JPWO2011099602A1 - Porphyrin derivatives and their use in radiodynamic therapy - Google Patents

Porphyrin derivatives and their use in radiodynamic therapy Download PDF

Info

Publication number
JPWO2011099602A1
JPWO2011099602A1 JP2011553911A JP2011553911A JPWO2011099602A1 JP WO2011099602 A1 JPWO2011099602 A1 JP WO2011099602A1 JP 2011553911 A JP2011553911 A JP 2011553911A JP 2011553911 A JP2011553911 A JP 2011553911A JP WO2011099602 A1 JPWO2011099602 A1 JP WO2011099602A1
Authority
JP
Japan
Prior art keywords
alkyl
group
optionally substituted
alkenyl
aryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011553911A
Other languages
Japanese (ja)
Inventor
浩喜 永瀬
浩喜 永瀬
元一郎 高橋
元一郎 高橋
直也 石橋
直也 石橋
悟 ▲高▼橋
悟 ▲高▼橋
亜耶 増子
亜耶 増子
穣 大月
穣 大月
和也 諏訪
和也 諏訪
大哉 小林
大哉 小林
喜脩 篠崎
喜脩 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Publication of JPWO2011099602A1 publication Critical patent/JPWO2011099602A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/409Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having four such rings, e.g. porphine derivatives, bilirubin, biliverdine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • A61K41/0071PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Abstract

次式I:【化37】で示されるポルフィリン化合物が哺乳動物の腫瘍組織に集積したときに放射線を照射するように用いられることを特徴とする、前記ポルフィリン化合物を含む抗腫瘍剤。An antitumor agent comprising the porphyrin compound, wherein the porphyrin compound represented by the following formula I is used to irradiate radiation when accumulated in a tumor tissue of a mammal.

Description

本発明は、放射線を利用した光線力学療法及び当該療法に使用する化合物に関する。   The present invention relates to photodynamic therapy using radiation and compounds used in the therapy.

クロロフィル等の環状テトラピロール類は、670nm付近に吸収を有しており、単量体状態では蛍光発光が比較的強いことから、有望な光線力学的治療(photodynamic therapy(PDT))用の増感剤として期待されている。PDTは、近年、癌の治療に臨床応用されている治療法である。この治療法は、腫瘍組織に集積させた光増感剤に光を照射し、腫瘍組織を壊死に陥らせるものであり、ポルフィリン誘導体を用いた光線力学療法に関する発明の出願がなされている(特許文献1)。
PDT治療薬であるPhotofrin(フォトフリン)(登録商標)及びLaserphyrin(レザフィリン)(登録商標)は、可視光領域の光線照射を利用して既に臨床応用が行われている。また、PDT治療薬が腫瘍に集積することを利用して、光感受性物質の2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH)などにヨウ素等の放射性同位元素を付加し、生体内での原発腫瘍・転移腫瘍の部位をPETやMRIを利用して特定する画像診断薬としても開発されている(非特許文献:1,2,3)。さらにPhotofrinより透過性の高い長波長の吸収波長を持つポルフィリン誘導体にChlorophyllがあり、その生成物のピロフェオフォルバイドはミトコンドリア内部に取り込まれ腫瘍細胞を攻撃するのでより強力な抗腫瘍効果が期待されている(非特許文献:4,5,6)。
Cyclic tetrapyrroles such as chlorophyll have absorption at around 670 nm, and the fluorescence emission is relatively strong in the monomer state, so sensitization for promising photodynamic therapy (PDT) It is expected as an agent. PDT is a treatment method that has been clinically applied to the treatment of cancer in recent years. This treatment method involves irradiating a photosensitizer accumulated in a tumor tissue with light to cause necrosis of the tumor tissue, and an application for an invention relating to photodynamic therapy using a porphyrin derivative has been made (patent) Reference 1).
The PDT therapeutic agents Photofrin (registered trademark) and Laserphyrin (registered trademark) have already been clinically applied using light irradiation in the visible light region. In addition, by utilizing the accumulation of PDT therapeutics in tumors, radioactive isotopes such as iodine are added to the photosensitizer 2- [1-hexyloxyethyl] -2-devinyl pyropheophorbide-a (HPPH), etc. It has also been developed as a diagnostic imaging agent that identifies the location of the primary tumor or metastatic tumor in the body using PET or MRI (Non-Patent Documents: 1, 2, 3). In addition, Chlorophyll is a porphyrin derivative with a longer absorption wavelength that is more permeable than Photofrin, and its product pyropheophorbide is incorporated inside mitochondria and attacks tumor cells, so it is expected to have a stronger antitumor effect (Non-patent documents: 4, 5, 6).

他方、癌細胞にヨードや臭素化合物を取り込ませ、その元素のK吸収端(ヨードの場合33.17keV)に相当するエネルギーのX線を照射することにより発生するAuger(オージェ)電子を利用して増感効果を得る放射線治療がある。これを放射線増感治療Photon Activation Therapy(PAT)という(非特許文献:7,8)。この治療法は、癌細胞にヨードや臭素化合物を取り込ませ、その元素のK吸収端に相当するエネルギーのX線を照射することにより発生するAuger電子を利用して増感効果を得る放射線治療である。   On the other hand, iodine and bromine compounds are taken up by cancer cells and augmented using Auger electrons generated by irradiating X-rays with energy equivalent to the K absorption edge of the element (33.17 keV in the case of iodine). There is radiation therapy that obtains a sensitive effect. This is called photon activation therapy (PAT) (non-patent documents: 7, 8). This therapy is a radiotherapy that obtains a sensitizing effect using Auger electrons generated by incorporating iodine or bromine compounds into cancer cells and irradiating X-rays with energy equivalent to the K absorption edge of the element. is there.

しかし、これらの薬剤を利用した放射線照射によるがん治療はいまだ実現していない。すなわち、従来のPDT治療は赤外線光を利用するため10mmほどの深部組織までしか光が到達しない。このため、皮膚、消化器、気管支といった表層の腫瘍でのみ治療が可能であった。すなわち表層の早期の原発腫瘍が対象であった。深部組織由来の癌や転移巣といったより予後不良の腫瘍に対する治療は極めて困難であった。また放射線治療は深部に到達可能であるが、周囲組織の被爆が問題であり、患者への総照射線量に上限があり、繰り返して治療することができないという問題がある。   However, cancer treatment by irradiation using these drugs has not been realized yet. In other words, since conventional PDT treatment uses infrared light, light reaches only a deep tissue of about 10 mm. For this reason, treatment was possible only for surface tumors such as skin, digestive organs, and bronchi. That is, the primary primary tumor on the surface layer was the subject. Treatment of tumors with a poorer prognosis such as cancers derived from deep tissues and metastases has been extremely difficult. In addition, radiation therapy can reach the deep part, but there is a problem that exposure to surrounding tissues is a problem, and there is an upper limit on the total irradiation dose to the patient, so that it cannot be repeatedly treated.

国際公開2006/005924International Publication 2006/005924 国際公開2009/105210International Publication 2009/105210

Multimodality agents for tumor imaging (PET, fluorescence) and photodynamic therapy. A possible "see and treat" approach. Pandey SK, Gryshuk AL, Sajjad M, Zheng X, Chen Y, Abouzeid MM, Morgan J, Charamisinau I, Nabi HA, Oseroff A, Pandey RK. J Med Chem. 2005 Oct 6;48(20):6286-95.Multimodality agents for tumor imaging (PET, fluorescence) and photodynamic therapy.A possible "see and treat" approach.Pandey SK, Gryshuk AL, Sajjad M, Zheng X, Chen Y, Abouzeid MM, Morgan J, Charamisinau I, Nabi HA, Oseroff A, Pandey RK. J Med Chem. 2005 Oct 6; 48 (20): 6286-95. Comparative positron-emission tomography (PET) imaging and phototherapeutic potential of 124I- labeled methyl- 3-(1'-iodobenzyloxyethyl)pyropheophorbide-a vs the corresponding glucose and galactose conjugates. Pandey SK, Sajjad M, Chen Y, Zheng X, Yao R, Missert JR, Batt C, Nabi HA, Oseroff AR, Pandey RK. J Med Chem. 2009 Jan 22;52(2):445-55.Comparative positron-emission tomography (PET) imaging and phototherapeutic potential of 124I- labeled methyl- 3- (1'-iodobenzyloxyethyl) pyropheophorbide-a vs the corresponding glucose and galactose conjugates.Pandey SK, Sajjad M, Chen Y, Zheng X, Yao R, Missert JR, Batt C, Nabi HA, Oseroff AR, Pandey RK. J Med Chem. 2009 Jan 22; 52 (2): 445-55. Compared to purpurinimides, the pyropheophorbide containing an iodobenzyl group showed enhanced PDT efficacy and tumor imaging (124I-PET) ability. Pandey SK, Sajjad M, Chen Y, Pandey A, Missert JR, Batt C, Yao R, Nabi HA, Oseroff AR, Pandey RK. Bioconjug Chem. 2009 Feb;20(2):274-82.Compared to purpurinimides, the pyropheophorbide containing an iodobenzyl group showed enhanced PDT efficacy and tumor imaging (124I-PET) ability.Pandey SK, Sajjad M, Chen Y, Pandey A, Missert JR, Batt C, Yao R, Nabi HA, Oseroff AR , Pandey RK. Bioconjug Chem. 2009 Feb; 20 (2): 274-82. The role of subcellular localization in initiation of apoptosis by photodynamic therapy. Kessel D, Luo Y, Deng Y, Chang CK. Photochem Photobiol. 1997 Mar;65(3):422-6.The role of subcellular localization in initiation of apoptosis by photodynamic therapy.Kessel D, Luo Y, Deng Y, Chang CK. Photochem Photobiol. 1997 Mar; 65 (3): 422-6. Comparison of photodynamic targets in a carcinoma cell line and its mitochondrial DNA-deficient derivative. Morgan J, Potter WR, Oseroff AR. Photochem Photobiol. 2000 Jun;71(6):747-57.Comparison of photodynamic targets in a carcinoma cell line and its mitochondrial DNA-deficient derivative. Morgan J, Potter WR, Oseroff AR. Photochem Photobiol. 2000 Jun; 71 (6): 747-57. Mitochondria-based photodynamic anti-cancer therapy. Morgan J, Oseroff AR. Adv Drug Deliv Rev. 2001 Jul 2;49(1-2):71-86. Review.Mitochondria-based photodynamic anti-cancer therapy. Morgan J, Oseroff AR. Adv Drug Deliv Rev. 2001 Jul 2; 49 (1-2): 71-86. Review. Synchrotron radiation-based experimental determination of the optimal energy for cell radiotoxicity enhancement following photoelectric effect on stable iodinated compounds. Corde S, Joubert A, Adam JF, Charvet AM, Le Bas JF, Esteve F, Elleaume H, Balosso J. Br J Cancer. 2004 Aug 2;91(3):544-51.Synchrotron radiation-based experimental determination of the optimal energy for cell radiotoxicity enhancement following photoelectric effect on stable iodinated compounds.Corde S, Joubert A, Adam JF, Charvet AM, Le Bas JF, Esteve F, Elleaume H, Balosso J. Br J Cancer 2004 Aug 2; 91 (3): 544-51. Optimal photon energies for IUdR K-edge radiosensitization with filtered x-ray and radioisotope sources. Karnas SJ, Yu E, McGarry RC, Battista JJ. Phys Med Biol. 1999 Oct;44(10):2537-49.Optimal photon energies for IUdR K-edge radiosensitization with filtered x-ray and radioisotope sources.Karnas SJ, Yu E, McGarry RC, Battista JJ.Phys Med Biol. 1999 Oct; 44 (10): 2537-49.

本発明は、放射線を利用した光線力学療法及び当該療法に使用する化合物を提供することを目的とする。   An object of this invention is to provide the photodynamic therapy using a radiation, and the compound used for the said therapy.

本発明者は、上記課題を解決するため鋭意研究を行った結果、 ヨウ素などを付加したポルフィリン化合物が、低エネルギー領域のX線照射による光線力学療法に有用であることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor found that a porphyrin compound added with iodine or the like is useful for photodynamic therapy by X-ray irradiation in a low energy region, and completed the present invention. It came to do.

すなわち、本発明は以下の通りである。
(1) 次式I:
That is, the present invention is as follows.
(1) The following formula I:

(式中、R1、R4、R7及びR10は、それぞれ独立して、水素原子、酸素原子、任意に置換されてもよいC1-10アルキル、任意に置換されてもよいC2-10アルケニル、任意に置換されてもよいC2-10アルキニル、任意に置換されてもよいC6-14アリール又は任意に置換されてもよい5〜14員ヘテロアリールを表し、ここで、置換基は、酸素原子、C1-6アルキル、並びにOR20及びCOOR20(R20は、水素原子、C1-6アルキル又はC2-6アルケニルを表す。)からなる群から選ばれる少なくとも1つであり、
R2、R5、R8及びR11は、それぞれ独立して、水素原子、酸素原子、任意に置換されてもよいC1-10アルキル、任意に置換されてもよいC2-10アルケニル、任意に置換されてもよいC2-10アルキニル、任意に置換されてもよいC6-14アリール又は任意に置換されてもよい5〜14員ヘテロアリールを表し、ここで、置換基は、酸素原子、C1-6アルキル、並びにOR30及びCOOR30(R30は、水素原子、任意に置換されてもよいC1-6アルキル、任意に置換されてもよいC2-10アルケニル、任意に置換されてもよいC6-14アリール、任意に置換されてもよいC7-20アリールアルキル又は任意に置換されてもよい5〜14員ヘテロアリールを表し、各置換基は、K殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ又は複数でさらに置換されてもよい。)からなる群から選ばれる少なくとも1つであり、
R3、R6、R9及びR12は、それぞれ独立して、水素原子、C1-10アルキル、C2-10アルケニル、C2-10アルキニル、C6-14アリール、C7-20アリールアルキル、5〜14員ヘテロアリール、C1-10アルコキシ、C2-10アルケニルオキシ、C2-10アルキニルオキシ、C6-14アリールオキシ又は5〜14員ヘテロアリールオキシを表し、前記アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、アルコキシ、アルケニルオキシ、アルキニルオキシ、アリールオキシ及びヘテロアリールオキシは、任意に、C1-6アルキル、C6-14アリール、C7-20アリールアルキル、-(CH2CH2O)n-R20、-(CH2)n-OR20及び-(CH2)n-COOR20(nは0〜6の整数であり、R20は、前記と同様である。)、並びにK殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ又は複数からなる群から選ばれる少なくとも1つで置換されてもよく、各置換基は、C1-6アルキル、C2-6アルケニル、又はK殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ若しくは複数でさらに置換されてもよく、
R8及びR9は、飽和又は不飽和の5員環又は6員環を形成することができ、前記環は、任意に、酸素原子、C1-6アルキル及びCOOR20(R20は、前記と同様である。)からなる群から選ばれる少なくとも1つで置換されてもよく、
Mは、金属、ケイ素又は水素原子であり、前記金属は、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Po、Ac、Th、Pa、U、Np、Pu、Am、Cm、Bk、Cf、Es、Fm、Md、No及びLr から選択され、
Wherein R 1 , R 4 , R 7 and R 10 are each independently a hydrogen atom, an oxygen atom, an optionally substituted C 1-10 alkyl, or an optionally substituted C 2 Represents -10 alkenyl, optionally substituted C 2-10 alkynyl, optionally substituted C 6-14 aryl or optionally substituted 5-14 membered heteroaryl, wherein The group is an oxygen atom, C 1-6 alkyl, and at least one selected from the group consisting of OR 20 and COOR 20 (R 20 represents a hydrogen atom, C 1-6 alkyl or C 2-6 alkenyl). And
R 2 , R 5 , R 8 and R 11 are each independently a hydrogen atom, an oxygen atom, an optionally substituted C 1-10 alkyl, an optionally substituted C 2-10 alkenyl, Represents optionally substituted C 2-10 alkynyl, optionally substituted C 6-14 aryl or optionally substituted 5-14 membered heteroaryl, wherein the substituent is oxygen Atoms, C 1-6 alkyl, and OR 30 and COOR 30 (R 30 is a hydrogen atom, optionally substituted C 1-6 alkyl, optionally substituted C 2-10 alkenyl, optionally Represents an optionally substituted C 6-14 aryl, an optionally substituted C 7-20 arylalkyl or an optionally substituted 5-14 membered heteroaryl, each substituent having a K-shell absorption edge Group may be further substituted with one or more of the elements after element number 15 (P) showing 2 KeV or more. At least one selected et al.,
R 3 , R 6 , R 9 and R 12 are each independently a hydrogen atom, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 6-14 aryl, C 7-20 aryl Represents alkyl, 5-14 membered heteroaryl, C 1-10 alkoxy, C 2-10 alkenyloxy, C 2-10 alkynyloxy, C 6-14 aryloxy or 5-14 membered heteroaryloxy, said alkyl, alkenyl , Alkynyl, aryl, arylalkyl, heteroaryl, alkoxy, alkenyloxy, alkynyloxy, aryloxy and heteroaryloxy are, optionally, C 1-6 alkyl, C 6-14 aryl, C 7-20 arylalkyl,- (CH 2 CH 2 O) n -R 20 ,-(CH 2 ) n -OR 20 and-(CH 2 ) n -COOR 20 (n is an integer of 0 to 6, and R 20 is the same as above. And one of the elements after element number 15 (P) indicating that the K-shell absorption edge is 2 KeV or more. May be substituted with at least one member selected from the group consisting of a plurality, each substituent, C 1-6 alkyl, C 2-6 alkenyl, or K-shell absorption edge element number 15 that indicates the above 2 KeV (P ) May be further substituted with one or more of the following elements,
R 8 and R 9 can form a saturated or unsaturated 5-membered ring or 6-membered ring, and the ring is optionally an oxygen atom, C 1-6 alkyl and COOR 20 (R 20 is And may be substituted with at least one selected from the group consisting of:
M is a metal, silicon or hydrogen atom, the metal is Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No and Selected from Lr,

は単結合又は二重結合を表す。)
で示されるポルフィリン化合物が哺乳動物の腫瘍組織に集積したときに放射線を照射するように用いられることを特徴とする、前記ポルフィリン化合物を含む抗腫瘍剤。
Represents a single bond or a double bond. )
An antitumor agent comprising the porphyrin compound, wherein the porphyrin compound is used to irradiate radiation when accumulated in a tumor tissue of a mammal.

本発明の好ましい態様において、R1、R4、R7及びR10は、それぞれ独立して、水素原子、又は任意に置換されてもよいC1-10アルキルを表し、ここで、置換基は、酸素原子、C1-6アルキル、並びにOR20及びCOOR20(R20は、水素原子、C1-6アルキル又はC2-6アルケニルを表す。)からなる群から選ばれる少なくとも1つが挙げられる。In a preferred embodiment of the present invention, R 1 , R 4 , R 7 and R 10 each independently represent a hydrogen atom or an optionally substituted C 1-10 alkyl, wherein the substituent is , An oxygen atom, C 1-6 alkyl, and at least one selected from the group consisting of OR 20 and COOR 20 (R 20 represents a hydrogen atom, C 1-6 alkyl or C 2-6 alkenyl). .

また、本発明の好ましい態様において、R2、R5、R8及びR11は、それぞれ独立して、水素原子、又は任意に置換されてもよいC1-10アルキルを表し、ここで、置換基は、酸素原子、C1-6アルキル、並びにOR30及びCOOR30(R30は、水素原子、任意に置換されてもよいC1-6アルキル、又は任意に置換されてもよいC6-14アリールを表し、各置換基は、K殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ又は複数でさらに置換されてもよい。)からなる群から選ばれる少なくとも1つが挙げられる。Further, in a preferred embodiment of the present invention, R 2 , R 5 , R 8 and R 11 each independently represent a hydrogen atom or an optionally substituted C 1-10 alkyl, wherein The group includes an oxygen atom, C 1-6 alkyl, and OR 30 and COOR 30 (R 30 is a hydrogen atom, an optionally substituted C 1-6 alkyl, or an optionally substituted C 6- 14 aryl, each substituent, K-shell absorption edge is selected from the group consisting of one or even may.) which is further substituted more with of atomic number 15 (P) after the element having a higher 2KeV At least one is mentioned.

さらに、本発明の好ましい態様において、R3、R6、R9及びR12は、それぞれ独立して、水素原子、任意に置換されてもよいC1-10アルキル、任意に置換されてもよいC6-14アリール、任意に置換されてもよいC6-14アリールオキシ、又は任意に置換されてもよい5〜14員ヘテロアリールを表し、各置換基は、任意に、C1-6アルキル、C6-14アリール、C7-20アリールアルキル、-(CH2CH2O)n-R20、-(CH2)n-OR20及び-(CH2)n-COOR20(nは0〜6の整数であり、R20は、水素原子、C1-6アルキル又はC2-6アルケニルを表す。)、並びにK殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ又は複数からなる群から選ばれる少なくとも1つで置換されてもよく、各置換基は、C1-6アルキル、C2-6アルケニル、又はK殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ若しくは複数でさらに置換されていてもよい。Further, in a preferred embodiment of the present invention, R 3 , R 6 , R 9 and R 12 are each independently a hydrogen atom, optionally substituted C 1-10 alkyl, optionally substituted. C 6-14 aryl, optionally substituted C 6-14 aryloxy, or optionally substituted 5-14 membered heteroaryl, each substituent is optionally C 1-6 alkyl , C 6-14 aryl, C 7-20 arylalkyl, — (CH 2 CH 2 O) n —R 20 , — (CH 2 ) n —OR 20 and — (CH 2 ) n —COOR 20 (n is 0 And R 20 represents a hydrogen atom, C 1-6 alkyl or C 2-6 alkenyl.), And an element number 15 (P) or later in which the K-shell absorption edge indicates 2 KeV or more. It may be substituted with at least one selected from the group consisting of one or more of them, and each substituent is C 1-6 alkyl, C 2-6 alkenyl, or an element having a K-shell absorption edge of 2 KeV or more. Number 15 P) may be further substituted with one or more of the following elements.

さらに、本発明の好ましい態様において、R8及びR9は、飽和又は不飽和の5員環又は6員環を形成することができ、前記環は、任意に、酸素原子、C1-6アルキル及びCOOR20(R20は、水素原子、C1-6アルキル又はC2-6アルケニルを表す。)からなる群から選ばれる少なくとも1つで置換されていてもよい。Further, in a preferred embodiment of the present invention, R 8 and R 9 can form a saturated or unsaturated 5-membered ring or 6-membered ring, and the ring is optionally an oxygen atom, C 1-6 alkyl And COOR 20 (R 20 represents a hydrogen atom, C 1-6 alkyl or C 2-6 alkenyl) and may be substituted with at least one selected from the group consisting of

本発明において、ポルフィリン化合物は、K殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ又は複数で置換されたC6-14アリール又はC7-20アリールアルキルを含むものが好ましい。K殻吸収端が2KeV以上を示す元素番号15(P)以降の元素は、例えばハロゲン、ランタノイド、Y、Tc、Ru、Ba、In、Cs、Pt、Au及びTlから選ばれる。好ましくは、ハロゲンはI又はBrである。また、好ましいランタノイドとしては、例えばGdが挙げられる。In the present invention, the porphyrin compound comprises C 6-14 aryl or C 7-20 arylalkyl substituted with one or more of the elements after element number 15 (P) having a K-shell absorption edge of 2 KeV or more. The inclusion is preferred. The element of element number 15 (P) or later having a K shell absorption edge of 2 KeV or more is selected from, for example, halogen, lanthanoid, Y, Tc, Ru, Ba, In, Cs, Pt, Au, and Tl. Preferably the halogen is I or Br. A preferred lanthanoid is, for example, Gd.

さらに、本発明においてポルフィリン化合物としては、例えば、次式II、III、IV、V、VI、VII、VIII、IX、X、XI、XII、XIII、XIV、XV及びXVIのいずれかで示されるものが挙げられる。   Furthermore, as the porphyrin compound in the present invention, for example, one represented by any one of the following formulas II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV, XV and XVI Is mentioned.


本発明において、放射線はパラメトリック単色X線であることが好ましい。

In the present invention, the radiation is preferably parametric monochromatic X-rays.

(2)さらに、本発明は、次式IV、IX、XIII、XIV、XV又はXVIで示されるポルフィリン化合物である。   (2) Furthermore, the present invention is a porphyrin compound represented by the following formulas IV, IX, XIII, XIV, XV or XVI.

本発明により、放射線を利用した光線力学療法用ポルフィリン化合物が提供される。本発明により、一定波長のX線を用いることで低線量での深部組織腫瘍に繰り返し照射が可能になる。また、放射線感受性物質が特異的に腫瘍細胞に存在し、腫瘍の局在をMRIやPET等により確認しながら、特異的に照射治療ができるとともに、被爆の副作用を著しく低減することができる。さらに赤外線領域を利用する光力学療法では1cmまでの表層の病変のみが治療対象であったが、放射線を用いることで通常想定される腫瘍の大きさである10cm以下の全領域および転移部位を外科手術によらず放射線科で治療可能にする。さらに、外科領域では例えば摘出手術中の腫瘍摘出前術中照射を原発腫瘍部および転移病巣に対し可能にする。このことにより、術中腫瘍細胞の血液やリンパへの流出、あるいは腫瘍播種、転移部位からの再発を防止する効果および郭清手術による副作用の軽減といった効果を得ることができる。   According to the present invention, a porphyrin compound for photodynamic therapy using radiation is provided. According to the present invention, it is possible to repeatedly irradiate a deep tissue tumor at a low dose by using X-rays having a constant wavelength. In addition, radiation-sensitive substances are specifically present in tumor cells, and irradiation treatment can be performed specifically while confirming the location of the tumor by MRI, PET, etc., and the side effects of exposure can be significantly reduced. Furthermore, in the photodynamic therapy using the infrared region, only the lesion on the surface layer up to 1 cm was treated, but all regions and metastasis sites of 10 cm or less, which is the size of a tumor normally assumed by using radiation, are surgically treated. It can be treated by radiology regardless of surgery. Furthermore, in the surgical field, for example, intraoperative irradiation before tumor removal during extraction surgery is made possible for the primary tumor site and the metastatic lesion. As a result, it is possible to obtain effects such as the outflow of tumor cells into blood and lymph during surgery, the effect of preventing tumor seeding, recurrence from the metastatic site, and the reduction of side effects due to dissection surgery.

また、本発明の化合物は、低エネルギーX線により深部の癌組織に対して治療に用いることが可能であり、少ない被爆線量で行なわれる治療法に対して、放射線増感治療および光力学療法治療の両者の効果を期待できる癌治療法を可能にすると考えられる。   In addition, the compound of the present invention can be used for treatment of deep cancer tissue by low energy X-rays, and in contrast to a treatment performed with a small exposure dose, radiosensitization treatment and photodynamic therapy treatment. It is thought that the cancer therapy which can expect the effect of both of these will be enabled.

HeLa細胞に対し本発明の化合物を用いて単一波長で位相の揃った低エネルギー(33.17KeV)放射線照射を行ったときの照射24時間後の細胞増殖抑制結果を示す図である。It is a figure which shows the cell growth suppression result 24 hours after irradiation when low energy (33.17 KeV) irradiation with the same wavelength was performed with respect to the HeLa cell using the compound of this invention. HeLa細胞に対し本発明の化合物を用いて単一波長で位相の揃った低エネルギー(33.17KeV)放射線照射を行ったときの照射66時間後の細胞増殖抑制結果を示す図である。It is a figure which shows the cell growth suppression result 66 hours after irradiation when low energy (33.17 KeV) irradiation with the same phase was performed with respect to the HeLa cell using the compound of this invention. HeLa細胞に対し本発明の化合物を用いて単一波長で位相の揃った低エネルギー(33.17KeV)放射線照射を行ったときの照射48時間後の細胞増殖抑制結果を示す図である。It is a figure which shows the cell growth suppression result 48 hours after irradiation when low energy (33.17 KeV) irradiation with the same wavelength was performed with respect to the HeLa cell using the compound of this invention. HeLa細胞に対し本発明の化合物を用いて単一波長で位相の揃った低エネルギー(31.97KeVおよび34.37KeV)放射線照射を行ったときの照射48時間後の細胞増殖抑制結果を示す図である。It is a figure which shows the cell growth suppression result 48 hours after irradiation when low energy (31.97KeV and 34.37KeV) irradiation with a single wavelength using the compound of this invention was performed with respect to the HeLa cell. T24細胞に対し本発明の化合物を用いて単一波長で位相の揃った低エネルギー(33.17KeV)放射線照射を行ったときの照射72時間後の細胞増殖抑制結果を示す図である。It is a figure which shows the cell growth suppression result 72 hours after irradiation when low energy (33.17 KeV) irradiation with the same wavelength was performed with respect to the T24 cell using the compound of this invention. HeLa細胞及びMCF7細胞に対し本発明の化合物を用いて4MeVの白色X線を照射したときの照射72時間後の細胞増殖抑制結果を示す図である。左パネル:HeLa細胞、右パネル:MCF細胞。It is a figure which shows the cell growth suppression result 72 hours after irradiation when a HeLa cell and MCF7 cell are irradiated with the white X ray of 4MeV using the compound of this invention. Left panel: HeLa cells, right panel: MCF cells. MCF7細胞及びT24細胞に対し本発明の化合物を用いて33keVの白色X線を照射したときの照射72時間後の細胞増殖抑制結果を示す図である。左パネル:MCF7細胞、右パネル:T24細胞。It is a figure which shows the cell growth suppression result 72 hours after irradiation when a compound of the present invention is irradiated to MCF7 cells and T24 cells with 33 keV white X-rays. Left panel: MCF7 cells, right panel: T24 cells. HeLa細胞及びT24細胞に対し本発明の化合物を用いて33keVの白色X線を照射したときの細胞のコロニー形成試験を行なった結果を示す図である。上パネル:HeLa細胞、下パネル:T24細胞。It is a figure which shows the result of having performed the colony formation test of the cell when a HeLa cell and T24 cell were irradiated with the white X-ray of 33 keV using the compound of this invention. Upper panel: HeLa cells, lower panel: T24 cells. 還元発色試薬WST-8を用いた比色定量により生細胞数を測定した結果を示す図である。It is a figure which shows the result of having measured the number of living cells by the colorimetric determination using the reducing coloring reagent WST-8. コロニー形成アッセイによる細胞生存率を評価した結果を示す図である。It is a figure which shows the result of having evaluated the cell viability by a colony formation assay. 蛍光プローブ試薬APFを用いて活性酸素を測定した結果を示す図である。It is a figure which shows the result of having measured active oxygen using fluorescent probe reagent APF.

以下、本発明を詳細に説明する。
本発明は、放射線による光力学的治療法(PDT)、放射線増感治療Photon Activation Therapy(PAT)及び当該治療に使用する化合物に関するものであり、ヨウド(I)等を付加したPDT用化合物(ポルフィリン等)を投与した腫瘍細胞に、ヨウ素吸収端の単一波長のX線を照射すると、腫瘍の増殖抑制を示すという知見に基づき完成されたものである。
Hereinafter, the present invention will be described in detail.
The present invention relates to photodynamic therapy with radiation (PDT), photosensitized therapy Photon Activation Therapy (PAT), and a compound used in the therapy, and a compound for PDT (porphyrin) to which iodine (I) or the like is added. Etc.) was completed based on the finding that when tumor cells were irradiated with single-wavelength X-rays at the iodine absorption edge, tumor growth was suppressed.

1.概要
上記の通り、光力学治療法Photodynamic therapy(PDT)は、腫瘍親和性のある光感受性物質を投与して光を照射し、この光感受性物質から発生する一重項酸素が腫瘍を破壊するという作用機序に基づく治療法である。しかしながら、光感受性物質の吸収波長のピークが可視光線領域にあるため、上記PDTは深部病変に使用出来ず、投与後に遮光した室内管理が必要であるといった問題がある。そのため生体透過性を有するX線によるPDTの開発が望まれる。
1. Overview As mentioned above, Photodynamic therapy (PDT) is a method in which a photosensitizer with tumor affinity is administered and irradiated with light, and singlet oxygen generated from this photosensitizer destroys the tumor. It is a treatment based on the mechanism. However, since the peak of the absorption wavelength of the photosensitive substance is in the visible light region, the PDT cannot be used for deep lesions, and there is a problem that indoor management that is shielded from light after administration is necessary. Therefore, the development of PDT using X-rays with biopermeability is desired.

そこで本発明者は、放射線増感治療Photon Activation Therapy(PAT)において使用されているヨード化合物のヨードデオキシウリジン(IUdR)に着目し、PDT化合物にヨウド等の元素を付加し、その吸収端のX線を照射することで、PDT化合物においてPAT効果とPDT効果が誘導されることを期待した。すなわち、ヨウ素吸収端の単一波長のX線を用い、ヨウド付加PDT化合物を投与した腫瘍細胞が増殖抑制を示すことを見出し、新規抗癌治療を可能にすると考え、本発明をなすに至った。   Therefore, the present inventor paid attention to iododeoxyuridine (IUdR), an iodo compound used in photon activation therapy (PAT), and added an element such as iodine to the PDT compound, and the X at the absorption edge thereof. It was expected that the PAT effect and the PDT effect were induced in the PDT compound by irradiating the line. That is, using a single wavelength X-ray of the iodine absorption edge, it was found that tumor cells administered with an iodine-added PDT compound showed growth inhibition, and considered that this would enable a novel anticancer treatment, leading to the present invention. .

従って本発明は、光力学療法を誘導する化合物や腫瘍集積性を示す化合物に特定の元素を付加し、その元素の吸収端を利用することにより、放射線増感作用と活性酸素等の誘導を引き起こすことを特徴とし、腫瘍病変の治療を深部組織においても可能にする技術である。   Therefore, the present invention causes a radiosensitization effect and induction of active oxygen, etc. by adding a specific element to a compound that induces photodynamic therapy or a compound that exhibits tumor accumulation and uses the absorption edge of the element. It is a technology that enables treatment of tumor lesions even in deep tissues.

PDT治療薬にハロゲンや金属を付加し、放射線治療領域の放射線増感作用による治療の実験的試みはなされている(前記特許文献1,2)。しかし、これらの治療法において、実際に低エネルギーX線領域での治療効果が得られるかは不明である。   An experimental trial of treatment by adding a halogen or a metal to a PDT therapeutic agent and performing radiosensitization in the radiotherapy region has been made (Patent Documents 1 and 2). However, it is unclear whether these treatments can actually provide a therapeutic effect in the low energy X-ray region.

本発明では、軟X線領域や低エネルギーX線領域(2−150KeV)での治療が可能となり、従来の放射線治療領域の1000分の1のエネルギーでの治療を可能にする。低エネルギー領域のX線では、深部組織への透過性や表面組織でのエネルギー吸収が集中することによる表層部の放射障害が問題となるが、逆に近年開発されている波長が単一で位相の揃ったX線の利用が可能となることより、放射線を3次元的にフレンネルレンズ等により短焦点に集めることが出来る、また、単一の波長のX線のみを使用することで従来のX線照射での余分な波長による被爆を防ぐことが出来る。その結果、従来の治療法では極めて困難であった点を克服することが可能となった。すなわち、正常組織では被爆線量を少なくし、正常組織耐容量による総照射線量の制限を受けにくい治療が可能となる。   In the present invention, treatment in a soft X-ray region or a low energy X-ray region (2-150 KeV) is possible, and treatment with 1/1000 energy of the conventional radiation treatment region is possible. X-rays in the low energy region have problems with radiation interference at the surface layer due to the penetration of deep tissue and the concentration of energy absorption at the surface tissue, but conversely, recently developed wavelengths have a single phase. Because it is possible to use X-rays with uniform alignment, radiation can be collected in a three-dimensional manner using a Frennel lens or the like, and it is possible to collect conventional X-rays using only a single wavelength. It is possible to prevent exposure due to extra wavelengths in X-ray irradiation. As a result, it was possible to overcome the points that were extremely difficult with the conventional treatment methods. That is, it is possible to reduce the exposure dose in normal tissues and to make it difficult to limit the total irradiation dose due to normal tissue tolerance.


2.ポルフィリン化合物
本発明において使用されるポルフィリン化合物は、光力学療法を誘導する化合物や腫瘍集積性を示す化合物であり、一般式(I)で示される。

2. Porphyrin Compound The porphyrin compound used in the present invention is a compound that induces photodynamic therapy or a compound that exhibits tumor accumulation, and is represented by the general formula (I).

上記式I中、R1、R4、R7及びR10は、それぞれ独立して、水素原子、酸素原子、任意に置換されてもよいC1-10アルキル、任意に置換されてもよいC2-10アルケニル、任意に置換されてもよいC2-10アルキニル、任意に置換されてもよいC6-14アリール又は任意に置換されてもよい5〜14員ヘテロアリールを表し、ここで、置換基は、酸素原子、C1-6アルキル、並びにOR20及びCOOR20(R20は、水素原子、C1-6アルキル又はC2-6アルケニルを表す。)からなる群から選ばれる少なくとも1つであり、これらの群の置換基の1つ又は複数から選択される。 In the above formula I, R 1 , R 4 , R 7 and R 10 are each independently a hydrogen atom, an oxygen atom, an optionally substituted C 1-10 alkyl, and an optionally substituted C. Represents 2-10 alkenyl, optionally substituted C 2-10 alkynyl, optionally substituted C 6-14 aryl or optionally substituted 5-14 membered heteroaryl, wherein The substituent is at least one selected from the group consisting of an oxygen atom, C 1-6 alkyl, and OR 20 and COOR 20 (R 20 represents a hydrogen atom, C 1-6 alkyl or C 2-6 alkenyl). And selected from one or more of these groups of substituents.

本発明において、好ましくは、R1、R4、R7及びR10は、それぞれ独立して、水素原子、又は任意に置換されてもよいC1-10アルキルを表し、ここで、置換基は、酸素原子、C1-6アルキル、並びにOR20及びCOOR20(R20は、水素原子、C1-6アルキル又はC2-6アルケニルを表す。)からなる群から選ばれる少なくとも1つである。In the present invention, preferably, R 1 , R 4 , R 7 and R 10 each independently represent a hydrogen atom or an optionally substituted C 1-10 alkyl, wherein the substituent is , An oxygen atom, C 1-6 alkyl, and at least one selected from the group consisting of OR 20 and COOR 20 (R 20 represents a hydrogen atom, C 1-6 alkyl or C 2-6 alkenyl). .

R2、R5、R8及びR11は、それぞれ独立して、水素原子、酸素原子、任意に置換されてもよいC1-10アルキル、任意に置換されてもよいC2-10アルケニル、任意に置換されてもよいC2-10アルキニル、任意に置換されてもよいC6-14アリール又は任意に置換されてもよい5〜14員ヘテロアリールを表し、ここで、置換基は、酸素原子、C1-6アルキル、並びにOR30及びCOOR30からなる群から選ばれる少なくとも1つである。R30は、水素原子、任意に置換されてもよいC1-6アルキル、任意に置換されてもよいC2-10アルケニル、任意に置換されてもよいC6-14アリール、任意に置換されてもよいC7-20アリールアルキル又は任意に置換されてもよい5〜14員ヘテロアリールを表し、各置換基は、K殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ又は複数(例えば、I又はGd)でさらに置換されてもよい。R 2 , R 5 , R 8 and R 11 are each independently a hydrogen atom, an oxygen atom, an optionally substituted C 1-10 alkyl, an optionally substituted C 2-10 alkenyl, Represents optionally substituted C 2-10 alkynyl, optionally substituted C 6-14 aryl or optionally substituted 5-14 membered heteroaryl, wherein the substituent is oxygen It is at least one selected from the group consisting of an atom, C 1-6 alkyl, and OR 30 and COOR 30 . R 30 is a hydrogen atom, an optionally substituted C 1-6 alkyl, an optionally substituted C 2-10 alkenyl, an optionally substituted C 6-14 aryl, an optionally substituted Represents an optionally substituted C7-20 arylalkyl or optionally substituted 5- to 14-membered heteroaryl, each substituent having an element number of 15 (P) or later, wherein the K-shell absorption edge is 2 KeV or more. One or more of them (eg, I or Gd) may be further substituted.

本発明において、好ましくは、R2、R5、R8及びR11は、それぞれ独立して、水素原子、又は任意に置換されてもよいC1-10アルキルを表し、ここで、置換基は、酸素原子、C1-6アルキル、並びにOR30及びCOOR30(R30は、水素原子、任意に置換されてもよいC1-6アルキル、又は任意に置換されてもよいC6-14アリールを表し、各置換基は、K殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ又は複数でさらに置換されてもよい。)からなる群から選ばれる少なくとも1つである。In the present invention, preferably, R 2 , R 5 , R 8 and R 11 each independently represent a hydrogen atom or an optionally substituted C 1-10 alkyl, wherein the substituent is , An oxygen atom, C 1-6 alkyl, and OR 30 and COOR 30 (R 30 is a hydrogen atom, an optionally substituted C 1-6 alkyl, or an optionally substituted C 6-14 aryl. And each substituent may be further substituted with one or more of the elements after element number 15 (P) having a K-shell absorption edge of 2 KeV or more. One.

R3、R6、R9及びR12は、それぞれ独立して、水素原子、C1-10アルキル、C2-10アルケニル、C2-10アルキニル、C6-14アリール、C7-20アリールアルキル、5〜14員ヘテロアリール、C1-10アルコキシ、C2-10アルケニルオキシ、C2-10アルキニルオキシ、C6-14アリールオキシ又は5〜14員ヘテロアリールオキシを表し、前記アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、アルコキシ、アルケニルオキシ、アルキニルオキシ、アリールオキシ及びヘテロアリールオキシは、任意に、C1-6アルキル、C6-14アリール、C7-20アリールアルキル、-(CH2CH2O)n-R20、-(CH2)n-OR20及び-(CH2)n-COOR20(nは0〜6の整数であり、R20は、水素原子、C1-6アルキル又はC2-6アルケニルを表す。)、並びにK殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ又は複数からなる群から選ばれる少なくとも1つで置換されてもよい。また、当該置換基は、C1-6アルキル、C2-6アルケニル、又はK殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ若しくは複数でさらに置換されてもよい。R 3 , R 6 , R 9 and R 12 are each independently a hydrogen atom, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 6-14 aryl, C 7-20 aryl Represents alkyl, 5-14 membered heteroaryl, C 1-10 alkoxy, C 2-10 alkenyloxy, C 2-10 alkynyloxy, C 6-14 aryloxy or 5-14 membered heteroaryloxy, said alkyl, alkenyl , Alkynyl, aryl, arylalkyl, heteroaryl, alkoxy, alkenyloxy, alkynyloxy, aryloxy and heteroaryloxy are, optionally, C 1-6 alkyl, C 6-14 aryl, C 7-20 arylalkyl,- (CH 2 CH 2 O) n -R 20 ,-(CH 2 ) n -OR 20 and-(CH 2 ) n -COOR 20 (n is an integer of 0-6, R 20 is a hydrogen atom, C 1-6 alkyl or C 2-6 alkenyl.), and atomic number 1 to K-shell absorption edge exhibits more 2KeV (P) may be substituted with at least one member selected from the group consisting of one or more of the following elements. In addition, the substituent is further substituted with one or more of C 1-6 alkyl, C 2-6 alkenyl, or an element after element number 15 (P) whose K-shell absorption edge is 2 KeV or more. Also good.

本発明において、好ましくはR3、R6、R9及びR12は、それぞれ独立して、水素原子、任意に置換されてもよいC1-10アルキル、任意に置換されてもよいC6-14アリール、任意に置換されてもよいC6-14アリールオキシ、又は任意に置換されてもよい5〜14員ヘテロアリールを表し、各置換基は、任意に、C1-6アルキル、C6-14アリール、C7-20アリールアルキル、-(CH2CH2O)n-R20、-(CH2)n-OR20及び-(CH2)n-COOR20(nは0〜6の整数であり、R20は、水素原子、C1-6アルキル又はC2-6アルケニルを表す。)、並びにK殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ又は複数からなる群から選ばれる少なくとも1つで置換されてもよく、各置換基は、C1-6アルキル、C2-6アルケニル、又はK殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ若しくは複数でさらに置換されてもよい。In the present invention, preferably R 3 , R 6 , R 9 and R 12 are each independently a hydrogen atom, an optionally substituted C 1-10 alkyl, an optionally substituted C 6- 14 aryl, optionally substituted C 6-14 aryloxy, or optionally substituted 5-14 membered heteroaryl, each substituent is optionally C 1-6 alkyl, C 6 -14 aryl, C 7-20 arylalkyl, — (CH 2 CH 2 O) n —R 20 , — (CH 2 ) n —OR 20 and — (CH 2 ) n —COOR 20 (where n is 0-6) R 20 represents a hydrogen atom, C 1-6 alkyl or C 2-6 alkenyl.), And one of the elements after element number 15 (P) whose K-shell absorption edge is 2 KeV or more. The substituent may be substituted with at least one selected from the group consisting of one or a plurality, and each substituent is C 1-6 alkyl, C 2-6 alkenyl, or element number 15 (K-shell absorption edge is 2 KeV or more) P) and later It may be further substituted with one or more of.

R8及びR9は、例えば環化反応により飽和又は不飽和の5員環又は6員環を形成することができ、前記環は、任意に、酸素原子、C1-6アルキル及びCOOR20(R20は、前記と同様である。)からなる群から選ばれる少なくとも1つで置換されてもよい。R 8 and R 9 can form, for example, a saturated or unsaturated 5-membered ring or 6-membered ring by a cyclization reaction, and the ring optionally includes an oxygen atom, C 1-6 alkyl, and COOR 20 ( R 20 is the same as defined above) and may be substituted with at least one selected from the group consisting of:

Mは、金属、ケイ素又は水素原子であり、前記金属は、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Po、Ac、Th、Pa、U、Np、Pu、Am、Cm、Bk、Cf、Es、Fm、Md、No及びLr から選択される。   M is a metal, silicon or hydrogen atom, the metal is Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No and Selected from Lr.

は単結合又は二重結合を表す。 Represents a single bond or a double bond.

本発明において、K殻吸収端が2KeV以上を示す元素番号15(P)以降の元素は、例えばハロゲン、ランタノイド、Y、Tc、Ru、Ba、In、Cs、Pt、Au及びTlから選ばれる。   In the present invention, the elements after the element number 15 (P) having a K shell absorption edge of 2 KeV or more are selected from, for example, halogen, lanthanoid, Y, Tc, Ru, Ba, In, Cs, Pt, Au, and Tl.

本発明において、「ハロゲン」とは、フッ素原子(F)、塩素原子(Cl)、臭素原子(Br)又はヨウ素原子(I)を意味し、好ましくはI又はBrである。また、「ランタノイド」は原子番号57のランタンから71のルテチウムまでの15の元素、すなわちLa、Ce、Pr 、Nd、Pm 、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuであり、好ましくはGdである。   In the present invention, “halogen” means a fluorine atom (F), a chlorine atom (Cl), a bromine atom (Br) or an iodine atom (I), preferably I or Br. In addition, “lanthanoid” means 15 elements from lanthanum of atomic number 57 to lutetium of 71, namely La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, preferably Gd.

本発明において、「C1-10アルキル」、「C1-6アルキル」とは、炭素数がそれぞれ1〜10個、1〜6個の直鎖状又は分枝鎖状の炭化水素基を意味する。このようなアルキル基としては、例えば、メチル基、エチル基、1-プロピル基、2-プロピル基、2-メチル-1-プロピル基(i-ブチル基)、2-メチル-2-プロピル基(t-ブチル基)、1-ブチル基、2-ブチル基、1-ペンチル基、ヘキシル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基などが挙げられ、好ましくは、メチル基、エチル基、1-プロピル基、2-プロピル基などである。In the present invention, “C 1-10 alkyl” and “C 1-6 alkyl” mean straight or branched hydrocarbon groups having 1 to 10 and 1 to 6 carbon atoms, respectively. To do. Examples of such an alkyl group include a methyl group, an ethyl group, a 1-propyl group, a 2-propyl group, a 2-methyl-1-propyl group (i-butyl group), a 2-methyl-2-propyl group ( t-butyl group), 1-butyl group, 2-butyl group, 1-pentyl group, hexyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, etc., preferably methyl group, ethyl Group, 1-propyl group, 2-propyl group and the like.

「C2-10アルケニル」、「C2-6アルケニル」とは、炭素数がそれぞれ1〜10個、2〜6個の直鎖状又は分枝鎖状の炭化水素基を意味し、二重結合を1個有する。このようなアルケニル基としては、例えばエテニル基(ビニル基)、1-プロペニル基、2-プロペニル基(アリル基)、1-ブテニル基、2-ブテニル基、3-ブテニル基、ペンテニル基などが挙げられる。“C 2-10 alkenyl” and “C 2-6 alkenyl” mean straight or branched hydrocarbon groups having 1 to 10 and 2 to 6 carbon atoms, respectively. Has one bond. Examples of such alkenyl groups include ethenyl group (vinyl group), 1-propenyl group, 2-propenyl group (allyl group), 1-butenyl group, 2-butenyl group, 3-butenyl group, pentenyl group and the like. It is done.

「C2-10アルキニル」とは、炭素数が2〜10個の直鎖状又は分枝鎖状の炭化水素基を意味し、三重結合を1個有する。このようなアルキニル基としては、例えばエチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、ペンチニル基などが挙げられる。“C 2-10 alkynyl” means a linear or branched hydrocarbon group having 2 to 10 carbon atoms and has one triple bond. Examples of such alkynyl groups include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, pentynyl group and the like.

「C6-14アリール」とは、炭素数が6〜14個の芳香族炭化水素基を意味し、例えばフェニル基、1-ナフチル基、2-ナフチル基、インデニル基などが挙げられ、好ましくはフェニル基である。“C 6-14 aryl” means an aromatic hydrocarbon group having 6 to 14 carbon atoms, and examples thereof include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, and an indenyl group, preferably It is a phenyl group.

「C7〜C20アリールアルキル」は、C7〜C12アリールアルキル基であることが好ましい。アリールアルキル基の例としては、例えばベンジル、フェネチル、ジフェニルメチル、トリフェニルメチル、1-ナフチルメチル、2-ナフチルメチル、2,2-ジフェニルエチル、3-フェニルプロピル、4-フェニルブチル、5-フェニルペンチル等を挙げることができる。“C 7 -C 20 arylalkyl” is preferably a C 7 -C 12 arylalkyl group. Examples of arylalkyl groups include benzyl, phenethyl, diphenylmethyl, triphenylmethyl, 1-naphthylmethyl, 2-naphthylmethyl, 2,2-diphenylethyl, 3-phenylpropyl, 4-phenylbutyl, 5-phenyl A pentyl etc. can be mentioned.

「5〜14員ヘテロアリール」とは、環を構成する原子数が5〜14個であり、その原子中に1〜5個のヘテロ原子(窒素原子、酸素原子又は硫黄原子)を含有する芳香族基を意味する。このようなヘテロアリール基としては、例えばフリル基、チエニル基、ピロリル基、イミダゾリル基、トリアゾリル基、テトラゾリル基、チアゾリル基、ピラゾリル基、オキサゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チアジアゾリル基、オキサジアゾリル基、ピリジル基、ピラジニル基、ピリダジニル基、ピリミジニル基などが挙げられる。   “5- to 14-membered heteroaryl” is a fragrance having 5 to 14 atoms constituting a ring and containing 1 to 5 heteroatoms (nitrogen, oxygen or sulfur atoms) in the atoms. Means a group. Examples of such heteroaryl groups include furyl, thienyl, pyrrolyl, imidazolyl, triazolyl, tetrazolyl, thiazolyl, pyrazolyl, oxazolyl, isoxazolyl, isothiazolyl, furazanyl, thiadiazolyl, oxadiazolyl Group, pyridyl group, pyrazinyl group, pyridazinyl group, pyrimidinyl group and the like.

「C1-10アルコキシ」とは、C1-10アルキルの末端に酸素原子が結合した基であり、例えばメトキシ基、エトキシ基、1-プロポキシ基(n-プロポキシ基)、2-プロポキシ基(i-プロポキシ基)、2-メチル-1-プロポキシ基(i-ブトキシ基)、2-メチル-2-プロポキシ基(t-ブトキシ基)、1-ブトキシ基(n-ブトキシ基)、2-ブトキシ基(s-ブトキシ基)、1-ペンチルオキシ基、2-ペンチルオキシ基、3-ペンチルオキシ基などが挙げられる。“C 1-10 alkoxy” is a group in which an oxygen atom is bonded to the terminal of C 1-10 alkyl. For example, methoxy group, ethoxy group, 1-propoxy group (n-propoxy group), 2-propoxy group ( i-propoxy group), 2-methyl-1-propoxy group (i-butoxy group), 2-methyl-2-propoxy group (t-butoxy group), 1-butoxy group (n-butoxy group), 2-butoxy Group (s-butoxy group), 1-pentyloxy group, 2-pentyloxy group, 3-pentyloxy group and the like.

「C2-10アルケニルオキシ」は、C2-10アルケニルの末端に酸素原子が結合した基を意味する。例えば、ビニルオキシ基、1-エチルエテニルオキシ基、2-プロペニルオキシ基、1-プロペニルオキシ基、イソプロペニルオキシ基、2-メチル-1-プロペニルオキシ基などが挙げられる。“C 2-10 alkenyloxy” means a group in which an oxygen atom is bonded to the terminal of C 2-10 alkenyl. For example, vinyloxy group, 1-ethylethenyloxy group, 2-propenyloxy group, 1-propenyloxy group, isopropenyloxy group, 2-methyl-1-propenyloxy group and the like can be mentioned.

「C2-10アルキニルオキシ」は、C2-10アルキニルの末端に酸素原子が結合した基を意味する。例えば、エチニルオキシ基、1-プロピニルオキシ基、2-プロピニルオキシ基、1-ブチニルオキシ基、2-ブチニルオキシ基、3-ブチニルオキシ基、1-メチル-2-プロピニルオキシ基、1-エチル-2-プロピニルオキシ基などが挙げられる。“C 2-10 alkynyloxy” means a group having an oxygen atom bonded to the terminal of C 2-10 alkynyl. For example, ethynyloxy group, 1-propynyloxy group, 2-propynyloxy group, 1-butynyloxy group, 2-butynyloxy group, 3-butynyloxy group, 1-methyl-2-propynyloxy group, 1-ethyl-2-propynyl An oxy group etc. are mentioned.

「C6-14アリールオキシ」は、C6-14アリールの末端に酸素原子が結合した基を意味し、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基などが挙げられる。
「5〜14員ヘテロアリールオキシ」は、5〜14員ヘテロアリールの末端に酸素原子が結合した基を意味し、例えばピリジルオキシ基、ピラジニルオキシ基、ピリミジニルオキシ基、イミダゾリルオキシ基、ピラゾリルオキシ基、キノリルオキシ基、フルフリルオキシ基等が挙げられる。
“C 6-14 aryloxy” means a group in which an oxygen atom is bonded to the terminal of C 6-14 aryl, and examples thereof include a phenoxy group, a 1-naphthyloxy group, and a 2-naphthyloxy group.
“5- to 14-membered heteroaryloxy” means a group in which an oxygen atom is bonded to the terminal of a 5- to 14-membered heteroaryl, for example, pyridyloxy group, pyrazinyloxy group, pyrimidinyloxy group, imidazolyloxy group, pyrazolyloxy group, quinolyloxy Group, furfuryloxy group and the like.

本発明においては、一般式(I)に示す化合物が、K殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ又は複数で置換されたC6-14アリール又はC7-20アリールアルキルを含むものであることが好ましい。K殻吸収端が2KeV以上を示す元素番号15(P)以降の元素は、上記の通りである。
このような化合物としては、例えば一般式(I)に示す化合物のR2が任意に置換されたC1-10アルキルであり、置換基として例えばOR31(R31は、K殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ又は複数で置換されたC6-14アリール又はC7-20アリールアルキルを表す)が挙げられる。R31の好ましい置換基は、ハロゲン(例えばI)又はランタノイド(例えばGd)で置換されたベンジル基である。
In the present invention, the compound represented by the general formula (I) is a C 6-14 aryl substituted with one or more of elements after element number 15 (P) having a K-shell absorption edge of 2 KeV or more. It preferably contains C 7-20 arylalkyl. The elements after element number 15 (P) having a K shell absorption edge of 2 KeV or more are as described above.
Such compounds, for example the general formula is a C 1-10 alkyl R 2 is optionally substituted compounds shown in (I), OR 31 (R 31 , for example, as a substituent, the K-shell absorption edge 2KeV And C 6-14 aryl or C 7-20 arylalkyl substituted with one or more of the elements after element number 15 (P) showing the above. A preferred substituent for R 31 is a benzyl group substituted with a halogen (eg, I) or a lanthanoid (eg, Gd).

また、一般式(I)に示す化合物のR3、R6、R9及びR12の1つ又は複数は、K殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ又は複数で置換されたC6-14アリール又はC7-20アリールアルキルでもよく、あるいは、置換されてもよいC6-14アリールオキシ、置換されていてもよい5〜14員ヘテロアリール(好ましくは置換されてもよいピリジル)である。当該アリールオキシ及びヘテロアリールは、C1-6アルキル、C6-14アリール、C7-20アリールアルキル、-(CH2CH2O)n-R20、-(CH2)n-OR20及び-(CH2)n-COOR20(nは0〜6の整数であり、R20は、水素原子、C1-6アルキル又はC2-6アルケニルを表す。)、並びにK殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ又は複数からなる群から選ばれる少なくとも1つで置換されてもよい。ここで、好ましい置換基として、例えばハロゲン(例えばI)で置換されたベンジル基若しくはフェニル基が挙げられるが、-(CH2)4-COOH又は-(CH2CH2O)3-CH3であってもよい。In addition, one or more of R 3 , R 6 , R 9 and R 12 of the compound represented by the general formula (I) is selected from the elements of element number 15 (P) and after that the K-shell absorption edge indicates 2 KeV or more. It may be one or more substituted C 6-14 aryl or C 7-20 arylalkyl, or optionally substituted C 6-14 aryloxy, optionally substituted 5-14 membered heteroaryl ( Pyridyl which may be substituted is preferable. The aryloxy and heteroaryl are C 1-6 alkyl, C 6-14 aryl, C 7-20 arylalkyl, — (CH 2 CH 2 O) n —R 20 , — (CH 2 ) n —OR 20 and -(CH 2 ) n -COOR 20 (n is an integer of 0 to 6, R 20 represents a hydrogen atom, C 1-6 alkyl or C 2-6 alkenyl), and the K-shell absorption edge is 2 KeV. It may be substituted with at least one selected from the group consisting of one or more of the elements after element number 15 (P) showing the above. Here, preferable substituents include, for example, a benzyl group or a phenyl group substituted with halogen (for example, I), and — (CH 2 ) 4 —COOH or — (CH 2 CH 2 O) 3 —CH 3 There may be.

また、式(I)において、   In the formula (I),

は単結合又は二重結合を示すが(式Iの7位と8位、17位と18位)、単結合の場合は、7位と8位、及び17位と18位には、それぞれR4及びR5、R10及びR11以外に水素原子が結合している。例えば、上記位置の両者又はいずれか一方が単結合となってクロリン又はバクテリオクロリンを形成することができる。本発明においては、このようなクロリン又はバクテリオクロリンも使用することができる。 Represents a single bond or a double bond (7th and 8th positions, 17th and 18th positions in Formula I). In the case of a single bond, R is located at 7th and 8th positions and 17th and 18th positions, respectively. In addition to 4 and R 5 , R 10 and R 11 , a hydrogen atom is bonded. For example, both or one of the above positions can be a single bond to form chlorin or bacteriochlorin. In the present invention, such chlorin or bacteriochlorin can also be used.

本発明において使用される化合物としては、例えば以下の式II、III、IV、V、IX、X、XI、XII、XIII、XIV、XV及びXVIのいずれかで示される化合物が挙げられ、また、ポルフィリン骨格がVI、VII及びVIIIのいずれかで示される化合物が挙げられる。   Examples of the compound used in the present invention include compounds represented by any of the following formulas II, III, IV, V, IX, X, XI, XII, XIII, XIV, XV and XVI, Examples thereof include compounds in which the porphyrin skeleton is represented by any one of VI, VII, and VIII.


なお、式XII及びXIVにおいて、「Me」とはメチル基を表し、式XVにおいて、「Et」とはエチル基を表す。

In Formulas XII and XIV, “Me” represents a methyl group, and in Formula XV, “Et” represents an ethyl group.

式(I)で示される化合物(「本発明の化合物」ともいう)は、公知方法、例えばCHClやCHCl中でアルデヒドとピロールとを酸触媒を用いて反応させ、ポルフィノーゲンを平衡的に生成させた後、酸化することにより合成することができる。あるいは、化合物は、市販品を用いてもよく、市販されている前駆化合物を用いて合成することもできる。The compound represented by the formula (I) (also referred to as “the compound of the present invention”) is prepared by reacting an aldehyde and pyrrole with an acid catalyst in a known method, for example, CHCl 3 or CHCl 2 to equilibrate porphynogen. After the formation, it can be synthesized by oxidation. Or a commercial item may be used for a compound and it can also synthesize | combine using the commercially available precursor compound.

上記化合物は、哺乳動物の腫瘍組織又は腫瘍細胞に集積したときに放射線を照射するように用いられる。「集積する」とは、腫瘍細胞もしくは腫瘍周辺細胞の細胞内もしくは細胞表面、又は腫瘍細胞周囲マトリックスに化合物が他の組織より高濃度に分布する状態であることを意味する。   The above compounds are used to irradiate radiation when accumulated in mammalian tumor tissue or tumor cells. “Accumulate” means that the compound is distributed at a higher concentration than other tissues in or on the surface of tumor cells or cells surrounding the tumor, or in the matrix surrounding the tumor cells.


3.治療方法
本発明の別の態様では、本発明の式(I)の化合物を、それを必要としている被験者に投与し、当該化合物が、哺乳動物の腫瘍組織又は腫瘍細胞に集積したときに放射線を照射する工程を含む、光子活性化療法による腫瘍の治療方法が提供される。

3. Methods of Treatment In another aspect of the present invention, the compound of formula (I) of the present invention is administered to a subject in need thereof, and radiation is administered when the compound accumulates in mammalian tumor tissue or tumor cells. A method of treating a tumor with photon activation therapy comprising the step of irradiating is provided.

当該被験者は、ヒト又は非ヒト哺乳動物である。被験者がヒトの場合は、好ましくは各種癌患者である。非ヒト哺乳動物としては、例えば、ペット、動物園の動物、家畜等であり、具体的には、ネコ、イヌ、ウマ、ウシ、ブタ、ヤギ、ヒツジ、鳥、霊長類、象又はネコ科の動物などである。   The subject is a human or non-human mammal. When a test subject is a human, it is preferably various cancer patients. Non-human mammals include, for example, pets, zoo animals, livestock, etc., and specifically cats, dogs, horses, cows, pigs, goats, sheep, birds, primates, elephants or felines Etc.

治療の対象となる腫瘍としては特に限定されず、例えば、脳腫瘍、頭頸部癌、頚癌、顎癌、上顎癌、顎下腺癌、口腔癌(舌癌、口腔底癌、歯肉癌、頬粘膜癌、硬口蓋癌を含む)、舌下腺癌、耳下腺癌、鼻腔癌、副鼻腔癌、喉頭癌、食道癌、肺癌、乳癌、膵癌、胃癌、胆道癌、小腸または十二指腸の癌、大腸癌、膀胱癌、腎癌、肝癌、前立腺癌、子宮癌(子宮頸癌、子宮体癌を含む)、卵巣癌、甲状腺癌、咽頭癌、各種肉腫(例えば、骨肉腫、軟骨肉腫、カポジ肉腫、筋肉腫、血管肉腫、線維肉腫など)、悪性リンパ腫(ホジキン型リンパ腫、非ホジキン型リンパ腫を含む)、白血病(例えば、慢性骨髄性白血病(CML)、急性骨髄性白血病(AML)、慢性リンパ球性白血病(CLL)および急性リンパ性白血病(ALL)、リンパ腫、多発性骨髄腫(MM)、骨髄異型成症候群などを含む)、皮膚癌及びメラノーマ、神経芽細胞腫などを挙げることができる。   The tumor to be treated is not particularly limited. For example, brain tumor, head and neck cancer, cervical cancer, jaw cancer, maxillary cancer, submandibular gland cancer, oral cancer (tongue cancer, oral floor cancer, gingival cancer, buccal mucosa Cancer, including hard palate cancer), sublingual gland cancer, parotid gland cancer, nasal cavity cancer, paranasal sinus cancer, laryngeal cancer, esophageal cancer, lung cancer, breast cancer, pancreatic cancer, gastric cancer, biliary tract cancer, small intestine or duodenal cancer, large intestine Cancer, bladder cancer, kidney cancer, liver cancer, prostate cancer, uterine cancer (including cervical cancer, endometrial cancer), ovarian cancer, thyroid cancer, pharyngeal cancer, various sarcomas (eg, osteosarcoma, chondrosarcoma, Kaposi sarcoma, Myoma, angiosarcoma, fibrosarcoma), malignant lymphoma (including Hodgkin lymphoma, non-Hodgkin lymphoma), leukemia (eg, chronic myelogenous leukemia (CML), acute myeloid leukemia (AML), chronic lymphocytic Leukemia (CLL) and acute lymphocytic leukemia (ALL), lymphoma, multiple myeloma (MM) Bone marrow including atypical growth syndrome), skin cancer and melanoma, neuroblastoma, and the like.

本発明の化合物は、そのまま患部に適用することもできるし、あらゆる公知の方法、例えば、静脈、筋肉、腹腔内又は皮下等の注射、あるいは鼻腔、口腔又は肺からの吸入、経口投与、カテーテルなどを用いた血管内投与等により生体(対象となる細胞や臓器)に導入することもできる。さらに、本発明の化合物は、他の抗腫瘍作用を有する物質(他の抗腫瘍剤)を併用することも可能である。この場合、本発明の化合物と他の抗腫瘍剤とを同時に投与することもできるし、一方を投与後、一定時間経過後に他方を投与する方法により生体に導入することもできる。   The compound of the present invention can be applied to the affected area as it is, or by any known method such as intravenous, intramuscular, intraperitoneal or subcutaneous injection, inhalation from the nasal cavity, oral cavity or lung, oral administration, catheter, etc. It can also be introduced into a living body (cells or organs of interest) by intravascular administration or the like. Furthermore, the compound of the present invention can be used in combination with other substances having other antitumor activity (other antitumor agents). In this case, the compound of the present invention and the other antitumor agent can be administered simultaneously, or can be introduced into a living body by a method in which one is administered and the other is administered after a lapse of a certain time.

また、本発明の化合物は、例えば凍結乾燥等を行った後、そのまま用いてもよく、あるいは賦形剤、増量剤、結合剤、滑沢剤等公知の薬学的に許容される担体、公知の添加剤(緩衝剤、等張化剤、キレート剤、着色剤、保存剤、香料、風味剤、甘味剤等が含まれる。)などと混合することができる。   In addition, the compound of the present invention may be used as it is after, for example, freeze-drying or the like, or a known pharmaceutically acceptable carrier such as an excipient, a bulking agent, a binder or a lubricant, It can be mixed with additives (including buffering agents, tonicity agents, chelating agents, coloring agents, preservatives, fragrances, flavoring agents, sweetening agents, etc.).

本発明の化合物は、経口投与又は非経口投与の態様に応じて、錠剤、カプセル剤、散剤、顆粒剤、丸剤、液剤、シロップ剤等の経口投与剤、注射剤、外用剤、坐剤、点眼剤等の非経口投与剤などの形態にすることができる。   Depending on the mode of oral administration or parenteral administration, the compound of the present invention can be administered orally, such as tablets, capsules, powders, granules, pills, solutions, syrups, injections, external preparations, suppositories, It can be in the form of a parenteral administration agent such as an eye drop.

さらに、本発明の化合物は、溶媒和物及び光学異性体が存在する場合には、それらの溶媒和物及び光学異性体が含まれる。溶媒和物は、例えば、水和物、非水和物などを挙げることができ、好ましくは水和物である。溶媒は、例えば、水、アルコール(例えばメタノール、エタノール、n-プロパノール等)、ジメチルホルムアミドなどを挙げることができる。   Furthermore, when a solvate and an optical isomer are present, the compound of the present invention includes the solvate and the optical isomer. Examples of solvates include hydrates and non-hydrates, and hydrates are preferred. Examples of the solvent include water, alcohol (eg, methanol, ethanol, n-propanol, etc.), dimethylformamide and the like.

さらに、本発明の化合物は、酸又は塩基と薬理学的に許容される塩を形成したものでもよい。酸との塩としては、例えば、塩酸塩、臭化水素酸塩、硫酸塩、リン酸塩などの無機酸塩、あるいはギ酸、酢酸、乳酸、コハク酸、フマル酸、マレイン酸、クエン酸、酒石酸、ステアリン酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸などの有機酸塩などを挙げることができる。また、塩基との塩としては、例えばナトリウム塩、カリウム塩などのアルカリ金属塩、カルシウム塩、マグネシウム塩などのアルカリ土類金属塩、トリメチルアミン、トリエチルアミン、ピリジン、ピコリン、ジシクロヘキシルアミン、N, N’-ジベンジルエチレンジアミン、アルギニン、リジンなどの有機塩基塩、あるいはアンモニウム塩などを挙げることができる。さらに、本発明の化合物は、結晶でも無結晶でもよく、また、結晶多形が存在する場合には、それらのいずれかの結晶形の単一物であっても混合物であってもよい。   Furthermore, the compounds of the present invention may form pharmacologically acceptable salts with acids or bases. Examples of the salt with an acid include inorganic acid salts such as hydrochloride, hydrobromide, sulfate and phosphate, or formic acid, acetic acid, lactic acid, succinic acid, fumaric acid, maleic acid, citric acid, and tartaric acid. And organic acid salts such as stearic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and trifluoroacetic acid. Examples of the salt with a base include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt and magnesium salt, trimethylamine, triethylamine, pyridine, picoline, dicyclohexylamine, N, N′- Examples thereof include organic base salts such as dibenzylethylenediamine, arginine and lysine, and ammonium salts. Furthermore, the compound of the present invention may be crystalline or non-crystalline, and when a crystalline polymorph exists, it may be a single substance or a mixture of any of those crystalline forms.

本発明の化合物の投与量は、患者の年齢、体重、身長、性別、医学的状態、過去の医学的履歴のような因子のみならず、治療しようとする疾患の部位や程度、ターゲット部位における本発明の化合物の蓄積の程度や速度、式(I)に示す化合物の除去速度などの因子に応じて変化させることができる。   The dose of the compound of the present invention is not limited to factors such as the patient's age, weight, height, sex, medical condition, past medical history, as well as the site and extent of the disease to be treated, the target site. It can be changed according to factors such as the degree and rate of accumulation of the compound of the invention and the removal rate of the compound represented by formula (I).

被験者に投与される式(I)に示す化合物の量は、X線の照射時に腫瘍細胞の損傷、細胞死又は壊死を引き起こすのに十分な量で存在する限り、特に限定されるものではない。   The amount of the compound represented by formula (I) administered to the subject is not particularly limited as long as it is present in an amount sufficient to cause tumor cell damage, cell death or necrosis upon X-ray irradiation.

例えば、投与量は、0.1mg/kg〜100mg/kg、好ましくは1mg/kg〜50mg/kg、より好ましくは5mg/kg〜25mg/kgである。
上記化合物は、好ましくは腫瘍組織内部に均一に分配され、当該化合物の腫瘍組織集積比(Tumor-to-background ratio: T/BG ratio)は、1:1〜500:1、好ましくは10:1〜200:1、より好ましくは20:1〜150:1である。
For example, the dosage is 0.1 mg / kg to 100 mg / kg, preferably 1 mg / kg to 50 mg / kg, more preferably 5 mg / kg to 25 mg / kg.
The compound is preferably uniformly distributed inside the tumor tissue, and the tumor tissue accumulation ratio (Tumor-to-background ratio: T / BG ratio) of the compound is 1: 1 to 500: 1, preferably 10: 1. ~ 200: 1, more preferably 20: 1 to 150: 1.

本発明の化合物は、レーザー療法、陽子療法、非陽子療法、パイ中間子療法、などの療法を併用することもできる。   The compound of the present invention can be used in combination with laser therapy, proton therapy, non-proton therapy, pion therapy, and the like.

上記化合物は、放射線照射前に患者に投与することができる。通常、化合物は、放射線処理の10分〜96時間前、好ましくは180分〜48時間前において投与することができる。化合物投与後、上記時間を経過すれば、放射線を照射して腫瘍細胞を殺傷する程度に化合物が腫瘍組織又は腫瘍細胞内に集積する。   The compound can be administered to the patient prior to irradiation. Usually, the compounds can be administered 10 minutes to 96 hours before radiation treatment, preferably 180 minutes to 48 hours before. When the above time has elapsed after administration of the compound, the compound accumulates in the tumor tissue or tumor cells to such an extent that the tumor cells are killed by irradiation.

上記化合物が、哺乳動物の腫瘍組織又は腫瘍細胞に集積したかどうかは、公知手法、例えばポジトロン断層法(positron emission tomography;PET)、磁気共鳴画像装置(Magnetic Resonance Imaging system;MRI)等により確認することができる。
腫瘍組織内部に治療効果のある量が維持されるように、化合物は、毎日、2〜6日間隔、好ましくは7日間隔、あるいは不定期間隔にて投与することができる。
Whether or not the compound is accumulated in mammalian tumor tissue or tumor cells is confirmed by a known method such as positron emission tomography (PET) or magnetic resonance imaging system (MRI). be able to.
The compound can be administered daily, at intervals of 2-6 days, preferably at intervals of 7 days, or at irregular intervals so that a therapeutically effective amount is maintained within the tumor tissue.

本発明において照射されるX線は、1keV〜1000keVのエネルギーを有し、好ましい範囲は20keV〜150keVである。   The X-ray irradiated in the present invention has an energy of 1 keV to 1000 keV, and a preferable range is 20 keV to 150 keV.

本発明において使用される放射線は、一般に使用される放射線、例えばイオン化放射線を用いることができるが、パラメトリック単色X線であることが好ましい。パラメトリック単色X線は、指向性が強くフレネルレンズなどでX線を集束させることができる(I. Sato, et al., Proceeding of the 5th Annual Meeting of Particle Accelerator Society of Japan and the 33th Linear Accelerator Meeting in Japan (2008) 64-68)。これにより、腫瘍へのピンポイントの照射が可能となり、より効果的に腫瘍を破壊することができる。さらに単色(単一波長)であるため、従来のイオン化放射線が白色(混合波長)であることに比べ、化合物でより吸収される吸収端のみの波長を利用できる。このことで、総被爆線量を飛躍的に減少できる。   The radiation used in the present invention may be a commonly used radiation such as ionizing radiation, but is preferably parametric monochromatic X-ray. Parametric monochromatic X-rays have strong directivity and can be focused by a Fresnel lens (I. Sato, et al., Proceeding of the 5th Annual Meeting of Particle Accelerator Society of Japan and the 33th Linear Accelerator Meeting in Japan (2008) 64-68). Thereby, the pinpoint irradiation to the tumor becomes possible, and the tumor can be destroyed more effectively. Furthermore, since it is monochromatic (single wavelength), the wavelength of only the absorption edge that is more absorbed by the compound can be used compared to the conventional ionizing radiation being white (mixed wavelength). This makes it possible to dramatically reduce the total exposure dose.

なお、イオン化放射線は、重イオンビーム、ガンマナイフ、電子ビーム、陽子ビーム、高速中性子ビーム等から照射することができる。   The ionizing radiation can be irradiated from a heavy ion beam, a gamma knife, an electron beam, a proton beam, a fast neutron beam, or the like.

以下、実施例により本発明をさらに具体的に説明する。但し、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

化合物の合成
(1)式(V)に示す化合物
Compound synthesis (1) Compound represented by formula (V)

上記化合物は以下の通り合成した。 The above compound was synthesized as follows.

ピロール(104 μL, 1.50 mmol)および4−ヨードベンズアルデヒド (350 mg, 1.5 mmol)を三口フラスコにとり、容器を真空脱気後、アルゴンで容器を満たした。この容器にCHCl3(150 mL)、次いでBF3・OEt2 (62 mL, 0.50 mmol)を加え、暗所、室温で1時間撹拌した。その後2,3-ジクロロ-5,6-ジシアノベンゾキノン (678 mg, 3.0 mmol)を加え、暗所、室温で1時間撹拌し、トリエチルアミン(69 mL)を加えた。2度のカラムクロマトグラフィー(1回目:Al2O3, CHCl3, 1%酢酸エチル。2回目:SiO2, CHCl3)を行い、得られた固体をヘキサンで洗い、ろ過して紫色固体を回収した(118 mg, 0.110 mmol, 28%)。Pyrrole (104 μL, 1.50 mmol) and 4-iodobenzaldehyde (350 mg, 1.5 mmol) were placed in a three-necked flask, the container was vacuum degassed, and the container was filled with argon. CHCl 3 (150 mL) and then BF 3 .OEt 2 (62 mL, 0.50 mmol) were added to the vessel, and the mixture was stirred at room temperature in the dark for 1 hour. Thereafter, 2,3-dichloro-5,6-dicyanobenzoquinone (678 mg, 3.0 mmol) was added, and the mixture was stirred at room temperature for 1 hour in the dark, and triethylamine (69 mL) was added. Perform column chromatography twice (first time: Al 2 O 3 , CHCl 3 , 1% ethyl acetate. Second time: SiO 2 , CHCl 3 ), wash the resulting solid with hexane and filter to obtain a purple solid. Collected (118 mg, 0.110 mmol, 28%).

1H-NMR (CDCl3, TMS): δ(ppm) = 8.85 (8H, s, β), 8.11, (8H, d, J = 8.3 Hz, PhH), 7.94 (8H, d, J = 8.3 Hz, PhH), -2.89 (2H, s, NH). LDI-MS: m/z= 1117.9 ([M]+). TLC (SiO2, CHCl3): Rf = 0.84

(2)式(IV)に示す化合物
1 H-NMR (CDCl 3 , TMS): δ (ppm) = 8.85 (8H, s, β), 8.11, (8H, d, J = 8.3 Hz, PhH), 7.94 (8H, d, J = 8.3 Hz , PhH), -2.89 (2H, s, NH). LDI-MS: m / z = 1117.9 ([M] + ). TLC (SiO 2 , CHCl 3 ): R f = 0.84

(2) Compound represented by formula (IV)

ビス(4-メチル-3-エチル-2-ピロール)メタン (446 mg, 2.0 mmol)と4-ヨードベンズアルデヒド(464 mg, 2.0 mmol)を三口フラスコにとり、容器を真空脱気後、アルゴンで満たした。この容器にCH2Cl2 (350 mL)を加え、トリフルオロ酢酸(ピペットで9滴)を加え、暗所、室温で20時間撹拌した。その後クロラニル(739 mg, 3.00 mmol)を加え、暗所、室温で6時間還流した後、トリエチルアミン(4 mL)を加えた。反応溶液を50 mLまで濃縮した後、フロリジルを10 g加えて溶媒を留去した。得られた粉末をSiO2カラムの上部に入れ、カラムクロマトグラフィー(SiO2, CHCl3)を行い、分離した生成物をメタノールで洗ってろ過し、紫色固体を得た(254 mg, 0.29 mmol, 29%)。 Bis (4-methyl-3-ethyl-2-pyrrole) methane (446 mg, 2.0 mmol) and 4-iodobenzaldehyde (464 mg, 2.0 mmol) were placed in a three-necked flask, and the container was vacuum degassed and then filled with argon. . CH 2 Cl 2 (350 mL) was added to the container, trifluoroacetic acid (9 drops with a pipette) was added, and the mixture was stirred at room temperature in the dark for 20 hours. Then, chloranil (739 mg, 3.00 mmol) was added, and after refluxing at room temperature in the dark for 6 hours, triethylamine (4 mL) was added. The reaction solution was concentrated to 50 mL, 10 g of florisil was added, and the solvent was distilled off. The obtained powder was put on the top of the SiO 2 column, column chromatography (SiO 2 , CHCl 3 ) was performed, and the separated product was washed with methanol and filtered to obtain a purple solid (254 mg, 0.29 mmol, 29%).

1H-NMR (CDCl3): d(ppm) = 10.23 (2H, s, meso), 8.10 (4H, d, J = 8.2 Hz, PhH), 7.83 (4H, d, J = 8.2 Hz, PhH), 4.02 (8H, q, J= 7.7 Hz, CH2), 2.53 (12H, s, CH3), 1.77 (12H, t, J = 7.7 Hz, CH3), -2.48 (2H, s, NH). LDI-MS: m/z = 883.2 ([MH]+). TLC (SiO2, CH2Cl2): Rf = 0.27.

(3)式(II)(X=I)に示す化合物(531化合物)
1 H-NMR (CDCl 3 ): d (ppm) = 10.23 (2H, s, meso), 8.10 (4H, d, J = 8.2 Hz, PhH), 7.83 (4H, d, J = 8.2 Hz, PhH) , 4.02 (8H, q, J = 7.7 Hz, CH 2 ), 2.53 (12H, s, CH 3 ), 1.77 (12H, t, J = 7.7 Hz, CH 3 ), -2.48 (2H, s, NH) LDI-MS: m / z = 883.2 ([MH] + ). TLC (SiO 2 , CH 2 Cl 2 ): R f = 0.27.

(3) Compound represented by formula (II) (X = I) (531 compound)

上記化合物531は以下の通り合成した
メチルフェオフォルビドAは、例えば和光純薬等より購入可能である。メチルフェオフォルビドA 500mg(和光純薬)をコリジン100mLに溶解させ、窒素雰囲気下で2時間加熱還流を行った。反応後、減圧蒸留によりコリジンを除去し、残渣をアルミナカラムに乗せ、塩化メチレンで分離精製した。溶出してきた目的分画を集め、減圧蒸留にて塩化メチレンを除去した後、残渣をメタノール/塩化メチレンで再結晶することでメチルピロフェオフォルビドAを合成した(455mg、収率91%)。メチルピロフェオフォルビドA 100mgを30%臭化水素/酢酸2mLに加え、室温で2時間撹拌した。反応後、真空ポンプを用い減圧蒸留にて溶媒を除去し、残渣をm-ヨードベンジルアルコール5mLに溶解し、さらに脱水塩化メチレン10mL と無水炭酸カリウム40mgを加えた。反応溶液を窒素雰囲気下、室温で45分間撹拌し、反応後、塩化メチレン200mLを加えて分液ロートに移し、飽和炭酸水素ナトリウム100mLを加えて分液した。有機層を回収後、水200mLで分液を2回繰り返した。有機層を回収し、硫酸ナトリウムを加え乾燥させた。減圧蒸留で溶媒を除去し、残渣をシリカゲルカラムクロマトグラフィーにかけ、20%ヘキサン/酢酸エチルにてm-ヨードベンジルアルコールを除き、有機層を50%ヘキサン/酢酸エチルで回収した。回収した有機層を減圧蒸留にて溶媒を除去することで化合物531を115mg、収率80%で得た。
1H NMR (CDCl3):δ 9.76, 9.55 and 8.56 (all s, 1H, meso-H), 7.76 (s, 1H, ArH), 7.64 (d, J = 6.8, 1H, ArH), 7.30 (d, J = 8.0, 1H, ArH), 7.05 (t, J = 8.2, 1H, ArH), 6.00 (q, J = 6.9, 1H, 31-H), 5.28 (d, J = 19.8, 1H, 132-CH2), 5.13 (d, J = 19.8, 1H, 132-CH2), 4.70 (d, J = 12.0, 1H, OCH2Ar), 4.56 (dd, J = 3.2,11.6, 1H, OCH2Ar), 4.48-4.53 (m, 1H, 18-H), 4.30-4.33 (m, 1H, 17-H), 3.72 (q, J = 8.0, 2H, 8-CH2CH3), 3.69, 3.61, 3.38 and 3.21 (all s, all 3H, for 173-CO2CH3and 3 × ring CH3), 2.66-2.74, 2.52-2.61, and 2.23-2.37 (m, 4H, 171and 172-H), 2.18 (dd, J = 2.8, 6.4, 3H, 32-CH3), 1.83 (d, J = 8.0, 3H, 18-CH3), 1.72 (t, J = 7.6, 3H, 8-CH2CH3), 0.41 (brs, 1H, NH), -1.71 (brs, 1H, NH). HRMS for C41H43N4O4I: 782.2329 (calcd), 783.2407 (found, MH+).

(4)式(III)に示す化合物(717化合物)
Methyl pheophorbide A synthesized as described above for compound 531 can be purchased from, for example, Wako Pure Chemical Industries. Methyl pheophorbide A 500 mg (Wako Pure Chemical Industries, Ltd.) was dissolved in 100 mL collidine and heated to reflux for 2 hours under a nitrogen atmosphere. After the reaction, collidine was removed by distillation under reduced pressure, and the residue was placed on an alumina column and separated and purified with methylene chloride. The eluted fractions were collected and methylene chloride was removed by distillation under reduced pressure, and then the residue was recrystallized from methanol / methylene chloride to synthesize methyl pyropheophorbide A (455 mg, 91% yield). 100 mg of methyl pyropheophorbide A was added to 2 mL of 30% hydrogen bromide / acetic acid and stirred at room temperature for 2 hours. After the reaction, the solvent was removed by distillation under reduced pressure using a vacuum pump, the residue was dissolved in 5 mL of m-iodobenzyl alcohol, and 10 mL of dehydrated methylene chloride and 40 mg of anhydrous potassium carbonate were added. The reaction solution was stirred at room temperature for 45 minutes under a nitrogen atmosphere. After the reaction, 200 mL of methylene chloride was added and transferred to a separatory funnel, and 100 mL of saturated sodium hydrogen carbonate was added to separate the solution. After collecting the organic layer, separation with 200 mL of water was repeated twice. The organic layer was collected and dried by adding sodium sulfate. The solvent was removed by distillation under reduced pressure, the residue was subjected to silica gel column chromatography, m-iodobenzyl alcohol was removed with 20% hexane / ethyl acetate, and the organic layer was recovered with 50% hexane / ethyl acetate. The recovered organic layer was distilled under reduced pressure to remove the solvent, thereby obtaining 115 mg of Compound 531 in a yield of 80%.
1 H NMR (CDCl 3 ): δ 9.76, 9.55 and 8.56 (all s, 1H, meso-H), 7.76 (s, 1H, ArH), 7.64 (d, J = 6.8, 1H, ArH), 7.30 (d , J = 8.0, 1H, ArH), 7.05 (t, J = 8.2, 1H, ArH), 6.00 (q, J = 6.9, 1H, 3 1 -H), 5.28 (d, J = 19.8, 1H, 13 2 -CH 2 ), 5.13 (d, J = 19.8, 1H, 13 2 -CH 2 ), 4.70 (d, J = 12.0, 1H, OCH 2 Ar), 4.56 (dd, J = 3.2,11.6, 1H, OCH 2 Ar), 4.48-4.53 (m, 1H, 18-H), 4.30-4.33 (m, 1H, 17-H), 3.72 (q, J = 8.0, 2H, 8-CH 2 CH 3 ), 3.69 , 3.61, 3.38 and 3.21 (all s, all 3H, for 17 3 -CO 2 CH 3 and 3 × ring CH 3 ), 2.66-2.74, 2.52-2.61, and 2.23-2.37 (m, 4H, 17 1 and 17 2 -H), 2.18 (dd, J = 2.8, 6.4, 3H, 3 2 -CH 3 ), 1.83 (d, J = 8.0, 3H, 18-CH 3 ), 1.72 (t, J = 7.6, 3H, 8-CH 2 CH 3 ), 0.41 (brs, 1H, NH), -1.71 (brs, 1H, NH) .HRMS for C 41 H 43 N 4 O 4 I: 782.2329 (calcd), 783.2407 (found, MH +) .

(4) Compound represented by formula (III) (717 compound)

上記化合物717は以下の通り合成した
200mgの化合物531をTHF 25mL とメタノール8mLの混合溶媒に溶解し、水酸化リチウム400mgと水12mLを加え、アルゴン雰囲気下、室温で2時間撹拌した。反応溶液を2%酢酸水溶液で中和し、塩化メチレン100mLで分液、抽出した。有機層を回収し、さらに水100mLで2回分液した。有機層を回収し、硫酸ナトリウムを加え乾燥させ、塩化メチレンを減圧蒸留にて濃縮し、ヘキサンにて再沈殿を行い、化合物717を185mg、収率95%で得た。
Compound 717 was synthesized as follows.
200 mg of compound 531 was dissolved in a mixed solvent of 25 mL of THF and 8 mL of methanol, 400 mg of lithium hydroxide and 12 mL of water were added, and the mixture was stirred at room temperature for 2 hours under an argon atmosphere. The reaction solution was neutralized with 2% aqueous acetic acid solution, separated and extracted with 100 mL of methylene chloride. The organic layer was collected and further separated twice with 100 mL of water. The organic layer was collected, dried by adding sodium sulfate, and methylene chloride was concentrated by distillation under reduced pressure and reprecipitated with hexane to obtain 185 mg of Compound 717 in a yield of 95%.

1H-NMR(CDCl3):δ 9.72, 9.44 and 8.53(all s, 1H, meso-H); 7.74 (s, 1H, ArH); 7.61 (d, J=8.0, 1H, ArH); 7.28 (m,1H, ArH); 7.03 (m, 1H, ArH); 5.95 (q, J=6.8, 1H, 31-H); 5.25 (d, J=20.0, 1H, 132-CH2); 5.10 (d, J=20.0, 1H, 132-CH2); 4.65 (dd, J=4.0,12.0, 1H, OCH2Ar); 4.50 (m, 2H, OCH2Ar & 18-H); 4.28 (d, J=7.6, 1H, 17-H); 3.67 (q, J=7.6, 2H, 8-CH2CH3); 3.58, 3.34 and 3.18 (all s, all 3H, for 3 × ring CH3); 2.55-2.72 and 2.20-2.35 (m, 4H, 171 and 172-H); 2.15 (m, 3H, 31-CH3); 1.78 (d, J=7.6, 3H, 18-CH3); 1.68 (t, J=7.2, 3H, 8-CH2CH3); 0.02 (brs, 1H, NH); -1.70 (brs, 1H, NH). HRMS for C40H41N4O4I: 768.2174 (Calculated); 769.2207 (Found, MH+).
(5)式IXに示す化合物
1 H-NMR (CDCl 3 ): δ 9.72, 9.44 and 8.53 (all s, 1H, meso-H); 7.74 (s, 1H, ArH); 7.61 (d, J = 8.0, 1H, ArH); 7.28 ( 7.03 (m, 1H, ArH); 5.95 (q, J = 6.8, 1H, 3 1 -H); 5.25 (d, J = 20.0, 1H, 132-CH 2 ); 5.10 ( d, J = 20.0, 1H, 13 2 -CH 2 ); 4.65 (dd, J = 4.0,12.0, 1H, OCH 2 Ar); 4.50 (m, 2H, OCH 2 Ar &18-H); 4.28 (d , J = 7.6, 1H, 17-H); 3.67 (q, J = 7.6, 2H, 8-CH 2 CH 3 ); 3.58, 3.34 and 3.18 (all s, all 3H, for 3 × ring CH 3 ); 2.55-2.72 and 2.20-2.35 (m, 4H, 17 1 and 17 2 -H); 2.15 (m, 3H, 3 1 -CH 3 ); 1.78 (d, J = 7.6, 3H, 18-CH 3 ); 1.68 (t, J = 7.2, 3H, 8-CH 2 CH 3 ); 0.02 (brs, 1H, NH); -1.70 (brs, 1H, NH). HRMS for C 40 H 41 N 4 O 4 I: 768.2174 (Calculated); 769.2207 (Found, MH +).
(5) Compound represented by formula IX

80 °Cに加温した5,10,15,20-tetrapyridylporphyrin (30 mg, 0.049 mmol)のDMF溶液(15 mL)にp-iodobenzyl bromide (1.9 g, 6.4 mmol)を加え、アルゴン下で2時間還流した。この赤褐色懸濁液を室温まで冷まし、ジエチルエーテル(50 mL)を加えた。沈殿を遠心分離で集め、クロロホルムとメタノールで洗い、目的物2(式IX)を得た(57 mg, 0.032 mmol, 65%)。 P-iodobenzyl bromide (1.9 g, 6.4 mmol) is added to DMF solution (15 mL) of 5,10,15,20-tetrapyridylporphyrin (30 mg, 0.049 mmol) heated to 80 ° C, and 2 hours under argon Refluxed. The reddish brown suspension was cooled to room temperature and diethyl ether (50 mL) was added. The precipitate was collected by centrifugation and washed with chloroform and methanol to obtain Target 2 (Formula IX) (57 mg, 0.032 mmol, 65%).

1H-NMR(DMSO-d6): δ (ppm) =9.65 (8H, d, J = 5.5 Hz, o-Py), 9.21 (8H, bs, β), 9.02 (8H, d, J = 6.4 Hz, m-Py), 8.02 (8H, d, J = 8.3 Hz, m-benzyl), 7.72 (8H, d, J = 8.3 Hz, o-benzyl), 6.18 (8H, s, CH2), -3.13 (2H, bs, NH). LDI-MS: m/z = 1051 (C54H37I2N8 [M-2(Ph-CH2-I)-H]+). ES-HRMS:m/z calcd for C68H49I4N8 [M-H]3+, 495.0086; found, 495.0070; calc for C61H44I3N8[M- Ph-CH2-I]3+, 423.0274; found, 423.0262.

(6)式XIIに示す化合物
1 H-NMR (DMSO-d 6 ): δ (ppm) = 9.65 (8H, d, J = 5.5 Hz, o-Py), 9.21 (8H, bs, β), 9.02 (8H, d, J = 6.4 Hz, m-Py), 8.02 (8H, d, J = 8.3 Hz, m-benzyl), 7.72 (8H, d, J = 8.3 Hz, o-benzyl), 6.18 (8H, s, CH 2 ),- 3.13 (2H, bs, NH). LDI-MS: m / z = 1051 (C 54 H 37 I 2 N 8 [M-2 (Ph-CH 2 -I) -H] + ). ES-HRMS: m / z calcd for C 68 H 49 I 4 N 8 [MH] 3+ , 495.0086; found, 495.0070; calc for C 61 H 44 I 3 N 8 [M- Ph-CH 2 -I] 3+ , 423.0274; found , 423.0262.

(6) Compound represented by Formula XII

3-iodophenyldipyrromethane (0.80 mg, 2.3 mmol)と4-(1,4,7,10-tetraoxaundecyl)benzaldehyde (620 mg, 2.3 mmol)のクロロホルム溶液(230 mL)をアルゴンで25分脱気し、BF3OEt2 (28.5 μL, 0.23 mmol)を加え1時間撹拌した。p-クロラニル(841 mg, 3.4 mmol)を加え、さらに23時間撹拌した後、トリエチルアミン (28.5 μL, 0.20 mmol)を加え、さらに20分撹拌した。褐色溶液を10 mL程度まで濃縮し、フロリジル(10 g)を加え、溶媒を留去して得られた褐色粉末をシリカゲルの上に敷き、クロロホルム:メタノール= 50:1で溶出した。溶媒を留去して得られた紫色固体をメタノールで洗い、目的物を得た(30 mg, 0.022 mmol, 2%)。 A chloroform solution (230 mL) of 3-iodophenyldipyrromethane (0.80 mg, 2.3 mmol) and 4- (1,4,7,10-tetraoxaundecyl) benzaldehyde (620 mg, 2.3 mmol) was degassed with argon for 25 minutes, and BF3OEt2 ( 28.5 μL, 0.23 mmol) was added and stirred for 1 hour. After adding p-chloranil (841 mg, 3.4 mmol) and further stirring for 23 hours, triethylamine (28.5 μL, 0.20 mmol) was added and further stirred for 20 minutes. The brown solution was concentrated to about 10 mL, Florisil (10 g) was added, the solvent was distilled off, the brown powder obtained was spread on silica gel and eluted with chloroform: methanol = 50: 1. The purple solid obtained by distilling off the solvent was washed with methanol to obtain the desired product (30 mg, 0.022 mmol, 2%).

1H-NMR (CDCl3): δ (ppm) =8.89 (4H, d, J = 4.6 Hz, β), 8.81 (4H, d, J= 4.6 Hz, β), 8.59 (2H, s, phenyl), 8.18 (2H, d, J = 6.9 Hz, phenyl), 8.11 (6H, t, J = 8.4 Hz, phenyl), 7.48 (2H, t, J = 7.6 Hz, phenyl), 7.30 (4H, d, J = 8.4 Hz), 4.43 (4H, t, J = 4.6 Hz, CH2), 4.06 (4H, t, J = 5.3 Hz, CH2), 3.89 (4H, t, J = 4.6, CH2), 3.79 (4H, t, J = 6.1 Hz, CH2), 3.74 (4H, t, J = 4.6 Hz, CH2), 3.62 (4H, t, J = 4.6 Hz, CH2), 3.42 (6H, s,CH3), -2.81 (2H, s, NH). APCI-HRMS: m/z calcd for C58H56I2N4O8[MH]+, 1191.2221; found, 1191.2222. TLC (クロロホルム : メタノール = 20 : 1): Rf = 0.17.

(7)式XIIIに示す化合物
1 H-NMR (CDCl 3 ): δ (ppm) = 8.89 (4H, d, J = 4.6 Hz, β), 8.81 (4H, d, J = 4.6 Hz, β), 8.59 (2H, s, phenyl) , 8.18 (2H, d, J = 6.9 Hz, phenyl), 8.11 (6H, t, J = 8.4 Hz, phenyl), 7.48 (2H, t, J = 7.6 Hz, phenyl), 7.30 (4H, d, J = 8.4 Hz), 4.43 (4H, t, J = 4.6 Hz, CH 2 ), 4.06 (4H, t, J = 5.3 Hz, CH 2 ), 3.89 (4H, t, J = 4.6, CH 2 ), 3.79 (4H, t, J = 6.1 Hz, CH 2 ), 3.74 (4H, t, J = 4.6 Hz, CH 2 ), 3.62 (4H, t, J = 4.6 Hz, CH 2 ), 3.42 (6H, s, CH 3 ), -2.81 (2H, s, NH). APCI-HRMS: m / z calcd for C 58 H 56 I 2 N 4 O 8 [MH] + , 1191.2221; found, 1191.2222. TLC (chloroform: methanol = 20: 1): R f = 0.17.

(7) Compound represented by Formula XIII

80 °Cに温めた5,10,15,20-tetrapyridylporphyrin (92 mg, 0.13 mmol) クロロホルム/エタノール(30 mL, 3/1)溶液にp-iodobenzyl bromide (533mg, 1.8 mmol)を加え、アルゴン下で2時間還流した。この褐色溶液を直接カラムクロマトグラフィー (SiO2, クロロホルム/メタノール=4/1-2/1)にかけ、目的物3(式XIII)を得た(48 mg, 0.052 mmol, 40%)。 Add 5,10,15,20-tetrapyridylporphyrin (92 mg, 0.13 mmol) p-iodobenzyl bromide (533 mg, 1.8 mmol) to chloroform / ethanol (30 mL, 3/1) solution, and warm to 80 ° C. At reflux for 2 hours. This brown solution was directly subjected to column chromatography (SiO 2 , chloroform / methanol = 4 / 1-2 / 1) to obtain the desired product 3 (Formula XIII) (48 mg, 0.052 mmol, 40%).

1H-NMR (CDCl3/CD3OD): δ (ppm) =9.51 (2H, d, J = 6.4 Hz, m-Py), 9.43 (6H, d, J = 5.5 Hz, o-Py), 8.96 (8H, bs, β), 8.89 (2H, d, J = 6.4 Hz, o-Py), 8.27 (6H, d, J = 5.5 Hz, m-Py), 8.01 (2H, d, J = 8.3 Hz, m-benzyl), 7.63 (2H, d, J = 8.3 Hz, o-benzyl), 6.20 (2H, s, CH2). ESI-HRMS:m/z calcd for C47H32IN8 [M]+, 835.1795, found, 835.1779.

(8)式XIVに示す化合物
1 H-NMR (CDCl 3 / CD 3 OD): δ (ppm) = 9.51 (2H, d, J = 6.4 Hz, m-Py), 9.43 (6H, d, J = 5.5 Hz, o-Py), 8.96 (8H, bs, β), 8.89 (2H, d, J = 6.4 Hz, o-Py), 8.27 (6H, d, J = 5.5 Hz, m-Py), 8.01 (2H, d, J = 8.3 Hz, m-benzyl), 7.63 (2H, d, J = 8.3 Hz, o-benzyl), 6.20 (2H, s, CH 2 ). ESI-HRMS: m / z calcd for C 47 H 32 IN 8 [M ] + , 835.1795, found, 835.1779.

(8) Compound represented by formula XIV

80 oCに温めたポルフィリン3(式XIII) (26 mg, 0.028 mmol)のDMF溶液(15 mL)に ヨードメタン(2.1 mL, 34 mmol)を加え、アルゴン下、100 °Cで2時間撹拌した。この褐色溶液を室温まで冷まし、ジエチルエーテル (70 mL)を加え、生じた沈殿を遠心分離で分け、クロロホルムで数回洗い、目的物4(式XIV)を得た(31 mg, 0.023 mmol, 82%)。 80 o C in warm porphyrin 3 (Formula XIII) (26 mg, 0.028 mmol ) iodomethane in DMF solution (15 mL) of (2.1 mL, 34 mmol) was added, under argon, and stirred for 2 hours at 100 ° C. The brown solution was cooled to room temperature, diethyl ether (70 mL) was added, and the resulting precipitate was separated by centrifugation and washed several times with chloroform to obtain the desired product 4 (Formula XIV) (31 mg, 0.023 mmol, 82 %).

1H-NMR (DMSO-d6): δ = 9.64 (2H, d, J = 6.4 Hz, m-Py), 9.49 (6H, d, J = 6.4 Hz, m-Py, ), 9.26 (2H, bs, β), 9.20 (6H, bs, β), 9.04 (2H, d, J = 7.3 Hz, o-Py), 9.00 (6H, d, J = 6.4 Hz, o-benzyl), 8.02 (2H, d, J = 8.3 Hz, m-benzyl), 7.74 (2H, d, J = 8.3 Hz, o-benzyl), -3.12 (2H, bs, NH). ESI-HRMS:m/z calcd for C43H35N8 [M-(Ph-CH2-I)-Br-3I]+, 663.2985; found, 663.2967; calcd for C50H41I1N8 [M-Br-3I]2+, 440.1250; found, 440.1217; calcd for C42H32N8[M-2CH3-2(C7H6I)-Br-3I]2+, 324.1375, found, 324.1361.

(9)式XVに示す化合物
1 H-NMR (DMSO-d 6 ): δ = 9.64 (2H, d, J = 6.4 Hz, m-Py), 9.49 (6H, d, J = 6.4 Hz, m-Py,), 9.26 (2H, bs, β), 9.20 (6H, bs, β), 9.04 (2H, d, J = 7.3 Hz, o-Py), 9.00 (6H, d, J = 6.4 Hz, o-benzyl), 8.02 (2H, d, J = 8.3 Hz, m-benzyl), 7.74 (2H, d, J = 8.3 Hz, o-benzyl), -3.12 (2H, bs, NH). ESI-HRMS: m / z calcd for C 43 H 35 N 8 [M- (Ph-CH 2 -I) -Br-3I] + , 663.2985; found, 663.2967; calcd for C 50 H 41 I 1 N 8 [M-Br-3I] 2+ , 440.1250; found , 440.1217; calcd for C 42 H 32 N 8 [M-2CH 3 -2 (C 7 H 6 I) -Br-3I] 2+ , 324.1375, found, 324.1361.

(9) Compound represented by Formula XV

80 °Cに温めた5-(N-(4-(ethoxycarbonyl)butyl)pyridinium)-10,15,20-tripyridylporphyrin bomide (31 mg, 0.037 mmol)のDMF溶液 (15 mL)にp-iodobenzylbromide (1.4 g, 4.6 mmol)を加え、アルゴン下で1.5 時間還流した。この褐色溶液を室温まで冷まし、ジエチルエーテル (100 mL)を加え、生じた沈殿を遠心分離で分け、クロロホルムで数回洗い、目的物5(式XV)を得た(36 mg, 0.021 mmol, 57%)。 P-iodobenzylbromide (1.4) was added to DMF solution (15 mL) of 5- (N- (4- (ethoxycarbonyl) butyl) pyridinium) -10,15,20-tripyridylporphyrin bomide (31 mg, 0.037 mmol) warmed to 80 ° C. g, 4.6 mmol) and refluxed under argon for 1.5 hours. The brown solution was cooled to room temperature, diethyl ether (100 mL) was added, and the resulting precipitate was separated by centrifugation and washed several times with chloroform to obtain the desired product 5 (Formula XV) (36 mg, 0.021 mmol, 57 %).

1H-NMR(DMSO-d6): δ (ppm) =9.66 (6H, d, J = 6.4 Hz, m-Py), 9.58 (2H, d, J = 6.4 Hz, m-Py), 9.23 (8H, bs, β), 9.03 (8H, m, o-Py), 8.02 (6H, d, J = 8.3 Hz, o-benzyl), 7.73 (6H, d, J = 8.3 Hz, m-benzyl), 6.19 (6H, s, CH2), 4.99 (2H, t, J = 7.8 Hz, CH2), 4.15 (2H, q, J = 7.3 Hz, CH2), 2.57 (2H, q, J = 7.8 Hz, CH2), 2.31 (2H, q, J = 7.3 Hz, CH2), 1.87 (2H, q, J = 7.3 Hz, CH2), 1.26 (2H, t, J = 7.3 Hz, CH3), -3.12 (2H, bs, NH). ESI-HRMS:m/z calcd for C61H49I2N8O2[M-C7H6I-3Br]+, 1179.2068, found, 1179.2063; calcd for C54H44IN8O2[M-2(C7H6I)-H-2Br]+, 963.2632, found, 963.2606.

(10)式XVIに示す化合物
1 H-NMR (DMSO-d 6 ): δ (ppm) = 9.66 (6H, d, J = 6.4 Hz, m-Py), 9.58 (2H, d, J = 6.4 Hz, m-Py), 9.23 ( 8H, bs, β), 9.03 (8H, m, o-Py), 8.02 (6H, d, J = 8.3 Hz, o-benzyl), 7.73 (6H, d, J = 8.3 Hz, m-benzyl), 6.19 (6H, s, CH 2 ), 4.99 (2H, t, J = 7.8 Hz, CH 2 ), 4.15 (2H, q, J = 7.3 Hz, CH 2 ), 2.57 (2H, q, J = 7.8 Hz , CH 2 ), 2.31 (2H, q, J = 7.3 Hz, CH 2 ), 1.87 (2H, q, J = 7.3 Hz, CH 2 ), 1.26 (2H, t, J = 7.3 Hz, CH 3 ), -3.12 (2H, bs, NH). ESI-HRMS: m / z calcd for C 61 H 49 I 2 N 8 O 2 [MC 7 H 6 I-3Br] + , 1179.2068, found, 1179.2063; calcd for C 54 H 44 IN 8 O 2 [M-2 (C 7 H 6 I) -H-2Br] + , 963.2632, found, 963.2606.

(10) Compound represented by formula XVI

ポルフィリン5 (式XV)(30 mg, 0.017 mmol)の1 N HCl水溶液 (3.5 mL)を1.5 時間還流した。溶媒を留去して生じる緑色固体をアセトンとクロロホルムで洗い、目液物6(式XVI)を得た (25 mg, 0.015 mmol, 88%)。 Porphyrin 5 (Formula XV) (30 mg, 0.017 mmol) in 1 N HCl (3.5 mL) was refluxed for 1.5 hours. The green solid produced by distilling off the solvent was washed with acetone and chloroform to obtain eye liquid 6 (Formula XVI) (25 mg, 0.015 mmol, 88%).

1H-NMR (CD3OD): δ (ppm) =9.49 (8H, t, J = 6.4 Hz, m-Py), 9.15 (8H, bs, β), 8.98 (8H, t, J = 6.4 Hz, o-Py), 8.01 (6H, d, J = 8.3 Hz, o-benzyl), 7.63 (6H, d, J = 7.3 Hz, m-benzyl), 6.18 (6H, s, CH2), 5.03 (2H, t, J = 7.3 Hz, CH2), 2.53 (2H, t, J = 7.3 Hz, CH2), 2.40 (2H, q, J = 7.3 Hz, CH2), 1.94 (2H, q, J = 7.3 Hz, CH2). ESI-HRMS: m/z calcd for C52H41IN8O2 + [M-2(C7H6I)-4Br-H]+, 935.2313; found, 935.2308.
1 H-NMR (CD 3 OD): δ (ppm) = 9.49 (8H, t, J = 6.4 Hz, m-Py), 9.15 (8H, bs, β), 8.98 (8H, t, J = 6.4 Hz) , o-Py), 8.01 (6H, d, J = 8.3 Hz, o-benzyl), 7.63 (6H, d, J = 7.3 Hz, m-benzyl), 6.18 (6H, s, CH 2 ), 5.03 ( 2H, t, J = 7.3 Hz, CH 2 ), 2.53 (2H, t, J = 7.3 Hz, CH 2 ), 2.40 (2H, q, J = 7.3 Hz, CH 2 ), 1.94 (2H, q, J = 7.3 Hz, CH 2 ). ESI-HRMS: m / z calcd for C 52 H 41 IN 8 O 2 + [M-2 (C 7 H 6 I) -4Br-H] + , 935.2313; found, 935.2308.

細胞増殖抑制試験
粉末の531又は717化合物を5mg取り2mlチューブに入れた。溶媒としてDimethyl sulfoxide minimun 99.5% GC(DMSO)で溶いて10mg/mlとした。これをダルベッコ変法イーグル培地(DMEM)やMEM培地(MEM)などで希釈し終濃度を100μg/mlおよび10μg/mlとした。
5 mg of 531 or 717 compound of the cell growth inhibition test powder was taken and placed in a 2 ml tube. It was dissolved in Dimethyl sulfoxide minimun 99.5% GC (DMSO) as a solvent to make 10 mg / ml. This was diluted with Dulbecco's modified Eagle's medium (DMEM), MEM medium (MEM), etc. to make final concentrations of 100 μg / ml and 10 μg / ml.

HeLa細胞株(ヒト子宮頸がん細胞株human cervical adenocarcinoma)やT24細胞株(ヒト膀胱がん細胞株human bladder transitional-cell carcinoma)などを96穴プレート、12穴プレート又は6穴プレートに任意の細胞数で播種し、531化合物が溶解した培地にて24〜48時間細胞培養を行い、細胞に531を取り込ませた。
十分な数の細胞が培地に接着したことを確認した後に、プレートにパラメトリック単色X線あるいは白色X線を照射した。照射後、24時間以上の任意の時間培養した後に、細胞をトリプシンではがしトリパンブルーで染色し、生細胞のみをカウントした。
HeLa cell line (human cervical adenocarcinoma) or T24 cell line (human bladder transitional-cell carcinoma), etc. can be added to any cell in a 96-well plate, 12-well plate, or 6-well plate. The cells were cultivated for 24 to 48 hours in a medium in which 531 compound was dissolved, and 531 was incorporated into the cells.
After confirming that a sufficient number of cells adhered to the medium, the plate was irradiated with parametric monochromatic X-rays or white X-rays. After irradiation, the cells were cultured for an arbitrary period of 24 hours or longer, and then the cells were peeled off with trypsin and stained with trypan blue to count only living cells.

また、10cm径の培養皿(dish)に細胞を播種し、531化合物を溶解した培地で任意の時間培養し、細胞に531を取り込ませた。   In addition, cells were seeded in a 10 cm diameter culture dish (dish), and cultured in a medium in which 531 compound was dissolved for an arbitrary period of time, so that 531 was incorporated into the cells.

十分な数の細胞が培地に接着したことを確認した後に細胞をトリプシンではがし、任意の細胞数を2ml チューブに培地とともに浮遊させた。このチューブにパラメトリック単色X線あるいは白色X線を照射した。照射後、細胞を6穴プレートなどに播種し、十分な数の細胞が培地に接着したことを確認した後にトリプシンではがし、トリパンブルーで染色し生細胞のみをカウントした。   After confirming that a sufficient number of cells adhered to the medium, the cells were peeled off with trypsin, and an arbitrary number of cells were suspended in a 2 ml tube together with the medium. The tube was irradiated with parametric monochromatic X-rays or white X-rays. After irradiation, the cells were seeded in a 6-well plate or the like, and after confirming that a sufficient number of cells adhered to the medium, they were removed with trypsin, stained with trypan blue, and only live cells were counted.

任意の細胞数(100〜1000個)を10cm dishに播種し任意の終濃度となるように531、717を溶解した培地で培養した。細胞が生着したことを確認した時点でパラメトリック単色X線あるいは白色X線を照射した。   Arbitrary cell numbers (100-1000 cells) were seeded in a 10 cm dish and cultured in a medium in which 531 and 717 were dissolved so as to have an arbitrary final concentration. When it was confirmed that the cells were engrafted, parametric monochromatic X-rays or white X-rays were irradiated.

その後、コロニーの形成を確認した時点でcolony formation assayを行った。   Thereafter, colony formation assay was performed when colony formation was confirmed.


パラメトリックX線照射方法
日本大学量子科学研究所電子線利用研究施設(LEBRA、 Laboratory for Electron Beam Research and Application)において、線形加速器(LINAC)で加速された電子ビームを、パラメトリックX線(PXR、Parametric X-ray)の光源として使用した。PXR は、相対論的な速度の荷電粒子が結晶のような周期構造を持つ物質に入射したときに生じる電磁放射現象を利用して作製した。PXRは結晶に入射する電子線の入射角によって発生するX線の波長が一義的に定まるため、幅広い波長範囲で任意のX線波長を選択することが可能である。

Parametric X-ray irradiation method At the Institute for Electron Beam Research and Application (LEBRA) at the Institute of Quantum Science, Nihon University, an electron beam accelerated by a linear accelerator (LINAC) is converted into parametric X-rays (PXR, Parametric X). -ray) as a light source. The PXR was fabricated by utilizing the electromagnetic radiation phenomenon that occurs when charged particles with relativistic velocity are incident on a material with a periodic structure like a crystal. In PXR, the wavelength of the X-ray generated by the incident angle of the electron beam incident on the crystal is uniquely determined, so that an arbitrary X-ray wavelength can be selected in a wide wavelength range.

LEBRAでは、線形加速器によって100 MeVに加速した電子をシリコン(Si)単結晶に照射してPXRを発生させた。波長角度依存性のあるX線ビームを常に同一光路に導くことで、LEBRA-PXRの可変波長範囲は5〜36KeV(2.48 〜 0.344 Å)であり、理論的には22Ti(K吸収端:4.965 KeV)から55Cs(K吸収端:35.968 KeV)までの元素のK吸収端で解析できる。また、L,M,N,吸収端を利用すればさらに高位の元素を解析できる。   In LEBRA, PXR was generated by irradiating a silicon (Si) single crystal with electrons accelerated to 100 MeV by a linear accelerator. LEBRA-PXR has a variable wavelength range of 5 to 36 KeV (2.48 to 0.344 mm) by always guiding a wavelength angle dependent X-ray beam to the same optical path, theoretically 22 Ti (K absorption edge: 4.965 KeV). ) To 55 Cs (K absorption edge: 35.968 KeV). Further, if L, M, N, and the absorption edge are used, higher elements can be analyzed.

LEBRA-PXR は、LINACで加速した電子線の使用により、ミクロ−マクロパルス構造を有するため、実際にX線が照射されている実照射時間はシャッター開放時間の約1/10万であることを意味している(例、露光時間は60分、実照射時間は36ミリ秒)。LEBRA-PXRのX線ビームは1/γ の角度発散を有するため、光源(約0.5 mm (V)× 1 mm (H))から7 m下流のX線取り出し口におけるビームサイズがφ70 mm以上(E = 17.5 keV)のX線照射視野となり、特別な光学素子を用いてX線ビームを走査させることなく照射できる。   Since LEBRA-PXR has a micro-macro pulse structure by using an electron beam accelerated by LINAC, the actual irradiation time when X-rays are actually irradiated is about 1 / 100,000 of the shutter opening time. (For example, the exposure time is 60 minutes and the actual irradiation time is 36 milliseconds). Since the X-ray beam of LEBRA-PXR has an angular divergence of 1 / γ, the beam size at the X-ray extraction port 7 m downstream from the light source (approximately 0.5 mm (V) x 1 mm (H)) is 70 mm or more ( E = 17.5 keV) and can be irradiated without scanning the X-ray beam using a special optical element.

本実験ではヨウドのK吸収端33.17KeVの照射を行った。   In this experiment, irradiation was performed with an iodine K absorption edge of 33.17 KeV.

結果を図1〜5に示す。   The results are shown in FIGS.

図1,2,4,5の結果はダネットの多重比較で解析した。図3の結果はt検定で解析した。   The results in Figures 1, 2, 4, and 5 were analyzed by Dunnett's multiple comparison. The results in FIG. 3 were analyzed by t-test.

図1では、5000個のHeLa細胞を96穴プレートに播種し、531を3μg/mlの濃度で投与した群及び非投与群(531非投与照射群)を作製し、これらを24時間培養した。その後ヨード元素のK吸収端である33.17keVのパラメトリックX線を1時間(実照射時間は36ミリ秒)照射した。この際531投与群はさらに鉛版の下にアルミ板を置いた遮蔽の有無で2群(531投与遮蔽群、531投与照射群)に分けて行なった。   In FIG. 1, 5000 HeLa cells were seeded in a 96-well plate, and a group administered with 531 at a concentration of 3 μg / ml and a non-administered group (531 non-administered irradiation group) were prepared and cultured for 24 hours. Thereafter, 33.17 keV parametric X-rays, which are the K absorption edge of iodine element, were irradiated for 1 hour (actual irradiation time was 36 milliseconds). At this time, the 531 administration group was further divided into 2 groups (531 administration shielding group, 531 administration irradiation group) with or without shielding with an aluminum plate placed under the lead plate.

照射後24時間培養し、WST-8 assayにより高感度水溶性ホルマザンを生成する新規テトラゾリウム塩WST-8を発色基質として、ホルマザンの450 nmの吸光度を直接測定することにより、生細胞数を、細胞数と生成するホルマザンの量は直線的な比例関係にあることより計測した。   After culturing for 24 hours after irradiation, the number of living cells was determined by directly measuring the absorbance of formazan at 450 nm using the novel tetrazolium salt WST-8, which produces highly sensitive water-soluble formazan by WST-8 assay. The number and the amount of formazan produced were measured from a linear proportional relationship.

図1において、棒グラフは、左より531投与遮蔽群、531非投与照射群および531投与照射群である。531投与照射群は、531投与遮蔽群に比べ12%生細胞数が有意に減少し(P=0.985)、531非投与照射群に比べ9%生細胞数が減少した(P=0.903)。   In FIG. 1, the bar graphs are the 531 administration shielded group, the 531 non-administered irradiation group, and the 531 administration irradiation group from the left. In the 531-administered irradiation group, the number of viable cells was significantly reduced by 12% compared to the 531-administered group (P = 0.985), and the number of viable cells decreased by 9% (P = 0.903) compared to the irradiation group not administered with 531.

図2では、5000個のHeLa細胞を96穴プレートに播種し、531を3μg/mlの濃度で投与した群及び非投与群(531非投与照射群)を作製し、これらを24時間培養した。その後ヨード元素のK吸収端である33.17keVのパラメトリックX線を1時間照射した、この際531投与群はさらに鉛版の下にアルミ板を置いた遮蔽の有無で2群(531投与遮蔽群、531投与照射群)に分けて行なった。照射後66時間培養し、トリパンブルーで染色し顕微鏡下で生細胞数を計測した。   In FIG. 2, 5,000 HeLa cells were seeded in a 96-well plate, and a group administered with 531 at a concentration of 3 μg / ml and a non-administered group (531 non-administered irradiation group) were prepared and cultured for 24 hours. Thereafter, irradiation with 33.17 keV parametric X-rays, which are the K absorption edge of the iodine element, was performed for 1 hour. At this time, the 531 administration group was further divided into 2 groups (531 administration shielded group, with or without shielding with an aluminum plate placed under the lead plate). 531 administration irradiation group). After irradiation, the cells were cultured for 66 hours, stained with trypan blue, and the number of viable cells was counted under a microscope.

図2において、棒グラフは、左より531投与遮蔽群、531非投与照射群および531投与照射群である。531投与照射群は、531投与遮蔽群に比べ44%生細胞数が減少し(P=0.467)、531非投与照射群に比べ56%生細胞数が減少した(P=0.181)。   In FIG. 2, the bar graphs are the 531 administration shielded group, the 531 non-administered irradiation group, and the 531 administration irradiation group from the left. In the 531-administered irradiation group, the number of viable cells decreased by 44% (P = 0.467) compared to the 531-administered shielded group (P = 0.467), and the number of viable cells decreased by 56% (P = 0.181).

図3では、10000個のHeLa細胞を12穴プレート2枚に播種し、各プレートのランダムな4穴ずつに531をそれぞれ0μg/ml、3μg/ml又は6μg/mlの濃度で投与した3群を作製し、48時間培養した。その後ヨード元素のK吸収端である33.17keVのパラメトリックX線を、用意したプレート1枚に1時間照射し、他の一枚は照射同一条件で照射位置に一時間静置したが照射は行なわなかった。その後それぞれのプレートを48時間培養して生細胞数をトリパンブルーで染色し、顕微鏡下で生細胞数を数えた。   In FIG. 3, three groups of 10000 HeLa cells seeded in two 12-well plates and 531 were administered at a concentration of 0 μg / ml, 3 μg / ml, or 6 μg / ml in 4 random holes on each plate, respectively. Prepared and cultured for 48 hours. Thereafter, parametric X-rays of 33.17keV, the K absorption edge of iodine element, were irradiated to one of the prepared plates for one hour, and the other one was left at the irradiation position for one hour under the same irradiation conditions, but no irradiation was performed. It was. Thereafter, each plate was cultured for 48 hours, the number of viable cells was stained with trypan blue, and the number of viable cells was counted under a microscope.

図3において、棒グラフは左から順に、
531非投与非照射群、
3μg/ml 531投与非照射群、
6μg/ml 531投与非照射群、
531非投与照射群、
3μg/ml 531投与照射群、および
6μg/ml 531投与照射群である。
In FIG. 3, the bar graphs are in order from the left.
531 non-irradiated non-irradiated group,
3 μg / ml 531 administration non-irradiated group,
6 μg / ml 531 administration non-irradiated group,
531 non-administered irradiation group,
Irradiation group administered with 3 μg / ml 531 and irradiation group administered with 6 μg / ml 531.

531非投与時に生細胞数は照射により74%に減少(P=0.121)、3μg/ml 531非投与時に生細胞数は照射により62%に減少(P=0.275)、6μg/ml 531非投与時に生細胞数は照射により50%に減少した(P=0.05)。つまり濃度依存性に生細胞数が減少した。   When 531 is not administered, the number of living cells is reduced to 74% by irradiation (P = 0.121), 3 μg / ml When 531 is not administered, the number of living cells is reduced to 62% (P = 0.275), and 6 μg / ml 531 is not administered The number of viable cells was reduced to 50% by irradiation (P = 0.05). In other words, the number of living cells decreased in a concentration-dependent manner.

図4では、10000個のHeLa細胞を12穴プレートに播種し、531を6μg/mlの濃度で加え24時間培養した。その後、ヨード元素のK吸収端(33.17keV)より1.2Kev低い31.97KeV及び1.2Kev高い34.37KeVのエネルギーを照射野の中心に設定し、これらの2群に対してPXR照射を1時間行なった。照射後に、48時間培養して生細胞数をトリパンブルーで染色し、生細胞数を顕微鏡下で数え、非照射群と比較した。
その結果、6μg/ml 531投与非照射群に比べ31.97KeV照射群は27%生細胞数が減少し(P=0.543)、34.37KeV照射群は47%細胞数が減少した(P=0.220)。
In FIG. 4, 10,000 HeLa cells were seeded in a 12-well plate, and 531 was added at a concentration of 6 μg / ml and cultured for 24 hours. After that, energy of 31.97 KeV lower by 1.2 Kev than the K absorption edge (33.17 keV) of iodine element and 34.37 KeV higher by 1.2 Kev are set at the center of the irradiation field, and PXR irradiation is applied to these two groups by 1 Done for hours. After irradiation, the cells were cultured for 48 hours, and the number of viable cells was stained with trypan blue. The number of viable cells was counted under a microscope and compared with the non-irradiated group.
As a result, the number of viable cells decreased by 27% (P = 0.543) in the group irradiated with 31.97 KeV compared to the non-irradiated group administered with 6 μg / ml 531 (P = 0.543), and the number of cells in the 34.37 KeV irradiated group decreased by 47% (P = 0.220). ).

図5では、40000個のT24細胞を6穴プレートに播種し、531を6μg/mlの濃度投与群及び非投与群(531非投与照射群)を作製し、これらを24時間培養した。その後ヨード元素のK吸収端である33.17keVのパラメトリックX線を1時間照射した。この際、非投与群はさらに鉛版の下にアルミ板を置いた遮蔽の有無で2群(非投与遮蔽群、非投与照射群)に分けて行なった。照射後72時間培養し、トリパンブルーで染色して顕微鏡下で生細胞数を計測した。   In FIG. 5, 40,000 T24 cells were seeded in a 6-well plate, 531 was prepared in a 6 μg / ml concentration administration group and a non-administration group (531 non-administration irradiation group), and these were cultured for 24 hours. Thereafter, parametric X-rays of 33.17 keV, which is the K absorption edge of the iodine element, were irradiated for 1 hour. At this time, the non-administration group was further divided into two groups (non-administration shield group and non-administration irradiation group) depending on whether or not the shield was placed with an aluminum plate under the lead plate. After irradiation, the cells were cultured for 72 hours, stained with trypan blue, and the number of viable cells was counted under a microscope.

図5において、棒グラフは、左より非投与遮蔽群、非投与照射群および6μg/ml 531投与照射群である。   In FIG. 5, the bar graphs are a non-administration shield group, a non-administration irradiation group, and a 6 μg / ml 531 administration irradiation group from the left.

非投与照射群は非投与遮蔽群に比べ42%生細胞数が減少し(P=0.520)、照射群では531投与により84%生細胞数が減少した(P=0.440)。   In the non-administered irradiation group, the number of viable cells decreased by 42% (P = 0.520) compared to the non-administration shielded group, and in the irradiated group, the number of viable cells decreased by 84% (P = 0.440) by administration of 531.


これらの結果をまとめると、ヨウドのK吸収端である33.17KeVのPXRを36ミリ秒の実照射時間で照射する実験により、ポルフィリン誘導体にヨウドを付加した化合物の投与を行ったヒト子宮頸がん細胞株および膀胱癌細胞株は、照射後48時間から66時間の培養後に有意な生細胞数の減少を起した。また、32KeVに比べK殻吸収端より高くなることで細胞数が減少が強くなる傾向が認められた。

Summarizing these results, an experiment in which 33.17 KeV PXR, which is the K absorption edge of iodine, was irradiated for 36 milliseconds, and a human cervix administered with a compound obtained by adding iodine to a porphyrin derivative was shown. Cancer cell lines and bladder cancer cell lines caused a significant decrease in the number of viable cells after 48 to 66 hours of culture after irradiation. Moreover, the tendency for the number of cells to decrease more strongly was recognized by becoming higher than the K shell absorption edge compared with 32 KeV.

従って、本発明の方法は、低エネルギー単一波長のX線を用いて、吸収端付近を利用したポルフィリン誘導体によるがん細胞の生細胞数の減少を導くことで、がん細胞の細胞死を導くことができるため、極めて有用であることが示された。   Therefore, the method of the present invention leads to a decrease in the number of cancer cells by a porphyrin derivative utilizing the vicinity of the absorption edge using low energy single wavelength X-rays, thereby reducing cell death of cancer cells. It has been shown that it can be very useful.

細胞増殖抑制試験
<WST-8>
T24細胞株(ヒト膀胱癌細胞株human bladder transitional-cell carcinoma)、MCF7細胞株(ヒト乳癌細胞株human mammary gland adenocarcinoma)などを96wellプレートに500個/wellの細胞数を播種した。
Cell growth inhibition test
<WST-8>
T24 cell line (human bladder cancer cell line human bladder transitional-cell carcinoma), MCF7 cell line (human breast cancer cell line human mammary gland adenocarcinoma), etc. were seeded at a cell number of 500 cells / well in a 96-well plate.

24時間細胞培養を行い十分数の細胞が培地に接着したことを確認し531化合物、717化合物、HPPH-Gd化合物(式IIにおいてXがGdの化合物)(特開2004−26828(P2004−26828A))が溶解した培地を終濃度が3μg/mlになるように添加した。   After 24 hours of cell culture, it was confirmed that a sufficient number of cells adhered to the medium, and 531 compound, 717 compound, HPPH-Gd compound (compound of formula II where X is Gd) (Japanese Patent Application Laid-Open No. 2004-26828 (P2004-26828A)) ) Was dissolved so that the final concentration was 3 μg / ml.

24時間細胞培養を行い、細胞にこれらの化合物を取り込ませた。その後、培地を化合物なしの新鮮な培地に交換し、4MeVの白色X線(吸収線量で2Gy)を、MEVATRON M2/6740 (Toshiba Medical Systems Co., Tochigi, Japan)を線源として、あるいは33KeVの白色X線(吸収線量で2Gy)を、MBR-1520R-3(Hitachi Medical Co., Tokyo, Japan)を線源として照射した。72時間後にWST-8 assayにより生細胞数を計測した。
<colony formation assay>
HeLa(ヒト子宮頸癌細胞株human cervical adenocarcinoma)、T24細胞株(ヒト膀胱癌細胞株human bladder transitional-cell carcinoma)などを12wellプレートに5000〜10000個/wellの細胞数で播種した。
Cell culture was performed for 24 hours, and the cells were taken up with these compounds. Then, the medium was replaced with a fresh medium without compound, 4MeV white X-ray (2Gy absorbed dose), MEVATRON M2 / 6740 (Toshiba Medical Systems Co., Tochigi, Japan) as a radiation source, or 33KeV White X-rays (2Gy absorbed dose) were irradiated using MBR-1520R-3 (Hitachi Medical Co., Tokyo, Japan) as a radiation source. After 72 hours, the number of viable cells was counted by WST-8 assay.
<Colony formation assay>
HeLa (human cervical cancer cell line human cervical adenocarcinoma), T24 cell line (human bladder cancer cell line human bladder transitional-cell carcinoma) and the like were seeded on a 12-well plate at a cell number of 5000 to 10,000 cells / well.

48〜72時間細胞培養を行なって十分な数の細胞が培地に接着したことを確認し、531化合物が溶解した培地を終濃度が3〜6μg/mlになるように添加した。
24時間細胞培養を行い、細胞にこれらの化合物を取り込ませた。その後、培地を化合物なしの新鮮な培地に交換し、33KeVの白色X線(吸収線量で2〜6Gy)を、MBR-1520R-3(Hitachi Medical Co., Tokyo, Japan)を線源として照射した。
Cell culture was performed for 48 to 72 hours to confirm that a sufficient number of cells adhered to the medium, and a medium in which the 531 compound was dissolved was added to a final concentration of 3 to 6 μg / ml.
Cell culture was performed for 24 hours, and the cells were taken up with these compounds. After that, the medium was replaced with a fresh medium without compound, and irradiated with 33 KeV white X-ray (2-6 Gy absorbed dose) and MBR-1520R-3 (Hitachi Medical Co., Tokyo, Japan) as a radiation source. .

照射直後に細胞をトリプシンではがしトリパンブルーで染色し生細胞を1000個/plateずつ10cm dishに播種した。   Immediately after the irradiation, the cells were peeled off with trypsin, stained with trypan blue, and seeded with 1000 cells / plate in a 10 cm dish.

7〜17日細胞培養を行いコロニーの形成を確認した時点でcolony formation assayを行った。
<結果>
結果を図6〜8に示す。
The colony formation assay was performed when the cell culture was confirmed for 7 to 17 days and colony formation was confirmed.
<Result>
The results are shown in FIGS.

X線照射により、531、717又はHPPH-Gdが培地に添加された細胞は、コロニー数又は生細胞数の減少が認められた。   The cells to which 531, 717 or HPPH-Gd was added to the medium by X-ray irradiation showed a decrease in the number of colonies or the number of living cells.

還元発色試薬WST-8を用いた比色定量による生細胞数の評価
還元発色試薬WST-8[2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium, monosodium salt]を用いて、以下の通り実験を行なった。
<実験手法>
(i) 96wellプレートに細胞(T24)を5000cells/well播種。
Evaluation of viable cell count by colorimetric determination using the reducing color reagent WST-8 Reduced color reagent WST-8 [2- (2-methoxy-4-nitrophenyl) -3- (4-nitrophenyl) -5- (2, Using 4-disulfophenyl) -2H-tetrazolium, monosodium salt], experiments were conducted as follows.
<Experimental method>
(i) Cells (T24) are seeded in a 96-well plate at 5000 cells / well.

(ii) 24時間後にポルフィリン誘導体(717)を3μg/mlになるように添加。   (ii) After 24 hours, the porphyrin derivative (717) was added to 3 μg / ml.

(iii) 24時間後に培地を吸引し5Gyの白色X線を照射。   (iii) After 24 hours, the medium was aspirated and irradiated with 5 Gy white X-rays.

(iv) 48時間後にWST-8により生細胞数の評価。
<結果>
結果を図9に示す。
(iv) After 48 hours, the number of viable cells was evaluated by WST-8.
<Result>
The results are shown in FIG.

培地のみのコントロール群に比較して717を添加した群で有意に生細胞数の低下が確認された。   A significant decrease in the number of viable cells was confirmed in the group to which 717 was added as compared with the control group having only the medium.

従って、ポルフィリン誘導体にX線を照射すると放射線増感作用が得られることが示された。   Therefore, it was shown that when the porphyrin derivative was irradiated with X-rays, a radiosensitizing effect was obtained.

Colony formation assayによる細胞生存率の評価
<実験手法>
(i) 10cm dishに細胞(T24)を1000cells/dish播種。
Evaluation of cell viability by colony formation assay <Experimental method>
(i) Cells (T24) are seeded at 1000 cells / dish in a 10 cm dish.

(ii) 24時間後にポルフィリン誘導体(717)を3μg/mlになるように添加。   (ii) After 24 hours, the porphyrin derivative (717) was added to 3 μg / ml.

(iii) 24時間後に培地を吸引し白色X線を照射。   (iii) After 24 hours, the medium was aspirated and irradiated with white X-rays.

(iv) 7〜9日後に固定しディフ・クイック染色によりコロニー数の評価。
<結果>
結果を図10に示す。
(iv) Fix after 7-9 days and evaluate the number of colonies by Diff-Quick staining.
<Result>
The results are shown in FIG.

培地のみ、及びDMSOを添加した培地(DMSO終濃度0.1%)のコントロール群に比較して、717を添加した群で生存率低下が確認された。T24では2Gyという低線量の照射でコロニーが形成されなくなった。   A decrease in the survival rate was confirmed in the group to which 717 was added, compared to the control group of the medium alone and the medium to which DMSO was added (DMSO final concentration 0.1%). In T24, colonies were not formed by irradiation with a low dose of 2 Gy.

従って、ポルフィリン誘導体にX線を照射すると増殖能が抑制されることが考えられた。   Therefore, it was considered that proliferation ability was suppressed when the porphyrin derivative was irradiated with X-rays.

蛍光プローブ試薬Aminophenyl Fluorescein(APF)による活性酸素の測定
APFは中性水溶液中でほとんど蛍光を持たないが、これらのプローブが強い活性を持つ活性酸素種と反応すると強蛍光性化合物であるフルオレセインが生成し、蛍光強度の増大が観測される。
Measurement of active oxygen by fluorescent probe reagent Aminophenyl Fluorescein (APF)
Although APF has almost no fluorescence in neutral aqueous solution, when these probes react with active oxygen species having strong activity, fluorescein, which is a strong fluorescent compound, is produced, and an increase in fluorescence intensity is observed.

そこで、本発明の化合物を添加してX線を照射した群において活性酸素が生じるかどうかを調べるため、以下の実験を行なった。
<実験手法>
(i) 96well plateに培地、培地にポルフィリン誘導体(HPPH-Gd、717)および0.1%DMSOを3μg/mlになるように添加。
Therefore, the following experiment was conducted in order to investigate whether or not active oxygen was generated in the group irradiated with X-rays by adding the compound of the present invention.
<Experimental method>
(i) A medium was added to a 96-well plate, and a porphyrin derivative (HPPH-Gd, 717) and 0.1% DMSO were added to the medium at 3 μg / ml.

(ii) Aminophenyl Fluorescein (APF)を5μMになるように添加。   (ii) Aminophenyl Fluorescein (APF) was added to 5 μM.

(iii) 5Gyの白色X線を照射。   (iii) Irradiate 5Gy white X-rays.

(iv) 暗所で37℃、30分間インキュベーション。   (iv) Incubate at 37 ° C for 30 minutes in the dark.

(v) 励起波長485nm、蛍光検出535nmで発光測定
<結果>
結果を図11に示す。
(v) Emission measurement at excitation wavelength of 485 nm and fluorescence detection of 535 nm <Results>
The results are shown in FIG.

図11において、上パネルはT24細胞、下パネルはMCF細胞について、活性酸素の生成量を示した図である。   In FIG. 11, the upper panel shows the amount of active oxygen produced for T24 cells and the lower panel for MCF cells.

T24細胞を含む培地(MEM)、MCF7細胞を含む培地(RPMI1640)、及びDMSOを添加した培地(DMSO終濃度0.1%)のコントロール群よりも、717化合物又はHPPH-Gdを培地に添加した群において、より発光の増加が確認された。   Compared to the control group of the medium containing T24 cells (MEM), the medium containing MCF7 cells (RPMI1640), and the medium supplemented with DMSO (DMSO final concentration 0.1%), in the group added 717 compound or HPPH-Gd to the medium As a result, an increase in light emission was confirmed.

すなわち、717又はHPPH-Gd化合物を含有する試験群にX線を照射すると活性酸素が発生することが確認された。   That is, it was confirmed that when a test group containing 717 or HPPH-Gd compound is irradiated with X-rays, active oxygen is generated.

従って、ポルフィリン誘導体の放射線増感作用は活性酸素の発生に基くものであると考えられた。   Therefore, it was considered that the radiosensitization effect of the porphyrin derivative was based on the generation of active oxygen.

本発明により、放射線を利用した光線力学療法、及び当該療法に使用される化合物が提供される。本発明によれば、従来行われていた癌の診断とともに、同一診断薬剤化合物を用いて診断と治療をセットにして行うことができる。また低エネルギーの単一波長を用いるてさらに術中に腫瘍細胞を照射した後に外科手術を行うことで、腫瘍細胞の残存、癌の再発を予防できる治療法を提供することができる。   According to the present invention, photodynamic therapy using radiation and a compound used in the therapy are provided. According to the present invention, it is possible to perform diagnosis and treatment as a set using the same diagnostic drug compound together with conventional diagnosis of cancer. In addition, by performing surgery after irradiating tumor cells during surgery using a single wavelength of low energy, it is possible to provide a therapeutic method capable of preventing the remaining of the tumor cells and the recurrence of cancer.

Claims (11)

次式I:
(式中、R1、R4、R7及びR10は、それぞれ独立して、水素原子、酸素原子、任意に置換されてもよいC1-10アルキル、任意に置換されてもよいC2-10アルケニル、任意に置換されてもよいC2-10アルキニル、任意に置換されてもよいC6-14アリール又は任意に置換されてもよい5〜14員ヘテロアリールを表し、ここで、置換基は、酸素原子、C1-6アルキル、並びにOR20及びCOOR20(R20は、水素原子、C1-6アルキル又はC2-6アルケニルを表す。)からなる群から選ばれる少なくとも1つであり、
R2、R5、R8及びR11は、それぞれ独立して、水素原子、酸素原子、任意に置換されてもよいC1-10アルキル、任意に置換されてもよいC2-10アルケニル、任意に置換されてもよいC2-10アルキニル、任意に置換されてもよいC6-14アリール又は任意に置換されてもよい5〜14員ヘテロアリールを表し、ここで、置換基は、酸素原子、C1-6アルキル、並びにOR30及びCOOR30(R30は、水素原子、任意に置換されてもよいC1-6アルキル、任意に置換されてもよいC2-10アルケニル、任意に置換されてもよいC6-14アリール、任意に置換されてもよいC7-20アリールアルキル又は任意に置換されてもよい5〜14員ヘテロアリールを表し、各置換基は、K殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ又は複数でさらに置換されてもよい。)からなる群から選ばれる少なくとも1つであり、
R3、R6、R9及びR12は、それぞれ独立して、水素原子、C1-10アルキル、C2-10アルケニル、C2-10アルキニル、C6-14アリール、C7-20アリールアルキル、5〜14員ヘテロアリール、C1-10アルコキシ、C2-10アルケニルオキシ、C2-10アルキニルオキシ、C6-14アリールオキシ又は5〜14員ヘテロアリールオキシを表し、前記アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、アルコキシ、アルケニルオキシ、アルキニルオキシ、アリールオキシ及びヘテロアリールオキシは、任意に、C1-6アルキル、C6-14アリール、C7-20アリールアルキル、-(CH2CH2O)n-R20、-(CH2)n-OR20及び-(CH2)n-COOR20(nは0〜6の整数であり、R20は、前記と同様である。)、並びにK殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ又は複数からなる群から選ばれる少なくとも1つで置換されてもよく、各置換基は、C1-6アルキル、C2-6アルケニル、又はK殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ若しくは複数でさらに置換されてもよく、
R8及びR9は、飽和又は不飽和の5員環又は6員環を形成することができ、前記環は、任意に、酸素原子、C1-6アルキル及びCOOR20(R20は、前記と同様である。)からなる群から選ばれる少なくとも1つで置換されてもよく、
Mは、金属、ケイ素又は水素原子であり、前記金属は、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Po、Ac、Th、Pa、U、Np、Pu、Am、Cm、Bk、Cf、Es、Fm、Md、No及びLr から選択され、
は単結合又は二重結合を表す。)
で示されるポルフィリン化合物が哺乳動物の腫瘍組織に集積したときに放射線を照射するように用いられることを特徴とする、前記ポルフィリン化合物を含む抗腫瘍剤。
Formula I:
Wherein R 1 , R 4 , R 7 and R 10 are each independently a hydrogen atom, an oxygen atom, an optionally substituted C 1-10 alkyl, or an optionally substituted C 2 Represents -10 alkenyl, optionally substituted C 2-10 alkynyl, optionally substituted C 6-14 aryl or optionally substituted 5-14 membered heteroaryl, wherein The group is an oxygen atom, C 1-6 alkyl, and at least one selected from the group consisting of OR 20 and COOR 20 (R 20 represents a hydrogen atom, C 1-6 alkyl or C 2-6 alkenyl). And
R 2 , R 5 , R 8 and R 11 are each independently a hydrogen atom, an oxygen atom, an optionally substituted C 1-10 alkyl, an optionally substituted C 2-10 alkenyl, Represents optionally substituted C 2-10 alkynyl, optionally substituted C 6-14 aryl or optionally substituted 5-14 membered heteroaryl, wherein the substituent is oxygen Atoms, C 1-6 alkyl, and OR 30 and COOR 30 (R 30 is a hydrogen atom, optionally substituted C 1-6 alkyl, optionally substituted C 2-10 alkenyl, optionally Represents an optionally substituted C 6-14 aryl, an optionally substituted C 7-20 arylalkyl or an optionally substituted 5-14 membered heteroaryl, each substituent having a K-shell absorption edge Group may be further substituted with one or more of the elements after element number 15 (P) showing 2 KeV or more. At least one selected et al.,
R 3 , R 6 , R 9 and R 12 are each independently a hydrogen atom, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 6-14 aryl, C 7-20 aryl Represents alkyl, 5-14 membered heteroaryl, C 1-10 alkoxy, C 2-10 alkenyloxy, C 2-10 alkynyloxy, C 6-14 aryloxy or 5-14 membered heteroaryloxy, said alkyl, alkenyl , Alkynyl, aryl, arylalkyl, heteroaryl, alkoxy, alkenyloxy, alkynyloxy, aryloxy and heteroaryloxy are, optionally, C 1-6 alkyl, C 6-14 aryl, C 7-20 arylalkyl,- (CH 2 CH 2 O) n -R 20 ,-(CH 2 ) n -OR 20 and-(CH 2 ) n -COOR 20 (n is an integer of 0 to 6, and R 20 is the same as above. And one of the elements after element number 15 (P) indicating that the K-shell absorption edge is 2 KeV or more. May be substituted with at least one member selected from the group consisting of a plurality, each substituent, C 1-6 alkyl, C 2-6 alkenyl, or K-shell absorption edge element number 15 that indicates the above 2 KeV (P ) May be further substituted with one or more of the following elements,
R 8 and R 9 can form a saturated or unsaturated 5-membered ring or 6-membered ring, and the ring is optionally an oxygen atom, C 1-6 alkyl and COOR 20 (R 20 is And may be substituted with at least one selected from the group consisting of:
M is a metal, silicon or hydrogen atom, the metal is Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No and Selected from Lr,
Represents a single bond or a double bond. )
An antitumor agent comprising the porphyrin compound, wherein the porphyrin compound is used to irradiate radiation when accumulated in a tumor tissue of a mammal.
R1、R4、R7及びR10は、それぞれ独立して、水素原子、又は任意に置換されてもよいC1-10アルキルを表し、ここで、置換基は、酸素原子、C1-6アルキル、並びにOR20及びCOOR20(R20は、水素原子、C1-6アルキル又はC2-6アルケニルを表す。)からなる群から選ばれる少なくとも1つである、請求項1に記載の抗腫瘍剤。R 1 , R 4 , R 7 and R 10 each independently represent a hydrogen atom or an optionally substituted C 1-10 alkyl, wherein the substituent is an oxygen atom, C 1- 6. The alkyl group according to claim 1, which is at least one selected from the group consisting of 6 alkyl, and OR 20 and COOR 20 (R 20 represents a hydrogen atom, C 1-6 alkyl or C 2-6 alkenyl). Antitumor agent. R2、R5、R8及びR11は、それぞれ独立して、水素原子、又は任意に置換されてもよいC1-10アルキルを表し、ここで、置換基は、酸素原子、C1-6アルキル、並びにOR30及びCOOR30(R30は、水素原子、任意に置換されてもよいC1-6アルキル、又は任意に置換されてもよいC6-14アリールを表し、各置換基は、K殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ又は複数でさらに置換されてもよい。)からなる群から選ばれる少なくとも1つである、請求項1又は2に記載の抗腫瘍剤。R 2 , R 5 , R 8 and R 11 each independently represent a hydrogen atom or an optionally substituted C 1-10 alkyl, wherein the substituent is an oxygen atom, C 1- 6 alkyl, and OR 30 and COOR 30 (R 30 represents a hydrogen atom, an optionally substituted C 1-6 alkyl, or an optionally substituted C 6-14 aryl. The K-shell absorption edge may be further substituted with one or more of the elements after element number 15 (P) showing 2 KeV or more.), At least one selected from the group consisting of Or the antitumor agent of 2. R3、R6、R9及びR12は、それぞれ独立して、水素原子、任意に置換されてもよいC1-10アルキル、任意に置換されてもよいC6-14アリール、任意に置換されてもよいC6-14アリールオキシ、又は任意に置換されてもよい5〜14員ヘテロアリールを表し、各置換基は、任意に、C1-6アルキル、C6-14アリール、C7-20アリールアルキル、-(CH2CH2O)n-R20、-(CH2)n-OR20及び-(CH2)n-COOR20(nは0〜6の整数であり、R20は、水素原子、C1-6アルキル又はC2-6アルケニルを表す。)、並びにK殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ又は複数からなる群から選ばれる少なくとも1つで置換されてもよく、各置換基は、C1-6アルキル、C2-6アルケニル、又はK殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ若しくは複数でさらに置換されてもよい、請求項1〜3のいずれか1項に記載の抗腫瘍剤。R 3 , R 6 , R 9 and R 12 are each independently a hydrogen atom, optionally substituted C 1-10 alkyl, optionally substituted C 6-14 aryl, optionally substituted Represents optionally substituted C 6-14 aryloxy, or optionally substituted 5-14 membered heteroaryl, wherein each substituent is optionally C 1-6 alkyl, C 6-14 aryl, C 7 -20 arylalkyl,-(CH 2 CH 2 O) n -R 20 ,-(CH 2 ) n -OR 20 and-(CH 2 ) n -COOR 20 (n is an integer from 0 to 6, R 20 Represents a hydrogen atom, C 1-6 alkyl or C 2-6 alkenyl.), And a group consisting of one or more of the elements after element number 15 (P) whose K-shell absorption edge is 2 KeV or more. At least one selected from the group consisting of C 1-6 alkyl, C 2-6 alkenyl, or an element of element number 15 (P) on which the K-shell absorption edge indicates 2 KeV or more. One or more of them It may be further substituted, antitumor agent according to any one of claims 1 to 3. R8及びR9は、飽和又は不飽和の5員環又は6員環を形成することができ、前記環は、任意に、酸素原子、C1-6アルキル及びCOOR20(R20は、水素原子、C1-6アルキル又はC2-6アルケニルを表す。)からなる群から選ばれる少なくとも1つで置換されてもよい、請求項1〜4のいずれか1項に記載の抗腫瘍剤。R 8 and R 9 can form a saturated or unsaturated 5-membered ring or 6-membered ring, and the ring is optionally an oxygen atom, C 1-6 alkyl and COOR 20 (R 20 is hydrogen The antitumor agent according to any one of claims 1 to 4, which may be substituted with at least one selected from the group consisting of an atom, C 1-6 alkyl or C 2-6 alkenyl. ポルフィリン化合物は、K殻吸収端が2KeV以上を示す元素番号15(P)以降の元素のうちの1つ又は複数で置換されたC6-14アリール又はC7-20アリールアルキルを含むものである、請求項1〜5のいずれか1項に記載の抗腫瘍剤。The porphyrin compound is one containing C 6-14 aryl or C 7-20 arylalkyl substituted with one or more of the elements after element number 15 (P) showing a K-shell absorption edge of 2 KeV or more. Item 6. The antitumor agent according to any one of Items 1 to 5. K殻吸収端が2KeV以上を示す元素番号15(P)以降の元素が、ハロゲン、ランタノイド、Y、Tc、Ru、Ba、In、Cs、Pt、Au及びTlから選ばれるものである請求項1〜4のいずれか1項に記載の抗腫瘍剤。   The element after element number 15 (P) having a K-shell absorption edge of 2 KeV or more is selected from halogen, lanthanoid, Y, Tc, Ru, Ba, In, Cs, Pt, Au and Tl. The antitumor agent of any one of -4. ハロゲンがI又はBrである請求項7に記載の抗腫瘍剤。   The antitumor agent according to claim 7, wherein the halogen is I or Br. ポルフィリン化合物が、次式II、III、IV、V、VI、VII、VIII、IX、X、XI、XII、XIII、XIV、XV及びXVIのいずれかで示されるものである請求項1に記載の抗腫瘍剤。
The porphyrin compound is represented by any one of the following formulas II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV, XV and XVI. Antitumor agent.
放射線がパラメトリック単色X線である請求項1〜9のいずれか1項に記載の抗腫瘍剤。   The antitumor agent according to any one of claims 1 to 9, wherein the radiation is parametric monochromatic X-rays. 次式IV、IX、XIII、XIV、XV又はXVIで示されるポルフィリン化合物。
Porphyrin compounds represented by the following formulas IV, IX, XIII, XIV, XV or XVI.
JP2011553911A 2010-02-12 2011-02-14 Porphyrin derivatives and their use in radiodynamic therapy Pending JPWO2011099602A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010029205 2010-02-12
JP2010029205 2010-02-12
PCT/JP2011/053054 WO2011099602A1 (en) 2010-02-12 2011-02-14 Porphyrin derivative and use thereof in radiation induced photodynamic therapy

Publications (1)

Publication Number Publication Date
JPWO2011099602A1 true JPWO2011099602A1 (en) 2013-06-17

Family

ID=44367868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011553911A Pending JPWO2011099602A1 (en) 2010-02-12 2011-02-14 Porphyrin derivatives and their use in radiodynamic therapy

Country Status (2)

Country Link
JP (1) JPWO2011099602A1 (en)
WO (1) WO2011099602A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014004306A2 (en) * 2011-08-23 2017-03-28 Yeda Res & Dev (bacterio) chlorophyll photosensitizers for treating eye diseases and disorders
US10328085B2 (en) 2014-05-09 2019-06-25 Uniwersytet Jagiellonski Cobalt porphyrins for the treatment of blood-related disorders
PL233504B1 (en) * 2014-05-09 2019-10-31 Univ Jagiellonski Application of cobalt porphyrins
WO2016178191A1 (en) * 2015-05-07 2016-11-10 Luzitin, S.A. Low molecular weight derivatives of carboxamide halogenated porphyrins, namely chlorins and bacteriochlorins, and their applications thereof
CN108752354A (en) * 2018-06-11 2018-11-06 三峡大学 A kind of synthesis of porphyrin fluorescence dyestuff and its method
CN108558893A (en) * 2018-06-11 2018-09-21 三峡大学 A kind of synthesis of porphyrin sensitizer and its method
CN111808111A (en) * 2020-06-16 2020-10-23 深圳大学 Iridium complex, preparation method thereof and photodynamic therapeutic drug

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3253663B2 (en) * 1992-01-20 2002-02-04 タマ生化学株式会社 Radiosensitizer
GB0415663D0 (en) * 2004-07-13 2004-08-18 Psimei Pharmaceuticals Plc Compound
US20060198783A1 (en) * 2005-02-25 2006-09-07 Health Research, Inc., Roswell Park Cancer Institute Division Porphyrin-based compounds for tumor imaging and photodynamic therapy

Also Published As

Publication number Publication date
WO2011099602A1 (en) 2011-08-18

Similar Documents

Publication Publication Date Title
WO2011099602A1 (en) Porphyrin derivative and use thereof in radiation induced photodynamic therapy
US10806694B2 (en) Nanoparticles for photodynamic therapy, X-ray induced photodynamic therapy, radiotherapy, radiodynamic therapy, chemotherapy, immunotherapy, and any combination thereof
TWI402270B (en) Camptothecin derivatives as chemoradiosensitizing agents
EP1773324B1 (en) Porphyrin derivatives and their use in photon activation therapy
CN113811333B (en) Compounds targeting anti-cancer nuclear hormone receptors
US20090048205A1 (en) Combination therapy with synthetic triterpenoids and gemcitabine
CN112566666A (en) Compounds targeting anti-cancer nuclear hormone receptors
KR20100121530A (en) Contrast agents for applications including perfusion imaging
JP6321673B2 (en) Radiosensitizer compounds for use in combination with radiation
TW202131930A (en) Anti-cancer nuclear hormone receptor-targeting compounds
Hu et al. A thermally activated delayed fluorescence photosensitizer for photodynamic therapy of oral squamous cell carcinoma under low laser intensity
EP3285769A1 (en) Selective pfkfb4 inhibitors for the treatment of cancer
AU2632100A (en) Boron steroid mimics and pharmaceutical compositions
KR101065932B1 (en) Radiotherapy enhancer
AU2012225298B2 (en) Compounds and methods of use in ablative radiotherapy
US6558650B1 (en) Enhancement of cellular gallium uptake
TW202108570A (en) Anti-cancer nuclear hormone receptor-targeting compounds
WO2021193744A1 (en) Method for treating cancer and system for same
JP2023547584A (en) Texaphyrin derivatives for manganese chemotherapy, photoacoustic imaging, and photothermal therapy
JP5794521B2 (en) Apoptosis inducer
KR20180124653A (en) A pharmaceutical composition for neutron capture therapy comprising gadolinium-labelled benzothiazole derivatives
TW201912186A (en) Multiple-functional probe and uses thereof