stress σ 1 at all, and it is said that the ability to suppress deformation of the structural material is sufficiently enhanced. hard.

そこで、上記問題に鑑みて、本発明の目的は、未処理の構造材に対して適切な箇所に熱処理を行って構造材を局所的に硬化させることで、変形抑制能力が十分に高められた構造材を提供することにある。   Therefore, in view of the above problems, the object of the present invention is to sufficiently improve the deformation suppressing ability by locally curing the structural material by performing a heat treatment on an untreated structural material. It is to provide a structural material.

本発明者らは、一方向(例えば、長手方向)に延びる少なくとも一つの屈曲部を備えた構造材に関して、未処理の構造材に対して熱処理を行う領域(箇所や量)と、熱処理後の構造材の変形抑制能力、特に初期ピーク応力との関係について検討を行った。   Regarding the structural material having at least one bent portion extending in one direction (for example, the longitudinal direction), the inventors of the present invention have a region (location or amount) for performing heat treatment on the untreated structural material, The relationship between the ability to suppress deformation of structural materials, especially the initial peak stress, was investigated.

その結果、各屈曲部から幅方向に向かう距離が有効幅以内である有効幅領域のうち、熱処理によって硬化せしめられた硬化領域の占める割合を適切に制御することにより、構造材の変形抑制能力、特に初期ピーク応力を高めることができることを見出した。   As a result, by appropriately controlling the proportion of the cured region cured by heat treatment in the effective width region where the distance in the width direction from each bent portion is within the effective width, the ability to suppress deformation of the structural material, In particular, it has been found that the initial peak stress can be increased.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。
(1)本発明の一態様に係る構造材の熱処理方法は、構造材の一方向に延在し、前記一方向に垂直な方向に曲げが与えられた屈曲部を備えた構造材の熱処理方法であって、前記屈曲部の有効幅eを決定し;前記屈曲部から前記一方向に垂直な方向に向かう距離が前記有効幅e以内である前記屈曲部を含む領域を有効幅領域と定義し、この有効幅領域のうち熱処理により硬化された領域が占める割合を硬化率fと定義した場合に、硬化率fに対する降伏応力σの変化率に基づいて硬化率fの範囲を決定し;前記硬化率fの範囲を満たすように前記構造材の前記有効幅領域に対して熱処理を行う。
This invention was made | formed based on the said knowledge, and the summary is as follows.
(1) A heat treatment method for a structural material according to one aspect of the present invention includes a bent portion that extends in one direction of the structural material and is bent in a direction perpendicular to the one direction. An effective width e of the bent portion is determined; and an area including the bent portion whose distance from the bent portion in a direction perpendicular to the one direction is within the effective width e is defined as an effective width region. , determining the scope of the case where the ratio of the region that is hardened defined as hardening rate f M, cure rate f M based on the rate of change of the yield stress sigma Y for curing ratio f M by heat treatment of the effective width region teeth; performing heat treatment on the effective width region of the structural member so as to satisfy the range of the curing ratio f M.

(2)上記(1)に記載の構造材の熱処理方法では、前記変化率が、前記硬化率fの値が0である場合の値であってもよい。(2) In the heat treatment method of the structural material according to the above (1), wherein the rate of change, the value of the hardening rate f M may be a value when it is zero.

(3)上記(2)に記載の構造材の熱処理方法では、前記変化率に基づいて算出された加工硬化係数Eが所定値以上になるように、前記硬化率fの範囲を決定してもよい。(3) In the heat treatment method of the structural material according to the above (2), the work hardening coefficient E h calculated based on the change ratio to be equal to or greater than the predetermined value, it determines the range of the hardening rate f M May be.

(4)上記(3)に記載の構造材の熱処理方法では、前記所定値が、前記硬化率fが1である場合の加工硬化係数Eであってもよい。(4) In the heat treatment method for a structural material according to (3) above, the predetermined value may be a work hardening coefficient E h when the hardening rate f M is 1.

(5)上記(2)に記載の構造材の熱処理方法では、前記硬化率fが1である場合の流動応力と前記硬化率fが0である場合の流動応力との差をΔσ、前記硬化率fが1である場合の降伏応力と前記硬化率fが0である場合の降伏応力との差をΔσ、前記変化率をbと定義した場合に、前記硬化率fの範囲が、下記式(1)で表されるfM−min以上かつ1未満であってもよい。

Figure 2012026591
(5) In the heat treatment method of the structural material according to the above (2), the difference of .DELTA..sigma h between flow stress when the curing rate f M and the flow stress when the curing rate f M is 1 is 0 When the difference between the yield stress when the curing rate f M is 1 and the yield stress when the curing rate f M is 0 is defined as Δσ Y , and the rate of change is defined as b, the curing rate f The range of M may be f M-min or more and less than 1 represented by the following formula (1).
Figure 2012026591

(6)上記(5)に記載の構造材の熱処理方法では、前記硬化率fの範囲が、下記式(2)で表されるfM−max以下であってもよい。

Figure 2012026591
(6) In the heat treatment method for a structural material according to (5), the range of the curing rate f M may be f M-max or less represented by the following formula (2).
Figure 2012026591

(7)上記(1)に記載の構造材の熱処理方法では、前記変化率が硬化率fに対する流動応力σの変化率と等しくなる境界硬化率fをfM−maxに決定し、このfM−maxに基づいて前記硬化率fの範囲を決定してもよい。(7) In the heat treatment method of the structural material according to the above (1), the equal boundary hardening rate f M and the rate of change of flow stress sigma h determined in f M-max the rate of change with respect to the curing rate f M, it may determine the extent of the curing rate f M on the basis of the f M-max.

(8)上記(7)に記載の構造材の熱処理方法では、前記硬化率fの範囲を、下記式(3)を満足する範囲に決定してもよい。

Figure 2012026591
(8) In the heat treatment method of a structural material according to (7), the range of the hardening rate f M, may determine the range satisfying the following formula (3).
Figure 2012026591

(9)上記(7)に記載の構造材の熱処理方法では、前記硬化率fの範囲を、下記式(4)を満足するfM−min以上かつ1未満に決定してもよい。

Figure 2012026591
The heat treatment method of the structural material according to (9) above (7), the range of the hardening rate f M, may determine the f M-min or more and less than 1 satisfies the following equation (4).
Figure 2012026591

(10)上記(1)に記載の構造材の熱処理方法では、硬化率fが1である場合の流動応力と硬化率fが0である場合の流動応力との差をΔσと定義した場合に、このΔσと前記変化率との差が所定値以下になるように、前記硬化率fの範囲を決定してもよい。(10) In the heat treatment method for a structural material described in (1) above, the difference between the flow stress when the curing rate f M is 1 and the flow stress when the cure rate f M is 0 is defined as Δσ h. when, as the difference between the change rate this .DELTA..sigma h is equal to or less than a predetermined value, it may determine the extent of the curing ratio f M.

(11)上記(1)に記載の構造材の熱処理方法では、前記構造材中に含まれる化学成分について、炭素の質量百分率をC、シリコンの質量百分率をSi、マンガンの質量百分率をMn、ニッケルの質量百分率をNi、クロムの質量百分率をCr、モリブデンの質量百分率をMo、ニオブの質量百分率をNb、バナジウムの質量百分率をVと定義した場合に、前記熱処理により硬化された領域が、下記式(5)及び(6)によって算出されたビッカース硬度以上の領域であってもよい。

Figure 2012026591
Figure 2012026591
(11) In the structural material heat treatment method described in (1) above, with respect to the chemical components contained in the structural material, the mass percentage of carbon is C, the mass percentage of silicon is Si, the mass percentage of manganese is Mn, nickel When the mass percentage of Ni is defined as Ni, the mass percentage of chromium as Cr, the mass percentage of molybdenum as Mo, the mass percentage of niobium as Nb, and the mass percentage of vanadium as V, the region cured by the heat treatment is represented by the following formula: It may be a region equal to or higher than the Vickers hardness calculated by (5) and (6).
Figure 2012026591
Figure 2012026591

(12)上記(1)に記載の構造材の熱処理方法では、前記熱処理が、レーザによって行われてもよい。   (12) In the structural material heat treatment method according to (1), the heat treatment may be performed by a laser.

(13)上記(1)に記載の構造材の熱処理方法では、前記熱処理の1パスが、前記一方向の全長にわたって連続的に行われてもよい。   (13) In the heat treatment method for a structural material according to (1) above, one pass of the heat treatment may be continuously performed over the entire length in the one direction.

(14)本発明の一態様に係る熱処理された構造材は、構造材の一方向に延在し、前記一方向に垂直な方向に曲げが与えられた屈曲部を備える構造材であって、前記屈曲部から前記一方向に垂直な方向に向かう距離が有効幅e以内である前記屈曲部を含む領域を有効幅領域と定義し、この有効幅領域のうち熱処理により硬化された領域が占める割合を硬化率fと定義した場合に、この硬化率fが、1未満であり、かつ、硬化率fに対する降伏応力σの変化率に基づいて決定された硬化率fの範囲に含まれる。(14) The heat-treated structural material according to one aspect of the present invention is a structural material including a bent portion that extends in one direction of the structural material and is bent in a direction perpendicular to the one direction. A region including the bent portion whose distance from the bent portion in a direction perpendicular to the one direction is within the effective width e is defined as an effective width region, and a ratio of the effective width region occupied by a region cured by heat treatment the when defined as hardening rate f M, the curing rate f M is less than 1, and, in the range of curing rate f M which is determined based on the rate of change of the yield stress sigma Y for hardening rate f M included.

(15)上記(14)に記載の熱処理された構造材では、前記変化率が、前記硬化率fの値が0である場合の値であってもよい。(15) In the heat-treated structural material according to (14), wherein the rate of change, the value of the hardening rate f M may be a value when it is zero.

(16)上記(15)に記載の熱処理された構造材では、前記硬化率fの範囲が、前記変化率に基づいて算出された加工硬化係数Eが所定値以上になるように決定された範囲であってもよい。The heat-treated structural material according to (16) above (15), the range of the hardening rate f M is the rate of change work hardening coefficient E h calculated based on are determined to be equal to or greater than the predetermined value Range may be used.

(17)上記(16)に記載の熱処理された構造材では、前記所定値が、硬化率fが1である場合の加工硬化係数Eであってもよい。(17) In the heat-treated structural material according to (16), the predetermined value may be a work hardening coefficient E h when the hardening rate f M is 1.

(18)上記(14)に記載の熱処理された構造材では、前記硬化率fが1である場合の流動応力と前記硬化率fが0である場合の流動応力との差をΔσ、前記硬化率fが1である場合の降伏応力と前記硬化率fが0である場合の降伏応力との差をΔσ、前記変化率をbと定義した場合に、前記硬化率fの範囲が、下記式(7)で表されるfM−min以上であってもよい。

Figure 2012026591
(18) In the heat-treated structural material according to (14), the difference between the flow stress when the curing rate f M is 1 and the flow stress when the curing rate f M is 0 is Δσ h When the difference between the yield stress when the curing rate f M is 1 and the yield stress when the curing rate f M is 0 is defined as Δσ Y , and the rate of change is defined as b, the curing rate f The range of M may be f M-min or more represented by the following formula (7).
Figure 2012026591

(19)上記(18)に記載の熱処理された構造材では、前記硬化率fの範囲が、下記式(8)で表されるfM−max以下であってもよい。

Figure 2012026591
The heat-treated structural material according to (19) above (18), the range of the hardening rate f M may be not less f M-max represented by the following formula (8).
Figure 2012026591

(20)上記(18)に記載の熱処理された構造材では、前記各流動応力が、5%の塑性ひずみが生じたときの耐力として定義されてもよい。   (20) In the heat-treated structural material according to (18), each flow stress may be defined as a proof stress when 5% plastic strain occurs.

(21)上記(19)に記載の熱処理された構造材では、前記一方向に垂直な幅寸法をw、硬化率fが0である場合の降伏応力をσY0、構造材の前記一方向の最大応力がこのσY0になるような応力が前記一方向に向けて付与されたときの前記一方向に垂直な幅方向の各位置の応力をσと定義した場合に、前記有効幅eが、下記式(9)により定義されてもよい。

Figure 2012026591
(21) In the heat-treated structural material according to (19), the width dimension perpendicular to the one direction is w, the yield stress when the hardening rate f M is 0 is σ Y0 , and the one direction of the structural material When the stress at each position in the width direction perpendicular to the one direction when the stress that gives the maximum stress of σ Y0 toward the one direction is defined as σ x , the effective width e May be defined by the following formula (9).
Figure 2012026591

(22)上記(14)に記載の熱処理された構造材では、厚さ寸法をt、ポアソン比をν、弾性率をE、硬化率fが0である場合の降伏応力をσY0と定義した場合に、前記有効幅eが、下記式(10)により定義されてもよい。

Figure 2012026591
(22) In the heat-treated structural material described in (14) above, the yield stress when the thickness dimension is t, the Poisson's ratio is ν, the elastic modulus is E, and the hardening rate f M is 0 is defined as σ Y0 In this case, the effective width e may be defined by the following formula (10).
Figure 2012026591

(23)上記(14)に記載の熱処理された構造材では、厚さ寸法をt、前記一方向に垂直な幅寸法をw、弾性率をE、硬化率fが0である場合の降伏応力をσY0と定義した場合に、前記有効幅eが、下記式(11)により定義されてもよい。

Figure 2012026591
(23) In the heat-treated structural material described in (14) above, the yield when the thickness dimension is t, the width dimension perpendicular to the one direction is w, the elastic modulus is E, and the curing rate f M is 0. When the stress is defined as σ Y0 , the effective width e may be defined by the following formula (11).
Figure 2012026591

(24)上記(14)に記載の熱処理された構造材では、前記構造材中に含まれる化学成分について、炭素の質量百分率をC、シリコンの質量百分率をSi、マンガンの質量百分率をMn、ニッケルの質量百分率をNi、クロムの質量百分率をCr、モリブデンの質量百分率をMo、ニオブの質量百分率をNb、バナジウムの質量百分率をVと定義した場合に、前記熱処理により硬化された領域が、下記式(12)及び(13)によって算出されたビッカース硬度以上の領域であってもよい。

Figure 2012026591
Figure 2012026591
(24) In the heat-treated structural material described in (14) above, with respect to the chemical components contained in the structural material, the mass percentage of carbon is C, the mass percentage of silicon is Si, the mass percentage of manganese is Mn, nickel When the mass percentage of Ni is defined as Ni, the mass percentage of chromium as Cr, the mass percentage of molybdenum as Mo, the mass percentage of niobium as Nb, and the mass percentage of vanadium as V, the region cured by the heat treatment is represented by the following formula: The area | region more than the Vickers hardness computed by (12) and (13) may be sufficient.
Figure 2012026591
Figure 2012026591

(25)上記(14)に記載の熱処理された構造材では、前記熱処理が、レーザによって行われていてもよい。   (25) In the heat-treated structural material according to (14), the heat treatment may be performed by a laser.

本発明によれば、従来では未処理の構造材に対して任意な箇所に熱処理を行って構造材を局所的に硬化させることにより構造材の変形抑制能力を高めていた事に比較して、座屈の初期ピーク応力σに相当する、弾塑性座屈応力σp、Crの値を求め得るとともに、この弾塑性座屈応力σp、Crを最大にする有効幅領域における硬化領域の体積分率を適正に提示することができる。これにより、変形抑制構造体において、適切な変形抑制の指針を与えることが出来る。
また、本発明によれば、構造材の変形抑制能力を高めるために必要な熱処理コストを最適化(低減)することができる。
加えて、本発明によれば、試験片を用いて鋼材の特性を測定することにより、構造体を評価することなく試験片の特性値から有効幅における硬化領域の体積分率を適正に提示することができる。特に、上記(2)の場合、できる限り少ない試験片の評価数で有効幅における硬化領域の体積分率を適正に提示することができる。
According to the present invention, compared to the conventional method in which the structure material is locally hardened by performing a heat treatment on an untreated structure material, the structure material is locally hardened. The value of the elastic-plastic buckling stress σ p, Cr corresponding to the initial peak stress σ 1 of bending can be obtained, and the volume fraction of the hardened region in the effective width region that maximizes the elastic-plastic buckling stress σ p, Cr The rate can be presented properly. Thereby, in the deformation suppression structure, an appropriate deformation suppression guideline can be given.
Further, according to the present invention, it is possible to optimize (reduce) the heat treatment cost necessary for enhancing the deformation suppressing ability of the structural material.
In addition, according to the present invention, by measuring the characteristics of the steel material using the test piece, the volume fraction of the hardened region in the effective width is appropriately presented from the characteristic value of the test piece without evaluating the structure. be able to. In particular, in the case of (2) above, the volume fraction of the hardened region in the effective width can be appropriately presented with as few evaluation pieces as possible.

円筒状の構造材がその軸線方向に圧縮荷重を受けた際の軸線方向の圧縮応力と圧縮ひずみとの関係を模式的に示した図である。It is the figure which showed typically the relationship between the compressive stress and compressive strain of an axial direction when a cylindrical structural material receives the compressive load in the axial direction. 本発明の一実施形態に係る構造材の熱処理方法が適用される構造材の一例を示す斜視図である。It is a perspective view which shows an example of the structural material to which the heat processing method of the structural material which concerns on one Embodiment of this invention is applied. 図2に示した構造材の横断面図である。It is a cross-sectional view of the structural material shown in FIG. 別の例の構造材の横断面図である。It is a cross-sectional view of the structural material of another example. 別の例の構造材の横断面図である。It is a cross-sectional view of the structural material of another example. 別の例の構造材の横断面図である。It is a cross-sectional view of the structural material of another example. 別の例の構造材の斜視図である。It is a perspective view of the structural material of another example. 有効幅を説明するための図である。It is a figure for demonstrating an effective width | variety. 有効幅を説明するための図である。It is a figure for demonstrating an effective width | variety. 鋼板の真応力−塑性ひずみ線図である。It is a true stress-plastic strain diagram of a steel plate. 鋼板の真応力−真ひずみ線図である。It is a true stress-true strain diagram of a steel plate. 鋼板の真応力−真ひずみ線図である。It is a true stress-true strain diagram of a steel plate. 鋼板の真応力−真ひずみ線図である。It is a true stress-true strain diagram of a steel plate. 硬化領域の体積分率と鋼板の耐力及び降伏応力との関係を示す図である。It is a figure which shows the relationship between the volume fraction of a hardening area | region, the yield strength of a steel plate, and a yield stress. 硬化領域の体積分率と鋼板の耐力及び降伏応力との関係を示す図である。It is a figure which shows the relationship between the volume fraction of a hardening area | region, the yield strength of a steel plate, and a yield stress. 硬化領域の体積分率と加工硬化係数との関係を示す図である。It is a figure which shows the relationship between the volume fraction of a hardening area | region, and a work hardening coefficient. 実施例で用いた構造材組立体の製造過程を示す図である。It is a figure which shows the manufacturing process of the structural material assembly used in the Example. 実施例で用いた構造材組立体の製造過程を示す図である。It is a figure which shows the manufacturing process of the structural material assembly used in the Example. 実施例で用いた構造材組立体の製造過程を示す図である。It is a figure which shows the manufacturing process of the structural material assembly used in the Example. 実施例で用いた構造材組立体の側面図である。It is a side view of the structural material assembly used in the Example. 本実施形態に係る構造材の熱処理方法のフローチャートである。It is a flowchart of the heat processing method of the structural material which concerns on this embodiment. 本実施形態に係る構造材の熱処理方法における硬化領域の体積分率(硬化率)fの範囲の決定方法の一例を示すフローチャートである。The volume fraction of the hardened zone in the heat treatment method of a structural material according to the present embodiment is a flow chart illustrating an example of a method of determining the range (hardening rate) f M. 本実施形態に係る構造材の熱処理方法における硬化領域の体積分率(硬化率)fの範囲の決定方法の一例を示すフローチャートである。The volume fraction of the hardened zone in the heat treatment method of a structural material according to the present embodiment is a flow chart illustrating an example of a method of determining the range (hardening rate) f M. 本実施形態に係る構造材の熱処理方法における硬化領域の体積分率(硬化率)fの範囲の決定方法の一例を示すフローチャートである。The volume fraction of the hardened zone in the heat treatment method of a structural material according to the present embodiment is a flow chart illustrating an example of a method of determining the range (hardening rate) f M.

以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same reference numerals are assigned to similar components.

以下に、本発明の一実施形態に係る構造材の熱処理方法について説明する。
本実施形態に係る構造材の熱処理方法では、構造材の一方向に延在し、この延在方向に垂直な方向に曲げが与えられた屈曲部を備える構造材に対して熱処理が行われる。この熱処理では、屈曲部の延在方向に垂直な方向に向かう距離が有効幅以内である屈曲部を含む構造材中の領域(すなわち、有効幅領域)の所定割合(すなわち、硬化率に相当する部分)を硬化させる。
後述するように、有効幅領域のうち熱処理により硬化された領域が占める割合(すなわち、硬化率)に対する降伏応力(降伏強度)の変化率は、硬化率に応じて変化し、その変化量(変化の程度)が硬化率に対する流動応力の変化率の変化量(変化の程度)に比べて大きい。そのため、構造材の初期ピーク応力(変形抑制能力)を高めるために必要な有効幅領域の加工硬化率が、硬化率に対する降伏応力の変化率によって影響を受ける。したがって、硬化率に対する降伏応力の変化率に基づいて決定された硬化率の範囲を満たすように、構造材にかかる荷重を主に担う有効幅領域に対して熱処理を行うことにより、熱処理のコストを低減しながら構造材の変形抑制能力を高めることができる。
尚、流動応力とは、弾性限界を超え流動的な変形に移行する時点、およびその時点以降で発生する応力のことである。また、硬化率を体積分率と記載する場合がある。
Below, the heat processing method of the structural material which concerns on one Embodiment of this invention is demonstrated.
In the heat treatment method for a structural material according to this embodiment, the heat treatment is performed on the structural material including a bent portion that extends in one direction of the structural material and is bent in a direction perpendicular to the extending direction. In this heat treatment, the distance in the direction perpendicular to the extending direction of the bent portion is within the effective width, which corresponds to a predetermined ratio (that is, effective rate) of the region in the structural material including the bent portion (that is, the effective width region). Part) is cured.
As will be described later, the rate of change of yield stress (yield strength) with respect to the proportion of the effective width region that is cured by heat treatment (ie, the rate of cure) varies depending on the rate of cure, and the amount of change (change) Is greater than the amount of change (the degree of change) in the rate of change of the flow stress relative to the cure rate. Therefore, the work hardening rate of the effective width region necessary for increasing the initial peak stress (deformation suppressing ability) of the structural material is affected by the rate of change of the yield stress with respect to the hardening rate. Therefore, the heat treatment cost is reduced by performing heat treatment on the effective width region that mainly bears the load applied to the structural material so as to satisfy the range of the hardening rate determined based on the rate of change of the yield stress with respect to the hardening rate. While being reduced, the ability to suppress deformation of the structural material can be increased.
The flow stress is a stress generated at the time when the elastic limit is exceeded and the fluid deformation is shifted and after that time. Moreover, a hardening rate may be described as a volume fraction.

本実施形態に係る構造材の熱処理方法では、図15に示されるように、必要なデータを入力(使用)し(S1)、屈曲部に対する有効幅を決定し(S2)、硬化率に対する降伏応力の変化率に基づいて硬化率の範囲を決定し(S3)、この硬化率の範囲を満たすように構造材の有効幅領域に対して熱処理を行う(S4)。ここで、有効幅は、後述の式(14)の有効幅の定義式またはこの定義式から派生する各種の式から決定することができる。また、硬化率の範囲は、少なくとも1つの硬化率に対する降伏応力の変化率を用いて決定することができる。例えば、所定の硬化率に対する降伏応力の変化率をパラメータとして所定の相関関係(例えば、式)から決定することができる。また、例えば、硬化率に対する降伏応力の変化率が所定条件を満たすときの硬化率を基準に硬化率の範囲を決定することができる。
以下では、本実施形態に係る構造材の熱処理方法についてより詳細に説明する。
In the structural material heat treatment method according to the present embodiment, as shown in FIG. 15, necessary data is input (used) (S1), the effective width for the bent portion is determined (S2), and the yield stress with respect to the hardening rate. A curing rate range is determined based on the change rate (S3), and heat treatment is performed on the effective width region of the structural material so as to satisfy the curing rate range (S4). Here, the effective width can be determined from the definition formula of the effective width of Expression (14) described later or various expressions derived from this definition expression. Further, the range of the curing rate can be determined using the rate of change of yield stress with respect to at least one curing rate. For example, it can be determined from a predetermined correlation (for example, an equation) using the rate of change in yield stress with respect to a predetermined hardening rate as a parameter. Further, for example, the range of the curing rate can be determined based on the curing rate when the change rate of the yield stress with respect to the curing rate satisfies a predetermined condition.
Below, the heat processing method of the structural material which concerns on this embodiment is demonstrated in detail.

図2は、本実施形態に係る構造材の熱処理方法が適用される構造材の一例を示す斜視図である。また、図3は、図2に示した構造材の長手方向に垂直な断面における構造材の断面図である。図2に示したように、構造材10は、その長手方向に延びる平板状の平坦部11(11a〜11e)と、これら平坦部11間で長手方向に延びる複数の屈曲部12(12a〜12d)とを具備する。すなわち、図3に示したように、構造材10は、五つの平坦部11a〜11eと、これら平坦部11a〜11e間に設けられた四つの屈曲部12a〜12dとを具備する。   FIG. 2 is a perspective view showing an example of a structural material to which the structural material heat treatment method according to the present embodiment is applied. 3 is a cross-sectional view of the structural material in a cross section perpendicular to the longitudinal direction of the structural material shown in FIG. As shown in FIG. 2, the structural material 10 includes a flat plate-like flat portion 11 (11 a to 11 e) extending in the longitudinal direction and a plurality of bent portions 12 (12 a to 12 d) extending in the longitudinal direction between the flat portions 11. ). That is, as shown in FIG. 3, the structural member 10 includes five flat portions 11a to 11e and four bent portions 12a to 12d provided between the flat portions 11a to 11e.

構造材10は、例えば自動車等の車両のフレームの一部に用いられ、特に、自動車等が衝突した際にその変形が抑制されることが必要とされる箇所に用いられる。したがって、例えば自動車のフレームを例に挙げると、構造材10はキャビン等を構成するフレームに用いられるのが好ましい。   The structural member 10 is used for a part of a frame of a vehicle such as an automobile, for example, and is particularly used in a place where it is necessary to suppress the deformation when the automobile collides. Therefore, for example, taking an automobile frame as an example, the structural member 10 is preferably used for a frame constituting a cabin or the like.

特に、構造材10が自動車等の車両のフレームの一部に用いられる場合には、図2及び図3に一点鎖線で示したように別の平板状の構造材20に構造材10が溶接されて結合された部材が用いられる。このため、構造材10の五つの平坦部11a〜11eのうち構造材10の両縁部に設けられた平坦部11a及び11eは、フランジ状に形成されている。構造材10を別の構造材20に溶接する際には、平坦部11a及び11eが、別の構造材20に溶接される。   In particular, when the structural material 10 is used for a part of a frame of a vehicle such as an automobile, the structural material 10 is welded to another flat structural material 20 as shown by a one-dot chain line in FIGS. Are used. Therefore, of the five flat portions 11a to 11e of the structural material 10, the flat portions 11a and 11e provided at both edges of the structural material 10 are formed in a flange shape. When the structural material 10 is welded to another structural material 20, the flat portions 11 a and 11 e are welded to the other structural material 20.

なお、図2及び図3に示した例では、構造材10は、五つの平坦部11a〜11eとこれら平坦部11a〜11e間に設けられた四つの屈曲部12a〜12dとを具備している。しかしながら、構造材は、その一方向(例えば、長手方向)に延在し、この延在方向に垂直な方向に曲げが与えられた少なくとも一つの屈曲部を具備していれば、如何なる形状であってもよく、例えば、図4A〜図4Cに示したような断面形状を有してもよい。   2 and 3, the structural member 10 includes five flat portions 11a to 11e and four bent portions 12a to 12d provided between the flat portions 11a to 11e. . However, the structural material has any shape as long as it has at least one bent portion that extends in one direction (for example, the longitudinal direction) and is bent in a direction perpendicular to the extending direction. For example, you may have cross-sectional shape as shown to FIG. 4A-FIG. 4C.

図4Aに示した例では、構造材10’は、四つの平坦部11と、これら平坦部11間に設けられた三つの屈曲部12とを具備し、これらのうち断面形状において両縁に位置する平坦部11が、構造材10’を別の平板状の構造材(図示せず)と結合するためのフランジとして機能する。図4Bに示した例では、構造材10’’は、五つの平坦部11と、これら平坦部11間に設けられた四つの屈曲部12とを具備し、これらのうち断面形状において両縁に位置する平坦部11が、構造材10’’を別の平板状の構造材(図示せず)と結合するためのフランジとして機能する。図4Cに示した例では、構造材10’’’は、その断面形状が四角形となるように、四つの平坦部11と、これら平坦部11間に設けられた四つの屈曲部12とを具備する。   In the example shown in FIG. 4A, the structural member 10 ′ includes four flat portions 11 and three bent portions 12 provided between the flat portions 11, and among these, the cross-sectional shape is located on both edges. The flat portion 11 that functions serves as a flange for connecting the structural member 10 ′ to another flat plate-shaped structural member (not shown). In the example shown in FIG. 4B, the structural member 10 '' includes five flat portions 11 and four bent portions 12 provided between the flat portions 11, and among these, the cross-sectional shape is on both edges. The positioned flat portion 11 functions as a flange for connecting the structural member 10 '' with another flat plate-shaped structural member (not shown). In the example shown in FIG. 4C, the structural member 10 ′ ″ includes four flat portions 11 and four bent portions 12 provided between the flat portions 11 so that the cross-sectional shape thereof is a quadrangle. To do.

また、構造材10は、必ずしもその長手方向に直線的に延びていなくてもよく、例えば、図5に示したように湾曲していたり、屈曲していたりしてもよい。このように構造材10が湾曲していたり屈曲していたりする場合には、その湾曲及び屈曲に沿った方向を長手方向と称する。したがって、図5に示した例では、図中の一点鎖線Zが構造材10の長手方向を示している。また、平坦部は、その断面が直線状(帯状)になっている構造材の部分を意味する。また、屈曲部は、構造材の断面で隣り合う2つの平坦部の延在方向の交差により形成される線状の構造材の部分を意味する。したがって、図5に示した平坦部11a〜11e及び屈曲部12a〜12dのように構造材の長手方向において平坦部及び屈曲部が湾曲又は屈曲している場合を、それぞれ平坦部及び屈曲部に含める。   In addition, the structural material 10 does not necessarily extend linearly in the longitudinal direction, and may be curved or bent as shown in FIG. 5, for example. When the structural member 10 is curved or bent as described above, a direction along the curve and the bend is referred to as a longitudinal direction. Therefore, in the example shown in FIG. 5, the alternate long and short dash line Z in the figure indicates the longitudinal direction of the structural material 10. Further, the flat portion means a portion of the structural material whose cross section is a straight line (strip shape). Moreover, a bending part means the part of the linear structural material formed by the intersection of the extension direction of two flat parts adjacent in the cross section of a structural material. Accordingly, cases where the flat portion and the bent portion are curved or bent in the longitudinal direction of the structural material, such as the flat portions 11a to 11e and the bent portions 12a to 12d shown in FIG. 5, are included in the flat portion and the bent portion, respectively. .

本実施形態に係る構造材の熱処理方法では、上述したような形状に成形された未処理の構造材10の特定部位に熱処理(ここでは、一例としてレーザ熱処理)が行われる。レーザ熱処理の手段としては、炭酸レーザ、YAGレーザ、ファイバレーザ等のレーザ熱処理装置が用いられる。また、レーザ熱処理によって硬化させる領域の板厚方向深さについて、レーザ光照射面から少なくとも板厚の10%以上の深さまで硬化させる。また、レーザ熱処理によって硬化させる領域の板厚方向深さは、レーザ光照射面から板厚の90%未満に制御することが望ましい。以下では、レーザ熱処理が行われる部位について説明する。   In the structural material heat treatment method according to the present embodiment, heat treatment (here, laser heat treatment is performed as an example) is performed on a specific portion of the untreated structural material 10 formed into the shape as described above. As the laser heat treatment means, a laser heat treatment apparatus such as a carbonic acid laser, a YAG laser, or a fiber laser is used. Further, the depth in the plate thickness direction of the region to be hardened by laser heat treatment is hardened to a depth of at least 10% of the plate thickness from the laser light irradiation surface. Further, it is desirable to control the depth in the plate thickness direction of the region to be hardened by laser heat treatment to be less than 90% of the plate thickness from the laser light irradiation surface. Below, the site | part to which laser heat processing is performed is demonstrated.

薄板が圧縮荷重を受けて座屈する際には、薄板に作用する応力は、圧縮荷重の作用方向に垂直な薄板の断面(板幅方向)に非一様に分布する。例えば、図6Aに示したような幅wの薄板が矢印で示したような圧縮荷重を受けて、弾性座屈により薄板に面外変形が生じたとき、その断面aに加わる長手方向(x方向)の応力σは、図6Bに示したように分布する。図6Bに示すように、薄板の幅方向(y方向、すなわちw方向)端部で作用する応力が最大になるため、薄板の幅方向端部から塑性座屈が発生しやすい。したがって、座屈の初期段階(例えば、構造材の場合、初期ピーク応力に達するまでの変形に相当)では、薄板の幅方向端面から所定寸法の幅を有する部分が圧縮荷重を担っていると考えることができる。そのため、図6Bの破線で示すような仮想的な幅2×eの部分に、薄板の幅方向端部に加わる応力σmax(構造材では、後述のσY0に対応)に等しい応力が一様に分布し、この仮想的な幅2×eの部分が全荷重を担っていると仮定する。この幅eは、有効幅と呼ばれ、この有効幅eは、下記式(14)、すなわち、式(15)によって定義される。When the thin plate is buckled by receiving a compressive load, the stress acting on the thin plate is non-uniformly distributed in the cross-section (plate width direction) of the thin plate perpendicular to the direction in which the compressive load acts. For example, when a thin plate having a width w as shown in FIG. 6A receives a compressive load as indicated by an arrow and the thin plate is deformed out of plane by elastic buckling, the longitudinal direction (x direction) applied to the cross section a stress sigma x of) are distributed as shown in Figure 6B. As shown in FIG. 6B, since the stress acting at the end in the width direction (y direction, ie, w direction) of the thin plate is maximized, plastic buckling tends to occur from the end in the width direction of the thin plate. Therefore, at the initial stage of buckling (for example, in the case of a structural material, it corresponds to deformation until reaching the initial peak stress), it is considered that a portion having a width of a predetermined dimension from the end face in the width direction of the thin plate bears a compressive load. be able to. Therefore, the stress equal to the stress σ max (corresponding to σ Y0 described later in the structural material) applied to the end portion in the width direction of the thin plate is uniform in the virtual width 2 × e portion as shown by the broken line in FIG. 6B. It is assumed that this virtual width 2 × e portion carries the entire load. This width e is called an effective width, and this effective width e is defined by the following equation (14), that is, equation (15).

Figure 2012026591
Figure 2012026591

Figure 2012026591
Figure 2012026591

この有効幅eは、薄板の弾性率Eとポアソン比νと厚さtとを用いると、下記式(16)のように表せ、特に、薄板の降伏応力σY0が一様に分布するときの有効幅eは、下記式(17)のように表せる。This effective width e can be expressed by the following equation (16) using the elastic modulus E, Poisson's ratio ν, and thickness t of the thin plate, particularly when the yield stress σ Y0 of the thin plate is uniformly distributed. The effective width e can be expressed as in the following formula (17).

Figure 2012026591
Figure 2012026591

Figure 2012026591
Figure 2012026591

なお、上記式(16)及び(17)で表される有効幅eは、理論値であって、この理論値を用いると条件によっては実験結果と降伏現象が大きく異なることが実証されている。そのため、実験的な結果を考慮して、有効幅eは、例えば下記式(18A)及び(19)のように定義されている。なお、式(19)におけるλは、スレンダーネス因子であり、薄板の降伏応力σY0が有効幅eの部分に一様に分布するときには式(20)のように決定される。式(20)において、kは、平板座屈係数を意味する。The effective width e represented by the above formulas (16) and (17) is a theoretical value, and it has been proved that the experimental result and the yield phenomenon differ greatly depending on the conditions when this theoretical value is used. Therefore, considering the experimental result, the effective width e is defined as in the following formulas (18A) and (19), for example. In Equation (19), λ is a slenderness factor, and is determined as Equation (20) when the yield stress σ Y0 of the thin plate is uniformly distributed in the portion of the effective width e. In the equation (20), k means a flat plate buckling coefficient.

Figure 2012026591
Figure 2012026591

Figure 2012026591
Figure 2012026591

Figure 2012026591
Figure 2012026591

なお、有効幅eの定義については、下記式(18B)のように上記式(18A)以外にも様々な定義が存在しており、本実施形態に係る構造材の熱処理方法では、これら様々な定義のうちいずれの定義を用いてもよい。また、数値解析(例えば、有限要素法のような数値積分)により薄板が圧縮荷重を受けて座屈する際の薄板幅方向における応力分布(すなわち、図6Bに示したような応力分布)を算出し、このようにして算出された応力分布から上記式(14)を満たすような有効幅eを算出してもよい。   As for the definition of the effective width e, there are various definitions other than the above formula (18A) as in the following formula (18B). In the heat treatment method for a structural material according to the present embodiment, these various types are defined. Any of the definitions may be used. Also, the stress distribution in the thin plate width direction (that is, the stress distribution shown in FIG. 6B) when the thin plate is buckled by receiving a compressive load is calculated by numerical analysis (for example, numerical integration such as the finite element method). The effective width e that satisfies the above equation (14) may be calculated from the stress distribution thus calculated.

Figure 2012026591
Figure 2012026591

上述したような有効幅eを考慮すると、図2等に示した構造材10においても、各平坦部11のうち圧縮荷重を主に担う領域は、屈曲部12から幅方向(すなわち、構造材10の長手方向に垂直な方向)に向かう距離が有効幅e以内である領域である。以下では、このような領域、すなわち或る屈曲部から幅方向に向かう距離が有効幅e以内である屈曲部を含む領域を有効幅領域と称する。この有効幅領域(図2及び図3における有効幅領域15)は、図2において斜線で示されており、図3において塗りつぶされている。   In consideration of the effective width e as described above, also in the structural material 10 shown in FIG. 2 and the like, the region mainly responsible for the compressive load in each flat portion 11 extends from the bent portion 12 in the width direction (that is, the structural material 10 This is a region whose distance in the direction perpendicular to the longitudinal direction is within the effective width e. Hereinafter, such a region, that is, a region including a bent portion whose distance in the width direction from a certain bent portion is within the effective width e is referred to as an effective width region. This effective width area (effective width area 15 in FIGS. 2 and 3) is indicated by hatching in FIG. 2, and is filled in FIG.

このように、本実施形態に係る構造材の熱処理方法では、図3の屈曲部12(12a〜12d)に示すような屈曲部を少なくとも1つ有する未処理の構造材(構造材の屈曲部)に対して有効幅を決定する。   Thus, in the structural material heat treatment method according to the present embodiment, an untreated structural material (a bent portion of the structural material) having at least one bent portion as shown in the bent portion 12 (12a to 12d) in FIG. The effective width is determined for.

本実施形態に係る構造材の熱処理方法では、上述のようにして定められる有効幅領域のうち一部の領域に対して熱処理(ここでは、一例としてレーザ熱処理)が行われる。以下では、有効幅領域のうちレーザ熱処理が行われる領域が占める割合について説明する。   In the structural material heat treatment method according to the present embodiment, heat treatment (here, laser heat treatment as an example) is performed on a part of the effective width region determined as described above. Hereinafter, the proportion of the effective width region occupied by the region where the laser heat treatment is performed will be described.

図7は、引張強度440MPa級の鋼板の真応力−真塑性ひずみ線図を示している。このような応力歪特性を有する鋼板の降伏直後の加工硬化特性として図7に示したような直線硬化則を用いると、加工硬化係数Eは、下記式(21)で表される。式(21)において、εは、鋼板が降伏してからのひずみ(塑性ひずみ)を示しており、σは、塑性ひずみがεであるときの応力を示している。なお、この図7、後述の図9A及び図9Bでは、塑性ひずみεが1%であるときの応力としてσを説明している。これらの図に示すように、塑性ひずみεが1%であるときの応力からσを決定してもよい。FIG. 7 shows a true stress-true plastic strain diagram of a steel sheet having a tensile strength of 440 MPa. When the linear hardening rule as shown in FIG. 7 is used as the work hardening characteristic immediately after yielding of a steel sheet having such stress-strain characteristics, the work hardening coefficient E h is expressed by the following formula (21). In equation (21), ε p represents the strain (plastic strain) after the yield of the steel sheet, and σ h represents the stress when the plastic strain is ε p . In FIG. 7 and FIGS. 9A and 9B described later, σ h is described as the stress when the plastic strain ε p is 1%. As shown in these figures, σ h may be determined from the stress when the plastic strain ε p is 1%.

Figure 2012026591
Figure 2012026591

このような鋼板の弾塑性座屈現象について、その弾塑性座屈応力σp,Crを加工硬化係数Eの関数として表現した理論式が提案されており、弾塑性座屈応力σp,Crは、例えば下記式(22)のように表される。下記式(22)において、wは鋼板の幅、tは鋼板の厚さ、kは板形状等に応じた係数である。式(22)からわかるように、弾塑性座屈応力σp,Crは、加工硬化係数Eに比例して増加する。Elastic-plastic buckling phenomenon such steel have been proposed are theoretical formula representing the elastic-plastic buckling stress sigma p, Cr as a function of work hardening coefficient E h, elastoplastic buckling stress sigma p, Cr Is represented, for example, by the following formula (22). In the following formula (22), w is the width of the steel plate, t is the thickness of the steel plate, and k is a coefficient corresponding to the plate shape and the like. As can be seen from the equation (22), the elastoplastic buckling stress σ p, Cr increases in proportion to the work hardening coefficient E h .

Figure 2012026591
Figure 2012026591

ここで、図1に示した初期ピーク応力σは、弾塑性座屈応力σp,Crと同様な傾向を有すると考えられることから、初期ピーク応力σも加工硬化係数Eに比例して増加すると考えられる。なお、上記式(22)は、図6Aに示したような鋼板における弾塑性座屈応力σp,Crを表しており、図3に示したような多角形断面を有する構造材に関する弾塑性座屈応力σp,Crを表しているわけではない。しかしながら、構造材の断面形状の多角化が進んだ場合には、構造材の断面形状が円筒形に近づき、円筒殻の弾塑性座屈応力σp,Crは、下記式(23)のように表せる。式(23)において、Rは、円筒の直径である。Here, since the initial peak stress σ 1 shown in FIG. 1 is considered to have the same tendency as the elastoplastic buckling stress σ p, Cr , the initial peak stress σ 1 is also proportional to the work hardening coefficient E h. Will increase. In addition, the said Formula (22) represents the elastic-plastic buckling stress (sigma) p, Cr in the steel plate as shown to FIG. 6A, and the elastic-plastic seat regarding the structural material which has a polygonal cross section as shown in FIG. It does not represent the bending stress σp , Cr . However, when the cross-sectional shape of the structural material is diversified, the cross-sectional shape of the structural material approaches a cylindrical shape, and the elastic-plastic buckling stress σ p, Cr of the cylindrical shell is expressed by the following equation (23). I can express. In formula (23), R is the diameter of the cylinder.

Figure 2012026591
Figure 2012026591

式(23)から分かるように、円筒殻においても、弾塑性座屈応力σp,Crは、加工硬化係数Eに比例して増加する。したがって、円筒殻においても、初期ピーク応力σが、加工硬化係数Eに比例して増加すると考えられる。As can be seen from the equation (23), also in the cylindrical shell, the elastic-plastic buckling stress σ p, Cr increases in proportion to the work hardening coefficient E h . Accordingly, it is considered that the initial peak stress σ 1 increases in proportion to the work hardening coefficient E h also in the cylindrical shell.

図8は、引張強度440MPa級の未処理の鋼板、及び、引張強度440MPa級の鋼板全体に熱処理(焼き入れ)した材料の、真応力−真ひずみ線図を示している。図8の実線が未処理の鋼板の真応力−真ひずみ線図を、破線が熱処理後の鋼板の真応力−真ひずみ線図をそれぞれ示している。   FIG. 8 shows a true stress-true strain diagram of an untreated steel sheet having a tensile strength of 440 MPa class and a material heat-treated (quenched) on the entire steel sheet having a tensile strength of 440 MPa. The solid line in FIG. 8 shows the true stress-true strain diagram of the untreated steel sheet, and the broken line shows the true stress-true strain diagram of the steel sheet after heat treatment.

図8に示した熱処理前後の鋼板について、図7に示したような直線硬化則を適用して降伏直後の加工硬化係数Eを算出すると、未処理の鋼板の加工硬化係数Eh0は、下記式(24)のように表すことができる(図9A参照)。式(24)において、σY0は未処理の鋼板の降伏応力、εY0は降伏応力に達したときの未処理の鋼板の真ひずみ、εh0はεY0よりも大きい所定の真ひずみ、σh0は真ひずみがεh0であるときの未処理の鋼板の応力(後述の流動応力に対応)を示している。一方、熱処理後の鋼板の加工硬化係数EhMは、下記式(25)のように表すことができる(図9B参照)。式(25)において、σYMは熱処理後の鋼板の降伏応力、εYMは降伏応力に達したときの熱処理後の鋼板の真ひずみ、εhMはεYMよりも大きい所定の真ひずみ、σhMは真ひずみがεhMであるときの熱処理後の鋼板の応力(後述の流動応力に対応)を示している。When the work hardening coefficient E h immediately after yielding is calculated for the steel sheet before and after the heat treatment shown in FIG. 8 by applying the linear hardening rule as shown in FIG. 7, the work hardening coefficient E h0 of the untreated steel sheet is It can be expressed as in equation (24) (see FIG. 9A). In equation (24), σ Y0 is the yield stress of the untreated steel plate, ε Y0 is the true strain of the untreated steel plate when the yield stress is reached, ε h0 is a predetermined true strain greater than ε Y0 , σ h0 Indicates the stress (corresponding to the flow stress described later) of the untreated steel plate when the true strain is ε h0 . On the other hand, the work hardening coefficient E hM of the steel plate after the heat treatment can be expressed as the following formula (25) (see FIG. 9B). In equation (25), σ YM is the yield stress of the steel plate after heat treatment, ε YM is the true strain of the steel plate after heat treatment when the yield stress is reached, ε hM is a predetermined true strain greater than ε YM , σ hM Indicates the stress (corresponding to the flow stress described later) of the steel sheet after the heat treatment when the true strain is ε hM .

Figure 2012026591
Figure 2012026591

Figure 2012026591
Figure 2012026591

図8、図9A及び図9Bからわかるように、鋼板全体に熱処理を行った場合、熱処理後の鋼板の加工硬化係数EhMは、熱処理前の鋼板の加工硬化係数Eh0よりも大きい。したがって、鋼板全体に熱処理を行った場合、熱処理後の鋼板の方が、熱処理前の鋼板に比べて初期ピーク応力σが大きいことが分かる。As can be seen from FIG. 8, FIG. 9A and FIG. 9B, when heat treatment is performed on the entire steel plate, the work hardening coefficient E hM of the steel plate after the heat treatment is larger than the work hardening coefficient E h0 of the steel plate before the heat treatment. Therefore, when the heat treatment is performed on the entire steel plate, it can be seen that the steel plate after the heat treatment has a larger initial peak stress σ 1 than the steel plate before the heat treatment.

このように、未処理の鋼板と、全体に熱処理を行った鋼板とでは、全体に熱処理を行った鋼板の方が初期ピーク応力σが大きいことが分かった。しかしながら、鋼板に部分的に熱処理を行った場合、鋼板に対して熱処理を行った割合、すなわち熱処理によって所定硬度以上にまで硬化させた領域(以下、「硬化領域」という)の鋼板全体に対する割合と、初期ピーク応力との関係がどのような関係であるかについては不明であった。Thus, it has been found that the initial peak stress σ 1 is larger between the untreated steel sheet and the steel sheet that has been heat-treated as a whole. However, when the steel sheet is partially heat-treated, the ratio of heat-treating the steel sheet, that is, the ratio of the region hardened to a predetermined hardness or higher by the heat treatment (hereinafter referred to as “cured region”) with respect to the entire steel plate The relationship with the initial peak stress was unclear.

そこで、本発明者らは、鋼板全体に対する硬化領域の体積分率(硬化率)fを0〜100%まで変化させたときの、体積分率fと部分硬化後の鋼板の加工硬化係数E及び初期ピーク応力σとの関係を調査した結果、以下のような知見を得た。以下、この得られた知見について詳述する。Therefore, the present inventors changed the volume fraction f M and the work hardening coefficient of the steel sheet after partial hardening when the volume fraction (hardening ratio) f M of the hardening region with respect to the whole steel sheet was changed from 0 to 100%. As a result of investigating the relationship between E h and the initial peak stress σ 1 , the following findings were obtained. Hereinafter, the obtained knowledge will be described in detail.

まず、鋼板全体に対する硬化領域の体積分率fを0〜100%まで変化させた場合、5%の塑性ひずみが生じた際の鋼板の耐力σ及びその降伏応力σは、図10に示したように推移すると考えられる。First, when the volume fraction f M of the hardened region with respect to the entire steel sheet is changed from 0 to 100%, the proof stress σ h and the yield stress σ Y of the steel sheet when 5% plastic strain occurs are shown in FIG. It is thought that it will change as shown.

すなわち、図10に示したように、5%の塑性ひずみが生じた際の鋼板の耐力σは、体積分率fについて概ね直線で近似することができる。これは、鋼板全体に或る程度有限の塑性ひずみを付与したとき、硬化領域にも、非硬化領域(硬化領域以外の鋼板の領域、すなわち未処理の領域)にも、概ね等しく塑性ひずみが作用するためである。That is, as shown in FIG. 10, the proof stress σ h of the steel sheet when a plastic strain of 5% occurs can be approximated by a straight line with respect to the volume fraction f M. This is because when a certain degree of finite plastic strain is applied to the entire steel sheet, the plastic strain acts almost equally in both the hardened area and the non-hardened area (the area of the steel sheet other than the hardened area, ie, the untreated area). It is to do.

したがって、硬化領域の体積分率fに対する塑性ひずみ5%付与後の耐力σは、体積分率fの関数として下記式(26)のように表せる。Therefore, yield strength sigma h after the plastic strain 5% impart to the volume fraction f M of the hardened region can be expressed as the following equation (26) as a function of the volume fraction f M.

Figure 2012026591
Figure 2012026591

以上のように、鋼板の耐力σが硬化領域の体積分率fに比例する(硬化率に対する流動応力の変化率の変化量が略0である)という近似を行っても、鋼板の耐力σと硬化領域の体積分率fとの関係を十分正確に表現できる。As described above, even if an approximation that the yield strength σ h of the steel plate is proportional to the volume fraction f M of the hardening region (the change amount of the flow stress with respect to the hardening rate is approximately 0), the yield strength of the steel plate is achieved. The relationship between σ h and the volume fraction f M of the hardened region can be expressed sufficiently accurately.

一方、図10に示したように、降伏応力σを、直線ではなく下に凸の曲線(例えば、二次関数)で近似すると、硬化領域の体積分率fを用いてより正確に表現することができる。硬化領域の体積分率fが小さい場合、降伏応力の比較的小さい非硬化領域の特性が降伏現象に対して支配的になり、全体としての降伏応力は、非硬化領域の降伏応力に近くなる(式(27)参照)。これに対して、硬化領域の体積分率fが或る程度大きくなると、降伏現象が生じるときに、硬化領域の特性の影響が大きくなる。特に、硬化領域の体積分率fが1になれば、全体としての降伏応力は、硬化領域の降伏応力と等しくなる(式(28)参照)。On the other hand, as shown in FIG. 10, when the yield stress σ Y is approximated not by a straight line but by a downwardly convex curve (for example, a quadratic function), it is expressed more accurately by using the volume fraction f M of the hardened region. can do. When the volume fraction f M of the hardened region is small, the characteristics of the non-hardened region having a relatively low yield stress become dominant with respect to the yield phenomenon, and the overall yield stress is close to the yield stress of the non-hardened region. (See equation (27)). In contrast, when the volume fraction f M of the hardened area is large to some extent, when a breakdown phenomenon occurs, the influence of the properties of the cured area is increased. In particular, when the volume fraction f M of the hardened region is 1, the yield stress as a whole becomes equal to the yield stress of the hardened region (see formula (28)).

Figure 2012026591
Figure 2012026591

Figure 2012026591
Figure 2012026591

したがって、例えば降伏応力σを硬化領域の体積分率fの二次関数で近似する場合には、降伏応力σ(σ(f))は、体積分率fの関数として下記式(29)のように表すことができる。なお、式(29)において、a、b、cは、定数である。Therefore, for example, when the yield stress σ Y is approximated by a quadratic function of the volume fraction f M of the hardening region, the yield stress σ YY (f M )) is expressed as a function of the volume fraction f M as follows. It can be expressed as equation (29). In Expression (29), a, b, and c are constants.

Figure 2012026591
Figure 2012026591

ここで、式(29)を体積分率fについて一階微分して体積分率fに0を代入すると、上記式(29)の定数bは、下記式(30)のように表すことができる。すなわち、上記定数bは、硬化領域の体積分率fが0であるときの体積分率fに対する降伏応力σ(f)の変化勾配で近似することができる。Here, by substituting 0 into the volume fraction f M and first derivative equation (29) for the volume fraction f M, the constant b in the equation (29), it is expressed by the following equation (30) Can do. That is, the constant b can be approximated by the change gradient of yield stress σ Y (f M) with respect to the volume fraction f M when the volume fraction f M of the hardened zone is zero.

Figure 2012026591
Figure 2012026591

このようにして求められた式(26)〜式(30)を、式(21)に代入すると、加工硬化係数Eは、硬化領域の体積分率fの関数、すなわち、下記式(31)で表せる。When the equations (26) to (30) thus determined are substituted into the equation (21), the work hardening coefficient E h is a function of the volume fraction f M of the hardening region, that is, the following equation (31) ).

Figure 2012026591
Figure 2012026591

ここで、例えば、塑性ひずみεを0.05、硬化領域の降伏応力σYMを794MPa、非硬化領域の降伏応力σY0を301MPa、塑性ひずみεの付与時の硬化領域の耐力σhMを1017MPa、塑性ひずみεの付与時の非硬化領域の耐力σh0を447MPa、bを350MPaとすると、式(26)によって算出されるσ(f)及び式(29)によって算出されるσ(f)は、図11のように表すことができる。また、このとき、式(31)によって算出される加工硬化係数E(f)は、図12のように表すことができる。Here, for example, the plastic strain ε p is 0.05, the yield stress σ YM of the hardened region is 794 MPa, the yield stress σ Y0 of the non-hardened region is 301 MPa, and the yield strength σ hM of the hardened region when the plastic strain ε p is applied . Assuming that the proof stress σ h0 of the uncured region when applying the plastic strain ε p is 447 MPa and b is 350 MPa, σ h (f M ) calculated by the equation (26) and σ calculated by the equation (29) Y (f M ) can be expressed as shown in FIG. At this time, the work hardening coefficient E h (f M ) calculated by the equation (31) can be expressed as shown in FIG.

例えば式(31)から分かるように、降伏応力σを硬化領域の体積分率fの二次関数(体積分率fが0〜1の範囲で下に凸の関数)で近似する場合には、加工硬化係数E(f)も、硬化領域の体積分率fの二次関数(体積分率fが0〜1の範囲で上に凸の関数)として表すことができる。このため、図12から分かるように、加工硬化係数E(f)は、或る特定の体積分率fM−maxで最大になる。したがって、硬化領域の体積分率fによっては、硬化領域の体積分率fが1(100%)であるときの加工硬化係数よりも加工硬化係数E(f)が高くなる場合が存在する。図12に示した例では、硬化領域の体積分率fがfM−min〜1であるとき、加工硬化係数Eは、硬化領域の体積分率fが1(100%)であるときの加工硬化係数E(f=1)以上である。言い換えると、図12に示した例では、硬化領域の体積分率fがfM−min〜1であるときの初期ピーク応力は、硬化領域の体積分率fが1(100%)であるとき(すなわち、上記有効幅全体に熱処理が行われているとき)の初期ピーク応力以上になる。For example, as can be seen from the equation (31), the yield stress σ Y is approximated by a quadratic function of the volume fraction f M of the hardened region (a function convex downward in the range of the volume fraction f M of 0 to 1). The work hardening coefficient E h (f M ) can also be expressed as a quadratic function of the volume fraction f M of the hardened region (a function convex upward in the range of the volume fraction f M of 0 to 1). . For this reason, as can be seen from FIG. 12, the work hardening coefficient E h (f M ) becomes maximum at a certain specific volume fraction f M-max . Therefore, by the volume fraction f M of the hardened area, may work hardening coefficient E h (f M) is higher than the work hardening coefficient when the volume fraction f M of the hardened zone is 1 (100%) Exists. In the example shown in FIG. 12, when the volume fraction f M of the hardened region is f M-min to 1, work hardening coefficient E h is the volume fraction f M of the hardened regions is 1 (100%) When the work hardening coefficient E h (f M = 1) or more. In other words, in the example shown in FIG. 12, the initial peak stress when the volume fraction f M of the hardened region is f M−min −1 is 1 (100%) when the volume fraction f M of the hardened region is 1 (100%). In some cases (that is, when the entire effective width is heat-treated), the initial peak stress is exceeded.

ところで、上述したように鋼板の一部を局所的に硬化させるための熱処理としては、例えばレーザ熱処理が用いられる。このようなレーザ熱処理では、その処理領域が広がるほど、エネルギの消費量が大きくなり、よって製造コストが増大する。このため、製造コストの削減という観点からは、レーザ熱処理を行う領域ができる限り狭いことが好ましい。   Incidentally, as described above, for example, laser heat treatment is used as the heat treatment for locally hardening a part of the steel sheet. In such laser heat treatment, the larger the treatment area, the greater the amount of energy consumed, thus increasing the manufacturing cost. For this reason, from the viewpoint of reducing the manufacturing cost, it is preferable that the region where the laser heat treatment is performed is as narrow as possible.

ここで、上述したように、硬化領域の体積分率fをfM−min以上にすれば、加工硬化係数Eを、硬化領域の体積分率fが1(100%)であるときの加工硬化係数E(f=1)以上に高めることができる。その結果、初期ピーク応力を、硬化領域の体積分率fが1(100%)であるときの初期ピーク応力以上に高めることができる。そこで、硬化領域の体積分率fが1(100%)であるときの加工硬化係数E(f=1)とその加工硬化係数E(f=fM−min)が等しくなるときの体積分率fM−min(以下、「最低体積分率」という)以上に、硬化領域の体積分率fを制御することが好ましい。Here, as described above, when the volume fraction f M of the hardened region is set to f M-min or more, the work hardening coefficient E h is obtained when the volume fraction f M of the hardened region is 1 (100%). The work hardening coefficient E h (f M = 1) or more can be increased. As a result, the initial peak stress, the volume fraction f M of the hardened region can be increased to more than the initial peak stress at 1 (100%). Therefore, the work hardening coefficient E h (f M = 1) and the work hardening coefficient E h (f M = f M−min ) when the volume fraction f M of the hardening region is 1 (100%) are equal. the volume fraction f M-min (hereinafter, "minimum volume fraction" hereinafter) of the time above, it is preferable to control the volume fraction f M of the hardened region.

なお、例えば降伏応力σを硬化領域の体積分率fの二次関数で近似する場合には、最低体積分率fM−minは、下記式(32)で表される。式(32)において、Δσは、σhMとσh0との差(Δσ=σhM−σh0)であり、Δσは、σYMとσY0との差(Δσ=σYM−σY0)である。特に、上述したような条件の場合(すなわち、図11及び図12に示した条件の場合)には、最低体積分率fM−minは、53.3%である。なお、最低体積分率fM−minが0<fM−min<1を満たす必要があることから、定数b及びΔσが0<b<2Δσ−Δσ且つΔσ<Δσ<2Δσを満たすことが必要である。For example, when the yield stress σ Y is approximated by a quadratic function of the volume fraction f M of the hardening region, the minimum volume fraction f M-min is expressed by the following equation (32). In Expression (32), Δσ h is a difference between σ hM and σ h0 (Δσ h = σ hM −σ h0 ), and Δσ Y is a difference between σ YM and σ Y0 (Δσ Y = σ YM − σ Y0 ). In particular, in the case of the conditions as described above (that is, in the case of the conditions shown in FIGS. 11 and 12), the minimum volume fraction f M-min is 53.3%. Since the minimum volume fraction f M-min needs to satisfy 0 <f M-min <1, the constants b and Δσ h are 0 <b <2Δσ Y −Δσ h and Δσ Y <Δσ h <2Δσ. It is necessary to satisfy Y.

Figure 2012026591
Figure 2012026591

また、上述したように、加工硬化係数E(f)、すなわち初期ピーク応力は、或る特定の体積分率fM−maxで最大になる。このため、レーザ熱処理を行う領域を狭くしつつ初期ピーク応力を高くするという観点からは、硬化領域の体積分率fを、加工硬化係数E(f)が最大になるときの体積分率fM−max以下に制御することが好ましい。Further, as described above, the work hardening coefficient E h (f M ), that is, the initial peak stress becomes maximum at a specific volume fraction f M-max . For this reason, from the viewpoint of increasing the initial peak stress while narrowing the region where laser heat treatment is performed, the volume fraction f M of the cured region is set to the volume fraction when the work hardening coefficient E h (f M ) is maximized. It is preferable to control to a rate f M-max or less.

或いは、鋼板(構造材)のピーク応力を最大にするという観点からは、硬化領域の体積分率fを、加工硬化係数E(f)が最大になるときの体積分率fM−maxに制御することが好ましい。したがって、硬化領域の体積分率fを、加工硬化係数E(f)が最大になるときの体積分率fM−max(以下、「最大体積分率」という)に制御してもよい。Alternatively, the steel sheet peak stress (structural member) from the viewpoint of maximizing the volume fraction f M of the hardened region, the work hardening coefficient E h (f M) the volume fraction of the time that maximizes f M- It is preferable to control to max . Therefore, the volume fraction f M of the hardened region, the work hardening coefficient E h (f M) the volume fraction of the time that maximizes f M-max (hereinafter, referred to as "the maximum volume fraction") is also controlled to Good.

なお、例えば降伏応力σを硬化領域の体積分率fの二次関数で近似する場合には、最大体積分率fM−maxは、下記式(33)で表される。特に、上述したような条件の場合(すなわち、図11及び図12に示した条件の場合)には、最大体積分率fM−maxは、76.6%である。なお、この場合も、最大体積分率fM−maxが0<fM−max<1を満たす必要があることから、定数b及びΔσが0<b<Δσ且つ0<b<Δσを満たすことが必要である。For example, when the yield stress σ Y is approximated by a quadratic function of the volume fraction f M of the hardened region, the maximum volume fraction f M-max is expressed by the following formula (33). In particular, in the case of the conditions as described above (that is, in the case of the conditions shown in FIGS. 11 and 12), the maximum volume fraction f M-max is 76.6%. In this case also, since the maximum volume fraction f M-max needs to satisfy 0 <f M-max <1, the constants b and Δσ h are 0 <b <Δσ h and 0 <b <Δσ Y It is necessary to satisfy.

Figure 2012026591
Figure 2012026591

ところで、上述した硬化領域の体積分率fと初期ピーク応力又は加工硬化係数Eとの関係は、鋼板に対して得られた関係であり、例えば図2に示したような形状の構造材10に対して得られた関係ではない。ここで、図2に示したような構造材10では、上述したように、圧縮荷重を主に担う領域は、有効幅領域15であり、各有効幅領域15を幅2×eの鋼板とみなすことができる。そのため、このような有効幅領域における硬化領域の体積分率f、すなわち有効幅領域のうち硬化処理(例えば、レーザ熱処理)が行われる領域が占める割合を、上述したような方法で設定することができる。Incidentally, the relationship between the volume fraction f M and the initial peak stress or work hardening coefficient E h of the hardened region described above, a relationship obtained for steel sheets, for example, structural materials having a shape as shown in FIG. 2 It is not the relationship obtained for 10. Here, in the structural material 10 as shown in FIG. 2, as described above, the region that mainly bears the compressive load is the effective width region 15, and each effective width region 15 is regarded as a steel plate having a width of 2 × e. be able to. Therefore, the volume fraction f M of the hardened region in such an effective width region, that is, the ratio of the effective width region to the region where the hardening process (for example, laser heat treatment) is performed is set by the method described above. Can do.

例えば、各有効幅領域15における硬化領域の体積分率fが、上記式(32)で表されるfM−min以上且つ上記式(33)で表されるfM−max以下になるように、レーザ熱処理が行われる。なお、この場合、これら式(32)及び式(33)におけるΔσ(=σhM−σh0)、Δσ(=σYM−σY0)に関するσhM、σh0、σYM及びσY0は、それぞれ、所定ひずみの付与時の熱処理領域(硬化領域)の耐力、所定ひずみの付与時の未処理領域(非硬化領域)の耐力、熱処理領域(硬化領域)の降伏応力、及び未処理領域(非硬化領域)の降伏応力を示している。また、これらσhM、σh0、σYM及びσY0は、構造材に使用される材料(鋼板)に関するパラメータである。For example, the volume fraction f M of the cured region in each effective width region 15 is not less than f M-min represented by the above equation (32) and not more than f M-max represented by the above equation (33). Next, laser heat treatment is performed. In this case, σ hM , σ h0 , σ YM and σ Y0 related to Δσ h (= σ hM −σ h0 ) and Δσ Y (= σ YM −σ Y0 ) in the equations (32) and (33) are , The yield strength of the heat treatment region (hardened region) at the time of applying the predetermined strain, the yield strength of the untreated region (non-hardened region) at the time of the given strain, the yield stress of the heat treated region (hardened region), and the untreated region ( It shows the yield stress in the non-hardened region. Further, σ hM , σ h0 , σ YM and σ Y0 are parameters related to a material (steel plate) used for the structural material.

各有効幅領域15における硬化領域の体積分率fをこのように設定することにより、レーザ熱処理を行う領域を小さくしつつ、構造材10の初期ピーク応力を高めることができる。The volume fraction f M of the hardened areas in the effective width region 15 by setting in this manner, while reducing the area to be laser heat treatment, it is possible to increase the initial peak stress of the structural member 10.

なお、上記では、各有効幅領域15における硬化領域の体積分率fをfM−min以上且つfM−max以下に制御しているが、上述したように硬化領域の体積分率fをfM−min以上且つ1(100%)以下または1未満に制御してもよい。この場合、各有効幅領域15における硬化領域の体積分率fは、その有効幅領域15の加工硬化係数Eが有効幅領域15全域をレーザ熱処理によって硬化させたときの加工硬化係数以上になるように設定されていると判断できる。或いは、上述したように各有効幅領域15における硬化領域の体積分率fをfM−maxに制御してもよい。
上記を纏めると、図17に示すように硬化領域の体積分率fが0である場合の体積分率fに対する降伏応力σの変化率(定数)bに基づいて体積分率fの最小値を決定し(S311)、体積分率fの範囲の最大値を1以下または1未満に決定する(S312)ことにより、硬化領域の体積分率fの範囲を決定することができる。また、体積分率fの範囲の最小値を決定(S311)後、硬化領域の体積分率fが0である場合の体積分率fに対する降伏応力σの変化率(定数)bに基づいて体積分率fの範囲の最大値を決定しても良い(S313)。
In the above description, the volume fraction f M of the hardened areas in the effective width region 15 is controlled below f M-min or more and f M-max, the volume fraction f M of the hardened zone, as described above May be controlled to f M-min or more and 1 (100%) or less or less than 1. In this case, the volume fraction f M of the hardened region in each effective width region 15 is greater than the work hardening coefficient when the work hardening coefficient E h of the effective width region 15 is hardened by laser heat treatment over the entire effective width region 15. It can be determined that the setting is made. Alternatively, the volume fraction f M of the hardened areas in the effective width region 15 may be controlled to f M-max as described above.
In summary of the above, the volume fraction f M based on the rate of change of the yield stress sigma Y for the volume fraction f M when the volume fraction f M of the hardened area is 0 (constant) b as shown in FIG. 17 determines the minimum value of (S311), the maximum value of the range of the volume fraction f M by determining (S312) that the 1 or less or less than 1, determining the range of the volume fraction f M of the hardened region it can. Also, determine the minimum of the range of the volume fraction f M (S311) after the rate of change of the yield stress sigma Y for the volume fraction f M when the volume fraction f M of the hardened area is 0 (constant) b It may be used to determine the maximum value of the range of the volume fraction f M based on (S313).

ここで、上述の硬化領域の体積分率fの範囲を決定するための定数bの決定方法の例について説明する。第一の方法として、鋼板の硬化領域の体積分率fが0、1、及び、0超かつ1未満の任意の値(例えば、0.5)である3つの試料の引張り試験を行い、これら試料の降伏応力σを求め、最小二乗法を行うことにより定数a、b、cを決定することができる。また、第二の方法として、鋼板の硬化領域の体積分率fが0、及び、0超の0に十分近い任意の値(例えば、0.1)である2つの試料の引張り試験を行い、これら試料の降伏応力σを求め、硬化領域の体積分率fに対する降伏応力σの増加率を定数bに決定することができる。ここでは、簡便法として最低限必要なデータ数(降伏応力σのデータ数)で定数bを決定する方法について説明を行ったが、データ数の上限は、特に制限されない。データ数が多いほど、体積分率fの範囲がより高い精度で決定できる。Here, an example of a method of determining the constant b to determine the range of the volume fraction f M of the hardened area above. As a first method, a tensile test is performed on three samples in which the volume fraction f M of the hardened region of the steel sheet is 0, 1, and any value greater than 0 and less than 1 (for example, 0.5), The constants a, b, and c can be determined by obtaining the yield stress σ Y of these samples and performing the least square method. Further, as a second method, a tensile test is performed on two samples in which the volume fraction f M of the hardened region of the steel sheet is 0 and an arbitrary value (for example, 0.1) sufficiently close to 0 exceeding 0. The yield stress σ Y of these samples can be obtained, and the rate of increase of the yield stress σ Y with respect to the volume fraction f M of the hardened region can be determined as a constant b. Here, the method for determining the constant b with the minimum number of data (the number of data of the yield stress σ Y ) as a simple method has been described, but the upper limit of the number of data is not particularly limited. As the number of data is large, the range of the volume fraction f M can be determined with higher accuracy.

さらに、降伏応力σ及び耐力σは、構造材に使用する鋼板(熱処理及び曲げ加工なし)から採取されたJIS5号試験片(試験片)に、JIS Z2241に係る引張試験を行うことにより測定することができる。特に、硬化領域の体積分率fが1である場合の降伏応力σYM及び耐力σhMの測定には、上記の試験片に所定の熱処理を施した試験片を使用すればよい。この所定の熱処理として、例えば、試験片をAe3点(Ae3温度)以上に加熱後、水冷、空冷のような冷却方法により、10℃/s以上、好ましくは30℃/s以上の冷却速度でM点(M温度)以下まで冷却してもよい。Furthermore, the yield stress σ Y and the proof stress σ h are measured by performing a tensile test according to JIS Z2241 on a JIS No. 5 test piece (test piece) taken from a steel plate (no heat treatment and bending) used for the structural material. can do. In particular, for the measurement of the yield stress σ YM and the proof stress σ hM when the volume fraction f M of the hardened region is 1, a test piece obtained by subjecting the above test piece to a predetermined heat treatment may be used. As this predetermined heat treatment, for example, after the test piece is heated to Ae3 point ( Ae3 temperature) or higher, a cooling rate of 10 ° C / s or higher, preferably 30 ° C / s or higher, by a cooling method such as water cooling or air cooling. May be cooled to the point Ms ( Ms temperature) or less.

なお、硬化領域の体積分率fが0超かつ1以下である場合の降伏応力σYM及び耐力σhMの測定には、上記の試験片の長手方向に向けて、上記の所定の熱処理に相当する条件でレーザ熱処理を行い、上記の引張試験を行えばよい。この場合、引張試験後に硬化領域の体積分率fを測定し、体積分率fと降伏応力σYM及び耐力σhMとの対応関係を決定すればよい。レーザ熱処理による硬化領域の体積分率fの制御には、試験片の幅方向(長手方向に垂直な方向)の位置をずらしながら試験片の長手方向へのレーザ熱処理(1パス)を試験片の片面または両面で繰り返せばよい。
また、試験片に使用する鋼板には、熱処理前の構造材の曲げ加工部(屈曲部)に相当される歪履歴が加えられた試験片を用いても良い。
In the measurement of the yield stress σ YM and the proof stress σ hM when the volume fraction f M of the hardened region is more than 0 and 1 or less, the predetermined heat treatment is performed in the longitudinal direction of the test piece. The above-described tensile test may be performed by performing laser heat treatment under corresponding conditions. In this case, pulling the volume fraction f M of the hardened region was measured after the test, may be determined corresponding relationship between the volume fraction f M and yield stress sigma YM and yield strength sigma hM. To control the volume fraction f M of the hardened region by the laser heat treatment, the width direction of the test piece laser heat treatment in the longitudinal direction (direction perpendicular to the longitudinal direction) position shift while test piece (1 pass) test piece Repeat on one or both sides.
Moreover, you may use the test piece to which the distortion log | history equivalent to the bending process part (bending part) of the structural material before heat processing was added to the steel plate used for a test piece.

また、上記の硬化領域の体積分率fは、以下のような方法により決定することができる。例えば、試験片の長手方向に垂直な断面での硬化領域の面積を測定し、この面積にレーザ熱処理を行った長さ(総距離)を乗じて硬化領域の体積を求め、この硬化領域の体積を試験片の全体積で除することにより硬化領域の体積分率fを求めることができる。なお、硬化領域の面積は、試験片の長手方向に垂直な断面について、光学顕微鏡で観察された焼入れ組織から決定してもよく、後述のようにビッカース硬度計を用いてビッカース硬度を求めて決定しても良い。Further, the volume fraction f M of the hardened region of the can be determined by the following method. For example, the area of the hardened region in a cross section perpendicular to the longitudinal direction of the test piece is measured, and the volume of the hardened region is obtained by multiplying this area by the length (total distance) after laser heat treatment. it can be determined the volume fraction f M of the hardened region by dividing the total volume of the test piece. The area of the hardened region may be determined from the quenched structure observed with an optical microscope for the cross section perpendicular to the longitudinal direction of the test piece, and determined by obtaining the Vickers hardness using a Vickers hardness meter as described later. You may do it.

また、上述の硬化領域の体積分率fの範囲の決定方法では、鋼板の耐力σと硬化領域の体積分率fとの関係を一次関数で表現し、鋼板の降伏応力σと硬化領域の体積分率fとの関係を二次関数で表現したが、必ずしもこれらの関数を使用する必要はない。
硬化領域の体積分率fの範囲を決定するためには、硬化領域の体積分率fに対する降伏応力の変化率が、硬化領域の体積分率fに応じて変化し、その変化量(変化の程度)が硬化領域の体積分率fに対する流動応力の変化率の変化量(変化の程度)に比べて大きいことを利用すればよい。
したがって、例えば、鋼板の降伏応力σと硬化領域の体積分率fとの関係を、任意の関数σ(f)で表現し、少なくとも1つの硬化率に対する降伏応力の変化率(二次関数の場合、上述の定数bに相当)を用いて硬化領域の体積分率fの範囲を決定することができる。上述の二次関数を一般関数に拡張した場合、下記式(34)及び式(35)を満たすように最低体積分率fM−min(1以外)及び最大体積分率fM−maxを決定することができる。ここで、σ(f)を上述の定数bを含む関数で表現することもできる。
Further, in the method of determining the range of the volume fraction f M of the hardened zone described above, the relationship between the yield strength sigma h of the steel sheet and the volume fraction f M of the hardened region was expressed by a linear function, and the yield stress of the steel sheet sigma Y It expressed in relation to a quadratic function of the volume fraction f M of the hardened zone, but it is not always necessary to use these functions.
To determine the range of the volume fraction f M of the hardened region, the rate of change of the yield stress versus the volume fraction f M of the hardened area, changes according to the volume fraction f M of the hardened region, the amount of change (degree of change) may be utilized larger than the variation of the rate of change of flow stress versus the volume fraction f M of the hardened zone (degree of change).
Therefore, for example, the relationship between the yield stress σ Y of the steel sheet and the volume fraction f M of the hardening region is expressed by an arbitrary function σ Y (f M ), and the rate of change of the yield stress with respect to at least one hardening rate (2 If the next function, it is possible to determine the range of the volume fraction f M of the hardened region by using the equivalent) to the above-described constant b. When the above-mentioned quadratic function is expanded to a general function, the minimum volume fraction f M-min (other than 1) and the maximum volume fraction f M-max are determined so as to satisfy the following expressions (34) and (35). can do. Here, σ Y (f M ) can also be expressed by a function including the constant b described above.

Figure 2012026591
Figure 2012026591

Figure 2012026591
Figure 2012026591

また、鋼板の耐力σと硬化領域の体積分率fとの関係を、任意の関数σ(f)で表現してもよい。ここで、上述の一次関数及び二次関数を一般関数に拡張した場合、下記式(36)を満たすように最大体積分率fM−maxを決定することができる。Further, the relationship between the proof stress σ h of the steel sheet and the volume fraction f M of the hardened region may be expressed by an arbitrary function σ h (f M ). Here, when the above-described linear function and quadratic function are extended to general functions, the maximum volume fraction f M-max can be determined so as to satisfy the following formula (36).

Figure 2012026591
Figure 2012026591

さらに、上述の範囲(例えば、fM−min以上かつ1以下(1未満)や下記式(41)の範囲)以外に、例えば最大体積分率(境界硬化率)fM−maxを用いて下記式(37)〜(40)の何れかの範囲に硬化領域の体積分率fの範囲を決定してもよい。Furthermore, in addition to the above-described range (for example, f M-min or more and 1 or less (less than 1) or the range of the following formula (41)), for example, the maximum volume fraction (boundary hardening rate) f M-max is used. equation (37) may determine the range of the volume fraction f M of the hardened zone in any of a range of - (40).

Figure 2012026591
Figure 2012026591

Figure 2012026591
Figure 2012026591

Figure 2012026591
Figure 2012026591

Figure 2012026591
Figure 2012026591

Figure 2012026591
Figure 2012026591

上記式(37)〜式(41)のように硬化領域の体積分率fの範囲を決定することにより、熱処理のコストの低減と構造材の変形抑制能力の向上とのバランスに優れた安定的な熱処理を行うことができる。また、硬化領域の体積分率fの範囲について、コストや熱処理条件等を含む補正項を適宜上限及び下限に含めてもよい。By determining the range of the volume fraction f M of the hardened zone, as in the above formula (37) to (41), stable with excellent balance between improved deformation suppressing capability of reducing the structural material cost of the heat treatment Heat treatment can be performed. Moreover, the range of the volume fraction f M of the hardened region, the correction term, including the cost and heat treatment conditions and the like may be included as appropriate upper and lower limits.

さらに、上述の範囲以外に、図16に示すように、硬化領域の体積分率fに対する降伏応力σの変化率に基づいて加工硬化係数E(体積分率fと加工硬化係数Eとの関係)を推定または算出し(S301)、この推定または算出された加工硬化係数Eが所定値以上になるように、体積分率fの範囲を決定しても良い(S302)。例えば、体積分率fが1である場合の加工硬化係数Eと体積分率fがfM−maxである場合の加工硬化係数Eとの差をΔE、0以上かつ1以下の任意の値を向上係数nと定義して、体積分率fが1である場合の加工硬化係数Eにn×ΔEを加えた値を所定値に決定してもよい。したがって、この所定値が、硬化領域の体積分率fが1である場合の加工硬化係数Eであってもよい。なお、上記式(21)で表される加工硬化係数Eの代わりに、降伏応力σを少なくとも変数として含む他の加工硬化の指標を使用しても良い。Further, in addition to the above range, as shown in FIG. 16, the work hardening coefficient E h (volume fraction f M and work hardening coefficient E is based on the rate of change of the yield stress σ Y with respect to the volume fraction f M of the hardening region. estimating or calculating the relationship between h) (S301), so the estimated or calculated work hardening coefficient E h is equal to or greater than a predetermined value may be determined the range of the volume fraction f M (S302) . For example, the difference between the work hardening coefficient E h when the volume fraction f M is 1 and the work hardening coefficient E h when the volume fraction f M is f M-max is ΔE h , 0 or more and 1 or less. May be defined as the improvement coefficient n, and a value obtained by adding n × ΔE h to the work hardening coefficient E h when the volume fraction f M is 1 may be determined as a predetermined value. Therefore, this predetermined value may be the work hardening coefficient E h when the volume fraction f M of the hardening region is 1. Instead of the work hardening coefficient E h represented by the above formula (21), another work hardening index including at least the yield stress σ Y as a variable may be used.

なお、鋼板の耐力σと硬化領域の体積分率fとの関係を一次関数で表現し、鋼板の降伏応力σと硬化領域の体積分率fとの関係を二次関数で表現すると、最も簡便に硬化領域の体積分率fの範囲を決定することができる。この場合、定数bの代わりに、定数aを用いて硬化領域の体積分率fの範囲を決定することができるが、下記式(42)に示すようにこの定数aが定数bを用いて表現できる(定数aが定数bの従属変数である)ため、定数aの使用は、定数bの使用と同じとみなされる。同様に、体積分率fに対する降伏応力σの変化率に従属可能な変数(例えば、体積分率fが1の場合の体積分率fに対する降伏応力σの変化率)を使用した場合も、体積分率fに対する降伏応力σの変化率を使用しているとみなされる。すなわち、上記式(29)の一次微分式に下記式(42)を代入して得られた下記式(43)に示すように、任意の体積分率fにおける降伏応力σの変化率を用いても、体積分率fが0である場合の降伏応力σの変化率であるbを求めることができる。例えば、下記式(44)に示すように体積分率fが1である場合の降伏応力σの変化率をdと定義した場合であっても、下記式(45)からdを用いてbを求めることができる。The relationship between the yield strength σ h of the steel sheet and the volume fraction f M of the hardened region is expressed by a linear function, and the relationship between the yield stress σ Y of the steel plate and the volume fraction f M of the hardened region is expressed by a quadratic function. Then, it is possible to determine the range of the volume fraction f M of the most conveniently cured area. In this case, instead of the constant b, it can be determined the range of the volume fraction f M of the hardened region by using the constant a, the constant a as shown in the following formula (42) with a constant b Since it can be expressed (constant a is a dependent variable of constant b), the use of constant a is considered the same as the use of constant b. Similarly, using a dependent variable that can be the rate of change of the yield stress sigma Y (e.g., rate of change of the yield stress sigma Y volume fraction f M is for the volume fraction f M in the case of 1) to the volume fraction f M In this case, it is considered that the rate of change of the yield stress σ Y with respect to the volume fraction f M is used. That is, as shown in the following equation (43) obtained by substituting the following equation (42) into the primary differential equation of the above equation (29), the change rate of the yield stress σ Y at an arbitrary volume fraction f M is expressed as follows. Even if it uses, b which is the rate of change of the yield stress σ Y when the volume fraction f M is 0 can be obtained. For example, even if the rate of change of the yield stress σ Y when the volume fraction f M is 1 is defined as d as shown in the following formula (44), d is used from the following formula (45). b can be obtained.

Figure 2012026591
Figure 2012026591

Figure 2012026591
Figure 2012026591

Figure 2012026591
Figure 2012026591

さらに、硬化領域の体積分率fに対する降伏応力σの変化率が所定条件を満たすときの体積分率fを基準に体積分率fの範囲を決定することができる。例えば、加工硬化係数Eが硬化領域の体積分率fに対して下に凸の曲線を描くことを考慮して、上記式(21)で表される加工硬化係数Eの体積分率fに対する一次微分が0になるような体積分率f、すなわち、上記式(36)を満足する体積分率(境界硬化率)fを最大体積分率fM−maxに決定しても良い。この場合、硬化領域の体積分率fの範囲は、例えば、上記式(37)〜式(41)を満足する範囲に決定することができる。ここで、式(37)〜(41)については、最低体積分率fM−min(1以外)を、上記式(34)を用いて決定することができる。また、式(34)及び式(36)により決定された最低体積分率fM−min及び最大体積分率fM−maxから上述のΔEを決定し、上述の向上係数nを用いて加工硬化係数Eが体積分率fが1である場合の加工硬化係数Eにn×ΔEを加えた値以上になるように、体積分率fの範囲を決定しても良い。
すなわち、図18に示すように、硬化領域の体積分率fに対する降伏応力σの変化率に基づいて体積分率fの最大体積分率fM−maxを決定し(S321)、体積分率fの範囲の最小値を最大体積分率fM−maxより所定値小さい値に決定し(S322)、体積分率fの範囲の最大値を1以下または1未満に決定すればよい(S323)。また、硬化領域の体積分率fの範囲の最小値を決定(S322)後、体積分率fの範囲の最大値を最大体積分率fM−maxより所定値大きい値に決定してもよい(S324)。
Furthermore, it is possible to change rates of yield stress sigma Y for the volume fraction f M of the hardened region to determine the range of the volume fraction f M, based on the volume fraction f M when a predetermined condition is satisfied. For example, considering that the work hardening coefficient E h draws a downward convex curve with respect to the volume fraction f M of the hardening region, the volume fraction of the work hardening coefficient E h represented by the above formula (21). f M first derivative is zero becomes like the volume fraction f M for, i.e., the volume fraction that satisfies the above formula (36) to (boundary hardening rate) f M determined the maximum volume fraction f M-max Also good. In this case, the range of the volume fraction f M of the hardened zone, for example, can be determined in the range that satisfies the above formula (37) to Formula (41). Here, regarding the equations (37) to (41), the minimum volume fraction f M-min (other than 1) can be determined using the above equation (34). Further, the above - described ΔE h is determined from the minimum volume fraction f M-min and the maximum volume fraction f M-max determined by Expression (34) and Expression (36), and processing is performed using the above-described improvement coefficient n. as hardening coefficient E h is the volume fraction f M is equal to or greater than the value obtained by adding the n × Delta] E h to work-hardening coefficient E h when it is 1, may determine the range of the volume fraction f M.
That is, as shown in FIG. 18, determines the maximum volume fraction f M-max volume fraction f M based on the rate of change of the yield stress sigma Y for the volume fraction f M of the hardened region (S321), the volume the minimum value of the range of the fraction f M determined to a predetermined value smaller than the maximum volume fraction f M-max (S322), if determined the maximum value of the range of the volume fraction f M to 1 or less, or less than 1 Good (S323). Further, after determining the minimum value of the range of the volume fraction f M of the hardened region (S322), the maximum value of the range of the volume fraction f M determined to a predetermined value greater than the maximum volume fraction f M-max It is good (S324).

なお、鋼板の降伏応力σと硬化領域の体積分率fとの関係について、体積分率fが0〜1の範囲内で同一の関数(例えば、二次関数のような線形関数)を用いてもよいし、この範囲を複数の範囲に分け、これらの範囲のそれぞれに異なる関数を用いても良い。しかしながら、体積分率fに対する降伏応力σの変化率の変化を利用するため、体積分率fが0〜1の範囲内で同一の関数を用いる場合には、この範囲内で関数が体積分率fにより二階微分できることが必要である。また、0〜1の範囲を複数の範囲に分け、これらの範囲のそれぞれに異なる関数を用いる方法として、例えば、各種補間法(例えば、スプライン補間)による補間関数(補間関数が一次(折れ線グラフ)の場合も含む)を使用することができる。この場合、実測データ(例えば、5点以上)を直接データベースのデータとして使用することができる。
同様に、鋼板の流動応力σと硬化領域の体積分率fとの関係についても、体積分率fが0〜1の範囲内で同一の関数(例えば、一次関数のような線形関数)を用いてもよいし、この範囲を複数の範囲に分け、これらの範囲のそれぞれに異なる関数を用いても良い。
In addition, regarding the relationship between the yield stress σ Y of the steel sheet and the volume fraction f M of the hardened region, the same function (for example, a linear function such as a quadratic function) within a range of the volume fraction f M of 0 to 1 is used. The range may be divided into a plurality of ranges, and different functions may be used for each of these ranges. However, in order to utilize the change of the rate of change of the yield stress sigma Y with respect to the volume fraction f M, when the volume fraction f M uses the same function within the 0 to 1, the function within this range it is necessary to be able to differentiation upstairs by the volume fraction f M. In addition, as a method of dividing the range of 0 to 1 into a plurality of ranges and using different functions for each of these ranges, for example, interpolation functions by various interpolation methods (for example, spline interpolation) (interpolation function is linear (line graph)) Can be used). In this case, measured data (for example, 5 points or more) can be directly used as data in the database.
Similarly, regarding the relationship between the flow stress σ h of the steel sheet and the volume fraction f M of the hardened region, the same function (for example, a linear function such as a linear function) within a range of the volume fraction f M of 0 to 1 is used. ) May be used, or this range may be divided into a plurality of ranges, and different functions may be used for each of these ranges.

ここで、上述したように、できる限り少ない測定数(試験片の作製数及び引張強度の試験回数)で硬化領域の体積分率fの範囲を決定するためには、鋼板の耐力σと硬化領域の体積分率fとの関係を一次関数で表現し、鋼板の降伏応力σと硬化領域の体積分率fとの関係を二次関数で表現することが好ましい。Here, as described above, to determine the scope of the volume fraction f M of the hardened region with a small number of measurements as possible (number of tests prepared number and tensile strength of the test piece) has a yield strength sigma h of steel the relationship between the volume fraction f M of the hardened region was expressed by a linear function, it is preferred to express the relationship between the volume fraction f M of the yield stress sigma Y and curing area of the steel sheet by a quadratic function.

また、上記実施形態では、σ(f)を、5%の塑性ひずみが生じたときの耐力で定義しているが、耐力に対応する塑性ひずみは、必ずしも5%に限定する必要はなく、0%より大きければ5%でなくてもよい。例えば、図7、図9A及び図9Bに示すように、σ(f)を1%の塑性ひずみが生じたときの耐力で定義することもできる。したがって、所定の塑性ひずみが生じているときの耐力(又は、所定の塑性ひずみが生じている状態から塑性変形を生じさせるのに必要な応力)を流動応力と定義すると、σ(f)は流動応力を表し、σhMは硬化領域の流動応力を、σh0は非硬化領域(未処理の構造材)の流動応力を表す。
ここで、流動応力は、降伏応力に対応する歪量(すなわち、塑性歪が0超)よりも大きく、均一伸び歪量(例えば、公称歪の最大値)よりも小さい範囲内で定めた歪量における応力を用いる。一般的な評価としては、この流動応力は、5%であることが好ましい。
In the above embodiment, σ h (f M ) is defined as a yield strength when a plastic strain of 5% occurs, but the plastic strain corresponding to the yield strength is not necessarily limited to 5%. If it is larger than 0%, it may not be 5%. For example, as shown in FIG. 7, FIG. 9A, and FIG. 9B, σ h (f M ) can be defined as a yield strength when 1% plastic strain occurs. Therefore, when a yield strength when a predetermined plastic strain occurs (or a stress necessary to cause plastic deformation from a state where the predetermined plastic strain occurs) is defined as a flow stress, σ h (f M ) Represents the flow stress, σ hM represents the flow stress in the hardened region, and σ h0 represents the flow stress in the non-hardened region (untreated structural material).
Here, the flow stress is greater than the strain corresponding to the yield stress (that is, the plastic strain is greater than 0) and is less than the uniform elongation strain (for example, the maximum nominal strain). The stress at is used. As a general evaluation, this flow stress is preferably 5%.

また、上記では、レーザ熱処理により構造材10を局所的に加熱して硬化させている。しかしながら、構造材10の局所的な硬化は、必ずしもレーザ熱処理によって行われる必要はなく、他の熱処理によって行われても良い。いずれにせよ、熱処理によって硬化された領域の硬度は、鋼材である構造材10の炭素含有率をC、シリコン含有率をSi、マンガン含有率をMn、ニッケル含有率をNi、クロム含有率をCr、モリブデン含有率をMo、ニオブ含有率をNb、バナジウム含有率をVと定義すると、下記式(45)及び式(46)で算出される基準硬度(ビッカース硬度)Hv以上であることが好ましい。   In the above, the structural material 10 is locally heated and cured by laser heat treatment. However, local hardening of the structural material 10 is not necessarily performed by laser heat treatment, and may be performed by other heat treatment. In any case, the hardness of the region hardened by the heat treatment is C for the carbon content of the structural material 10 as a steel material, Si for the silicon content, Mn for the manganese content, Ni for the nickel content, and Cr for the chromium content. When the molybdenum content is defined as Mo, the niobium content is defined as Nb, and the vanadium content is defined as V, the hardness is preferably equal to or higher than the reference hardness (Vickers hardness) Hv calculated by the following formulas (45) and (46).

Figure 2012026591
Figure 2012026591

Figure 2012026591
Figure 2012026591

さらに、図2及び図3に示した実施形態では、二つの屈曲部12b、12c周りの有効幅領域15についてレーザ熱処理が行われ、他の二つの屈曲部12a、12d周りの有効幅領域15についてはレーザ熱処理が行われていない。しかしながら、これら他の二つの屈曲部周りの有効幅領域についてもレーザ熱処理を行ってもよいし、或いは二つの屈曲部12b、12cのうちの一方の屈曲部周りの有効幅領域15についてのみレーザ熱処理を行ってもよい。換言すると、本発明では、構造材が複数の屈曲部を有する場合、少なくとも一つの屈曲部を含む有効幅領域について上述したような体積分率fで熱処理を行えばよい。Further, in the embodiment shown in FIGS. 2 and 3, the laser heat treatment is performed on the effective width region 15 around the two bent portions 12b and 12c, and the effective width region 15 around the other two bent portions 12a and 12d. No laser heat treatment is performed. However, the laser heat treatment may be performed also on the effective width region around the other two bent portions, or the laser heat treatment is performed only on the effective width region 15 around one of the two bent portions 12b and 12c. May be performed. In other words, in the present invention, when the structural material has a plurality of bent portions, the effective width region including at least one bent portion may be heat-treated at the volume fraction f M as described above.

また、以下に、本発明の一実施形態に係る熱処理された構造材について説明する。
本実施形態に係る熱処理された構造材では、上記実施形態と同様に、構造材の一方向に延在し、この一方向に垂直な方向に曲げが与えられた屈曲部を少なくとも1つ備えている。そのため、本実施形態に係る熱処理された構造材には、例えば、図2〜5に示されるような形状の構造材が含まれる。さらに、上述の有効幅領域について、上述の硬化領域の体積分率fが、1未満であり、かつ、体積分率fに対する降伏応力σの変化率に基づいて決定された体積分率fの範囲に含まれる。
そのため、本実施形態に係る熱処理された構造材は、できる限り低コストを維持しながら、従来よりも高い変形抑制能力を発揮できる。
さらに、硬化領域の体積分率fの範囲は、上述のように体積分率fの値が0である場合の体積分率fに対する降伏応力σの変化率に基づいて決定することができる。この体積分率fの範囲は、体積分率fに対する降伏応力σの変化率に基づいて算出された加工硬化係数Eが所定値以上になるように決定された範囲である。特に、この所定値は、体積分率fが1である場合の加工硬化係数Eの値であることが好ましく、体積分率fが1である場合の加工硬化係数Eよりも大きい値であることがより好ましい。また、硬化領域の体積分率fの範囲(下限)が、上記式(32)で表される最低体積分率fM−min以上であることが好ましい。同様に、硬化領域の体積分率fの範囲(上限)が、上記式(33)で表される最大体積分率fM−max以下であることが好ましい。なお、構造材の平坦部からJIS5号試験片を3つ採取し、これらの試験片の硬化領域の体積分率fがそれぞれ0、1、及び、0.5になるように2つの試験片に熱処理を行った後、これら3つの試験片の引張り試験を行って必要な機械的強度を求め、降伏応力σと体積分率fとの関係について最小二乗法を行うことにより式(30)の定数bを決定すればよい。
In the following, a heat-treated structural material according to an embodiment of the present invention will be described.
The heat-treated structural material according to this embodiment includes at least one bent portion that extends in one direction of the structural material and is bent in a direction perpendicular to the one direction, as in the above-described embodiment. Yes. Therefore, the heat-treated structural material according to the present embodiment includes a structural material having a shape as illustrated in FIGS. Further, for the above-mentioned effective width region, the volume fraction f M of the above-described hardening region is less than 1, and the volume fraction determined based on the rate of change of the yield stress σ Y with respect to the volume fraction f M f is included in the range of M.
Therefore, the heat-treated structural material according to the present embodiment can exhibit a higher deformation suppressing ability than the conventional one while maintaining the lowest possible cost.
Moreover, the scope of the volume fraction f M of the hardened region, be determined based on the rate of change of the yield stress sigma Y for the volume fraction f M when the value of the volume fraction f M as described above is 0 Can do. The scope of the volume fraction f M is a range in which the work hardening coefficient E h calculated based on the rate of change of the yield stress sigma Y for the volume fraction f M is determined to be equal to or greater than the predetermined value. In particular, this predetermined value is preferably a value of work-hardening coefficient E h when the volume fraction f M is 1, greater than work hardening coefficient E h when the volume fraction f M is 1 More preferably it is a value. Further, the range of the volume fraction f M of the hardened zone (lower) is preferably at above formula (32) with minimum volume fraction f M-min or more represented. Similarly, the range of the volume fraction f M of the hardened zone (upper limit) is preferably at the maximum volume fraction f M-max or less represented by the above formula (33). In addition, three JIS No. 5 test pieces were sampled from the flat part of the structural material, and two test pieces were set so that the volume fractions f M of the cured regions of these test pieces were 0, 1, and 0.5, respectively. After performing heat treatment on the three specimens, a tensile test of these three specimens is performed to obtain the required mechanical strength, and the relationship between the yield stress σ Y and the volume fraction f M is calculated by the least square method (30 ) Constant b may be determined.

また、流動応力を、5%の塑性ひずみが生じたときの耐力として定義すればよい。さらに、有効幅領域を決定するために、有効幅eを、上記式(15)、上記式(17)、上記式(18B)、または、下記式(47)により定義すればよい。なお、有効幅eを、式(15)で定義する場合には、有限要素法を使用すればよい。また、式(47)は、平板座屈係数kを4と仮定して上記式(18A)〜(20)から導出される。   Moreover, what is necessary is just to define a flow stress as a yield strength when 5% of plastic strain arises. Furthermore, in order to determine the effective width region, the effective width e may be defined by the above formula (15), the above formula (17), the above formula (18B), or the following formula (47). In the case where the effective width e is defined by Expression (15), the finite element method may be used. Further, equation (47) is derived from the above equations (18A) to (20) assuming that the plate buckling coefficient k is 4.

Figure 2012026591
Figure 2012026591

加えて、硬化領域(熱処理により硬化された領域)は、上記実施形態と同じ方法で求めることができる。すなわち、硬化領域を、上記式(45)及び(46)によって算出されたビッカース硬度以上の領域に決定することができる。また、熱処理は、レーザによって行われていることが好ましい。このレーザによる熱処理の履歴は、構造材断面の組織を観察することにより確認できる。   In addition, the cured region (the region cured by the heat treatment) can be obtained by the same method as in the above embodiment. That is, the hardened region can be determined as a region having a Vickers hardness or higher calculated by the above formulas (45) and (46). The heat treatment is preferably performed by a laser. The history of heat treatment by this laser can be confirmed by observing the structure of the cross section of the structural material.

厚さが1.0mm、降伏応力が301MPa、引張強度が457MPa、伸びが39%、炭素含有率が0.09%、シリコン含有率が0.02%、マンガン含有率が1.24%である一枚の440MPa級鋼板BPから11本のJIS5号試験片を採取した。これらの試験片のうち、10本の試験片には、試験片の長手方向(引張方向)に向けて所定の体積分率になるように複数パスのレーザ熱処理を行い、有効幅領域に対する硬化領域の体積分率が0.1〜1(0.1の増分)の試験片を作製した。レーザ熱処理には、炭酸ガスレーザを使用し、レーザ出力を5kWに、熱処理速度を12m/minに制御した。さらに、これら11本の試験片に対して引張試験を行い、降伏応力及び引張応力を評価した。   The thickness is 1.0 mm, the yield stress is 301 MPa, the tensile strength is 457 MPa, the elongation is 39%, the carbon content is 0.09%, the silicon content is 0.02%, and the manganese content is 1.24%. Eleven JIS5 test pieces were collected from one 440 MPa class steel plate BP. Of these test pieces, ten test pieces were subjected to laser heat treatment in a plurality of passes so as to have a predetermined volume fraction in the longitudinal direction (tensile direction) of the test piece, and the hardening region with respect to the effective width region. Test pieces having a volume fraction of 0.1 to 1 (increments of 0.1) were prepared. For the laser heat treatment, a carbon dioxide laser was used, the laser output was controlled to 5 kW, and the heat treatment speed was controlled to 12 m / min. Further, a tensile test was performed on these 11 test pieces to evaluate yield stress and tensile stress.

その結果、未処理の試験片から、非硬化領域の降伏応力σY0を301MPa、0.05(0.0537)の塑性ひずみεの付与時の非硬化領域の耐力をσh0を447MPaに決定した。同様に、体積分率が1(100%)の試験片から、硬化領域の降伏応力σYMを794MPa、0.05(0.0537)の塑性ひずみεの付与時の硬化領域の耐力σhMを1017MPaに決定した。さらに、11本の試験片から得られた各降伏応力を体積分率に対してプロットし、このプロットに対し上記式(29)を回帰式として用いた最小二乗法を適用して定数bを350MPaに決定した。ここで、未処理の試験片の降伏応力、体積分率が0.5(50%)の試験片の降伏応力、体積分率が1(100%)の試験片の降伏応力の3プロットに対して、最小二乗法を行った場合にも、同じ定数bが得られることを確認した。
上記bの値(b=350MPa)、及び、引張り試験で求めた△σ及び△σの値(△σ=569.2MPa、△σ=493.0MPa)を式(32)に代入した結果、fM−min=53.3%であった。
また、上記b、△σ及び△σの値を式(33)に代入した結果、fM−max(fM−max=76.6%)が得られた。
As a result, determined from the untreated specimen, the yield stress sigma Y0 of uncured regions 301 MPa, the plastic strain epsilon p Strength of uncured regions of the time of grant of 0.05 (0.0537) a sigma h0 to 447MPa did. Similarly, the test piece volume fraction 1 (100%), 794MPa yield stress sigma YM curing area, 0.05 (0.0537) plastic strain ε strength of hardened zone during application of p sigma hM of Was determined to be 1017 MPa. Furthermore, each yield stress obtained from 11 specimens is plotted against the volume fraction, and the constant b is set to 350 MPa by applying the least square method using the above equation (29) as a regression equation to this plot. Decided. Here, with respect to 3 plots of the yield stress of an untreated specimen, the yield stress of a specimen having a volume fraction of 0.5 (50%), and the yield stress of a specimen having a volume fraction of 1 (100%) Thus, it was confirmed that the same constant b was obtained even when the least square method was performed.
The value of the b (b = 350 MPa), and was determined by tensile test △ sigma h and △ sigma Y value (△ σ h = 569.2MPa, △ σ Y = 493.0MPa) and into equation (32) As a result, f M-min = 53.3%.
Further, as a result of substituting the values of b, Δσ h and Δσ Y into the equation (33), f M-max (f M-max = 76.6%) was obtained.

なお、有効幅eを上記式(18A)〜(20)(または、上記式(47))を用いて算出した結果、有効幅eとして19.2mmが得られた。ここで、板形状等に応じた係数である平板座屈係数kが4であり、板幅wが60mmであり、板厚tが1.0mmであり、降伏応力σY0が301MPaであり、弾性率Eが180GPaである。なお、板幅wには、図14に示される構造材の高さ(50mm)と頂部の幅(70mm)との平均値(60mm)を代表値として使用した。In addition, as a result of calculating the effective width e using the above formulas (18A) to (20) (or the above formula (47)), 19.2 mm was obtained as the effective width e. Here, the plate buckling coefficient k, which is a coefficient corresponding to the plate shape or the like, is 4, the plate width w is 60 mm, the plate thickness t is 1.0 mm, the yield stress σ Y0 is 301 MPa, and the elasticity The rate E is 180 GPa. For the plate width w, an average value (60 mm) of the height (50 mm) and the top width (70 mm) of the structural material shown in FIG. 14 was used as a representative value.

また、上記鋼板BP(図13A)を曲げ加工して、図13Bに示したような形状の未処理の構造材10を作製した。未処理の構造材10は、断面が図14に示したようなハット形状になるように配置された五つの平坦部を具備し、このうち中央の三つの平坦部11を含む各辺の垂直断面における辺長が50mm、70mm、50mmであった。   Further, the steel plate BP (FIG. 13A) was bent to produce an untreated structural material 10 having a shape as shown in FIG. 13B. The untreated structural member 10 includes five flat portions arranged so that the cross section has a hat shape as shown in FIG. 14, and among these, the vertical cross section of each side including the three flat portions 11 at the center. The side length was 50 mm, 70 mm, and 50 mm.

このように作製した未処理の構造材10に対して平板状の別の構造材20をスポット溶接して、図13Cに示したような構造材組立体を作製した。スポット溶接Sは、フランジ部を構成する平坦部の幅方向中央に、長手方向に向けて間隔30mmで行われた。また、長手方向端部(衝撃を加える側の端部。以下、「衝撃付加側端部」という)から最初のスポット溶接までの距離は、15mmであった。   Another structural member 20 having a flat plate shape was spot-welded to the untreated structural member 10 thus manufactured, and a structural member assembly as shown in FIG. 13C was manufactured. The spot welding S was performed at an interval of 30 mm in the longitudinal direction at the center in the width direction of the flat portion constituting the flange portion. Further, the distance from the longitudinal end portion (end portion on the impact applying side, hereinafter referred to as “impact application side end portion”) to the first spot welding was 15 mm.

このようにして製作された構造材組立体に対して、炭酸ガスレーザにより試験片の長手方向(引張方向)に向けて複数パスのレーザ熱処理を行った。レーザ出力を5kWに、熱処理速度を12m/minに制御した。レーザ熱処理におけるレーザ出力及び熱処理速度は、以下の実施例においても同一に制御した。試験No.1では、図14に黒塗りで示した屈曲部から19.2mmの領域全域、すなわち有効幅領域全域に亘ってレーザ熱処理を行った。したがって、この場合、有効幅領域に対する硬化領域の体積分率は100%であった。このとき、上述のデータを用いて上記式(31)によって算出した加工硬化係数Eは、4155.8MPaであった(ここで、ε=0.05)。The structural material assembly thus manufactured was subjected to a plurality of laser heat treatments in the longitudinal direction (tensile direction) of the test piece with a carbon dioxide laser. The laser output was controlled to 5 kW, and the heat treatment speed was controlled to 12 m / min. The laser output and the heat treatment rate in the laser heat treatment were controlled in the same manner in the following examples. Test No. 1, laser heat treatment was performed over the entire region of 19.2 mm from the bent portion shown in black in FIG. 14, that is, over the entire effective width region. Therefore, in this case, the volume fraction of the hardened area with respect to the effective width area was 100%. At this time, the work hardening coefficient E h calculated by the above formula (31) using the above data was 4155.8 MPa (where ε p = 0.05).

レーザ熱処理を行った箇所についてビッカース硬度の測定を行った。未処理の構造材のビッカース硬度は140であったのに対して、レーザ熱処理後のビッカース硬度は306であり、硬化領域が十分に焼き入れ硬化されていることを確認した。   Vickers hardness was measured for the places where the laser heat treatment was performed. The Vickers hardness of the untreated structural material was 140, whereas the Vickers hardness after the laser heat treatment was 306, and it was confirmed that the hardened region was sufficiently quenched and hardened.

このようにレーザ熱処理が施された構造材組立体の長手方向が鉛直方向と一致するように、且つその衝撃付加側端部が上向きになるように構造材組立体を設置し、その真上に位置する300kgの落錘を高さ2mから落下させて衝撃試験を行った。   The structural material assembly is installed so that the longitudinal direction of the structural material assembly subjected to the laser heat treatment is aligned with the vertical direction, and the impact application side end portion is upward, and immediately above the structural material assembly. An impact test was performed by dropping a 300 kg falling weight from a height of 2 m.

衝撃試験を行う際に、構造材組立体の直下に荷重計(ロードセル)を設置して、落錘が構造材組立体に接触した後の荷重履歴を計測した。また同時に、レーザ変位計によって落錘が構造材組立体に接触した後の落錘の変位履歴(落錘が構造材組立体に接触してからの落錘の下降量の時間履歴)も計測した。このように計測した荷重履歴及び変位履歴に基づいて荷重−ひずみ線図を作成した。この荷重−ひずみ線図から初期ピーク反力を算出し、また、初期ピーク反力を構造材組立体の断面積(340mm)で除して初期ピーク応力を算出した。このときの初期ピーク反力は146.9kNであり、初期ピーク応力は432.0MPaであった。When performing the impact test, a load meter (load cell) was installed immediately below the structural material assembly, and the load history after the falling weight contacted the structural material assembly was measured. At the same time, the displacement history of the falling weight after the falling weight contacted the structural material assembly with the laser displacement meter (the time history of the falling weight of the falling weight after the falling weight contacted the structural material assembly) was also measured. . A load-strain diagram was created based on the load history and displacement history thus measured. The initial peak reaction force was calculated from this load-strain diagram, and the initial peak reaction force was calculated by dividing the initial peak reaction force by the cross-sectional area (340 mm 2 ) of the structural material assembly. The initial peak reaction force at this time was 146.9 kN, and the initial peak stress was 432.0 MPa.

試験No.2では、上記試験No.1と同様に未処理の構造材組立体を製作すると共に、この構造材組立体にレーザ熱処理を行った。有効幅領域に対する硬化領域の体積分率が76.6%になるようにレーザ熱処理を行った。このとき、上述のデータを用いて上記式(31)によって算出した加工硬化係数Eは、4301.6MPaであった(ここで、ε=0.05)。Test No. In No. 2, the above test no. In the same manner as in Example 1, an untreated structural material assembly was manufactured, and this structural material assembly was subjected to laser heat treatment. Laser heat treatment was performed so that the volume fraction of the hardened region with respect to the effective width region was 76.6%. At this time, the work hardening coefficient E h calculated by the above formula (31) using the above data was 4301.6 MPa (where ε p = 0.05).

このようにレーザ熱処理が施された構造材組立体に対して上記試験No.1と同様に衝撃試験を行い、試験結果に基づいて初期ピーク反力、初期ピーク応力を算出した。このときの初期ピーク反力は150.6kNであり、初期ピーク応力は443.0MPaであった。   For the structural material assembly thus subjected to the laser heat treatment, the above test No. The impact test was conducted in the same manner as in Example 1, and the initial peak reaction force and the initial peak stress were calculated based on the test results. The initial peak reaction force at this time was 150.6 kN, and the initial peak stress was 443.0 MPa.

試験No.3では、上記試験No.1と同様に未処理の構造材組立体を製作すると共に、この構造材組立体にレーザ熱処理を行った。有効幅領域に対する硬化領域の体積分率が53.3%になるようにレーザ熱処理を行った。このとき、上述のデータを用いて上記式(31)によって算出した加工硬化係数Eは、4155.8MPaであった(ここで、ε=0.05)。Test No. No. 3, the above test no. In the same manner as in Example 1, an untreated structural material assembly was manufactured, and this structural material assembly was subjected to laser heat treatment. Laser heat treatment was performed so that the volume fraction of the hardened region with respect to the effective width region was 53.3%. At this time, the work hardening coefficient E h calculated by the above formula (31) using the above data was 4155.8 MPa (where ε p = 0.05).

このようにレーザ熱処理が施された構造材組立体に対して上記試験No.1と同様に衝撃試験を行い、試験結果に基づいて初期ピーク反力、初期ピーク応力を算出した。このときの初期ピーク反力は146.3kNであり、初期ピーク応力は430.1MPaであった。   For the structural material assembly thus subjected to the laser heat treatment, the above test No. The impact test was conducted in the same manner as in Example 1, and the initial peak reaction force and the initial peak stress were calculated based on the test results. The initial peak reaction force at this time was 146.3 kN, and the initial peak stress was 430.1 MPa.

以上の結果を下記表1にまとめた。   The above results are summarized in Table 1 below.

Figure 2012026591
Figure 2012026591

表1から、有効幅領域に対する硬化領域の体積分率(f)が53.3%(=fM−min)であるときの初期ピーク応力は、この体積分率が100%であるときの初期ピーク応力とほぼ同一であることが分かる。また、有効幅領域に対する硬化領域の体積分率が76.6%(=fM−max)であるときの初期ピーク応力は、この体積分率が53.3%及び100%であるときの初期ピーク応力よりも高いことが分かる。このように、試験No.3では、試験No.1に比べて少ないコストで試験No.1と同等の変形抑制能力を得ることができる。また、試験No.2では、試験No.1に比べて少ないコストで試験No.1よりも高い変形抑制能力を得ることができる。From Table 1, the initial peak stress when the volume fraction (f M ) of the hardened area with respect to the effective width area is 53.3% (= f M-min ) is obtained when this volume fraction is 100%. It can be seen that the initial peak stress is almost the same. The initial peak stress when the volume fraction of the hardened area with respect to the effective width area is 76.6% (= f M-max ) is the initial peak stress when the volume fraction is 53.3% and 100%. It can be seen that it is higher than the peak stress. Thus, test no. 3, test no. Test No. 1 at a lower cost compared to 1. 1 can be obtained. In addition, Test No. 2, test no. Test No. 1 at a lower cost compared to 1. A deformation suppression capability higher than 1 can be obtained.

未処理の構造材に対して適切な箇所に熱処理を行って構造材を局所的に硬化させることで、変形抑制能力が十分に高められた構造材を提供することができる。   By subjecting an untreated structural material to heat treatment at an appropriate location and locally curing the structural material, it is possible to provide a structural material with sufficiently improved deformation suppressing ability.

10 構造材
11 平坦部
12 屈曲部
15 有効幅領域
20 構造材
DESCRIPTION OF SYMBOLS 10 Structural material 11 Flat part 12 Bending part 15 Effective width area | region 20 Structural material

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。
(1)本発明の一態様に係る構造材の熱処理方法は、構造材の一方向に延在し、前記一方向に垂直な方向に曲げが与えられた屈曲部を備えた構造材の熱処理方法であって、前記屈曲部の有効幅eを決定し;前記屈曲部から前記一方向に垂直な方向に向かう距離が前記有効幅e以内である前記屈曲部を含む領域を有効幅領域と定義し、この有効幅領域のうち熱処理により硬化された領域が占める割合を硬化率fと定義した場合に、硬化率fに対する降伏応力σの変化率である、硬化率f に対する降伏応力σ の一次微分値、または、硬化率f に対する降伏応力σ の増加率に基づいて硬化率fの範囲を決定し;前記硬化率fの範囲を満たすように前記構造材の前記有効幅領域に対して熱処理を行う。
This invention was made | formed based on the said knowledge, and the summary is as follows.
(1) A heat treatment method for a structural material according to one aspect of the present invention includes a bent portion that extends in one direction of the structural material and is bent in a direction perpendicular to the one direction. An effective width e of the bent portion is determined; and an area including the bent portion whose distance from the bent portion in a direction perpendicular to the one direction is within the effective width e is defined as an effective width region. , when the ratio of the hardened region was defined as the curing rate f M by heat treatment of the effective width region, a rate of change of the yield stress sigma Y for hardening rate f M, the yield stress for the hardening rate f M sigma primary differential value of Y, or, based on the rate of increase in yield stress sigma Y for hardening rate f M to determine the scope of the curing rate f M; the effective of the structural member so as to satisfy the range of the hardening rate f M Heat treatment is performed on the width region.

(2)上記(1)に記載の構造材の熱処理方法では、前記変化率が、前記硬化率fの値が0である場合の前記硬化率f に対する降伏応力σ の一次微分値、または、前記硬化率f の値が0である場合の降伏応力σ の測定値と前記硬化率f の値が0超かつ0.1以下である場合の降伏応力σ の測定値とから得られた前記硬化率f に対する降伏応力σ の増加率であってもよい。
(2) In the heat treatment method for a structural material according to (1) above, the change rate is a first derivative value of yield stress σ Y with respect to the hardening rate f M when the value of the hardening rate f M is 0 , or, the measured value of the yield stress sigma Y when the value of the measured value and the hardening rate f M of the yield stress sigma Y when the value of the hardening rate f M is 0 is greater than 0 and 0.1 or less The increase rate of the yield stress σ Y with respect to the hardening rate f M obtained from

(3)上記(2)に記載の構造材の熱処理方法では、前記変化率に基づいて算出された加工硬化係数E、前記硬化率f が1である場合の加工硬化係数E 以上になるように、前記硬化率fの範囲を決定してもよい。
(3) In the heat treatment method for a structural material according to (2) above, the work hardening coefficient E h calculated based on the rate of change is equal to or higher than the work hardening coefficient E h when the hardening rate f M is 1. so that, it may determine the extent of the curing ratio f M.

)上記(2)に記載の構造材の熱処理方法では、前記硬化率fが1である場合の流動応力と前記硬化率fが0である場合の流動応力との差をΔσ、前記硬化率fが1である場合の降伏応力と前記硬化率fが0である場合の降伏応力との差をΔσ、前記変化率をbと定義した場合に、前記硬化率fの範囲が、下記式(1)で表されるfM−min以上かつ1未満であってもよい。

Figure 2012026591
(4) In the heat treatment method of the structural material according to the above (2), the difference of .DELTA..sigma h between flow stress when the curing rate f M and the flow stress when the curing rate f M is 1 is 0 When the difference between the yield stress when the curing rate f M is 1 and the yield stress when the curing rate f M is 0 is defined as Δσ Y , and the rate of change is defined as b, the curing rate f The range of M may be f M-min or more and less than 1 represented by the following formula (1).
Figure 2012026591

)上記()に記載の構造材の熱処理方法では、前記硬化率fの範囲が、下記式(2)で表されるfM−max以下であってもよい。

Figure 2012026591
(5) In the heat treatment method of the structural material according to the above (4), the range of the hardening rate f M may be not less f M-max represented by the following formula (2).
Figure 2012026591

)上記(1)に記載の構造材の熱処理方法では、前記変化率が硬化率fに対する流動応力σの変化率と等しくなる境界硬化率fをfM−maxに決定し、このfM−maxに基づいて前記硬化率fの範囲を決定してもよい。
(6) In the heat treatment method of the structural material according to the above (1), the equal boundary hardening rate f M and the rate of change of flow stress sigma h determined in f M-max the rate of change with respect to the curing rate f M, it may determine the extent of the curing rate f M on the basis of the f M-max.

)上記()に記載の構造材の熱処理方法では、前記硬化率fの範囲を、下記式(3)を満足する範囲に決定してもよい。

Figure 2012026591
(7) In the heat treatment method of a structural material according to (6), the range of the hardening rate f M, may determine the range satisfying the following formula (3).
Figure 2012026591

)上記()に記載の構造材の熱処理方法では、前記硬化率fの範囲を、加工硬化係数E が、前記硬化率f が1であるときの加工硬化係数E と等しくなるときの硬化率M−min以上かつ1未満に決定してもよい
(8) In the heat treatment method of a structural material according to (6), the range of the hardening rate f M, work hardening coefficient E h is, the work hardening coefficient E h when the curing rate f M is 1 It may be determined that the curing rate f M-min is equal to or greater than 1 and less than 1 .

)上記(1)に記載の構造材の熱処理方法では、前記構造材中に含まれる化学成分について、炭素の質量百分率をC、シリコンの質量百分率をSi、マンガンの質量百分率をMn、ニッケルの質量百分率をNi、クロムの質量百分率をCr、モリブデンの質量百分率をMo、ニオブの質量百分率をNb、バナジウムの質量百分率をVと定義した場合に、前記熱処理により硬化された領域が、下記式(5)及び(6)によって算出されたビッカース硬度以上の領域であってもよい。

Figure 2012026591
Figure 2012026591
( 9 ) In the structural material heat treatment method described in (1) above, regarding the chemical components contained in the structural material, the mass percentage of carbon is C, the mass percentage of silicon is Si, the mass percentage of manganese is Mn, nickel When the mass percentage of Ni is defined as Ni, the mass percentage of chromium as Cr, the mass percentage of molybdenum as Mo, the mass percentage of niobium as Nb, and the mass percentage of vanadium as V, the region cured by the heat treatment is represented by the following formula: It may be a region equal to or higher than the Vickers hardness calculated by (5) and (6).
Figure 2012026591
Figure 2012026591

10)上記(1)に記載の構造材の熱処理方法では、前記熱処理が、レーザによって行われてもよい。
( 10 ) In the structural material heat treatment method according to (1), the heat treatment may be performed by a laser.

11)上記(1)に記載の構造材の熱処理方法では、前記熱処理の1パスが、前記一方向の全長にわたって連続的に行われてもよい。
( 11 ) In the heat treatment method for a structural material according to (1), one pass of the heat treatment may be continuously performed over the entire length in the one direction.

12)本発明の一態様に係る熱処理された構造材は、構造材の一方向に延在し、前記一方向に垂直な方向に曲げが与えられた屈曲部を備える構造材であって、前記屈曲部から前記一方向に垂直な方向に向かう距離が有効幅e以内である前記屈曲部を含む領域を有効幅領域と定義し、この有効幅領域のうち熱処理により硬化された領域が占める割合を硬化率fと定義した場合に、この硬化率fが、1未満であり、かつ、硬化率fに対する降伏応力σの変化率である、硬化率f に対する降伏応力σ の一次微分値、または、硬化率f に対する降伏応力σ の増加率に基づいて決定された硬化率fの範囲に含まれる。
( 12 ) The heat-treated structural material according to one aspect of the present invention is a structural material including a bent portion that extends in one direction of the structural material and is bent in a direction perpendicular to the one direction. A region including the bent portion whose distance from the bent portion in a direction perpendicular to the one direction is within the effective width e is defined as an effective width region, and a ratio of the effective width region occupied by a region cured by heat treatment If you define a hardening rate f M and the curing ratio f M is less than 1, and a rate of change of the yield stress sigma Y for hardening rate f M, the yield stress sigma Y for hardening rate f M first-order derivative value, or, within the scope of the determined curing ratio f M based on the rate of increase in yield stress sigma Y for curing ratio f M.

13)上記(12)に記載の熱処理された構造材では、前記変化率が、前記硬化率fの値が0である場合の前記硬化率f に対する降伏応力σ の一次微分値、または、前記硬化率f の値が0である場合の降伏応力σ の測定値と前記硬化率f の値が0超かつ0.1以下である場合の降伏応力σ の測定値とから得られた前記硬化率f に対する降伏応力σ の増加率であってもよい。
( 13 ) In the heat-treated structural material according to ( 12 ), the rate of change is a first derivative value of yield stress σ Y with respect to the curing rate f M when the value of the curing rate f M is 0 , or, the measured value of the yield stress sigma Y when the value of the measured value and the hardening rate f M of the yield stress sigma Y when the value of the hardening rate f M is 0 is greater than 0 and 0.1 or less The increase rate of the yield stress σ Y with respect to the hardening rate f M obtained from

14)上記(13)に記載の熱処理された構造材では、前記硬化率fの範囲が、前記変化率に基づいて算出された加工硬化係数E前記硬化率f が1である場合の加工硬化係数E 以上になるように決定された範囲であってもよい。
(14) In the heat-treated structural material according to (13), the range of the hardening rate f M is, work hardening coefficient E h is in the curing rate f M 1 calculated based on the rate of change may be determined range such that the work hardening coefficient more than E h when.

15)上記(12)に記載の熱処理された構造材では、前記硬化率fが1である場合の流動応力と前記硬化率fが0である場合の流動応力との差をΔσ、前記硬化率fが1である場合の降伏応力と前記硬化率fが0である場合の降伏応力との差をΔσ、前記変化率をbと定義した場合に、前記硬化率fの範囲が、下記式(7)で表されるfM−min以上であってもよい。

Figure 2012026591
(15) In the heat-treated structural material according to (12), the difference of .DELTA..sigma h between flow stress when the curing rate f M and the flow stress when the curing rate f M is 1 is 0 When the difference between the yield stress when the curing rate f M is 1 and the yield stress when the curing rate f M is 0 is defined as Δσ Y , and the rate of change is defined as b, the curing rate f The range of M may be f M-min or more represented by the following formula (7).
Figure 2012026591

16)上記(15)に記載の熱処理された構造材では、前記硬化率fの範囲が、下記式(8)で表されるfM−max以下であってもよい。

Figure 2012026591
The heat-treated structural material according to (16) above (15), the range of the hardening rate f M may be not less f M-max represented by the following formula (8).
Figure 2012026591

17)上記(15)に記載の熱処理された構造材では、前記各流動応力が、5%の塑性ひずみが生じたときの耐力として定義されてもよい。
( 17 ) In the heat-treated structural material according to ( 15 ), each flow stress may be defined as a proof stress when a 5% plastic strain occurs.

18)上記(12)に記載の熱処理された構造材では、前記一方向に垂直な幅寸法をw、前記硬化率fが0である場合の降伏応力をσY0、構造材の前記一方向の最大応力がこのσY0になるような応力が前記一方向に向けて付与されたときの前記一方向に垂直な幅方向の各位置の応力をσと定義した場合に、前記有効幅eが、下記式(9)により定義されてもよい。

Figure 2012026591
(18) In the heat-treated structural material according to (12), w perpendicular width in the one direction, the curing rate f M is the yield stress when it is 0 sigma Y0, the structural member one When the stress at each position in the width direction perpendicular to the one direction when the stress that gives the maximum stress in the direction of σ Y0 is applied in the one direction is defined as σ x , the effective width e may be defined by the following formula (9).
Figure 2012026591

19)上記(12)に記載の熱処理された構造材では、厚さ寸法をt、ポアソン比をν、弾性率をE、前記硬化率fが0である場合の降伏応力をσY0と定義した場合に、前記有効幅eが、下記式(10)により定義されてもよい。

Figure 2012026591
(19) In the heat-treated structural material according to (12), the thickness t, the Poisson's ratio [nu, the elastic modulus E, yield stress when the curing rate f M is 0 and sigma Y0 When defined, the effective width e may be defined by the following formula (10).
Figure 2012026591

20)上記(12)に記載の熱処理された構造材では、厚さ寸法をt、前記一方向に垂直な幅寸法をw、弾性率をE、前記硬化率fが0である場合の降伏応力をσY0と定義した場合に、前記有効幅eが、下記式(11)により定義されてもよい。

Figure 2012026591
(20) (12) In the heat-treated structural material according to the thickness t, the w perpendicular width in one direction, the elastic modulus E, when the curing rate f M is 0 When the yield stress is defined as σ Y0 , the effective width e may be defined by the following formula (11).
Figure 2012026591

21)上記(12)に記載の熱処理された構造材では、前記構造材中に含まれる化学成分について、炭素の質量百分率をC、シリコンの質量百分率をSi、マンガンの質量百分率をMn、ニッケルの質量百分率をNi、クロムの質量百分率をCr、モリブデンの質量百分率をMo、ニオブの質量百分率をNb、バナジウムの質量百分率をVと定義した場合に、前記熱処理により硬化された領域が、下記式(12)及び(13)によって算出されたビッカース硬度以上の領域であってもよい。

Figure 2012026591
Figure 2012026591
( 21 ) In the heat-treated structural material described in ( 12 ) above, with respect to the chemical components contained in the structural material, the carbon mass percentage is C, the silicon mass percentage is Si, the manganese mass percentage is Mn, nickel. When the mass percentage of Ni is defined as Ni, the mass percentage of chromium as Cr, the mass percentage of molybdenum as Mo, the mass percentage of niobium as Nb, and the mass percentage of vanadium as V, the region cured by the heat treatment is represented by the following formula: The area | region more than the Vickers hardness computed by (12) and (13) may be sufficient.
Figure 2012026591
Figure 2012026591

22)上記(12)に記載の熱処理された構造材では、前記熱処理が、レーザによって行われていてもよい。
( 22 ) In the heat-treated structural material according to ( 12 ), the heat treatment may be performed by a laser.

Claims (25)

構造材の一方向に延在し、前記一方向に垂直な方向に曲げが与えられた屈曲部を備えた構造材の熱処理方法であって、
前記屈曲部の有効幅eを決定し;
前記屈曲部から前記一方向に垂直な方向に向かう距離が前記有効幅e以内である前記屈曲部を含む領域を有効幅領域と定義し、この有効幅領域のうち熱処理により硬化された領域が占める割合を硬化率fと定義した場合に、硬化率fに対する降伏応力σの変化率に基づいて硬化率fの範囲を決定し;
前記硬化率fの範囲を満たすように前記構造材の前記有効幅領域に対して熱処理を行う;
ことを特徴とする構造材の熱処理方法。
A structural material heat treatment method comprising a bent portion that extends in one direction of the structural material and is bent in a direction perpendicular to the one direction,
Determining an effective width e of the bend;
A region including the bent portion whose distance from the bent portion in a direction perpendicular to the one direction is within the effective width e is defined as an effective width region, and a region cured by heat treatment occupies the effective width region. when the ratio was defined as the curing rate f M, to determine the scope of the curing rate f M based on the rate of change of the yield stress sigma Y for hardening rate f M;
Performing heat treatment on the effective width region of the hardening rate f M the structural member so as to satisfy the range of;
A method for heat-treating a structural material.
前記変化率が、前記硬化率fの値が0である場合の値であることを特徴とする請求項1に記載の構造材の熱処理方法。The rate of change, the heat treatment method of structural material of claim 1, wherein the value of the hardening rate f M is a value when it is zero. 前記変化率に基づいて算出された加工硬化係数Eが所定値以上になるように、前記硬化率fの範囲を決定することを特徴とする請求項2に記載の構造材の熱処理方法。The rate of change work hardening coefficient E h calculated based on so becomes a predetermined value or more, the heat treatment method of the structural member according to claim 2, characterized in that in determining the scope of the curing ratio f M. 前記所定値が、前記硬化率fが1である場合の加工硬化係数Eであることを特徴とする請求項3に記載の構造材の熱処理方法。The heat treatment method for a structural material according to claim 3, wherein the predetermined value is a work hardening coefficient E h when the hardening rate f M is 1. 5. 前記硬化率fが1である場合の流動応力と前記硬化率fが0である場合の流動応力との差をΔσ、前記硬化率fが1である場合の降伏応力と前記硬化率fが0である場合の降伏応力との差をΔσ、前記変化率をbと定義した場合に、前記硬化率fの範囲が、下記式(1)で表されるfM−min以上かつ1未満であることを特徴とする請求項2に記載の構造材の熱処理方法。
Figure 2012026591
Said curing yield stress when .DELTA..sigma h, the cure rate f M is 1 and flow stress when the curing rate f M and the flow stress when the curing rate f M is 1 is 0 f difference the .DELTA..sigma Y and yield stress when rate f M is 0, the rate of change when defined is b, the range of the hardening rate f M is represented by the following formula (1) M- The heat treatment method for a structural material according to claim 2, wherein the heat treatment method is at least min and less than 1.
Figure 2012026591
前記硬化率fの範囲が、下記式(2)で表されるfM−max以下であることを特徴とする請求項5に記載の構造材の熱処理方法。
Figure 2012026591
The scope of the hardening rate f M is, the heat treatment method of a structural material according to claim 5, characterized in that at most f M-max represented by the following formula (2).
Figure 2012026591
前記変化率が硬化率fに対する流動応力σの変化率と等しくなる境界硬化率fをfM−maxに決定し、このfM−maxに基づいて前記硬化率fの範囲を決定することを特徴とする請求項1に記載の構造材の熱処理方法。The rate of change is determined equal boundary hardening rate f M and the rate of change of flow stress sigma h for hardening rate f M to f M-max, determines the range of the curing rate f M on the basis of the f M-max The method for heat-treating a structural material according to claim 1, wherein: 前記硬化率fの範囲を、下記式(3)を満足する範囲に決定することを特徴とする請求項7に記載の構造材の熱処理方法。
Figure 2012026591
Heat treatment method of the structural member according to claim 7, characterized in that the range of the hardening rate f M, is determined in a range satisfying the following formula (3).
Figure 2012026591
前記硬化率fの範囲を、下記式(4)を満足するfM−min以上かつ1未満に決定することを特徴とする請求項7に記載の構造材の熱処理方法。
Figure 2012026591
Heat treatment method of structural material of claim 7, wherein the range of curing rate f M, is determined to f M-min or more and less than 1 satisfies the following formula (4).
Figure 2012026591
硬化率fが1である場合の流動応力と硬化率fが0である場合の流動応力との差をΔσと定義した場合に、このΔσと前記変化率との差が所定値以下になるように、前記硬化率fの範囲を決定することを特徴とする請求項1に記載の構造材の熱処理方法。If the cure rate f M is defined as the difference between the .DELTA..sigma h between flow stress when curing ratio f M and the flow stress of the case 1 is 0, the difference between the change rate this .DELTA..sigma h predetermined value so that the following heat treatment method of the structural member according to claim 1, characterized in that in determining the scope of the curing ratio f M. 前記構造材中に含まれる化学成分について、炭素の質量百分率をC、シリコンの質量百分率をSi、マンガンの質量百分率をMn、ニッケルの質量百分率をNi、クロムの質量百分率をCr、モリブデンの質量百分率をMo、ニオブの質量百分率をNb、バナジウムの質量百分率をVと定義した場合に、前記熱処理により硬化された領域が、下記式(5)及び(6)によって算出されたビッカース硬度以上の領域であることを特徴とする請求項1に記載の構造材の熱処理方法。
Figure 2012026591
Figure 2012026591
Regarding the chemical components contained in the structural material, the mass percentage of carbon is C, the mass percentage of silicon is Si, the mass percentage of manganese is Mn, the mass percentage of nickel is Ni, the mass percentage of chromium is Cr, the mass percentage of molybdenum. When the mass percentage of Ni, the mass percentage of niobium is defined as Nb, and the mass percentage of vanadium is defined as V, the area cured by the heat treatment is an area greater than or equal to the Vickers hardness calculated by the following formulas (5) and (6) The method for heat-treating a structural material according to claim 1, wherein:
Figure 2012026591
Figure 2012026591
前記熱処理が、レーザによって行われることを特徴とする請求項1に記載の構造材の熱処理方法。   The heat treatment method for a structural material according to claim 1, wherein the heat treatment is performed by a laser. 前記熱処理の1パスが、前記一方向の全長にわたって連続的に行われることを特徴とする請求項1に記載の構造材の熱処理方法。   The heat treatment method for a structural material according to claim 1, wherein one pass of the heat treatment is continuously performed over the entire length in the one direction. 構造材の一方向に延在し、前記一方向に垂直な方向に曲げが与えられた屈曲部を備える構造材であって、
前記屈曲部から前記一方向に垂直な方向に向かう距離が有効幅e以内である前記屈曲部を含む領域を有効幅領域と定義し、この有効幅領域のうち熱処理により硬化された領域が占める割合を硬化率fと定義した場合に、この硬化率fが、1未満であり、かつ、硬化率fに対する降伏応力σの変化率に基づいて決定された硬化率fの範囲に含まれることを特徴とする熱処理された構造材。
A structural material comprising a bent portion that extends in one direction of the structural material and is bent in a direction perpendicular to the one direction,
A region including the bent portion whose distance from the bent portion in a direction perpendicular to the one direction is within the effective width e is defined as an effective width region, and a ratio of the effective width region occupied by a region cured by heat treatment the when defined as hardening rate f M, the curing rate f M is less than 1, and, in the range of curing rate f M which is determined based on the rate of change of the yield stress sigma Y for hardening rate f M Heat treated structural material characterized in that it is included.
前記変化率が、前記硬化率fの値が0である場合の値であることを特徴とする請求項14に記載の熱処理された構造材。The rate of change, heat-treated structural material according to claim 14 wherein the value of the hardening rate f M is a value when it is zero. 前記硬化率fの範囲が、前記変化率に基づいて算出された加工硬化係数Eが所定値以上になるように決定された範囲であることを特徴とする請求項15に記載の熱処理された構造材。Range of the hardening rate f M is heat-treated according to claim 15, wherein the rate of change work hardening coefficient E h calculated based on the characterized in that it is a range determined to be equal to or greater than the predetermined value Structural material. 前記所定値が、硬化率fが1である場合の加工硬化係数Eであることを特徴とする請求項16に記載の熱処理された構造材。The heat-treated structural material according to claim 16, wherein the predetermined value is a work hardening coefficient E h when the hardening rate f M is 1. 前記硬化率fが1である場合の流動応力と前記硬化率fが0である場合の流動応力との差をΔσ、前記硬化率fが1である場合の降伏応力と前記硬化率fが0である場合の降伏応力との差をΔσ、前記変化率をbと定義した場合に、前記硬化率fの範囲が、下記式(7)で表されるfM−min以上であることを特徴とする請求項14に記載の熱処理された構造材。
Figure 2012026591
Said curing yield stress when .DELTA..sigma h, the cure rate f M is 1 and flow stress when the curing rate f M and the flow stress when the curing rate f M is 1 is 0 f difference the .DELTA..sigma Y and yield stress when rate f M is 0, the rate of change when defined is b, the range of the hardening rate f M is represented by the following formula (7) M- The heat-treated structural material according to claim 14, wherein the heat-treated structural material is min or more.
Figure 2012026591
前記硬化率fの範囲が、下記式(8)で表されるfM−max以下であることを特徴とする請求項18に記載の熱処理された構造材。
Figure 2012026591
The scope of the hardening rate f M is heat-treated structural material according to claim 18, characterized in that at most f M-max represented by the following formula (8).
Figure 2012026591
前記各流動応力が、5%の塑性ひずみが生じたときの耐力として定義されることを特徴とする請求項18に記載の熱処理された構造材。   The heat-treated structural material according to claim 18, wherein each flow stress is defined as a yield strength when a plastic strain of 5% occurs. 前記一方向に垂直な幅寸法をw、硬化率fが0である場合の降伏応力をσY0、構造材の前記一方向の最大応力がこのσY0になるような応力が前記一方向に向けて付与されたときの前記一方向に垂直な幅方向の各位置の応力をσと定義した場合に、前記有効幅eが、下記式(9)により定義されることを特徴とする請求項14に記載の熱処理された構造材。
Figure 2012026591
When the width dimension perpendicular to the one direction is w and the hardening rate f M is 0, the yield stress is σ Y0 , and the stress that causes the maximum stress in the one direction of the structural material to be σ Y0 is the one direction. When the stress at each position in the width direction perpendicular to the one direction when defined as σ x is defined as σ x , the effective width e is defined by the following formula (9): Item 15. The heat-treated structural material according to Item 14.
Figure 2012026591
厚さ寸法をt、ポアソン比をν、弾性率をE、硬化率fが0である場合の降伏応力をσY0と定義した場合に、前記有効幅eが、下記式(10)により定義されることを特徴とする請求項14に記載の熱処理された構造材。
Figure 2012026591
When the thickness dimension is defined as t, the Poisson's ratio as ν, the elastic modulus as E, and the yield stress when the curing rate f M is 0 as σ Y0 , the effective width e is defined by the following formula (10). The heat-treated structural material according to claim 14, wherein:
Figure 2012026591
厚さ寸法をt、前記一方向に垂直な幅寸法をw、弾性率をE、硬化率fが0である場合の降伏応力をσY0と定義した場合に、前記有効幅eが、下記式(11)により定義されることを特徴とする請求項14に記載の熱処理された構造材。
Figure 2012026591
The thickness t, w a vertical width dimension in the one direction, the elastic modulus E, when the yield stress of the case hardening rate f M is 0 is defined as sigma Y0, the effective width e is the following The heat-treated structural material according to claim 14, characterized in that it is defined by equation (11).
Figure 2012026591
前記構造材中に含まれる化学成分について、炭素の質量百分率をC、シリコンの質量百分率をSi、マンガンの質量百分率をMn、ニッケルの質量百分率をNi、クロムの質量百分率をCr、モリブデンの質量百分率をMo、ニオブの質量百分率をNb、バナジウムの質量百分率をVと定義した場合に、前記熱処理により硬化された領域が、下記式(12)及び(13)によって算出されたビッカース硬度以上の領域であることを特徴とする請求項14に記載の熱処理された構造材。
Figure 2012026591
Figure 2012026591
Regarding the chemical components contained in the structural material, the mass percentage of carbon is C, the mass percentage of silicon is Si, the mass percentage of manganese is Mn, the mass percentage of nickel is Ni, the mass percentage of chromium is Cr, the mass percentage of molybdenum. When the mass percentage of niobium is defined as Nb and the mass percentage of vanadium is defined as V, the area cured by the heat treatment is an area equal to or higher than the Vickers hardness calculated by the following formulas (12) and (13). 15. A heat treated structural material according to claim 14, characterized in that it is.
Figure 2012026591
Figure 2012026591
前記熱処理が、レーザによって行われていることを特徴とする請求項14に記載の熱処理された構造材。   The heat-treated structural material according to claim 14, wherein the heat treatment is performed by a laser.
JP2012513793A 2010-08-27 2011-08-26 Heat treatment method for structural material and heat treated structural material Active JP5130498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012513793A JP5130498B2 (en) 2010-08-27 2011-08-26 Heat treatment method for structural material and heat treated structural material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010190741 2010-08-27
JP2010190741 2010-08-27
JP2012513793A JP5130498B2 (en) 2010-08-27 2011-08-26 Heat treatment method for structural material and heat treated structural material
PCT/JP2011/069324 WO2012026591A1 (en) 2010-08-27 2011-08-26 Method for heat-treating structural material and heat-treated structural material

Publications (2)

Publication Number Publication Date
JP5130498B2 JP5130498B2 (en) 2013-01-30
JPWO2012026591A1 true JPWO2012026591A1 (en) 2013-10-28

Family

ID=45723580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012513793A Active JP5130498B2 (en) 2010-08-27 2011-08-26 Heat treatment method for structural material and heat treated structural material

Country Status (5)

Country Link
EP (1) EP2610355B1 (en)
JP (1) JP5130498B2 (en)
CN (1) CN103069021B (en)
TW (1) TWI498765B (en)
WO (1) WO2012026591A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107907409B (en) * 2017-11-10 2023-01-03 中国地质大学(武汉) Method, equipment and storage equipment for determining rock cracking stress
KR20210076906A (en) * 2018-10-15 2021-06-24 오토테크 엔지니어링 에스.엘. Profiles for structural beams in vehicles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119892A (en) * 1993-10-27 1995-05-12 Nissan Motor Co Ltd High strength member
JP2004114912A (en) * 2002-09-27 2004-04-15 Sumitomo Metal Ind Ltd Forming member having excellent axial crush resistant characteristic
JP2007062733A (en) * 2006-10-18 2007-03-15 Kikuchi Co Ltd Component for vehicle body and its induction hardening method
JP2009286351A (en) * 2008-05-30 2009-12-10 Nippon Steel Corp Collision-proof reinforcing member for vehicle with superior buckling resistance and manufacturing method for it

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246303A (en) * 1993-03-01 1994-09-06 Aichi Steel Works Ltd Locally heating system manufacturing method for angle material and channel material
JPH08183473A (en) * 1994-12-28 1996-07-16 Nissan Motor Co Ltd Strength member for vehicle
US6942262B2 (en) * 2001-09-27 2005-09-13 Shape Corporation Tubular energy management system for absorbing impact energy
JP2003335266A (en) * 2002-05-17 2003-11-25 Nissan Motor Co Ltd Reinforcing structure for vehicle body skeleton frame
FR2849059B1 (en) * 2002-12-23 2005-08-19 Peugeot Citroen Automobiles Sa METHOD AND DEVICE FOR LOCALLY THERMAL TREATMENT OF A METAL PIECE AND METAL PIECE OBTAINED BY SUCH A METHOD.
US6820924B2 (en) * 2003-01-13 2004-11-23 Ford Global Technologies, Llc Method of improving impact absorbing and deformation control characteristics of vehicle components
JP4969827B2 (en) * 2005-10-19 2012-07-04 富士重工業株式会社 Body front structure
CN1834268B (en) * 2006-02-27 2010-08-04 天津市特种设备监督检验技术研究院 Local heat treatment residual heat stress control method of spherical vessel
DE102007024797A1 (en) * 2007-05-26 2008-11-27 Linde + Wiemann Gmbh Kg Method for producing a profile component, profile component and use of a profile component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119892A (en) * 1993-10-27 1995-05-12 Nissan Motor Co Ltd High strength member
JP2004114912A (en) * 2002-09-27 2004-04-15 Sumitomo Metal Ind Ltd Forming member having excellent axial crush resistant characteristic
JP2007062733A (en) * 2006-10-18 2007-03-15 Kikuchi Co Ltd Component for vehicle body and its induction hardening method
JP2009286351A (en) * 2008-05-30 2009-12-10 Nippon Steel Corp Collision-proof reinforcing member for vehicle with superior buckling resistance and manufacturing method for it

Also Published As

Publication number Publication date
EP2610355A1 (en) 2013-07-03
EP2610355A4 (en) 2017-08-30
TWI498765B (en) 2015-09-01
TW201220110A (en) 2012-05-16
WO2012026591A1 (en) 2012-03-01
CN103069021B (en) 2014-06-04
JP5130498B2 (en) 2013-01-30
EP2610355B1 (en) 2021-11-10
CN103069021A (en) 2013-04-24

Similar Documents

Publication Publication Date Title
DE102017108835B4 (en) METHOD FOR REINFORCING AREAS OF A HIGH STRENGTH STEEL
Bardelcik et al. The influence of martensite, bainite and ferrite on the as-quenched constitutive response of simultaneously quenched and deformed boron steel–Experiments and model
JP5856002B2 (en) Collision energy absorbing member for automobiles excellent in impact energy absorbing ability and method for manufacturing the same
CN102893049B (en) Impact absorbing member
EP3730388B1 (en) Skeletal structure member
WO2012026578A1 (en) Shock-absorbing member
CN1246161A (en) High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for production thereof
JP5585623B2 (en) Hot-formed steel plate member and manufacturing method thereof
EP2565288A1 (en) Hot rolled dual phase steel sheet having excellent dynamic strength, and method for producing same
EA022687B1 (en) Heat-treated steel material, method for producing same, and base steel material for same
JP2010236560A (en) Method of manufacturing structural member having improved impact absorbing characteristics
KR20110127241A (en) Micro-alloyed carbon steel as texture-rolled strip steel, in particular for spring elements
JP6424841B2 (en) Method of manufacturing molded member
JP2018095896A (en) High strength steel sheet and method for producing the same
JP5130498B2 (en) Heat treatment method for structural material and heat treated structural material
WO2018025674A1 (en) High-strength steel plate and manufacturing method thereof
DE102016122596A1 (en) Ultrahigh-strength spring steel
EP3924527A1 (en) Method for producing a sheet steel component
JP2017125229A (en) Manufacturing method of molding member
JP2002020843A (en) Austenitic stainless steel excellent in collision absorbing performance
Taylor et al. TRIP assisted press hardened steel by the anisothermal bainitic ferrite transformation
Moćko Application of austenitic steels in energy absorbing structures
Dubey et al. Journal of Alloys and Metallurgical Systems
Schneider et al. Engineering, simulation and part-design for new TWIP-steels in automotive car body crash systems
Dempsey et al. Dynamic properties of additively manufactured 15-5 stainless steel and three-dimensional microstructure characterization

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5130498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350