JPWO2011089817A1 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JPWO2011089817A1
JPWO2011089817A1 JP2011529407A JP2011529407A JPWO2011089817A1 JP WO2011089817 A1 JPWO2011089817 A1 JP WO2011089817A1 JP 2011529407 A JP2011529407 A JP 2011529407A JP 2011529407 A JP2011529407 A JP 2011529407A JP WO2011089817 A1 JPWO2011089817 A1 JP WO2011089817A1
Authority
JP
Japan
Prior art keywords
fuel
electrode
fuel cell
electrolyte membrane
generating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011529407A
Other languages
Japanese (ja)
Other versions
JP4888616B2 (en
Inventor
誉之 岡野
誉之 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2011529407A priority Critical patent/JP4888616B2/en
Application granted granted Critical
Publication of JP4888616B2 publication Critical patent/JP4888616B2/en
Publication of JPWO2011089817A1 publication Critical patent/JPWO2011089817A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

燃料極と酸化剤極との間に電解質膜が狭持され、燃料極と酸化剤極にそれぞれ燃料、酸化剤ガスを供給することにより発電する燃料電池において、燃料極に対向して配置され、表面から燃料を燃料極に向けて放出する燃料発生部材と、燃料極と燃料発生部材を、電解質膜とで覆って密封するシール部材と、を有する。In a fuel cell in which an electrolyte membrane is sandwiched between a fuel electrode and an oxidant electrode, and power is generated by supplying fuel and oxidant gas to the fuel electrode and the oxidant electrode, respectively, the fuel electrode is disposed to face the fuel electrode. A fuel generating member that discharges fuel from the surface toward the fuel electrode; and a seal member that covers the fuel electrode and the fuel generating member with an electrolyte membrane and seals the fuel electrode.

Description

本発明は、燃料電池に関し、特に燃料発生部材を有する燃料電池装置に関する。   The present invention relates to a fuel cell, and more particularly to a fuel cell device having a fuel generating member.

近年、水素と空気中の酸素から電力を取り出す燃料電池の開発が盛んに行われている。燃料電池は、発電時の排出物が水のみである為、環境に優れた発電方式であるだけでなく、原理的に取り出せる電力エネルギーの効率が高い為、省エネルギーになり、さらに、発電時に発生する熱を回収することにより、熱エネルギーをも利用することができるといった特徴を有しており、地球規模でのエネルギーや環境問題解決の切り札として期待されている。   In recent years, development of fuel cells that extract electric power from hydrogen and oxygen in the air has been actively conducted. Fuel cells are not only environmentally friendly power generation because the only waste generated during power generation is energy, but also the energy efficiency that can be extracted in principle is high, which saves energy and is generated during power generation. It has the feature that heat energy can be used by recovering heat, and it is expected as a trump card for solving global energy and environmental problems.

このような燃料電池は、例えば、固体ポリマーイオン交換膜を用いた固体高分子電解質膜、またはイットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質膜等を燃料極と酸化剤極とで両側から挟みこんだMEA構造体(Membrane Electrode Assembly;膜・電極接合体)の外側を一対のセパレータで挟持して形成されたものを1つのセル構成としている。そして、セルには、燃料極に燃料ガスである例えば水素を供給する水素流路、及び酸化剤極に酸化剤ガス例えば空気を供給する空気流路が設けられ、これらの流路を介して水素、空気をそれぞれ燃料極、酸化剤極に供給することで電気化学反応によって発電するものである(例えば、特許文献1参照)。   Such a fuel cell includes, for example, a solid polymer electrolyte membrane using a solid polymer ion exchange membrane or a solid oxide electrolyte membrane using yttria-stabilized zirconia (YSZ) on both sides of a fuel electrode and an oxidizer electrode. One cell structure is formed by sandwiching the outside of a MEA structure (membrane / electrode assembly) sandwiched between a pair of separators. The cell is provided with a hydrogen flow path for supplying, for example, hydrogen as a fuel gas to the fuel electrode, and an air flow path for supplying an oxidant gas, for example, air, to the oxidant electrode. Then, electricity is generated by an electrochemical reaction by supplying air to the fuel electrode and the oxidant electrode, respectively (see, for example, Patent Document 1).

ところで、燃料電池の燃料として用いられる水素やメタンガス等は、可燃性ガスであり、可燃範囲も広く、無色無臭である為、その取り扱いには十分な注意が必要であり、燃料の外部への漏洩を防止する安全対策が重要である。   By the way, hydrogen and methane gas used as fuel for fuel cells are flammable gases, have a wide flammable range, and are colorless and odorless. Safety measures to prevent this are important.

そこで、特許文献1では、複数の単位セルを固定板に載せた状態で外容器の内部に収納する構成としている。そして、各単位セルは固定板の溝に嵌合されているが、その嵌合部にホウケイ酸ガラス等の非導電性ガラス融体からなるシール材を設けることにより、燃料が固定板の外側の酸化剤ガスの供給路に漏洩することを防止している。   Therefore, in Patent Document 1, a plurality of unit cells are stored inside the outer container in a state of being placed on a fixed plate. Each unit cell is fitted in the groove of the fixing plate. By providing a sealing material made of a non-conductive glass melt such as borosilicate glass in the fitting portion, the fuel is placed outside the fixing plate. This prevents leakage to the oxidant gas supply path.

また、特許文献2では、各単位セルが2つのインターコネクタによって挟まれて積層されたスタック構成としている。そして、一方のインターコネクタの接合面に凸部を形成し、他方のインターコネクタの接合面にその凸部と噛み合せられる凹部を形成するか、あるいは、両方のインターコネクタのそれぞれの接合面に凸部と凹部の両方を両方のインターコネクタの接合時に噛み合せられるように形成しておき、さらに、互いに噛み合せる凹部と凸部の間に、変形可能な薄板を挟んでおくことにより、燃料の外部への漏洩を防止している。   Moreover, in patent document 2, it is set as the stack structure by which each unit cell was pinched | interposed and laminated | stacked by two interconnectors. Then, a convex portion is formed on the joint surface of one interconnector, and a concave portion that meshes with the convex portion is formed on the joint surface of the other interconnector, or a convex portion is formed on each joint surface of both interconnectors. And the concave portion are formed so that they can be engaged with each other when both interconnectors are joined, and a deformable thin plate is sandwiched between the concave portion and the convex portion to be engaged with each other. Leakage is prevented.

特開平5−36417号公報Japanese Patent Laid-Open No. 5-36417 特開2007−323984号公報JP 2007-323984 A

しかしながら、特許文献1及び2に記載されている技術は、何れも燃料が燃料電池の外部から流路を通じて供給される際に、燃料電池近傍における燃料の漏洩を防止するものにすぎず、燃料発生源からの燃料の漏洩については何ら記載していない。   However, the techniques described in Patent Documents 1 and 2 both prevent the leakage of fuel in the vicinity of the fuel cell when the fuel is supplied from the outside of the fuel cell through the flow path. There is no mention of fuel leaks from the source.

本発明は、上記課題に鑑みてなされたもので、容易に且つ確実に燃料漏れを防止することが可能な燃料電池を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a fuel cell capable of easily and reliably preventing fuel leakage.

上記目的は、下記に記載の発明によって達成される。   The above object is achieved by the invention described below.

1.燃料極と、
酸化剤極と、
前記燃料極と前記酸化剤極との間に狭持された電解質膜と、
燃料を前記燃料極に向けて放出する燃料発生部材と、
前記燃料極と前記燃料発生部材とを、前記電解質膜とで覆って密封するシール部材と、を有することを特徴とする燃料電池。
1. An anode,
An oxidizer electrode;
An electrolyte membrane sandwiched between the fuel electrode and the oxidant electrode;
A fuel generating member that discharges fuel toward the fuel electrode;
A fuel cell comprising: a sealing member that covers and seals the fuel electrode and the fuel generating member with the electrolyte membrane.

本発明によれば、燃料電池で使用される燃料の外部への漏洩を確実に防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, the leakage to the exterior of the fuel used with a fuel cell can be prevented reliably.

本発明の実施形態1に係る燃料電池の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the fuel cell which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る燃料電池の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the fuel cell which concerns on Embodiment 2 of this invention. 本発明の実施形態1及び実施形態2に係る燃料電池の製造工程の概略を示す模式図である。It is a schematic diagram which shows the outline of the manufacturing process of the fuel cell which concerns on Embodiment 1 and Embodiment 2 of this invention. 本発明の実施形態1に係る燃料電池の製造工程の概略を示す模式図である。It is a schematic diagram which shows the outline of the manufacturing process of the fuel cell which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る燃料電池の製造工程の概略を示す模式図である。It is a schematic diagram which shows the outline of the manufacturing process of the fuel cell which concerns on Embodiment 2 of this invention. 本発明の実施形態に係る燃料発生部材の別の形成方法を示す模式図である。It is a schematic diagram which shows another formation method of the fuel generation member which concerns on embodiment of this invention.

以下、図面に基づいて、本発明の実施形態に係る燃料電池を説明する。尚、本発明は、以下の実施の形態に限定されず、本発明の要旨を逸脱しない範囲で変更可能である。
(実施形態1)
本発明の実施形態1に係る燃料電池の構成を図1を用いて説明する。図1(a)は、燃料電池1の外観を示す模式図、図1(b)は、図1(a)におけるA−A′断面模式図、図1(c)は、図1(a)におけるB−B′断面模式図である。
Hereinafter, a fuel cell according to an embodiment of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment, It can change in the range which does not deviate from the summary of this invention.
(Embodiment 1)
The configuration of the fuel cell according to Embodiment 1 of the present invention will be described with reference to FIG. 1A is a schematic diagram showing the appearance of the fuel cell 1, FIG. 1B is a schematic cross-sectional view taken along the line AA ′ in FIG. 1A, and FIG. 1C is FIG. 1A. It is a BB 'cross-sectional schematic diagram in FIG.

燃料電池1は、図1に示すように、電解質膜101、燃料極102、酸化剤極103、燃料発生部材104、及びシール部材105等から構成される。   As shown in FIG. 1, the fuel cell 1 includes an electrolyte membrane 101, a fuel electrode 102, an oxidant electrode 103, a fuel generation member 104, a seal member 105, and the like.

燃料極102に燃料を供給する燃料発生部材104には、断面が矩形の複数の孔104hが形成され、孔104hの内面に沿って、燃料極102、電解質膜101、酸化剤極103がこの順で積層され、孔104hの中央部には、酸化剤極103に酸化剤ガスOxを供給する酸化剤流路107が形成されている。また、燃料極102と燃料発生部材104とは、燃料発生部材104の外面に形成されたシール部材105で覆われ、電解質膜101とで密封されている。また、燃料発生部材104の近傍には、燃料発生部材104の全体の温度を均一化する為の図示しないヒータが配置されている。   A plurality of holes 104h having a rectangular cross section are formed in the fuel generating member 104 that supplies fuel to the fuel electrode 102. The fuel electrode 102, the electrolyte membrane 101, and the oxidant electrode 103 are arranged in this order along the inner surface of the hole 104h. An oxidant channel 107 for supplying the oxidant gas Ox to the oxidant electrode 103 is formed at the center of the hole 104h. The fuel electrode 102 and the fuel generating member 104 are covered with a seal member 105 formed on the outer surface of the fuel generating member 104 and sealed with the electrolyte membrane 101. Further, in the vicinity of the fuel generating member 104, a heater (not shown) for making the entire temperature of the fuel generating member 104 uniform is disposed.

本実施形態において、燃料とは水素であり、酸化剤ガスOxとは酸素を含有するガス、例えば空気である。   In this embodiment, the fuel is hydrogen, and the oxidant gas Ox is a gas containing oxygen, such as air.

燃料電池1は、燃料発生部材104から燃料極102に水素を供給し、酸化剤流路107から酸化剤極103に酸素を供給することで生じる電気化学反応によって発電する。本実施形態の燃料電池1としては、固体酸化物燃料電池(SOFC)を用いる。   The fuel cell 1 generates power by an electrochemical reaction generated by supplying hydrogen from the fuel generating member 104 to the fuel electrode 102 and supplying oxygen from the oxidant flow path 107 to the oxidant electrode 103. As the fuel cell 1 of the present embodiment, a solid oxide fuel cell (SOFC) is used.

電解質膜101の材料としては、発電時に燃料極102側に水を発生するものが好適であり、例えば、安定化イットリアジルコニウム(YSZ)やペロブスカイト化合物であるLSGM(La−Sr−Ga−Mn)を用いた固体酸化物電解質等を用いることができる。なお、電解質膜101の材料としては、これらに限定されることなく、酸素イオンを通すもの、また、水酸化物イオンを通すものであり、燃料電池の電解質としての特性を満たすものであればよい。この場合、発電時に燃料極102側に水が発生するので、この水を用いた化学反応によって燃料発生部材104から燃料(水素)を発生させることができる。   As the material of the electrolyte membrane 101, a material that generates water on the fuel electrode 102 side during power generation is suitable. For example, stabilized yttria zirconium (YSZ) or perovskite compound LSGM (La-Sr-Ga-Mn) The solid oxide electrolyte used can be used. The material of the electrolyte membrane 101 is not limited to these, and any material that allows oxygen ions to pass through or hydroxide ions to pass through and satisfies the characteristics as an electrolyte of a fuel cell. . In this case, since water is generated on the fuel electrode 102 side during power generation, fuel (hydrogen) can be generated from the fuel generating member 104 by a chemical reaction using this water.

電解質膜101の成膜方法としては、電気化学蒸着法(CVD−EVD法:Chemical Vapor Deposition−Electrochemical Vapor Deposition)、原子層積層法(ALD法:Atomic Layer Deposition)、ディッピング法、塗布法等を用いることができる。   As a method for forming the electrolyte film 101, an electrochemical deposition method (CVD-EVD method: Chemical Vapor Deposition-Electrochemical Vapor Deposition), an atomic layer deposition method (ALD method: Atomic Layer Deposition), a dipping method, or the like is used. be able to.

燃料極102の材料としては、Ni−Feサーメット、Ni−YSZサーメット等を用いることができる。燃料極102の成膜方法は、蒸着法やスパッタ法を用いてもよいし、ディッピング法や化学気相成長法(CVD法:Chemical Vapor Deposition)、ALD法等の方法を用いると、複雑な形状に対しても均一な膜厚で成膜ができるので好適である。   As a material of the fuel electrode 102, Ni-Fe cermet, Ni-YSZ cermet, or the like can be used. The deposition method of the fuel electrode 102 may be a vapor deposition method, a sputtering method, or a complicated shape if a method such as a dipping method, a chemical vapor deposition (CVD method), or an ALD method is used. The film can be formed with a uniform film thickness.

酸化剤極103の材料としては、La−Mn−O系材料、La−Co−Ce系材料等を用いることができる。酸化剤極103の成膜方法は、ALD法、ディッピング法等を用いることができる。   As a material for the oxidant electrode 103, a La—Mn—O-based material, a La—Co—Ce-based material, or the like can be used. As a method for forming the oxidant electrode 103, an ALD method, a dipping method, or the like can be used.

燃料発生部材104の材料としては、化学反応によって燃料を発生するFeやMg合金、また、分子の構造によって燃料を脱吸着できるカーボンナノチューブ等を用いることができる。また、燃料発生部材104は、燃料を発生させるだけでなく、燃料を吸蔵(吸着)できるものでもよい。この場合、燃料発生部材104から燃料を発生させた後、吸蔵(吸着)作業を行うことで、繰り返し燃料発生部材104を用いることができる。燃料である水素を吸蔵できる材料としては、Ni、Fe、Pd、V、Mg等を基材料とする水素吸蔵合金を用いることができる。本実施形態においては、化学反応によって好適に水素を発生できる鉄(Fe)を用いる。   As a material of the fuel generating member 104, Fe or Mg alloy that generates fuel by a chemical reaction, carbon nanotubes that can desorb the fuel by a molecular structure, and the like can be used. Further, the fuel generating member 104 may not only generate fuel but also be able to occlude (adsorb) fuel. In this case, the fuel generating member 104 can be repeatedly used by performing the occlusion (adsorption) operation after generating the fuel from the fuel generating member 104. As a material capable of storing hydrogen as a fuel, a hydrogen storage alloy based on Ni, Fe, Pd, V, Mg, or the like can be used. In this embodiment, iron (Fe) that can suitably generate hydrogen by a chemical reaction is used.

燃料発生部材104の形成方法は、燃料発生部材の材料を金型に充填して、圧縮成型する方法、また、例えば樹脂材料等に燃料発生部材の材料を混合し、金型に流し込んだ後、樹脂材料を加熱蒸発等によって除去して成型する方法等を用いることができる。また、図6に示すように、上下の面にそれぞれ複数の溝104mを有する板状の燃料発生部材104A、104Bを上記の方法で成型した後、それぞれを接合することで形成してもよい。   The method of forming the fuel generating member 104 is a method of filling the mold with the material of the fuel generating member and compression molding, or, for example, mixing the material of the fuel generating member with a resin material or the like and pouring the material into the mold. A method in which the resin material is removed by heating evaporation or the like can be used. Further, as shown in FIG. 6, plate-like fuel generating members 104A and 104B each having a plurality of grooves 104m on the upper and lower surfaces may be formed by the above method and then joined together.

燃料発生部材104の燃料を放出する放出面と、燃料極102の燃料が供給される供給面とは、互いに対向して配置される。本実施形態では、燃料発生部材104を燃料極102に接するように設けているが、これに限らず、例えば、燃料発生部材104と燃料極102との間に、燃料を通過させる多孔質層を設けてもよい。また、多孔質層の代わりに、ビーズやスペーサ等を配置することもできる。   The discharge surface for discharging the fuel of the fuel generating member 104 and the supply surface for supplying the fuel of the fuel electrode 102 are disposed to face each other. In this embodiment, the fuel generating member 104 is provided so as to be in contact with the fuel electrode 102. However, the present invention is not limited to this. For example, a porous layer that allows fuel to pass between the fuel generating member 104 and the fuel electrode 102 is provided. It may be provided. Further, instead of the porous layer, beads, spacers and the like can be arranged.

燃料発生部材104の近傍に配置されたヒータにより、燃料発生部材104の全体の温度を一様に上昇させることで、燃料が燃料発生部材104の放出面から面状に放出される。このようにして、燃料発生部材104は、その放出面の全面から燃料極102の供給面の全面に向けて燃料を放出することができる。   By uniformly raising the temperature of the entire fuel generating member 104 by the heater disposed in the vicinity of the fuel generating member 104, the fuel is discharged in a planar shape from the discharge surface of the fuel generating member 104. In this way, the fuel generating member 104 can discharge the fuel from the entire discharge surface toward the entire supply surface of the fuel electrode 102.

燃料発生部材104として鉄(Fe)を用いた場合には、下記式(1)に示す化学反応によって、鉄(Fe)は、燃料極102で発生した水(HO)との反応により酸化鉄(Fe)に変化することで、水素(H)を発生させる。When iron (Fe) is used as the fuel generating member 104, the iron (Fe) is oxidized by a reaction with water (H 2 O) generated at the fuel electrode 102 by a chemical reaction represented by the following formula (1). By changing to iron (Fe 3 O 4 ), hydrogen (H 2 ) is generated.

4HO+3Fe→4H+Fe・・・(1)
また、燃料発生部材104の燃料発生速度は、放出面上の位置によらず、略一定になるようにする。具体的には熱化学平衡を用いる。燃料発生部材104の温度を昇降させると、平衡状態からのずれに応じた燃料を発生させることができるので、燃料発生部材104全体の温度を、ヒータを用いて均一にすることで、場所によらず一定の速度で燃料を発生させることができる。
4H 2 O + 3Fe → 4H 2 + Fe 3 O 4 (1)
Further, the fuel generation speed of the fuel generation member 104 is set to be substantially constant regardless of the position on the discharge surface. Specifically, thermochemical equilibrium is used. When the temperature of the fuel generating member 104 is raised or lowered, fuel corresponding to the deviation from the equilibrium state can be generated. Therefore, by making the temperature of the entire fuel generating member 104 uniform by using a heater, it can be determined depending on the location. Therefore, fuel can be generated at a constant speed.

シール部材105は、燃料発生部材104の外面を覆うように形成され、燃料極102と燃料発生部材104とを電解質膜101とで密封する。即ち、シール部材105は、燃料極102及び燃料発生部材104の両者の電解質膜101とは接していない面の全てを覆うように設けられる。シール部材105の材料としては、電解質膜101の場合と同様に、安定化イットリアジルコニウム(YSZ)やペロブスカイト化合物であるLSGM(La−Sr−Ga−Mn)を用いることができ、また、二酸化ケイ素等、電解質膜101とは異なる材料であっても構わない。シール部材105の成膜方法は、燃料極102の場合と同様に、蒸着法やスパッタ法を用いてもよいし、ディッピング法や化学気相成長法(CVD法)、ALD法等の方法を用いると、複雑な形状に対しても均一な膜厚で成膜ができるので好適である。   The seal member 105 is formed so as to cover the outer surface of the fuel generation member 104, and seals the fuel electrode 102 and the fuel generation member 104 with the electrolyte membrane 101. That is, the seal member 105 is provided so as to cover all surfaces of the fuel electrode 102 and the fuel generation member 104 that are not in contact with the electrolyte membrane 101. As the material of the sealing member 105, as in the case of the electrolyte membrane 101, it is possible to use stabilized yttria zirconium (YSZ) or LSGM (La-Sr-Ga-Mn) which is a perovskite compound. A material different from that of the electrolyte membrane 101 may be used. As with the fuel electrode 102, the film formation method of the seal member 105 may use an evaporation method or a sputtering method, or a method such as a dipping method, a chemical vapor deposition method (CVD method), or an ALD method. This is preferable because a film can be formed with a uniform film thickness even for a complicated shape.

シール部材105は、電解質膜101の酸化剤極103が成膜される面をマスキングしておき、単純に素子(構造物)全体をシール部材105の材料でコーティングすることで形成できる。   The seal member 105 can be formed by masking the surface of the electrolyte membrane 101 on which the oxidant electrode 103 is formed and simply coating the entire element (structure) with the material of the seal member 105.

このように、本実施形態においては、燃料を燃料極102に向けて放出する燃料発生部材104を設け、燃料極102と燃料発生部材104とを電解質膜101とで覆って密封するシール部材105を備える構成としている。これにより、各部材間の高精度な位置合わせ等を行うことなく、簡単な製造方法で燃料を封止する封止構造を形成でき、燃料電池1で使用される燃料の外部への漏洩を確実に防止することができる。   As described above, in this embodiment, the fuel generating member 104 that discharges the fuel toward the fuel electrode 102 is provided, and the sealing member 105 that covers the fuel electrode 102 and the fuel generating member 104 with the electrolyte membrane 101 and seals it is provided. It is configured to provide. As a result, a sealing structure for sealing the fuel can be formed by a simple manufacturing method without performing highly accurate positioning between the respective members, and the leakage of the fuel used in the fuel cell 1 to the outside can be ensured. Can be prevented.

なお、本実施形態において、燃料発生部材104の孔104hの断面形状を矩形としたが、これに限定されることなく、例えば、円形としてもよい。
(実施形態2)
本発明の実施形態2に係る燃料電池の構成を、図2を用いて説明する。図2(a)は、燃料電池1の外観を示す模式図、図2(b)は、図2(a)におけるA−A′断面模式図、図2(c)は、図2(a)におけるB−B′断面模式図である。
In the present embodiment, the cross-sectional shape of the hole 104h of the fuel generating member 104 is rectangular, but the present invention is not limited to this, and may be circular, for example.
(Embodiment 2)
A configuration of a fuel cell according to Embodiment 2 of the present invention will be described with reference to FIG. 2A is a schematic diagram showing the appearance of the fuel cell 1, FIG. 2B is a schematic cross-sectional view taken along the line AA ′ in FIG. 2A, and FIG. 2C is FIG. 2A. It is a BB 'cross-sectional schematic diagram in FIG.

実施形態2に係る燃料電池1の基本構成は、実施形態1の場合と概ね同様なのでその説明は省略し、実施形態1の場合と異なるシール部材105について説明する。   Since the basic configuration of the fuel cell 1 according to the second embodiment is substantially the same as that of the first embodiment, the description thereof will be omitted, and a seal member 105 different from that of the first embodiment will be described.

実施形態2におけるシール部材105は、電解質膜101の材料と同じ材料を用いて電解質膜101と一体化して同時に形成されている。即ち、電解質膜101とシール部材105とは同一の部材である。   The seal member 105 in the second embodiment is formed simultaneously with the electrolyte membrane 101 by using the same material as that of the electrolyte membrane 101. That is, the electrolyte membrane 101 and the seal member 105 are the same member.

この場合、電解質膜101及びシール部材105に用いる材料は、燃料発生部材104から発生する燃料(水素)を透過せず、酸素イオンを透過するものであればよい。シール部材105の材料に、電解質膜101の材料と同じ材料を用いることにより、電解質膜101を成膜する際にシール部材105を同時に一体化して形成することができるので、製造工程を簡略化でき、製造コストを低減することができる。   In this case, the material used for the electrolyte membrane 101 and the seal member 105 may be any material that does not transmit the fuel (hydrogen) generated from the fuel generation member 104 but transmits oxygen ions. By using the same material as the material of the electrolyte membrane 101 as the material of the seal member 105, the seal member 105 can be formed integrally at the same time when forming the electrolyte membrane 101, so that the manufacturing process can be simplified. The manufacturing cost can be reduced.

実施形態2においても、実施形態1と同様に、各部材間の高精度な位置合わせ等を行うことなく、簡単な製造方法で燃料を封止する封止構造を形成でき、燃料電池1で使用される燃料の外部への漏洩を確実に防止することができる。   In the second embodiment, similarly to the first embodiment, a sealing structure for sealing fuel can be formed by a simple manufacturing method without performing high-precision positioning between the members, and the fuel cell 1 can be used. It is possible to reliably prevent leakage of fuel to the outside.

尚、本実施形態においては、燃料発生部材104の孔104hの断面形状を矩形としたが、これに限定されることなく、例えば、円形としてもよい。   In the present embodiment, the cross-sectional shape of the hole 104h of the fuel generating member 104 is rectangular, but the present invention is not limited to this, and may be circular, for example.

(実施例1)
実施例1は、実施形態1に係る燃料電池1の製造例である。
Example 1
Example 1 is an example of manufacturing the fuel cell 1 according to the first embodiment.

実施例1における製造方法を図3、図4、及び図6を用いて説明する。図3、図4は、燃料電池1の実施例1における製造工程を示す模式図であり、図3(a1)、図3(b1)、図4(a1)、図4(b1)は、各工程での外観を示す模式図、図3(a2)、図3(b2)、図4(a2)、図4(b2)は、それぞれ図3(a1)、図4(a1)におけるB−B′断面模式図である。尚、図3は、実施例1、及び後述の実施例2における共通の工程を示す模式図である。   The manufacturing method in Example 1 is demonstrated using FIG.3, FIG.4 and FIG.6. 3 and 4 are schematic diagrams showing the manufacturing process in Example 1 of the fuel cell 1. FIGS. 3 (a1), 3 (b1), 4 (a1), and 4 (b1) FIG. 3A2, FIG. 3B2, FIG. 4A2, and FIG. 4B2 are schematic views showing the appearance in the process, respectively, and are BB in FIG. 3A1 and FIG. 4A1, respectively. It is a cross-sectional schematic diagram. FIG. 3 is a schematic diagram showing common steps in Example 1 and Example 2 described later.

最初に、樹脂にMgを混合し、金型に充填した後、加熱することで、樹脂を蒸発乾燥させて、上下の面にそれぞれ複数の溝104mを有する板状の燃料発生部材104A、104Bを形成した(図6)。   First, Mg is mixed into the resin, the mold is filled, and then heated to evaporate and dry the resin, so that the plate-like fuel generating members 104A and 104B having a plurality of grooves 104m on the upper and lower surfaces respectively. Formed (FIG. 6).

次に、形成された燃料発生部材104A、104Bを積層して接合し、断面が矩形の複数の孔104hを有する燃料発生部材104を形成した(図3(a1)、図3(a2))。   Next, the formed fuel generating members 104A and 104B were stacked and joined to form the fuel generating member 104 having a plurality of holes 104h having a rectangular cross section (FIGS. 3 (a1) and 3 (a2)).

次に、燃料発生部材104の孔104hの内面に沿って、ALD法を用いてNi−YSZサーメットを成膜し、燃料極102を形成した(図3(b1)、図3(b2))。続いて、形成された各燃料極102にリード線112を接続した。   Next, a Ni-YSZ cermet was formed by using the ALD method along the inner surface of the hole 104h of the fuel generating member 104 to form the fuel electrode 102 (FIGS. 3 (b1) and 3 (b2)). Subsequently, a lead wire 112 was connected to each formed fuel electrode 102.

次に、燃料極102の内面に沿って、ディッピング法を用いてYSZを成膜し、電解質膜101を形成した。続いて、電解質膜101の酸化剤極103が成膜されるべき面をレジストでマスキングした後、CVD法を用いて二酸化ケイ素(SiO)を素子(構造物)全面に成膜した。その後、レジストを有機溶媒で除去することでシール部材105を形成した(図4(a1)、図4(a2))。Next, a YSZ film was formed along the inner surface of the fuel electrode 102 using a dipping method to form an electrolyte film 101. Subsequently, the surface of the electrolyte film 101 on which the oxidant electrode 103 was to be formed was masked with a resist, and then silicon dioxide (SiO 2 ) was formed on the entire surface of the element (structure) using the CVD method. Then, the seal member 105 was formed by removing the resist with an organic solvent (FIGS. 4A1 and 4A2).

次に、電解質膜101の内面に沿って、ディッピング法を用いてLa−Co−Ce系材料を成膜し、酸化剤極103を形成した(図4(b1)、図4(b2))。このとき、形成された酸化剤極103の内面の壁面により酸化剤流路107が形成された。続いて、形成された各酸化剤極103にリード線112を接続し、燃料電池1を完成させた。   Next, a La—Co—Ce-based material was formed along the inner surface of the electrolyte membrane 101 using a dipping method to form an oxidizer electrode 103 (FIGS. 4B1 and 4B2). At this time, the oxidant flow path 107 was formed by the inner wall surface of the formed oxidant electrode 103. Subsequently, the lead wire 112 was connected to each formed oxidant electrode 103 to complete the fuel cell 1.

このようにして完成させた実施例1による燃料電池1においては、燃料極102と燃料発生部材104とが、電解質膜101とシール部材105によって密封されることにより、燃料漏れが確実に防止できていることが確認できた。   In the fuel cell 1 according to the first embodiment completed in this way, the fuel electrode 102 and the fuel generating member 104 are sealed by the electrolyte membrane 101 and the sealing member 105, so that fuel leakage can be reliably prevented. It was confirmed that

(実施例2)
実施例2は、実施形態2に係る燃料電池1の製造例である。
(Example 2)
Example 2 is an example of manufacturing the fuel cell 1 according to Embodiment 2.

実施例2における製造方法を図3、及び図5を用いて説明する。図3、図5は、燃料電池1の実施例2における製造工程を示す模式図であり、図3(a1)、図3(b1)、図5(a1)、図5(b1)は、各工程での外観を示す模式図、図3(a2)、図3(b2)、図5(a2)、図5(b2)は、それぞれ図3(a1)、図5(a1)におけるB−B′断面模式図である。   The manufacturing method in Example 2 is demonstrated using FIG.3 and FIG.5. 3 and 5 are schematic diagrams showing the manufacturing process in Example 2 of the fuel cell 1. FIGS. 3 (a1), 3 (b1), 5 (a1), and 5 (b1) FIG. 3A2, FIG. 3B2, FIG. 5A2, and FIG. 5B2 are schematic views showing the appearance in the process, respectively, and are BB in FIG. 3A1 and FIG. 5A1, respectively. It is a cross-sectional schematic diagram.

最初に、鉄粉を金型に充填し、圧縮成形することで、断面が矩形の複数の孔104hを有する燃料発生部材104を形成した(図3(a1)、図3(a2))。   First, the fuel generating member 104 having a plurality of holes 104h having a rectangular cross section was formed by filling iron powder into a mold and compression molding (FIGS. 3 (a1) and 3 (a2)).

次に、燃料発生部材104の孔104hの内面に沿って、ALD法を用いてNi−Feサーメットを成膜し、燃料極102を形成した(図3(b1)、図3(b2))。続いて、形成された各燃料極102にリード線112を接続した。   Next, a Ni—Fe cermet was formed by using the ALD method along the inner surface of the hole 104h of the fuel generating member 104 to form the fuel electrode 102 (FIGS. 3 (b1) and 3 (b2)). Subsequently, a lead wire 112 was connected to each formed fuel electrode 102.

次に、素子(構造物)全面に、ALD法を用いてLSGMを成膜することで、電解質膜101、及びシール部材105を一体化して形成した(図5(a1)、図5(a2))。   Next, an LSGM film was formed on the entire surface of the element (structure) by using the ALD method, so that the electrolyte membrane 101 and the seal member 105 were integrally formed (FIGS. 5A1 and 5A2). ).

次に、電解質膜101の内面に沿って、ALD法を用いてLa−Mn−O系材料を成膜し、酸化剤極103を形成した(図5(b1)、図5(b2))。このとき、形成された酸化剤極103の内面の壁面により酸化剤流路107が形成された。続いて、形成された各酸化剤極103にリード線112を接続し、燃料電池1を完成させた。   Next, a La—Mn—O-based material was formed along the inner surface of the electrolyte membrane 101 by using an ALD method to form an oxidizer electrode 103 (FIGS. 5B1 and 5B2). At this time, the oxidant flow path 107 was formed by the inner wall surface of the formed oxidant electrode 103. Subsequently, the lead wire 112 was connected to each formed oxidant electrode 103 to complete the fuel cell 1.

このようにして完成させた実施例2による燃料電池1においては、実施例1の場合と同様に、燃料極102と燃料発生部材104とが、電解質膜101とシール部材105によって密封されることにより、燃料漏れが確実に防止できていることが確認できた。   In the fuel cell 1 according to the second embodiment completed as described above, the fuel electrode 102 and the fuel generating member 104 are sealed by the electrolyte membrane 101 and the seal member 105 as in the first embodiment. As a result, it was confirmed that fuel leakage could be reliably prevented.

さらに、シール部材105は、電解質膜101の材料と同じ材料を用いて電解質膜101と一体化して同時に形成したので、製造工程を簡略化でき、より容易に封止層を形成できることが確認できた。   Furthermore, since the sealing member 105 was formed by using the same material as that of the electrolyte membrane 101 and integrated with the electrolyte membrane 101 at the same time, it was confirmed that the manufacturing process can be simplified and the sealing layer can be formed more easily. .

1 燃料電池
101 電解質膜
102 燃料極
103 酸化剤極
104 燃料発生部材
105 シール部材
107 酸化剤流路
112 リード線
1 Fuel Cell 101 Electrolyte Membrane 102 Fuel Electrode 103 Oxidant Electrode 104 Fuel Generating Member 105 Sealing Member 107 Oxidant Channel 112 Lead Wire

Claims (7)

燃料極と、
酸化剤極と、
前記燃料極と前記酸化剤極との間に狭持された電解質膜と、
燃料を前記燃料極に向けて放出する燃料発生部材と、
前記燃料極と前記燃料発生部材とを、前記電解質膜とで覆って密封するシール部材と、を有することを特徴とする燃料電池。
An anode,
An oxidizer electrode;
An electrolyte membrane sandwiched between the fuel electrode and the oxidant electrode;
A fuel generating member that discharges fuel toward the fuel electrode;
A fuel cell comprising: a sealing member that covers and seals the fuel electrode and the fuel generating member with the electrolyte membrane.
前記電解質膜は、発電時に前記燃料極で水を発生する電解質で形成されており、
前記燃料発生部材は、前記燃料極で発生された水との化学反応によって燃料である水素を発生するものであることを特徴とする請求項1に記載の燃料電池。
The electrolyte membrane is formed of an electrolyte that generates water at the fuel electrode during power generation,
2. The fuel cell according to claim 1, wherein the fuel generating member generates hydrogen as a fuel by a chemical reaction with water generated at the fuel electrode.
前記シール部材の材料は、前記電解質膜の材料と同じ材料であることを特徴とする請求項1または2に記載の燃料電池。   The fuel cell according to claim 1, wherein a material of the sealing member is the same material as that of the electrolyte membrane. 前記シール部材は、前記電解質膜と一体化して同時に形成されていることを特徴とする請求項3に記載の燃料電池。   The fuel cell according to claim 3, wherein the seal member is integrally formed with the electrolyte membrane at the same time. 前記燃料発生部材の材料は、鉄を含むことを特徴とする請求項1から4の何れか1項に記載の燃料電池。   The fuel cell according to any one of claims 1 to 4, wherein the material of the fuel generating member includes iron. 前記燃料発生部材には、孔が形成され、
前記孔の内面に沿って、前記燃料極、前記電解質膜、前記酸化剤極がこの順で積層され、前記孔の中央部には、前記酸化剤極に酸化剤ガスを供給する酸化剤流路が形成されていることを特徴とする請求項1から5の何れか1項に記載の燃料電池。
A hole is formed in the fuel generating member,
The fuel electrode, the electrolyte membrane, and the oxidant electrode are laminated in this order along the inner surface of the hole, and an oxidant channel that supplies an oxidant gas to the oxidant electrode at the center of the hole. The fuel cell according to claim 1, wherein the fuel cell is formed.
前記燃料発生部材には、前記孔が複数形成されていることを特徴とする請求項6に記載の燃料電池。   The fuel cell according to claim 6, wherein a plurality of the holes are formed in the fuel generating member.
JP2011529407A 2010-01-25 2010-12-22 Fuel cell Expired - Fee Related JP4888616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011529407A JP4888616B2 (en) 2010-01-25 2010-12-22 Fuel cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010012936 2010-01-25
JP2010012936 2010-01-25
PCT/JP2010/073147 WO2011089817A1 (en) 2010-01-25 2010-12-22 Fuel battery
JP2011529407A JP4888616B2 (en) 2010-01-25 2010-12-22 Fuel cell

Publications (2)

Publication Number Publication Date
JP4888616B2 JP4888616B2 (en) 2012-02-29
JPWO2011089817A1 true JPWO2011089817A1 (en) 2013-05-23

Family

ID=44306633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011529407A Expired - Fee Related JP4888616B2 (en) 2010-01-25 2010-12-22 Fuel cell

Country Status (2)

Country Link
JP (1) JP4888616B2 (en)
WO (1) WO2011089817A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515995B2 (en) * 2010-04-09 2014-06-11 コニカミノルタ株式会社 Fuel cell
CA3095432A1 (en) * 2018-03-30 2019-10-03 Osaka Gas Co., Ltd. Fuel cell single unit, fuel cell module, and fuel cell device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156198A (en) * 2004-11-30 2006-06-15 Kurita Water Ind Ltd Supply device of fuel for fuel cell, supply method of fuel, and fuel cell system
JP2006232593A (en) * 2005-02-23 2006-09-07 Nitto Denko Corp Hydrogen producing cell and hydrogen producing apparatus
JP2009099491A (en) * 2007-10-19 2009-05-07 Sharp Corp Fuel cell system and electronic equipment
JP2010103033A (en) * 2008-10-27 2010-05-06 Fujitsu Ltd Fuel cell

Also Published As

Publication number Publication date
WO2011089817A1 (en) 2011-07-28
JP4888616B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
US7670698B2 (en) Silicide fueled power generators and methods related thereto
TWI257731B (en) Cartridge with fuel supply and membrane electrode assembly stack
US9252435B2 (en) Solid oxide fuel cell device
JP2014041839A (en) Power generator shutoff valve
JP4816816B2 (en) Fuel cell
GB2453665A (en) Solid Oxide Fuel Cell
JP2012227095A (en) Fuel cell
US20070253875A1 (en) Hydrogen supply for micro fuel cells
JP2014207120A (en) Solid oxide electrochemical cell stack structure and hydrogen power storage system
JP4888616B2 (en) Fuel cell
JP5021756B2 (en) Solid oxide fuel cell
JP4888615B2 (en) Fuel cell
JPWO2008023634A1 (en) Fuel cell
JP2014072140A (en) Fuel cell stack
WO2011030651A1 (en) Fuel cell device
JP2016058359A (en) Horizontal stripe type solid oxide fuel battery cell
JP2932617B2 (en) Solid oxide fuel cell
JP2011165371A (en) Fuel cell
TW201330373A (en) Power generating apparatus using effluent gases exhausted from process chamber
JP2013222505A (en) Fuel battery and manufacturing method thereof
KR101337453B1 (en) Combined parts for fuel cell separator
JP5515995B2 (en) Fuel cell
US7241525B2 (en) Fuel cell layer with reactor frame
JP2008041401A (en) Fuel cell
JP2006079913A (en) Fuel cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees