JPWO2011125911A1 - Metal complex and anticancer agent containing this as active ingredient - Google Patents

Metal complex and anticancer agent containing this as active ingredient Download PDF

Info

Publication number
JPWO2011125911A1
JPWO2011125911A1 JP2012509616A JP2012509616A JPWO2011125911A1 JP WO2011125911 A1 JPWO2011125911 A1 JP WO2011125911A1 JP 2012509616 A JP2012509616 A JP 2012509616A JP 2012509616 A JP2012509616 A JP 2012509616A JP WO2011125911 A1 JPWO2011125911 A1 JP WO2011125911A1
Authority
JP
Japan
Prior art keywords
group
chemical formula
metal complex
salt
following chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012509616A
Other languages
Japanese (ja)
Other versions
JP5553275B2 (en
Inventor
明 小谷
明 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP2012509616A priority Critical patent/JP5553275B2/en
Publication of JPWO2011125911A1 publication Critical patent/JPWO2011125911A1/en
Application granted granted Critical
Publication of JP5553275B2 publication Critical patent/JP5553275B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • C07F15/0093Platinum compounds without a metal-carbon linkage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/282Platinum compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/555Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/661Phosphorus acids or esters thereof not having P—C bonds, e.g. fosfosal, dichlorvos, malathion or mevinphos
    • A61K31/6615Compounds having two or more esterified phosphorus acid groups, e.g. inositol triphosphate, phytic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • C07F15/0066Palladium compounds without a metal-carbon linkage

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

【課題】シスプラチンなどの従来の抗がん剤と比較して副作用(特に、腎毒性)が低減され、かつ、抗がん活性に優れた化合物を提供する。【解決手段】下記化学式1で表される金属錯体:または、下記化学式2で表される金属錯体である:式中の符号は、いずれも明細書において定義されている。【選択図】図16The present invention provides a compound having reduced side effects (particularly nephrotoxicity) and excellent anticancer activity as compared with conventional anticancer agents such as cisplatin. A metal complex represented by the following chemical formula 1: or a metal complex represented by the following chemical formula 2: all symbols in the formula are defined in the specification. [Selection] Figure 16

Description

本発明は、金属錯体およびこれを有効成分として含有する抗がん剤に関する。   The present invention relates to a metal complex and an anticancer agent containing this as an active ingredient.

金属錯体を有効成分として含有する抗がん剤として、「白金製剤(プラチナ製剤)」に分類されるシスプラチンが知られている。シスプラチンは、下記化学式で表されるように、白金錯体としての構造を有する。   Cisplatin classified into “platinum preparation (platinum preparation)” is known as an anticancer agent containing a metal complex as an active ingredient. Cisplatin has a structure as a platinum complex as represented by the following chemical formula.

このシスプラチンが投与されると、塩素原子が脱離して白金原子ががん細胞に含まれるDNAの構成塩基であるグアニンやアデニンのN−7位に結合する。これによりDNA鎖内には架橋が形成され、DNAの複製が阻害される結果、がん細胞の分裂・増殖が抑制され、がん細胞は死滅に至る。   When this cisplatin is administered, the chlorine atom is eliminated and the platinum atom binds to the N-7 position of guanine or adenine, which is a base of DNA contained in cancer cells. As a result, a cross-link is formed in the DNA strand, and as a result of inhibiting DNA replication, the division and proliferation of cancer cells are suppressed, and the cancer cells are killed.

シスプラチンは、1965年、アメリカのローゼンバーグ博士によって細菌の増殖を抑制する抗菌薬として発見され、その後、抗腫瘍効果が確認されてがん治療に用いられるようになった。日本におけるシスプラチンの適応症は、睾丸腫瘍、膀胱がん、腎盂・尿管腫瘍、前立腺がん、卵巣がん、頭頸部がん、非小細胞肺がん、食道がん、子宮頸がん、神経芽細胞腫、胃がん、小細胞肺がん、骨肉腫、胚細胞腫瘍、悪性リンパ腫など、非常に広い範囲に及んでいる。また、世界におけるプラチナ製剤のマーケットは急速に拡大しており、数年前までは年約20%の割合でマーケットが成長していた。近年でもその割合は鈍化しつつあるものの、プラチナ製剤のマーケットは依然として拡大の一途を辿っている。   Cisplatin was discovered in 1965 by Dr. Rosenberg of the United States as an antibacterial drug that suppresses bacterial growth, and after its antitumor effect was confirmed, it was used for cancer treatment. In Japan, indications for cisplatin are testicular tumor, bladder cancer, renal pelvis / ureter tumor, prostate cancer, ovarian cancer, head and neck cancer, non-small cell lung cancer, esophageal cancer, cervical cancer, neuroblastoma Cellular, gastric cancer, small cell lung cancer, osteosarcoma, germ cell tumor, malignant lymphoma, and so on. In addition, the global market for platinum products is expanding rapidly, and until several years ago, the market grew at a rate of about 20% per year. Although the rate has slowed in recent years, the market for platinum products is still expanding.

このように、シスプラチンは、幅広い腫瘍縮小効果を有するものの、激しい副作用を示すという特徴をも有している。最も深刻な副作用は、強い腎毒性による腎不全などの腎臓機能の障害であり、投与上の大きな問題点とされている。かような腎臓障害は尿量が減少したときに発現しやすいことから、点滴によって水分を摂ったり、利尿剤を使用して尿量を増やしたりすることで、腎毒性を軽減するなどの対策が必要とされている。また、多くの患者に見られる悪心・嘔吐や食欲不振などの消化器症状に関しても、他の抗がん剤と比べてかなり強く発現することが知られている。このような消化器症状に対しては、主に制吐剤を併用することによって対応しているのが現状である。   Thus, while cisplatin has a wide range of tumor shrinking effects, it also has a characteristic of showing severe side effects. The most serious side effect is an impaired renal function such as renal failure due to strong nephrotoxicity, which is regarded as a major problem in administration. Since such kidney damage is likely to occur when urine volume decreases, measures such as reducing nephrotoxicity by ingesting water by infusion or increasing urine volume using diuretics can be taken. is necessary. In addition, it is known that gastrointestinal symptoms such as nausea / vomiting and anorexia seen in many patients are expressed considerably more strongly than other anticancer agents. At present, such digestive symptoms are mainly dealt with by using antiemetics together.

ところで、上述したようなプラチナ製剤の1つとして、特許文献1には、各種のカチオン性またはアニオン性化合物が開示されている。この特許文献1に記載の化合物は、主として骨がん等の骨関連疾患の治療を指向したものである。   By the way, as one of the platinum preparations as described above, Patent Document 1 discloses various cationic or anionic compounds. The compound described in Patent Document 1 is mainly directed to the treatment of bone-related diseases such as bone cancer.

特表2007−521257号公報Special Table 2007-521257

特許文献1に記載の化合物についても、一定の抗がん効果は認められているが、その効果はいまだ満足のいくものではなかった。また、特許文献1では開示されている化合物の腎毒性についての評価がなされておらず、シスプラチン等の従来のプラチナ製剤に内在している副作用の問題を解決しうる手段としての可能性は未知数である。   Although a certain anticancer effect is recognized also about the compound of patent document 1, the effect was not yet satisfactory. In addition, Patent Document 1 does not evaluate the nephrotoxicity of the disclosed compound, and the possibility as a means for solving the problem of side effects inherent in conventional platinum preparations such as cisplatin is unknown. is there.

そこで本発明は、シスプラチンなどの従来の抗がん剤と比較して副作用(特に、腎毒性)が低減され、かつ、抗がん活性に優れた化合物を提供することを目的とする。   Therefore, an object of the present invention is to provide a compound having reduced side effects (particularly nephrotoxicity) and excellent anticancer activity as compared with conventional anticancer agents such as cisplatin.

本発明者は、従来の技術における上述したような問題点に鑑み、鋭意検討を行なった。その結果、白金(Pt)やパラジウム(Pd)といった貴金属を含有するある種の金属錯体が上記課題を解決しうることを見出し、本発明を完成させるに至った。   The present inventor has intensively studied in view of the above-described problems in the prior art. As a result, it has been found that a certain metal complex containing a noble metal such as platinum (Pt) or palladium (Pd) can solve the above problems, and has completed the present invention.

すなわち、本発明の第1の形態によれば、下記化学式1で表される金属錯体またはその塩:   That is, according to the first aspect of the present invention, a metal complex represented by the following chemical formula 1 or a salt thereof:

が提供される。 Is provided.

また、本発明の第2の形態によれば、下記化学式2で表される金属錯体またはその塩:   According to the second embodiment of the present invention, a metal complex represented by the following chemical formula 2 or a salt thereof:

が提供される。なお、上記化学式1および化学式2における符号については、以下で詳細に説明する。 Is provided. In addition, the code | symbol in the said Chemical formula 1 and Chemical formula 2 is demonstrated in detail below.

本発明によれば、シスプラチンなどの従来の抗がん剤と比較して副作用(特に、腎毒性)が低減され、かつ、抗がん活性に優れた化合物が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the side effect (especially nephrotoxicity) is reduced compared with conventional anticancer agents, such as cisplatin, and the compound excellent in anticancer activity is provided.

ヒト培養がん細胞パネルを用いた評価により得られた、実施例1−5で合成したPt(5−MP)(AtC3)Clについてのフィンガープリントを示す図である。Obtained by evaluation using cultured human cancer cells panel is a diagram showing a fingerprint for synthesized Pt (5-MP) (AtC3 ) Cl 2 in Example 1-5. ヒト培養がん細胞パネルを用いた評価により得られた、Pt(5−MP)(AtC3)Clについてのフィンガープリントのうち、「GI50」のグラフを、公知の白金錯体抗がん剤であるシスプラチン、カルボプラチンおよびオキサリプラチンの「GI50」のグラフと並べて示した図である。Of the fingerprints for Pt (5-MP) (AtC3) Cl 2 obtained by evaluation using a human cultured cancer cell panel, the “GI50” graph is a known platinum complex anticancer agent. It is the figure shown side by side with the "GI50" graph of cisplatin, carboplatin, and oxaliplatin. 実施例の「腎毒性評価」において、Pt(5−MP)(AtC3)(実施例1−5)の腎毒性を評価した結果を示すグラフである。It is a graph which shows the result of having evaluated the nephrotoxicity of Pt (5-MP) (AtC3) (Example 1-5) in "Nephrotoxicity evaluation" of an Example. 実施例の「腎毒性評価」において、(Pt(NH・Pt(dach))−IP(実施例2−2)の腎毒性を評価した結果を示すグラフである。In "nephrotoxicity Evaluation" in Example, (Pt (NH 3) 2 · Pt (dach)) - is a graph showing the results of evaluation of the renal toxicity of IP 6 (Example 2-2). 実施例の「腎毒性評価」において、Pt(Pt(dach)−IP(実施例2−3)の腎毒性を評価した結果を示すグラフである。In "nephrotoxicity Evaluation" in Example is a graph showing the results of evaluation of the renal toxicity of Pt (Pt (dach) -IP 6 ) 2 ( Example 2-3). 実施例の「腎毒性評価」において、シスプラチンの腎毒性を評価した結果を示すグラフである。It is a graph which shows the result of having evaluated the nephrotoxicity of cisplatin in "Nephrotoxicity evaluation" of an Example. 実施例の「腎毒性評価」において、マウスに対して本発明の錯体を投与し、シスプラチン投与群およびコントロール群と比較するように各サンプル投与群について測定された血中グルコース値の平均値±標準偏差(相対値)を示すグラフである。In the “nephrotoxicity evaluation” in the examples, the complex of the present invention was administered to mice, and the mean value of blood glucose values ± standard measured for each sample administration group as compared with the cisplatin administration group and the control group It is a graph which shows a deviation (relative value). 実施例の「腎毒性評価」において、マウスに対して本発明の錯体を投与し、シスプラチン投与群およびコントロール群と比較するように各サンプル投与群について測定された血中BUN値の平均値±標準偏差(相対値)を示すグラフである。In the “nephrotoxicity evaluation” in the examples, the mean value of blood BUN values measured for each sample administration group as compared with the cisplatin administration group and the control group administered to the mice according to the complex of the present invention ± standard It is a graph which shows a deviation (relative value). 実施例の「腎毒性評価」において、マウスに対して本発明の錯体を投与し、シスプラチン投与群およびコントロール群と比較するように各サンプル投与群について測定された血中Crea値の平均値±標準偏差(相対値)を示すグラフである。In the “nephrotoxicity evaluation” in the examples, the mean value of blood Crea values ± standard measured by administering the complex of the present invention to mice and comparing each sample administration group as compared with the cisplatin administration group and the control group It is a graph which shows a deviation (relative value). 実施例の「腎毒性評価」において、マウスに対して本発明の錯体を投与し、シスプラチン投与群およびコントロール群と比較するように各サンプル投与群について測定された血中ヘマトクリット値(Hct)値の平均値±標準偏差(相対値)を示すグラフである。In the "nephrotoxicity evaluation" of the examples, the complex of the present invention was administered to mice, and the blood hematocrit (Hct) value measured for each sample administration group as compared with the cisplatin administration group and the control group. It is a graph which shows an average value +/- standard deviation (relative value). 実施例の「腎毒性評価」において、マウスに対して本発明の錯体を投与し、シスプラチン投与群およびコントロール群と比較するように各サンプル投与群について測定された血中ヘモグロビン(Hb)値の平均値±標準偏差(相対値)を示すグラフである。In the `` nephrotoxicity evaluation '' of the examples, the average of blood hemoglobin (Hb) value measured for each sample administration group as compared with the cisplatin administration group and the control group after administering the complex of the present invention to mice. It is a graph which shows value +/- standard deviation (relative value). 実施例の「in vivoにおける抗がん効果の評価(カチオン錯体)」において、Pt(5-MP)(AtC3)Cl2を投与した胆がんマウスの平均腫瘍体積比の変化をコントロール群と比較して示すグラフである。Comparison of changes in mean tumor volume ratio of bile cancer mice treated with Pt (5-MP) (AtC3) Cl 2 compared to control group in “Evaluation of anti-cancer effect in vivo (cationic complex)” in Example It is a graph shown. 実施例の「in vivoにおける抗がん効果の評価(カチオン錯体)」において、Pt(5-MP)(AtC3)Cl2を投与した胆がんマウスの平均体重比の変化をコントロール群と比較して示すグラフである。In the “Evaluation of anti-cancer effect in vivo (cationic complex)” in the Examples, the change in the average body weight ratio of the bile cancer mice administered with Pt (5-MP) (AtC3) Cl 2 was compared with the control group. It is a graph shown. 実施例の「in vivoにおける抗がん効果の評価(カチオン錯体)」において、シスプラチンまたはPd(5-MP)(AtC3)(NO3)2を投与した胆がんマウスの平均腫瘍体積比の変化をコントロール群と比較して示すグラフである。Changes in mean tumor volume ratio of bile cancer mice treated with cisplatin or Pd (5-MP) (AtC3) (NO 3 ) 2 in “Evaluation of anticancer effect in vivo (cationic complex)” in Examples Is a graph showing the comparison with the control group. 実施例の「in vivoにおける抗がん効果の評価(カチオン錯体)」において、シスプラチンまたはPd(5-MP)(AtC3)(NO3)2を投与した胆がんマウスの平均体重比の変化をコントロール群と比較して示すグラフである。In "Evaluation of anti-cancer effect in vivo (cationic complex)" in the examples, the change in the average body weight ratio of bile cancer mice administered with cisplatin or Pd (5-MP) (AtC3) (NO 3 ) 2 It is a graph shown in comparison with a control group. 実施例の「in vivoにおける抗がん効果の評価(アニオン錯体)」において、シスプラチンまたはPt(Pt(dach)-IP6)2を投与した胆がんマウスの平均腫瘍体積比の変化をコントロール群と比較して示すグラフである。In the “Evaluation of anti-cancer effect in vivo (anion complex)” in the Examples, the change in the average tumor volume ratio of bile cancer mice administered with cisplatin or Pt (Pt (dach) -IP 6 ) 2 was controlled. It is a graph shown in comparison with. 実施例の「ラット骨転移モデルを用いたin vivo評価」において、シスプラチン 33μmol/kg 1回投与群およびPt(Pt(dach)-IP6)233μmol/kg 1回投与群の平均腫瘍体積比の変化をコントロール群と比較して示すグラフである。In the `` in vivo evaluation using rat bone metastasis model '' in the examples, the average tumor volume ratio of the cisplatin 33 μmol / kg once-administered group and the Pt (Pt (dach) -IP 6 ) 2 33 μmol / kg once-administered group It is a graph which shows a change compared with a control group. 実施例の「ラット骨転移モデルを用いたin vivo評価」において、シスプラチン 8.25μmol/kg 1回投与群(1日目投与)およびPt(Pt(dach)-IP6)2 8.25μmol/kg 2回投与群(1, 8日目投与)の平均腫瘍体積比の変化をコントロール群と比較して示すグラフである。In the “in vivo evaluation using rat bone metastasis model” in the examples, cisplatin 8.25 μmol / kg administered once (day 1 administration) and Pt (Pt (dach) -IP 6 ) 2 8.25 μmol / kg administered twice 3 is a graph showing changes in the average tumor volume ratio of the administration group (administration on days 1 and 8) compared with the control group. 実施例の「ラット骨転移モデルを用いたin vivo評価」において、シスプラチン 8.25μmol/kg 1回投与群(1日目投与)およびPt(Pt(dach)-IP6)28.25μmol/kg 2回投与群(1, 8日目投与)の左右足比(メジアン値の平均値)の変化をコントロール群と比較して示すグラフである。In the “in vivo evaluation using rat bone metastasis model” in the examples, cisplatin 8.25 μmol / kg administered once (day 1 administration) and Pt (Pt (dach) -IP 6 ) 2 8.25 μmol / kg administered twice It is a graph which shows the change of the right-and-left foot ratio (average value of a median value) of an administration group (the 1st and 8th day administration) compared with a control group. 実施例の「ラット骨転移モデルを用いたin vivo評価」において、シスプラチン 8.25μmol/kg 1回投与群(1日目投与)およびPt(Pt(dach)-IP6)2 8.25μmol/kg 2回投与群(1, 8日目投与)の体重(平均値)の変化をコントロール群と比較して示すグラフである。In the “in vivo evaluation using rat bone metastasis model” in the examples, cisplatin 8.25 μmol / kg administered once (day 1 administration) and Pt (Pt (dach) -IP 6 ) 2 8.25 μmol / kg administered twice It is a graph which shows the change of the body weight (average value) of an administration group (the 1st and 8th day administration) compared with a control group.

以下、本発明を実施するための具体的な形態について詳細に説明するが、本発明の技術的範囲は下記の具体的な形態のみに限定されるわけではない。   Hereinafter, specific embodiments for carrying out the present invention will be described in detail, but the technical scope of the present invention is not limited to the following specific embodiments.

[第1の形態:カチオン錯体]
本発明の第1の形態は、下記化学式1で表される金属錯体またはその塩:
[First Form: Cation Complex]
A first aspect of the present invention is a metal complex represented by the following chemical formula 1 or a salt thereof:

である。本発明の第1の形態の金属錯体は塩の形態であってもよいが、この場合、錯体の塩は、カチオン錯体と対イオンとしてのアニオンとから形成される。したがって、本発明の第1の形態の金属錯体を「カチオン錯体」と称することがある。また、塩の形態も含めて「金属錯体」と総称することもある。 It is. The metal complex of the first form of the present invention may be in the form of a salt. In this case, the salt of the complex is formed from a cation complex and an anion as a counter ion. Therefore, the metal complex of the first aspect of the present invention may be referred to as “cationic complex”. Moreover, it may be named generically as a "metal complex" including the form of a salt.

化学式1において、Mは、PtまたはPdである。本形態の金属錯体(またはその塩)は、貴金属である白金(Pt)またはパラジウム(Pd)を含有することにより、優れた抗がん効果を発揮する。なお、体内においてタンパク質などの生体物質と置換反応を受けにくい方が副作用が少ないという観点からは、Mは好ましくはPtである。   In Chemical Formula 1, M is Pt or Pd. The metal complex (or a salt thereof) of the present embodiment exhibits an excellent anticancer effect by containing platinum (Pt) or palladium (Pd) which are noble metals. Note that M is preferably Pt from the viewpoint that the side effect is less when it is less susceptible to substitution reaction with biological substances such as proteins in the body.

化学式1において、R〜R17は、それぞれ独立して、水素原子、炭素数1〜30のアルキル基、炭素数3〜30のシクロアルキル基、炭素数2〜30のアルケニル基、炭素数3〜30のシクロアルケニル基、炭素数2〜30のアルキニル基、炭素数7〜30のアラルキル基、炭素数7〜30のアラルケニル基、炭素数7〜30のアラルキニル基、炭素数6〜30のアリール基、ハロゲン原子、炭素数1〜30のハロアルキル基、炭素数2〜30のハロアルケニル基、炭素数2〜30のハロアルキニル基、炭素数6〜30のハロアリール基、炭素数1〜30のアルコキシ基、炭素数6〜30のアリールオキシ基、ヒドロキシ基、アミノ基、炭素数1〜30のアルキルアミノ基、炭素数6〜30のアリールアミノ基、シアノ基、またはニトロ基である。In Chemical Formula 1, R 1 to R 17 are each independently a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, or 3 carbon atoms. -30 cycloalkenyl group, C2-C30 alkynyl group, C7-C30 aralkyl group, C7-C30 aralkenyl group, C7-C30 aralkynyl group, C6-C30 aryl Group, halogen atom, haloalkyl group having 1 to 30 carbon atoms, haloalkenyl group having 2 to 30 carbon atoms, haloalkynyl group having 2 to 30 carbon atoms, haloaryl group having 6 to 30 carbon atoms, alkoxy having 1 to 30 carbon atoms Group, aryloxy group having 6 to 30 carbon atoms, hydroxy group, amino group, alkylamino group having 1 to 30 carbon atoms, arylamino group having 6 to 30 carbon atoms, cyano group, or nitro group A group.

炭素数1〜30のアルキル基の例としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、neo−ペンチル基、1,2−ジメチルプロピル基、n−ヘキシル基、cyclo−ヘキシル基、1,3−ジメチルブチル基、1−イソプロピルプロピル基、1,2−ジメチルブチル基、n−ヘプチル基、1,4−ジメチルペンチル基、2−メチル−1−イソプロピルプロピル基、1−エチル−3−メチルブチル基、n−オクチル基、2−エチルヘキシル基、3−メチル−1−イソプロピルブチル基、2−メチル−1−イソプロピル基、1−t−ブチル−2−メチルプロピル基、n−ノニル基、3,5,5−トリメチルヘキシル基が挙げられる。   Examples of the alkyl group having 1 to 30 carbon atoms include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, and n-pentyl. Group, isopentyl group, neo-pentyl group, 1,2-dimethylpropyl group, n-hexyl group, cyclo-hexyl group, 1,3-dimethylbutyl group, 1-isopropylpropyl group, 1,2-dimethylbutyl group, n-heptyl group, 1,4-dimethylpentyl group, 2-methyl-1-isopropylpropyl group, 1-ethyl-3-methylbutyl group, n-octyl group, 2-ethylhexyl group, 3-methyl-1-isopropylbutyl Group, 2-methyl-1-isopropyl group, 1-t-butyl-2-methylpropyl group, n-nonyl group, 3,5,5-trimethylhexyl And the like.

炭素数3〜30のシクロアルキル基の例としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基が挙げられる。   Examples of the cycloalkyl group having 3 to 30 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.

炭素数2〜30のアルケニル基の例としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、2−メチル−1−プロペニル基、2−メチルアリル基、2−ブテニル基が挙げられる。   Examples of the alkenyl group having 2 to 30 carbon atoms include a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a 2-methyl-1-propenyl group, a 2-methylallyl group, and a 2-butenyl group.

炭素数3〜30のシクロアルケニル基の例としては、例えば、シクロプロペニル基、シクロブテニル基、2−シクロペンテン−1−イル基、2−シクロヘキセン−1−イル基、3−シクロヘキセン−1−イル基が挙げられる。   Examples of the C3-C30 cycloalkenyl group include, for example, a cyclopropenyl group, a cyclobutenyl group, a 2-cyclopenten-1-yl group, a 2-cyclohexen-1-yl group, and a 3-cyclohexen-1-yl group. Can be mentioned.

炭素数2〜30のアルキニル基の例としては、例えば、エチニル基、2−プロピニル基、2−ブチニル基が挙げられる。   As an example of a C2-C30 alkynyl group, an ethynyl group, 2-propynyl group, and 2-butynyl group are mentioned, for example.

炭素数7〜30のアラルキル基の例としては、例えば、ベンジル基、フェネチル基、ジフェニルメチル基が挙げられる。   Examples of the aralkyl group having 7 to 30 carbon atoms include a benzyl group, a phenethyl group, and a diphenylmethyl group.

炭素数7〜30のアラルケニル基の例としては、例えば、スチリル基、2−フェニル−1−プロペニル基、3−フェニル−2−ブテニル基、2−ナフチルエテニル基が挙げられる。   Examples of the aralkenyl group having 7 to 30 carbon atoms include a styryl group, 2-phenyl-1-propenyl group, 3-phenyl-2-butenyl group, and 2-naphthylethenyl group.

炭素数7〜30のアラルキニル基の例としては、例えば、2−フェニルエチニル基、2−ナフチルエチニル基が挙げられる。   Examples of the aralkynyl group having 7 to 30 carbon atoms include a 2-phenylethynyl group and a 2-naphthylethynyl group.

炭素数6〜30のアリール基の例としては、例えば、フェニル基、トリル基、キシリル基、エチルフェニル基、ナフチル基、アントラニル基が挙げられる。   Examples of the aryl group having 6 to 30 carbon atoms include a phenyl group, a tolyl group, a xylyl group, an ethylphenyl group, a naphthyl group, and an anthranyl group.

ハロゲン原子は、フッ素、塩素、臭素またはヨウ素である。   The halogen atom is fluorine, chlorine, bromine or iodine.

炭素数1〜30のハロアルキル基の例としては、例えば、トリフルオロメチル基、ジフルオロメチル基、トリクロロメチル基、ジクロロメチル基、フルオロメチル基、クロロメチル基、ヨードメチル基、ブロモメチル基、ペンタフルオロエチル基、ペンタクロロエチル基が挙げられる。   Examples of the haloalkyl group having 1 to 30 carbon atoms include, for example, a trifluoromethyl group, a difluoromethyl group, a trichloromethyl group, a dichloromethyl group, a fluoromethyl group, a chloromethyl group, an iodomethyl group, a bromomethyl group, and a pentafluoroethyl group. And pentachloroethyl group.

炭素数2〜30のハロアルケニル基の例としては、例えば、2,2−ジフルオロエテニル基、2,2−ジクロロエテニル基、3−クロロ−2−アリル基、3,3−ジクロロ−2−アリル基、2,3−ジブロモ−2−アリルが挙げられる。   Examples of the haloalkenyl group having 2 to 30 carbon atoms include, for example, 2,2-difluoroethenyl group, 2,2-dichloroethenyl group, 3-chloro-2-allyl group, 3,3-dichloro-2- Examples include allyl group and 2,3-dibromo-2-allyl.

炭素数2〜30のハロアルキニル基の例としては、例えば、3−クロロ−2−プロピニル基、1,3−ジクロロ−2−プロピニル基、1,3−ジブロモ−2−プロピニル基が挙げられる。   Examples of the haloalkynyl group having 2 to 30 carbon atoms include a 3-chloro-2-propynyl group, a 1,3-dichloro-2-propynyl group, and a 1,3-dibromo-2-propynyl group.

炭素数6〜30のハロアリール基の例としては、例えば、クロロフェニル基(例えば、4−クロロフェニル基)、ブロモフェニル基、フルオロフェニル基が挙げられる。   As an example of a C6-C30 haloaryl group, a chlorophenyl group (for example, 4-chlorophenyl group), a bromophenyl group, and a fluorophenyl group are mentioned, for example.

炭素数1〜30のアルコキシ基の例としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシが挙げられる。   Examples of the alkoxy group having 1 to 30 carbon atoms include methoxy group, ethoxy group, propoxy group, butoxy group, hexyloxy group, octyloxy group, and 2-ethylhexyloxy.

炭素数6〜30のアリールオキシ基の例としては、フェニルオキシ基、ナフチルオキシ基、ビフェニルオキシ基が挙げられる。   Examples of the aryloxy group having 6 to 30 carbon atoms include a phenyloxy group, a naphthyloxy group, and a biphenyloxy group.

炭素数1〜30のアルキルアミノ基の例としては、例えば、メチルアミノ基、エチルアミノ基、ヘキシルアミノ基、ドデシルアミノ基が挙げられる。   Examples of the alkylamino group having 1 to 30 carbon atoms include a methylamino group, an ethylamino group, a hexylamino group, and a dodecylamino group.

炭素数6〜30のアリールアミノ基の例としては、例えば、フェニルアミノ基、ナフチルアミノ基、ベンジルアミノ基、インダニルアミノ基、インデニルアミノ基が挙げられる。   Examples of the arylamino group having 6 to 30 carbon atoms include a phenylamino group, a naphthylamino group, a benzylamino group, an indanylamino group, and an indenylamino group.

本発明の好ましい一実施形態においては、アントラセン環が非置換であり、かつ、フェナントロリン環は5位のみに置換基を有する。換言すれば、R〜R、およびR〜R17は水素原子であり、Rが水素原子以外の基である。この際、フェナントロリン環の5位における置換基(R)は、好ましくは、炭素数1〜30のアルキル基(なかでも好ましくは炭素数1〜6のアルキル基であり、より好ましくは炭素数1〜3のアルキル基である)、ハロゲン原子(なかでも好ましくは塩素原子である)、炭素数1〜30のアルコキシ基(なかでも好ましくは炭素数1〜6のアルコキシ基であり、より好ましくは炭素数1〜3のアルコキシ基である)、またはニトロ基である。より好ましい実施形態においては、R〜R、およびR〜R17は水素原子であり、Rがメチル基、ニトロ基、塩素原子、またはメトキシ基である。つまり、本形態のカチオン錯体(またはその塩)の好ましい具体例は、下記化学式1a〜1dのいずれかで表される。In a preferred embodiment of the present invention, the anthracene ring is unsubstituted and the phenanthroline ring has a substituent only at the 5-position. In other words, R 1 to R 3 and R 5 to R 17 are hydrogen atoms, and R 4 is a group other than a hydrogen atom. In this case, the substituent (R 4 ) at the 5-position of the phenanthroline ring is preferably an alkyl group having 1 to 30 carbon atoms (in particular, an alkyl group having 1 to 6 carbon atoms, more preferably 1 carbon atom). An alkyl group having 3 to 3 carbon atoms, a halogen atom (especially preferably a chlorine atom), an alkoxy group having 1 to 30 carbon atoms (particularly preferably an alkoxy group having 1 to 6 carbon atoms, more preferably carbon Or a nitro group. In a more preferred embodiment, R 1 to R 3 and R 5 to R 17 are hydrogen atoms, and R 4 is a methyl group, a nitro group, a chlorine atom, or a methoxy group. That is, a preferred specific example of the cation complex (or salt thereof) of this embodiment is represented by any one of the following chemical formulas 1a to 1d.

なかでも、高い抗がん活性を有するという観点からは、上記化学式1aまたは化学式1bで表される錯体が好ましく、化学式1aで表される錯体が最も好ましい。   Among these, from the viewpoint of having high anticancer activity, the complex represented by Chemical Formula 1a or Chemical Formula 1b is preferable, and the complex represented by Chemical Formula 1a is most preferable.

なお、上述した化学式1a〜1dで表されるカチオン錯体においては、中心金属Mに対するリガンドの配位の向きによって、立体異性体が存在しうる。上記した化学構造において一部の配位結合を波線(〜〜〜)によって表現しているのはこのためであり、より具体的には、下記の化学式で表される2つの立体異性体の双方を含みうるものである(下記の化学式では、中心金属MがPtである場合を例に挙げて記載している)。   In the cation complexes represented by the chemical formulas 1a to 1d described above, stereoisomers may exist depending on the coordination direction of the ligand with respect to the central metal M. This is why some of the coordination bonds are represented by wavy lines (~~~) in the chemical structure described above, and more specifically, both of the two stereoisomers represented by the following chemical formulas. (In the following chemical formula, the case where the central metal M is Pt is described as an example).

なお、後述する実施例においてもそうであるが、かような立体異性体が存在しうるカチオン錯体を製造する際には、選択的に製造するのでない限り、生成物が上述した2種の立体異性体の当量混合物として得られるのが通常である。この場合、得られた立体異性体の混合物から一方のみを精製する手段としては、例えば、結晶化法,クロマトグラフィー法などが挙げられる。本発明においては、かような精製処理が施されていない混合物の形態であっても、また、精製処理が施された後の一方の異性体のみの形態であっても、いずれも請求項に記載された発明の技術的範囲に包含されるものとする。   As in the examples described later, when producing a cation complex in which such a stereoisomer may exist, the product may contain the above-described two kinds of steric compounds unless they are selectively produced. It is usually obtained as an equivalent mixture of isomers. In this case, examples of means for purifying only one of the obtained mixture of stereoisomers include a crystallization method and a chromatography method. In the present invention, even in the form of a mixture that has not been subjected to such purification treatment, or in the form of only one isomer after being subjected to purification treatment, both are claimed. It is intended to be included in the technical scope of the described invention.

本発明の好ましい他の実施形態においては、偶数個の同一の炭素数1〜30のアルキル基が、化学式1におけるフェナントロリン環における対称な位置に結合している。偶数個のアルキル基が結合しうる、フェナントロリン環における対称な位置としては、例えば、アルキル基が2つの場合には、5,6位、2,9位などが挙げられる。また、アルキル基が4つの場合には、3,4,7,8位などが挙げられる。この際、炭素数1〜30のアルキル基は、好ましくは炭素数1〜6のアルキル基であり、より好ましくは炭素数1〜3のアルキル基であり、最も好ましくはメチル基である。つまり、本形態のカチオン錯体(またはその塩)の好ましい具体例は、下記化学式1e〜1gのいずれかで表される。   In another preferred embodiment of the present invention, an even number of identical alkyl groups having 1 to 30 carbon atoms are bonded to symmetrical positions in the phenanthroline ring in Formula 1. Examples of the symmetrical position in the phenanthroline ring to which an even number of alkyl groups can be bonded include, for example, in the case of two alkyl groups, positions 5, 6 and 2, 9 and the like. Moreover, when there are four alkyl groups, the 3, 4, 7, and 8 positions are listed. In this case, the alkyl group having 1 to 30 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and most preferably a methyl group. That is, a preferred specific example of the cation complex (or a salt thereof) of this embodiment is represented by any one of the following chemical formulas 1e to 1g.

上述したように、本発明のカチオン錯体は塩の形態であってもよいが、本発明のカチオン錯体が塩の形態である場合における対アニオンの種類について特に制限はない。かような対アニオンとしては、例えば、塩化物イオン、フッ化物イオン、臭化物イオン、ヨウ化物イオンなどのハロゲン化物イオン、硝酸イオン、硫酸イオン、リン酸イオン、酢酸イオン、炭酸イオン、過塩素酸イオンなどが挙げられる。   As described above, the cation complex of the present invention may be in the form of a salt, but there is no particular limitation on the type of counter anion when the cation complex of the present invention is in the form of a salt. Such counter anions include, for example, chloride ions, fluoride ions, bromide ions, iodide ions and other halide ions, nitrate ions, sulfate ions, phosphate ions, acetate ions, carbonate ions, perchlorate ions. Etc.

本発明のカチオン錯体の製造方法について特に制限はなく、後述する実施例の記載と、本願の出願時における技術常識を参酌することにより、製造が可能である。   There is no restriction | limiting in particular about the manufacturing method of the cation complex of this invention, Manufacture is possible by considering the description of the Example mentioned later and the technical common sense at the time of application of this application.

本発明のカチオン錯体の製造方法の一例としては、下記化学式9で表されるスキームに記載のように、1,10−フェナントロリン誘導体(DI)を塩化白金酸塩や塩化パラジウム酸塩などの貴金属錯体(YMCl;Yはアルカリ金属である)と反応させて白金またはパラジウムの錯体を形成した後、得られた錯体を「AtC3」で表されるアントラセン環を有するジアミン誘導体と反応させて、M(DI)(AtC3)で表される本発明のカチオン錯体を得る方法が例示される(後述する実施例も参照)。As an example of the method for producing the cation complex of the present invention, a 1,10-phenanthroline derivative (DI) is converted into a noble metal complex such as chloroplatinate or palladium chloride as described in the scheme represented by the following chemical formula 9. (Y 2 MCl 4 ; Y is an alkali metal) to form a platinum or palladium complex, and the resulting complex is reacted with a diamine derivative having an anthracene ring represented by “AtC3”. The method of obtaining the cation complex of this invention represented by M (DI) (AtC3) is illustrated (refer also the Example mentioned later).

この際、用いる1,10−フェナントロリン誘導体やAtC3の種類を適宜選択することにより、所望の置換基(化学式1におけるR〜R17)を有するカチオン錯体を製造することができる。また、用いる貴金属錯体(YMCl)の有する貴金属原子(PtまたはPd)を選択することにより、得られるカチオン錯体に対して所望の貴金属原子を導入することができる。なお、上記のスキームでは原料としての貴金属錯体はリガンドとして塩素原子を有しているが、かような形態のみには限られず、後段の反応においてAtC3と置換されうるリガンドであれば、特に制限されることなく用いられうる。In this case, by appropriately selecting the 1,10-phenanthroline derivative or type of AtC3 used, it is possible to produce a cationic complex having a desired substituent (R 1 to R 17 in Formula 1). Further, by selecting a noble metal atom (Pt or Pd) of the noble metal complex (Y 2 MCl 4 ) to be used, a desired noble metal atom can be introduced into the resulting cation complex. In the above scheme, the noble metal complex as a raw material has a chlorine atom as a ligand. However, the present invention is not limited to such a form. It can be used without

なお、得られたカチオン錯体は、従来公知の精製手段によって、適宜精製されうる。これは、後述する他の化合物についても、同様である。   The obtained cation complex can be appropriately purified by a conventionally known purification means. The same applies to other compounds described later.

[第2の形態:アニオン錯体]
本発明の第2の形態は、下記化学式2で表される金属錯体またはその塩:
[Second form: anion complex]
A second aspect of the present invention is a metal complex represented by the following chemical formula 2 or a salt thereof:

である。本発明の第2の形態の金属錯体は塩の形態であってもよいが、この場合、錯体の塩は、アニオン錯体と対イオンとしてのカチオンとから形成される。したがって、本発明の第2の形態の金属錯体を「アニオン錯体」と称することがある。また、塩の形態も含めて「金属錯体」と総称することもある。なお、本発明のアニオン錯体が塩の形態である場合における対カチオンの種類について特に制限はない。かような対カチオンとしては、例えば、ナトリウムイオン、カリウムイオンなどのアルカリ金属イオン、カルシウムイオン、マグネシウムイオンなどのアルカリ土類金属イオン、第4級アンモニウムイオン、亜鉛などの遷移金属イオン、ランタンなどの希土類金属イオン、水素イオンなどが挙げられる。 It is. The metal complex of the second form of the present invention may be in the form of a salt. In this case, the salt of the complex is formed from an anion complex and a cation as a counter ion. Therefore, the metal complex of the second form of the present invention may be referred to as “anion complex”. Moreover, it may be named generically as a "metal complex" including the form of a salt. In addition, there is no restriction | limiting in particular about the kind of counter cation in case the anion complex of this invention is a salt form. Examples of such counter cations include alkali metal ions such as sodium ions and potassium ions, alkaline earth metal ions such as calcium ions and magnesium ions, quaternary ammonium ions, transition metal ions such as zinc, and lanthanum. Examples include rare earth metal ions and hydrogen ions.

化学式2において、Mは、PtまたはPdである。本形態の金属錯体(またはその塩)は、貴金属である白金(Pt)またはパラジウム(Pd)を含有することにより、優れた抗がん効果を発揮する。なお、体内においてタンパク質などの生体物質と置換反応を受けにくい方が副作用が少ないという観点からは、Mは好ましくはPtである。   In Chemical Formula 2, M is Pt or Pd. The metal complex (or a salt thereof) of the present embodiment exhibits an excellent anticancer effect by containing platinum (Pt) or palladium (Pd) which are noble metals. Note that M is preferably Pt from the viewpoint that the side effect is less when it is less susceptible to substitution reaction with biological substances such as proteins in the body.

化学式2において、Rは、水素原子であるか、または、隣接するRと一緒になって下記化学式7で表される構造を形成する。   In the chemical formula 2, R is a hydrogen atom, or together with the adjacent R, forms a structure represented by the following chemical formula 7.

ここで、「隣接するR」とは、自身(R)が結合する窒素原子(N)が結合する金属原子(M)に結合する他方の窒素原子(N)に結合する「R」を意味する。よって、化学式2にはR基が4つ存在するが、化学式2における左端の2つのR基どうしは、互いに同一であるし、化学式2における右端の2つのR基どうしは、やはり互いに同一である。つまり、隣接する2つのRどうしは、ともに水素原子であってもよいし、そうでなければ互いに一緒になって上述した化学式7で表される構造を形成するのである。   Here, “adjacent R” means “R” bonded to the other nitrogen atom (N) bonded to the metal atom (M) bonded to the nitrogen atom (N) bonded to itself (R). . Therefore, although there are four R groups in Chemical Formula 2, the two R groups at the left end in Chemical Formula 2 are the same as each other, and the two R groups at the right end in Chemical Formula 2 are also the same as each other. . That is, two adjacent Rs may be both hydrogen atoms, or otherwise, together, they form a structure represented by the above chemical formula 7.

なお、隣接する2つのRが一緒になって上述した化学式7で表される構造を形成する場合、当該構造における立体構造に特に制限はない。本発明においては、シクロヘキサン環に結合した結合手が互いにcisの関係にあってもよいし、transの関係にあってもよい。抗がん活性の観点からは、互いにtransの関係にあることがより好ましく、なかでも1R,2Rの立体配置を有するものであることが特に好ましい。   Note that when two adjacent Rs together form the structure represented by the chemical formula 7, the three-dimensional structure in the structure is not particularly limited. In the present invention, the bonds bonded to the cyclohexane ring may be in a cis relationship or in a trans relationship. From the viewpoint of anticancer activity, it is more preferable that they have a trans relationship with each other, and it is particularly preferable that they have 1R and 2R configurations.

また、化学式2において、Xは、下記化学式3で表される構造でありうる。   In the chemical formula 2, X may be a structure represented by the following chemical formula 3.

この場合、アニオン錯体は、下記化学式2dで表す構造をとりうる(後述する実施例2−4も参照)。下記化学式2dで表されるアニオン錯体は、本発明の第2の形態における好ましい実施形態の1つである。   In this case, the anion complex may have a structure represented by the following chemical formula 2d (see also Example 2-4 described later). The anion complex represented by the following chemical formula 2d is one of the preferred embodiments in the second aspect of the present invention.

なお、化学式2dでは、すべてのRが上述した化学式7で表される構造を形成しているが、本発明のアニオン錯体においては、少なくとも2つの隣接するRが水素原子であってもよいし、すべてのRが水素原子であってもよいことはもちろんである。   In Formula 2d, all Rs form the structure represented by Formula 7 described above. However, in the anion complex of the present invention, at least two adjacent Rs may be hydrogen atoms, Of course, all R may be hydrogen atoms.

化学式2dで表されるアニオン錯体の製造方法について特に制限はなく、後述する実施例(例えば、実施例2−4)の記載と、本願の出願時における技術常識を参酌することにより、製造が可能である。   There is no restriction | limiting in particular about the manufacturing method of the anion complex represented by Chemical formula 2d, and it can manufacture by considering the description of the Example (for example, Example 2-4) mentioned later, and the technical common sense at the time of the application of this application. It is.

一方、化学式2において、Xは、下記化学式4で表される構造であってもよい。   On the other hand, in Chemical Formula 2, X may be a structure represented by the following Chemical Formula 4.

上記化学式4で表される構造は、myo−イノシトール6リン酸エステル由来の構造である。ここで、myo−イノシトール6リン酸エステルは、下記の化学式で表される構造を有する。なお、本願では、上記化学式4で表される構造またはこれに対応する構造を「IP」と記載することがある。なお、下記の化学式では、リン酸エステル基が「−OPO」と記載されており、それぞれ図示しない2価の負の電荷を帯びている。The structure represented by Chemical Formula 4 is a structure derived from myo-inositol 6-phosphate ester. Here, myo-inositol 6-phosphate has a structure represented by the following chemical formula. In the present application, the structure represented by the above chemical formula 4 or a structure corresponding thereto may be described as “IP 6 ”. In the following chemical formula, the phosphate ester group is described as “—OPO 3 ”, and each has a divalent negative charge (not shown).

上記化学式4に示すように、化学式4で表される構造では、シクロヘキサン環に4つのOPO基が結合し、残りの2つのOPO基は酸素原子を介して金属原子Mとの結合に用いられている。本形態では、これらの6つの基がmyo−イノシトール6リン酸エステルの1〜6位(上記の位置番号を参照)のいずれに割り当てられていてもよい。ただし、化学式2におけるXが上記化学式4で表される構造を有する場合における好ましい一実施形態は、金属原子Mとの結合に用いられる2つのOPO基が、myo−イノシトール6リン酸エステルの2位および5位に位置するように配置されている形態である。かような実施形態によるアニオン錯体は、下記化学式2aで表す構造をとりうる(後述する実施例2−1も参照)。下記化学式2aで表されるアニオン錯体は、本発明の第2の形態における好ましい実施形態の1つである。なお、下記の化学式では、リン酸エステル基が「−OPO」と記載されており、それぞれ図示しない2価の負の電荷を帯びている。As shown in the above chemical formula 4, in the structure represented by the chemical formula 4, four OPO 3 groups are bonded to the cyclohexane ring, and the remaining two OPO 3 groups are used for bonding to the metal atom M through an oxygen atom. It has been. In this embodiment, these six groups may be assigned to any of positions 1 to 6 (see the above position numbers) of myo-inositol 6-phosphate ester. However, in the case where X in Chemical Formula 2 has a structure represented by Chemical Formula 4, a preferred embodiment is that two OPO 3 groups used for bonding to the metal atom M are 2 of myo-inositol 6-phosphate ester. It is the form arrange | positioned so that it may be located in the position and the 5th position. The anion complex according to such an embodiment may have a structure represented by the following chemical formula 2a (see also Example 2-1 described later). The anion complex represented by the following chemical formula 2a is one of the preferred embodiments in the second aspect of the present invention. In the following chemical formula, the phosphate ester group is described as “—OPO 3 ”, and each has a divalent negative charge (not shown).

なお、化学式2aでは、すべてのRが水素原子であるが、本発明のアニオン錯体においては、少なくとも2つの隣接するRが一緒になって上述した化学式7で表される構造を形成していてもよいし、すべてのRが一緒になって上述した化学式7で表される構造を形成していてもよい。かような構成によれば、他の好ましい実施形態として、下記化学式2bや化学式2eで表されるアニオン錯体も提供されうる(それぞれ、後述する実施例2−2および実施例2−5を参照)。なお、下記の化学式では、リン酸エステル基が「−OPO」と記載されており、それぞれ図示しない2価の負の電荷を帯びている。In the chemical formula 2a, all R are hydrogen atoms. However, in the anion complex of the present invention, at least two adjacent Rs may be combined to form the structure represented by the chemical formula 7 described above. Alternatively, all Rs may be combined to form the structure represented by Chemical Formula 7 described above. According to such a configuration, as another preferred embodiment, an anion complex represented by the following chemical formula 2b or chemical formula 2e can also be provided (see Example 2-2 and Example 2-5, which will be described later), respectively. . In the following chemical formula, the phosphate ester group is described as “—OPO 3 ”, and each has a divalent negative charge (not shown).

また、化学式2におけるXが上記化学式4で表される構造を有する場合における好ましい他の実施形態は、金属原子Mとの結合に用いられる2つのOPO基が、myo−イノシトール6リン酸エステルの1位および2位に位置するように配置されている形態である。かような実施形態によるアニオン錯体は、下記化学式2fで表す構造をとりうる(後述する実施例2−6も参照)。下記化学式2fで表されるアニオン錯体は、本発明の第2の形態における好ましい実施形態の1つである。なお、下記の化学式では、リン酸エステル基が「−OPO」と記載されており、それぞれ図示しない2価の負の電荷を帯びている。In addition, in another preferred embodiment in which X in Chemical Formula 2 has a structure represented by Chemical Formula 4, two OPO 3 groups used for bonding to metal atom M are myo-inositol hexaphosphate esters. It is the form arrange | positioned so that it may be located in 1st place and 2nd place. The anion complex according to such an embodiment may have a structure represented by the following chemical formula 2f (see also Example 2-6 described later). The anion complex represented by the following chemical formula 2f is one of the preferred embodiments in the second aspect of the present invention. In the following chemical formula, the phosphate ester group is described as “—OPO 3 ”, and each has a divalent negative charge (not shown).

化学式2a、2b、2e、2fで表されるアニオン錯体の製造方法について特に制限はなく、後述する実施例(例えば、実施例2−1、2−2、2−5、および2−6)の記載と、本願の出願時における技術常識を参酌することにより、製造が可能である。   There is no restriction | limiting in particular about the manufacturing method of the anion complex represented by Chemical formula 2a, 2b, 2e, 2f, and the Example (for example, Example 2-1, 2-2, 2-5, and 2-6) mentioned later is mentioned. Manufacture is possible by taking into consideration the description and common general knowledge at the time of filing of the present application.

本発明により提供されるアニオン錯体の1つの特徴は、金属錯体1分子中に2つ以上の貴金属原子(PtまたはPd)が含まれている(つまり、多核の錯体である)という点にある。ここまで説明した形態のアニオン錯体では、錯体1分子中に2つの貴金属原子が含まれていたが(二核錯体)、本発明の他の実施形態によれば、1分子中に3つの貴金属原子が導入された三核錯体もまた、提供されうる。   One feature of the anion complex provided by the present invention is that two or more noble metal atoms (Pt or Pd) are contained in one molecule of the metal complex (that is, a multinuclear complex). In the anion complex of the form described so far, two noble metal atoms are contained in one molecule of the complex (binuclear complex). However, according to another embodiment of the present invention, three noble metal atoms are contained in one molecule. A trinuclear complex into which can be introduced can also be provided.

かような形態では、上述した化学式2におけるXが、下記化学式5で表される構造である。   In such a form, X in Chemical Formula 2 described above is a structure represented by Chemical Formula 5 below.

化学式5において、Mは、上記と同様の定義である(つまり、PtまたはPdである)。また、化学式5において、Aは、上述した下記化学式6で表される構造である。   In Chemical Formula 5, M has the same definition as above (that is, Pt or Pd). In Chemical Formula 5, A is a structure represented by Chemical Formula 6 described above.

本実施形態でも、上述した化学式4と同様に、化学式6においてシクロヘキサン環に結合している6つの基がmyo−イノシトール6リン酸エステルの1〜6位(上記の位置番号を参照)のいずれに割り当てられていてもよい。ただし、化学式2におけるXが上記化学式5で表される構造を有する場合の好ましい実施形態においては、化学式6における2つの結合手が、myo−イノシトール6リン酸エステルの1位および2位に位置するように配置されていることが好ましい。かような実施形態によるアニオン錯体は、下記化学式2cで表す構造をとりうる(後述する実施例2−3も参照)。下記化学式2cで表されるアニオン錯体もまた、本発明の第2の形態における好ましい実施形態の1つである。なお、下記の化学式は、カッコで囲まれた2つの単位がそれぞれ、2つの酸素原子を介して金属原子Mに配位する構造を表現している。   Also in this embodiment, as in the above-described chemical formula 4, any of the six groups bonded to the cyclohexane ring in chemical formula 6 is in any of positions 1 to 6 (see the above position numbers) of myo-inositol 6-phosphate ester. It may be assigned. However, in a preferred embodiment where X in Chemical Formula 2 has a structure represented by Chemical Formula 5, two bonds in Chemical Formula 6 are located at the 1-position and 2-position of myo-inositol 6-phosphate ester. It is preferable that they are arranged as described above. The anion complex according to such an embodiment may have a structure represented by the following chemical formula 2c (see also Example 2-3 described later). An anion complex represented by the following chemical formula 2c is also one of preferred embodiments in the second aspect of the present invention. The following chemical formula represents a structure in which two units surrounded by parentheses are coordinated to the metal atom M via two oxygen atoms.

なお、化学式2cでは、すべてのRが上述した化学式7で表される構造を形成しているが、本発明のアニオン錯体においては、少なくとも2つの隣接するRが水素原子であってもよいし、すべてのRが水素原子であってもよいことはもちろんである。   In Formula 2c, all Rs form the structure represented by Formula 7 described above. However, in the anion complex of the present invention, at least two adjacent Rs may be hydrogen atoms, Of course, all R may be hydrogen atoms.

化学式2cで表されるアニオン錯体の製造方法について特に制限はなく、後述する実施例(例えば、実施例2−3)の記載と、本願の出願時における技術常識を参酌することにより、製造が可能である。   There is no restriction | limiting in particular about the manufacturing method of the anion complex represented by Chemical formula 2c, It can manufacture by considering the description of the Example (for example, Example 2-3) mentioned later, and the technical common sense at the time of the application of this application. It is.

ただし、例えば化学式2cで表される三核錯体の製造方法を本発明者が検討したところ、上述した二核錯体とは異なるスキームによって、当該三核錯体が製造されうることを見出した。つまり、本願によれば、本発明の第2の形態における三核錯体の新規な製造方法もまた、提供されうる。   However, for example, when the present inventors examined a method for producing a trinuclear complex represented by the chemical formula 2c, it was found that the trinuclear complex can be produced by a scheme different from the above-described binuclear complex. That is, according to this application, the novel manufacturing method of the trinuclear complex in the 2nd form of this invention can also be provided.

この製造方法は、概説すれば、下記化学式8で表される金属錯体と:   This production method can be summarized as follows: a metal complex represented by the following chemical formula 8:

ハロゲン化白金酸塩またはハロゲン化パラジウム酸塩とを反応させるものである。これにより、上述した化学式2で表される三核アニオン錯体が製造される。 A reaction with a halogenated platinum salt or a halogenated palladium salt. Thereby, the trinuclear anion complex represented by Chemical Formula 2 described above is produced.

化学式8において、MおよびRの定義は上述したとおりであるため、ここでは詳細な説明を省略する。   In Chemical Formula 8, since the definitions of M and R are as described above, detailed description is omitted here.

ハロゲン化白金酸塩(YPtZ(Yはアルカリ金属であり、Zはハロゲン原子である))またはハロゲン化パラジウム酸塩(YPdZ(Yはアルカリ金属であり、Zはハロゲン原子である))については、得られる三核錯体に導入を希望する貴金属原子の種類に応じて、適宜選択されうる。好ましくは、上述した化学式8で表される金属錯体の有する貴金属原子と同一の貴金属原子を有する塩を用いることが好ましい。また、アルカリ金属について特に制限はなく、カリウム、ナトリウム、リチウム、セシウムなどが用いられ、好ましくはカリウムまたはナトリウムが用いられる。また、ハロゲン原子にも特に制限はなく、フッ素(Pdのみ)、塩素、臭素、ヨウ素が用いられうるが、好ましくは塩素が用いられる。なかでも、白金(Pt)の導入を希望するのであれば、塩化白金酸カリウム(KPtCl)が好ましく用いられ、パラジウム(Pd)の導入を希望するのであれば、塩化パラジウム酸ナトリウム(NaPdCl)が好ましく用いられる。Halogenated platinum salt (Y 2 PtZ 4 (Y is an alkali metal, Z is a halogen atom)) or halogenated palladium salt (Y 2 PdZ 4 (Y is an alkali metal, Z is a halogen atom) (Some) can be appropriately selected depending on the type of noble metal atom desired to be introduced into the resulting trinuclear complex. It is preferable to use a salt having the same noble metal atom as the noble metal atom of the metal complex represented by Chemical Formula 8 described above. Moreover, there is no restriction | limiting in particular about an alkali metal, Potassium, sodium, lithium, a cesium etc. are used, Preferably potassium or sodium is used. The halogen atom is not particularly limited, and fluorine (only Pd), chlorine, bromine and iodine can be used, but chlorine is preferably used. Among them, if it is desired to introduce platinum (Pt), potassium chloroplatinate (K 2 PtCl 4 ) is preferably used. If it is desired to introduce palladium (Pd), sodium chloropalladate (Na 2 PdCl 4 ) is preferably used.

上述した反応式(および後述する実施例2−3)の記載からも明らかなように、上述した化学式8で表される金属錯体は、ハロゲン化白金酸塩またはハロゲン化パラジウム酸塩に対して約2倍モル用いられることが必要である。ただし、具体的にどの程度の原料を用いるかについては、仕込み順序などを考慮して、適宜決定されうる。   As is clear from the description of the above-described reaction formula (and Example 2-3 described later), the metal complex represented by the chemical formula 8 described above is approximately about the halogenated platinum salt or the halogenated palladium salt. It is necessary to use 2 times mole. However, the specific amount of raw material to be used can be appropriately determined in consideration of the order of preparation.

この反応は、ハロゲン捕捉剤の存在下で行なわれることが好ましい。上記の反応ではハロゲン化物イオンが副生し、これが水素イオンと結合するとハロゲン化水素が生成する。上記ハロゲン捕捉剤は、副生したハロゲン化物イオンを捕捉して、沈殿として反応系外へ追いやり,溶液中での置換反応を速やかに進行させる目的で添加されるものである。かようなハロゲン捕捉剤としては、例えば、硝酸銀、硫酸銀、酸化銀などの銀塩が、あるいは、加熱してハロゲン化水素として大気中に追い出すなどの手法が用いられうる。かようなハロゲン捕捉剤の使用量について特に制限はないが、好ましくは、副生するハロゲン化物イオンの全量を捕捉しうる量のハロゲン捕捉剤が用いられる。   This reaction is preferably carried out in the presence of a halogen scavenger. In the above reaction, halide ions are produced as a by-product, and when this is combined with hydrogen ions, hydrogen halide is generated. The halogen scavenger is added for the purpose of trapping by-produced halide ions, driving them out of the reaction system as a precipitate, and promptly proceeding with the substitution reaction in the solution. As such a halogen scavenger, for example, a silver salt such as silver nitrate, silver sulfate, or silver oxide, or a method such as heating to expel it into the atmosphere as hydrogen halide can be used. The amount of such a halogen scavenger used is not particularly limited, but preferably an amount of halogen scavenger capable of capturing the total amount of by-produced halide ions is used.

反応条件についても特に制限はなく、適宜設定されうる。一例を挙げると、反応温度は、通常は室温〜80℃であり、好ましくは室温〜40℃である。また、反応時間は、通常は2時間〜1週間であり、好ましくは数時間〜数日である。   There is no restriction | limiting in particular also about reaction conditions, It can set suitably. For example, the reaction temperature is usually room temperature to 80 ° C, preferably room temperature to 40 ° C. The reaction time is usually 2 hours to 1 week, preferably several hours to several days.

本発明に係る金属錯体は、後述するように高い抗がん活性を有することから、抗がん剤として用いられうる。   Since the metal complex according to the present invention has high anticancer activity as described later, it can be used as an anticancer agent.

すなわち、本発明によれば、上述した金属錯体を有効成分として含有する抗がん剤が提供されるのである。   That is, according to this invention, the anticancer agent which contains the metal complex mentioned above as an active ingredient is provided.

本発明の抗がん剤が適用されるがんの種類は、特に限定されず、例えば、白血病、悪性黒色腫、悪性リンパ腫、消化器癌、肺癌、食道癌、胃癌、大腸癌、直腸癌、結腸癌、尿管腫瘍、胆嚢癌、胆管癌、胆道癌、乳癌、肝臓癌、膵臓癌、睾丸腫瘍、上顎癌、舌癌、口唇癌、口腔癌、咽頭癌、喉頭癌、卵巣癌、子宮癌、前立腺癌、甲状腺癌、脳腫瘍、カポジ肉腫、血管腫、真性多血症、神経芽腫、網膜芽腫、骨髄腫、膀胱腫、肉腫、骨肉腫、筋肉腫、皮膚癌、基底細胞癌、皮膚付属器癌、皮膚転移癌、皮膚黒色腫などが挙げられる。また、悪性腫瘍のみならず、良性腫瘍への適用も可能である。また、本発明の抗がん剤は、癌転移を抑制するために使用されることができ、特に、術後の癌転移抑制剤としても有用である。   The type of cancer to which the anticancer agent of the present invention is applied is not particularly limited. For example, leukemia, malignant melanoma, malignant lymphoma, gastrointestinal cancer, lung cancer, esophageal cancer, stomach cancer, colon cancer, rectal cancer, Colon cancer, ureteral tumor, gallbladder cancer, bile duct cancer, biliary tract cancer, breast cancer, liver cancer, pancreatic cancer, testicular tumor, maxillary cancer, tongue cancer, lip cancer, oral cancer, pharyngeal cancer, laryngeal cancer, ovarian cancer, uterine cancer , Prostate cancer, thyroid cancer, brain tumor, Kaposi's sarcoma, hemangioma, polycythemia vera, neuroblastoma, retinoblastoma, myeloma, cystoma, sarcoma, osteosarcoma, sarcoma, skin cancer, basal cell carcinoma, skin Examples include adnexal cancer, skin metastatic cancer, and cutaneous melanoma. Moreover, it can be applied not only to malignant tumors but also to benign tumors. In addition, the anticancer agent of the present invention can be used for suppressing cancer metastasis, and is particularly useful as a postoperative cancer metastasis inhibitor.

本発明の抗がん剤を使用するにあたっては、種々の形態でヒトまたは動物に(特に好ましくはヒトに)、本発明の抗がん剤を投与することができる。本発明の抗がん剤の投与形態としては、可能であれば経口投与でもよいし、静脈内、筋肉内、皮下または皮内等への注射、直腸内投与、経粘膜投与などの非経口投与でもよい。経口投与に適する製剤形態としては、例えば、錠剤、丸剤、顆粒剤、散剤、カプセル剤、液剤、懸濁剤、乳剤、シロップ剤などが挙げられる。また、非経口投与に適する医薬組成物としては、例えば、注射剤、点滴剤、点鼻剤、噴霧剤、吸入剤、坐剤等の外用固形剤、または、軟膏、クリーム、粉状塗布剤、液状塗布剤、貼付剤等の経皮吸収剤などが挙げられる。さらに、本発明の抗がん剤の製剤形態としては、埋め込み用ペレットや公知の技術により調製される持続性製剤が挙げられる。   In using the anticancer agent of the present invention, the anticancer agent of the present invention can be administered to humans or animals (particularly preferably to humans) in various forms. The administration form of the anticancer agent of the present invention may be oral administration if possible, or parenteral administration such as intravenous, intramuscular, subcutaneous or intradermal injection, rectal administration, transmucosal administration and the like. But you can. Examples of the dosage form suitable for oral administration include tablets, pills, granules, powders, capsules, solutions, suspensions, emulsions, syrups and the like. Examples of the pharmaceutical composition suitable for parenteral administration include solid preparations for external use such as injections, drops, nasal drops, sprays, inhalants, suppositories, or ointments, creams, powder coatings, Examples include liquid coating agents, transdermal absorbents such as patches. Furthermore, examples of the dosage form of the anticancer agent of the present invention include embedding pellets and sustained-release preparations prepared by known techniques.

好ましい投与形態や製剤形態等は、患者の年齢、性別、体質、症状、処置時期等に応じて、医師によって適宜選択される。   A preferable administration form, preparation form, and the like are appropriately selected by a doctor according to the age, sex, constitution, symptom, treatment time, etc. of the patient.

本発明の抗がん剤が、錠剤、丸剤、散剤、粉剤、顆粒剤などの固形製剤である場合、これらの固形製剤は、本発明に係る金属錯体を、常法に従って適当な添加剤、例えば、乳糖、ショ糖、D−マンニトール、トウモロコシデンプン、合成もしくは天然ガム、結晶セルロース等の賦形剤、デンプン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、アラビアゴム、ゼラチン、ポリビニルピロリドン等の結合剤、カルボシキメチルセルロースカルシウム、カルボシキメチルセルロースナトリウム、デンプン、コーンスターチ、アルギン酸ナトリウム等の崩壊剤、タルク、ステアリン酸マグネシウム、ステアリン酸ナトリウム、ステアリン酸カルシウム等の滑沢剤、炭酸カルシウム、炭酸ナトリウム、リン酸カルシウム、リン酸ナトリウム等の充填剤または希釈剤等と適宜混合することにより、製造されうる。錠剤等には、必要に応じて、ヒドロキシプロピルメチルセルロース、白糖、ポリエチレングリコール、酸化チタン等のコーティング剤を用いて、糖衣、ゼラチン、腸溶被覆、フイルムコーティングなどが施されてもよい。   When the anticancer agent of the present invention is a solid preparation such as a tablet, pill, powder, powder, granule or the like, these solid preparations contain the metal complex according to the present invention as a suitable additive according to a conventional method, For example, lactose, sucrose, D-mannitol, corn starch, synthetic or natural gum, excipients such as crystalline cellulose, starch, hydroxypropylcellulose, hydroxypropylmethylcellulose, gum arabic, gelatin, polyvinylpyrrolidone and other binders, carbo Disintegrants such as carboxymethylcellulose calcium, sodium carboxymethylcellulose, starch, corn starch, sodium alginate, lubricants such as talc, magnesium stearate, sodium stearate, calcium stearate, calcium carbonate, sodium carbonate, calcium phosphate, By appropriately mixing the filler or diluent, such as sodium and the like, it can be manufactured. Tablets and the like may be subjected to sugar coating, gelatin, enteric coating, film coating and the like, if necessary, using a coating agent such as hydroxypropylmethylcellulose, sucrose, polyethylene glycol, titanium oxide and the like.

本発明の抗がん剤が、注射剤、点眼剤、点鼻剤、吸入剤、噴霧剤、ローション剤、シロップ剤、液剤、懸濁剤、乳剤等の液状製剤である場合、これらの液状製剤は、本発明に係る金属錯体に、精製水、リン酸緩衝液等の適当な緩衝液、生理的食塩水、リンゲル溶液、ロック溶液等の生理的塩類溶液、カカオバター、ゴマ油、オリーブ油等の植物油、鉱油、高級アルコール、高級脂肪酸、エタノール等の有機溶媒等に溶解して、必要に応じてコレステロール等の乳化剤、アラビアゴム等の懸濁剤、分散助剤、浸潤剤、ポリオキシエチレン硬化ヒマシ油系、ポリエチレングリコール系等の界面活性剤、リン酸ナトリウム等の溶解補助剤、糖、糖アルコール、アルブミン等の安定化剤、パラベン等の保存剤、塩化ナトリウム、ブドウ糖、グリセリン等の等張化剤、緩衝剤、無痛化剤、吸着防止剤、保湿剤、酸化防止剤、着色剤、甘味料、フレーバー、芳香物質等を適宜添加することにより、滅菌された水溶液、非水溶液、懸濁液、リポソームまたはエマルジョン等として調製されうる。この際、注射剤は、生理学的なpHを有することが好ましく、6〜8の範囲内のpHを有することが特に好ましい。   When the anticancer agent of the present invention is a liquid preparation such as injection, eye drop, nasal drop, inhalant, spray, lotion, syrup, liquid, suspension, emulsion, etc., these liquid preparations Is a metal complex according to the present invention, purified water, a suitable buffer solution such as phosphate buffer, physiological saline solution, physiological salt solution such as Ringer's solution, lock solution, vegetable oil such as cocoa butter, sesame oil, olive oil, etc. , Mineral oil, higher alcohols, higher fatty acids, ethanol and other organic solvents, and if necessary, emulsifiers such as cholesterol, suspending agents such as gum arabic, dispersion aids, wetting agents, polyoxyethylene hydrogenated castor oil , Surfactants such as polyethylene glycol, solubilizers such as sodium phosphate, stabilizers such as sugar, sugar alcohol and albumin, preservatives such as paraben, sodium chloride, glucose, glycerin Isotonic agent, buffer, soothing agent, anti-adsorption agent, moisturizer, antioxidant, colorant, sweetener, flavor, fragrance, etc. It can be prepared as a suspension, liposome or emulsion. In this case, the injection preferably has a physiological pH, and particularly preferably has a pH within the range of 6-8.

本発明の抗がん剤が、ローション剤、クリーム剤、軟膏等の半固形製剤の場合、これらの半固形製剤は、本発明に係る金属錯体を脂肪、脂肪油、ラノリン、ワセリン、パラフィン、蝋、硬膏剤、樹脂、プラスチック、グリコール類、高級アルコール、グリセリン、水、乳化剤、懸濁化剤等と適宜混和することにより、製造されうる。   When the anticancer agent of the present invention is a semi-solid preparation such as a lotion, cream or ointment, these semi-solid preparations contain the metal complex according to the present invention as a fat, fatty oil, lanolin, petrolatum, paraffin, wax. , Plasters, resins, plastics, glycols, higher alcohols, glycerin, water, emulsifiers, suspending agents and the like.

本発明の抗がん剤における、本発明に係る金属錯体の含有量は、投与形態、重篤度や所望の投与量などに応じて変動しうるが、一般的には、本発明の抗がん剤の全質量に対して、0.001〜80質量%、好ましくは0.1〜50質量%である。   In the anticancer agent of the present invention, the content of the metal complex according to the present invention may vary depending on the dosage form, severity, desired dosage, etc. It is 0.001-80 mass% with respect to the total mass of an adhesive agent, Preferably it is 0.1-50 mass%.

本発明の抗がん剤の投与量は、例えば患者の年齢、性別、体重、症状、および投与経路などの条件に応じて、医師により適宜決定されうる。一般的には、成人一日あたりの有効成分の量として1μg/kgから1,000mg/kg程度の範囲であり、好ましくは10μg/kgから10mg/kg程度の範囲である。かような投与量の抗がん剤は、一日一回で投与されてもよいし、一日数回(例えば、2〜4回程度)に分けて投与されてもよい。   The dosage of the anticancer agent of the present invention can be appropriately determined by a doctor according to conditions such as the age, sex, weight, symptoms, and administration route of the patient. In general, the amount of active ingredient per day for an adult is in the range of about 1 μg / kg to 1,000 mg / kg, preferably in the range of about 10 μg / kg to 10 mg / kg. Such a dose of anticancer agent may be administered once a day, or may be administered divided into several times a day (for example, about 2 to 4 times).

本発明の抗がん剤を使用するにあたっては、既知の化学療法、外科的治療法、放射線療法、温熱療法や免疫療法などと併用されてもよい。   In using the anticancer agent of the present invention, it may be used in combination with known chemotherapy, surgical treatment, radiation therapy, hyperthermia, immunotherapy and the like.

本発明の抗がん剤は、後述する実施例において示されるように、極めて高い抗がん性を示す。また、本発明の抗がん剤は、重篤な副作用(腎毒性)が問題となっている従来のプラチナ製剤と比較して、非常に顕著に副作用が低減されている。さらに、本発明の抗がん剤の作用様式も、既存の抗がん剤とは異なるものであることが示唆されている。したがって、本発明の抗がん剤は、既存のプラチナ製剤に代替しうる可能性を秘めたものであり、非常に有望な新規薬剤の候補である。   The anticancer agent of the present invention exhibits extremely high anticancer properties as shown in the examples described later. In addition, the anticancer agent of the present invention has significantly reduced side effects as compared with conventional platinum preparations in which serious side effects (nephrotoxicity) are a problem. Furthermore, it has been suggested that the mode of action of the anticancer agent of the present invention is also different from existing anticancer agents. Therefore, the anticancer agent of the present invention has a possibility of replacing an existing platinum preparation, and is a very promising new drug candidate.

また、本発明の金属錯体は、後述する実施例において示されるように、プロテアソームの阻害作用が認められた。プロテアソームは,ポリユビキチン化された細胞内タンパク質を選択的に分解する酵素であり、細胞周期やアポトーシスを制御するタンパク質の分解において中心的な役割を果たしている。このため、本発明の錯体が抗がん性を発揮するメカニズムの少なくとも一部には、このプロテアソーム阻害作用が関与しているものと考えられる。また、本発明の錯体はこれ以外にも、テロメラーゼ、ファルネシルトランスフェラーゼ、ヒストンデアセチラーゼ、プロテインキナーゼなどの各種のがん関連酵素の1つまたは2つ以上を阻害するものがほとんどである。このことから、本発明の錯体の抗がん性は、上述したプロテアソームの阻害作用のみならず、他の酵素に対する阻害作用とも相俟って、総合的な作用として発揮されているものと考えられる。なお、上記知見に基づき、本願では、上述した本発明の金属錯体を有効成分として含有する、プロテアソーム阻害剤、テロメラーゼ阻害剤、ファルネシルトランスフェラーゼ阻害剤、ヒストンデアセチラーゼ阻害剤、またはプロテインキナーゼ阻害剤もまた、提供されうる。   In addition, the proteasome inhibitory action was recognized in the metal complex of the present invention as shown in Examples described later. The proteasome is an enzyme that selectively degrades polyubiquitinated intracellular proteins, and plays a central role in the degradation of proteins that control the cell cycle and apoptosis. For this reason, it is considered that this proteasome inhibitory action is involved in at least part of the mechanism by which the complex of the present invention exhibits anticancer properties. In addition, most of the complexes of the present invention inhibit one or more of various cancer-related enzymes such as telomerase, farnesyltransferase, histone deacetylase, and protein kinase. From this, it is considered that the anticancer property of the complex of the present invention is exhibited as a comprehensive action in combination with not only the above-described inhibitory action of the proteasome but also the inhibitory action against other enzymes. . Based on the above findings, the present application also includes a proteasome inhibitor, a telomerase inhibitor, a farnesyltransferase inhibitor, a histone deacetylase inhibitor, or a protein kinase inhibitor, which contains the above-described metal complex of the present invention as an active ingredient. It can also be provided.

さらに、本発明のアニオン錯体のうち、IP構造を有するものに特有の特徴として、当該アニオン錯体は従来のプラチナ製剤と比較して、ヒドロキシアパタイト(HAP;Ca10(PO(OH))に対する吸着平衡定数aが大きいという特徴がある。したがって、本発明のアニオン錯体のうちIP構造を有するものは、それ単独で、またはHAPと複合化されて、骨がん等の骨関連疾患に罹患した細胞への標的化が可能な薬物送達システム(DDS)製剤として用いられうる。かような知見に基づき、本発明によれば、HAPと複合化された、IP構造を有する本発明のアニオン錯体もまた、提供されうる。HAPと複合化されたアニオン錯体は、上記と同様の用途に用いられうる。とりわけ、骨がん等の骨関連疾患の治療剤として有用であるものと期待される。なお、かような複合体の製造方法については特に制限はないが、例えば、上記所定のアニオン錯体を適当な緩衝液(例えば、HEPES緩衝液)中でHAPとともにインキュベートすることで、製造が可能である。Furthermore, among the anion complexes of the present invention, as a characteristic characteristic of those having an IP 6 structure, the anion complex is more hydroxyapatite (HAP; Ca 10 (PO 4 ) 6 (OH) than the conventional platinum preparation. 2 ) is characterized by a large adsorption equilibrium constant a. Accordingly, among the anion complexes of the present invention, those having an IP 6 structure alone or complexed with HAP can be targeted to cells affected by bone-related diseases such as bone cancer. It can be used as a system (DDS) formulation. Based on such knowledge, according to the present invention, an anion complex of the present invention having an IP 6 structure complexed with HAP can also be provided. The anion complex complexed with HAP can be used for the same applications as described above. In particular, it is expected to be useful as a therapeutic agent for bone-related diseases such as bone cancer. The method for producing such a complex is not particularly limited. For example, the complex can be produced by incubating the predetermined anion complex with HAP in an appropriate buffer (for example, HEPES buffer). is there.

以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲が下記の実施例に記載の形態のみに制限されるわけではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, the technical scope of this invention is not necessarily restrict | limited only to the form as described in the following Example.

[カチオン錯体(M(DI)(AtC3))の合成]
下記化学式9に示すスキームにより、本発明のカチオン錯体を合成した。
[Synthesis of Cation Complex (M (DI) (AtC3))]
The cation complex of the present invention was synthesized according to the scheme shown in the following chemical formula 9.

上記化学式9に記載の化合物の構造において、Rはフェナントロリン骨格への置換基を表し、Aはアルカリ金属を表し、MはPt(II)またはPd(II)を表す。なお、下記の実施例において合成された目的生成物のうち、フェナントロリン環に非対称に置換基が導入されたもの(すなわち、フェナントロリン環の5位のみに置換基が導入された生成物)においては、下記化学式10で表されるような2種の生成物の等量混合物として得られている。   In the structure of the compound represented by Chemical Formula 9, R represents a substituent to the phenanthroline skeleton, A represents an alkali metal, and M represents Pt (II) or Pd (II). Of the target products synthesized in the following examples, those in which a substituent is introduced asymmetrically into the phenanthroline ring (that is, a product in which a substituent is introduced only at the 5-position of the phenanthroline ring) It is obtained as an equal mixture of two kinds of products represented by the following chemical formula 10.

カチオン錯体の合成において用いた試薬は、それぞれ以下の経路により入手したものである。   Reagents used in the synthesis of the cation complex were obtained by the following routes, respectively.

PtCl、NaPdCl:田中貴金属工業株式会社より購入
5,6−ジメチルフェナントロリン(5,6−DMP):Fluka社より購入
2,9−ジメチルフェナントロリン(2,9−DMP)、3,4,7,8−テトラメチルフェナントロリン(3,4,7,8−TMP):SIGMA社より購入
5−ニトロフェナントロリン(5−NP)、5−メチルフェナントロリン(5−MP)、5−クロロフェナントロリン(5−ClP):東京化成工業株式会社より購入
5−メトキシフェナントロリン(5−OMP):文献(Y. Shen, B. P. Sullivan, Inorg. Chem., 34, 6235-6(1995))の記載に従って合成
ジメチルスルホキシド(DMSO):ナカライテスク株式会社より購入
アセトン:和光純薬工業株式会社より購入
[合成例1−1:Pt(5,6−DMP)Clの合成]
5,6−DMP 0.708g(3.4mmol)をDMSO 1mLに溶かし、KPtCl1.38g(3.3mmol)をHO 24mLに懸濁した。これらを混合した後、80℃で3時間加熱撹拌し、その後常温で2時間撹拌した。生成した黄色の粉末を濾取し、HOで洗浄後、乾燥した。
K 2 PtCl 2 , Na 2 PdCl 4 : purchased from Tanaka Kikinzoku Kogyo Co., Ltd. 5,6-dimethylphenanthroline (5,6-DMP): purchased from Fluka 2,9-dimethylphenanthroline (2,9-DMP), 3 , 4,7,8-tetramethylphenanthroline (3,4,7,8-TMP): purchased from SIGMA 5-nitrophenanthroline (5-NP), 5-methylphenanthroline (5-MP), 5-chlorophenanthroline (5-ClP): purchased from Tokyo Chemical Industry Co., Ltd. 5-methoxyphenanthroline (5-OMP): synthesized according to the literature (Y. Shen, BP Sullivan, Inorg. Chem., 34, 6235-6 (1995)). Dimethyl sulfoxide (DMSO): purchased from Nacalai Tesque, Inc. Acetone: purchased from Wako Pure Chemical Industries, Ltd. [Synthesis Example 1-1: Pt Synthesis of (5,6-DMP) Cl 2 ]
0.708 g (3.4 mmol) of 5,6-DMP was dissolved in 1 mL of DMSO, and 1.38 g (3.3 mmol) of K 2 PtCl 2 was suspended in 24 mL of H 2 O. After mixing these, the mixture was heated and stirred at 80 ° C. for 3 hours, and then stirred at room temperature for 2 hours. The produced yellow powder was collected by filtration, washed with H 2 O and dried.

[合成例1−2:Pd(5,6−DMP)Clの合成]
5,6−DMP 0.708g(3.4mmol)をDMSO 1mLに溶かし、NaPdCl0.745g(3.3mmol)をHO 24 mLに懸濁した。これを80℃で3時間加熱撹拌し、その後常温で2時間撹拌した。生成した黄色の粉末を濾取し、HOで洗浄後、乾燥した。
[Synthesis Example 1-2: Synthesis of Pd (5,6-DMP) Cl 2 ]
0.708 g (3.4 mmol) of 5,6-DMP was dissolved in 1 mL of DMSO, and 0.745 g (3.3 mmol) of Na 2 PdCl 4 was suspended in 24 mL of H 2 O. This was heated and stirred at 80 ° C. for 3 hours, and then stirred at room temperature for 2 hours. The produced yellow powder was collected by filtration, washed with H 2 O and dried.

[合成例1−3:AtC3・2HClの合成]
特表2007−521257号公報(段落「0079」〜「0081」)に記載の手法により、AtC3・2HClを合成した。
[Synthesis Example 1-3: Synthesis of AtC3 · 2HCl]
AtC3 · 2HCl was synthesized by the method described in JP-T-2007-521257 (paragraphs “0079” to “0081”).

[実施例1−1:Pt(5,6−DMP)(AtC3)Clの合成]Example 1-1 Synthesis of Pt (5,6-DMP) (AtC3) Cl 2

上述した合成例1−1と同様の手法により合成したPt(5,6−DMP)Cl0.474g(1mmol)をHO 10mLに懸濁した。次いでこの懸濁液に、上述した合成例1−3の手法により合成したAtC3・2HCl 0.42g(1.3mmol)およびNaCO0.16g(1.5mmol)をHO 10mLとエタノール 5mLとの混合溶媒に溶かした溶液を添加した。その後、得られた反応液を80℃で3時間加熱撹拌したところ、黄色溶液が得られた。これをただちに熱時濾過した後、濾液の量が1〜2mLになるまで減圧濃縮した。濃縮した溶液にアセトンを加えて冷蔵庫内に一晩放置し、黄色の粉末を得た。この粉末を濾取し、アセトンで洗浄後、乾燥して、目的生成物を得た(収量 0.22g、収率 26%)。0.474 g (1 mmol) of Pt (5,6-DMP) Cl 2 synthesized by the same method as in Synthesis Example 1-1 was suspended in 10 mL of H 2 O. Next, 0.42 g (1.3 mmol) of AtC3 · 2HCl and 0.16 g (1.5 mmol) of Na 2 CO 3 synthesized by the method of Synthesis Example 1-3 described above were added to 10 mL of H 2 O and ethanol. A solution dissolved in 5 mL of a mixed solvent was added. Then, when the obtained reaction liquid was heated and stirred at 80 ° C. for 3 hours, a yellow solution was obtained. This was immediately filtered while hot, and then concentrated under reduced pressure until the amount of the filtrate became 1 to 2 mL. Acetone was added to the concentrated solution and left in the refrigerator overnight to obtain a yellow powder. This powder was collected by filtration, washed with acetone and dried to obtain the desired product (yield 0.22 g, yield 26%).

元素分析 C3232PtCl・6H
実測値:C 45.5%、H 4.83%、N 6.60%
計算値:C 45.4%、H 5.20%、N 6.62%
Elemental analysis C 32 H 32 N 4 PtCl 2 · 6H 2 O
Found: C 45.5%, H 4.83%, N 6.60%
Calculated values: C 45.4%, H 5.20%, N 6.62%

[実施例1−2:Pd(5,6−DMP)(AtC3)Clの合成]Example 1-2: Pd (5,6-DMP) (AtC3) Synthesis of Cl 2]

上述した合成例1−2と同様の手法により合成したPd(5,6−DMP)Cl0.385g(1mmol)をHO 10mLに懸濁した。次いでこの懸濁液に、AtC3・2HCl 0.42g(1.3mmol)およびNaCO0.16g(1.5mmol)をHO 10mLとエタノール 5mLとの混合溶媒に溶かした溶液を添加した。その後、得られた反応液を80℃で3時間加熱撹拌したところ、黄色溶液が得られた。これをただちに熱時濾過した後、濾液の量が1〜2mLになるまで減圧濃縮した。濃縮した溶液にアセトンを加えて冷蔵庫内に一晩放置し、黄色の粉末を得た。この粉末を濾取し、アセトンで洗浄後、乾燥して、目的生成物を得た(収量 0.53g、収率 47.5%)。Pd (5,6-DMP) Cl 2 0.385 g (1 mmol) synthesized by the same method as in Synthesis Example 1-2 described above was suspended in 10 mL of H 2 O. Next, a solution of 0.42 g (1.3 mmol) of AtC3 · 2HCl and 0.16 g (1.5 mmol) of Na 2 CO 3 in a mixed solvent of 10 mL of H 2 O and 5 mL of ethanol was added to this suspension. . Then, when the obtained reaction liquid was heated and stirred at 80 ° C. for 3 hours, a yellow solution was obtained. This was immediately filtered while hot, and then concentrated under reduced pressure until the amount of the filtrate became 1 to 2 mL. Acetone was added to the concentrated solution and left in the refrigerator overnight to obtain a yellow powder. This powder was collected by filtration, washed with acetone and dried to obtain the desired product (yield 0.53 g, yield 47.5%).

元素分析 C3232PdCl・3HO・7NaCl
実測値:C 34.4%、H 3.54%、N 4.88%
計算値:C 34.5%、H 3.41%、N 5.03%
Elemental analysis C 32 H 32 N 4 PdCl 2 · 3H 2 O · 7NaCl
Found: C 34.4%, H 3.54%, N 4.88%
Calculated values: C 34.5%, H 3.41%, N 5.03%

[実施例1−3:Pt(2,9−DMP)(AtC3)Clの合成]Example 1-3: Pt (2,9-DMP) (AtC3) Synthesis of Cl 2]

上述した合成例1−1と同様の手法により合成したPt(2,9−DMP)Cl0.474g(1mmol)をHO 10mLに懸濁した。次いでこの懸濁液に、AtC3・2HCl 0.42g(1.3mmol)およびNaCO0.16g(1.5mmol)をHO 10mLとエタノール 5mLとの混合溶媒に溶かした溶液を添加した。その後、得られた反応液を80℃で2時間加熱撹拌したところ、黄色溶液が得られた。これをただちに熱時濾過した後、濾液の量が1〜2mLになるまで減圧濃縮した。濃縮した溶液にアセトンを加えて冷蔵庫内に一晩放置し、黄色の粉末を得た。この粉末を濾取し、アセトンで洗浄後、乾燥して、目的生成物を得た(収量 0.30g、収率 38%)。0.474 g (1 mmol) of Pt (2,9-DMP) Cl 2 synthesized by the same method as in Synthesis Example 1-1 was suspended in 10 mL of H 2 O. Next, a solution of 0.42 g (1.3 mmol) of AtC3 · 2HCl and 0.16 g (1.5 mmol) of Na 2 CO 3 in a mixed solvent of 10 mL of H 2 O and 5 mL of ethanol was added to this suspension. . Then, when the obtained reaction liquid was heated and stirred at 80 ° C. for 2 hours, a yellow solution was obtained. This was immediately filtered while hot, and then concentrated under reduced pressure until the amount of the filtrate became 1 to 2 mL. Acetone was added to the concentrated solution and left in the refrigerator overnight to obtain a yellow powder. The powder was collected by filtration, washed with acetone and dried to obtain the desired product (yield 0.30 g, yield 38%).

元素分析 C3232PtCl・1EtOH
実測値:C 51.5%、H 5.37%、N 6.87%
計算値:C 52.0%、H 4.85%、N 7.14%
Elemental analysis C 32 H 32 N 4 PtCl 2 · 1EtOH
Found: C 51.5%, H 5.37%, N 6.87%
Calculated values: C 52.0%, H 4.85%, N 7.14%

[実施例1−4:Pd(2,9−DMP)(AtC3)Clの合成]Example 1-4: Pd (2,9-DMP) (AtC3) Synthesis of Cl 2]

上述した合成例1−2と同様の手法により合成したPd(2,9−DMP)Cl0.385g(1mmol)をHO 10mLに懸濁した。次いでこの懸濁液に、AtC3・2HCl 0.42g(1.3mmol)およびNaCO0.16g(1.5mmol)をHO 10mLとエタノール 5mLとの混合溶媒に溶かした溶液を添加した。その後、得られた反応液を80℃で4時間加熱撹拌し、40℃で一晩撹拌したところ、黄色溶液が得られた。これをただちに熱時濾過した後、濾液の量が1〜2mLになるまで減圧濃縮した。濃縮した溶液にアセトンを加えて冷蔵庫内に一晩放置し、黄色の粉末を得た。この粉末を濾取し、アセトンで洗浄後、乾燥して、目的生成物を得た(収量 0.21g、収率 17%)。Pd (2,9-DMP) Cl 2 0.385 g (1 mmol) synthesized by the same method as in Synthesis Example 1-2 described above was suspended in 10 mL of H 2 O. Next, a solution of 0.42 g (1.3 mmol) of AtC3 · 2HCl and 0.16 g (1.5 mmol) of Na 2 CO 3 in a mixed solvent of 10 mL of H 2 O and 5 mL of ethanol was added to this suspension. . Thereafter, the obtained reaction solution was heated and stirred at 80 ° C. for 4 hours, and stirred at 40 ° C. overnight, whereby a yellow solution was obtained. This was immediately filtered while hot, and then concentrated under reduced pressure until the amount of the filtrate became 1 to 2 mL. Acetone was added to the concentrated solution and left in the refrigerator overnight to obtain a yellow powder. The powder was collected by filtration, washed with acetone, and dried to obtain the desired product (yield 0.21 g, yield 17%).

元素分析 C3232PdCl・4.5HO・0.5CO・8NaCl
実測値:C 33.1%、H 3.21%、N 4.08%
計算値:C 32.8%、H 3.34%、N 4.56%
Elemental analysis C 32 H 32 N 4 PdCl 2 · 4.5H 2 O · 0.5C 3 H 6 O · 8NaCl
Found: C 33.1%, H 3.21%, N 4.08%
Calculated values: C 32.8%, H 3.34%, N 4.56%

[実施例1−5:Pt(5−MP)(AtC3)Clの合成]Example 1-5: Pt (5-MP) (AtC3) Synthesis of Cl 2]

上述した合成例1−1と同様の手法により合成したPt(5−MP)Cl 0.460g(1mmol)をHO 10mLに懸濁した。次いでこの懸濁液に、AtC3・2HCl 0.42g(1.3mmol)およびNaCO 0.16g(1.5mmol)をHO 10mLとエタノール 5mLとの混合溶媒に溶かした溶液を添加した。その後、得られた反応液を80℃で3時間加熱撹拌したところ、黄色溶液が得られた。これをただちに熱時濾過した後、濾液の量が1〜2mLになるまで減圧濃縮した。濃縮した溶液にアセトンを加えて冷蔵庫内に一晩放置し、黒色の粉末を得た。この粉末を濾取し、アセトンで洗浄後、乾燥して、目的生成物を得た(収量 0.45g、収率 53%)。0.460 g (1 mmol) of Pt (5-MP) Cl 2 synthesized by the same method as in Synthesis Example 1-1 was suspended in 10 mL of H 2 O. Next, a solution of 0.42 g (1.3 mmol) of AtC3 · 2HCl and 0.16 g (1.5 mmol) of Na 2 CO 3 in a mixed solvent of 10 mL of H 2 O and 5 mL of ethanol was added to this suspension. . Then, when the obtained reaction liquid was heated and stirred at 80 ° C. for 3 hours, a yellow solution was obtained. This was immediately filtered while hot, and then concentrated under reduced pressure until the amount of the filtrate became 1 to 2 mL. Acetone was added to the concentrated solution and left overnight in the refrigerator to obtain a black powder. The powder was collected by filtration, washed with acetone, and dried to obtain the desired product (yield 0.45 g, yield 53%).

元素分析 C3130PtCl・5HO・0.5NaCl
実測値:C 44.1%、H 4.30%、N 6.26%
計算値:C 44.1%、H 4.74%、N 6.64%
Elemental analysis C 31 H 30 N 4 PtCl 2 · 5H 2 O · 0.5NaCl
Found: C 44.1%, H 4.30%, N 6.26%
Calculated values: C 44.1%, H 4.74%, N 6.64%

[実施例1−6:Pt(5−MP)(AtC3)(NOの合成]Example 1-6: Pt (5-MP) (AtC3) (NO 3) 2 of Synthesis

上述した実施例1−5の手法により合成したPt(5−MP)(AtC3)Clを水に溶かし(約1M)、イオン交換樹脂IRA400J(NO 形)に通した。濾液を減圧濃縮した溶液にアセトンを加えて冷蔵庫内に一晩放置し、粉末を得た。この粉末を濾取し、アセトンで洗浄後、乾燥して、目的生成物を得た。Pt synthesized by the procedure of Example 1-5 described above (5-MP) (AtC3) a Cl 2 was dissolved in water (about 1M), ion exchange resins IRA400J - was passed through a (NO 3 form). Acetone was added to a solution obtained by concentrating the filtrate under reduced pressure, and the filtrate was left overnight in a refrigerator to obtain a powder. The powder was collected by filtration, washed with acetone and dried to obtain the desired product.

元素分析 C3130Pt・0.5H
実測値:C 47.2%、H 3.86%、N 10.3%
計算値:C 47.3%、H 3.94%、N 10.7%
Elemental analysis C 31 H 30 N 6 O 6 Pt · 0.5H 2 O
Actual value: C 47.2%, H 3.86%, N 10.3%
Calculated values: C 47.3%, H 3.94%, N 10.7%

[実施例1−7−1:Pd(5−MP)(AtC3)Clの合成]Example 1-7-1: Pd (5-MP) (AtC3) Synthesis of Cl 2]

上述した合成例1−2と同様の手法により合成したPd(5−MP)Cl 0.371g(1mmol)をHO 10mLに懸濁した。次いでこの懸濁液に、AtC3・2HCl 0.42g(1.3mmol)およびNaCO 0.16g(1.5mmol)をHO 10mLとエタノール 5mLとの混合溶媒に溶かした溶液を添加した。その後、得られた反応液を80℃で3時間加熱撹拌したところ、黄色溶液が得られた。これをただちに熱時濾過した後、濾液の量が1〜2mLになるまで減圧濃縮した。濃縮した溶液にアセトンを加えて冷蔵庫内に一晩放置し、黒色の粉末を得た。この粉末を濾取し、アセトンで洗浄後、乾燥して、目的生成物を得た(収量 0.37g、収率 39%)。Pd (5-MP) Cl 2 0.371 g (1 mmol) synthesized by the same method as in Synthesis Example 1-2 described above was suspended in 10 mL of H 2 O. Next, a solution of 0.42 g (1.3 mmol) of AtC3 · 2HCl and 0.16 g (1.5 mmol) of Na 2 CO 3 in a mixed solvent of 10 mL of H 2 O and 5 mL of ethanol was added to this suspension. . Then, when the obtained reaction liquid was heated and stirred at 80 ° C. for 3 hours, a yellow solution was obtained. This was immediately filtered while hot, and then concentrated under reduced pressure until the amount of the filtrate became 1 to 2 mL. Acetone was added to the concentrated solution and left overnight in the refrigerator to obtain a black powder. The powder was collected by filtration, washed with acetone, and dried to obtain the desired product (yield 0.37 g, yield 39%).

元素分析 C3130PdCl・1HO・5NaCl
実測値:C 39.2%、H 3.36%、N 5.73%
計算値:C 39.3%、H 3.38%、N 5.92%
Elemental analysis C 31 H 30 N 4 PdCl 2 · 1H 2 O · 5NaCl
Actual value: C 39.2%, H 3.36%, N 5.73%
Calculated values: C 39.3%, H 3.38%, N 5.92%

[実施例1−7−2:Pd(5−MP)(AtC3)(NOの合成]Example 1-7-2: Pd (5-MP) (AtC3) (NO 3) 2 of Synthesis

上述した実施例1−7−1と同様の手法により合成したPd(5−MP)(AtC3)Clを原料として用い、上述した実施例1−6と同様の手法により、目的生成物を得た。Using Pd (5-MP) (AtC3) Cl 2 synthesized by the same method as in Example 1-7-1 described above as a raw material, the target product was obtained by the same method as in Example 1-6 described above It was.

元素分析 C3130Pd・2H
実測値:C 51.68%、H 4.38%、N 11.3%
計算値:C 51.35%、H 4.69%、N 11.62%
[実施例1−8:Pt(5−NP)(AtC3)Clの合成]
Elemental analysis C 31 H 30 N 6 O 6 Pd · 2H 2 O
Actual value: C 51.68%, H 4.38%, N 11.3%
Calculated values: C 51.35%, H 4.69%, N 11.62%
Example 1-8: Pt (5-NP) (AtC3) Synthesis of Cl 2]

上述した合成例1−1と同様の手法により合成したPt(5−NP)Cl 0.484g(1mmol)をHO 10mLに懸濁した。次いでこの懸濁液に、AtC3・2HCl 0.42g(1.3mmol)およびNaCO 0.16g(1.5mmol)をHO 10mLとエタノール 5mLとの混合溶媒に溶かした溶液を添加した。その後、得られた反応液を80℃で3時間加熱撹拌したところ、黒色溶液が得られた。これをただちに熱時濾過した後、濾液の量が1〜2mLになるまで減圧濃縮した。濃縮した溶液にアセトンを加えて冷蔵庫内に一晩放置し、黒色の粉末を得た。この粉末を濾取し、アセトンで洗浄後、乾燥して、目的生成物を得た(収量 0.17g、収率 20%)。0.484 g (1 mmol) of Pt (5-NP) Cl 2 synthesized by the same method as in Synthesis Example 1-1 was suspended in 10 mL of H 2 O. Next, a solution of 0.42 g (1.3 mmol) of AtC3 · 2HCl and 0.16 g (1.5 mmol) of Na 2 CO 3 in a mixed solvent of 10 mL of H 2 O and 5 mL of ethanol was added to this suspension. . Then, when the obtained reaction liquid was heated and stirred at 80 ° C. for 3 hours, a black solution was obtained. This was immediately filtered while hot, and then concentrated under reduced pressure until the amount of the filtrate became 1 to 2 mL. Acetone was added to the concentrated solution and left overnight in the refrigerator to obtain a black powder. The powder was collected by filtration, washed with acetone, and dried to obtain the desired product (yield 0.17 g, yield 20%).

元素分析 C3027PtCl・6H
実測値:C 41.7%、H 4.38%、N 7.6%
計算値:C 41.7%、H 4.52 %、N 8.11%
Elemental analysis C 30 H 27 N 5 O 2 PtCl 2 · 6H 2 O
Found: C 41.7%, H 4.38%, N 7.6%
Calculated values: C 41.7%, H 4.52%, N 8.11%

[実施例1−9:Pt(5−NP)(AtC3)(NOの合成]Example 1-9: Pt (5-NP) (AtC3) (NO 3) 2 of Synthesis

上述した実施例1−8と同様の手法により合成したPt(5−NP)(AtC3)Clを原料として用い、上述した実施例1−6と同様の手法により、目的生成物を得た。Using Pt synthesized in the same manner as in Example 1-8 described above (5-NP) to (AtC3) Cl 2 as a starting material, the same manner as in Example 1-6 described above, to yield the expected product.

元素分析 C3027PtCl・3C
実測値:C 45.8%、H 3.93%、N 9.07%
計算値:C 44.9%、H 4.31%、N 9.40%
Elemental analysis C 30 H 27 N 5 O 2 PtCl 2 · 3C 3 H 6 O
Found: C 45.8%, H 3.93%, N 9.07%
Calculated values: C 44.9%, H 4.31%, N 9.40%

[実施例1−10:Pd(5−NP)(AtC3)Clの合成]Example 1-10: Pd (5-NP) (AtC3) Synthesis of Cl 2]

上述した合成例1−2と同様の手法により合成したPd(5−NP)Cl 0.402g(1mmol)をHO 10mLに懸濁した。次いでこの懸濁液に、AtC3・2HCl 0.42g(1.3mmol)およびNaCO 0.16g(1.5mmol)をHO 10mLとエタノール 5mLとの混合溶媒に溶かした溶液を添加した。その後、得られた反応液を80℃で3時間加熱撹拌したところ、黒色溶液が得られた。これをただちに熱時濾過した後、濾液の量が1〜2mLになるまで減圧濃縮した。濃縮した溶液にアセトンを加えて冷蔵庫内に一晩放置し、黒色の粉末を得た。この粉末を濾取し、アセトンで洗浄後、乾燥して、目的生成物を得た(収量 0.27g、収率 31%)。0.402 g (1 mmol) of Pd (5-NP) Cl 2 synthesized by the same method as in Synthesis Example 1-2 described above was suspended in 10 mL of H 2 O. Next, a solution of 0.42 g (1.3 mmol) of AtC3 · 2HCl and 0.16 g (1.5 mmol) of Na 2 CO 3 in a mixed solvent of 10 mL of H 2 O and 5 mL of ethanol was added to this suspension. . Then, when the obtained reaction liquid was heated and stirred at 80 ° C. for 3 hours, a black solution was obtained. This was immediately filtered while hot, and then concentrated under reduced pressure until the amount of the filtrate became 1 to 2 mL. Acetone was added to the concentrated solution and left overnight in the refrigerator to obtain a black powder. The powder was collected by filtration, washed with acetone and dried to obtain the desired product (yield 0.27 g, yield 31%).

元素分析 C3027PdCl・1HO・3.5C
実測値:C 54.2%、H 5.19%、N 7.41%
計算値:C 54.7%、H 5.63%、N 7.89%
Elemental analysis C 30 H 27 N 5 O 2 PdCl 2 · 1H 2 O · 3.5C 3 H 6 O
Actual value: C 54.2%, H 5.19%, N 7.41%
Calculated values: C 54.7%, H 5.63%, N 7.89%

[実施例1−11:Pt(3,4,7,8−TMP)(AtC3)Clの合成]Example 1-11: Pt (3,4,7,8-TMP) (AtC3) Synthesis of Cl 2]

上述した合成例1−1と同様の手法により合成したPt(3,4,7,8−TMP)Cl 0.31g(0.62mmol)をHO 10mLに懸濁した。次いでこの懸濁液に、AtC3・2HCl 0.26g(0.80mmol)およびNaCO 0.092g(0.86mmol)をHO 10mLとエタノール 5mLとの混合溶媒に溶かした溶液を添加した。その後、得られた反応液を80℃で3時間加熱撹拌したところ、黄色溶液が得られた。これをただちに熱時濾過した後、濾液の量が1〜2mLになるまで減圧濃縮した。濃縮した溶液にアセトンを加えて冷蔵庫内に一晩放置し、黒色の粉末を得た。この粉末を濾取し、アセトンで洗浄後、乾燥して、目的生成物を得た(収量 0.16g、収率 21%)。Pt (3,4,7,8-TMP) Cl 2 0.31 g (0.62 mmol) synthesized by the same method as in Synthesis Example 1-1 was suspended in 10 mL of H 2 O. Next, a solution prepared by dissolving 0.26 g (0.80 mmol) of AtC3 · 2HCl and 0.092 g (0.86 mmol) of Na 2 CO 3 in a mixed solvent of 10 mL of H 2 O and 5 mL of ethanol was added to the suspension. . Then, when the obtained reaction liquid was heated and stirred at 80 ° C. for 3 hours, a yellow solution was obtained. This was immediately filtered while hot, and then concentrated under reduced pressure until the amount of the filtrate became 1 to 2 mL. Acetone was added to the concentrated solution and left overnight in the refrigerator to obtain a black powder. The powder was collected by filtration, washed with acetone and dried to obtain the desired product (yield 0.16 g, yield 21%).

元素分析 C3436PtCl・7HO・2NaCl
実測値:C 40.4%、H 4.60%、N 5.67%
計算値:C 40.4%、H 4.96%、N 5.55%
Elemental analysis C 34 H 36 N 4 PtCl 2 · 7H 2 O · 2NaCl
Actual value: C 40.4%, H 4.60%, N 5.67%
Calculated values: C 40.4%, H 4.96%, N 5.55%

[実施例1−12:Pt(3,4,7,8−TMP)(AtC3)(NOの合成]Example 1-12: Pt (3,4,7,8-TMP) (AtC3) (NO 3) 2 of Synthesis

上述した実施例1−11と同様の手法により合成したPt(3,4,7,8−TMP)(AtC3)Clを原料として用い、上述した実施例1−6と同様の手法により、目的生成物を得た。
元素分析 C3436Pt・0.5C
実測値:C 49.3%、H 5.04%、N 9.41%
計算値:C 49.7%、H 4.67%、N 9.80%
[実施例1−13:Pd(3,4,7,8−TMP)(AtC3)Clの合成]
Using Pt (3,4,7,8-TMP) (AtC3) Cl 2 synthesized by the same method as in Example 1-11 described above as a raw material, The product was obtained.
Elemental analysis C 34 H 36 N 6 O 6 Pt · 0.5C 3 H 6 O
Found: C 49.3%, H 5.04%, N 9.41%
Calculated values: C 49.7%, H 4.67%, N 9.80%
Example 1-13: Pd (3,4,7,8-TMP) (AtC3) Synthesis of Cl 2]

上述した合成例1−2と同様の手法により合成したPd(3,4,7,8−TMP)Cl 0.39g(0.94mmol)をHO 10mLに懸濁した。次いでこの懸濁液に、AtC3・2HCl 0.39g(1.2mmol)およびNaCO 0.14g(1.3mmol)をHO 10mLとエタノール 5mLとの混合溶媒に溶かした溶液を添加した。その後、得られた反応液を80℃で3時間加熱撹拌したところ、黒色溶液が得られた。これをただちに熱時濾過した後、濾液の量が1〜2mLになるまで減圧濃縮した。濃縮した溶液にアセトンを加えて冷蔵庫内に一晩放置し、黄色の粉末を得た。この粉末を濾取し、アセトンで洗浄後、乾燥して、目的生成物を得た(収量 0.53g、収率 62%)。Pd (3,4,7,8-TMP) Cl 2 0.39 g (0.94 mmol) synthesized by the same method as in Synthesis Example 1-2 described above was suspended in 10 mL of H 2 O. Next, a solution of 0.39 g (1.2 mmol) of AtC3 · 2HCl and 0.14 g (1.3 mmol) of Na 2 CO 3 in a mixed solvent of 10 mL of H 2 O and 5 mL of ethanol was added to this suspension. . Then, when the obtained reaction liquid was heated and stirred at 80 ° C. for 3 hours, a black solution was obtained. This was immediately filtered while hot, and then concentrated under reduced pressure until the amount of the filtrate became 1 to 2 mL. Acetone was added to the concentrated solution and left in the refrigerator overnight to obtain a yellow powder. The powder was collected by filtration, washed with acetone and dried to obtain the desired product (yield 0.53 g, yield 62%).

元素分析 C3436PdCl・7HO・2NaCl
実測値:C 44.0%、H 4.95%、N 6.00%
計算値:C 44.3%、H 5.43%、N 6.08%
Elemental analysis C 34 H 36 N 4 PdCl 2 · 7H 2 O · 2NaCl
Found: C 44.0%, H 4.95%, N 6.00%
Calculated: C 44.3%, H 5.43%, N 6.08%

[実施例1−14:Pt(5−ClP)(AtC3)Clの合成]Example 1-14: Pt (5-ClP) (AtC3) Synthesis of Cl 2]

上述した合成例1−1と同様の手法により合成したPt(5−ClP)Cl0.33g(0.7mmol)をHO 10mLに懸濁した。次いでこの懸濁液に、AtC3・2HCl 0.32g(1.0mmol)およびNaCO0.14g(1.3mmol)をHO 10mLに溶かした溶液を添加した。その後、得られた反応液を80℃で3時間加熱撹拌したところ、黄色溶液が得られた。これをただちに熱時濾過した後、濾液の量が1〜2mLになるまで減圧濃縮した。濃縮した溶液にアセトンを加えて冷蔵庫内に一晩放置し、黒色の粉末を得た。Pt (5-ClP) Cl 2 0.33 g (0.7 mmol) synthesized by the same method as in Synthesis Example 1-1 was suspended in 10 mL of H 2 O. Next, a solution of 0.32 g (1.0 mmol) of AtC3 · 2HCl and 0.14 g (1.3 mmol) of Na 2 CO 3 in 10 mL of H 2 O was added to this suspension. Then, when the obtained reaction liquid was heated and stirred at 80 ° C. for 3 hours, a yellow solution was obtained. This was immediately filtered while hot, and then concentrated under reduced pressure until the amount of the filtrate became 1 to 2 mL. Acetone was added to the concentrated solution and left overnight in the refrigerator to obtain a black powder.

[実施例1−15:Pt(5−ClP)(AtC3)(NOの合成]Example 1-15: Pt (5-ClP) (AtC3) (NO 3) 2 of Synthesis

上述した実施例1−14と同様の手法により合成したPt(5−ClP)(AtC3)Clを原料として用い、上述した実施例1−6と同様の手法により、目的生成物を得た。Using Pt synthesized in the same manner as in Example 1-14 described above (5-ClP) a (AtC3) Cl 2 as a starting material, the same manner as in Example 1-6 described above, to yield the expected product.

元素分析 C3027PtCl・2H
実測値:C 43.3%、H 3.26%、N 9.61%
計算値:C 43.2%、H 3.72%、N 10.1%
Elemental analysis C 30 H 27 N 6 O 6 PtCl · 2H 2 O
Found: C 43.3%, H 3.26%, N 9.61%
Calculated values: C 43.2%, H 3.72%, N 10.1%

[実施例1−16:Pd(5−ClP)(AtC3)Clの合成]Example 1-16: Pd (5-ClP) (AtC3) Synthesis of Cl 2]

上述した合成例1−2と同様の手法により合成したPd(5−ClP)Cl0.39g(1.0mmol)をHO 10mLに懸濁した。次いでこの懸濁液に、AtC3・2HCl 0.42g(1.3mmol)およびNaCO0.16g(1.5mmol)をHO 10mLに溶かした溶液を添加した。その後、得られた反応液を80℃で3時間加熱撹拌したところ、黄色溶液が得られた。これをただちに熱時濾過した後、濾液の量が1〜2mLになるまで減圧濃縮した。濃縮した溶液にアセトンを加えて冷蔵庫内に一晩放置し、黄色の粉末を得た。この粉末を濾取し、アセトンで洗浄後、乾燥して、目的生成物を得た(収量 0.76g、収率 89%)。Pd (5-ClP) Cl 2 0.39 g (1.0 mmol) synthesized by the same method as in Synthesis Example 1-2 described above was suspended in 10 mL of H 2 O. Then, a solution of 0.42 g (1.3 mmol) of AtC3 · 2HCl and 0.16 g (1.5 mmol) of Na 2 CO 3 in 10 mL of H 2 O was added to this suspension. Then, when the obtained reaction liquid was heated and stirred at 80 ° C. for 3 hours, a yellow solution was obtained. This was immediately filtered while hot, and then concentrated under reduced pressure until the amount of the filtrate became 1 to 2 mL. Acetone was added to the concentrated solution and left in the refrigerator overnight to obtain a yellow powder. The powder was collected by filtration, washed with acetone, and dried to obtain the desired product (yield 0.76 g, yield 89%).

元素分析 C3027PdCl・3HO・3NaCl
実測値:C 43.1%、H 3.74%、N 5.96%
計算値:C 42.4%、H 3.88%、N 6.59%
Elemental analysis C 30 H 27 N 4 PdCl 2 · 3H 2 O · 3NaCl
Actual value: C 43.1%, H 3.74%, N 5.96%
Calculated values: C 42.4%, H 3.88%, N 6.59%

[実施例1−17:Pd(5−ClP)(AtC3)(NOの合成]Example 1-17: Pd (5-ClP) (AtC3) (NO 3) 2 of Synthesis

上述した実施例1−14と同様の手法により合成したPd(5−ClP)(AtC3)Clを原料として用い、上述した実施例1−6と同様の手法により、目的生成物を得た(収量 0.76g、収率 89%)。Using Pd synthesized in the same manner as in Example 1-14 described above (5-ClP) a (AtC3) Cl 2 as a starting material, the same manner as in Example 1-6 described above, to afford the desired product ( Yield 0.76 g, 89% yield).

元素分析 C3027Pd・1.5H
実測値:C 48.91%、H 4.23%、N 10.93%
計算値:C 48.93%、H 4.78%、N 11.42%
Elemental analysis C 30 H 27 N 6 O 6 Pd · 1.5H 2 O
Actual value: C 48.91%, H 4.23%, N 10.93%
Calculated: C 48.93%, H 4.78%, N 11.42%

[実施例1−18:Pt(5−OMP)(AtC3)Clの合成]Example 1-18: Pt (5-OMP) (AtC3) Synthesis of Cl 2]

上述した合成例1−1と同様の手法により合成したPt(5−OMP)Cl0.476g(1mmol)をHO 20mLに懸濁した。次いでこの懸濁液に、AtC3・2HCl 0.42g(1.3mmol)およびNaCO0.15g(1.5mmol)を添加した。その後、得られた反応液を80℃で3時間加熱撹拌したところ、茶色溶液が得られた。これをただちに熱時濾過した後、濾液の量が1〜2mLになるまで減圧濃縮した。濃縮した溶液にエタノールを加えて黄土色の沈殿を形成させた。沈殿を濾取し,エタノールおよびエーテルで洗浄し、真空デシケータで乾燥させた。これをn−ブタノール/水に分配させ、n−ブタノール層をエバポレーターにより除去した後、残渣をヘキサン/エーテル(9/1)で再結晶して、目的生成物を得た(収量 0.26g、収率 34%)
元素分析 C3132PtCl
実測値:C 48.1%、H 3.95%、N 7.09%
計算値:C 48.1%、H 4.16%、N 7.23%
0.476 g (1 mmol) of Pt (5-OMP) Cl 2 synthesized by the same method as in Synthesis Example 1-1 was suspended in 20 mL of H 2 O. To this suspension was then added 0.42 g (1.3 mmol) of AtC3 · 2HCl and 0.15 g (1.5 mmol) of Na 2 CO 3 . Then, when the obtained reaction liquid was heated and stirred at 80 ° C. for 3 hours, a brown solution was obtained. This was immediately filtered while hot, and then concentrated under reduced pressure until the amount of the filtrate became 1 to 2 mL. Ethanol was added to the concentrated solution to form an ocher precipitate. The precipitate was collected by filtration, washed with ethanol and ether, and dried with a vacuum desiccator. This was distributed to n-butanol / water, the n-butanol layer was removed by an evaporator, and the residue was recrystallized from hexane / ether (9/1) to obtain the desired product (yield 0.26 g, Yield 34%)
Elemental analysis C 31 H 32 N 4 O 3 PtCl 2
Found: C 48.1%, H 3.95%, N 7.09%
Calculated values: C 48.1%, H 4.16%, N 7.23%

[アニオン錯体の合成]
アニオン錯体の合成において用いた試薬は、それぞれ以下の経路により入手したものである。
[Synthesis of anion complexes]
Reagents used in the synthesis of the anion complex were obtained by the following routes, respectively.

PtCl:田中貴金属工業株式会社より購入
myo−イノシトール−1,2,3,4,5,6−六リン酸エステル 12ナトリウム塩(IP・12Na):SIGMA社より購入
1R,2R−1,2−シクロヘキサンジアミン(dach):東京化成工業株式会社より購入
N,N−ジメチルアセトアミド(DMA)、AgNO:和光純薬工業株式会社より購入
28質量%アンモニア水:ナカライテスク株式会社より購入
[合成例2−1:cis−Pt(NHの合成]
特表2007−521257号公報(段落「0050」)に記載の手法により、cis−Pt(NHを合成した。
K 2 PtCl 2: Tanaka Kikinzoku purchased from Ltd. myo- inositol 1,2,3,4,5,6-hexaphosphate ester 12 Sodium salt (IP 6 · 12Na): SIGMA Co. purchased from 1R, 2R- 1,2-cyclohexanediamine (dach): purchased from Tokyo Chemical Industry Co., Ltd. N, N-dimethylacetamide (DMA), AgNO 3 : purchased from Wako Pure Chemical Industries, Ltd. 28% by mass ammonia water: purchased from Nacalai Tesque, Inc. [Synthesis Example 2-1: Synthesis of cis-Pt (NH 3 ) 2 I 2 ]
Cis-Pt (NH 3 ) 2 I 2 was synthesized by the method described in JP-T-2007-521257 (paragraph “0050”).

[合成例2−2:cis−Pt(NH−IPの合成]
特表2007−521257号公報(段落「0095」〜「0098」)に記載の手法により、cis−Pt(NH−IPを合成した。
[Synthesis Example 2-2: Synthesis of cis-Pt (NH 3 ) 2 -IP 6 ]
Cis-Pt (NH 3 ) 2 -IP 6 was synthesized by the method described in JP-T-2007-521257 (paragraphs “0095” to “0098”).

[合成例2−3:cis−Pt(dach)Iの合成]
特表2007−521257号公報(段落「0057」〜「0058」)に記載の手法により、cis−Pt(dach)Iを合成した。
[Synthesis Example 2-3: Synthesis of cis-Pt (dach) I 2 ]
Cis-Pt (dach) I 2 was synthesized by the method described in JP-T-2007-521257 (paragraphs “0057” to “0058”).

[合成例2−4:cis−Pt(dach)−IPの合成]
特表2007−521257号公報(段落「0098」〜「0103」)に記載の手法により、cis−Pt(dach)−IPを合成した。
[Synthesis Example 2-4: Synthesis of cis-Pt (dach) -IP 6 ]
Cis-Pt (dach) -IP 6 was synthesized by the method described in JP-T-2007-521257 (paragraphs “0098” to “0103”).

[合成例2−5:cis−Pt(dach)−PPの合成]
下記化学式11に示すスキームにより、cis−Pt(dach)−PPを合成した。
[Synthesis Example 2-5: Synthesis of cis-Pt (dach) -PP]
Cis-Pt (dach) -PP was synthesized according to the scheme shown in Chemical Formula 11 below.

AgSO 0.315g(0.98mmol)をHO 40mLに懸濁した。これに、上述した合成例2−3の手法により合成したcis−Pt(dach)I0.57g(1.0mmol)を溶かした10mLのジメチルアセトアミド(DMA)溶液を加えて、遮光して4時間撹拌した。濾過してAgIを取り除いた溶液に、Ba(OH)・8HO 0.315g(0.98mmol)を加え、30分間撹拌した。濾過してBaSOを除いた溶液にピロリン酸(PP)(1.0mmol)を加え、4時間撹拌した。濾液をエバポレーターで濃縮して、暗褐色粉末を得た。析出した粉末を、HOおよびアセトンで再沈殿させて、目的生成物を得た(収量 0.37g、収率 77%)。Ag 2 SO 4 (0.315 g, 0.98 mmol) was suspended in H 2 O (40 mL). To this, 10 mL of dimethylacetamide (DMA) solution in which 0.57 g (1.0 mmol) of cis-Pt (dach) I 2 synthesized by the method of Synthesis Example 2-3 described above was dissolved was added, and light-shielded. Stir for hours. To the solution from which AgI was removed by filtration, 0.315 g (0.98 mmol) of Ba (OH) 2 .8H 2 O was added and stirred for 30 minutes. Pyrophosphate (PP) (1.0 mmol) was added to the solution from which BaSO 4 was removed by filtration, and stirred for 4 hours. The filtrate was concentrated with an evaporator to obtain a dark brown powder. The precipitated powder was reprecipitated with H 2 O and acetone to obtain the desired product (yield 0.37 g, yield 77%).

元素分析 C16Pt・H
計算値:C 14.31%、H 3.61%、N 5.58%
実測値:C 14.79%、H 3.60%、N 5.57%
蛍光X線分析
計算値:P 2.00、Pt 1.00
実測値:P 2.00、Pt 0.990
Elemental analysis C 6 H 16 N 2 O 7 P 2 Pt · H 2 O
Calculated values: C 14.31%, H 3.61%, N 5.58%
Found: C 14.79%, H 3.60%, N 5.57%
X-ray fluorescence analysis Calculated values: P 2.00, Pt 1.00
Actual value: P 2.00, Pt 0.990

[実施例2−1:(Pt(NH−IPの合成]
下記化学式12に示すスキームにより、本発明の二核アニオン錯体である(Pt(NH−IPを合成した。
Example 2-1: (Pt (NH 3) 2) Synthesis of 2 -IP 6]
(Pt (NH 3 ) 2 ) 2 -IP 6 which is a binuclear anion complex of the present invention was synthesized according to the scheme shown in the following chemical formula 12.

AgNO(0.34g、2.0mmol)をHO 40mLに溶かし、これに上述した合成例2−1の手法により合成したcis−Pt(NH(0.48g、1.0mmol)を溶かした5.0mLのジメチルアセトアミド溶液を加え、遮光して一晩撹拌した。溶液を濾過してAgIを除去し、これに上述した合成例2−2の手法により合成したcis−Pt(NH−IP(1.2g、1.0mmol)を含む水溶液40mLを加え、一晩撹拌した。濾液をエバポレーターで減圧濃縮して、黄白色粉末を得た。析出粉末をHOおよびメタノールで再沈殿させて、目的生成物を得た(収量 1.16g、収率 77%)。AgNO 3 (0.34 g, 2.0 mmol) was dissolved in 40 mL of H 2 O, and cis-Pt (NH 3 ) 2 I 2 (0.48 g, 1. 0 mL) was dissolved in 5.0 mL of dimethylacetamide solution, and the mixture was stirred overnight under light shielding. The solution was filtered to remove AgI, and 40 mL of an aqueous solution containing cis-Pt (NH 3 ) 2 -IP 6 (1.2 g, 1.0 mmol) synthesized by the method of Synthesis Example 2-2 described above was added thereto. , Stirred overnight. The filtrate was concentrated under reduced pressure using an evaporator to obtain a yellowish white powder. The precipitated powder was reprecipitated with H 2 O and methanol to obtain the desired product (yield 1.16 g, yield 77%).

元素分析 C4234PtNa((Pt(NH−IP・8Na・10H0・1MeOH)
実測値:C 5.60%、H 2.70%、N 3.70%
計算値:C 5.59%、H 2.78%、N 3.58%
蛍光X線分析
実測値:P 6.00、Na 8.54、Pt 1.73
計算値:P 6.00、Na 8.00、Pt 2.00
Elemental analysis C 7 H 42 N 4 O 34 P 6 Pt 2 Na 8 ((Pt (NH 3) 2) 2 -IP 6 · 8Na · 10H 2 0 · 1MeOH)
Measured value: C 5.60%, H 2.70%, N 3.70%
Calculated values: C 5.59%, H 2.78%, N 3.58%
X-ray fluorescence analysis Measured values: P 6.00, Na 8.54, Pt 1.73
Calculated values: P 6.00, Na 8.00, Pt 2.00

[実施例2−2:(Pt(NH・Pt(dach))−IPの合成]
下記化学式13に示すスキームにより、本発明の二核アニオン錯体である(Pt(NH・Pt(dach))−IPを合成した。
[Example 2-2: Synthesis of (Pt (NH 3 ) 2 · Pt (dach))-IP 6 ]
(Pt (NH 3 ) 2 .Pt (dach))-IP 6 which is a binuclear anion complex of the present invention was synthesized by the scheme shown in the following chemical formula 13.

AgNO(0.34g、2.0mmol)をHO 40mLに溶かし、これに上述した合成例2−3の手法により合成したcis−Pt(dach)I(0.56g、1.0mmol)を溶かした5.0mLのジメチルアセトアミド溶液を加え、遮光して一晩撹拌した。溶液を濾過してAgIを除去し、これに上述した合成例2−2の手法により合成したcis−Pt(NH−IP(1.2g、1.0mmol)を含む水溶液40mLを加え、一晩撹拌した。濾液をエバポレーターで濃縮し、黄色粉末を得た。析出粉末をHOおよびメタノールで再沈殿させて、目的生成物を得た(収量 1.22g、収率 83%)。AgNO 3 (0.34 g, 2.0 mmol) was dissolved in 40 mL of H 2 O, and cis-Pt (dach) I 2 (0.56 g, 1.0 mmol) synthesized by the method of Synthesis Example 2-3 described above was dissolved therein. 5.0 mL of a dimethylacetamide solution in which was dissolved was added, and the mixture was stirred overnight while protected from light. The solution was filtered to remove AgI, and 40 mL of an aqueous solution containing cis-Pt (NH 3 ) 2 -IP 6 (1.2 g, 1.0 mmol) synthesized by the method of Synthesis Example 2-2 described above was added thereto. , Stirred overnight. The filtrate was concentrated with an evaporator to obtain a yellow powder. The precipitated powder was reprecipitated with H 2 O and methanol to obtain the desired product (yield 1.22 g, yield 83%).

元素分析 C144634PtNa((Pt(NH・Pt(dach))IP・8Na・10H0)
実測値:C 9.42%、H 2.35%、N 3.12%
計算値:C 9.29%、H 2.97%、N 3.61%
蛍光X線分析
実測値:P 6.00、Na 8.54、Pt 1.73
計算値:P 6.00、Na 8.00、Pt 2.00
Elemental analysis C 14 H 46 N 4 O 34 P 6 Pt 2 Na 8 ((Pt (NH 3 ) 2 · Pt (dach)) IP 6 · 8Na · 10H 2 0)
Actual value: C 9.42%, H 2.35%, N 3.12%
Calculated values: C 9.29%, H 2.97%, N 3.61%
X-ray fluorescence analysis Measured values: P 6.00, Na 8.54, Pt 1.73
Calculated values: P 6.00, Na 8.00, Pt 2.00

[実施例2−3:Pt(Pt(dach)−IPの合成]
下記化学式14に示すスキームにより、本発明の三核アニオン錯体であるPt(Pt(dach)−IPを合成した。
[Example 2-3: Synthesis of Pt (Pt (dach) -IP 6 ) 2 ]
Pt (Pt (dach) -IP 6 ) 2 , which is a trinuclear anion complex of the present invention, was synthesized according to the scheme shown in the following chemical formula 14.

AgNO(0.10g、0.6mmol)をHO 5mLに溶かし、これに上述した合成例2−4の手法により合成したcis−Pt(dach)−IP(0.41g、0.3mmol)を溶かした7.5mL水溶液、およびKPtCl(0.06g、0.15mmol)の7.5mL水溶液を加え、55℃の恒温槽で三晩撹拌した。溶液を濾過してAgClを除去し、濾液をエバポレーターで減圧濃縮し、これにメタノールを加えて、黄色粉末を得た。析出粉末をHOおよびメタノールで再沈殿させて、目的生成物を得た(収量 337mg、収率 39%)。AgNO 3 (0.10 g, 0.6 mmol) was dissolved in 5 mL of H 2 O, and cis-Pt (dach) -IP 6 (0.41 g, 0.3 mmol) synthesized by the method of Synthesis Example 2-4 described above was dissolved therein. ) And a 7.5 mL aqueous solution of K 2 PtCl 4 (0.06 g, 0.15 mmol) were added, and the mixture was stirred in a constant temperature bath at 55 ° C. for 3 nights. The solution was filtered to remove AgCl, the filtrate was concentrated under reduced pressure with an evaporator, and methanol was added thereto to obtain a yellow powder. The precipitated powder was reprecipitated with H 2 O and methanol to obtain the desired product (yield 337 mg, yield 39%).

元素分析 C2494Na147312Pt
実測値:C 9.77、H 2.87、N 1.45
計算値:C 9.99、H 3.28、N 1.94
Elemental analysis C 24 H 94 N 4 Na 14 O 73 P 12 Pt 3
Found: C 9.77, H 2.87, N 1.45
Calculated values: C 9.99, H 3.28, N 1.94

[実施例2−4:2Pt(dach)−PPの合成]
下記化学式15に示すスキームにより、本発明の二核アニオン錯体である2Pt(dach)−PPを合成した。
[Example 2-4: Synthesis of 2Pt (dach) 2 -PP]
2Pt (dach) 2 -PP, which is a binuclear anion complex of the present invention, was synthesized according to the scheme shown in the following chemical formula 15.

AgSO 31.5mg(0.098mmol)をHO 4mLに懸濁し、これに上述した合成例2−3の手法により合成したcis−Pt(dach)I 57mg(0.1mmol)を溶かした1mLのジメチルアセトアミド溶液を加え、遮光して4時間撹拌した。濾過してAgIを取り除いた溶液に、Ba(OH)・8HO 31.5mg(0.098mmol)を加え、30分間撹拌した。濾過してBaSOを除いた溶液に、上述した合成例2−5の手法により合成したcis−Pt(dach)−PP 54mg(0.1mmol)を加え、1日撹拌した。濾液をエバポレーターで濃縮し、暗褐色粉末を得た。析出した粉末を、HOおよびアセトンで再沈殿させて、目的生成物を得た(収量 34mg、収率 40%)。Ag 2 SO 4 31.5 mg of (0.098 mmol) was suspended in H 2 O 4 mL, this above-synthesized by the method of Synthesis Example 2-3 was the cis-Pt and (dach) I 2 57mg (0.1mmol ) 1 mL of dissolved dimethylacetamide solution was added, and the mixture was stirred for 4 hours while protected from light. To the solution from which AgI was removed by filtration, 31.5 mg (0.098 mmol) of Ba (OH) 2 .8H 2 O was added and stirred for 30 minutes. To the solution from which BaSO 4 was removed by filtration, 54 mg (0.1 mmol) of cis-Pt (dach) -PP synthesized by the method of Synthesis Example 2-5 described above was added and stirred for 1 day. The filtrate was concentrated with an evaporator to obtain a dark brown powder. The precipitated powder was reprecipitated with H 2 O and acetone to obtain the desired product (yield 34 mg, yield 40%).

元素分析 C1228Pt・3H
実測値:C 16.71%、H 4.12%、N 6.59%
計算値:C 17.01%、H 4.02%、N 6.61%
[実施例2−5:(Pt(dach)・Pt(NH)−IPの合成]
下記化学式16に示すスキームにより、本発明の二核アニオン錯体である(Pt(dach)・Pt(NH)−IPを合成した。
Elemental analysis C 12 H 28 N 4 O 7 P 2 Pt 2 · 3H 2 O
Actual value: C 16.71%, H 4.12%, N 6.59%
Calculated values: C 17.01%, H 4.02%, N 6.61%
[Example 2-5: Synthesis of (Pt (dach) · Pt (NH 3 ) 2 ) -IP 6 ]
(Pt (dach) · Pt (NH 3 ) 2 ) -IP 6 which is a binuclear anion complex of the present invention was synthesized by the scheme shown in the following chemical formula 16.

AgNO(0.17g、1.0mmol)をHO 20mLに溶解し、上述した合成例2−1の手法により合成したcis−Pt(NH(0.24g、0.5mmoL)を溶かした2.5mLのジメチルアセトアミド溶液を加えて、遮光し一晩撹拌した。溶液を濾過してAgIを除去し、上述した合成例2−4の手法により合成したcis−Pt(dach)−IP(0.58g、0.5mmol)を含む水溶液 20mLを加え、3日間撹拌した。濾液をエバポレーターで濃縮し、メタノールを加えて、目的生成物を茶色粉末として得た(収量 0.32g、収率 41%)。AgNO 3 (0.17 g, 1.0 mmol) was dissolved in 20 mL of H 2 O, and cis-Pt (NH 3 ) 2 I 2 (0.24 g, 0.5 mmol) synthesized by the method of Synthesis Example 2-1 described above. 2.5 mL of dimethylacetamide solution was added, and the mixture was stirred overnight while protected from light. The solution was filtered to remove AgI, and 20 mL of an aqueous solution containing cis-Pt (dach) -IP 6 (0.58 g, 0.5 mmol) synthesized by the method of Synthesis Example 2-4 described above was added and stirred for 3 days. did. The filtrate was concentrated with an evaporator and methanol was added to obtain the desired product as a brown powder (yield 0.32 g, yield 41%).

元素分析 C1868Na39Pt((Pt(dach)・Pt(NH)IP・4Na・4H・15HO)
計算値:C 10.45%、H 3.64%、N 3.75%
実測値:C 10.30%、H 3.36%、N 3.37%
[実施例2−6:(Pt(dach))−IPの合成]
下記化学式17に示すスキームにより、本発明の二核アニオン錯体である(Pt(dach))−IPを合成した。
Elemental analysis C 18 H 68 N 4 Na 4 O 39 P 6 Pt 2 ((Pt (dach) · Pt (NH 3) 2) IP 6 · 4Na · 4H · 15H 2 O)
Calculated values: C 10.45%, H 3.64%, N 3.75%
Measured value: C 10.30%, H 3.36%, N 3.37%
[Example 2-6: Synthesis of (Pt (dach)) 2 -IP 6 ]
(Pt (dach)) 2 -IP 6 which is a binuclear anion complex of the present invention was synthesized according to the scheme shown in the following chemical formula 17.

AgNO(0.17g、1.0mmol)をHO 20mLに溶解し、上述した合成例2−1の手法により合成したcis−Pt(NH(0.24g、0.5mmoL)を溶かした2.5mLのジメチルアセトアミド溶液を加えて、遮光し一晩撹拌した。溶液を濾過してAgIを除去し、上述した合成例2−4の手法により合成したcis−Pt(dach)−IP(0.58g、0.5mmol)を含む水溶液 20mLを加え、3日間撹拌した。濾液をエバポレーターで濃縮し、メタノールを加えて、目的生成物を茶色粉末として得た(収量 0.35g、収率 41%)。AgNO 3 (0.17 g, 1.0 mmol) was dissolved in 20 mL of H 2 O, and cis-Pt (NH 3 ) 2 I 2 (0.24 g, 0.5 mmol) synthesized by the method of Synthesis Example 2-1 described above. 2.5 mL of dimethylacetamide solution was added, and the mixture was stirred overnight while protected from light. The solution was filtered to remove AgI, and 20 mL of an aqueous solution containing cis-Pt (dach) -IP 6 (0.58 g, 0.5 mmol) synthesized by the method of Synthesis Example 2-4 described above was added and stirred for 3 days. did. The filtrate was concentrated with an evaporator and methanol was added to obtain the desired product as a brown powder (yield 0.35 g, yield 41%).

元素分析 C1864Na39Pt((Pt(dach))IP・8Na・15HO)
計算値:C 12.56%、H 3.75%、N 3.26%
実測値:C 12.67%、H 3.74%、N 3.10%
Elemental analysis C 18 H 64 N 4 Na 8 O 39 P 6 Pt 2 ((Pt (dach) 2) IP 6 · 8Na · 15H 2 O)
Calculated values: C 12.56%, H 3.75%, N 3.26%
Found: C 12.67%, H 3.74%, N 3.10%

[ヒト培養がん細胞パネルを用いた抗がん性評価]
上記の実施例で合成したいくつかの錯体(カチオン錯体:実施例1−1、1−2、1−3、1−4、1−5、1−7、1−9、1−10、1−11、および1−13;アニオン錯体:実施例2−1〜2−4)について、財団法人癌研究会・癌化学療法センターによるヒト培養がん細胞パネル(HCCパネル)により、抗がん性を評価した。HCCパネルを用いた抗がん性評価は、複数の細胞株での薬剤感受性試験とデータベースプログラムによる解析手法とを組み合わせたものである。本実施例では、具体的に、肺がん7系、胃がん6系、大腸がん5系、卵巣がん5系、脳腫瘍6系、乳がん5系、腎がん2系、前立腺がん2系、およびメラノーマ1系の計39系を1つのパネルとして扱い、in vitro薬剤感受性試験を行ない、その薬剤に対する感受性パターン(フィンガープリント)を得た。このようにして得られたフィンガープリントは、個々のがん細胞に対するサンプル物質の有効濃度偏差を視覚的に表現したものであり、サンプルに対するそれぞれのがん細胞の感受性を一目で把握することが可能である。そして、このフィンガープリントをデータベース内のデータと比較することで、既存の抗がん剤の作用様式との同否を確認することが可能である。
[Anti-cancer evaluation using human cultured cancer cell panel]
Some complexes synthesized in the above examples (cation complexes: Examples 1-1, 1-2, 1-3, 1-4, 1-5, 1-7, 1-9, 1-10, 1 -11 and 1-13; anion complexes: Examples 2-1 to 2-4) were tested for anti-cancer properties by using a human cultured cancer cell panel (HCC panel) by the Cancer Research Foundation and Cancer Chemotherapy Center. Evaluated. The anticancer evaluation using the HCC panel is a combination of a drug sensitivity test using a plurality of cell lines and an analysis method using a database program. In this example, specifically, lung cancer 7 system, stomach cancer 6 system, colon cancer 5 system, ovarian cancer 5 system, brain tumor 6 system, breast cancer 5 system, kidney cancer 2 system, prostate cancer 2 system, and A total of 39 melanoma 1 systems were treated as one panel, and an in vitro drug sensitivity test was conducted to obtain a sensitivity pattern (fingerprint) for the drug. The fingerprint thus obtained is a visual representation of the effective concentration deviation of the sample substance for each individual cancer cell, and it is possible to grasp the sensitivity of each cancer cell to the sample at a glance. It is. Then, by comparing this fingerprint with the data in the database, it is possible to confirm the same or not with the action mode of the existing anticancer agent.

なお、それぞれのがん細胞に対するサンプル物質の感受性の測定は、以下の手法により行なわれた(文部科学省がん特定領域研究・統合がん化学療法基盤情報支援班のウェブサイト(http://gantoku-shien.jfcr.or.jp/panel.html)より引用(出願日に当該情報の存在を確認した))。   The sensitivity of sample substances to each cancer cell was measured by the following method (Ministry of Education, Culture, Sports, Science and Technology, Cancer Specific Area Research / Integrated Cancer Chemotherapy Information Support Group website (http: // Quoted from gantoku-shien.jfcr.or.jp/panel.html) (the existence of the information was confirmed on the filing date)).

[方法]
がん細胞を96ウェルプレートにまき込み,翌日サンプル溶液を添加、2日間培養後、細胞増殖をスルホローダミンBによる比色定量で測定する。測定したがん細胞株39系の平均薬剤有効濃度に対する個々のがん細胞株の有効濃度偏差を計算し、フィンガープリントとして表示する。
[Method]
Cancer cells are placed in a 96-well plate, the sample solution is added the next day, and after 2 days of culture, cell proliferation is measured by colorimetric determination with sulforhodamine B. An effective concentration deviation of each cancer cell line with respect to the measured average drug effective concentration of the cancer cell line 39 system is calculated and displayed as a fingerprint.

[化合物の評価]
サンプルのフィンガープリントを、これまで測定しデータベース化した約70種類の標準抗がん剤のフィンガープリントと比較することにより、サンプルの作用機作の推定あるいは作用機作の新規性の評価を行う。
[Evaluation of compounds]
By comparing the fingerprints of the samples with the fingerprints of about 70 kinds of standard anticancer drugs that have been measured and databased, the mechanism of action of the samples is estimated or the novelty of the mechanism of action is evaluated.

図1に、実施例1−5で合成したPt(5−MP)(AtC3)Clについてのフィンガープリントを示す。図1に示すように、フィンガープリントには3つのグラフが含まれている。この3つのグラフは、左から、GI50(コントロールと比較して細胞増殖を50%に抑制する濃度)、TGI(ゼロ時の細胞数と同じ細胞数に増殖を抑制する濃度(見かけ上細胞数の増減がない濃度))、LC50(ゼロ時の細胞数の50%まで細胞数を減少させる濃度(殺細胞効果の指標となる))のそれぞれの常用対数(log10)値を表す。なお、「ゼロ時の細胞数」とは、薬剤サンプルを投与する直前の細胞数を意味する。そして、個々のグラフにおいて、縦軸は39系の細胞株に対応し、横軸は39系の細胞株に対するそれぞれの指標の値の平均値を原点として、当該平均値よりも大きい値を示す場合は正の側に、小さい値を示す場合は負の側にグラフが伸びている。なお、このがん細胞パネルを用いて得られたIC50値を表1〜表2に示す。このIC50値は、100μMから0.01μMまでの5個の濃度における細胞生存率(=薬剤処置後の細胞数/薬剤未処置の細胞数)を濃度(常用対数値)に対してプロットした図から、細胞生存率が50%のときの薬剤濃度として求められる値である。FIG. 1 shows the fingerprint for Pt (5-MP) (AtC3) Cl 2 synthesized in Example 1-5. As shown in FIG. 1, the fingerprint includes three graphs. From the left, these three graphs show GI50 (concentration that suppresses cell growth to 50% compared to control) and TGI (concentration that suppresses proliferation to the same cell number as that at zero (apparent cell number). Concentration with no increase / decrease)), LC50 (concentration that reduces the cell number to 50% of the number of cells at zero (indicating the cell killing effect)) each logarithm (log 10 ) value. The “number of cells at time zero” means the number of cells immediately before administration of the drug sample. In each graph, the vertical axis corresponds to a 39-line cell line, and the horizontal axis represents a value larger than the average value with the average value of each index for the 39-line cell line as the origin. The graph extends to the positive side, and to the negative side when it shows a small value. In addition, Table 1 to Table 2 show IC 50 values obtained using this cancer cell panel. This IC 50 value is a graph in which cell viability (= number of cells after drug treatment / number of cells untreated with drug) at five concentrations from 100 μM to 0.01 μM is plotted against the concentration (common logarithm). From this, it is the value obtained as the drug concentration when the cell viability is 50%.

ここで、図1に示すPt(5−MP)(AtC3)Clについてのフィンガープリントのうち、「GI50」のグラフを、公知の白金錯体抗がん剤であるシスプラチン、カルボプラチンおよびオキサリプラチンの「GI50」のグラフと並べて図2に示す。一般に、フィンガープリントが類似のプロファイルを示す複数の抗がん剤の作用様式は類似していることが推定される。かような観点から図2を見ると、Pt(5−MP)(AtC3)Clのフィンガープリントのプロファイルは3つの公知の抗がん剤のいずれのプロファイルとも類似していない。よって、Pt(5−MP)(AtC3)Clは、これらの公知の抗がん剤とは異なる作用様式によって抗がん性を発揮していることが示唆される。なお、上記で合成した他のカチオン錯体およびアニオン錯体はいずれも、上述した3つの公知の白金錯体抗がん剤とは異なるフィンガープリントプロファイルを示した。Here, among the fingerprints for Pt (5-MP) (AtC3) Cl 2 shown in FIG. 1, a graph of “GI50” is obtained by comparing the known platinum complex anticancer agents cisplatin, carboplatin and oxaliplatin with “ It is shown in FIG. 2 along with the graph of “GI50”. In general, it is presumed that the action modes of anticancer agents whose fingerprints show similar profiles are similar. From this point of view, FIG. 2 shows that the fingerprint profile of Pt (5-MP) (AtC3) Cl 2 is not similar to any of the profiles of the three known anticancer agents. Therefore, it is suggested that Pt (5-MP) (AtC3) Cl 2 exhibits anticancer properties by a mode of action different from these known anticancer agents. In addition, all the other cation complexes and anion complexes synthesized above showed a fingerprint profile different from the above-mentioned three known platinum complex anticancer agents.

このHCCパネルによる評価データベースには、既知の抗がん剤との作用様式の類似性をより客観的に評価するための「COMPAREプログラム」という機能も含まれている。このCOMPAREプログラムは、2つの薬剤間で統計学的相関性を検定するもので、サンプル薬剤のフィンガープリントを入力すると、過去に蓄積された標準薬剤のデータ中からそのサンプル薬剤に類似したフィンガープリントを有する薬剤が類似度の高い順にリストアップされる。この際、類似度を評価する目的で、サンプルに対して相関係数(r値)が算出されるが、このr値が1に近づくほど、そのサンプル薬剤は既存の抗がん剤と作用様式の点で類似していることになる。ここで、上記で合成したそれぞれの錯体についてCOMPAREプログラムによりリストアップされたもののうち、r値が最も大きかったものについて、そのr値を下記の表1〜2に示す。   This evaluation database by the HCC panel also includes a function called “COMPARE program” for more objectively evaluating the similarity of the mode of action with known anticancer agents. This COMPARE program tests the statistical correlation between two drugs. When a fingerprint of a sample drug is input, a fingerprint similar to that sample drug is collected from the data of standard drugs accumulated in the past. The drugs they have are listed in descending order of similarity. At this time, a correlation coefficient (r value) is calculated for the sample for the purpose of evaluating the similarity. The closer the r value is to 1, the more the sample drug is combined with the existing anticancer agent and the mode of action. It will be similar in this respect. Here, of the complexes synthesized above, those having the largest r value among those listed by the COMPARE program are shown in Tables 1 and 2 below.

[がん関連酵素の阻害アッセイ]
上記の実施例で合成したいくつかの錯体(カチオン錯体:実施例1−1、1−2、1−3、1−4、1−5、1−7、1−9、1−10、1−11、および1−13;アニオン錯体:実施例2−1〜2−4)について、がん関連酵素に対する阻害活性を調べた。具体的には、プロテアソーム、テロメラーゼ、ファルネシルトランスフェラーゼ(FPTase)、ヒストンデアセチラーゼ(HDAC)、プロテインキナーゼのそれぞれに対する阻害活性を評価した。結果を下記の表1〜2に示す。
[Inhibition assay of cancer-related enzymes]
Some complexes synthesized in the above examples (cation complexes: Examples 1-1, 1-2, 1-3, 1-4, 1-5, 1-7, 1-9, 1-10, 1 -11 and 1-13; anion complexes: Examples 2-1 to 2-4) were examined for inhibitory activity against cancer-related enzymes. Specifically, the inhibitory activity against each of proteasome, telomerase, farnesyltransferase (FPTase), histone deacetylase (HDAC), and protein kinase was evaluated. The results are shown in Tables 1-2 below.

なお、それぞれの酵素に対する阻害活性の測定は、以下の手法により行なわれた(文部科学省がん特定領域研究・統合がん化学療法基盤情報支援班のウェブサイト(http://gantoku-shien.jfcr.or.jp/panel.html)より引用(出願日に当該情報の存在を確認した))。   The inhibitory activity for each enzyme was measured by the following method (Ministry of Education, Culture, Sports, Science and Technology: Cancer Specific Area Research / Integrated Cancer Chemotherapy Information Support Group website (http: // gantoku-shien. Quoted from jfcr.or.jp/panel.html) (the existence of the information was confirmed on the filing date)).

[プロテアソーム阻害活性の検定]
[方法]
第1ステップとして、20Sプロテアソームのキモトリプシン様活性に対する阻害活性を調べ、有意な阻害活性が認められた検体について第2ステップの検定を行う。第2ステップではカスパーゼ様及びトリプシン様活性、さらに他のプロテアーゼ(αキモトリプシン、カテプシンB)に対する阻害活性を測定し、検体の阻害活性の選択性を評価する。阻害活性の陽性対照としては、既知のプロテアソーム阻害剤のMG132とclasto−Lactacystin β−lactone(Lactacystin活性化体)を用いる。実際の反応は、20Sプロテアソームに10μMの濃度で検体を添加し、30℃、10分間保温後基質として20Sプロテアソーム切断配列を含む蛍光標識ペプチドを加え、30℃、1時間反応させる。このとき遊離した蛍光物質(AMC)を定量することで酵素活性を測定する。
[Proteasome inhibitory activity assay]
[Method]
As a first step, the inhibitory activity of the 20S proteasome on the chymotrypsin-like activity is examined, and the specimen in which a significant inhibitory activity is observed is assayed in the second step. In the second step, caspase-like and trypsin-like activities, as well as inhibitory activity against other proteases (α chymotrypsin, cathepsin B) are measured, and the selectivity of the inhibitory activity of the specimen is evaluated. As a positive control of the inhibitory activity, MG132 of known proteasome inhibitor and clast-Lactacytin β-lactone (Lactacytin activator) are used. In the actual reaction, a sample is added to the 20S proteasome at a concentration of 10 μM, incubated at 30 ° C. for 10 minutes, then added with a fluorescent-labeled peptide containing a 20S proteasome cleavage sequence as a substrate, and reacted at 30 ° C. for 1 hour. At this time, the enzyme activity is measured by quantifying the released fluorescent substance (AMC).

[活性の評価]
検体未処理対照群をもとに各活性の阻害の有無を検討する。有意な阻害活性を示した検体については、段階的な希釈系列を作って50%阻害濃度(IC50)を決定する(注:これにより算出されたIC50値を表1〜2に示す。なお、阻害活性を示さなかったものは表1〜2において「−」で示されている)。
[Evaluation of activity]
Examine the presence or absence of inhibition of each activity based on the untreated control group. For samples that showed significant inhibitory activity, a 50% inhibitory concentration (IC 50 ) was determined by making a serial dilution series (Note: IC 50 values calculated thereby are shown in Tables 1-2. Those that did not show inhibitory activity are indicated by "-" in Tables 1-2).

[テロメラーゼ阻害活性の検定]
[方法]
ヒト白血病U937細胞の抽出液を酵素源とする。これを、テロメラーゼの基質となるオリゴヌクレオチドおよび検体化合物を含む酵素反応液中に添加し、20℃で30分酵素反応を行う。氷上で反応停止後、テロメア伸長産物をPCR増幅する(PCRは定量条件下で実施する。反応液には非テロメアDNA断片が予め添加されており、内部標準としてこれも同時に増幅させる)。反応液をポリアクリルアミドゲルにて電気泳動した後、CYBR Green染色したDNAをデンシトグラフィーにて定量解析する。阻害活性の陽性対照には、テロメラーゼ阻害剤MST−312を用いる。
[Test of telomerase inhibitory activity]
[Method]
An extract of human leukemia U937 cells is used as an enzyme source. This is added to an enzyme reaction solution containing an oligonucleotide serving as a telomerase substrate and a sample compound, and an enzyme reaction is performed at 20 ° C. for 30 minutes. After stopping the reaction on ice, the telomere extension product is amplified by PCR (PCR is carried out under quantitative conditions. A non-telomere DNA fragment is added to the reaction solution in advance, and this is also amplified simultaneously as an internal standard). After the reaction solution is electrophoresed on a polyacrylamide gel, CYBR Green-stained DNA is quantitatively analyzed by densitography. The telomerase inhibitor MST-312 is used as a positive control for inhibitory activity.

[活性の評価]
検体は最終濃度10μMになるように添加し、阻害活性を測定する。この濃度で50%以上阻害活性を示し、かつPCRに対する非特異的阻害活性が40%未満であった検体については、10μMから4段階の10倍希釈系列を作り、再度阻害活性を測定する(注:これにより算出されたIC50値を表1〜2に示す。なお、阻害活性を示さなかったものは表1〜2において「−」で示されている)。
[Evaluation of activity]
The sample is added to a final concentration of 10 μM and the inhibitory activity is measured. For samples that showed an inhibitory activity of 50% or more at this concentration and a non-specific inhibitory activity against PCR of less than 40%, a 10-fold dilution series of 10 times from 10 μM was prepared, and the inhibitory activity was measured again (Note) : IC 50 values calculated in this manner are shown in Tables 1 and 2. Those not showing inhibitory activity are indicated by “-” in Tables 1 and 2).

[ファルネシルトランスフェラーゼ(FPTase)阻害活性の検定]
[方法]
FPTase:ヒト扁平上皮がんA431細胞の粗精製FPTaseを酵素源とし、GST−H−Ras蛋白質、[H]−FPPを基質とした酵素反応液に、サンプルを添加し、37℃で1時間酵素反応を行う。30%TCAと1%SDSを含むメタノール溶液を加えることにより反応を停止させ、氷上で1時間静置する。[H]−FPPの結合したGST−H−Rasを含む酸不溶性画分をガラス繊維フィルターにトラップし、6%TCAで洗浄する。フィルターを乾燥後、酸不溶性画分に含まれる放射活性を液体シンチレーションカウンターにより測定し、FPTase活性とする。ポジティブ陽性対照にはFTI−276を用いる。
[Farnesyltransferase (FPTase) inhibitory activity assay]
[Method]
FPase: A sample was added to an enzyme reaction solution containing crude purified FPase of human squamous cell carcinoma A431 cells as an enzyme source and GST-H-Ras protein and [ 3 H] -FPP as a substrate, and the mixture was incubated at 37 ° C. for 1 hour. Enzymatic reaction is performed. The reaction is stopped by adding a methanol solution containing 30% TCA and 1% SDS, and left on ice for 1 hour. The acid-insoluble fraction containing [ 3 H] -FPP-bound GST-H-Ras is trapped on a glass fiber filter and washed with 6% TCA. After drying the filter, the radioactivity contained in the acid-insoluble fraction is measured with a liquid scintillation counter to obtain FPase activity. FTI-276 is used as a positive / positive control.

[活性の評価]
FPTaseのアッセイ系において、サンプルは最終濃度10μMになるように添加し、阻害活性を測定する。この濃度で、70%以上阻害活性を示したサンプルについては、10μMから5段階の10倍希釈系列を作り、再度阻害活性を測定する(注:これにより算出されたIC50値を表1〜2に示す。なお、阻害活性を示さなかったものは表1〜2において「−」で示されている)。
[Evaluation of activity]
In the FPase assay system, the sample is added to a final concentration of 10 μM, and the inhibitory activity is measured. For samples that showed inhibitory activity of 70% or more at this concentration, a 10-fold 10-fold dilution series was prepared from 10 μM, and the inhibitory activity was measured again (Note: IC 50 values calculated thereby are shown in Tables 1-2. In addition, the thing which did not show inhibitory activity is shown by "-" in Tables 1-2).

[ヒストンデアセチラーゼ(HDAC)阻害活性の検定]
[方法]
組換えヒトHDAC1(クラスI)を用いてサンプル化合物の酵素阻害活性の有無を検定する。実際の反応は、精製したヒトHDAC1に基質としてアセチル化した蛍光標識ペプチドを加え、37℃で30分間反応させる。その後トリプシンを添加し、このとき遊離した蛍光物質(アミノメチルクマリン)を定量することで酵素活性を測定する。阻害活性の陽性対照としてはトリコスタチンAを用いる。
[Assay for histone deacetylase (HDAC) inhibitory activity]
[Method]
Recombinant human HDAC1 (Class I) is used to test the presence or absence of enzyme inhibitory activity of the sample compound. In the actual reaction, a fluorescent labeled peptide acetylated as a substrate is added to purified human HDAC1 and reacted at 37 ° C. for 30 minutes. Thereafter, trypsin is added, and the enzyme activity is measured by quantifying the fluorescent substance (aminomethylcoumarin) released at this time. Trichostatin A is used as a positive control for inhibitory activity.

[活性の評価]
検体はまず最終濃度100μMで検定し、阻害活性の認められたものについては段階希釈系列を作り、50%阻害濃度を求める(注:これにより算出されたIC50値を表1〜2に示す。なお、阻害活性を示さなかったものは表1〜2において「−」で示されている)。
[Evaluation of activity]
Samples were first assayed at a final concentration of 100 μM, and serial dilution series were prepared for those in which inhibitory activity was observed, and 50% inhibitory concentrations were determined (Note: IC 50 values calculated thereby are shown in Tables 1-2. In addition, the thing which did not show inhibitory activity is shown by "-" in Tables 1-2).

[プロテインキナーゼ阻害の検定(I)]
ここでは簡便なin vitroの自己リン酸化反応により、EGFレセプター(実験系1)とVEGFレセプター(Flt−1)(実験系2)のチロシンキナーゼの阻害活性を調べる。
[Protein kinase inhibition assay (I)]
Here, the inhibitory activity of tyrosine kinases of EGF receptor (experimental system 1) and VEGF receptor (Flt-1) (experimental system 2) is examined by a simple in vitro autophosphorylation reaction.

[方法]
実験系1:
A431細胞を蔗糖バッファーで破砕し、除核後、超遠心により膜画分を集め、酵素液とする。これに、検体、EGFを加え、25℃、30分間保温後、ATPを加えて0℃、15分間反応する。反応停止後、リン酸化されたレセプターをウエスタンブロットにより解析する。
実験系2:
精製したVEGFレセプターを酵素液とする。これに検体、ATP加え30℃、20分間反応する。反応停止後、リン酸化されたレセプターをウエスタンブロットにより解析する。
[Method]
Experimental system 1:
A431 cells are disrupted with a sucrose buffer, and after enucleation, the membrane fraction is collected by ultracentrifugation and used as an enzyme solution. A sample and EGF are added thereto, and the mixture is incubated at 25 ° C. for 30 minutes, and then ATP is added and reacted at 0 ° C. for 15 minutes. After stopping the reaction, the phosphorylated receptor is analyzed by Western blot.
Experimental system 2:
The purified VEGF receptor is used as an enzyme solution. The sample and ATP are added to this and reacted at 30 ° C. for 20 minutes. After stopping the reaction, the phosphorylated receptor is analyzed by Western blot.

[活性の評価]
検体は最終濃度10μMになるように加え、リン酸化阻害の有無を判定する。阻害活性のあった検体について、3段階以上の10倍希釈系列を作り再度試験を行ない、1μM以下の濃度で50%以上阻害したものを有効と判定する。
[Evaluation of activity]
The sample is added to a final concentration of 10 μM, and the presence or absence of phosphorylation inhibition is determined. For a sample having inhibitory activity, a 10-fold dilution series of 3 or more steps is prepared and tested again, and a sample that is inhibited by 50% or more at a concentration of 1 μM or less is determined to be effective.

[プロテインキナーゼ阻害の検定(II)]
ここでは細胞を血小板由来増殖因子(platelet-derived growth factor, PDGF)刺激して、活性化されるPDGFレセプターチロシンキナーゼおよび主要な細胞内シグナル伝達経路(PI3 kinase-AKT pathway, classical MAP kinase pathway,PLC-PKC pathway)に対する検体の阻害効果を評価する。
[Protein kinase inhibition assay (II)]
Here, cells are stimulated with platelet-derived growth factor (PDGF) to activate PDGF receptor tyrosine kinase and major intracellular signaling pathways (PI3 kinase-AKT pathway, classical MAP kinase pathway, PLC -Evaluate the inhibitory effect of the specimen on (PKC pathway).

[方法]
NRK細胞を96ウェルプレートにまき込み、3日間培養後、サンプル溶液を添加、3時間処理した後にPDGFで刺激する。電気泳動用サンプルを調製し、リン酸化されたシグナル伝達分子(AKT,ERK,PKD,PLCγ1,S6 ribosomal protein)及びphosphotyrosineに対する抗体によるウェスタンブロットを行い、PDGFレセプターからの細胞内シグナル伝達に対する影響を評価する。
[Method]
NRK cells are seeded in a 96-well plate, cultured for 3 days, added with a sample solution, treated for 3 hours, and then stimulated with PDGF. Prepare samples for electrophoresis and perform Western blotting with antibodies against phosphorylated signal transduction molecules (AKT, ERK, PKD, PLCγ1, S6 ribosomal protein) and phosphotyrosine to evaluate the effect on intracellular signal transduction from PDGF receptor To do.

[活性の評価]
検体は最終濃度1、10μMになるように加え、阻害の有無と阻害パターンを判定する(注:この阻害パターンを表1〜2に示す。なお、阻害活性を示さなかったものは表1において「−」で示されている)。
[Evaluation of activity]
The sample is added so as to have a final concentration of 1 and 10 μM, and the presence / absence of inhibition and the inhibition pattern are determined (Note: This inhibition pattern is shown in Tables 1-2. -").

表1および表2に示すIC50の結果から、本発明の錯体はいずれも、39系のがん細胞株に対するIC50値の平均値として、極めて低い値を示すことがわかる。ここで、慣用されているプラチナ製剤であるシスプラチンについて同様の手法により算出したIC50値は8μMであった。本発明の多くの錯体のIC50値は、このシスプラチンのIC50値を大幅に下回っていることから、本発明の錯体は、高活性の新規な抗がん剤としての用途が期待される。From the IC 50 results shown in Table 1 and Table 2, it can be seen that all of the complexes of the present invention show extremely low values as average values of IC 50 values for 39-series cancer cell lines. Here, the IC 50 value calculated by the same method for cisplatin, which is a commonly used platinum preparation, was 8 μM. Since the IC 50 value of many complexes of the present invention is significantly lower than the IC 50 value of cisplatin, the complex of the present invention is expected to be used as a highly active novel anticancer agent.

また、表1および表2に示すr値(最大値)の結果から、本発明の錯体ではr値がせいぜい0.7強程度であり、既存の抗がん剤との作用様式の観点からの類似性は認められなかったことがわかる。このことから、本発明の錯体は既存の抗がん剤とは異なる作用様式に基づいて抗がん作用を発揮しているものと考えられる。したがって、本発明の錯体は、既存の抗がん剤が効かない、いわゆる「薬剤耐性がん」に対しても有効な抗がん剤として期待される。特に、本発明のカチオン錯体ではほぼ半数の実施例でr値が0.5を下回っており、薬剤耐性がんの治療薬として非常に有望である。   Moreover, from the result of the r value (maximum value) shown in Table 1 and Table 2, in the complex of the present invention, the r value is at most about 0.7, and from the viewpoint of the mode of action with existing anticancer agents. It can be seen that no similarity was observed. From this, it is considered that the complex of the present invention exhibits an anticancer action based on a different mode of action from the existing anticancer agents. Therefore, the complex of the present invention is expected as an effective anticancer agent for so-called “drug resistant cancer” in which existing anticancer agents are not effective. In particular, in the cation complex of the present invention, the r value is less than 0.5 in almost half of the examples, which is very promising as a drug-resistant cancer therapeutic agent.

さらに、表1および表2に示すように、本発明の錯体では、そのすべてにおいて、プロテアソームの阻害作用が認められた。プロテアソームは,ポリユビキチン化された細胞内タンパク質を選択的に分解する酵素であり、細胞周期やアポトーシスを制御するタンパク質の分解において中心的な役割を果たしている。このため、本発明の錯体が抗がん性を発揮するメカニズムの少なくとも一部には、このプロテアソーム阻害作用が関与しているものと考えられる。また、本発明の錯体はこれ以外にも、テロメラーゼ、ファルネシルトランスフェラーゼ、ヒストンデアセチラーゼ、プロテインキナーゼなどの各種のがん関連酵素の1つまたは2つ以上を阻害するものがほとんどである。このことから、本発明の錯体の抗がん性は、上述したプロテアソームの阻害作用のみならず、他の酵素に対する阻害作用とも相俟って、総合的な作用として発揮されているものと考えられる。   Furthermore, as shown in Tables 1 and 2, all of the complexes of the present invention showed an inhibitory effect on proteasomes. The proteasome is an enzyme that selectively degrades polyubiquitinated intracellular proteins, and plays a central role in the degradation of proteins that control the cell cycle and apoptosis. For this reason, it is considered that this proteasome inhibitory action is involved in at least part of the mechanism by which the complex of the present invention exhibits anticancer properties. In addition, most of the complexes of the present invention inhibit one or more of various cancer-related enzymes such as telomerase, farnesyltransferase, histone deacetylase, and protein kinase. From this, it is considered that the anticancer property of the complex of the present invention is exhibited as a comprehensive action in combination with not only the above-described inhibitory action of the proteasome but also the inhibitory action against other enzymes. .

[腎毒性の評価]
上記の実施例で合成したいくつかの錯体について、以下の手法により、腎毒性を評価した。なお、コントロールとしてはシスプラチンを用いた。
[Evaluation of nephrotoxicity]
The nephrotoxicity of several complexes synthesized in the above examples was evaluated by the following method. In addition, cisplatin was used as a control.

6週齢ICR系雄性マウス5匹を一群として、投与前0時間と薬物静脈投与72時間後に採血し、腎機能の指標であるクレアチニンおよびBUNの値を調べた。なお、採血16時間前に絶食させ、クレアチニンおよびBUNの測定にはiStatを用いた。また、投与薬物量は各薬物同モルとした。評価した薬物の種類とその投与量は以下のとおりである:
Pt(5−MP)(AtC3)(実施例1−5):28.5mg/kg
(Pt(NH・Pt(dach))−IP(実施例2−2):53mg/kg
Pt(Pt(dach)−IP(実施例2−3):94mg/kg
シスプラチン:10mg/kg。
Five 6-week-old ICR male mice were taken as a group and blood was collected at 0 hours before administration and 72 hours after drug intravenous administration, and the values of creatinine and BUN, which are indicators of renal function, were examined. The sample was fasted 16 hours before blood collection, and iStat was used to measure creatinine and BUN. In addition, the administered drug amount was the same mole for each drug. The types of drugs evaluated and their dosages are as follows:
Pt (5-MP) (AtC3) (Example 1-5): 28.5 mg / kg
(Pt (NH 3 ) 2 · Pt (dach))-IP 6 (Example 2-2): 53 mg / kg
Pt (Pt (dach) -IP 6 ) 2 ( Example 2-3): 94mg / kg
Cisplatin: 10 mg / kg.

Pt(5−MP)(AtC3)(実施例1−5)、(Pt(NH・Pt(dach))−IP(実施例2−2)、Pt(Pt(dach)−IP(実施例2−3)、およびシスプラチンの腎毒性評価の結果を、図3〜図6にそれぞれ示す。Pt (5-MP) (AtC3) (Example 1-5), (Pt (NH 3 ) 2 .Pt (dach))-IP 6 (Example 2-2), Pt (Pt (dach) -IP 6 2 (Example 2-3) and the results of nephrotoxicity evaluation of cisplatin are shown in FIGS.

図6に示すように、シスプラチン投与72時間後には、投与前と比べて、BUN値は約2倍に、クレアチニン値は約3.5倍にそれぞれ上昇しており、腎機能が障害を受けていることがわかる。一方、図3〜図5に示すように、本発明の錯体の場合には、投与72時間後にもBUN値やクレアチニン値の有意な上昇は認められなかった。   As shown in FIG. 6, 72 hours after cisplatin administration, the BUN value increased approximately twice and the creatinine value increased approximately 3.5 times compared to before administration, and the renal function was impaired. I understand that. On the other hand, as shown in FIGS. 3 to 5, in the case of the complex of the present invention, no significant increase in BUN value or creatinine value was observed even 72 hours after administration.

同様に、6週齢雄性ICRマウス(各群について、n=3〜5)を用いて、本発明の錯体の腎毒性を評価した。具体的には、まずマウスを絶食させ、16時間後、頚骨後ろに位置する静脈からアニマルランセットを用いて採血を行い、i-STAT 1 AnalyzerとカートリッジCHEM8+を用い、血液中成分(ナトリウムNa、カリウムK、イオン化カルシウムiCa、総二酸化炭素tCO2、グルコースGlc、血液尿素窒素BUN、クレアチニンCrea、ヘマトクリットHct、ヘモグロビンHb)の値を測定した。その後、シスプラチン 33 μmol/kg、Pt(Pt(dach)-IP6)233 μmol/kgを尾静脈より投与した。その56時間後、絶食を開始し、さらに16時間後、同様の方法で採血を行い、血中成分を測定した。Similarly, nephrotoxicity of the complex of the present invention was evaluated using 6-week-old male ICR mice (n = 3 to 5 for each group). Specifically, first, the mouse was fasted, and after 16 hours, blood was collected from the vein located behind the tibia using an animal lancet, and the components in the blood (sodium Na, The values of potassium K, ionized calcium iCa, total carbon dioxide tCO 2 , glucose Glc, blood urea nitrogen BUN, creatinine Crea, hematocrit Hct, hemoglobin Hb) were measured. Thereafter, cisplatin 33 μmol / kg and Pt (Pt (dach) -IP 6 ) 2 33 μmol / kg were administered from the tail vein. After 56 hours, fasting was started, and further 16 hours later, blood was collected in the same manner, and blood components were measured.

図7は、各サンプル投与群について測定された血中グルコース値の平均値±標準偏差(相対値)を示すグラフである。図7に示すように、コントロールでは血中グルコースレベル(Glc)が減少した。これは、ストレスが原因と考えられる。また、Pt(Pt(dach)-IP6)2、(Pt(dach)・Pt(NH3)2)-IP6ではGlcの減少が見られず、コントロールと有意差1%が観察された。一方、(Pt(dach)・Pt(NH3)2)-IP6、(Pt(dach))2-IP6ではGlcの減少が見られ、コントロールと有意差が観察されなかった。FIG. 7 is a graph showing the mean ± standard deviation (relative value) of blood glucose values measured for each sample administration group. As shown in FIG. 7, the blood glucose level (Glc) decreased in the control. This is thought to be due to stress. In addition, in Pt (Pt (dach) -IP 6 ) 2 and (Pt (dach) · Pt (NH 3 ) 2 ) -IP 6 , no decrease in Glc was observed, and a significant difference of 1% from the control was observed. On the other hand, (Pt (dach) · Pt (NH 3 ) 2 ) -IP 6 and (Pt (dach)) 2 -IP 6 showed a decrease in Glc, and no significant difference from the control was observed.

図8は、各サンプル投与群について測定された血中BUN値の平均値±標準偏差(相対値)を示すグラフである。また、図9は、各サンプル投与群について測定された血中Crea値の平均値±標準偏差(相対値)を示すグラフである。図8および図9に示すように、シスプラチンでは腎機能マーカーとなるBUN、Creaの上昇が見られたが、本発明の錯体ではこのようなBUNやCreaの上昇は観察されなかった。これは、本発明の錯体が骨へ集積して腎への集積が軽減したことや、水溶性が高く腎排泄が促進されたことなどが要因であると考えられる。なお、BUNの測定結果において、Pt(Pt(dach)-IP6)2、(Pt(dach))2-IP6では減少傾向が見られた。これらの錯体は特に細胞増殖抑制効果が強いため、白金抗癌剤の副作用の1つである食欲減退が他の錯体と比較して強いことが推測され、その結果としてBUNの減少が生じたと考えられる。FIG. 8 is a graph showing the mean ± standard deviation (relative value) of blood BUN values measured for each sample administration group. FIG. 9 is a graph showing the mean ± standard deviation (relative value) of blood Crea values measured for each sample administration group. As shown in FIGS. 8 and 9, cisplatin showed an increase in BUN and Crea, which are renal function markers, but such an increase in BUN and Crea was not observed in the complex of the present invention. This is considered to be due to the fact that the complex of the present invention accumulates in the bone and the accumulation in the kidney is reduced, and that the water excretion is high and renal excretion is promoted. In the measurement results of BUN, there was a decreasing trend for Pt (Pt (dach) -IP 6 ) 2 and (Pt (dach)) 2 -IP 6 . Since these complexes have particularly strong cell growth-inhibiting effects, it is speculated that loss of appetite, which is one of the side effects of platinum anticancer drugs, is stronger than other complexes, resulting in a decrease in BUN.

図10は、各サンプル投与群について測定された血中ヘマトクリット値(Hct)値の平均値±標準偏差(相対値)を示すグラフである。また、図11は、各サンプル投与群について測定された血中ヘモグロビン(Hb)値の平均値±標準偏差(相対値)を示すグラフである。図10および図11に示すように、HctおよびHbの測定結果において、コントロールと錯体との間で有意な差は観察されなかった。しかしながら、Hctでは、Pt(Pt(dach)-IP6)2を除き、減少傾向が見られた。本発明の錯体は骨への集積が期待され、骨髄への影響も予想される。FIG. 10 is a graph showing the mean ± standard deviation (relative value) of blood hematocrit (Hct) values measured for each sample administration group. FIG. 11 is a graph showing the mean ± standard deviation (relative value) of blood hemoglobin (Hb) values measured for each sample administration group. As shown in FIGS. 10 and 11, no significant difference was observed between the control and the complex in the measurement results of Hct and Hb. However, Hct showed a decreasing trend except for Pt (Pt (dach) -IP 6 ) 2 . The complex of the present invention is expected to accumulate in bone and is expected to affect bone marrow.

以上の通り、測定したパラメータでは、Glcを除き、Pt(Pt(dach)-IP6)2、(Pt(NH3)2・Pt(dach))-IP6、(Pt(dach)・Pt(NH3)2)-IP6、(Pt(dach))2-IP6の間で有意な差は見られなかった。これらの本発明の錯体はin vitroでの細胞増殖抑制作用やヒドロキシアパタイト(HAP)への吸着能に大きな差はないことから、生体への影響についても差は見られなかったと考えられる。As described above, in the measured parameters, except for Glc, Pt (Pt (dach) -IP 6 ) 2 , (Pt (NH 3 ) 2 · Pt (dach))-IP 6 , (Pt (dach) · Pt ( There was no significant difference between NH 3 ) 2 ) -IP 6 and (Pt (dach)) 2 -IP 6 . These complexes of the present invention have no significant difference in in vitro cell growth-inhibiting activity or adsorption ability to hydroxyapatite (HAP), and it is considered that there was no difference in the effect on the living body.

以上のことから、本発明の錯体は、カチオン錯体およびアニオン錯体ともに、白金等の貴金属を含有しているにもかかわらず腎機能に障害を及ぼす虞は非常に小さい。よって、副作用が極めて低減された抗がん剤の有望な候補となりうる。   From the above, the complex of the present invention has a very low risk of impairing renal function despite the fact that both the cation complex and the anion complex contain noble metals such as platinum. Therefore, it can be a promising candidate for an anticancer drug with extremely reduced side effects.

[ヒドロキシアパタイト(HAP)への吸着性の評価]
実施例2−1〜2−2および2−5で合成した4種のアニオン錯体について、ヒドロキシアパタイト(HAP;Ca10(PO(OH))への吸着性を評価した。なお、HAPは、ヒトの歯や骨を構成する主要成分である。
[Evaluation of adsorptivity to hydroxyapatite (HAP)]
The adsorptivity to hydroxyapatite (HAP; Ca 10 (PO 4 ) 6 (OH) 2 ) was evaluated for the four types of anion complexes synthesized in Examples 2-1 to 2-2 and 2-5. HAP is a main component constituting human teeth and bones.

この評価は、単分子層吸着理論であるLangmuir理論に従って行なった。ここではまず、Langmuir理論について簡単に説明する。   This evaluation was performed according to the Langmuir theory which is a monomolecular layer adsorption theory. First, the Langmuir theory will be briefly described.

吸着される物質と吸着剤との間に単分子層吸着が起こっているとき、溶液中に残存している化合物の濃度と吸着量との間には直線関係がみられ、単分子層平衡吸着反応が進行していることを示す。単分子層吸着が起こっているとき、下記数式(1)のLangmuirの単分子層吸着式が成立することが知られている。   When monolayer adsorption occurs between the adsorbed substance and the adsorbent, there is a linear relationship between the concentration of the compound remaining in the solution and the amount of adsorption, and monolayer equilibrium adsorption. Indicates that the reaction is in progress. It is known that when the monomolecular layer adsorption occurs, the Langmuir monomolecular layer adsorption formula of the following formula (1) is established.

数式(1)において、Wは吸着剤単位重量当たりに吸着した溶質の質量を表し、Wsは飽和吸着量を表し、aは吸着平衡定数を表し、Cは溶質の平衡濃度を表す。ここで、数式(1)を変形すると、下記数式(2)が導かれる。   In Equation (1), W represents the mass of the solute adsorbed per unit weight of the adsorbent, Ws represents the saturated adsorption amount, a represents the adsorption equilibrium constant, and C represents the equilibrium concentration of the solute. Here, when the formula (1) is modified, the following formula (2) is derived.

この数式(2)に基づき、横軸に1/Cをプロットし、縦軸に1/Wをプロットして得られるLangmuirの単分子層吸着式の直線の傾き(1/aWs)とy切片(1/Ws)のそれぞれの値から,単分子層吸着状態における吸着平衡定数a、および、飽和吸着量Wsが算出される。   Based on this equation (2), the slope of the Langmuir monolayer adsorption equation (1 / aWs) and the y-intercept (1 / C plotted on the horizontal axis and 1 / W plotted on the vertical axis) From each value of 1 / Ws), the adsorption equilibrium constant a and the saturated adsorption amount Ws in the monolayer adsorption state are calculated.

[(Pt(NH−IPのHAP吸着性の評価]
上述したLangmuir理論に従って、上記の実施例2−1で合成した(Pt(NH−IPのHAPに対する吸着性を評価した。具体的な手法は以下のとおりである。
[(Pt (NH 3) 2 ) Evaluation of HAP adsorptive 2 -IP 6]
According to the above-described Langmuir theory, the adsorptivity of (Pt (NH 3 ) 2 ) 2 -IP 6 synthesized in Example 2-1 to HAP was evaluated. The specific method is as follows.

HAP 5mgに5mM HEPES緩衝液(pH7.5)を加え、37℃で30分間インキュベートした。そこに(Pt(NH−IPの同緩衝液の溶液を、1、2、3または4mMの錯体濃度で全量が5.0mLになるようにそれぞれ添加して、サンプルを調製した。これらを1.5時間インキュベートし、遠心によりHAPと溶液とに分離した。次いで、回収されたHAPの31P−NMRを測定し、それぞれの錯体濃度における(Pt(NH−IPのHAPへの吸着量を求めた。得られた結果に基づき、溶液中に残存している化合物の濃度C(mM)、および、HAP 1mg当たりに吸着している化合物のモル数W(μmol/mg)をそれぞれ算出し、上記数式(2)によりデータをプロットして、グラフを作成した。そしてこのグラフの直線の傾きおよびy切片の値から、吸着平衡定数a、および飽和吸着量Wsを算出した。得られた結果を下記の表3に示す。なお、表3には、公知の白金錯体抗がん剤であるシスプラチンおよびカルボプラチンについて同様の評価を行なった結果も併せて記載されている。To 5 mg of HAP, 5 mM HEPES buffer (pH 7.5) was added and incubated at 37 ° C. for 30 minutes. Samples were prepared by adding a solution of (Pt (NH 3 ) 2 ) 2 -IP 6 in the same buffer solution to a total concentration of 5.0 mL at a complex concentration of 1, 2, 3 or 4 mM. did. These were incubated for 1.5 hours and separated into HAP and solution by centrifugation. Next, 31 P-NMR of the recovered HAP was measured, and the amount of (Pt (NH 3 ) 2 ) 2 -IP 6 adsorbed on HAP at each complex concentration was determined. Based on the obtained results, the concentration C (mM) of the compound remaining in the solution and the number of moles W (μmol / mg) of the compound adsorbed per 1 mg of HAP were calculated, respectively. The data was plotted according to 2) to create a graph. The adsorption equilibrium constant a and the saturated adsorption amount Ws 2 were calculated from the slope of the straight line and the value of the y-intercept in this graph. The results obtained are shown in Table 3 below. Table 3 also shows the results of a similar evaluation of cisplatin and carboplatin, which are known platinum complex anticancer agents.

表3に示す結果から、本発明のアニオン錯体はいずれも、シスプラチンやカルボプラチンと比較してより大きい吸着平衡定数aを示すことがわかる。これは、本発明のアニオン錯体がHAPに対して非常に高い親和性を有することを示している。上述したように、HAPはヒトの歯や骨の主要構成成分であることから、本発明のアニオン錯体のうちIP構造を有するものは、それ単独で、またはHAPと複合化されて、骨がん等の骨関連疾患に罹患した細胞への標的化が可能な薬物送達システム(DDS)製剤として用いられうる。From the results shown in Table 3, it can be seen that all of the anion complexes of the present invention exhibit a larger adsorption equilibrium constant a as compared with cisplatin and carboplatin. This indicates that the anion complex of the present invention has a very high affinity for HAP. As described above, since HAP is a major component of human teeth and bones, the anion complex of the present invention having an IP 6 structure alone or complexed with HAP It can be used as a drug delivery system (DDS) formulation that can be targeted to cells affected by bone-related diseases such as cancer.

[in vivoにおける抗がん効果の評価(カチオン錯体)]
本発明のカチオン錯体のin vivoにおける抗がん効果を検討するために、以下に詳述するように、ヌードマウスBALB/c Slc-nu/nuを用い、サンプルとして実施例1−5で合成したPt(5−MP)(AtC3)Clのin vivoにおける抗がん活性を評価した。
[Evaluation of in vivo anticancer effect (cationic complex)]
In order to examine the in vivo anticancer effect of the cation complex of the present invention, nude mice were synthesized in Example 1-5 as samples using BALB / c Slc-nu / nu as detailed below. In vivo anticancer activity of Pt (5-MP) (AtC3) Cl 2 was evaluated.

ヒト前立腺がん由来細胞DU-145の継代実験
ヒト前立腺がん由来細胞DU-145を用いて胆がんマウスを作製してin vivoにおけるカチオン錯体の抗がん活性の評価を行うために、DU-145の培養実験を行った。下記に、継代実験の操作手順を示す。
Passage experiment of human prostate cancer-derived cell DU-145 In order to evaluate the anti-cancer activity of cation complexes in vivo by creating a gall cancer mouse using human prostate cancer-derived cell DU-145, A culture experiment of DU-145 was conducted. The operation procedure of the passage experiment is shown below.

CO2インキュベータの用意
CO2ボンベをインキュベータに接続し、5%、37℃に調節した。インキュベータ内部には、滅菌済蒸留水に消毒剤ヒビテンを加えたもの1000 mlを入れたバットを設置した。
Preparation of CO 2 incubator
A CO 2 cylinder was connected to the incubator and adjusted to 5%, 37 ° C. Inside the incubator was installed a vat containing 1000 ml of sterilized distilled water plus disinfectant hibiten.

クリーンベンチの用意
クリーンベンチの殺菌灯を消し、70%エタノールを手に吹き付け、エタノールを染み込ませたキムワイプでベンチ内を拭き、殺菌した。
Preparation of a clean bench The sterilization lamp of the clean bench was turned off, 70% ethanol was sprayed onto the hand, the inside of the bench was wiped with a Kim wipe soaked in ethanol, and sterilized.

培地の作成
820 mlのMilliQ水にRPMI-1640培地10.4 gを加え撹拌した。そこに、ペニシリン-ストレプトマイシン混合溶液をペニシリン100 units/μl、ストレプトマイシン100 mg/μlになるように加えた。さらに、NaHCO32.0 gとFBS100 mlを加え撹拌後、全量が1000 mlになるよう滅菌蒸留水を加えた。その後、クリーンベンチ内で滅菌ろ過し、以下の培養実験の培地として使用した。
Medium creation
10.4 g of RPMI-1640 medium was added to 820 ml of MilliQ water and stirred. Thereto, a penicillin-streptomycin mixed solution was added so as to be penicillin 100 units / μl and streptomycin 100 mg / μl. Further, 2.0 g of NaHCO 3 and 100 ml of FBS were added and stirred, and then sterilized distilled water was added so that the total amount became 1000 ml. Thereafter, it was sterilized and filtered in a clean bench and used as a medium for the following culture experiments.

PBSの作成
滅菌蒸留水1000 mlにDulbecco's Phosphate Buffered Saline9.6 gを加えて撹拌し、全て溶解後、120℃、20分で滅菌した。
Preparation of PBS 9.6 g of Dulbecco's Phosphate Buffered Saline was added to 1000 ml of sterilized distilled water, and the whole was dissolved and then sterilized at 120 ° C. for 20 minutes.

細胞培養と継代
サンプル容器に凍結保存していたヒト前立腺がん由来細胞DU-145を37℃で急速に溶解し、クリーンベンチ内で、25 mlの培地を入れたディッシュに移した。2日後、培地を除去し、10 mlのPBSで洗浄後、5倍希釈した0.5%-Trypsin/5.3 mM-EDTA溶液 5 mlを加え、37℃で10分間インキュベートした。細胞が全て剥がれたのを確認後、培地5 mlを加え、継代を行った。2日後、同様の操作を行った。
Cell Culture and Passage Human prostate cancer-derived cells DU-145 that had been cryopreserved in sample containers were rapidly lysed at 37 ° C. and transferred to a dish containing 25 ml of medium in a clean bench. Two days later, the medium was removed, washed with 10 ml of PBS, 5 ml of a 5-fold diluted 0.5% -Trypsin / 5.3 mM-EDTA solution was added, and the mixture was incubated at 37 ° C. for 10 minutes. After confirming that all cells were detached, 5 ml of medium was added and subcultured. Two days later, the same operation was performed.

細胞数の計測
計数板にトリパンブルーで染色した細胞浮遊液を乗せ、上からカバーガラスをかけた。光学顕微鏡にて計数板の計8か所のカウンター部に存在する細胞数を数え、1か所に存在する平均細胞数を算出し、希釈前の細胞浮遊液中の細胞数を計算した。
Measurement of the number of cells A cell suspension stained with trypan blue was placed on a counting plate, and a cover glass was applied from above. The number of cells present in a total of eight counter parts of the counting plate was counted with an optical microscope, the average number of cells present in one place was calculated, and the number of cells in the cell suspension before dilution was calculated.

細胞浮遊液の調製とインジェクション
培地100μl当たり8.3×106 個の細胞数になるように細胞浮遊液を調製した。調製済みの細胞浮遊液を1匹当たり100μl、マウスの右肩付近の皮下にインジェクションした。
Preparation and injection of cell suspension A cell suspension was prepared so that the number of cells was 8.3 × 10 6 cells per 100 μl of medium. 100 μl of the prepared cell suspension was injected subcutaneously near the right shoulder of the mouse.

サンプル投与と腫瘍サイズの測定
マウスに腫瘍をインジェクションした日から20日後を実験開始0日目とし、0、7、14日目に蒸留水(コントロール)またはPt(5-MP)(AtC3)Cl2を投与した。各サンプル(n=5)は8.25 mmol/kgで投与した。0日目、1日目、3日目、7日目、8日目、11日目、14日目、15日目、18日目、20日目に体重(マウス体積)、腫瘍サイズを測定した。腫瘍の大きさはノギスを用いて計測し、A×B2×0.52 (A=腫瘍長さ、B=腫瘍幅;単位はすべてmmである)により得られる腫瘍体積の、薬剤投与前のマウス体積に対する百分率として腫瘍体積比を算出した。
Sample administration and measurement of tumor size 20 days after the tumor was injected into the mouse, the experiment was started on day 0, and distilled water (control) or Pt (5-MP) (AtC3) Cl 2 was used on days 0, 7, and 14. Was administered. Each sample (n = 5) was administered at 8.25 mmol / kg. Measure body weight (mouse volume) and tumor size on day 0, day 1, day 3, day 7, day 8, day 11, day 14, day 15, day 18, day 20 did. Tumor size was measured using calipers, and the mouse volume before drug administration of the tumor volume obtained by A x B 2 x 0.52 (A = tumor length, B = tumor width; all units are mm) Tumor volume ratio was calculated as a percentage of.

図12は、Pt(5-MP)(AtC3)Cl2を投与した胆がんマウスの平均腫瘍体積比の変化をコントロール群と比較して示すグラフである。図12に示すように、Pt(5-MP)(AtC3)Cl2を8.25 mmol/kgの用量で週1回投与すると、コントロール(蒸留水)と比較して腫瘍細胞の増殖を抑制する傾向が見られた。ただし,実験開始後20日においても有意差は見られていない。なお、上記でマウスの腫瘍体積比を算出したそれぞれのタイミングで、胆がんマウスの体重比の値(0日目の体重を1としたときのマウス体重の相対値)も算出した。図13は、Pt(5-MP)(AtC3)Cl2を投与した胆がんマウスの平均体重比の変化をコントロール群と比較して示すグラフである。図13に示すように、マウスの体重比の平均値に差は見られなかったことから、Pt(5-MP)(AtC3)Cl2投与による副作用の小ささが示された。FIG. 12 is a graph showing changes in the mean tumor volume ratio of bile cancer mice administered with Pt (5-MP) (AtC3) Cl 2 in comparison with the control group. As shown in FIG. 12, when Pt (5-MP) (AtC3) Cl 2 was administered once a week at a dose of 8.25 mmol / kg, there was a tendency to suppress the growth of tumor cells compared to control (distilled water). It was seen. However, no significant difference was observed even 20 days after the start of the experiment. In addition, at each timing when the tumor volume ratio of the mouse was calculated as described above, the weight ratio value of the bile cancer mouse (relative value of the mouse weight when the weight on the 0th day is 1) was also calculated. FIG. 13 is a graph showing the change in the average body weight ratio of the bile cancer mice administered with Pt (5-MP) (AtC3) Cl 2 in comparison with the control group. As shown in FIG. 13, since there was no difference in the average value of the weight ratios of the mice, the side effects due to the administration of Pt (5-MP) (AtC3) Cl 2 were shown to be small.

続いて、蒸留水(コントロール)、シスプラチン、およびPd(5-MP)(AtC3)(NO3)2をそれぞれサンプルとして用い、上記と同様の実験を行った。Subsequently, an experiment similar to the above was performed using distilled water (control), cisplatin, and Pd (5-MP) (AtC3) (NO 3 ) 2 as samples.

図14は、シスプラチンまたはPd(5-MP)(AtC3)(NO3)2を投与した胆がんマウスの平均腫瘍体積比の変化をコントロール群と比較して示すグラフである。図14に示すように、Pd(5-MP)(AtC3)(NO3)2を8.25 mmol/kgの用量で週1回投与すると、コントロール(蒸留水)と比較して腫瘍細胞の増殖を抑制する傾向が見られ、その程度はシスプラチンと同程度であった。ただし,実験開始後20日においても有意差は見られていない。また、図15は、シスプラチンまたはPd(5-MP)(AtC3)(NO3)2を投与した胆がんマウスの平均体重比の変化をコントロール群と比較して示すグラフである。図15に示すように、マウスの体重比の平均値に差は見られなかったことから、Pd錯体であるPd(5-MP)(AtC3)(NO3)2投与についても、Pt錯体と同様に副作用が小さいことが示された。FIG. 14 is a graph showing changes in the mean tumor volume ratio of bile cancer mice administered with cisplatin or Pd (5-MP) (AtC3) (NO 3 ) 2 compared to the control group. As shown in FIG. 14, when Pd (5-MP) (AtC3) (NO 3 ) 2 was administered once a week at a dose of 8.25 mmol / kg, the growth of tumor cells was suppressed compared to control (distilled water). The degree was similar to that of cisplatin. However, no significant difference was observed even 20 days after the start of the experiment. FIG. 15 is a graph showing the change in the average body weight ratio of the bile cancer mice administered with cisplatin or Pd (5-MP) (AtC3) (NO 3 ) 2 compared with the control group. As shown in FIG. 15, since there was no difference in the average value of the body weight ratio of the mice, the administration of Pd (5-MP) (AtC3) (NO 3 ) 2 as a Pd complex was the same as that of the Pt complex. It was shown that side effects were small.

[in vivoにおける抗がん効果の評価(アニオン錯体)]
本発明のアニオン錯体のin vivoにおける抗がん効果を検討するために、サンプルとして実施例2−3で合成したPt(Pt(dach)−IPのin vivoにおける抗がん活性を評価した。なお、アニオン錯体の実験プロトコールは以下の通りであるが、記載のない事項については本発明のカチオン錯体について上述したのと同様の手法を採用した。
[Evaluation of in vivo anticancer effect (anion complex)]
In order to examine the in vivo anticancer effect of the anion complex of the present invention, the in vivo anticancer activity of Pt (Pt (dach) -IP 6 ) 2 synthesized in Example 2-3 as a sample was evaluated. did. In addition, although the experimental protocol of an anion complex is as follows, about the matter which is not described, the method similar to having mentioned above about the cation complex of this invention was employ | adopted.

0日目
マウス搬入:BALB/c slc-nu/nu 雄 4週齢
細胞植え付け:DU-145 3.8×106 cells/匹を右肩に皮下投与
24日目
薬剤投与(静脈内投与)
シスプラチン 17μmol/kg投与群 n=6
コントロール(蒸留水投与)群 n=5
Pt(Pt(dach)-IP6)217μmol/kg投与群 n=4
42日目
薬剤投与(静脈内投与)
Pt(Pt(dach)-IP6)217μmol/kg投与群に17μmol/kg再投与(シスプラチン投与群およびコントロール群には再投与せず)
図16は、シスプラチンまたはPt(Pt(dach)-IP6)2を投与した胆がんマウスの平均腫瘍体積比の変化をコントロール群と比較して示すグラフである。図16に示すように、シスプラチン 17μmol/kg 1回投与群はコントロールとそれほど違いは見られないのに対し、Pt(Pt(dach)-IP6)217μmol/kg 2回投与群はDU-145前立腺癌の増殖を抑制する傾向が見られた。なお、シスプラチン投与群では初期の体重減少が大きかったことから、2回投与による死亡を回避する目的で2回投与を行わなかった。
Day 0 mouse delivery: BALB / c slc-nu / nu male 4-week-old cell planting: DU-145 3.8 × 10 6 cells / mouse subcutaneously on right shoulder
Day 24 Drug administration (intravenous administration)
Cisplatin 17 μmol / kg administration group n = 6
Control (distilled water administration) group n = 5
Pt (Pt (dach) -IP 6 ) 2 17 μmol / kg administration group n = 4
Day 42 Drug administration (intravenous administration)
Pt (Pt (dach) -IP 6 ) 2 17 μmol / kg re-administered to the 17 μmol / kg group (not re-administered to the cisplatin group and control group)
FIG. 16 is a graph showing changes in the average tumor volume ratio of bile cancer mice administered with cisplatin or Pt (Pt (dach) -IP 6 ) 2 in comparison with the control group. As shown in FIG. 16, the cisplatin 17 μmol / kg once-administered group is not so different from the control, whereas the Pt (Pt (dach) -IP 6 ) 2 17 μmol / kg twice-administered group is DU-145. There was a tendency to suppress the growth of prostate cancer. In the cisplatin-administered group, the initial weight loss was large, so the second dose was not administered in order to avoid death due to the second dose.

[ラット骨転移モデルを用いたin vivo評価]
骨転移モデルラット作製の確認は,癌細胞が移植された左足脛骨が移植されてない右足脛骨と比較してn-1日(n-1=17, 21)後に骨表面が粗くなり,癌細胞が増殖し、骨代謝が活発化していることから確認した。
[In vivo evaluation using rat bone metastasis model]
Confirmation of bone metastasis model rat preparation is that the bone surface becomes rough after n-1 days (n-1 = 17, 21) compared to the right foot tibia without transplanted cancer cells and the cancer cells Was confirmed by the proliferation of bone metabolism.

癌細胞の移植後n日(n=18, 22)目に、Pt(Pt(dach)-IP6)2、またはシスプラチンを投与し、投与前後における腫瘍サイズ、足刺激への反応性、体重の変動から、それぞれ、腫瘍増殖阻害効果、疼痛緩和効果、副作用を評価した。各種評価法は、後述するように、腫瘍サイズについてはノギスを用いて行い、足刺激への反応性はvon frey filamentを用いて行った。On day n (n = 18, 22) after transplantation of cancer cells, Pt (Pt (dach) -IP 6 ) 2 or cisplatin was administered, and tumor size, response to foot stimulation, body weight before and after administration From the changes, tumor growth inhibitory effect, pain alleviation effect, and side effects were evaluated. As described later, various evaluation methods were performed using calipers for tumor size, and reactivity to foot stimulation was performed using von frey filament.

メディウム溶液の作製
約450 mlのMilliQ水にRPMI-1640培地 5.2 mg、NaHCO3 1.0 mg、37°Cに溶かしたFetal Bovine serum (FBS) 50 ml、ペニシリン−ストレプトマイシン混合溶液 (ペニシリン 10000 units/ml, ストレプトマイシン10000μg/ml) 5 mlを加え、撹拌した。その後、クリーンベンチ内で滅菌濾過した。
Preparation of medium solution RPMI-1640 medium 5.2 mg, NaHCO 3 1.0 mg, Fetal Bovine serum (FBS) 50 ml dissolved in approximately 450 ml MilliQ water, penicillin-streptomycin mixed solution (penicillin 10000 units / ml, 5 ml of streptomycin (10000 μg / ml) was added and stirred. Thereafter, it was sterilized and filtered in a clean bench.

PBS溶液の作製
1 LのMiliQ水にPhosphate Buffered Saline (PBS) 9.6 gを加え、撹拌後、オートクレーブした。
Preparation of PBS solution
9.6 g of Phosphate Buffered Saline (PBS) was added to 1 L of MiliQ water, stirred and then autoclaved.

MRMT-1細胞培養
凍結保存されたMRMT-1細胞を37℃の恒温槽で溶かした。その後、クリーンベンチ内で、作製したメディウム 20 mlをディッシュに加え、そこに、よくピペッティングし、細胞 1 mlを加えた。その後、CO2インキュベータ内で保管した。2日後、継代実験を行った。保管したディッシュをクリーンベンチ内で、PBSで洗浄し、トリプシン 10 mlを加え、CO2インキュベータ内で約20分間置き、細胞をディッシュから剥がした。次に、クリーンベンチ内で、剥がした細胞の半分を捨て、残ったディッシュにメディウム 20 mlを加え、その後、ディッシュをCO2インキュベータ内で保管した。この継代実験を3回行った。
MRMT-1 cell culture The cryopreserved MRMT-1 cells were thawed in a 37 ° C constant temperature bath. Thereafter, 20 ml of the prepared medium was added to the dish in a clean bench, and pipetted well there, and 1 ml of cells was added. After that, it was stored in a CO 2 incubator. Two days later, a passage experiment was performed. The stored dish was washed with PBS in a clean bench, added with 10 ml of trypsin, placed in a CO 2 incubator for about 20 minutes, and the cells were detached from the dish. Next, half of the detached cells were discarded in a clean bench, 20 ml of medium was added to the remaining dish, and then the dish was stored in a CO 2 incubator. This passage experiment was performed three times.

骨転移モデルの作製
7週齢雌性SDラットをネンブタール麻酔下、脛骨近位部が見えるように切り口をいれ、左足膝関節から5 mm遠位の部位に23ゲージの針を用いて、骨髄腔にまで達する穴を開け、ハミルトンシリンジを用い、MRMT-1ラット乳癌細胞(3000 cells/3 μL)を注入した。一方、右足脛骨の対応する部位に穴を開け、擬似的処置として同容量のメディウム3 μLのみを投与した。術後、ボーンワックス(ミツロウ)を用い骨の穴を埋め、傷を縫合した。
Creation of bone metastasis model
Under a Nembutal anesthesia, a 7-week-old female SD rat was incised so that the proximal part of the tibia was visible, and a hole reaching the bone marrow cavity was drilled using a 23-gauge needle 5 mm distal to the left knee joint. MRMT-1 rat breast cancer cells (3000 cells / 3 μL) were injected using a Hamilton syringe. On the other hand, a hole was made in the corresponding part of the right foot tibia, and only 3 μL of the same volume of medium was administered as a pseudo treatment. After the operation, the bone hole was filled with bone wax (beeswax), and the wound was sutured.

骨転移モデル作製確認
手術後、ラットを経時的にX線撮影した。ラットをネンブタール麻酔後、IP(イメージングプレート)を挿入したカセッテに貼り付け、SOFTEX M-6でX線撮影を行い、その後、IPをBAS5000で解析した。
Confirmation of bone metastasis model preparation After surgery, rats were radiographed over time. After anesthetizing the rats with Nembutal, the rats were affixed to a cassette with an IP (imaging plate) inserted, and X-rays were taken with SOFTEX M-6, and then IP was analyzed with BAS5000.

・腫瘍増殖阻害効果、疼痛緩和、副作用の評価
癌細胞をラット脛骨に移植したn日後(n=18, 22)にPt(Pt(dach)-IP6)2m mol/kg、シスプラチン m mol/kg(m = 33, 8.25) を水50μlに溶かしたものを尾静脈より投与した。なお、コントロール群には水100μlを投与した。
・ Evaluation of tumor growth inhibition effect, pain relief, and side effects Pt (Pt (dach) -IP 6 ) 2 m mol / kg, cisplatin m mol / n n days after transplantation of cancer cells into rat tibia (n = 18, 22) A solution of kg (m = 33, 8.25) dissolved in 50 µl of water was administered from the tail vein. In addition, 100 μl of water was administered to the control group.

疼痛緩和効果を評価するため、von frey filamentを用いた。von frey filament testは機械的アロディニアを測定する代表的な方法である。フィラメントで片足の足底を刺激し、徐々に圧力を加え、ラットが痛感反応を示した圧力を閾値とした。この操作をラット1匹につき、左足、右足の各々5回ずつ交互に間を5分あけて測定(左足測定→5分→右足測定→5分→)×5回/1匹)した。そのメジアン値の左右足比(右足/左足)を算出し、この値を疼痛の指標とした。なお、値の比は投与前の右足の値/左足の値を1として相対的に評価した。   In order to evaluate the pain relieving effect, von frey filament was used. The von frey filament test is a typical method for measuring mechanical allodynia. The sole of the foot of the foot was stimulated with the filament, pressure was gradually applied, and the pressure at which the rat showed a painful reaction was taken as a threshold value. This operation was measured for each rat, 5 times for each left foot and right foot, with 5 minutes alternately (left foot measurement → 5 minutes → right foot measurement → 5 minutes →) × 5 times / 1 rat). The left / right foot ratio (right foot / left foot) of the median value was calculated, and this value was used as an index of pain. The ratio of the values was evaluated relative to the value of the right foot / left foot before administration as 1.

腫瘍サイズはノギスを用いて計測し、腫瘍体積はA×B2×0.52 (A=腫瘍長さ、B=腫瘍幅;単位はすべてmmである)により算出し、サンプル投与1日前の値を1としたときの相対値で評価した。Tumor size was measured using calipers, tumor volume was calculated by A × B 2 × 0.52 (A = tumor length, B = tumor width; units are all mm), and the value one day before sample administration was 1 Evaluation was made using relative values.

図17は、シスプラチン 33μmol/kg 1回投与群およびPt(Pt(dach)-IP6)233μmol/kg 1回投与群の平均腫瘍体積比の変化をコントロール群と比較して示すグラフである。図17に示すように、シスプラチン 33μmol/kg 1回投与群はコントロールと違いが見られないのに対し、Pt(Pt(dach)-IP6)2 33μmol/kg 1回投与群はMRMT-1乳癌の増殖を抑制する傾向が見られた。FIG. 17 is a graph showing changes in the mean tumor volume ratio of the cisplatin 33 μmol / kg once-administered group and the Pt (Pt (dach) -IP 6 ) 2 33 μmol / kg once-administered group compared with the control group. As shown in FIG. 17, the cisplatin 33 μmol / kg once-administered group was not different from the control, whereas the Pt (Pt (dach) -IP 6 ) 2 33 μmol / kg once-administered group was MRMT-1 breast cancer. There was a tendency to suppress the growth of

図18は、腫瘍増殖抑制効果に関して、シスプラチン 8.25μmol/kg 1回投与群(1日目投与)およびPt(Pt(dach)-IP6)2 8.25μmol/kg 2回投与群(1, 8日目投与)の平均腫瘍体積比の変化をコントロール群と比較して示すグラフである。なお、本実験では、薬剤投与の前日を0日とした(以下同様)。FIG. 18 shows the tumor growth inhibitory effect with respect to the cisplatin 8.25 μmol / kg one-time administration group (day 1 administration) and Pt (Pt (dach) -IP 6 ) 2 8.25 μmol / kg two-time administration group (1, 8 days). It is a graph which shows the change of the average tumor volume ratio of eye administration compared with a control group. In this experiment, the day before drug administration was defined as day 0 (the same applies hereinafter).

図19は、疼痛緩和効果に関して、シスプラチン 8.25μmol/kg 1回投与群(1日目投与)およびPt(Pt(dach)-IP6)2 8.25μmol/kg 2回投与群(1, 8日目投与)の左右足比(平均値)の変化をコントロール群と比較して示すグラフである。FIG. 19 shows cisplatin 8.25 μmol / kg once-administered group (administration on the first day) and Pt (Pt (dach) -IP 6 ) 2 8.25 μmol / kg twice-administered group (on days 1 and 8) It is a graph which shows the change of the right and left foot ratio (average value) of administration) compared with a control group.

図20は、副作用評価に関して、シスプラチン 8.25μmol/kg 1回投与群(1日目投与)およびPt(Pt(dach)-IP6)2 8.25μmol/kg 2回投与群(1, 8日目投与)の体重(平均値)の変化をコントロール群と比較して示すグラフである。FIG. 20 shows cisplatin 8.25 μmol / kg administered once (day 1 administration) and Pt (Pt (dach) -IP 6 ) 2 8.25 μmol / kg twice administered group (administered on days 1 and 8). ) Is a graph showing changes in body weight (average value) in comparison with a control group.

図18に示す結果(腫瘍増殖抑制効果の評価)から、シスプラチン 8.25μmol/kg 1回投与群はコントロール群よりも劣るように見えるものの、これらの違いは誤差範囲内であった。一方、Pt(Pt(dach)-IP6)2 8.25μmol/kg 2回投与群ではMRMT-1乳癌の増殖を抑制する傾向が見られた。なお、ヌードマウスを用いた評価と同様に、シスプラチン投与群では初期の体重減少が大きかったことから、2回投与による死亡を回避する目的で2回目の投与を行わなかった。これに対し、Pt(Pt(dach)-IP6)2については2回投与でもコントロールとほぼ同じ体重比であったことから(図20)、Pt(Pt(dach)-IP6)2の副作用は小さいことが示唆された。From the results shown in FIG. 18 (evaluation of tumor growth inhibitory effect), the cisplatin 8.25 μmol / kg once-administered group appeared to be inferior to the control group, but these differences were within the error range. On the other hand, a tendency to suppress the growth of MRMT-1 breast cancer was observed in the Pt (Pt (dach) -IP 6 ) 2 8.25 μmol / kg twice-administered group. Similar to the evaluation using nude mice, since the initial weight loss was large in the cisplatin administration group, the second administration was not performed for the purpose of avoiding death due to the second administration. On the other hand, Pt (Pt (dach) -IP 6 ) 2 had almost the same body weight ratio as the control even when administered twice (FIG. 20). Therefore, the side effect of Pt (Pt (dach) -IP 6 ) 2 Was suggested to be small.

また、図19に示す結果(疼痛緩和効果)について、一般に、骨癌の左足が癌の進行とともに痛みに対して敏感になり、閾値が小さくなるため、右足の値/左足の値は日が経つにつれて大きくなり、グラフは右上がりになる。図19に示すように、シスプラチン投与群では右上がりのコントロールと似た傾向を示すのに対し、Pt(Pt(dach)-IP6)2はほぼフラットな傾きを示し、疼痛を緩和する傾向が認められた。In addition, with respect to the results shown in FIG. 19 (pain alleviation effect), the left foot of bone cancer generally becomes more sensitive to pain as the cancer progresses, and the threshold value becomes smaller. As the graph grows, the graph rises to the right. As shown in FIG. 19, the cisplatin-administered group shows a tendency similar to that of the control that rises to the right, whereas Pt (Pt (dach) -IP 6 ) 2 shows a substantially flat inclination and tends to relieve pain. Admitted.

Claims (15)

下記化学式1で表される金属錯体またはその塩:
式中、
Mは、PtまたはPdであり、
〜R17は、それぞれ独立して、水素原子、炭素数1〜30のアルキル基、炭素数3〜30のシクロアルキル基、炭素数2〜30のアルケニル基、炭素数3〜30のシクロアルケニル基、炭素数2〜30のアルキニル基、炭素数7〜30のアラルキル基、炭素数7〜30のアラルケニル基、炭素数7〜30のアラルキニル基、炭素数6〜30のアリール基、ハロゲン原子、炭素数1〜30のハロアルキル基、炭素数2〜30のハロアルケニル基、炭素数2〜30のハロアルキニル基、炭素数6〜30のハロアリール基、炭素数1〜30のアルコキシ基、炭素数6〜30のアリールオキシ基、ヒドロキシ基、アミノ基、炭素数1〜30のアルキルアミノ基、炭素数6〜30のアリールアミノ基、シアノ基、またはニトロ基である。
A metal complex represented by the following chemical formula 1 or a salt thereof:
Where
M is Pt or Pd;
R 1 to R 17 are each independently a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, or a cyclohexane having 3 to 30 carbon atoms. Alkenyl group, C2-C30 alkynyl group, C7-C30 aralkyl group, C7-C30 aralkenyl group, C7-C30 aralkynyl group, C6-C30 aryl group, halogen atom Haloalkyl group having 1 to 30 carbon atoms, haloalkenyl group having 2 to 30 carbon atoms, haloalkynyl group having 2 to 30 carbon atoms, haloaryl group having 6 to 30 carbon atoms, alkoxy group having 1 to 30 carbon atoms, carbon number A 6-30 aryloxy group, a hydroxy group, an amino group, a C1-C30 alkylamino group, a C6-C30 arylamino group, a cyano group, or a nitro group.
〜R、およびR〜R17が水素原子であり、Rが炭素数1〜30のアルキル基、ハロゲン原子、炭素数1〜30のアルコキシ基、またはニトロ基である、請求項1に記載の金属錯体またはその塩。R 1 to R 3 and R 5 to R 17 are hydrogen atoms, and R 4 is an alkyl group having 1 to 30 carbon atoms, a halogen atom, an alkoxy group having 1 to 30 carbon atoms, or a nitro group. 2. The metal complex or salt thereof according to 1. 偶数個の同一の炭素数1〜30のアルキル基が、化学式1におけるフェナントロリン環における対称な位置に結合している、請求項1に記載の金属錯体またはその塩。   The metal complex or a salt thereof according to claim 1, wherein an even number of the same alkyl group having 1 to 30 carbon atoms is bonded to a symmetrical position in the phenanthroline ring in Chemical Formula 1. 下記化学式1a〜1dのいずれかで表される、請求項2に記載の金属錯体またはその塩:
The metal complex or a salt thereof according to claim 2, represented by any one of the following chemical formulas 1a to 1d:
下記化学式1e〜1gのいずれかで表される、請求項3に記載の金属錯体またはその塩:
The metal complex or a salt thereof according to claim 3, which is represented by any one of the following chemical formulas 1e to 1g:
MがPtである、請求項1〜5のいずれか1項に記載の金属錯体またはその塩。   The metal complex or a salt thereof according to any one of claims 1 to 5, wherein M is Pt. 下記化学式2で表される金属錯体またはその塩:
式中、
Mは、PtまたはPdであり、
Xは、下記化学式3で表される構造:
または、myo−イノシトール6リン酸エステル由来の下記化学式4で表される構造:
または、下記化学式5で表される構造であり:
式中、
Mは、上記と同様の定義であり、
Aは、myo−イノシトール6リン酸エステル由来の下記化学式6で表される構造である:
Rは、それぞれ独立して、水素原子であるか、または、隣接するRと一緒になって下記化学式7で表される構造を形成する:
A metal complex represented by the following chemical formula 2 or a salt thereof:
Where
M is Pt or Pd;
X is a structure represented by the following chemical formula 3:
Or the structure represented by following Chemical formula 4 derived from myo-inositol 6-phosphate ester:
Or a structure represented by the following chemical formula 5:
Where
M is the same definition as above,
A is a structure represented by the following chemical formula 6 derived from myo-inositol 6-phosphate ester:
Each R is independently a hydrogen atom, or together with the adjacent R, forms a structure represented by the following chemical formula 7:
下記化学式2a〜2fのいずれかで表される、請求項7に記載の金属錯体またはその塩:
The metal complex or a salt thereof according to claim 7, which is represented by any one of the following chemical formulas 2a to 2f:
化学式2におけるXが前記化学式4または前記化学式5で表される構造であり、ヒドロキシアパタイトと複合化されてなる、請求項7または8に記載の金属錯体。   The metal complex according to claim 7 or 8, wherein X in Chemical Formula 2 is a structure represented by Chemical Formula 4 or Chemical Formula 5 and is combined with hydroxyapatite. MがPtである、請求項7〜9のいずれか1項に記載の金属錯体またはその塩。   The metal complex or a salt thereof according to any one of claims 7 to 9, wherein M is Pt. 請求項1〜10のいずれか1項に記載の金属錯体またはその塩を有効成分として含有する、抗がん剤。   The anticancer agent which contains the metal complex of any one of Claims 1-10, or its salt as an active ingredient. 請求項1〜10のいずれか1項に記載の金属錯体またはその塩を有効成分として含有する、プロテアソーム阻害剤。   The proteasome inhibitor which contains the metal complex of any one of Claims 1-10, or its salt as an active ingredient. 請求項1〜10のいずれか1項に記載の金属錯体またはその塩を有効成分として含有し、テロメラーゼ、ファルネシルトランスフェラーゼ、ヒストンデアセチラーゼ、およびプロテインキナーゼからなる群から選択される1種または2種以上の酵素を阻害する、酵素阻害剤。   One or two selected from the group consisting of telomerase, farnesyltransferase, histone deacetylase, and protein kinase, containing the metal complex according to any one of claims 1 to 10 or a salt thereof as an active ingredient. An enzyme inhibitor that inhibits the above enzymes. 下記化学式8で表される金属錯体と:
式中、
Mは、PtまたはPdであり、
Rは、それぞれ独立して、水素原子であるか、または、隣接するRと一緒になって下記化学式7で表される構造を形成する:
ハロゲン化白金酸塩またはハロゲン化パラジウム酸塩とを反応させて、下記化学式2で表される金属錯体またはその塩:
式中、
MおよびRは、上記と同様の定義であり、
Xは、下記化学式5で表される構造である:
式中、
Mは、上記と同様の定義であり、
Aは、myo−イノシトール6リン酸エステル由来の下記化学式6で表される構造である:
を得る工程を含む、金属錯体またはその塩の製造方法。
A metal complex represented by the following chemical formula 8:
Where
M is Pt or Pd;
Each R is independently a hydrogen atom, or together with the adjacent R, forms a structure represented by the following chemical formula 7:
A metal complex represented by the following chemical formula 2 or a salt thereof by reacting with a halogenated platinum salt or a halogenated palladium salt:
Where
M and R have the same definition as above,
X is a structure represented by the following chemical formula 5:
Where
M is the same definition as above,
A is a structure represented by the following chemical formula 6 derived from myo-inositol 6-phosphate ester:
The manufacturing method of the metal complex or its salt including the process of obtaining.
ハロゲン捕捉剤の存在下で反応を行なう、請求項14に記載の製造方法。   The process according to claim 14, wherein the reaction is carried out in the presence of a halogen scavenger.
JP2012509616A 2010-03-31 2011-03-31 Metal complex and anticancer agent containing this as active ingredient Expired - Fee Related JP5553275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509616A JP5553275B2 (en) 2010-03-31 2011-03-31 Metal complex and anticancer agent containing this as active ingredient

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010083432 2010-03-31
JP2010083432 2010-03-31
PCT/JP2011/058352 WO2011125911A1 (en) 2010-03-31 2011-03-31 Metal complexes and anticancer agents comprising same as active ingredient
JP2012509616A JP5553275B2 (en) 2010-03-31 2011-03-31 Metal complex and anticancer agent containing this as active ingredient

Publications (2)

Publication Number Publication Date
JPWO2011125911A1 true JPWO2011125911A1 (en) 2013-07-11
JP5553275B2 JP5553275B2 (en) 2014-07-16

Family

ID=44762849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012509616A Expired - Fee Related JP5553275B2 (en) 2010-03-31 2011-03-31 Metal complex and anticancer agent containing this as active ingredient

Country Status (2)

Country Link
JP (1) JP5553275B2 (en)
WO (1) WO2011125911A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2575802T (en) 2010-06-04 2016-12-27 Univ Ohio Phosphaplatins and their use for treatment of cancers
SG11201503456TA (en) * 2012-11-05 2015-05-28 Celgene Corp Treatment of cancer with pomalidomide in a renally impaired subject
CN104974187A (en) * 2014-04-10 2015-10-14 吉林省博创药业有限公司 Phenanthroline derivative, preparation method and application thereof
JP6486639B2 (en) * 2014-10-08 2019-03-20 国立大学法人金沢大学 Metal complex and anticancer agent containing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1644388A2 (en) * 2003-06-27 2006-04-12 ODANI, Akira Bisphosphonate complexes
RU2331585C1 (en) * 2006-11-21 2008-08-20 Институт химии и химической технологии СО РАН (ИХХТ СО РАН) Method obtaining pyrophosphate tetrammine platinum (ii)

Also Published As

Publication number Publication date
WO2011125911A1 (en) 2011-10-13
JP5553275B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
Ma et al. Glycosylated platinum (IV) complexes as substrates for glucose transporters (GLUTs) and organic cation transporters (OCTs) exhibited cancer targeting and human serum albumin binding properties for drug delivery
Jeyalakshmi et al. Coordination behavior of N, N′, N ″-trisubstituted guanidine ligands in their Ru–arene complexes: synthetic, DNA/protein binding, and cytotoxic studies
DK2575802T3 (en) Phosphaplatiner and use thereof for the treatment of cancer
Zhao et al. Potent Anticancer Activity and Possible Low Toxicity of Platinum (II) Complexes with Functionalized 1, 1‐Cyclobutanedicarboxylate as a Leaving Ligand
JP5553275B2 (en) Metal complex and anticancer agent containing this as active ingredient
US10280187B2 (en) Mononucleotide-dithiocarbamate complex
US20090076267A1 (en) Transition metal phosphine complex, method for producing same, and anticancer agent containing transition metal phospine complex
WO2007066557A1 (en) Phosphine transition metal complex, method for producing same and antitumor agent containing same
Yousefi et al. In vitro anti-proliferative activity of novel hexacoordinated triphenyltin (IV) Trifluoroacetate containing a bidentate n-donor ligand
Wang et al. Cycloplatinated (II) Complex Based on Isoquinoline Alkaloid Elicits Ferritinophagy-Dependent Ferroptosis in Triple-Negative Breast Cancer Cells
US10562928B1 (en) Pharmaceutical composition containing a cisplatin and platinum thiocyanate combination
CN105481902B (en) Platinum (IV) anticancer compound using dihydrogen phosphate as axial ligand
US8748484B2 (en) Organometallic anti-cancer complexes
Dzhemileva et al. Synthesis of New Cu Complex Based on Natural 5 Z, 9 Z-Eicosadienoic Acid: Effective Topoisomerase I Inhibitor and Cytotoxin against the Cisplatin-Resistant Cell Line
Rostán et al. Pt (II) and Pd (II) complexes with coumarin-thiosemicarbazone hybrid ligands and triphenylphosphine coligand as potential anti T. cruzi agents
Gonçalves et al. New ruthenium (ii) complexes with cyclic thio-and semicarbazone: evaluation of cytotoxicity and effects on cell migration and apoptosis of lung cancer cells
US20240059719A1 (en) Gold complexes as anticancer agent
US10369128B1 (en) Pharmaceutical composition containing a cis-diamine platinum thione complex
CN102143936A (en) Platinum complex and medical compound containing same
CN112585149A (en) Phosphine transition metal complex, method for producing same, and anticancer agent
Moody et al. Inorganic pharmaceuticals
JP2018135297A (en) Metal complex and anticancer agent containing the same as active ingredient
Kostova Platinum-Based Anticancer Agents
PL224068B1 (en) Cis-and trans-platinum complex compounds (II) with 1-methyl-4-nitropyrazole, the process for their preparation, separation, isomerization, and the use for the manufacture of medicaments for tumor therapy
TW201425278A (en) Platinum (IV) complexes and pharmaceutical composition containing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140516

R150 Certificate of patent or registration of utility model

Ref document number: 5553275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees