JPWO2012002457A1 - Raw material carbon composition for negative electrode material of lithium ion secondary battery - Google Patents
Raw material carbon composition for negative electrode material of lithium ion secondary battery Download PDFInfo
- Publication number
- JPWO2012002457A1 JPWO2012002457A1 JP2012522675A JP2012522675A JPWO2012002457A1 JP WO2012002457 A1 JPWO2012002457 A1 JP WO2012002457A1 JP 2012522675 A JP2012522675 A JP 2012522675A JP 2012522675 A JP2012522675 A JP 2012522675A JP WO2012002457 A1 JPWO2012002457 A1 JP WO2012002457A1
- Authority
- JP
- Japan
- Prior art keywords
- composition
- mass
- raw material
- lithium ion
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 119
- 239000002994 raw material Substances 0.000 title claims abstract description 61
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 55
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 36
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 18
- 239000003245 coal Substances 0.000 claims abstract description 31
- 239000000295 fuel oil Substances 0.000 claims abstract description 30
- 230000005484 gravity Effects 0.000 claims abstract description 30
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000004939 coking Methods 0.000 claims abstract description 21
- 239000001257 hydrogen Substances 0.000 claims abstract description 21
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 21
- 239000003610 charcoal Substances 0.000 claims abstract description 12
- 239000011261 inert gas Substances 0.000 claims abstract description 10
- 239000003921 oil Substances 0.000 claims description 92
- 239000012530 fluid Substances 0.000 claims description 11
- 230000003197 catalytic effect Effects 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 10
- 238000001354 calcination Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 description 40
- 239000003575 carbonaceous material Substances 0.000 description 36
- 125000003118 aryl group Chemical group 0.000 description 20
- -1 nickel metal hydride Chemical class 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 239000013078 crystal Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 229910002804 graphite Inorganic materials 0.000 description 10
- 239000010439 graphite Substances 0.000 description 10
- 239000011329 calcined coke Substances 0.000 description 9
- 239000000571 coke Substances 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 9
- 238000004231 fluid catalytic cracking Methods 0.000 description 9
- 230000006837 decompression Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000012188 paraffin wax Substances 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 238000003763 carbonization Methods 0.000 description 6
- 230000003111 delayed effect Effects 0.000 description 6
- 238000004821 distillation Methods 0.000 description 6
- 238000005087 graphitization Methods 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 238000005292 vacuum distillation Methods 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 238000004587 chromatography analysis Methods 0.000 description 5
- 238000010828 elution Methods 0.000 description 5
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 239000012488 sample solution Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000006230 acetylene black Substances 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- PMDCZENCAXMSOU-UHFFFAOYSA-N N-ethylacetamide Chemical compound CCNC(C)=O PMDCZENCAXMSOU-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000002482 conductive additive Substances 0.000 description 2
- 238000005443 coulometric titration Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 239000007770 graphite material Substances 0.000 description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011331 needle coke Substances 0.000 description 2
- 239000005486 organic electrolyte Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002006 petroleum coke Substances 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- OKAMTPRCXVGTND-UHFFFAOYSA-N 2-methoxyoxolane Chemical compound COC1CCCO1 OKAMTPRCXVGTND-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013275 LiMPO Inorganic materials 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002194 amorphous carbon material Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007610 electrostatic coating method Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- DMEJJWCBIYKVSB-UHFFFAOYSA-N lithium vanadium Chemical compound [Li].[V] DMEJJWCBIYKVSB-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 239000011302 mesophase pitch Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- AJFDBNQQDYLMJN-UHFFFAOYSA-N n,n-diethylacetamide Chemical compound CCN(CC)C(C)=O AJFDBNQQDYLMJN-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- KERBAAIBDHEFDD-UHFFFAOYSA-N n-ethylformamide Chemical compound CCNC=O KERBAAIBDHEFDD-UHFFFAOYSA-N 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000006253 pitch coke Substances 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 239000011271 tar pitch Substances 0.000 description 1
- 239000011275 tar sand Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/04—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/205—Preparation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B55/00—Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/04—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
- C10B57/045—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing mineral oils, bitumen, tar or the like or mixtures thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
- Coke Industry (AREA)
Abstract
優れた高速充放電特性を達成するのに有用なリチウムイオン二次電池負極材料用原料炭組成物を提供する。重質油組成物をコーキング処理して得られた真比重1.30以上を有する原料炭組成物であって、該原料炭組成物を不活性ガス雰囲気下、1000〜1500℃の温度でか焼して得られる炭化物が、下記式(1)RD=−0.75TH質量%+切片 ・・・(1)(上式中、RDは上記炭化物の真比重を表し、TH質量%は上記炭化物の全水素含有量(質量%)を表し、切片は2.163〜2.180の範囲である。)を満足するリチウムイオン二次電池負極材用の原料炭組成物を提供する。Provided is a raw material charcoal composition for a negative electrode material for a lithium ion secondary battery that is useful for achieving excellent high-speed charge / discharge characteristics. A raw coal composition having a true specific gravity of 1.30 or more obtained by coking treatment of a heavy oil composition, wherein the raw coal composition is calcined at a temperature of 1000 to 1500 ° C. in an inert gas atmosphere. The carbide obtained by the following formula (1) RD = −0.75 TH mass% + intercept (1) (In the above formula, RD represents the true specific gravity of the carbide, and TH mass% is the A raw material carbon composition for a negative electrode material for a lithium ion secondary battery satisfying a total hydrogen content (mass%) and an intercept in a range of 2.163 to 2.180.
Description
本発明は、リチウムイオン二次電池の負極材料の原料となる原料炭組成物に関する。 The present invention relates to a raw material carbon composition that is a raw material for a negative electrode material of a lithium ion secondary battery.
リチウムイオン二次電池は、従来の二次電池であるニッケルカドミウム電池、ニッケル水素電池、鉛電池と比較し、軽量であり且つ優れた入出力特性を有することから、近年、電気自動車やハイブリッド車用の電源として期待されている。リチウムイオン二次電池の電極を構成する活物質には炭素材料が用いられており、リチウムイオン二次電池の性能を高めるべく、炭素材料についてこれまでに種々の検討がされている(例えば、特許文献1〜2を参照)。 Lithium ion secondary batteries are lighter and have superior input / output characteristics compared to conventional secondary batteries such as nickel cadmium batteries, nickel metal hydride batteries, and lead batteries. Is expected as a power source. A carbon material is used as an active material constituting an electrode of a lithium ion secondary battery, and various studies have been made on carbon materials so far to improve the performance of lithium ion secondary batteries (for example, patents). References 1-2).
リチウムイオン二次電池の負極材料として使用される炭素材料は、一般に黒鉛系と非晶質系に大別される。黒鉛系炭素材料は、非晶質系炭素材料と比較し、単位体積あたりのエネルギー密度が高いという利点がある。従って、コンパクトでありながら大きい充電放電容量が要求される携帯電話やノート型パソコン用のリチウムイオン二次電池においては、負極材料として黒鉛系炭素材料が一般に用いられている。黒鉛は炭素原子の六角網面が規則正しく積層した構造を有しており、充放電の際には六角網面のエッジ部でリチウムイオンの挿入離脱反応が進行する。 Carbon materials used as negative electrode materials for lithium ion secondary batteries are generally roughly classified into graphite and amorphous materials. The graphite-based carbon material has an advantage that the energy density per unit volume is higher than that of the amorphous carbon material. Accordingly, graphite-based carbon materials are generally used as negative electrode materials in lithium ion secondary batteries for mobile phones and notebook computers that are compact but require a large charge / discharge capacity. Graphite has a structure in which hexagonal network surfaces of carbon atoms are regularly stacked, and lithium ion insertion / extraction reaction proceeds at the edge of the hexagonal network surface during charge / discharge.
また、石油生コークス(生コークス)については、黒鉛電極用やキャパシタ用の原料炭として種々検討がされている(例えば、非特許文献1及び特許文献3を参照)。しかし、それは使用用途で大きく異なり、リチウムイオン二次電池負極用炭素材料として不十分であった。 In addition, petroleum raw coke (raw coke) has been variously studied as a raw material coal for graphite electrodes and capacitors (see, for example, Non-Patent Document 1 and Patent Document 3). However, it varies greatly depending on the intended use, and is insufficient as a carbon material for a negative electrode of a lithium ion secondary battery.
リチウムイオン二次電池の負極材料として黒鉛系炭素材料を使用した場合、上述のように単位体積あたりのエネルギー密度を高くできるもののハイブリッド車などの自動車分野に適用するには高速充放電特性、特に高速放電特性の点で改善の余地があった。これは、黒鉛系炭素材料は結晶性の高いことから、それをリチウムイオン二次電池の負極に用いた場合、炭素層におけるリチウムイオンの拡散が制限されることが主因と考えられる。 When a graphite-based carbon material is used as the negative electrode material of a lithium ion secondary battery, the energy density per unit volume can be increased as described above. There was room for improvement in terms of discharge characteristics. This is presumably because the graphite-based carbon material has high crystallinity, and therefore, when it is used for the negative electrode of a lithium ion secondary battery, the diffusion of lithium ions in the carbon layer is limited.
従来、炭素材料の結晶性は、X線回折による結晶性規定で行なわれてきたが、必ずしも原料炭組成物バルク全体の特性を示しているとはいえない。これは、稲垣道夫編著の「解説・カーボンファミリー」(アグネ承風社)において、「結晶子の選択的配向がある場合(ほとんど全ての炭素材料で選択的配向を生じている)は限られた結晶子についての情報をX線回折から得ている可能性がある。」と記載されていることからも理解できるものである。このためか、石油コークスなどでは、特に高速での充放電特性を再現よく発現できないでいた。 Conventionally, the crystallinity of a carbon material has been performed according to the crystallinity regulation by X-ray diffraction, but it does not necessarily indicate the characteristics of the entire raw coal composition bulk. This is in the “Commentary / Carbon Family” written by Michio Inagaki (Agne Jofu Co., Ltd.) “When there is selective orientation of crystallites (almost all carbon materials produce selective orientation) It may be understood from the description that "information about the crystallite may be obtained from X-ray diffraction." For this reason, in the case of petroleum coke or the like, the charge / discharge characteristics at a particularly high speed could not be reproducibly expressed.
本発明の目的は、このような実情に鑑みてなされたものであり、高速での高い充放電特性を再現性良く発現しえるリチウムイオン二次電池用炭素材となる原料炭組成物を提供することにある。 The object of the present invention has been made in view of such circumstances, and provides a raw material carbon composition serving as a carbon material for a lithium ion secondary battery that can express high charge and discharge characteristics at high speed with good reproducibility. There is.
本発明者らは、優れた結晶構造を具備する炭素材料について、結晶構造の生成機構に着目して検討を行った。例えば、ニードルコークスは、重質油を高温処理することによって熱分解及び重縮合反応が起きてメソフェーズと呼ばれる液晶球体が生成し、これらが合体してバルクメソフェーズと呼ばれる大きな液晶が中間生成物として生成する過程を経て製造される。本発明者らは、炭素材料の製造に使用する原料油組成物及び原料炭組成物が結晶構造に与える影響について幅広い検討を行った。 The present inventors have examined a carbon material having an excellent crystal structure by paying attention to the generation mechanism of the crystal structure. For example, in needle coke, thermal decomposition and polycondensation reaction occur by treating heavy oil at a high temperature to produce liquid crystal spheres called mesophase, which combine to produce large liquid crystals called bulk mesophase as intermediate products. It is manufactured through the process. The inventors of the present invention have conducted extensive studies on the influence of the raw material oil composition and the raw material carbon composition used for the production of the carbon material on the crystal structure.
リチウムイオン負極用の天然黒鉛、合成黒鉛、膨張黒鉛等の黒鉛材料、炭素化処理されたメソカーボンマイクロビーズ、メソフェーズピッチ系炭素繊維、気相成長炭素繊維、熱分解炭素、石油コークス、ピッチコークス及びニードルコークス等の炭素材料、及びこれら炭素材料に黒鉛化処理を施した合成黒鉛材料、又はこれらの混合物等が提案されてきたが困難であった。 Graphite materials such as natural graphite, synthetic graphite, and expanded graphite for lithium ion negative electrode, carbonized mesocarbon microbeads, mesophase pitch carbon fiber, vapor grown carbon fiber, pyrolytic carbon, petroleum coke, pitch coke, and Carbon materials such as needle coke, synthetic graphite materials obtained by subjecting these carbon materials to graphitization, or mixtures thereof have been proposed but have been difficult.
本発明者らは、上記課題を解決するべく鋭意検討を重ねた結果、炭化領域(1000〜1500℃)で、特定の性状を示す原料炭組成物を選択的に使用することにより、高速での高い充放電特性を再現性良く発現することを見出した。 As a result of intensive studies to solve the above-described problems, the present inventors have selectively used a raw coal composition exhibiting specific properties in a carbonized region (1000 to 1500 ° C.), thereby achieving high speed. It was found that high charge / discharge characteristics are expressed with good reproducibility.
本発明は、二種類以上の重質油を含む重質油組成物をコーキング処理して得られた原料炭組成物が、1.30以上の真比重を有し、該原料炭組成物を不活性ガス雰囲気下、1000〜1500℃の温度でか焼して得られる炭化物が、下記式(1)
RD=−0.75TH質量%+切片 ・・・(1)
(上式中、RDは上記炭化物の真比重を表し、TH質量%は上記炭化物の全水素含有量(質量%)を表し、切片は2.163〜2.180の範囲である。)
となるように、上記重質油組成物の組成を選択する工程と、
選択された組成を有する重質油組成物をコーキング処理する工程と
を少なくとも含むリチウムイオン二次電池負極材用の原料炭組成物の製造方法を提供する。
また、本発明は、重質油組成物をコーキング処理して得られた真比重1.30以上を有する原料炭組成物であって、該原料炭組成物を不活性ガス雰囲気下、1000〜1500℃の温度でか焼して得られる炭化物が、下記式(1)
RD=−0.75TH質量%+切片 ・・・(1)
(上式中、RDは上記炭化物の真比重を表し、TH質量%は上記炭化物の全水素含有量(質量%)を表し、切片は2.163〜2.180の範囲である。)
を満足するリチウムイオン二次電池負極材用の原料炭組成物を提供する。
さらに、本発明は、この原料炭組成物を用いた負極材を備えるリチウムイオン二次電池を提供する。In the present invention, a raw coal composition obtained by coking a heavy oil composition containing two or more kinds of heavy oils has a true specific gravity of 1.30 or more, and the raw coal composition is not used. A carbide obtained by calcination at 1000 to 1500 ° C. in an active gas atmosphere is represented by the following formula (1):
RD = −0.75 TH mass% + intercept (1)
(In the above formula, RD represents the true specific gravity of the carbide, TH mass% represents the total hydrogen content (mass%) of the carbide, and the intercept ranges from 2.163 to 2.180.)
Selecting the composition of the heavy oil composition so that
A method for producing a raw material carbon composition for a negative electrode material for a lithium ion secondary battery comprising at least a step of coking a heavy oil composition having a selected composition.
The present invention also relates to a raw coal composition having a true specific gravity of 1.30 or more obtained by coking a heavy oil composition, wherein the raw coal composition is 1000 to 1500 in an inert gas atmosphere. Carbide obtained by calcination at a temperature of ° C. has the following formula (1)
RD = −0.75 TH mass% + intercept (1)
(In the above formula, RD represents the true specific gravity of the carbide, TH mass% represents the total hydrogen content (mass%) of the carbide, and the intercept ranges from 2.163 to 2.180.)
A raw material charcoal composition for a lithium ion secondary battery negative electrode material satisfying the above is provided.
Furthermore, this invention provides a lithium ion secondary battery provided with the negative electrode material using this raw material charcoal composition.
規定の真比重(RD)と全水素含有量(TH質量%)の相関から得られる結晶性の影響は、焼成前の生コークスやその後の黒鉛化過程においても同様に作用していると考えられる。黒鉛化処理の炭素材料においても、焼成コークスとしての結晶性を評価することで、優れた特性を有する炭素材料を選択することが可能になることが分かった。
本発明によれば、RD/THからの結晶性は、原料炭組成物のバルク全体を測定しているものであり、これを適切に調整することで、高速での高い充放電特性を再現良く得られる。The effect of crystallinity obtained from the correlation between the specified true specific gravity (RD) and the total hydrogen content (TH mass%) is considered to work in the same way in the raw coke before firing and the subsequent graphitization process. . It was also found that a carbon material having excellent characteristics can be selected by evaluating the crystallinity as a calcined coke even in a graphitized carbon material.
According to the present invention, the crystallinity from RD / TH is measured for the entire bulk of the raw coal composition, and by appropriately adjusting this, high charge / discharge characteristics at high speed can be reproduced with good accuracy. can get.
本発明では、重質油組成物をコーキング処理して得られた真比重1.30以上の原料炭組成物を、不活性ガス雰囲気下、1000〜1500℃の温度でか焼して炭化物を得て、該炭化物の真比重(RD)と全水素含有量(TH質量%)の関係を利用する。
コーキング処理は、重質油組成物をコークス化する処理であり、ディレードコーキング法が好ましい。より具体的には、加圧条件下、ディレードコーカーによって重質油組成物を熱処理して原料炭組成物を得る。ディレードコーカーの条件は圧力300〜800kPa、温度400〜600℃であることが好ましい。
原料炭組成物を1000〜1500℃でか焼する際の雰囲気ガスである不活性ガスは特に限定されず、窒素やアルゴン等の通常この分野で使用される不活性ガスが使用される。酸素を極力除くために、一旦減圧した後、雰囲気ガスを不活性ガスに置換することが望ましい。In the present invention, a raw material charcoal composition having a true specific gravity of 1.30 or more obtained by coking a heavy oil composition is calcined at a temperature of 1000 to 1500 ° C. in an inert gas atmosphere to obtain a carbide. Thus, the relationship between the true specific gravity (RD) of the carbide and the total hydrogen content (TH mass%) is utilized.
The coking process is a process for coking the heavy oil composition, and a delayed coking method is preferred. More specifically, a heavy coal composition is heat-treated with a delayed coker under a pressurized condition to obtain a raw coal composition. The conditions of the delayed coker are preferably a pressure of 300 to 800 kPa and a temperature of 400 to 600 ° C.
The inert gas that is an atmosphere gas when calcining the raw material carbon composition at 1000 to 1500 ° C. is not particularly limited, and an inert gas that is usually used in this field, such as nitrogen or argon, is used. In order to remove oxygen as much as possible, it is desirable to replace the atmospheric gas with an inert gas after reducing the pressure once.
真比重及び全水素含有量(TH質量%)は、以下の方法で測定するが、同等の評価が可能であれば、公知の別法によっても良い。
本発明では、真比重は、JIS K2151に準拠して測定する。
全水素含有量(TH質量%)の測定は、か焼した試料を酸素気流中750℃で完全燃焼させ、燃焼ガスより生成した水分量を電量滴定法(カール・フィッシャー法)で求める。電量滴定式のカール・フィッシャー法では、予め滴定セルにヨウ化物イオン、二酸化硫黄、塩基(RN)及びアルコールを主成分とする電解液を入れておき、滴定セルに試料を入れることで試料中の水分は、(2)式の反応をする。
H2O+I2+SO2+CH3OH+3RN
→ 2RN・HI+RN・HSO4CH3 (2)
この反応に必要なヨウ素は、ヨウ化物イオンを電気化学的に反応(2電子反応)させること(下記式(3))により得ており、
2I− + 2e → I2 (3)
水1モルとヨウ素1モルとが反応することから、水1mgを滴定するのに必要な電気量がファラデーの法則により以下の通り求められる。
(2×96478)/(18.0153×103)=10.71 クーロン
ここで、定数96478はファラデー常数、18.0153は水の分子量である。
ヨウ素の発生に要した電気量を測定することで、水分量が求められる。
さらに得られた水分量から、水素量に換算し、これを測定に供した試料質量で除することにより、全水素含有量(TH質量%)を算出する。The true specific gravity and the total hydrogen content (TH mass%) are measured by the following methods. However, if the same evaluation is possible, other known methods may be used.
In the present invention, the true specific gravity is measured according to JIS K2151.
The total hydrogen content (TH mass%) is measured by completely burning the calcined sample at 750 ° C. in an oxygen stream, and determining the amount of water generated from the combustion gas by the coulometric titration method (Karl Fischer method). In the coulometric titration Karl Fischer method, an electrolyte containing iodide ions, sulfur dioxide, base (RN) and alcohol as main components is placed in the titration cell in advance, and the sample is placed in the titration cell. Moisture reacts according to formula (2).
H 2 O + I 2 + SO 2 + CH 3 OH + 3RN
→ 2RN · HI + RN · HSO 4 CH 3 (2)
Iodine necessary for this reaction is obtained by electrochemically reacting iodide ions (two-electron reaction) (the following formula (3)).
2I - + 2e → I 2 ( 3)
Since 1 mol of water reacts with 1 mol of iodine, the amount of electricity required to titrate 1 mg of water is determined as follows according to Faraday's law.
(2 × 96478) / (18.0153 × 10 3 ) = 10.71 Coulomb Here, the constant 96478 is the Faraday constant, and 18.0153 is the molecular weight of water.
By measuring the amount of electricity required to generate iodine, the amount of water can be determined.
Furthermore, it converts into the amount of hydrogen from the obtained moisture content, and remove | divides this by the sample mass used for the measurement, and calculates total hydrogen content (TH mass%).
従来、原料炭の結晶性を評価するには、直接X線回折により、層間距離や結晶子の大きさを測定して評価されていたが、本発明では、焼成コークスの結晶性特性に関連して、焼成コークスの真比重(RD)と全水素含有量(TH質量%)との相関関係を見いだした。焼成コークスの真比重(RD)と水素含有量(TH質量%)の値の関係は、出発原料油(脱硫脱瀝油、水素化脱硫重質油、流動接触分解装置の残渣油(CLO)等)の種類や、それらのブレンド比率で大幅に異なり、これらを調整することでバルク全体の結晶性の調整が可能であることを見出した。 Conventionally, the crystallinity of raw coal has been evaluated by measuring the distance between layers and the size of crystallites by direct X-ray diffraction, but in the present invention, it is related to the crystallinity characteristics of calcined coke. The correlation between the true specific gravity (RD) of the calcined coke and the total hydrogen content (TH mass%) was found. The relationship between the true specific gravity (RD) of calcined coke and the value of hydrogen content (TH mass%) is as follows: starting oil (desulfurized desulfurized oil, hydrodesulfurized heavy oil, fluidized catalytic cracker residual oil (CLO), etc. ) And the blending ratios thereof were significantly different, and it was found that the crystallinity of the entire bulk could be adjusted by adjusting these.
本発明のリチウムイオン二次電池の負極用炭素材料の原料炭組成物は、重質油組成物をコーキング処理し得られた真比重が1.30以上の原料炭組成物であって、該原料炭組成物を不活性ガス雰囲気下、1000〜1500℃の温度でか焼して得られる炭化物が、下記式(1)
RD=−0.75TH質量%+切片 ・・・(1)
(上式中、RDは上記炭化物の真比重を表し、TH質量%は上記炭化物の全水素含有量(質量%)を表し、切片は2.163〜2.180の範囲である。)
を満たす。この原料炭組成物を炭素化及び/又は黒鉛化して得られた炭素材料の特徴は、整然としたリチウムイオンの拡散経路が確保され、且つリチウムイオンの拡散に伴う六角網平面の物理的変位を抑制することが可能な結晶組織を有することにある。なお、リチウムイオンの拡散経路とは、隣接積層した六角網平面に形成される擬二次元空間と、隣接する結晶子間に形成された三次元空間である。このため、本発明の原料炭組成物を原料とした炭素材料が負極として使用されたリチウムイオン二次電池は、極めて高い充放電特性を再現良く実現することが可能となることが分かった。The raw material carbon composition of the carbon material for negative electrode of the lithium ion secondary battery of the present invention is a raw material carbon composition having a true specific gravity of 1.30 or more obtained by coking treatment of a heavy oil composition, A carbide obtained by calcining the charcoal composition at a temperature of 1000 to 1500 ° C. in an inert gas atmosphere is represented by the following formula (1).
RD = −0.75 TH mass% + intercept (1)
(In the above formula, RD represents the true specific gravity of the carbide, TH mass% represents the total hydrogen content (mass%) of the carbide, and the intercept ranges from 2.163 to 2.180.)
Meet. The characteristics of the carbon material obtained by carbonizing and / or graphitizing this raw material carbon composition ensure an orderly lithium ion diffusion path and suppress physical displacement of the hexagonal mesh plane due to lithium ion diffusion. It has a crystal structure that can be made. The lithium ion diffusion path is a pseudo two-dimensional space formed on adjacent stacked hexagonal planes and a three-dimensional space formed between adjacent crystallites. For this reason, it turned out that the lithium ion secondary battery in which the carbon material made from the raw material charcoal composition of the present invention is used as a negative electrode can realize extremely high charge / discharge characteristics with good reproducibility.
重質油組成物をコーキング処理し得られた原料炭の真比重は1.30以上が適し、好ましくは1.45以下、より好ましくは1.43以下である。1.30未満では、コーキングでの炭素の基本骨格形成が不十分で、その後の炭素化過程で溶融や発泡現象を起こす。そのため、コーキング過程で付与された整然としたリチウムイオンの拡散経路となる結晶組織が乱雑となる。このような原料炭組成物を用いた場合は、焼成コークスの真比重(RD)と全水素含有量(TH質量%)の値の規定をみたすものの、その後の炭素化及び/又は黒鉛化して得られた負極材料は、整然としたリチウムイオンの拡散経路が確保されず、充放電容量が低いものとなる。また、真比重が1.45を超えるものは、コーキング処理でより炭素化を進めることとなり、コーキング過程での分解ガスの発生が急速となる場合がある。このため原料炭の結晶組織が、急速な分解ガスの発生で乱雑となり、その後の炭素化過程を経ても、整然としたリチウムイオンの拡散経路を形成することが出来ない場合がある。 The true specific gravity of the raw coal obtained by coking the heavy oil composition is suitably 1.30 or more, preferably 1.45 or less, more preferably 1.43 or less. If it is less than 1.30, the basic skeleton formation of carbon in coking is insufficient, and melting and foaming occur in the subsequent carbonization process. For this reason, the crystal structure that becomes an ordered diffusion path of lithium ions imparted in the coking process becomes messy. When such a raw material carbon composition is used, it satisfies the provisions of true specific gravity (RD) and total hydrogen content (TH mass%) of calcined coke, but is obtained by subsequent carbonization and / or graphitization. The obtained negative electrode material does not secure an orderly lithium ion diffusion path and has a low charge / discharge capacity. Further, when the true specific gravity exceeds 1.45, carbonization is further promoted by the coking process, and the generation of cracked gas in the coking process may be rapid. For this reason, the crystal structure of the raw coal becomes messy due to the rapid generation of cracked gas, and even if the subsequent carbonization process is performed, an orderly lithium ion diffusion path may not be formed.
脱硫脱瀝油、水素化脱硫重質油、及び流動接触分解装置のボトム油からなる群から2種類以上を選択し、その混合比を調整する原料炭組成物の例を図1に示した。図1は、4種類の原料炭組成物(A、B、C、D)を不活性ガス雰囲気下に1000〜1500℃で焼成した場合の真比重(RD)と全水素含有量(TH質量%)の関係を示すグラフである。図1では、原料炭組成物A、B、C、Dを形成する重質油として、脱硫脱瀝油、水素化脱硫重質油、及び流動接触分解装置のボトム油を用い、その配合比率を変化させたものを用いた(実施例1〜4を参照)。
図1に示すように、いずれの場合も−0.75の傾きを有する直線に乗ることが分かる。これらの重相関係数(R)は、表1に示すように、0.93以上で信頼性の高いものであった。FIG. 1 shows an example of a raw coal composition in which two or more types are selected from the group consisting of desulfurized desulfurized oil, hydrodesulfurized heavy oil, and bottom oil of a fluid catalytic cracker, and the mixing ratio is adjusted. FIG. 1 shows true specific gravity (RD) and total hydrogen content (TH mass%) when four types of raw coal compositions (A, B, C, D) are fired at 1000 to 1500 ° C. in an inert gas atmosphere. ). In FIG. 1, desulfurized desulfurized oil, hydrodesulfurized heavy oil, and bottom oil of a fluid catalytic cracker are used as the heavy oil forming the raw coal compositions A, B, C, D, and the blending ratio is What was changed was used (see Examples 1-4).
As shown in FIG. 1, it can be seen that in any case, the vehicle rides on a straight line having an inclination of -0.75. As shown in Table 1, these multiple correlation coefficients (R) were 0.93 or more and highly reliable.
また、TH質量%=0となる切片を求め、その値が2.163〜2.180である場合に、従来よりも高速で高い充放電特性が再現良く得られる。
ここで、1000〜1500℃の温度でか焼した場合の加熱後にえられる炭化物の真比重(RD)と全水素含有量(TH質量%)は、炭化物の結晶構造と関連するものであり、切片が2.163未満では、結晶構造の発達が乏しく、結晶の乱れが多く存在し、整然としたリチウムイオンの拡散経路が確保されない。また、隣接する炭素六角網面の層面にリチウムイオンがドープされるための物理的エネルギーが多く必要となり、ドープされるリチウムイオンが少なくなる。これらのため、電池性能としては、極めて低い高速での充電特性となる。
また、切片が2.180を超える場合には、結晶構造の発達が過度となり、a軸方向の結晶子の成長が極めて大きくなる。これは、低速では、炭素六角網面の層面にリチウムイオンが多くドープされ向上するものの、一方では、リチウムイオンの拡散経路を減少させる。このため、従来の低速での出力特性には優れるものの、要望される高速での放電特性は高くならない。Further, when an intercept at which TH mass% = 0 is obtained and the value is 2.163 to 2.180, high charge / discharge characteristics at a higher speed than in the prior art can be obtained with good reproducibility.
Here, the true specific gravity (RD) and the total hydrogen content (TH mass%) of the carbide obtained after heating when calcined at 1000 to 1500 ° C. are related to the crystal structure of the carbide, and the intercept Is less than 2.163, the crystal structure is poorly developed, there are many crystal disturbances, and an orderly lithium ion diffusion path is not ensured. Further, a lot of physical energy is required for doping lithium ions on the layer surface of the adjacent carbon hexagonal network surface, and the amount of doped lithium ions is reduced. For these reasons, the battery performance is extremely low and charging characteristics at high speed.
On the other hand, when the intercept exceeds 2.180, the crystal structure is excessively developed, and the growth of crystallites in the a-axis direction becomes extremely large. This is because, at low speed, the layer surface of the carbon hexagonal network surface is doped with a large amount of lithium ions, but on the other hand, the diffusion path of lithium ions is reduced. For this reason, although the conventional low speed output characteristics are excellent, the desired high speed discharge characteristics do not become high.
図1に示した原料炭組成物以外についても同様の手法により真比重(RD)と全水素含有量(TH質量%)を検討したが、いずれも、ほぼ−0.75の傾きを有する直線上に乗ることが確認された。その他の原料炭組成物としては、残油流動接触分解装置(RFCC)のボトム油、減圧残渣油(VR)、減圧留出油(VD)、常圧残油、エチレンタールが挙げられる。残油流動接触分解装置(RFCC)は、原料油として残油(常圧残油等)を使用し、触媒を使用して分解反応を選択的に行わせ、高オクタン価のFCCガソリンを得る流動床式の流動接触分解する装置である。残油流動接触分解装置(RFCC)のボトム油としては、例えば、常圧残油等の残油をリアクター反応温度(ROT)510〜540℃の範囲で、触媒/油質量比率を6〜8の範囲で変化させて製造したボトム油が挙げられる。減圧蒸留装置の残渣油(VR)は、原油を常圧蒸留装置にかけて、ガス・軽質油・常圧残油を得た後、この常圧残油を、例えば、10〜30Torrの減圧下、加熱炉出口温度320〜360℃の範囲で変化させて得られる減圧蒸留装置のボトム油である。減圧蒸留装置の留出油は、上記の常圧残油を、例えば、10〜30Torrの減圧下、加熱炉出口温度320〜360℃の範囲で変化させて得られる減圧蒸留装置の留出油である。
したがって、このような規定の原料炭組成物を調製するには、例えば、硫黄や金属等の不純物を極力含まず、かつ、適度な芳香族性を有する重質炭化水素を適切な条件でコーキングすることによって得ることができる。Except for the raw coal composition shown in FIG. 1, the true specific gravity (RD) and the total hydrogen content (TH mass%) were examined by the same method, but both are on a straight line having a slope of approximately −0.75. It was confirmed that the ride. Examples of other raw coal compositions include bottom oil of a residual fluid fluid catalytic cracker (RFCC), vacuum residue oil (VR), vacuum distillate oil (VD), atmospheric residue, and ethylene tar. The residual oil fluid catalytic cracking unit (RFCC) uses residual oil (normal pressure residual oil, etc.) as a raw material oil and selectively performs a cracking reaction using a catalyst to obtain a high-octane FCC gasoline. Is a fluid catalytic cracking device of the type. As bottom oil of the residual oil fluid catalytic cracker (RFCC), for example, residual oil such as atmospheric residual oil is used in a reactor reaction temperature (ROT) range of 510 to 540 ° C. and a catalyst / oil mass ratio of 6 to 8. A bottom oil produced by changing the range is mentioned. The residual oil (VR) of the vacuum distillation apparatus is obtained by subjecting crude oil to an atmospheric distillation apparatus to obtain gas, light oil, and atmospheric residual oil, and then heating the atmospheric residual oil under a reduced pressure of, for example, 10 to 30 Torr. It is the bottom oil of the vacuum distillation apparatus obtained by changing in the range of the furnace exit temperature 320-360 degreeC. The distillation oil of the vacuum distillation apparatus is the distillation oil of the vacuum distillation apparatus obtained by changing the above atmospheric residual oil, for example, in a range of 320 to 360 ° C. at a furnace outlet temperature under a reduced pressure of 10 to 30 Torr. is there.
Therefore, in order to prepare such a specified raw coal composition, for example, caustic heavy hydrocarbons having appropriate aromaticity and containing as little impurities as possible such as sulfur and metals are coked. Can be obtained.
「適度な芳香族性を有する重質炭化水素」とは、例えば、石油系の脱硫脱瀝油や水素化脱硫重質油、流動接触分解装置のボトム油、減圧残油(VR)、石炭液化油、石炭の溶剤抽出油、常圧残渣油、シェルオイル、タールサンドビチューメン、ナフサタールピッチ、コールタールピッチ及びこれらを水素化精製した重質油等が挙げられる。
脱硫脱瀝油は、例えば、減圧蒸留残渣油等の油を、プロパン、ブタン、ペンタン、又はこれらの混合物等を溶剤として使用する溶剤脱瀝装置で処理し、そのアスファルテン分を除去し、得られた脱瀝油(DAO)を、好ましくは硫黄分0.05〜0.40質量%の範囲までに脱硫したものである。水素化脱硫油は、例えば、硫黄分2.0〜5.0質量%の常圧蒸留残油を、触媒存在下、水素化分解率が25%以下となるように水素化脱硫し、硫黄分0.1〜0.6質量%としたものである。この時の水素化脱硫条件は、例えば、全圧180MPa、水素分圧160MPa、温度380℃である。流動接触分解(FCC)装置は、原料油として減圧軽油を使用し、触媒を使用して分解反応を選択的に行わせ、高オクタン価のFCCガソリンを得る流動床式の流動接触分解(Fluid Catalystic Cracking)する装置である。減圧残油(VR)は、原油を常圧蒸留装置にかけて、ガス・軽質油・常圧残油を得た後、この常圧残油を、例えば、10〜30Torrの減圧下、加熱炉出口温度320〜360℃の範囲で変化させて得られる減圧蒸留装置のボトム油である。
二種類以上の原料油をブレンドして原料油組成物を調製する場合、使用する原料油の性状に応じて配合比率を適宜調整し原料組成物を得る。“Heavy hydrocarbon with moderate aromaticity” means, for example, petroleum-based desulfurized and desulfurized oil, hydrodesulfurized heavy oil, bottom oil of fluid catalytic cracking equipment, vacuum residue (VR), coal liquefaction And oil, coal solvent extraction oil, atmospheric residue oil, shell oil, tar sand bitumen, naphtha tar pitch, coal tar pitch, and heavy oil obtained by hydrorefining these.
Desulfurized desulfurized oil is obtained by, for example, treating oil such as vacuum distillation residue oil with a solvent desulfurization apparatus using propane, butane, pentane, or a mixture thereof as a solvent, and removing the asphaltenes. Desulfurized oil (DAO) is preferably desulfurized to a sulfur content in the range of 0.05 to 0.40 mass%. For example, the hydrodesulfurized oil is obtained by hydrodesulfurizing an atmospheric distillation residue having a sulfur content of 2.0 to 5.0% by mass in the presence of a catalyst so that the hydrocracking rate is 25% or less. 0.1 to 0.6% by mass. The hydrodesulfurization conditions at this time are, for example, a total pressure of 180 MPa, a hydrogen partial pressure of 160 MPa, and a temperature of 380 ° C. Fluid catalytic cracking (FCC) equipment uses fluidized-bed fluid catalytic cracking (FCC) to obtain high-octane FCC gasoline by using reduced pressure gas oil as a feedstock and selectively performing a cracking reaction using a catalyst. ). The vacuum residue (VR) is obtained by subjecting crude oil to an atmospheric distillation apparatus to obtain gas, light oil, and atmospheric residue, and then subjecting the atmospheric residue to, for example, a heating furnace outlet temperature under a reduced pressure of 10 to 30 Torr. It is the bottom oil of the vacuum distillation apparatus obtained by changing in the range of 320-360 degreeC.
When a raw material oil composition is prepared by blending two or more kinds of raw material oils, the raw material composition is obtained by appropriately adjusting the blending ratio according to the properties of the raw material oil to be used.
本実施形態に係る原料油組成物を使用すれば、とくに高速充放電に適したリチウムイオン二次電池負極用炭素材を製造することが可能となる。また、原料油組成物を溶出クロマトグラフィー法によって芳香族成分と非芳香族成分とに分離し、原料油組成物の組成(芳香族成分の含有量、芳香族成分の分子量及び非芳香族成分のノルマルパラフィン含有量)を分析することによって、高速充放電に適したリチウムイオン二次電池負極用炭素材を製造するのに適した原料油組成物を効率的に選択することができる。 If the raw material oil composition according to the present embodiment is used, it becomes possible to produce a carbon material for a negative electrode of a lithium ion secondary battery particularly suitable for high-speed charge / discharge. In addition, the raw oil composition is separated into an aromatic component and a non-aromatic component by elution chromatography, and the composition of the raw oil composition (the content of the aromatic component, the molecular weight of the aromatic component, and the non-aromatic component By analyzing the (normal paraffin content), a raw material oil composition suitable for producing a carbon material for a lithium ion secondary battery negative electrode suitable for high-speed charge / discharge can be efficiently selected.
上記の原料油組成物は、全質量100質量%中の芳香族成分の含有量は、35〜80質量%であることが好ましく、芳香族成分の分子量は、250〜1600であり、この条件は、生コークスの前駆体として良好なメソフェーズの生成及び成長に不可欠である。
なお、芳香族成分の含有量の測定方法は、「溶出クロマトグラフィー法」による。「溶出クロマトグラフィー法」とは、ASTM(米国材料試験協会)D2549に記載の方法に準拠して原料油組成物を2成分(芳香族成分及び非芳香族成分)に分離する方法を意味する。具体的には、活性アルミナとシリカゲルを充填したカラムに、n−ペンタン又はシクロヘキサン20mLで溶解した原料油組成物8gを通す。その後、n−ペンタン130mLを3mL/分の速度でカラムに通し、n−ペンタンに非芳香族成分を溶出させる。n−ペンタンに溶出した非芳香族成分を回収して定量する。その後、溶剤であるジエチルエーテル100mL、クロロホルム100mL、エチルアルコール175mLを順次3mL/分の速度でカラムにそれぞれ通し、当該溶剤に芳香族成分を溶出させる。溶剤に溶出した芳香族成分を回収して定量する。
また、原料油組成物の全質量に対する芳香族成分及び非芳香族成分の含有量は、下記式(1)及び(2)でそれぞれ算出される値を意味する。式中、A及びBは上記溶出クロマトグラフィー法による分離処理で得られた芳香族成分及び非芳香族成分の質量をそれぞれ示す。
芳香族成分の含有量(質量%)=A/(A+B)×100・・・(1)
非芳香族成分の含有量(質量%)=B/(A+B)×100・・・(2)
原料油組成物の平均分子量は、蒸気圧平衡法により測定したものである。蒸気圧平衡法の概要は次の通りである。所定の温度に保持した溶媒の飽和蒸気中に2本のサーミスタを置き、一方に試料溶液を、他方に溶媒単体を滴下する。このとき、試料溶液は溶媒単体より蒸気圧が低いため、サーミスタ周辺雰囲気の蒸気が試料溶液上に凝縮する。このとき放出される潜熱により温度が上昇するので、この温度差をサーミスタの電圧差(ΔV)として求め、そして予め分子量既知の標準試料を用いて、モル濃度と電圧差(ΔV)の関係を求めた検量線より、試料溶液中の試料モル濃度を求め、平均分子量を算出する。本発明では、溶媒としてシクロヘキサンを用い、標準試料としてn−セタン(分子量:226.4)を用いる。
これから外れる原料油組成物は、例えば、成長する前にコークス化が進行して、モザイクと呼ばれる小さな組織のコークスが得られる。このようなコークスは炭化黒鉛化後においても、炭素層面が発達せず、反応性の高いエッジ面が極端に多くなる。このような材料を負極に用いると、電解液と炭素エッジ面との反応によるガス発生が起こり好ましくない。In the raw material oil composition, the content of the aromatic component in the total mass of 100% by mass is preferably 35 to 80% by mass, and the molecular weight of the aromatic component is 250 to 1600. It is essential for the production and growth of good mesophase as a precursor of raw coke.
The method for measuring the content of the aromatic component is based on the “elution chromatography method”. The “elution chromatography method” means a method for separating a feedstock composition into two components (aromatic component and non-aromatic component) in accordance with the method described in ASTM (American Society for Testing and Materials) D2549. Specifically, 8 g of the raw oil composition dissolved in 20 mL of n-pentane or cyclohexane is passed through a column packed with activated alumina and silica gel. Thereafter, 130 mL of n-pentane is passed through the column at a rate of 3 mL / min to elute non-aromatic components into n-pentane. Non-aromatic components eluted in n-pentane are collected and quantified. Thereafter, 100 mL of diethyl ether, 100 mL of chloroform, and 175 mL of ethyl alcohol, which are solvents, are sequentially passed through the column at a rate of 3 mL / min to elute the aromatic components in the solvent. Aromatic components eluted in the solvent are collected and quantified.
Moreover, content of the aromatic component and non-aromatic component with respect to the total mass of a raw material oil composition means the value calculated by following formula (1) and (2), respectively. In the formula, A and B respectively indicate the masses of the aromatic component and the non-aromatic component obtained by the separation treatment by the elution chromatography method.
Aromatic component content (% by mass) = A / (A + B) × 100 (1)
Content of non-aromatic component (% by mass) = B / (A + B) × 100 (2)
The average molecular weight of the feed oil composition is measured by a vapor pressure equilibrium method. The outline of the vapor pressure equilibrium method is as follows. Two thermistors are placed in a saturated vapor of a solvent maintained at a predetermined temperature, and the sample solution is dropped on one side and the solvent alone is dropped on the other side. At this time, since the vapor pressure of the sample solution is lower than that of the solvent alone, the vapor in the atmosphere around the thermistor condenses on the sample solution. Since the temperature rises due to the latent heat released at this time, this temperature difference is obtained as the voltage difference (ΔV) of the thermistor, and the relationship between the molar concentration and the voltage difference (ΔV) is obtained using a standard sample whose molecular weight is known in advance. From the calibration curve, the sample molar concentration in the sample solution is obtained, and the average molecular weight is calculated. In the present invention, cyclohexane is used as a solvent, and n-cetane (molecular weight: 226.4) is used as a standard sample.
For example, a raw material oil composition that deviates from this is coke-formed before it grows, and a coke having a small structure called a mosaic is obtained. Such coke does not develop a carbon layer surface even after carbonitizing graphite, and the edge surface with high reactivity becomes extremely large. If such a material is used for the negative electrode, gas is generated due to a reaction between the electrolytic solution and the carbon edge surface, which is not preferable.
原料油組成物に含まれるノルマルパラフィンは、コークスの製造過程におけるメソフェーズの固化時に結晶を1軸方向に配向させるのに有効である。原料油組成物の全質量100質量%中のノルマルパラフィンの含有量は、3質量%以上が好ましく、ノルマルパラフィンの含有量が45質量%を超えると、ノルマルパラフィンからのガス発生が過多となり、バルクメソフェーズの配向を逆に乱す方向に働く傾向がある。この場合、炭化黒鉛化過程においても炭素層面の並びが悪く、充電時にリチウムイオンを多く取り込むことができなくなり、充放電容量が小さくなり好ましくない。
なお、ノルマルパラフィンの含有量の測定方法は、キャピラリーカラムが装着されたガスクロマトグラムによる。具体的には、ノルマルパラフィンの標準物質によって検定した後、上記溶出クロマトグラフィー法によって分離された非芳香族成分の試料をキャピラリーカラムに通して測定する。この測定値から原料油組成物の全質量を基準とした含有量を算出する。The normal paraffin contained in the raw material oil composition is effective for orienting crystals in the uniaxial direction when the mesophase is solidified in the coke production process. The content of normal paraffin in the total mass of 100% by mass of the raw material oil composition is preferably 3% by mass or more, and if the content of normal paraffin exceeds 45% by mass, excessive gas generation from normal paraffin results in bulk. There is a tendency to work in the direction that disturbs the orientation of the mesophase. In this case, even in the carbonization graphitization process, the alignment of the carbon layer surface is poor, so that a large amount of lithium ions cannot be taken in at the time of charging, and the charge / discharge capacity becomes small, which is not preferable.
The method for measuring the normal paraffin content is based on a gas chromatogram equipped with a capillary column. Specifically, after testing with a normal paraffin standard substance, the sample of the non-aromatic component separated by the elution chromatography method is passed through a capillary column and measured. The content based on the total mass of the raw material oil composition is calculated from this measured value.
本実施形態に係る原料油組成物は、コークス化され、原料炭組成物を得て、ついで必要に応じて、加熱処理され、人造黒鉛化され、リチウムイオン二次電池の負極用の炭素材料として使用される。所定の条件を満たす原料油組成物をコークス化する方法としては、ディレードコーキング法が好ましい。より具体的には、加圧条件下、ディレードコーカーによって原料油組成物を熱処理して原料炭組成物を得る。ディレードコーカーの条件は圧力300〜800kPa、温度400〜600℃であることが好ましい。炭化黒鉛化条件としては、とくに限定されないが、生コークスをロータリーキルン、シャフト炉等で1000〜1500℃で焼成してか焼コークスを得、ついで該か焼コークスをアチソン炉等で2250〜2800℃で黒鉛化処理する。 The raw material oil composition according to the present embodiment is coked to obtain a raw material charcoal composition, and then heat-treated and artificially graphitized as necessary, as a carbon material for a negative electrode of a lithium ion secondary battery. used. A delayed coking method is preferred as a method for coking a raw oil composition that satisfies a predetermined condition. More specifically, the raw material oil composition is heat-treated with a delayed coker under a pressurized condition to obtain a raw material charcoal composition. The conditions of the delayed coker are preferably a pressure of 300 to 800 kPa and a temperature of 400 to 600 ° C. The carbonization graphitization conditions are not particularly limited, but raw coke is calcined at 1000-1500 ° C. in a rotary kiln, shaft furnace or the like to obtain calcined coke, and then the calcined coke is heated at 2250-2800 ° C. in an Atchison furnace or the like. Graphitize.
本発明では、出発原料油の種類及びそのブレンド比を適切化することで、前記の原料油組成物が得られ、これらを適切な条件でコーキング処理して規定の切片範囲の原料炭組成物が得られる。 In the present invention, the above-mentioned feedstock composition can be obtained by optimizing the type of starting feedstock and the blend ratio thereof, and these can be caulked under appropriate conditions to obtain a feedstock composition having a specified intercept range. can get.
そして、このような重質炭化水素は易黒鉛化性を有しており、コーキング過程において、熱分解反応により生成した縮合多環芳香族が積層して黒鉛類似の微結晶炭素を含有する原料炭となる。そのため、前述のようにこのような重質炭化水素から得られる原料炭も高い易黒鉛化性を有している。特に本発明では、この黒鉛類似の微結晶炭素が原料炭組成物に含まれることが好ましい。 Such heavy hydrocarbons are easily graphitizable, and in the coking process, a condensed polycyclic aromatic produced by a thermal decomposition reaction is laminated to form raw carbon containing graphite-like microcrystalline carbon. It becomes. Therefore, as described above, the raw coal obtained from such heavy hydrocarbons also has high graphitization properties. Particularly in the present invention, it is preferable that the graphite-like microcrystalline carbon is contained in the raw material carbon composition.
次に、原料油組成物から得られた原料炭組成物を炭素材料を用いてリチウムイオン二次電池用負極を製造する方法、並びに、リチウムイオン二次電池について説明する。 Next, a method for producing a negative electrode for a lithium ion secondary battery using a carbonaceous material from the raw material carbon composition obtained from the raw material oil composition, and a lithium ion secondary battery will be described.
リチウムイオン二次電池用負極の製造方法としては特に限定されず、例えば、本実施形態に係る炭素材料、バインダー、必要に応じて導電助剤、有機溶媒を含む混合物を加圧成形する方法が挙げられる。また他の方法としては、炭素材料、バインダー、導電助剤等を有機溶媒中でスラリー化し、該スラリーを集電体上に塗布したのち、乾燥する方法が挙げられる。 The method for producing a negative electrode for a lithium ion secondary battery is not particularly limited, and examples thereof include a method of pressure-molding a mixture containing a carbon material, a binder, and optionally a conductive additive and an organic solvent according to the present embodiment. It is done. As another method, there is a method in which a carbon material, a binder, a conductive auxiliary agent and the like are slurried in an organic solvent, and the slurry is applied on a current collector and then dried.
バインダーとしては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、SBR(スチレン−ブタジエンラバー)等を挙げることができる。バインダーの使用量は、炭素材料100質量部に対して1〜30質量部が適当であるが、3〜20質量部程度が好ましい。 Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, and SBR (styrene-butadiene rubber). The amount of the binder used is appropriately 1 to 30 parts by mass with respect to 100 parts by mass of the carbon material, but is preferably about 3 to 20 parts by mass.
導電助剤としては、カーボンブラック、グラファイト、アセチレンブラック、又は導電性を示すインジウム−錫酸化物、あるいは、ポリアニリン、ポリチオフェン、ポリフェニレンビニレン等の導電性高分子を挙げることができる。導電助剤の使用量は、炭素材料100質量部に対して1〜15質量部が好ましい。 Examples of the conductive assistant include carbon black, graphite, acetylene black, conductive indium-tin oxide, or conductive polymers such as polyaniline, polythiophene, and polyphenylene vinylene. As for the usage-amount of a conductive support agent, 1-15 mass parts is preferable with respect to 100 mass parts of carbon materials.
有機溶媒としては、ジメチルホルムアミド、N−メチルピロリドン、イソプロパノール、トルエン等を挙げることができる。 Examples of the organic solvent include dimethylformamide, N-methylpyrrolidone, isopropanol, toluene and the like.
炭素材料、バインダー、必要に応じて導電助剤、有機溶媒を混合する方法としては、スクリュー型ニーダー、リボンミキサー、万能ミキサー又はプラネタリーミキサー等の公知の装置を用いた方法が挙げられる。得られた混合物は、ロール加圧、プレス加圧することにより成形する。このときの圧力は100〜300MPa程度が好ましい。 Examples of the method of mixing the carbon material, the binder, and, if necessary, the conductive additive and the organic solvent include a method using a known apparatus such as a screw kneader, a ribbon mixer, a universal mixer, or a planetary mixer. The obtained mixture is molded by roll pressurization and press pressurization. The pressure at this time is preferably about 100 to 300 MPa.
集電体の材質及び形状については、特に限定されず、例えば、アルミニウム、銅、ニッケル、チタン又はステンレス鋼等を、箔状、穴開け箔状又はメッシュ状等にした帯状のものを用いればよい。また、集電体として、多孔性材料、例えばポーラスメタル(発泡メタル)やカーボンペーパーなども使用可能である。 There are no particular limitations on the material and shape of the current collector, and for example, a strip-shaped material made of aluminum, copper, nickel, titanium, stainless steel, or the like in the form of a foil, a punched foil, or a mesh may be used. . Further, a porous material such as porous metal (foamed metal) or carbon paper can be used as the current collector.
負極材スラリーを集電体に塗布する方法としては、特に限定されないが、例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法又はスクリーン印刷法など公知の方法が挙げられる。塗布後は、必要に応じて平板プレス、カレンダーロール等による圧延処理を行う。 The method of applying the negative electrode material slurry to the current collector is not particularly limited. For example, a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method. Or well-known methods, such as a screen printing method, are mentioned. After the application, a rolling process using a flat plate press, a calendar roll or the like is performed as necessary.
また、シート状、ペレット状等の形状に成形されたスラリーと集電体との一体化は、例えば、ロール、プレス、もしくはこれらの組み合わせ等、公知の方法により行うことができる。 Further, the integration of the slurry formed into a sheet shape, a pellet shape or the like and the current collector can be performed by a known method such as a roll, a press, or a combination thereof.
本実施形態に係るリチウムイオン二次電池は、例えば、上記のようにして製造したリチウムイオン二次電池用負極と正極とをセパレータを介して対向して配置し、電解液を注入することにより得ることができる。 The lithium ion secondary battery according to the present embodiment is obtained, for example, by disposing a negative electrode for a lithium ion secondary battery and a positive electrode that are manufactured as described above, with a separator interposed therebetween, and injecting an electrolytic solution. be able to.
正極に用いる活物質としては、特に制限はなく、例えば、リチウムイオンをドーピング又はインターカレーション可能な金属化合物、金属酸化物、金属硫化物、又は導電性高分子材料を用いればよく、例えば、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)、及びこれらの複酸化物(LiCoXNiYMnZO2、X+Y+Z=1)、リチウムマンガンスピネル(LiMn2O4)、リチウムバナジウム化合物、V2O5、V6O13、VO2、MnO2、TiO2、MoV2O8、TiS2、V2S5、VS2、MoS2、MoS3、Cr3O8、Cr2O5、オリビン型LiMPO4(M:Co、Ni、Mn、Fe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素等及びこれらの混合物を挙げることができる。The active material used for the positive electrode is not particularly limited. For example, a metal compound, metal oxide, metal sulfide, or conductive polymer material that can be doped or intercalated with lithium ions may be used. Lithium oxide (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and their double oxides (LiCo X Ni Y Mn Z O 2 , X + Y + Z = 1), lithium manganese spinel (LiMn 2) O 4 ), lithium vanadium compound, V 2 O 5 , V 6 O 13 , VO 2 , MnO 2 , TiO 2 , MoV 2 O 8 , TiS 2 , V 2 S 5 , VS 2 , MoS 2 , MoS 3 , Cr 3 O 8 , Cr 2 O 5 , olivine type LiMPO 4 (M: Co, Ni, Mn, Fe), poly Examples thereof include conductive polymers such as acetylene, polyaniline, polypyrrole, polythiophene, and polyacene, porous carbon, and the like, and mixtures thereof.
セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものを使用することができる。なお、作製するリチウムイオン二次電池の正極と負極が直接接触しない構造にした場合は、セパレータを使用する必要はない。 As the separator, for example, a non-woven fabric, cloth, microporous film, or a combination thereof having a polyolefin as a main component such as polyethylene or polypropylene can be used. In addition, when it is set as the structure where the positive electrode and negative electrode of the lithium ion secondary battery to produce are not in direct contact, it is not necessary to use a separator.
リチウム二次電池に使用する電解液及び電解質としては公知の有機電解液、無機固体電解質、高分子固体電解質が使用できる。好ましくは、電気伝導性の観点から有機電解液が好ましい。 As an electrolytic solution and an electrolyte used for the lithium secondary battery, known organic electrolytic solutions, inorganic solid electrolytes, and polymer solid electrolytes can be used. Preferably, an organic electrolyte is preferable from the viewpoint of electrical conductivity.
有機電解液としては、ジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールフェニルエーテル等のエーテル;N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド等のアミド;ジメチルスルホキシド、スルホラン等の含硫黄化合物;メチルエチルケトン、メチルイソブチルケトン等のジアルキルケトン;テトラヒドロフラン、2−メトキシテトラヒドロフラン等の環状エーテル;エチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、ビニレンカーボネート等のカーボネート;γ−ブチロラクトン;N−メチルピロリドン;アセトニトリル、ニトロメタン等の有機溶媒を挙げることができる。なかでも、エチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、ジエトキシエタン、ジメチルスルホキシド、アセトニトリル、テトラヒドロフラン等を好ましい例として挙げることができ、特に好ましい例として、エチレンカーボネート、プロピレンカーボネート等のカーボネート系非水溶媒を挙げることができる。これらの溶媒は、単独で又は2種以上を混合して使用することができる。 Examples of the organic electrolyte include dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, and ethylene glycol phenyl ether; N-methylformamide, N, N-dimethylformamide, N -Amides such as ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N-diethylacetamide; sulfur-containing compounds such as dimethylsulfoxide and sulfolane; methyl ethyl ketone; Dialkyl ketones such as methyl isobutyl ketone; cyclic ethers such as tetrahydrofuran and 2-methoxytetrahydrofuran; ethylene carbonate , Butylene carbonate, diethyl carbonate, dimethyl carbonate, methylethyl carbonate, propylene carbonate, carbonates such as vinylene carbonate; include acetonitrile, the organic solvent of nitromethane; .gamma.-butyrolactone; N- methylpyrrolidone. Among these, preferred examples include ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, propylene carbonate, vinylene carbonate, γ-butyrolactone, diethoxyethane, dimethyl sulfoxide, acetonitrile, tetrahydrofuran, and the like. Preferable examples include carbonate-based non-aqueous solvents such as ethylene carbonate and propylene carbonate. These solvents can be used alone or in admixture of two or more.
これらの溶媒の溶質(電解質)には、リチウム塩が使用される。リチウム塩としてLiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCl、LiCF3SO3、LiCF3CO2、LiN(CF3SO2)2等が挙げられる。Lithium salts are used as solutes (electrolytes) for these solvents. Examples of the lithium salt include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , and LiN (CF 3 SO 2 ) 2 .
高分子固体電解質としては、ポリエチレンオキサイド誘導体及び該誘導体を含む重合体、ポリプロピレンオキサイド誘導体及び該誘導体を含む重合体、リン酸エステル重合体、ポリカーボネート誘導体及び該誘導体を含む重合体等が挙げられる。 Examples of the polymer solid electrolyte include a polyethylene oxide derivative and a polymer containing the derivative, a polypropylene oxide derivative and a polymer containing the derivative, a phosphate ester polymer, a polycarbonate derivative and a polymer containing the derivative.
なお、上記以外の電池構成上必要な部材の選択についてはなんら制約を受けるものではない。 There are no restrictions on the selection of members other than those described above necessary for the battery configuration.
本実施形態に係る炭素材料を負極材料に用いたリチウムイオン二次電池の構造は、特に限定されないが、通常、正極及び負極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群とし、これら極板群を外装体中に封入した構造とするのが一般的である。リチウムイオン二次電池は、例えば、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池などとして使用される。 The structure of the lithium ion secondary battery using the carbon material according to the present embodiment as a negative electrode material is not particularly limited. Usually, a positive electrode and a negative electrode, and a separator provided as necessary, are wound in a flat spiral shape. In general, a wound electrode plate group is formed, or these are laminated in a flat plate shape to form a laminated electrode plate group, and these electrode plate groups are enclosed in an exterior body. Lithium ion secondary batteries are used as, for example, paper-type batteries, button-type batteries, coin-type batteries, stacked batteries, cylindrical batteries, and the like.
本実施形態に係るリチウムイオン二次電池負極用炭素材料を用いたリチウムイオン二次電池は、従来の炭素材料を用いたリチウムイオン二次電池と比較して、高速充放電特性に優れ、自動車用、例えば、ハイブリッド自動車用、プラグインハイブリッド自動車用、電気自動車用に使用することができる。 The lithium ion secondary battery using the carbon material for the negative electrode of the lithium ion secondary battery according to the present embodiment is superior in high-speed charge / discharge characteristics as compared with a lithium ion secondary battery using a conventional carbon material, and is used for automobiles. For example, it can be used for hybrid vehicles, plug-in hybrid vehicles, and electric vehicles.
以下、実施例及び比較例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
(実施例1〜4及び比較例1〜6)
(1)原料炭組成物の作製
各種重質油をブレンドして8種類の原料油組成物を調製し、より具体的には、実施例1〜4の原料油組成物は、石油系重質油の脱硫脱瀝油に水素化脱硫重質油流動接触分解装置のボトム油をそれぞれブレンド比率を変えて混合し、原料油組成物を調整した。この原料油組成物をオートクレーブで、0.8MPa加圧下、530℃温度で3時間コーキングさせることにより原料炭組成物を得た。
実施例1の原料油組成物は、脱硫脱瀝油50容積%、水素化脱硫重質油30容積%、流動接触分解装置のボトム油を20容積%、実施例2は、脱硫脱瀝油50容積%、水素化脱硫重質油20容積%、流動接触分解装置のボトム油を30容積%、実施例3は、脱硫脱瀝油50容積%、水素化脱硫重質油10容積%、流動接触分解装置のボトム油を40容積%、実施例4は、脱硫脱瀝油50容積%、水素化脱硫重質油40容積%、流動接触分解装置のボトム油を10容積%とし調整した。EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.
(Examples 1-4 and Comparative Examples 1-6)
(1) Preparation of raw material charcoal composition Various heavy oils are blended to prepare eight types of raw material oil compositions. More specifically, the raw material oil compositions of Examples 1 to 4 are petroleum heavy The raw oil composition was prepared by mixing the desulfurized dewaxed oil and the bottom oil of the hydrodesulfurized heavy oil fluid catalytic cracker at different blend ratios. This raw material oil composition was caulked in an autoclave under a pressure of 0.8 MPa at a temperature of 530 ° C. for 3 hours to obtain a raw material charcoal composition.
The raw material oil composition of Example 1 is 50% by volume of desulfurized dewaxed oil, 30% by volume of hydrodesulfurized heavy oil, 20% by volume of bottom oil of a fluid catalytic cracker, and Example 2 is 50% of desulfurized dewaxed oil. Volume%, hydrodesulfurized heavy oil 20 volume%, bottom oil of fluid catalytic cracker 30 volume%, Example 3 is desulfurized desulfurized oil 50 volume%, hydrodesulfurized heavy oil 10 volume%, fluid contact The bottom oil of the cracker was adjusted to 40% by volume, Example 4 was adjusted to 50% by volume of desulfurized and desulfurized oil, 40% by volume of hydrodesulfurized heavy oil, and 10% by volume of the bottom oil of the fluid catalytic cracker.
比較例1は、実施例1と同じ原料組成物を使用し、この原料油組成物をオートクレーブで、0.8MPa加圧下、480℃温度で2時間コーキングさせることにより原料炭組成物を得た。比較例2は、実施例2と同じ原料組成物を使用し、この原料油組成物をオートクレーブで、0.8MPa加圧下、490℃温度で2時間コーキングさせることにより原料炭組成物を得た。
比較例3〜6の原料油組成物は、ナフサタールや石油系重質留出油、高硫黄減圧残渣油を用いてそれぞれブレンド比率を変えて混合し調製し、実施例と同じ、条件でコーキングさせることにより原料炭組成物を得た。比較例3の原料油組成物は、ナフサタール50容積%、南方系減圧留出油を10容積%、中東系減圧残渣油を40容積%、比較例4は、ナフサタール30容積%、南方系減圧留出油を20容積%、中東系減圧残渣油を50容積%、比較例5は、ナフサタール10容積%、南方系減圧留出油を10容積%、中東系減圧残渣油を80容積%、比較例6は、南方系減圧留出油を20容積%、中東系減圧残渣油を80容積%、とし調整した。In Comparative Example 1, the same raw material composition as in Example 1 was used, and this raw material oil composition was caulked at 480 ° C. for 2 hours in an autoclave under 0.8 MPa pressure to obtain a raw material carbon composition. In Comparative Example 2, the same raw material composition as in Example 2 was used, and this raw material oil composition was caulked at 490 ° C. for 2 hours in an autoclave under a pressure of 0.8 MPa to obtain a raw material carbon composition.
The raw material oil compositions of Comparative Examples 3 to 6 were prepared by mixing with naphthatar, petroleum heavy distillate oil, and high sulfur reduced pressure residue oil, changing the blend ratio, and coking under the same conditions as in the examples. The raw material charcoal composition was obtained. The raw material oil composition of Comparative Example 3 is 50% by volume of naphthatar, 10% by volume of Southern decompression distillate, 40% by volume of Middle Eastern decompression residual oil, and Comparative Example 4 is 30% by volume of naphthatar, Southern decompression distillation. 20% by volume of oil output, 50% by volume of Middle Eastern decompression residue oil, Comparative Example 5 is 10% by volume of naphthatar, 10% by volume of Southern decompression residue oil, 80% by volume of Middle Eastern decompression residue oil, Comparative Example No. 6 was adjusted to 20% by volume of the southern decompression distillate oil and 80% by volume of the Middle Eastern decompression residue oil.
各原料炭組成物(生コークス)を1000℃で1時間焼成してか焼コークスを得た。さらに上記のか焼コークスを2400℃で5分間黒鉛化処理し、リチウムイオン二次電池負極用炭素材料を得た。 Each raw carbon composition (raw coke) was calcined at 1000 ° C. for 1 hour to obtain calcined coke. Further, the calcined coke was graphitized at 2400 ° C. for 5 minutes to obtain a carbon material for a negative electrode of a lithium ion secondary battery.
(2)負極材料の充放電評価
(a)負極の作製
活物質としてリチウムイオン二次電池負極用炭素材料の微粒子、導電材としてアセチレンブラック(AB)、バインダーとしてポリフッ化ビニリデン(PVDF)を80:10:10(質量比)の割合でN−メチル−2−ピロリドン中で混合し、スラリーを作製した。該スラリーを銅箔上に塗布し、ホットプレートで10分間乾燥した後、ロールプレスでプレス成形した。
(b)評価用電池の作製
負極として上記の組成物(30×50mm)、正極としてニッケル酸リチウム(30×50mm)、電解液としてエチレンカーボネート(EC)/メチルエチルカーボネート(MEC)混合液(EC/MEC質量比:3/7、溶質:LiPF6(1M体積モル濃度)、及びセパレータとしてポリエチレン微孔膜を用いた。
(c)高速充放電レート特性の評価
作成した電池の高速充放電特性の測定結果を表3に示した。なお、本評価におけるCレートは10Cとした。利用率%は、10Cでの充放電容量を1Cでの充放電容量で除して求めた。(2) Evaluation of charge / discharge of negative electrode material (a) Production of negative electrode 80 microparticles of carbon material for lithium ion secondary battery negative electrode as active material, acetylene black (AB) as conductive material, and polyvinylidene fluoride (PVDF) as binder: 80: A slurry was prepared by mixing in N-methyl-2-pyrrolidone at a ratio of 10:10 (mass ratio). The slurry was applied on a copper foil, dried on a hot plate for 10 minutes, and then press-molded with a roll press.
(B) Production of battery for evaluation The above composition (30 × 50 mm) as the negative electrode, lithium nickelate (30 × 50 mm) as the positive electrode, ethylene carbonate (EC) / methyl ethyl carbonate (MEC) mixed solution (EC / MEC mass ratio: 3/7, solute: LiPF 6 (1 M molar concentration), and a polyethylene microporous membrane was used as a separator.
(C) Evaluation of high-speed charge / discharge rate characteristics Table 3 shows the measurement results of the high-speed charge / discharge characteristics of the battery prepared. The C rate in this evaluation was 10C. Utilization% was determined by dividing the charge / discharge capacity at 10C by the charge / discharge capacity at 1C.
実施例1〜4に係る原料炭組成物の真比重(RD)は1.30以上で、1000〜1500℃の温度でか焼した場合の加熱後にえられる炭化物の真比重(RD)と全水素含有量(TH質量%)とが下記式(1)
RD=−0.75TH質量%+切片 ・・・(1)
で表され、この時の切片が2.163〜2.180の条件を満たす(図1と表1〜2参照)。The true specific gravity (RD) of the raw coal composition according to Examples 1 to 4 is 1.30 or more, and the true specific gravity (RD) and total hydrogen of the carbide obtained after heating when calcined at a temperature of 1000 to 1500 ° C. The content (TH mass%) is the following formula (1)
RD = −0.75 TH mass% + intercept (1)
The intercept at this time satisfies the condition of 2.163 to 2.180 (see FIG. 1 and Tables 1 and 2).
表3に示すように、実施例1〜4に係る原料炭組成物から製造された炭素材料を負極に用いたリチウムイオン二次電池は、比較例1〜6に係る原料炭組成物から製造された炭素材料を負極に用いたものと比較し、高速充放電条件(10C)における充電容量及び放電容量の両方がバランスよく優れていた。
比較例1〜2の原料炭組成物の真比重(RD)は1.30未満と低く、上記の規定の切片の条件を満たすが、これらは、後の炭素化過程での発泡により、結晶組織が乱雑となり、高速での充放電特性が劣るものとなった。
比較例3〜6に係る原料炭組成物の真比重(RD)は1.30以上であったが、上記規定の切片が2.163〜2.180の条件を満たさなかった。As shown in Table 3, the lithium ion secondary battery using the carbon material manufactured from the raw material carbon composition according to Examples 1 to 4 as the negative electrode is manufactured from the raw material carbon composition according to Comparative Examples 1 to 6. Compared with the carbon material used for the negative electrode, both the charge capacity and discharge capacity under high-speed charge / discharge conditions (10C) were excellent in a well-balanced manner.
The true specific gravity (RD) of the raw material coal compositions of Comparative Examples 1 and 2 is as low as less than 1.30, which satisfies the above-mentioned conditions for the intercept. Became messy, and the charge / discharge characteristics at high speed were inferior.
Although the true specific gravity (RD) of the raw coal composition according to Comparative Examples 3 to 6 was 1.30 or more, the above-mentioned defined intercept did not satisfy the conditions of 2.163 to 2.180.
Claims (4)
RD=−0.75TH質量%+切片 ・・・(1)
(上式中、RDは上記炭化物の真比重を表し、TH質量%は上記炭化物の全水素含有量(質量%)を表し、切片は2.163〜2.180の範囲である。)
となるように、上記重質油組成物の組成を選択する工程と、
選択された組成を有する重質油組成物をコーキング処理する工程と
を少なくとも含むリチウムイオン二次電池負極材用の原料炭組成物の製造方法。A raw coal composition obtained by coking a heavy oil composition containing two or more heavy oils has a true specific gravity of 1.30 or more, and the raw coal composition is subjected to an inert gas atmosphere. The carbide obtained by calcining at a temperature of 1000 to 1500 ° C. is represented by the following formula (1)
RD = −0.75 TH mass% + intercept (1)
(In the above formula, RD represents the true specific gravity of the carbide, TH mass% represents the total hydrogen content (mass%) of the carbide, and the intercept ranges from 2.163 to 2.180.)
Selecting the composition of the heavy oil composition so that
A method for producing a raw material carbon composition for a negative electrode material for a lithium ion secondary battery comprising at least a step of coking a heavy oil composition having a selected composition.
RD=−0.75TH質量%+切片 ・・・(1)
(上式中、RDは上記炭化物の真比重を表し、TH質量%は上記炭化物の全水素含有量(質量%)を表し、切片は2.163〜2.180の範囲である。)
を満足するリチウムイオン二次電池負極材用の原料炭組成物。A raw coal composition having a true specific gravity of 1.30 or more obtained by coking treatment of a heavy oil composition, wherein the raw coal composition is calcined at a temperature of 1000 to 1500 ° C. in an inert gas atmosphere. The carbide obtained by the following formula (1)
RD = −0.75 TH mass% + intercept (1)
(In the above formula, RD represents the true specific gravity of the carbide, TH mass% represents the total hydrogen content (mass%) of the carbide, and the intercept ranges from 2.163 to 2.180.)
A raw material carbon composition for a lithium ion secondary battery negative electrode material satisfying
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012522675A JP5657661B2 (en) | 2010-06-30 | 2011-06-29 | Raw material carbon composition for negative electrode material of lithium ion secondary battery |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010150163 | 2010-06-30 | ||
JP2010150163 | 2010-06-30 | ||
JP2012522675A JP5657661B2 (en) | 2010-06-30 | 2011-06-29 | Raw material carbon composition for negative electrode material of lithium ion secondary battery |
PCT/JP2011/064961 WO2012002457A1 (en) | 2010-06-30 | 2011-06-29 | Metallurgical coal composition for negative electrode material of lithium-ion secondary batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2012002457A1 true JPWO2012002457A1 (en) | 2013-08-29 |
JP5657661B2 JP5657661B2 (en) | 2015-01-21 |
Family
ID=45402161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012522675A Active JP5657661B2 (en) | 2010-06-30 | 2011-06-29 | Raw material carbon composition for negative electrode material of lithium ion secondary battery |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5657661B2 (en) |
KR (1) | KR101800490B1 (en) |
WO (1) | WO2012002457A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112898997A (en) * | 2021-01-20 | 2021-06-04 | 重庆大学 | Method for catalyzing biomass pyrolysis by utilizing waste lithium battery heat treatment product |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5216285B2 (en) * | 2007-09-18 | 2013-06-19 | Jx日鉱日石エネルギー株式会社 | Amorphous carbon material for negative electrode of lithium ion secondary battery and method for producing the same |
JP5415684B2 (en) * | 2007-10-02 | 2014-02-12 | Jx日鉱日石エネルギー株式会社 | Artificial graphite for negative electrode of lithium ion secondary battery and method for producing the same |
-
2011
- 2011-06-29 JP JP2012522675A patent/JP5657661B2/en active Active
- 2011-06-29 WO PCT/JP2011/064961 patent/WO2012002457A1/en active Application Filing
- 2011-06-29 KR KR1020137002186A patent/KR101800490B1/en active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112898997A (en) * | 2021-01-20 | 2021-06-04 | 重庆大学 | Method for catalyzing biomass pyrolysis by utilizing waste lithium battery heat treatment product |
Also Published As
Publication number | Publication date |
---|---|
KR101800490B1 (en) | 2017-11-22 |
JP5657661B2 (en) | 2015-01-21 |
KR20130093081A (en) | 2013-08-21 |
WO2012002457A1 (en) | 2012-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5415684B2 (en) | Artificial graphite for negative electrode of lithium ion secondary battery and method for producing the same | |
JP5216285B2 (en) | Amorphous carbon material for negative electrode of lithium ion secondary battery and method for producing the same | |
US8697025B2 (en) | Raw material charcoal composition for negative electrode material of lithium ion secondary battery and method for producing the same | |
JP5400064B2 (en) | Raw material oil composition for negative electrode material of lithium ion secondary battery | |
JP5728475B2 (en) | Raw material carbon composition for negative electrode material of lithium ion secondary battery | |
JP5351410B2 (en) | Lithium ion secondary battery negative electrode material | |
JP5490636B2 (en) | Raw material oil composition for negative electrode carbon material of lithium ion secondary battery | |
JP5657661B2 (en) | Raw material carbon composition for negative electrode material of lithium ion secondary battery | |
JP5528923B2 (en) | Raw material carbon composition for negative electrode material of lithium ion secondary battery | |
JP5952807B2 (en) | Method for producing raw material carbon composition of carbon material for negative electrode of lithium ion secondary battery | |
JP5498279B2 (en) | Raw material oil composition for negative electrode carbon material of lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131009 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140902 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141126 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5657661 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |