JPWO2011052759A1 - Novel nitroxyl radical compound and method for producing the same - Google Patents

Novel nitroxyl radical compound and method for producing the same Download PDF

Info

Publication number
JPWO2011052759A1
JPWO2011052759A1 JP2011538512A JP2011538512A JPWO2011052759A1 JP WO2011052759 A1 JPWO2011052759 A1 JP WO2011052759A1 JP 2011538512 A JP2011538512 A JP 2011538512A JP 2011538512 A JP2011538512 A JP 2011538512A JP WO2011052759 A1 JPWO2011052759 A1 JP WO2011052759A1
Authority
JP
Japan
Prior art keywords
compound
formula
compound represented
mmol
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011538512A
Other languages
Japanese (ja)
Other versions
JP5911131B2 (en
Inventor
英雄 内海
英雄 内海
浄 酒井
浄 酒井
山田 健一
健一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Publication of JPWO2011052759A1 publication Critical patent/JPWO2011052759A1/en
Application granted granted Critical
Publication of JP5911131B2 publication Critical patent/JP5911131B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/10Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with radicals containing only carbon and hydrogen atoms attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/18Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D211/34Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/40Oxygen atoms
    • C07D211/44Oxygen atoms attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/20Spiro-condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/20Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/20Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/20Spiro-condensed systems

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hydrogenated Pyridines (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Cardiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)

Abstract

【解決手段】 本発明は、新規なニトロキシルラジカルの製造方法ならびにその化合物に関する。さらに、本願製造方法により得られるニトロキシルラジカルは、胃潰瘍及び高血圧症に対して治療効果を有するものである。【選択図】 なしThe present invention relates to a method for producing a novel nitroxyl radical and a compound thereof. Furthermore, the nitroxyl radical obtained by the production method of the present application has a therapeutic effect on gastric ulcer and hypertension. [Selection figure] None

Description

本出願は、2009年10月29日付出願の米国仮出願第61/256,184号に対して優先権を主張するものであり、前記仮出願の開示内容はすべて、本願発明に組み込まれるものである。   This application claims priority to US Provisional Application No. 61 / 256,184, filed Oct. 29, 2009, the entire disclosure of which is incorporated herein. is there.

本発明は、2,6位置換ピペリジン系ニトロキシルラジカル及びその新規合成法に関する。   The present invention relates to a 2,6-substituted piperidine-based nitroxyl radical and a novel synthesis method thereof.

ニトロキシルラジカルは、比較的安定なラジカルとして知られているが、種々の活性酸素や酸化還元物質に対して鋭敏に反応することから、フリーラジカルが関与する様々な疾患に対するニトロキシルラジカルの効果が期待されている。   Nitroxyl radicals are known as relatively stable radicals, but they react sensitively to various active oxygen and redox substances, so that the effects of nitroxyl radicals on various diseases involving free radicals are reduced. Expected.

フリーラジカルが関与する疾患は、疾患の原因となるフリーラジカル種が異なるため、特定の疾患に特異的に働く有効なラジカル補足種が望まれている。これまでの研究により、ニトロキシルラジカルの基本骨格や側鎖の違いにより、その反応性が異なることが知られている(F.Vianello,et al.,Kinetics of nitroxide spin label removal in biological systems:An in vitro and in vivo ESR study.Magn Reson Imag, 1995.13(2):219−226.;W.R.Couet,et al.,Influence of chemical structure of nitroxyl spin labels on their reduction by ascorbic acid. Tetrahedron, 1985.41(7):1165−1172.;K. Takeshita, et al., Kinetic study on ESR signal decay of nitroxyl radicals,potent redox probes for in vivo ESR spectroscopy,caused by reactive oxygen species.Biochim Biophys Acta,2002.1573(2):156−64.)。例えば、ニトロキシルラジカルは、細胞内で、アスコルビン酸やチオール(金属が触媒する反応)、ミトコンドリア呼吸鎖、NADPH、シトクロムP450などと反応することが報告され、アポトーシスの誘発や、シトクロムP450を介したHの産生などが細胞毒性の原因となっていると報告されている。一方、テトラエチル基を有するニトロキシルラジカルは、アスコルビン酸との反応性が顕著に低下していることが報告されている。Diseases involving free radicals are different in free radical species that cause the disease, and therefore, effective radical scavenging species that specifically act on specific diseases are desired. It is known that the reactivity differs depending on the basic skeleton and side chain of the nitroxyl radical according to previous studies (F. Vianello, et al., Kinetics of nitroxide spin label removal in biological systems: An in vitro and in vivo ESR study.Magn Reson Imag, 1995.13 (2): 219-226.; WR Couette, et al., Influencing of chemical structure of the brain. 1985.41 (7): 1165-1172; . Eshita, et al, Kinetic study on ESR signal decay of nitroxyl radicals, potent redox probes for in vivo ESR spectroscopy, caused by reactive oxygen species.Biochim Biophys Acta, 2002.1573 (2): 156-64).. For example, nitroxyl radicals have been reported to react with ascorbic acid, thiols (metal-catalyzed reactions), mitochondrial respiratory chain, NADPH, cytochrome P450, etc. in cells, and induce apoptosis or via cytochrome P450. It has been reported that production of H 2 O 2 and the like cause cytotoxicity. On the other hand, nitroxyl radicals having a tetraethyl group have been reported to have a significantly reduced reactivity with ascorbic acid.

近年、イソインドリン骨格のニトロキシルラジカルのα位の置換基をエチル基にすることによって、TEMPOと比較して、p−フェニレンジアミン(N.Kocherginsky and H.M.Swartz,Chemical reactivity of nitroxides,in Nitroxide Spin Labels:Reactions in Biology and Chemistry,N.Kocherginsky and H.M.Swartz,Editors.1995,CRC Press: Boca Raton.p.27−66.)やアスコルビン酸(L. Marx,et al.,A comparative study of the reduction by ascorbate of 1,1,3,3−tetraethylisoindolin−2−yloxyl and of 1,1,3,3−tetramethylisoindolin−2−yloxyl. J Chem Soc, Perkin Trans 1,2000:1181.)による還元に対して抵抗性が増すことが報告されている。また、イミダゾール骨格のニトロキシルラジカルのα位の炭素をエチル基に置換したものが、アスコルビン酸に対して還元抵抗性を示すことが報告されている(A.A.Bobko,et al.,Reversible reduction of nitroxides to hydroxylamines:roles for ascorbate and glutathione.Free Radic Biol Med,2007.42(3):404−12.)。このように、ニトロキシルラジカルのα位の置換基を変えることによって、様々な物質に対する反応性を制御できると考えられる。   In recent years, by replacing the α-position substituent of the nitroxyl radical of the isoindoline skeleton with an ethyl group, compared with TEMPO, p-phenylenediamine (N. Kocherginsky and HM Swartz, Chemical reactivity of nitrogens, in Nitroxide Spin Labels: Reactions in Biology and Chemistry, N. Kocherginsky and HM Swartz, Editors. 1995, CRC Press: Boca Raton. P. 27-66. comparative study of the reduction by associate of 1,1,3,3-tetraethylindolinin-2-yloxyl and of 1,1,3,3-tetramethylindolinin-2-yloxyl. J Chem Soc, Perkin Trans 1,2000: 1181.) It is reported to increase. In addition, it has been reported that a substance in which the α-position carbon of the nitroxyl radical of the imidazole skeleton is substituted with an ethyl group exhibits reduction resistance to ascorbic acid (AA Bobko, et al., Reverseable). reduction of nitroxides to hydroxylamines: roles for ascorbate and glutathione. Free Radic Biol Med, 2007.42 (3): 404-12.). Thus, it is thought that the reactivity with respect to various substances can be controlled by changing the substituent at the α-position of the nitroxyl radical.

2,6位置換ニトロキシルラジカルの従来の合成法を下記に示す。   A conventional method for synthesizing 2,6-substituted nitroxyl radicals is shown below.

Figure 2011052759
Figure 2011052759

図に示すように、従来法は、反応ステップが多く煩雑であり、そのため2,6位置換ニトロキシラジカルの収率が非常に低いという課題が挙げられる。この課題を解決するために、簡便かつ高収率で2,6位に様々な置換基を導入するニトロキシラジカルの合成法の開発が望まれている。   As shown in the figure, the conventional method has many reaction steps and is complicated, so that the yield of the 2,6-position substituted nitroxy radical is very low. In order to solve this problem, development of a method for synthesizing a nitroxy radical in which various substituents are introduced into the 2,6-positions in a simple and high yield is desired.

また、当該発明者により開発されたニトロキシラジカルの製造方法が、国際特許公開第WO2008/093881号に開示されており、本特許出願は、この参照により本願明細書に組み込まれるものである。   In addition, a method for producing a nitroxy radical developed by the inventor is disclosed in International Patent Publication No. WO2008 / 093881, and this patent application is incorporated herein by this reference.

発明者らは、上記課題を解決するために、様々な検討を重ねた結果、2,6位置換ピペリジン系ニトロキシルラジカルの簡便且つ高収率合成方法を開発した。さらに、当該製造方法により得られたニトロキシルラジカルの有効性を検討したところ、アジュバンド関節炎モデルラットにおける胃粘膜損傷抑制効果、並びに血圧降下作用を有することが明らかとなった。   The inventors have conducted various studies to solve the above problems, and as a result, have developed a simple and high-yield synthesis method for 2,6-position substituted piperidine-based nitroxyl radicals. Furthermore, when the effectiveness of the nitroxyl radical obtained by the production method was examined, it was revealed that it has a gastric mucosal damage suppressing effect and a blood pressure lowering effect in an adjuvant arthritis model rat.

当該発明方法によると、1,2,2,6,6−ペンタアルキルピペリジン−4−オンを出発原料として、アンモニウム塩の存在下、カルボニル化合物を反応させると、2及び6位が置換されたピペリドンが生成され、更に、この化合物を酸化することにより、2及び6位が置換されたニトロキシラジカルが得られる。   According to the method of the present invention, when 1,2,2,6,6-pentaalkylpiperidin-4-one is used as a starting material and a carbonyl compound is reacted in the presence of an ammonium salt, piperidone substituted at the 2- and 6-positions Further, by oxidizing this compound, a nitroxy radical substituted at the 2- and 6-positions can be obtained.

本願発明の特徴としては、窒素原子上にメチル基などのアルキル基を有する、2,6置換ピペリジンを用いることである。窒素上にメチル基を有する1,2,2,6,6−ペンタメチルピペリジン−4−オンを用いた場合、2,2,6,6−テトラメチルピペリジン−4−オンと比べて、顕著な収率の上昇並びに反応促進効果が見られた。従って、当該反応は、窒素上にメチル基などのアルキル基が置換されているピペリジン化合物を出発物質として用いることが最も重要である。   A feature of the present invention is that a 2,6-substituted piperidine having an alkyl group such as a methyl group on a nitrogen atom is used. When 1,2,2,6,6-pentamethylpiperidin-4-one having a methyl group on nitrogen is used, it is remarkable compared to 2,2,6,6-tetramethylpiperidin-4-one An increase in yield and a reaction promoting effect were observed. Therefore, in this reaction, it is most important to use a piperidine compound in which an alkyl group such as a methyl group is substituted on nitrogen as a starting material.

Figure 2011052759
Figure 2011052759

本願製造方法に使用される前記ケトンとしては、例えば、シクロヘキサノン、ピラン環、チオピラン環、アセトアミノフェンなどの環状・鎖状カルボニル化合物やベンズアルデヒドなどが用いられる。   Examples of the ketone used in the production method of the present application include cyclic / chain carbonyl compounds such as cyclohexanone, pyran ring, thiopyran ring, acetaminophen, and benzaldehyde.

具体的なカルボニル化合物と対応する生成物(ピペリドン)を表2に示す。   Specific carbonyl compounds and corresponding products (piperidone) are shown in Table 2.

Figure 2011052759
Figure 2011052759

Figure 2011052759
Figure 2011052759

上記表から明らかなように、環状構造を有するカルボニル化合物と、直鎖状カルボニル化合物では、ピロリドン生成物に対して異なる選択性が見られる。つまり、環構造を有するカルボニル化合物を原料として用いた場合、二置換体が主生成物として得られるのに対して、直鎖状のカルボニル化合物を原料として用いた場合には、一置換体が主生成物として得られる。また、フェニル基をもつカルボニル化合物の場合では、一置換体が選択的に得られる。さらに、2−アダマンタノンをカルボニル化合物として用いた場合、一置換体と二置換体の両方が得られる。   As apparent from the above table, the carbonyl compound having a cyclic structure and the linear carbonyl compound have different selectivity for the pyrrolidone product. That is, when a carbonyl compound having a ring structure is used as a raw material, a disubstituted product is obtained as a main product, whereas when a linear carbonyl compound is used as a raw material, a monosubstituted product is mainly used. Obtained as product. In the case of a carbonyl compound having a phenyl group, a mono-substituted product is selectively obtained. Furthermore, when 2-adamantanone is used as the carbonyl compound, both mono- and di-substituted products are obtained.

上述したように、ケトンの立体構造により、ピぺリドン誘導体生成物に対する一置換体及び二置換体の選択性が異なること、並びに、NHClを15NHClに変えてTEMPONEを出発物質に用いて当該発明を行うと、[15N]TEMPONEが得られることなどから、以下のスキームで示される反応機構が推測される。As described above, the selectivity of mono- and di-substituents with respect to the piperidone derivative product varies depending on the steric structure of the ketone, and TEMPONE is changed from NH 4 Cl to 15 NH 4 Cl. When the invention is carried out using the above, the reaction mechanism shown in the following scheme is presumed because [ 15 N] TEMPONE is obtained.

Figure 2011052759
Figure 2011052759

当該発明の製造方法において、ピぺリドン誘導体の生成工程において用いられる塩基は、塩化アンモニウムが使用されるが、これに限られるものではない。   In the production method of the present invention, ammonium chloride is used as the base used in the production step of the piperidone derivative, but is not limited thereto.

また、塩化アンモニウムと共に、水酸化セシウム(CsOH)、又はベンジルトリメチルアンモニウムヒドロキシド(トリトンB)を用いた場合、収率の向上が見られる。   In addition, when cesium hydroxide (CsOH) or benzyltrimethylammonium hydroxide (Triton B) is used together with ammonium chloride, an improvement in yield is observed.

ピぺリドン誘導体からニトロキシラジカル誘導体への酸化は、一般に、タングステン触媒と過酸化水素が用いられるが、これに限られるものではない。2,6位アダマンタン置換ニトロキシルラジカルへの酸化には、MCPBAが用いられる。   In general, oxidation of a piperidone derivative to a nitroxy radical derivative uses a tungsten catalyst and hydrogen peroxide, but is not limited thereto. MCPBA is used for oxidation to the 2,6-positioned adamantane-substituted nitroxyl radical.

当該発明の製造方法により得られるニトロキシラジカル誘導体を、10mM PB(pH7.4)に溶解し(50μM)、室温下測定することで、ESRパラメーターを算出した。ただし、溶解性の点から、12は0.5%EtOHを含む。結果を下記表に示した。   The nitroxy radical derivative obtained by the production method of the present invention was dissolved in 10 mM PB (pH 7.4) (50 μM) and measured at room temperature to calculate the ESR parameter. However, 12 contains 0.5% EtOH from the viewpoint of solubility. The results are shown in the table below.

Figure 2011052759
Figure 2011052759

Figure 2011052759
Figure 2011052759

Figure 2011052759
Figure 2011052759

本発明の一実施形態によると、当該発明は、化学式1で示されるニトロキシラジカル化合物の製造方法であって、

Figure 2011052759
式中、
〜Rは、独立して、C〜C10のアルキルであるか、或いは、R及びR、又はR及びRが共に結合して、(CH、(CHO(CH、(CHSO(CH、(CHNX(CH、(CHCY(CH
Xは、CHCO、CFCO、又はRCOであり、
Yは、酸素(=O)、(OCHであり、
nは2〜4の整数であり、
当該方法は、
化学式2で示される化合物であって、
Figure 2011052759
According to one embodiment of the present invention, the present invention is a method for producing a nitroxy radical compound represented by Formula 1,
Figure 2011052759
Where
R 1 to R 4 are independently C 1 to C 10 alkyl, or R 1 and R 2 , or R 3 and R 4 are bonded together to form (CH 2 ) n , (CH 2) n O (CH 2) n, (CH 2) n SO 2 (CH 2) n, (CH 2) n NX (CH 2) n, (CH 2) n CY (CH 2) n,
X is CH 3 CO, CF 3 CO, or R 1 CO;
Y is oxygen (= O), a (OCH 2) n,
n is an integer of 2 to 4,
The method is
A compound represented by Formula 2,
Figure 2011052759

式中、
〜Rは、独立して、C〜C20のアルキルである、化学式2で示される化合物と、
化学式3で示される化合物であって、

Figure 2011052759
Where
R 5 to R 8 are independently a C 1 to C 20 alkyl compound represented by Formula 2,
A compound represented by Formula 3,
Figure 2011052759

式中、
〜Rは、独立して、C〜C10のアルキル、R及びR、又はR及びRが共に結合して、(CH、(CHO(CH、(CHS(CH、(CHNX(CH、(CHCY(CH
Xは、CHCO、CFCO、又はRCOであり、
Yは、酸素(=O)、(OCHであり、
nは2〜4の整数である、化学式3で示される化合物と
をアンモニウム塩の存在下にて反応させることにより、2,6置換−4−ピペリドン誘導体を生成させる工程と、
前記2,6置換−4−ピペリドン誘導体を酸化させる工程と、
を有する、前記ニトロキシラジカル化合物の製造方法が提供される。
Where
R 1 to R 4 are independently C 1 to C 10 alkyl, R 1 and R 2 , or R 3 and R 4 are bonded together to form (CH 2 ) n , (CH 2 ) n O ( CH 2) n, (CH 2 ) n S (CH 2) n, (CH 2) n NX (CH 2) n, (CH 2) n CY (CH 2) n,
X is CH 3 CO, CF 3 CO, or R 1 CO;
Y is oxygen (= O), a (OCH 2) n,
n is an integer of 2 to 4, and a compound represented by Formula 3 is reacted in the presence of an ammonium salt to produce a 2,6-substituted-4-piperidone derivative;
Oxidizing the 2,6-substituted-4-piperidone derivative;
A process for producing the nitroxy radical compound is provided.

また、本発明に係る他の一実施形態によれば、上記製造方法によって製造された化合物が提供される。この場合、この化合物は、胃粘膜損傷(胃潰瘍)又は高血圧の治療に使用されることができる。   According to another embodiment of the present invention, a compound produced by the above production method is provided. In this case, the compound can be used for the treatment of gastric mucosal damage (gastric ulcer) or hypertension.

さらに、本発明に係る別の一実施形態によれば、上記化合物と薬学的に許容可能な担体とを有する医薬組成物が提供される。   Furthermore, according to another embodiment of the present invention, there is provided a pharmaceutical composition comprising the above compound and a pharmaceutically acceptable carrier.

また、本発明に係る他の一実施形態によれば、胃粘膜損傷(胃潰瘍)を治療する方法であって、この方法は、上記化合物を対象に投与する工程を含むものである方法、並びに高血圧を治療する方法であって、この方法は、上記化合物を対象に投与する工程を含むものである方法が提供される。この場合、当該2つの方法において、前記化合物は、約0.0001〜4g/日の量で投与されることが好ましい。さらに、胃粘膜損傷(胃潰瘍)を治療する際に、当該化合物が18mMである場合、90μmol/kgの用量で投与されることができる。   Moreover, according to another embodiment of the present invention, there is provided a method for treating gastric mucosal damage (gastric ulcer), the method comprising the step of administering the compound to a subject, and treating hypertension. A method is provided comprising the step of administering the compound to a subject. In this case, in the two methods, the compound is preferably administered in an amount of about 0.0001-4 g / day. Further, in treating gastric mucosal damage (gastric ulcer), when the compound is 18 mM, it can be administered at a dose of 90 μmol / kg.

図1は、本発明の一実施形態に係るニトロキシルラジカル化合物の細胞毒性の評価を示すグラフである。FIG. 1 is a graph showing the evaluation of cytotoxicity of a nitroxyl radical compound according to an embodiment of the present invention. 図2は、本発明の一実施形態に係るニトロキシルラジカル化合物の胃粘膜に与える影響を示すグラフである。FIG. 2 is a graph showing the effect of the nitroxyl radical compound according to one embodiment of the present invention on the gastric mucosa. 図3は、本発明の一実施形態に係るニトロキシルラジカル化合物の血圧変動に及ぼす影響を示すグラフである。FIG. 3 is a graph showing the effect of a nitroxyl radical compound according to an embodiment of the present invention on blood pressure fluctuations.

以下に、実施例を用いて本発明について説明するが、本発明は、これらに限定されるものではないことが理解される。   Hereinafter, the present invention will be described with reference to examples, but it is understood that the present invention is not limited thereto.

試薬はSigma−Aldrich、和光純薬工業株式会社より購入し、精製せず用いた。融点は微量融点測定装置MP−500P(Yanaco)を用いて測定した。質量分析はJMS−600H(JEOL)にて測定し、3−ニトロベンジルアルコールをマトリックスとして用いた。IRスペクトルはFT/IR−4200(JASCO)を用い、溶液法または全反射法にて測定した。H−NMRはUnity INOVA 400(Varian)を用いて測定し、標準物質としてtetramethylsilane(TMS)を用いた。化学シフト(δ)はTMS(0ppm)を基準とし、カップリング定数はHz単位で示した。元素分析は九州大学理学部中央元素分析所に測定を依頼した。Reagents were purchased from Sigma-Aldrich, Wako Pure Chemical Industries, Ltd. and used without purification. The melting point was measured using a micro melting point measuring apparatus MP-500P (Yanaco). Mass spectrometry was measured with JMS-600H (JEOL), and 3-nitrobenzyl alcohol was used as a matrix. The IR spectrum was measured by a solution method or a total reflection method using FT / IR-4200 (JASCO). 1 H-NMR was measured using Unity INOVA 400 (Varian), and tetramethylsilane (TMS) was used as a standard substance. The chemical shift (δ) was based on TMS (0 ppm), and the coupling constant was expressed in Hz. Elemental analysis was requested from Kyushu University Faculty of Science, Central Elemental Analysis Laboratory.

7−Azadispiro[5.1.5.3]hexadecan−15−one(3a)
方法A
2,2,6,6−テトラメチルピペリジン−4−オン(1)1.55g(10mmol)とシクロヘキサノン(a)2.94g(30mmol)をDMSO 15mlに溶解し、NHCl 3.21g(60mmol)を室温下で加えた。この溶液を60℃で20時間撹拌した。水を40mL加え希釈し、7%塩酸水溶液で酸性にした。これを、エーテルで洗浄し、水層を10%KCO水溶液でアルカリ性にした。さらに、これを酢酸エチルで抽出し、水洗を行い、有機層を硫酸ナトリウム乾燥し、溶媒を完全に留去した。その後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、再結晶を行い白色結晶376mg(収率:16%)を得た。
7-Azadispiro [5.1.5.3] hexadecan-15-one (3a)
Method A
1.55 g (10 mmol) of 2,2,6,6-tetramethylpiperidin-4-one (1) and 2.94 g (30 mmol) of cyclohexanone (a) were dissolved in 15 ml of DMSO, and 3.21 g (60 mmol) of NH 4 Cl. ) Was added at room temperature. The solution was stirred at 60 ° C. for 20 hours. The reaction mixture was diluted by adding 40 mL of water and acidified with a 7% aqueous hydrochloric acid solution. This was washed with ether and the aqueous layer was made alkaline with 10% K 2 CO 3 aqueous solution. Further, this was extracted with ethyl acetate, washed with water, the organic layer was dried over sodium sulfate, and the solvent was completely distilled off. Thereafter, the residue was purified by silica gel column chromatography (hexane, ethyl acetate) and recrystallized to obtain 376 mg (yield: 16%) of white crystals.

方法B
1,2,2,6,6−ペンタメチルピペリジン−4−オン(2)1.69g(10mmol)とシクロヘキサノン(a)2.94g(30mmol)をDMSO15mlに溶解し、NHCl3.21g(60mmol)を室温下で加えた。この溶液を60℃で5時間撹拌した。水を40mL加え希釈し、7%塩酸水溶液で酸性にした。これを、エーテルで洗浄し、水層を10%KCO水溶液でアルカリ性にした。さらに、これを酢酸エチルで抽出し、水洗を行い、有機層を硫酸ナトリウム乾燥し、溶媒を完全に留去した。その後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、再結晶を行い白色結晶799mg(収率:34%)を得た。
mp:103℃(hexane−EtOAc,lit.mp 101−103℃[19]);
MS(FAB):236.3(M+1);
νmax/cm−1:1689(C=O);
H−NMR(400MHz;CDCl)δ(ppm):1.36−1.46(8H,m),1.47−1.56(8H,m),1.68−1.71(4H,m),2.31(4H,s);
Found:C,76.51;H,10.68;N,5.93%.Calc.forC1525NO:C,76.55;H,10.71;N,5.95%.
Method B
1.69 g (10 mmol) of 1,2,2,6,6-pentamethylpiperidin-4-one (2) and 2.94 g (30 mmol) of cyclohexanone (a) were dissolved in 15 ml of DMSO, and 3.21 g (60 mmol) of NH 4 Cl. ) Was added at room temperature. The solution was stirred at 60 ° C. for 5 hours. The reaction mixture was diluted by adding 40 mL of water and acidified with a 7% aqueous hydrochloric acid solution. This was washed with ether and the aqueous layer was made alkaline with 10% K 2 CO 3 aqueous solution. Further, this was extracted with ethyl acetate, washed with water, the organic layer was dried over sodium sulfate, and the solvent was completely distilled off. Thereafter, the product was purified by silica gel column chromatography (hexane, ethyl acetate) and recrystallized to obtain 799 mg of white crystals (yield: 34%).
mp: 103 ° C. (hexane-EtOAc, lit. mp 101-103 ° C. [19]);
MS (FAB + ): 236.3 (M ++ 1);
ν max / cm −1 : 1689 (C═O);
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.36 to 1.46 (8H, m), 1.47 to 1.56 (8H, m), 1.68 to 1.71 (4H) , M), 2.31 (4H, s);
Found: C, 76.51; H, 10.68; N, 5.93%. Calc. forC 15 H 25 NO: C, 76.55; H, 10.71; N, 5.95%.

7−Aza−3,11−dioxadispiro[5.1.5.3]hexadecan−15−one (3b)
方法Bに従って、シクロヘキサノン(a)をテトラヒドロ−4H−ピラン−4−オン(b)3.00g(30mmol)に変えて行った。得られた結晶はHexane−EtOAcから再結晶した。
収率:32%;
mp:167℃;
MS(FAB):240.1 (M+1);
νmax/cm−1:1692(C=O);
H−NMR(400MHz;CDCl)δ(ppm):1.64(8H,t,J=5.6Hz),2.40(4H,s),3.54−3.60(4H,m),3.81−3.87(4H,m);
Found:C,65.17;H,8.85;N,5.86%.Calc.for C1321NO:C,65.25;H,8.84;N,5.85%.
7-Aza-3,11-dioxadaspiro [5.1.5.3] hexadecan-15-one (3b)
According to Method B, cyclohexanone (a) was changed to 3.00 g (30 mmol) of tetrahydro-4H-pyran-4-one (b). The obtained crystals were recrystallized from Hexane-EtOAc.
Yield: 32%;
mp: 167 ° C;
MS (FAB + ): 240.1 (M ++ 1);
ν max / cm −1 : 1692 (C═O);
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.64 (8H, t, J = 5.6 Hz), 2.40 (4H, s), 3.54 to 3.60 (4H, m ), 3.81-3.87 (4H, m);
Found: C, 65.17; H, 8.85; N, 5.86%. Calc. for C 13 H 21 NO 3: C, 65.25; H, 8.84; N, 5.85%.

7−Aza−3,11−dithiadispiro[5.1.5.3]hexadecan−15−one(3c)
方法Bに従ってシクロヘキサノン(a)をテトラヒドロ−4H−チオピラン−4−オン(c) 3.49g(30mmol)に変えて行った。
収率:30%;
mp:155−157℃(EtOAc);
MS(FAB):272.2(M+1);
νmax/cm−1:1697(C=O);
H−NMR(400MHz;CDCl)δ(ppm):0.8(1s,br s),1.75−1.90(8H,m),2.27(4H,s),2.43−2.50(4H,m),2.88−2.95(4H,m);
Found:C,57.54;H,7.78;N,5.11%.Calc.for C1321NOS:C,57.52;H,7.80;N,5.16%.
7-Aza-3,11-dithiadispiro [5.1.5.3] hexadecan-15-one (3c)
According to Method B, cyclohexanone (a) was changed to 3.49 g (30 mmol) of tetrahydro-4H-thiopyran-4-one (c).
Yield: 30%;
mp: 155-157 ° C. (EtOAc);
MS (FAB + ): 272.2 (M ++ 1);
ν max / cm −1 : 1697 (C═O);
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 0.8 (1 s, br s), 1.75-1.90 (8 H, m), 2.27 (4 H, s), 2.43 -2.50 (4H, m), 2.88-2.95 (4H, m);
Found: C, 57.54; H, 7.78; N, 5.11%. Calc. for C 13 H 21 NOS 2: C, 57.52; H, 7.80; N, 5.16%.

3,11−Diacetyl−3,7,11−trithiadispiro[5.1.5.3]hexadecan−15−one (3d)
9−Acetyl−2,2−dimethyl−1,9−diazaspiro[5.5]undecan−4−one(3d’)
方法Bと同様に1,2,2,6,6−ペンタメチルピペリジン−4−オン(2)0.845 g (5mmol)、1−アセチル−4−ピペリドン(d)2.12g(15mmol)、NHCl 1.61g(30mmol)、DMSO 12mlの混合物を58〜62℃で8時間加熱撹拌する。水40mLで希釈し、7%塩酸水溶液で酸性にした後、エーテルで中性部分を抽出除去した。水層を10%KCO水溶液でpH 9〜10に調整し、クロロホルムで抽出し、硫酸ナトリウムで乾燥した。溶媒を減圧下、留去して得られた油状物質を、シリカゲルカラムクロマトグラフィー(1〜5%MeOH/CHCl)で精製し、hexane−EtOAcから再結晶を行い、3d 328mg、3d’556mgを得た。
3d;
収率:21%;
mp:164.2℃;
MS(FAB):322.3(M+1);
νmax/cm−1:1687(C=O),1634(N−Ac);
H−NMR(400MHz;CDCl)δ(ppm):1.58−1.66(8H,m),2.08(6H,s),2.38(4H,s),3.37−3.71(8H,m);
Found:C,62.92;H,8.62;N,12.12%.Calc.for C1727:C,63.53;H,8.47;N,13.07%.
3d’;
収率:47%;
mp:80.4℃(hexane−EtOAc);
MS(FAB):239.2(M+1);
H−NMR(400MHz;CDCl)δ(ppm):1.21(6H,d,J=13.6Hz),1.50−1.69(4H,m),2.05(3H,s),2.28(4H,d,J=9.2Hz),3.34−3.78(4H,m);
Found:C,64.86;H,9.28;N,11.67%.Calc.for C1322:C,65.51;H,9.30;N,11.75%.
3,11-Diacetyl-3,7,11-trithiadispiro [5.1.5.3] hexadecan-15-one (3d)
9-Acetyl-2,2-dimethyl-1,9-diazaspiro [5.5] undecan-4-one (3d ′)
1,2,2,6,6-pentamethylpiperidin-4-one (2) 0.845 g (5 mmol), 1-acetyl-4-piperidone (d) 2.12 g (15 mmol) as in Method B, A mixture of 1.61 g (30 mmol) of NH 4 Cl and 12 ml of DMSO is heated and stirred at 58 to 62 ° C. for 8 hours. After diluting with 40 mL of water and acidifying with 7% aqueous hydrochloric acid, the neutral part was extracted and removed with ether. The aqueous layer was adjusted to pH 9-10 with 10% aqueous K 2 CO 3 solution, extracted with chloroform, and dried over sodium sulfate. The oily substance obtained by evaporating the solvent under reduced pressure was purified by silica gel column chromatography (1-5% MeOH / CHCl 3 ), recrystallized from hexane-EtOAc, and 3d 328 mg, 3d '556 mg were obtained. Obtained.
3d;
Yield: 21%;
mp: 164.2 ° C;
MS (FAB + ): 322.3 (M ++ 1);
ν max / cm −1 : 1687 (C═O), 1634 (N- Ac );
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.58-1.66 (8H, m), 2.08 (6H, s), 2.38 (4H, s), 3.37- 3.71 (8H, m);
Found: C, 62.92; H, 8.62; N, 12.12%. Calc. for C 17 H 27 N 3 O 3: C, 63.53; H, 8.47; N, 13.07%.
3d ′;
Yield: 47%;
mp: 80.4 [deg.] C (hexane-EtOAc);
MS (FAB + ): 239.2 (M ++ 1);
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.21 (6H, d, J = 13.6 Hz), 1.50-1.69 (4H, m), 2.05 (3H, s ), 2.28 (4H, d, J = 9.2 Hz), 3.34-3.78 (4H, m);
Found: C, 64.86; H, 9.28; N, 11.67%. Calc. for C 13 H 22 N 2 O 2: C, 65.51; H, 9.30; N, 11.75%.

1,4,14,17−Tetraoxa−9−azatetraspiro[4.2.1.2.4.2.3.2]tetracosan−21−one(3e)
方法Bに従ってシクロヘキサノン(a)を1,4−シクロヘキサンジオンモノエチレンアセタール(e)4.69g(30mmol)に変えて行い、Hexane−EtOAcから再結晶を行い3e 1.12gを得た。
収率:32%;
mp:190.6℃;
MS(FAB):352.4(M+1).
νmax/cm−1:1699(C=O),1083(−O−CH−CH−O−);
H−NMR(400MHz;CDCl)δ(ppm):1.56−1.74(12H,m),1.85−1.92(4H,m),2.32(4H,s),3.93(8H,t,J=2.8Hz);
Found:C,64.95;H,8.30;N,4.05%.Calc.for C1929NO:C,64.93;H,8.32;N,3.99%.
1,4,14,17-Tetraoxa-9-azetrastropiro [4.2.1.2.4.2.3.2] tetracosan-21-one (3e)
According to Method B, cyclohexanone (a) was changed to 4.69 g (30 mmol) of 1,4-cyclohexanedione monoethylene acetal (e) and recrystallized from Hexane-EtOAc to obtain 3e 1.12 g.
Yield: 32%;
mp: 190.6 ° C;
MS (FAB <+> ): 352.4 (M ++ 1).
ν max / cm −1 : 1699 (C═O), 1083 (—O—CH 2 —CH 2 —O—);
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.56-1.74 (12H, m), 1.85-1.92 (4H, m), 2.32 (4H, s), 3.93 (8H, t, J = 2.8 Hz);
Found: C, 64.95; H, 8.30; N, 4.05%. Calc. for C 19 H 29 NO 5: C, 64.93; H, 8.32; N, 3.99%.

2,2,6−Trimethyl−6−phenylpiperidin−4−one (3f)
方法Bに従ってシクロヘキサノン(a)をアセトフェノン(f) 3.60 g (30 mmol)に変えて行った。
収率:16%;
mp:109.5℃(EtOAc);
MS(FAB):218.2(M+1).
H−NMR(400MHz;CDCl)δ(ppm):1.20(3H,s),1.31(3H,s),2.23−2.50(4H,m),2.34(3H,s),4.17−4.20(1H,m),7.11−7.33(4H,m);
Found:C,77.92;H,8.78;N,6.44%.Calc.for C1929NO:C,77.38;H,8.81;N,6.45%.
2,2,6-Trimethyl-6-phenylpiperidin-4-one (3f)
According to Method B, cyclohexanone (a) was changed to 3.60 g (30 mmol) of acetophenone (f).
Yield: 16%;
mp: 109.5 ° C. (EtOAc);
MS (FAB <+> ): 218.2 (M ++ 1).
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.20 (3H, s), 1.31 (3H, s), 2.23 to 2.50 (4H, m), 2.34 ( 3H, s), 4.17-4.20 (1H, m), 7.11-7.33 (4H, m);
Found: C, 77.92; H, 8.78; N, 6.44%. Calc. for C 19 H 29 NO 5: C, 77.38; H, 8.81; N, 6.45%.

Methyl 3−(2,6,6−trimethyl−4−oxopiperidin−2−yl)propanoate(3g)
方法Bに従ってシクロヘキサノンをレブリン酸メチル(g)に変えて行った。この化合物は、二置換体との混合物が得られており、単離には至っていない。構造の同定は、3gを酸化して得られるMethyl 3−(2,6,6−trimethyl−4−oxopiperidin−1−oxyl−2−yl)propanoate(4g)で行った。
Methyl 3- (2,6,6-trimethyl-4-oxopiperidin-2-yl) propanoate (3g)
According to Method B, cyclohexanone was changed to methyl levulinate (g). This compound has been obtained as a mixture with a disubstituted product and has not yet been isolated. The structure was identified by methyl 3- (2,6,6-trimethyl-4-oxoperidin-1-oxyl-2-yl) propanoate (4 g) obtained by oxidizing 3 g.

2,2−Dimethyl−6−p−tolylpiperidin−4−one(3h)
方法Bに従ってシクロヘキサノン(a)をp−トルアルデヒド(h)3.60g(30mmol)に変えて行った。
収率:10%;
mp:109.5℃(hexane);
MS(FAB):218.2(M+1);
νmax/cm−1:1693(C=O);
H−NMR(500MHz;CDCl)δ(ppm):1.20(3H,s),1.31(3H,s),1.53(1H,brs),2.25−2.50(4H,m),2.34(3H,s),4.18(1H,dd,J=11.5Hz,J=3.5Hz),7.16(2H,d,J=8.0Hz),7.29(2H,d,J=8.0Hz);
Found:C,77.55;H,8.82;N,6.53%.Calc.for C1419NO:C,77.38;H,8.81;N,6.45%.
2,2-Dimethyl-6-p-tolypiperidin-4-one (3h)
According to Method B, cyclohexanone (a) was changed to 3.60 g (30 mmol) of p-tolualdehyde (h).
Yield: 10%;
mp: 109.5 ° C (hexane);
MS (FAB + ): 218.2 (M ++ 1);
ν max / cm −1 : 1693 (C═O);
1 H-NMR (500 MHz; CDCl 3 ) δ (ppm): 1.20 (3H, s), 1.31 (3H, s), 1.53 (1H, brs), 2.25 to 2.50 ( 4H, m), 2.34 (3H, s), 4.18 (1H, dd, J 1 = 11.5 Hz, J 2 = 3.5 Hz), 7.16 (2H, d, J = 8.0 Hz) ), 7.29 (2H, d, J = 8.0 Hz);
Found: C, 77.55; H, 8.82; N, 6.53%. Calc. for C 14 H 19 NO: C , 77.38; H, 8.81; N, 6.45%.

3,11−Trifluoroacetyl−3,7,11−trithiadispiro[5.1.5.3]hexadecan−15−one(3i)
9−Trifluoroacetyl−2,2−dimethyl−1,9−diazaspiro[5.5]undecan−4−one(3i’)
方法Bに従ってシクロヘキサノン(a)を1−トリフルオロアセチル−4−ピペリドン(i)5.85g(30mmol)に変えて行った。EtOAcで中性部分を抽出除去し、pH9〜10に調整後、CHClで抽出した。Hexane−EtOAcから再結晶し、3i 192mg、3i’126mgを得た。
3i;
収率:4%;
mp:172.6−173.2℃;
MS(FAB):430.2(M+1);
νmax/cm−1:1688(−N−CO−CF);
H−NMR(400MHz;CDCl)δ(ppm):1.64−1.77(8H,m),2.42(4H,s),3.57−3.82(8H,m);
Found:C,47.62;H,5.01;N,9.79%.Calc.for C1721:C,47.56;H,4.93;N,9.79%.
3i’;
収率:4%;
mp:85.8−86.4℃(hexane−EtOAc);
MS(FAB):293.1(M+1);
νmax/cm−1:1692(−N−CO−CF);
H−NMR(400MHz;CDCl)δ(ppm):1.23(3H,s),1.25(3H,s),1.62−1.80(4H,m),2.30(2H,s),2.33(2H,s),3.54−3.96(4H,m),;
Found:C,53.30;H,6.44;N,9.58%.Calc.for C1319:C,53.42;H,6.55;N,9.58%.
3,11-Trifluoroacetyl-3,7,11-trithiadispiro [5.1.5.3] hexadecan-15-one (3i)
9-Trifluoroacetyl-2,2-dimethyl-1,9-diazaspiro [5.5] undecan-4-one (3i ′)
According to Method B, cyclohexanone (a) was changed to 5.85 g (30 mmol) of 1-trifluoroacetyl-4-piperidone (i). The neutral part was removed by extraction with EtOAc, adjusted to pH 9-10, and extracted with CHCl 3 . Recrystallization from Hexane-EtOAc gave 3i 192 mg, 3i ′ 126 mg.
3i;
Yield: 4%;
mp: 172.6-173.2 ° C;
MS (FAB + ): 430.2 (M ++ 1);
ν max / cm -1: 1688 ( - N-CO -CF 3);
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.64-1.77 (8H, m), 2.42 (4H, s), 3.57-3.82 (8H, m);
Found: C, 47.62; H, 5.01; N, 9.79%. Calc. for C 17 H 21 F 6 N 3 O 3: C, 47.56; H, 4.93; N, 9.79%.
3i ';
Yield: 4%;
mp: 85.8-86.4 ° C. (hexane-EtOAc);
MS (FAB + ): 293.1 (M ++ 1);
ν max / cm -1: 1692 ( - N-CO -CF 3);
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.23 (3H, s), 1.25 (3H, s), 1.62-1.80 (4H, m), 2.30 ( 2H, s), 2.33 (2H, s), 3.54-3.96 (4H, m);
Found: C, 53.30; H, 6.44; N, 9.58%. Calc. for C 13 H 19 F 3 N 2 O 2: C, 53.42; H, 6.55; N, 9.58%.

方法C
7−Aza−15−oxodispiro[5.1.5.3]hexadec−7−yl−7−oxyl(4a)
7−Azadispiro[5.1.5.3]hexadecan−15−one(3a)235mg(0.99mmol)をエタノール10mLに溶解し、NaWO・2HO 50mg(0.15mmol)を加え、この溶液にH(30%)2mLを徐々に加えた。これを室温下、24時間撹拌した。その後、KCOを加えクエンチし、クロロホルムで抽出した。続いて、溶媒を完全に留去し、再結晶(ヘキサン)により精製し、微黄色鱗片状結晶208mg(収率:83%)を得た。
mp:114.2°C(lit.mp 114−116°C);
MS (FAB):250.3(M);
νmax/cm−1:1717(C=O);
Found:C,71.86;H,9.62;N,5.57%.Calc.for C1524NO:C,71.96;H,9.66;N,5.59%.
Method C
7-Aza-15-oxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (4a)
7-Azadispiro [5.1.5.3] hexadecan- 15-one and (3a) 235mg (0.99mmol) was dissolved in ethanol 10mL, Na 2 WO 4 · 2H 2 O 50mg The (0.15 mmol) was added, To this solution was slowly added 2 mL of H 2 O 2 (30%). This was stirred at room temperature for 24 hours. Then quenched added K 2 CO 3, and extracted with chloroform. Subsequently, the solvent was completely distilled off and purified by recrystallization (hexane) to obtain 208 mg (yield: 83%) of slightly yellow scale crystals.
mp: 114.2 ° C (lit. mp 114-116 ° C);
MS (FAB <+> ): 250.3 (M <+> );
ν max / cm −1 : 1717 (C═O);
Found: C, 71.86; H, 9.62; N, 5.57%. Calc. for C 15 H 24 NO 2: C, 71.96; H, 9.66; N, 5.59%.

7−Aza−3,11−dioxa−15−oxodispiro[5.1.5.3]hexadec−7−yl−7−oxyl(4b)
方法Cに従って7−Aza−3,11−dioxadispiro[5.1.5.3]hexadecan−15−one(3b)130mg(0.54mmol)を原料として行った。EtOAcから再結晶し、4b 110mg(0.43mmol)を得た。
収率:80%;
mp:149.5°C;
MS(FAB):255.2(M+2);
νmax/cm−1:1717(C=O);
Found:C,61.23;H,7.97;N,5.40%.Calc.for C1320NO:C,61.40;H,7.93;N,5.51%.
7-Aza-3,11-dioxa-15-oxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (4b)
According to Method C, 7-Aza-3,11-dioxadaspiro [5.1.5.3] hexadecan-15-one (3b) 130 mg (0.54 mmol) was used as a starting material. Recrystallization from EtOAc gave 4 mg 110 mg (0.43 mmol).
Yield: 80%;
mp: 149.5 ° C;
MS (FAB <+> ): 255.2 (M < + > + 2);
ν max / cm −1 : 1717 (C═O);
Found: C, 61.23; H, 7.97; N, 5.40%. Calc. for C 13 H 20 NO 4: C, 61.40; H, 7.93; N, 5.51%.

7−Aza−3,11−dithia−3,3,11,11,15−pentaoxodispiro[5.1.5.3]hexadec−7−yl−7−oxyl(4c)
7−Aza−3,11−dithiadispiro[5.1.5.3]hexadecan−15−one(3c)210mg(0.78mmol)、NaWO・2HO 118mg(0.36mmol)、MeOH 3ml、及び、H(30%)1mLを混合し、室温で48時間撹拌した。KCOを加え、CHCl:MeOH=3:1の混合溶媒で抽出し、溶媒を留去した。これを、水から再結晶し4c 80mg(0.23mmol)を得た。
収率:29%;
mp:212.5−214.2°C;
MS(FAB):351.0(M+1);
νmax/cm−1:1712(C=O),1287(SO),1122(SO);
Found:C,44.38;H,5.79;N,3.93%.Calc.for C1321NO:C,44.56;H,5.75;N,4.00%.
7-Aza-3,11-dithia-3,3,11,11,15-pentaoxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (4c)
7-Aza-3,11-dithiadispiro [5.1.5.3] hexadecan-15-one (3c) 210 mg (0.78 mmol), Na 2 WO 4 .2H 2 O 118 mg (0.36 mmol), MeOH 3 ml And 1 mL of H 2 O 2 (30%) were mixed and stirred at room temperature for 48 hours. K 2 CO 3 was added, extraction was performed with a mixed solvent of CHCl 3 : MeOH = 3: 1, and the solvent was distilled off. This was recrystallized from water to obtain 80 mg (0.23 mmol) of 4c.
Yield: 29%;
mp: 212.5-214.2 ° C;
MS (FAB <+> ): 351.0 (M ++ 1);
ν max / cm −1 : 1712 (C═O), 1287 (SO 2 ), 1122 (SO 2 );
Found: C, 44.38; H, 5.79; N, 3.93%. Calc. for C 13 H 21 NO 5 S 2: C, 44.56; H, 5.75; N, 4.00%.

3,11−Diacetyl−15−oxo−3,7,11−trithiadispiro[5.1.5.3]hexadec−7−yl−7−oxyl(4d)
方法Cに従って3,11−Diacetyl−3,7,11−trithiadispiro[5.1.5.3]hexadecan−15−one(3d)を原料として行った。
mp:162−163°C;
MS(FAB):337.3(M+1);
νmax/cm−1:1720(C=O),1637(−N−CO−CH);
3,11-Diacetyl-15-oxo-3,7,11-trithiadispiro [5.1.5.3] hexadec-7-yl-7-oxyl (4d)
According to Method C, 3,11-Diacetyl-3,7,11-trithiadispiro [5.1.5.3] hexadecan-15-one (3d) was used as a starting material.
mp: 162-163 ° C;
MS (FAB + ): 337.3 (M ++ 1);
ν max / cm -1: 1720 ( C = O), 1637 (- N-CO -CH 3);

1,4,14,17−Tetraoxa−9−aza−21−oxotetraspiro[4.2.1.2.4.2.3.2]tetracos−9−yl−9−oxyl(4e)
方法Cに従って1,4,14,17−Tetraoxa−9−azatetraspiro[4.2.1.2.4.2.3.2]tetracosan−21−one(3e)を原料として行った。
mp:183.2−184.2°C;
MS(FAB):367.3(M+1);
νmax/cm−1:1713(C=O);
Found:C,62.18;H,7.38;N,3.88%.Calc.for C1928NO:C,62.28;H,7.70;N,3.82%.
1,4,14,17-Tetraoxa-9-aza-21-oxotetraspiro [4.2.1.2.4.2.3.2.2] tetracos-9-yl-9-oxyl (4e)
According to Method C, 1,4,14,17-Tetraoxa-9-azetratraspiro [4.2.1.2.4.2.3.2] tetracosan-21-one (3e) was used as a starting material.
mp: 183.2-184.2 ° C;
MS (FAB + ): 367.3 (M ++ 1);
ν max / cm −1 : 1713 (C═O);
Found: C, 62.18; H, 7.38; N, 3.88%. Calc. for C 19 H 28 NO 6: C, 62.28; H, 7.70; N, 3.82%.

7−Aza−3,11,15−trioxodispiro[5.1.5.3]hexadec−7−yl−7−oxyl(4e’)
1,4,14,17−Tetraoxa−9−azatetraspiro[4.2.1.2.4.2.3.2]tetracosan−21−one(3e)536mg(1.53mmol)を水2mLと酢酸5mLに溶解し、10%HClを滴下し、70℃で撹拌した。この溶液を水で希釈し、pHを7に調整し、酢酸エチルで抽出した。有機層を硫酸ナトリウムで乾燥し、溶媒を完全に留去した。その後、シリカゲルカラムクロマトグラフィーhexane/EtOAc,1:4)で分離精製し、再結晶(ヘキサン、酢酸エチル)により7−Aza−3,11,15−trioxodispiro[5.1.5.3]hexadecaneの白色個体330mg(1.25mmol)を得た。
収率:82%
mp:99.7℃;
MS(FAB):264.2(M+1);
νmax/cm−1:1705(C=O);
H−NMR(400MHz;CDCl)δ(ppm):1.24(1H,brs),1.87−2.05(8H,m),2.29−2.67(8H,m),2.49(4H,s);
Found:C,76.51;H,10.68;N,5.93%.Calc.for C1525NO:C,76.55;H,10.71;N,5.95%.
続いて、得られた7−Aza−3,11,15−trioxodispiro[5.1.5.3]hexadecane 215mg(0.82mmol)を方法Cに従って酸化し、4e’170mg(0.61mmol)を得た。
収率:75%
mp:161.5℃;
MS(FAB):279.3(M+1);
νmax/cm−1:1708(C=O);
Found:C,64.71;H,7.25;N,5.06%.Calc.for C1520NO:C,64.73;H,7.24;N,5.03%.
7-Aza-3,11,15-trioxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (4e ')
1,4,14,17-Tetraoxa-9-azetratraspiro [4.2.1.2.4.2.3.2.2] tetracosan-21-one (3e) (536 mg, 1.53 mmol) in water (2 mL) and acetic acid (5 mL) 10% HCl was added dropwise and stirred at 70 ° C. The solution was diluted with water, the pH was adjusted to 7, and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and the solvent was completely distilled off. Thereafter, the resultant was separated and purified by silica gel column chromatography hexane / EtOAc, 1: 4), and recrystallized (hexane, ethyl acetate) from 7-Aza-3,11,15-trioxodispiro [5.1.5.3] hexadecane. 330 mg (1.25 mmol) of white solid was obtained.
Yield: 82%
mp: 99.7 ° C;
MS (FAB + ): 264.2 (M ++ 1);
ν max / cm −1 : 1705 (C═O);
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.24 (1H, brs), 1.87-2.05 (8H, m), 2.29-2.67 (8H, m), 2.49 (4H, s);
Found: C, 76.51; H, 10.68; N, 5.93%. Calc. for C 15 H 25 NO: C , 76.55; H, 10.71; N, 5.95%.
Subsequently, 215 mg (0.82 mmol) of 7-Aza-3,11,15-trioxodispiro [5.1.5.3] hexadecane obtained was oxidized according to Method C to obtain 4e′170 mg (0.61 mmol). It was.
Yield: 75%
mp: 161.5 ° C;
MS (FAB + ): 279.3 (M ++ 1);
ν max / cm −1 : 1708 (C═O);
Found: C, 64.71; H, 7.25; N, 5.06%. Calc. for C 15 H 20 NO 4: C, 64.73; H, 7.24; N, 5.03%.

Methyl 3−(2,6,6−trimethyl−4−oxopiperidin−1−oxyl−2−yl)propanoate(4g)
方法Cに従ってMethyl 3−(2,6,6−trimethyl−4−oxopiperidin−2−yl)propanoate(3g)と二置換体の混合物147mgを原料として用い、赤色油状物質を得た37mg(0.15mmol)。
MS(FAB):242.2(M);
νmax/cm−1:1720(C=O);
Found:C,58.93;H,8.27;N,5.65%.Calc.for C1220NO:C,59.49;H,8.32;N,5.78%.
Methyl 3- (2,6,6-trimethyl-4-oxoperidin-1-oxyl-2-yl) propanoate (4 g)
According to Method C, 147 mg of a mixture of methyl 3- (2,6,6-trimethyl-4-oxoperidin-2-yl) propanoate (3 g) and a disubstituted product was used as a raw material to obtain a red oily substance, 37 mg (0.15 mmol ).
MS (FAB <+> ): 242.2 (M <+> );
ν max / cm −1 : 1720 (C═O);
Found: C, 58.93; H, 8.27; N, 5.65%. Calc. for C 12 H 20 NO 4: C, 59.49; H, 8.32; N, 5.78%.

3,11−Trifluoroacetyl−3,7,11−trithia−15−oxodispiro[5.1.5.3]hexadec−7−yl−7−oxyl(4i)
方法Cに従って3,11−Trifluoroacetyl−3,7,11−trithiadispiro[5.1.5.3]hexadecan−15−one(3i)130mg(0.30mmol)を原料として行い、4i 57mg(0.13mmol)を得た。
収率:42%
MS(FAB):445.1(M+1);
Found:C,44.90;H,4.46;N,9.25%.Calc.for C1720:C,45.95;H,4.54;N,9.46%.
3,11-Trifluoroacetyl-3,7,11-trithia-15-oxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (4i)
According to Method C, 3,11-Trifluoroacetyl-3,7,11-trithiadispiro [5.1.5.3] hexadecan-15-one (3i) 130 mg (0.30 mmol) was used as starting material, and 4i 57 mg (0.13 mmol) )
Yield: 42%
MS (FAB + ): 445.1 (M ++ 1);
Found: C, 44.90; H, 4.46; N, 9.25%. Calc. for C 17 H 20 F 6 N 3 O 4: C, 45.95; H, 4.54; N, 9.46%.

7−[ 15 N]−Aza−15−oxodispiro[5.1.5.3]hexadec−7−yl−7−oxyl(5a)
NHClを15NHClに変えて、7−Aza−15−oxodispiro[5.1.5.3]hexadec−7−yl−7−oxyl(4a)と同様に行った。
mp:115.4−117.4℃(hexane);
MS(FAB):251.3(M+1);
νmax/cm−1:1717(C=O);
Found:C,71.67;H,9.79;N,5.67%.Calc.for C1524 15NO:C,71.68;H,9.62;N,5.57%.
7- [15 N] -Aza-15 -oxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (5a)
NH 4 Cl was changed to 15 NH 4 Cl, and the same procedure as in 7-Aza-15-oxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (4a) was performed.
mp: 115.4-117.4 ° C. (hexane);
MS (FAB + ): 251.3 (M ++ 1);
ν max / cm −1 : 1717 (C═O);
Found: C, 71.67; H, 9.79; N, 5.67%. Calc. for C 15 H 24 15 NO 2 : C, 71.68; H, 9.62; N, 5.57%.

7−[ 15 N]−Aza−3,11−Dioxa−15−oxodispiro[5.1.5.3]hexadec−7−yl−7−oxyl(5b)
NHClを15NHClに変えて、7−Aza−3,11−Dioxa−15−oxodispiro[5.1.5.3]hexadec−7−yl−7−oxyl(4b)と同様に行った。
mp:171.7−172.0℃(EtOAc);
MS(FAB):256.23(M+1);
νmax/cm−1:1719(C=O);
Found:C,61.18;H,7.90;N,5.52%.Calc.for C1320 15NO:C,61.16;H,7.90;N,5.48%.
7- [15 N] -Aza-3,11 -Dioxa-15-oxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (5b)
NH 4 Cl is changed to 15 NH 4 Cl, and the same operation as 7-Aza-3,11-Dioxa-15-oxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (4b) is performed. It was.
mp: 171.7-172.0 ° C. (EtOAc);
MS (FAB <+> ): 256.23 (M ++ 1);
ν max / cm −1 : 1719 (C═O);
Found: C, 61.18; H, 7.90; N, 5.52%. Calc. for C 13 H 20 15 NO 4 : C, 61.16; H, 7.90; N, 5.48%.

7−[ 15 N]−Aza−3,11,15−trioxodispiro[5.1.5.3]hexadec−7−yl−7−oxyl(5c)
NHClを15NHClに変えて、7−Aza−3,11,15−trioxodispiro[5.1.5.3]hexadec−7−yl−7−oxyl(4e’)と同様に行った。
mp:165.8℃(Hexane−EtOAc);
MS(FAB):280.22(M+1);
νmax/cm−1:1707(C=O);
Found:C,64.47;H,7.22;N,5.01%.Calc.for C1520 15NO:C,64.50;H,7.22;N,5.01%.
7- [15 N] -Aza-3,11,15 -trioxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (5c)
NH 4 Cl was changed to 15 NH 4 Cl, and the same procedure as 7-Aza-3,11,15-trioxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (4e ′) was performed. .
mp: 165.8 ° C. (Hexane-EtOAc);
MS (FAB + ): 280.22 (M ++ 1);
ν max / cm −1 : 1707 (C═O);
Found: C, 64.47; H, 7.22; N, 5.01%. Calc. for C 15 H 20 15 NO 4 : C, 64.50; H, 7.22; N, 5.01%.

2,2−diethyl−6,6−dimethylpiperidin−4−one (1)
1,2,2,6,6−ペンタメチルピペリジン−4−オン1.69g(10mmol)と3−ペンタノン5.16g(60mmol)をDMSO 28mlに溶解し、CsOH 1.50g(10mmol)、NHCl 3.22g(60mmol)を室温下で加えた。この溶液を80℃で4時間攪拌した。水を適量加えて希釈し、7〜8%塩酸水溶液で酸性にした。これを、エーテルで洗浄し、水層をKCO水溶液でアルカリ性にした。さらに、これを酢酸エチルで抽出し、有機層を硫酸ナトリウムで乾燥し、溶媒を完全に留去した。その後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、淡黄色油状物質25mg(収率:1%)を得た。
2,2-diethyl-6,6-dimethylpiperidin-4-one (1)
1.69 g (10 mmol) of 1,2,2,6,6-pentamethylpiperidin-4-one and 5.16 g (60 mmol) of 3-pentanone were dissolved in 28 ml of DMSO, and 1.50 g (10 mmol) of CsOH, NH 4 Cl 3.22 g (60 mmol) was added at room temperature. The solution was stirred at 80 ° C. for 4 hours. An appropriate amount of water was added for dilution, and the mixture was acidified with a 7-8% aqueous hydrochloric acid solution. This was washed with ether and the aqueous layer was made alkaline with aqueous K 2 CO 3 solution. Further, this was extracted with ethyl acetate, the organic layer was dried over sodium sulfate, and the solvent was completely distilled off. Thereafter, the residue was purified by silica gel column chromatography (hexane, ethyl acetate) to obtain 25 mg (yield: 1%) of a pale yellow oily substance.

方法B
2,2−dimethyl−6,6−dipropylpiperidin−4−one (3)
1,2,2,6,6−ペンタメチルピペリジン−4−オン1.69g(10mmol)と4−ヘプタノン3.43g(30mmol)をDMSO 16mlに溶解し、TritonB 2ml(4.40mmol)、NHCl 2.68g(50mmol)を室温下で加えた。この溶液を50℃で4.5時間攪拌した。水を適量加えて希釈し、7〜8%塩酸水溶液で酸性にした。これを、エーテルで洗浄し、水層をKCO水溶液でアルカリ性にした。さらに、これを酢酸エチルで抽出し、有機層を硫酸ナトリウムで乾燥し、溶媒を完全に留去した。その後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、得られた結晶をヘキサンから再結晶し、淡黄色針状結晶368mg(収率:17%)を得た。mp:53.4−55.0℃;MS(FAB):212.2(M+1);vmax/cm−1:1690(C=O);H−NMR(300MHz;CDCl)δ(ppm):0.88(6H,t,J=7.05Hz),1.21(6H,s),1.26−1.45(8H,m),2.23(2H,s),2.26(2H,s);Found:C,73.74;H,11.88;N,6.67%.Calc.for C1325NO:C,73.88;H,11.92;N,6.63%.
Method B
2,2-dimethyl-6,6-dipropylpiperidin-4-one (3)
1.69 g (10 mmol) of 1,2,2,6,6-pentamethylpiperidin-4-one and 3.43 g (30 mmol) of 4-heptanone were dissolved in 16 ml of DMSO, 2 ml (4.40 mmol) of TritonB, NH 4 2.68 g (50 mmol) of Cl was added at room temperature. The solution was stirred at 50 ° C. for 4.5 hours. An appropriate amount of water was added for dilution, and the mixture was acidified with a 7-8% aqueous hydrochloric acid solution. This was washed with ether and the aqueous layer was made alkaline with aqueous K 2 CO 3 solution. Further, this was extracted with ethyl acetate, the organic layer was dried over sodium sulfate, and the solvent was completely distilled off. Then, it refine | purified by silica gel column chromatography (hexane, ethyl acetate), and the obtained crystal was recrystallized from hexane to obtain 368 mg (yield: 17%) of pale yellow needle-like crystals. mp: 53.4-55.0 ° C .; MS (FAB + ): 212.2 (M + +1); v max / cm −1 : 1690 (C═O); 1 H-NMR (300 MHz; CDCl 3 ) δ (ppm): 0.88 (6H, t, J = 7.05 Hz), 1.21 (6H, s), 1.26-1.45 (8H, m), 2.23 (2H, s) 2.26 (2H, s); Found: C, 73.74; H, 11.88; N, 6.67%. Calc. for C 13 H 25 NO: C , 73.88; H, 11.92; N, 6.63%.

2,2−dimethyl−6,6−dipropyl−4−oxo−piperidin−1−yl 1−oxyl(4)
方法Aに従って、2,2−dimethyl−6,6−dipropylpiperidin−4−one(3)59mg(0.28mmol)を原料として行った。反応溶液は、室温で一晩攪拌した。また、反応の進行をTLCで確認し、HとNaWO・2HOを適宜追加した。抽出後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、橙色油状物質38mg(収率:60%)を得た。MS(FAB):226.3(M);vmax/cm−1:1720(C=O);Found:C,68.95;H,10.76;N,6.28%.Calc.for C1324NO:C,68.99;H,10.69;N,6.19%.
2,2-dimethyl-6,6-dipropyl-4-oxo-piperidin-1-yl 1-oxyl (4)
According to Method A, 2,2-dimethyl-6,6-dipropylpiperidin-4-one (3) 59 mg (0.28 mmol) was used as a starting material. The reaction solution was stirred overnight at room temperature. Moreover, the progress of the reaction was confirmed by TLC, and H 2 O 2 and Na 2 WO 4 · 2H 2 O were appropriately added. After extraction, the product was purified by silica gel column chromatography (hexane, ethyl acetate) to obtain 38 mg (yield: 60%) of an orange oily substance. MS (FAB <+> ): 226.3 (M <+> ); vmax / cm < -1 >: 1720 (C = O); Found: C, 68.95; H, 10.76; N, 6.28%. Calc. for C 13 H 24 NO 2: C, 68.99; H, 10.69; N, 6.19%.

2,2−dibutyl−6,6−dimethylpiperidin−4−one (5)
方法Bに従って、4−ヘプタノンを5−デカノン4.27g(30mmol)に変えて行った。反応溶液は、60℃の水浴中で4時間攪拌した。シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル,85:15)で精製し、淡黄色油状物質106mg(収率:4%)を得た。MS(FAB):240.3(M+1);vmax/cm−1:1705(C=O);H−NMR(300MHz;CDCl)δ(ppm):0.89(6H,t,J=6.7Hz),1.25(6H,s),1.24−1.56(12H,m),2.23(2H,s),2.26(2H,s);Found:C,74.83;H,11.96;N,5.97%.Calc.for C1529NO:C,75.26;H,12.21;N,5.85%.
2,2-dibutyl-6,6-dimethylpiperidin-4-one (5)
According to Method B, 4-heptanone was changed to 4.27 g (30 mmol) of 5-decanone. The reaction solution was stirred in a 60 ° C. water bath for 4 hours. Purification by silica gel column chromatography (hexane / ethyl acetate, 85:15) gave 106 mg (yield: 4%) of a pale yellow oily substance. MS (FAB + ): 240.3 (M + +1); v max / cm −1 : 1705 (C═O); 1 H-NMR (300 MHz; CDCl 3 ) δ (ppm): 0.89 (6H, t, J = 6.7 Hz), 1.25 (6H, s), 1.24-1.56 (12H, m), 2.23 (2H, s), 2.26 (2H, s); : C, 74.83; H, 11.96; N, 5.97%. Calc. for C 15 H 29 NO: C , 75.26; H, 12.21; N, 5.85%.

2,2−dibutyl−6,6−dimethyl−4−oxo−piperidin−1−yl 1−oxyl(6)
方法Aに従って、2,2−dibutyl−6,6−dimethylpiperidin−4−one(5)100mg(0.42mmol)を原料として行った。反応溶液は、室温で一晩攪拌した。また、反応の進行をTLCで確認し、HとNaWO・2HOを適宜追加した。抽出後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、橙色油状物質53mg(収率:50%)を得た。MS(FAB):254.3(M);vmax/cm−1:1720(C=O);Found:C,70.55;H,11.05;N,5.24%.Calc.for C1528NO:C,70.82;H,11.09;N,5.51%.
2,2-dibutyl-6,6-dimethyl-4-oxo-piperidin-1-yl 1-oxyl (6)
According to Method A, 2,2-dibutyl-6,6-dimethylpiperidin-4-one (5) 100 mg (0.42 mmol) was used as a starting material. The reaction solution was stirred overnight at room temperature. Moreover, the progress of the reaction was confirmed by TLC, and H 2 O 2 and Na 2 WO 4 · 2H 2 O were appropriately added. After extraction, the product was purified by silica gel column chromatography (hexane, ethyl acetate) to obtain 53 mg (yield: 50%) of an orange oily substance. MS (FAB +): 254.3 ( M +); v max / cm -1: 1720 (C = O); Found: C, 70.55; H, 11.05; N, 5.24%. Calc. for C 15 H 28 NO 2: C, 70.82; H, 11.09; N, 5.51%.

2−butyl−2,6,6−trimethylpiperidin−4−one (7)
2,6−dibutyl−2,6−dimethylpiperidin−4−one (9)
方法Bに従って、4−ヘプタノンを2−ヘキサノン3.00g(30mmol)に変えて行った。反応溶液は、50℃の水浴中で2.5時間攪拌した。抽出後、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル,9:1)で精製し、淡黄色油状物質(7)239mg(収率:12%)と淡黄色油状物質(9)98mg(収率:4%)を得た。(7):MS(FAB):198.3(M+1);vmax/cm−1:1703(C=O);H−NMR(300MHz;CDCl)δ(ppm):0.90(3H,t,J=7.1Hz),1.16(3H,s),1.23(6H,s),1.29−1.33(6H,m),2.22−2.26(4H,m);Found:C,72.83;H,11.63;N,7.02%.Calc.for C1223NO:C,73.04;H,11.75;N,7.10%.(9):MS(FAB):240.4(M+1);vmax/cm−1:1706(C=O);H−NMR(300MHz;CDCl)δ(ppm):0.91(6H,t,J=3.3Hz),1.14(6H,s),1.28−1.46(12H,m),2.18−2.31(4H,m);Found:C,75.15;H,12.11;N,5.75%.Calc.for C1529NO:C,75.26;H,12.21;N,5.85%.
2-butyl-2,6,6-trimethylpiperidin-4-one (7)
2,6-dibutyl-2,6-dimethylpiperidin-4-one (9)
According to Method B, 4-heptanone was changed to 3.00 g (30 mmol) of 2-hexanone. The reaction solution was stirred in a 50 ° C. water bath for 2.5 hours. After extraction, the product was purified by silica gel column chromatography (hexane / ethyl acetate, 9: 1) to obtain 239 mg (yield: 12%) of a pale yellow oily substance (7) and 98 mg (yield: 4) of a pale yellow oily substance (9). %). (7): MS (FAB + ): 198.3 (M + +1); v max / cm −1 : 1703 (C═O); 1 H-NMR (300 MHz; CDCl 3 ) δ (ppm): 0. 90 (3H, t, J = 7.1 Hz), 1.16 (3H, s), 1.23 (6H, s), 1.29-1.33 (6H, m), 2.22-2. 26 (4H, m); Found: C, 72.83; H, 11.63; N, 7.02%. Calc. for C 12 H 23 NO: C , 73.04; H, 11.75; N, 7.10%. (9): MS (FAB + ): 240.4 (M + +1); v max / cm −1 : 1706 (C═O); 1 H-NMR (300 MHz; CDCl 3 ) δ (ppm): 0. 91 (6H, t, J = 3.3 Hz), 1.14 (6H, s), 1.28-1.46 (12H, m), 2.18-2.31 (4H, m); C, 75.15; H, 12.11; N, 5.75%. Calc. for C 15 H 29 NO: C , 75.26; H, 12.21; N, 5.85%.

2−butyl−2,6,6−trimethyl−4−oxo−piperidin−1−yl 1−oxyl(8)
方法Aに従って、2−butyl−2,6,6−trimethylpiperidin−4−one(7)199mg(1.01mmol)を原料として行った。反応溶液は、室温で一晩攪拌した。また、反応の進行をTLCで確認し、HとNaWO・2HOを適宜追加した。抽出後、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル,95:5)で精製し、橙色油状物質68mg(収率:32%)を得た。MS(FAB):212.3(M);vmax/cm−1:1720(C=O);Found:C,68.01;H,10.44;N,6.53%.Calc.for C1222NO:C,67.89;H,10.44;N,6.60%.
2-butyl-2,6,6-trimethyl-4-oxo-piperidin-1-yl 1-oxyl (8)
According to Method A, 2-butyl-2,6,6-trimethylpiperidin-4-one (7) (199 mg, 1.01 mmol) was used as a starting material. The reaction solution was stirred overnight at room temperature. Moreover, the progress of the reaction was confirmed by TLC, and H 2 O 2 and Na 2 WO 4 · 2H 2 O were appropriately added. After extraction, the residue was purified by silica gel column chromatography (hexane / ethyl acetate, 95: 5) to obtain 68 mg (yield: 32%) of an orange oily substance. MS (FAB +): 212.3 ( M +); v max / cm -1: 1720 (C = O); Found: C, 68.01; H, 10.44; N, 6.53%. Calc. for C 12 H 22 NO 2: C, 67.89; H, 10.44; N, 6.60%.

2,6−dibutyl−2,6−dimethyl−4−oxo−piperidin−1−yl−oxyl(10)
方法Aに従って、2,6−dibutyl−2,6−dimethylpiperidin−4−one(9)77mg(0.32mmol)を原料として行った。反応溶液は、室温で一晩攪拌した。また、反応の進行をTLCで確認し、HとNaWO・2HOを適宜追加した。抽出後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、橙色油状物質25mg(収率:31%)を得た。MS(FAB):254.3(M);vmax/cm−1:1720(C=O);Found:C,70.94;H,10.98;N,5.18%.Calc.for C1528NO:C,70.82;H,11.09;N,5.51%.
2,6-dibutyl-2,6-dimethyl-4-oxo-piperidin-1-yl-oxyl (10)
According to Method A, 77 mg (0.32 mmol) of 2,6-dibutyl-2,6-dimethylpiperidin-4-one (9) was used as a starting material. The reaction solution was stirred overnight at room temperature. Moreover, the progress of the reaction was confirmed by TLC, and H 2 O 2 and Na 2 WO 4 · 2H 2 O were appropriately added. After extraction, the product was purified by silica gel column chromatography (hexane, ethyl acetate) to obtain 25 mg (yield: 31%) of an orange oily substance. MS (FAB +): 254.3 ( M +); v max / cm -1: 1720 (C = O); Found: C, 70.94; H, 10.98; N, 5.18%. Calc. for C 15 H 28 NO 2: C, 70.82; H, 11.09; N, 5.51%.

2,2,6−trimethyl−6−octylpiperidin−4−one (11)
方法Bに従って、4−ヘプタノンを2−デカノン4.69g(30mmol)に変えて行った。反応溶液は、50℃の水浴中で4時間攪拌した。抽出後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、淡黄色油状物質137mg(収率:5%)を得た。MS(FAB):254.3(M+1);vmax/cm−1:1708(C=O);H−NMR(300MHz;CDCl)δ(ppm):0.87(3H,t,J=5.7Hz),1.16(3H,s),1.22(6H,s),2.16−2.29(4H,m);Found:C,75.57;H,12.15;N,5.09%.Calc.for C1631NO:C,75.83;H,12.33;N,5.53%.
2,2,6-trimethyl-6-octipeliperidin-4-one (11)
According to Method B, 4-heptanone was changed to 4.69 g (30 mmol) of 2-decanone. The reaction solution was stirred in a 50 ° C. water bath for 4 hours. After extraction, the product was purified by silica gel column chromatography (hexane, ethyl acetate) to obtain 137 mg (yield: 5%) of a pale yellow oily substance. MS (FAB + ): 254.3 (M + +1); v max / cm −1 : 1708 (C═O); 1 H-NMR (300 MHz; CDCl 3 ) δ (ppm): 0.87 (3H, t, J = 5.7 Hz), 1.16 (3H, s), 1.22 (6H, s), 2.16-2.29 (4H, m); Found: C, 75.57; H, 12.15; N, 5.09%. Calc. for C 16 H 31 NO: C, 75.83; H, 12.33; N, 5.53%.

2,2,6−trimethyl−6−octyl−4−oxo−piperidin−1−yl 1−oxyl(12)
方法Aに従って、2,2,6−trimethyl−6−octylpiperidin−4−one(11)100mg(0.39mmol)を原料として行った。反応溶液は、室温で一晩攪拌した。また、反応の進行をTLCで確認し、HとNaWO・2HOを適宜追加した。抽出後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、橙色油状物質78mg(収率:74%)を得た。MS(FAB):268.3(M);vmax/cm−1:1721(C=O);Found:C,71.45;H,11.13;N,5.10%.Calc.for C1630NO:C,71.59;H,11.27;N,5.22%.
2,2,6-trimethyl-6-octyl-4-oxo-piperidin-1-yl 1-oxyl (12)
According to Method A, 2,2,6-trimethyl-6-octylpiperidin-4-one (11) 100 mg (0.39 mmol) was used as a starting material. The reaction solution was stirred overnight at room temperature. Moreover, the progress of the reaction was confirmed by TLC, and H 2 O 2 and Na 2 WO 4 · 2H 2 O were appropriately added. After extraction, the product was purified by silica gel column chromatography (hexane, ethyl acetate) to obtain 78 mg (yield: 74%) of an orange oily substance. MS (FAB +): 268.3 ( M +); v max / cm -1: 1721 (C = O); Found: C, 71.45; H, 11.13; N, 5.10%. Calc. for C 16 H 30 NO 2: C, 71.59; H, 11.27; N, 5.22%.

2,2−dimethyl−6−spiro−2’−tricyclo[3.3.1.1 3’,7’ ]decanepiperidine−4−one(13)
2,6−dispiro−2’,2’−ditricyclo[3.3.1.1 3’,7’ ]decanepiperidine−4−one(16)
方法Bに従って、4−ヘプタノンを2−アダマンタノン4.51g(30mmol)に変えて行った。反応条件はTableに示した。抽出後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、得られた結晶をヘキサンからそれぞれ再結晶し、白色針状結晶(13)と淡黄色鱗片状結晶(16)を得た。(13):収率:(粗結晶);mp:92.5−92.6℃;MS(FAB):248.3(M+1);vmax/cm−1:1699(C=O);H−NMR(300MHz;CDCl)δ(ppm):1.23(6H,s),1.50−1.95(14H,m),2.27(2H,s),2.53(2H,s);Found:C,77.65;H,10.12;N,5.60%.Calc.for C1625NO:C,77.68;H,10.19;N,5.66%.(16):収率:0.62%(2.5時間50℃)(粗結晶);mp:131.2−131.5℃;MS(FAB):340.4(M+1);vmax/cm−1:1709(C=O);H−NMR(400MHz;CDCl)δ(ppm):1.25(brs),1.56−1.69(m),1.79−1.92(m),2.33(brs),2.36(brs),2.61(4H,s);Found:C,81.30;H,9.77;N,4.07%.Calc.for C2333NO:C,81.37;H,9.80;N,4.13%.
2,2-dimethyl-6-spiro-2'-tricyclo [3.3.1.1 3 ', 7' ] decane piperidine-4-one (13)
2,6-dispiro-2 ′, 2′-diisticcyclo [3.3.1.1 3 ′, 7 ′ ] decane piperidine-4-one (16)
According to Method B, 4-heptanone was changed to 4.51 g (30 mmol) of 2-adamantanone. The reaction conditions are shown in Table. After extraction, the product was purified by silica gel column chromatography (hexane, ethyl acetate), and the resulting crystals were recrystallized from hexane to obtain white needle crystals (13) and pale yellow scale crystals (16). (13): Yield: (crude crystals); mp: 92.5-92.6 ° C .; MS (FAB + ): 248.3 (M + +1); v max / cm −1 : 1699 (C═O 1 H-NMR (300 MHz; CDCl 3 ) δ (ppm): 1.23 (6H, s), 1.50-1.95 (14 H, m), 2.27 (2H, s), 2. 53 (2H, s); Found: C, 77.65; H, 10.12; N, 5.60%. Calc. for C 16 H 25 NO: C, 77.68; H, 10.19; N, 5.66%. (16): Yield: 0.62% (2.5 hours at 50 ° C.) (crude crystals); mp: 131.2-131.5 ° C .; MS (FAB + ): 340.4 (M + +1); v max / cm −1 : 1709 (C═O); 1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.25 (brs), 1.56-1.69 (m), 1.79 -1.92 (m), 2.33 (brs), 2.36 (brs), 2.61 (4H, s); Found: C, 81.30; H, 9.77; N, 4.07 %. Calc. for C 23 H 33 NO: C , 81.37; H, 9.80; N, 4.13%.

方法C
2,2−dimethyl−6−spiro−2’−tricyclo[3.3.1.1 3’,7’ ]decane−4−oxo−piperidin−1−yl 1oxyl (14)
2,2−dimethyl−6−spiro−2’−tricyclo[3.3.1.13’,7’]decanepiperidine−4−one(13)410mg(1.66mmol)をクロロホルム30mlに溶解し、氷浴中で攪拌した。MCPBA371mg(1.66mmol)を加え、15分後に室温に戻し、さらに2時間攪拌を続けた。クロロホルムで抽出を行い、有機層を硫酸ナトリウムで乾燥し、溶媒を完全に留去した。その後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、得られた結晶をジイソプロピルエーテルから再結晶し、橙色鱗片状結晶172mg(収率:40%)を得た。mp:134.7−135.3℃;MS(FAB):262.3(M);vmax/cm−1:1709(C=O);Found:C,73.13;H,9.14;N,5.29%.Calc.for C1624NO:C,73.25;H,9.22;N,5.34%.
Method C
2,2-dimethyl-6-spiro-2′-tricyclo [3.3.1.1 3 ′, 7 ′ ] decane-4-oxo-piperidin-1-yl 1oxyl (14)
2,2-dimethyl-6-spiro-2′-tricyclo [3.3.1.1 3 ′, 7 ′ ] decane piperidine-4-one (13) 410 mg (1.66 mmol) was dissolved in chloroform 30 ml, ice Stir in the bath. 371 mg (1.66 mmol) of MCPBA was added, and after 15 minutes, the temperature was returned to room temperature, and stirring was further continued for 2 hours. Extraction was performed with chloroform, the organic layer was dried over sodium sulfate, and the solvent was completely distilled off. Then, it refine | purified by silica gel column chromatography (hexane, ethyl acetate), and the obtained crystal | crystallization was recrystallized from diisopropyl ether, and 172 mg (yield: 40%) of the orange scale-like crystal | crystallization was obtained. mp: 134.7-135.3 ℃; MS (FAB +): 262.3 (M +); v max / cm -1: 1709 (C = O); Found: C, 73.13; H, 9 .14; N, 5.29%. Calc. for C 16 H 24 NO 2: C, 73.25; H, 9.22; N, 5.34%.

2,2−dimethyl−6−spiro−2’−tricyclo[3.3.1.1 3’,7’ ]decane −4−hydroxy−piperidin−1−yl 1oxyl (15)
2,2−dimethyl−6−spiro−2’−tricyclo[3.3.1.13’,7’]decane−4−oxo−piperidin−1−yl 1oxyl(14)180mg(0.73mmol)をエタノール5mlに溶解し、水浴中で攪拌した。NaBH34mg(0.91mmol)を加え、室温に戻し、一晩攪拌を続けた。また、反応の進行をTLCで確認し、NaBHを適宜追加した。これをクロロホルムで抽出し、有機層を硫酸ナトリウムで乾燥し、溶媒を完全に留去した。その後、シリカゲルカラムクロマトグラフィー(クロロホルム/メタノール,99:1)で精製し、得られた結晶を酢酸エチルから再結晶し、赤紫色鱗片状結晶89mg(収率:46%)を得た。mp:132.0−133.6℃;MS(FAB):264.3(M);vmax/cm−1:3407(br,OH);Found:C,72.55;H,9.89;N,5.36%.Calc.for C1624NO:C,72.69;H,9.91;N,5.30%.
2,2-dimethyl-6-spiro-2'-tricyclo [3.3.1.1 3 ', 7' ] decane-4-hydroxy-piperidin-1-yl 1oxyl (15)
2,2-dimethyl-6-spiro-2′-tricyclo [3.3.1.1 3 ′, 7 ′ ] decane-4-oxo-piperidin-1-yl 1oxyl (14) 180 mg (0.73 mmol) Dissolved in 5 ml of ethanol and stirred in a water bath. NaBH 4 34 mg (0.91 mmol) was added, the temperature was returned to room temperature, and stirring was continued overnight. Further, the progress of the reaction was confirmed by TLC, and NaBH 4 was appropriately added. This was extracted with chloroform, the organic layer was dried over sodium sulfate, and the solvent was completely distilled off. Thereafter, the product was purified by silica gel column chromatography (chloroform / methanol, 99: 1), and the obtained crystal was recrystallized from ethyl acetate to obtain 89 mg (yield: 46%) of reddish purple scaly crystals. mp: 132.0-133.6 ° C .; MS (FAB + ): 264.3 (M + ); v max / cm −1 : 3407 (br, OH); Found: C, 72.55; H, 9 .89; N, 5.36%. Calc. for C 16 H 24 NO 2: C, 72.69; H, 9.91; N, 5.30%.

2,6−dispiro−2’,2’−ditricyclo[3.3.1.1 3’,7’ ]decanepiperidine−4−oxo−piperidin−1−yl 1−oxyl(17)
方法Cに従って、2,6−dispiro−2’,2’−ditricyclo[3.3.1.13’,7’]decanepiperidine−4−one(16)149mg(0.439mmol)を原料として行った。抽出後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、得られた結晶をヘキサンから再結晶し、紫色球状結晶18mg(収率:12%)を得た。mp:154.6−160.9℃;MS(FAB):354.3(M);vmax/cm−1:1705(C=O);Found:C,77.67;H,9.03;N,3.76%.Calc.for C2332NO:C,77.92;H,9.10;N,3.95%.
2,6-dispiro-2 ', 2'-dicycliccyclo [3.3.1.1 3', 7 ' ] decane piperidine-4-oxo-piperidin-1-yl 1-oxyl (17)
According to Method C, 2,6-dispiro-2 ′, 2′-diisticcyclo [3.3.1.1 3 ′, 7 ′ ] decane piperidine-4-one (16) 149 mg (0.439 mmol) was used as a starting material. . After extraction, the product was purified by silica gel column chromatography (hexane, ethyl acetate), and the obtained crystals were recrystallized from hexane to obtain 18 mg of purple spherical crystals (yield: 12%). mp: 154.6-160.9 ° C .; MS (FAB + ): 354.3 (M + ); v max / cm −1 : 1705 (C═O); Found: C, 77.67; H, 9 .03; N, 3.76%. Calc. for C 23 H 32 NO 2: C, 77.92; H, 9.10; N, 3.95%.

細胞毒性
ニトロキシルラジカルは、細胞内で、アスコルビン酸やチオール(金属が触媒する反応)、ミトコンドリア呼吸鎖、NADPH、シトクロムP450などと反応することが報告され、アポトーシスの誘発や、シトクロムP450を介したHの産生などが細胞毒性の原因となっていると報告されている。一方、テトラエチル基を有するニトロキシルラジカルは、アスコルビン酸との反応性が顕著に低下していることを、本発明者らは報告している。そこで、合成したニトロキシルラジカル化合物の細胞毒性を評価した。
Cytotoxic nitroxyl radicals have been reported to react with ascorbic acid, thiols (metal-catalyzed reactions), mitochondrial respiratory chain, NADPH, cytochrome P450, etc. in cells, and induce apoptosis and mediated through cytochrome P450 It has been reported that production of H 2 O 2 and the like cause cytotoxicity. On the other hand, the present inventors have reported that the reactivity with the ascorbic acid of the nitroxyl radical having a tetraethyl group is significantly reduced. Therefore, the cytotoxicity of the synthesized nitroxyl radical compound was evaluated.

方法
HUVEC(ヒト臍帯静脈内皮細胞)はブレットキットEGMを培地として用いて、37℃、5%CO下、COインキュベーターで培養した。また、HUVECは対数増殖期を維持するために、一定の間隔で継代を行い、2〜5代培養の間を実験に用いた。HUVEC(5000cells/well)は、コラーゲンIコートした透明平底プレートを用いて、各濃度のニトロキシルラジカルを添加後、24時間インキュベートし、細胞生存率をWST−1法により解析した。24時間インキュベート後、WST−1試薬を各ウェル10μlずつ添加し、3時間インキュベート後、450nmの吸光度をプレートリーダーにて測定した。ポジティブコントロールに2%Tween20、ネガティブコントロールにPBSを用い、データはコントロールに対する相対値(%)で表した。
Method HUVEC (human umbilical vein endothelial cells) were cultured in a CO 2 incubator at 37 ° C. under 5% CO 2 using Brett Kit EGM as a medium. Moreover, in order to maintain a logarithmic growth phase, HUVEC was subcultured at regular intervals, and used between 2 and 5 subcultures for experiments. HUVEC (5000 cells / well) was incubated for 24 hours after adding nitroxyl radicals at various concentrations using a collagen I-coated transparent flat bottom plate, and the cell viability was analyzed by the WST-1 method. After 24 hours of incubation, 10 μl of WST-1 reagent was added to each well, and after 3 hours of incubation, the absorbance at 450 nm was measured with a plate reader. 2% Tween 20 was used as a positive control, PBS was used as a negative control, and data was expressed as a relative value (%) to the control.

結果
HUVEC細胞にニトロキシルラジカル化合物を添加し、24時間後の細胞増殖能を測定した。その結果、Oxo−TEMPO、Tempolは、濃度依存的な細胞増殖能抑制効果を示した。一方、テトラエチル基を導入した化合物では、1mMの濃度まで細胞増殖能抑制効果は認められず、脂溶性が高いにも関わらず低毒性であることが示された(図1を参照)。
Results A nitroxyl radical compound was added to HUVEC cells, and the cell growth ability after 24 hours was measured. As a result, Oxo-TEMPO and Tempol showed a concentration-dependent cell growth ability inhibitory effect. On the other hand, a compound having a tetraethyl group introduced showed no inhibitory effect on cell growth ability up to a concentration of 1 mM, indicating that it was low in toxicity despite its high fat solubility (see FIG. 1).

胃潰瘍モデル動物を用いた薬効評価
アジュバント関節炎ラットの作成
ニトロキシルラジカルが、アジュバント関節炎ラット(AAラット)におけるインドメタシン惹起胃潰瘍を抑制するか否か検討した。
Evaluation of drug efficacy using gastric ulcer model animals Creation of adjuvant arthritic rats It was investigated whether nitroxyl radical suppresses indomethacin-induced gastric ulcers in adjuvant arthritic rats (AA rats).

方法
結核死菌Mycobacterium tuberculosis H37 RAを瑪瑙乳鉢中で磨砕し、この中にheavy mineral oilを滴下しつつ加え、さらに磨砕し10mg/mlとした。この結核死菌−oil懸濁液を3分間超音波処理後1ml容量のシリンジにとり、イソフルラン麻酔下、5週齢のDAラットの左足蹠皮内に100μL投与し、アジュバント関節炎を惹起した。陰性対照群は、heavy mineral oilのみを左足蹠皮内に投与した。
Method Mycobacterium tuberculosis H37 RA was ground in an agate mortar, and heavy minor oil was added dropwise thereto, and further ground to 10 mg / ml. This tuberculosis killed oil-oil suspension was sonicated for 3 minutes and then taken into a 1 ml syringe, and 100 μL was administered into the left footpad of a 5-week-old DA rat under isoflurane anesthesia to induce adjuvant arthritis. In the negative control group, only heavy mineral oil was administered into the left footpad.

DAラットは、アジュバント投与後13日目に飼育ケージ内にて絶食させた。ただし、飲料水は自由飲水とした。絶食開始から24時間後にインドメタシン(20mg/kg)をラットに経口投与して胃潰瘍を作成した。コントロールでは、vehicleとして5%NaHCOを同量経口投与した。ニトロキシルラジカル化合物は、インドメタシン投与5分前に経口投与した。DA rats were fasted in the breeding cage on day 13 after administration of the adjuvant. However, drinking water was free drinking. After 24 hours from the start of fasting, indomethacin (20 mg / kg) was orally administered to rats to create gastric ulcers. As a control, the same amount of 5% NaHCO 3 was orally administered as a vehicle. The nitroxyl radical compound was orally administered 5 minutes before administration of indomethacin.

胃粘膜損傷面積計測
インドメタシンによる胃潰瘍惹起4時間後、ラットを過麻酔下頚椎脱臼により処理し、直ちに胃を食道、小腸側をそれぞれ約1cmずつ残して切断し摘出した。幽門部側を鉗子で固定し、1%ホルマリン溶液を10ml注入後、噴門部側を鉗子で固定した。これを10−20分間浸し続けることにより胃壁を両側面から固定した。固定後、大湾部に沿って胃を切開し、胃腔内膜をデジタルカメラで撮影した。画像処理ソフトImage Jを用いて胃底部粘膜に発生した損傷面積を計測した。
Measurement of gastric mucosal damage area 4 hours after induction of gastric ulcer by indomethacin, the rat was treated by cervical dislocation under overanaesthesia, and the stomach was immediately cut and excised leaving about 1 cm each of the esophagus and the small intestine. The pylorus part side was fixed with forceps, 10 ml of 1% formalin solution was injected, and the cardia part side was fixed with forceps. The stomach wall was fixed from both sides by continuing soaking for 10-20 minutes. After fixation, the stomach was incised along the Great Bay, and the gastric lumen was photographed with a digital camera. Using the image processing software Image J, the damaged area generated in the gastric floor mucosa was measured.

結果
インドメタシンによる胃潰瘍惹起の程度を、インドメタシンを経口投与したAAラットの胃底部粘膜損傷面積で評価した結果、ニトロキシルラジカル化合物を投与していないAAラットでは、損傷面積が高い値を示し、胃潰瘍を惹起していること、つまり胃底部粘膜に炎症が起きていることが確認された。一方、ニトロキシルラジカル化合物を投与したAAラットでは、ニトロキシルラジカル化合物を投与していないAAラットと比較して損傷面積が有為に減少していることが示され、ニトロキシルラジカル化合物が、胃潰瘍における粘膜損傷を有為に抑制していることを示した。
Results The degree of gastric ulcer induced by indomethacin was evaluated by the damage area of the gastric fundus mucosa of AA rats to which indomethacin was orally administered. That is, i.e., inflammation of the gastric floor mucosa was confirmed. On the other hand, the AA rats administered with the nitroxyl radical compound showed a significantly reduced damage area compared to the AA rats not administered with the nitroxyl radical compound. It showed that mucosal damage was significantly suppressed.

既知のニトロキシルラジカル化合物であるTempol(図2を参照)は、900μmol/kgの濃度で抑制作用を示しているが、本発明に基づき合成されたニトロキシルラジカル化合物(図2における化合物A及びB)は、Tempolと比較して最大1/10の濃度で有為な胃粘膜損傷の抑制作用を有していることも示され、既知化合物より低濃度で抑制効果を示すことが明らかとなった。   Tempol (see FIG. 2), a known nitroxyl radical compound, shows an inhibitory action at a concentration of 900 μmol / kg, but the nitroxyl radical compound synthesized according to the present invention (compounds A and B in FIG. 2). ) Was also shown to have significant inhibitory action on gastric mucosal damage at a concentration of up to 1/10 compared to Tempol, and it became clear that it showed an inhibitory effect at a lower concentration than known compounds .

ニトロキシルラジカルの血圧降下作用
TempolなどTEMPO系ニトロキシルラジカル化合物は、血圧降下作用を有し、高血圧研究に広く用いられている。血圧降下作用の原因は未だ明らかにはなっていないが、SOD様作用と相関があることから、活性酸素消去能によるものではないかと考察されている。そこで、今回新たに合成したニトロキシルラジカル化合物の血圧降下作用を明らかにする。
TEMPO-based nitroxyl radical compounds such as Tempol, a blood pressure lowering action of nitroxyl radical, have a blood pressure lowering action and are widely used in hypertension research. Although the cause of the blood pressure lowering action has not yet been clarified, it is considered that it is due to the ability to scavenge active oxygen because it has a correlation with the SOD-like action. Therefore, we clarify the blood pressure lowering action of the newly synthesized nitroxyl radical compound.

方法
日周リズムへの影響を避けるために、実験は全て9:00から16:00の間に行った。自然発症高血圧モデルラット(SHR;♂、208−330g)は、イソフルランを用いて麻酔を施した。平均血圧(MAP)は、大腿部の動脈にポリエチレンチューブ(PE−50)をカニュレーション後、transducer(MLT0670 BP Transducer,ADinstruments,Sydney,Australia)とamplifier(ML117 BP Amp,ADinstruments,Sydney,Australia)にて計測した。ニトロキシルラジカル溶液(60μmol/kg)を1ml/minの速度で大腿静脈より投与し、投与後20分間血圧と心拍数を測定した。
Method All experiments were performed between 9:00 and 16:00 in order to avoid effects on the diurnal rhythm. Spontaneously hypertensive model rats (SHR; ♂, 208-330 g) were anesthetized with isoflurane. Mean blood pressure (MAP) cannulated polyethylene tube (PE-50) in femoral artery, then transducer (MLT0670 BP Transducer, ADinstruments, Sydney, Australia) and amplifier (ML117 BP Amp, Australia) Measured at. Nitroxyl radical solution (60 μmol / kg) was administered from the femoral vein at a rate of 1 ml / min, and blood pressure and heart rate were measured for 20 minutes after administration.

結果
ニトロキシルラジカル化合物を投与後の経時的な血圧変化を図3に示す。今回新たに開発したニトロキシルラジカル化合物(化合物C)が示す血圧降下作用は、既知のニトロキシルラジカル化合物であるTempolと比較して有為に高い作用を示した。また、血圧降下作用の持続時間は、新規ニトロキシル化合物(化合物C)は、Tempolと比較し長時間にわたって持続することも示された。
Results FIG. 3 shows changes in blood pressure over time after administration of the nitroxyl radical compound. The blood pressure lowering action exhibited by the newly developed nitroxyl radical compound (compound C) was significantly higher than that of Tempol, which is a known nitroxyl radical compound. Moreover, it was also shown that the duration of the blood pressure lowering action lasts for a long time when the novel nitroxyl compound (Compound C) is compared with Tempol.

尚、上述の実施例は本発明の好適な実施の一例ではあるが、その範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but the scope thereof is not limited, and various modifications can be made without departing from the scope of the present invention.

下記に本願発明に係る参照文献を記載するが、これらは、この参照により本願明細書に完全に組み込まれるものである。
(参照文献)
(1)B. Halliwell, Oxidative stress and cancer: have we moved forward? Biochem J, 2007. 401(1): 1−11.
(2)T. Sano, et al., Oxidative stress measurement by in vivo electron spin resonance spectroscopy in rats with streptozotocin−induced diabetes. Diabetologia, 1998. 41(11): 1355−60.
(3)M. Yamato, T. Egashira, and H. Utsumi, Application of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke. Free Radic Biol Med, 2003. 35(12): 1619−31.

(4)H.Utsumi, et al., Noninvasive mapping of reactive oxygen species by in vivo electron spin resonance spectroscopy in indomethacin−induced gastric ulcers in rats. J Pharmacol Exp Ther, 2006. 317(1): 228−35.
(5)K. Yamada, I. Yamamiya, and H. Utsumi, In vivo detection of free radicals induced by diethylnitrosamine in rat liver tissue. Free Radic Biol Med, 2006. 40(11): 2040−6.
(6)H. Sano, et al., A new nitroxyl−probe with high retention in the brain and its application for brain imaging. Free Radic Biol Med, 2000. 28(6): 959−69.
(7)T. Herrling, et al., UV−induced free radicals in the skin detected by ESR spectroscopy and imaging using nitroxides. Free Radic Biol Med, 2003. 35(1): 59−67.
(8)D.J. Lurie, et al., Proton−electron double magnetic resonance imaging of free radical solutions. J Magn Res, 1988. 76: 366−370.
(9)K. Yamada, et al., Synthesis of nitroxyl radicals for Overhauser−enhanced magnetic resonance imaging. Arch Pharm (Weinheim), 2008. 341(9): 548−53.
(10)M.C. Krishna, et al., Overhauser enhanced magnetic resonance imaging for tumor oximetry: coregistration of tumor anatomy and tissue oxygen concentration. Proc Natl Acad Sci U S A, 2002. 99(4): 2216−21.
(11)H. Utsumi, et al., Simultaneous molecular imaging of redox reactions monitored by Overhauser−enhanced MRI with 14N− and 15N−labeled nitroxyl radicals. Proc Natl Acad Sci U S A, 2006. 103(5): 1463−8.
(12)J.M. Metz, et al., A phase I study of topical Tempol for the prevention of alopecia induced by whole brain radiotherapy. Clin Cancer Res, 2004. 10(19): 6411−7.
(13)Y. Miura, N. Nakamura, and I. Taniguchi, Low−temperature "living" radical polymerization of styrene in the presence of nitroxides with spiro structures. Macromolecules, 2001. 34(3): 447−455.
(14)C. Wetter, et al., Steric and electronic effects in cyclic alkoxyamines−−synthesis and applications as regulators for controlled/living radical polymerization. Chemistry, 2004. 10(5): 1156−66.
(15)M.J. Aroney, et al., Molecular Polarisability. The Molecular Conformations of Some Substituted 4− Piperidones as Solutes. J Chem Soc, 1966: 98.
(16) M. Cygler, et al., CONFORMATION OF THE PIPERIDINE RING Part IV. Investigations of 4−tert−butyl−4−hydroxy−2,2,6,6−tetramethylpiperidine derivatives. J Mol Struct, 1980. 68: 161−171.
(17) Z. Ma, Q. Huang, and J.M. Bobbitt, Oxoammonium Salts. 5. A New Synthesis of Hindered Piperidines Leading to Unsymmetrical TEMPO−Type Nitroxides. Synthesis and Enantioselective Oxidations with Chiral Nitroxides and Chiral Oxoammonium Salts. J Org Chem, 1993. 58: 4837−43.
(18)J.E. Baker, et al., Spin label oximetry to assess extracellular oxygen during myocardial ischemia. Free Radic Biol Med, 1997. 22(1−2): 109−15.
(19)H. Hu, G. Sosnovsky, and H.M. Swartz, Simultaneous measurements of the intra− and extra−cellular oxygen concentration in viable cells. Biochim Biophys Acta, 1992. 1112(2): 161−6.
(20)J.B. Feix, J.J. Yin, and J.S. Hyde, Interactions of 14N:15N stearic acid spin−label pairs: effects of host lipid alkyl chain length and unsaturation. Biochemistry, 1987. 26(13): 3850−5.
(21)木下祐一, 生体内レドックスメカニズム解析に向けた新規スピンプローブ剤の開発. 修士論文, 2007
(22)E. Sartori, et al., A time−resolved electron paramagnetic resonance investigation of the spin exchange and chemical interactions of reactive free radicals with isotopically symmetric (14N−X−14N) and isotopically asymmetric (14N−X−15N) nitroxyl biradicals. J Am Chem Soc, 2007. 129(25): 7785−92.
(23)J.F.W. Keana, Newer Aspects of the Synthesis and Chemistry of Nitroxide Spin Labels. Chem Rev, 1978. 78(1): 37.
(24)大矢博昭、山内淳, 電子スピン共鳴, 講談社サイエンティフィク. 1989: 講談社.
(25)B.S. Winkler, S.M. Orselli, and T.S. Rex, The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radic Biol Med, 1994. 17(4): 333−49.
(26)S. Morris, et al., Chemical and electrochemical reduction rates of cyclic nitroxides (nitroxyls). J Pharm Sci, 1991. 80(2): 149−52.
(27)M. Shibuya, M. Tomizawa, and Y. Iwabuchi, TEMPO/NaIO4−SiO2: a catalytic oxidative rearrangement of tertiary allylic alcohols to beta−substituted alpha,beta−unsaturated ketones. Org Lett, 2008. 10(21): 4715−8.
(28)X. Wang, et al., TEMPO/HCl/NaNO2 catalyst: a transition−metal−free approach to efficient aerobic oxidation of alcohols to aldehydes and ketones under mild conditions. Chemistry, 2008. 14(9): 2679−85.
(29)K. Nakahara, et al., Rechargeable batteries with organic radical cathodes. Chem Phys Lett, 2002. 359(5−6): 351−354.
(30)A. Dhanasekaran, et al., Mitochondria superoxide dismutase mimetic inhibits peroxide−induced oxidative damage and apoptosis: role of mitochondrial superoxide. Free Radic Biol Med, 2005. 39(5): 567−83.
(31)A.A. Bobko, et al., 19F NMR measurements of NO production in hypertensive ISIAH and OXYS rats. Biochem Biophys Res Commun, 2005. 330(2): 367−70.
(32)A. Modica, D.J. Lurie, and M. Alecci, Sequential, co−registered fluorine and proton field−cycled Overhauser imaging at a detection field of 59 mT. Phys Med Biol, 2006. 51(3): N39−45.
(33)R. Murugesan, et al., Fluorine electron double resonance imaging for 19F MRI in low magnetic fields. Magn Reson Med, 2002. 48(3): 523−9.
(34)C. Buhrmester, et al., The Use of 2,2,6,6−Tetramethylpiperinyl−Oxides and Derivatives for Redox Shuttle Additives in Li−Ion Cells. J Electrochem Soc, 2006. 153(10): A1800−A1804.
References relating to the present invention are set forth below and are fully incorporated herein by this reference.
(References)
(1) B. Halliwell, Oxidative stress and cancer: have we moved forward? Biochem J, 2007. 401 (1): 1-11.
(2) T.W. Sano, et al. , Oxidative stress measurement by in vivo electron spin resonance spectroscopy with rats with streptozotocin-induced diameters. Diabetologia, 1998. 41 (11): 1355-60.
(3) M.M. Yamato, T .; Egashira, and H.E. Utsumi, Application of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke. Free Radic Biol Med, 2003. 35 (12): 1619-31.

(4) H. Utsumi, et al. , Noninvasive mapping of reactive oxygen species by in vivo electro spin spin resonance spectroscopy in induc- ed rustic ulcers. J Pharmacol Exp Ther, 2006. 317 (1): 228-35.
(5) K.K. Yamada, I .; Yamamiya, and H.K. Utsumi, In vivo detection of free radicals induced by diethyl nitrosamine in rat liver tissue. Free Radic Biol Med, 2006. 40 (11): 2040-6.
(6) H. Sano, et al. , A new nitroxy-probe with high retention in the brain and its application for brain imaging. Free Radic Biol Med, 2000. 28 (6): 959-69.
(7) T.W. Herring, et al. , UV-induced free radicals in the skin detected by ESR spectroscopy and imaging using neurons. Free Radic Biol Med, 2003. 35 (1): 59-67.
(8) D. J. et al. Lurie, et al. , Proton-electron double magnetic resonance imaging of free radical solutions. J Magn Res, 1988. 76: 366-370.
(9) K. Yamada, et al. , Synthesis of nitroxyl radicals for Overhauser-enhanced magnetic resonance imaging. Arch Pharm (Weinheim), 2008. 341 (9): 548-53.
(10) M.M. C. Krishna, et al. , Overhauled enhanced magnetic resonance imaging for tumor oximetry: coordination of tumor anatomy and tissue oxygen concentration. Proc Natl Acad Sci USA, 2002. 99 (4): 2216-21.
(11) H. Utsumi, et al. , Simulaneous molecular imaging of redox reactions monitored by by Overhauser-enhanced MRI with 14N-and 15N-labeled nitroxyl radicals. Proc Natl Acad Sci USA, 2006. 103 (5): 1463-8.
(12) J. et al. M.M. Metz, et al. , A phase I study of topical Tempor for the prevention of alopecia induced by whole brain radiotherapy. Clin Cancer Res, 2004. 10 (19): 6411-7.
(13) Y. Miura, N .; Nakamura, and I.I. Taniguchi, Low-temperature "living" radical polymerisation of styren in the presence of nitroxides with spiro structures. Macromolecules, 2001. 34 (3): 447-455.
(14) C.I. Wetter, et al. , Steric and electronic effects in cyclic alkoxyamines--synthesis and applications as regulators for controlling / living radical polymerization. Chemistry, 2004. 10 (5): 1156-66.
(15) M.M. J. et al. Aroney, et al. , Molecular Polarisability. The Molecular Informations of Some Substituted 4- Piperidones as Solutions. J Chem Soc, 1966: 98.
(16) M.M. Cygler, et al. , CONFORMATION OF THE PIPERIDINE RING Part IV. Investigations of 4-tert-butyl-4-hydroxy-2,2,6,6-tetramethylpiperidine derivatives. J Mol Struct, 1980. 68: 161-171.
(17) Z. Ma, Q. Huang, and J.H. M.M. Bobbitt, Oxoammonium Salts. 5. A New Synthesis of Hindered Piperidines Leading to Unsymmetrical TEMPO-Type Nitroxides. Synthesis and Enantioselective Oxidations with Chiral Nitroxides and Chiral Oxommonium Salts. J Org Chem, 1993. 58: 4837-43.
(18) J. et al. E. Baker, et al. , Spin label oximetry to assess extracellular oxygen during myocardial ischemia. Free Radic Biol Med, 1997. 22 (1-2): 109-15.
(19) H. Hu, G.G. Sosnovsky, and H.S. M.M. Swartz, Simulaneous measurements of the intra- and extra-cellular oxygen concentration in viable cells. Biochim Biophys Acta, 1992. 1112 (2): 161-6.
(20) J. Org. B. Feix, J.M. J. et al. Yin, and J.J. S. Hyde, Interactions of 14N: 15N stearic acid spin-label pairs: effects of host lipid alkyl chain length and unsaturation. Biochemistry, 1987. 26 (13): 3850-5.
(21) Yuichi Kinoshita, Development of a novel spin probe agent for in vivo redox mechanism analysis. Master thesis, 2007
(22) E.E. Sartori, et al. , A time-resolved electron paramagnetic resonance investigation of the spin exchange and chemical interactions of reactive free radicals with isotopically symmetric (14N-X-14N) and isotopically asymmetric (14N-X-15N) nitroxyl biradicals. J Am Chem Soc, 2007. 129 (25): 7785-92.
(23) J. et al. F. W. Keana, Newer Aspects of the Synthesis and Chemistry of Nitroxide Spin Labels. Chem Rev, 1978. 78 (1): 37.
(24) Hiroaki Ohya, Kei Yamauchi, Electron Spin Resonance, Kodansha Scientific. 1989: Kodansha.
(25) B. S. Winkler, S.M. M.M. Orselli, and T.R. S. Rex, The redox couple between glutathione and ascorbic acid: a chemical and physical perspective. Free Radic Biol Med, 1994. 17 (4): 333-49.
(26) S.M. Morris, et al. , Chemical and electrochemical reduction rates of cyclic nitroxides (nitroxyls). J Pharm Sci, 1991. 80 (2): 149-52.
(27) M.M. Shibuya, M .; Tomizawa, and Y.K. Iwabuchi, TEMPO / NaIO4-SiO2: a catalytic oxidative rearrangement of tertiary allochols to beta-substituted alpha, beta-unsaturated. Org Lett, 2008. 10 (21): 4715-8.
(28) X. Wang, et al. , TEMPO / HCl / NaNO2 catalyst: a transition-metal-free approach to effective aerobic oxidation of alcohols and ketons milds. Chemistry, 2008. 14 (9): 2679-85.
(29) K.M. Nakahara, et al. , Rechargeable batteries with organic radical cathodes. Chem Phys Lett, 2002. 359 (5-6): 351-354.
(30) A. Dhanasekaran, et al. , Mitochondria superoxide dismutase mimetic inhibits peroxide-induced oxidative damage and apoptosis: role of mitochondria. Free Radic Biol Med, 2005. 39 (5): 567-83.
(31) A. A. Bobko, et al. , 19F NMR measurements of NO production in hypertensive ISIAH and OXYS rats. Biochem Biophys Res Commun, 2005. 330 (2): 367-70.
(32) A. Modica, D.M. J. et al. Lurie, and M.M. Alecci, Sequential, co-registered fluorine and proton field-cycled overhauser imaging at a detection field of 59 mT. Phys Med Biol, 2006. 51 (3): N39-45.
(33) R.M. Murugesan, et al. , Fluorine electron double resonance imaging for 19F MRI in low magnetic fields. Magn Reson Med, 2002. 48 (3): 523-9.
(34) C.I. Buhrmester, et al. , The Use of 2,2,6,6-Tetramethylpiperylyl-Oxides and Derivatives for Redox Shuttle Additives in Li-Ion Cells. J Electrochem Soc, 2006. 153 (10): A1800-A1804.

【0006】
[表2−1]

Figure 2011052759
Figure 2011052759
[0006]
[Table 2-1]
Figure 2011052759
Figure 2011052759

【0007】
[0017]
[表2−2]

Figure 2011052759
[0018]
上記表から明らかなように、環状構造を有するカルボニル化合物と、直鎖状カルボニル化合物では、ピロリドン生成物に対して異なる選択性が見られる。つまり、環構造を有するカルボニル化合物を原料として用いた場合、二[0007]
[0017]
[Table 2-2]
Figure 2011052759
[0018]
As apparent from the above table, the carbonyl compound having a cyclic structure and the linear carbonyl compound have different selectivity for the pyrrolidone product. That is, when a carbonyl compound having a ring structure is used as a raw material,

【0010】
[表3−1]

Figure 2011052759
[0026][0010]
[Table 3-1]
Figure 2011052759
[0026]

【0012】
[表3−3]

Figure 2011052759
[0028]
本発明の一実施形態によると、当該発明は、化学式1で示されるニトロキシラジカル化合物の製造方法であって、
[化3]
Figure 2011052759
式中、
〜Rは、独立して、C〜C10のアルキルであるか、或いは、R及びR、又はR及びRが共に結合して、(CH、(CHO(CH、(CHSO(CH、(CHNX(CH、(CHCY(CH、[0012]
[Table 3-3]
Figure 2011052759
[0028]
According to one embodiment of the present invention, the present invention is a method for producing a nitroxy radical compound represented by Formula 1,
[Chemical formula 3]
Figure 2011052759
Where
R 1 to R 4 are independently C 1 to C 10 alkyl, or R 1 and R 2 , or R 3 and R 4 are bonded together to form (CH 2 ) n , (CH 2) n O (CH 2) n, (CH 2) n SO 2 (CH 2) n, (CH 2) n NX (CH 2) n, (CH 2) n CY (CH 2) n,

【0013】
Xは、CHCO、CFCO、又はRCOであり、
Yは、酸素(=O)、(OCHであり、
nは2〜4の整数であり、
当該方法は、
化学式2で示される化合物であって、
[化4]

Figure 2011052759
[0029]
式中、
〜Rは、独立して、C1〜C20のアルキルである、化学式2で示される化合物と、
化学式3で示される化合物であって、
[化5]
Figure 2011052759
[0030]
式中、
〜Rは、独立して、C〜C10のアルキル、R及びR、又はR及びRが共に結合して、(CH、(CHO(CH、(CHS[0013]
X is CH 3 CO, CF 3 CO, or R 1 CO;
Y is oxygen (= O), a (OCH 2) n,
n is an integer of 2 to 4,
The method is
A compound represented by Formula 2,
[Chemical formula 4]
Figure 2011052759
[0029]
Where
R 5 to R 8 are independently a compound represented by Chemical Formula 2, which is C1-C20 alkyl;
A compound represented by Formula 3,
[Chemical formula 5]
Figure 2011052759
[0030]
Where
R 1 to R 4 are independently C 1 to C 10 alkyl, R 1 and R 2 , or R 3 and R 4 are bonded together to form (CH 2 ) n , (CH 2 ) n O ( CH 2) n, (CH 2 ) n S

Claims (13)

化学式1で示されるニトロキシラジカル化合物の製造方法であって、
Figure 2011052759
式中、
〜Rは、独立して、C〜C10のアルキルであるか、或いは、R及びR、又はR及びRが共に結合して、(CH、(CHO(CH、(CHSO(CH、(CHNX(CH、(CHCY(CH
Xは、CHCO、CFCO、又はRCOであり、
Yは、酸素(=O)、(OCHであり、
nは2〜4の整数であり、
当該方法は、
化学式2で示される化合物であって、
Figure 2011052759
式中、
〜Rは、独立して、C〜C20のアルキルである、化学式2で示される化合物と、
化学式3で示される化合物であって、
Figure 2011052759
式中、
〜Rは、独立して、C〜C10のアルキル、R及びR、又はR及びRが共に結合して、(CH、(CHO(CH、(CHS(CH、(CHNX(CH、(CHCY(CH
Xは、CHCO、CFCO、又はRCOであり、
Yは、酸素(=O)、(OCHであり、
nは2〜4の整数である、化学式3で示される化合物と
をアンモニウム塩の存在下にて反応させることにより、2,6置換−4−ピペリドン誘導体を生成させる工程と、
前記2,6置換−4−ピペリドン誘導体を酸化させる工程と、
を有する、前記ニトロキシラジカル化合物の製造方法。
A method for producing a nitroxy radical compound represented by Chemical Formula 1,
Figure 2011052759
Where
R 1 to R 4 are independently C 1 to C 10 alkyl, or R 1 and R 2 , or R 3 and R 4 are bonded together to form (CH 2 ) n , (CH 2) n O (CH 2) n, (CH 2) n SO 2 (CH 2) n, (CH 2) n NX (CH 2) n, (CH 2) n CY (CH 2) n,
X is CH 3 CO, CF 3 CO, or R 1 CO;
Y is oxygen (= O), a (OCH 2) n,
n is an integer of 2 to 4,
The method is
A compound represented by Formula 2,
Figure 2011052759
Where
R 5 to R 8 are independently a C 1 to C 20 alkyl compound represented by Formula 2,
A compound represented by Formula 3,
Figure 2011052759
Where
R 1 to R 4 are independently C 1 to C 10 alkyl, R 1 and R 2 , or R 3 and R 4 are bonded together to form (CH 2 ) n , (CH 2 ) n O ( CH 2) n, (CH 2 ) n S (CH 2) n, (CH 2) n NX (CH 2) n, (CH 2) n CY (CH 2) n,
X is CH 3 CO, CF 3 CO, or R 1 CO;
Y is oxygen (= O), a (OCH 2) n,
n is an integer of 2 to 4, and a compound represented by Formula 3 is reacted in the presence of an ammonium salt to produce a 2,6-substituted-4-piperidone derivative;
Oxidizing the 2,6-substituted-4-piperidone derivative;
A process for producing the nitroxy radical compound, comprising:
請求項1記載の方法において、前記アンモニウム塩は、塩化アンモニウムである、方法。   The method of claim 1, wherein the ammonium salt is ammonium chloride. 請求項1記載の方法において、前記2,6置換−4−ピペリドン誘導体を生成させる工程は、水酸化セシウムを含むものである、方法。   2. The method of claim 1, wherein the step of producing the 2,6-substituted-4-piperidone derivative comprises cesium hydroxide. 請求項1記載の方法において、前記2,6置換−4−ピペリドン誘導体を生成させる工程は、ベンジルトリメチルアンモニウムヒドロキシド(トリトンB)を含むものである、方法。   The method according to claim 1, wherein the step of producing the 2,6-substituted-4-piperidone derivative comprises benzyltrimethylammonium hydroxide (Triton B). 化学式2で示される化合物であって、
Figure 2011052759
式中、
〜Rは、C〜C20のアルキルである、化学式2で示される化合物と、
化学式3で示される化合物であって、
Figure 2011052759
式中、
〜R10は、C〜C10のアルキル、R及びR10が共に結合して、(CH、(CHO(CH、(CHS(CH、(CHNX(CH、(CHCY(CH
Xは、CHCO、CFCO、又はRCOであり、
Yは、酸素(=O)、(OCHであり、
nは2〜4の整数である、化学式3で示される化合物と
をアンモニウム塩の存在下にて反応させることにより、2,6置換−4−ピペリドン誘導体を生成させる工程と、
前記2,6置換−4−ピペリドン誘導体を酸化させる工程と、
を含む方法により製造される、化学式1
Figure 2011052759
で示される化合物。
A compound represented by Formula 2,
Figure 2011052759
Where
R 5 to R 8 are C 1 to C 20 alkyl, the compound represented by Formula 2,
A compound represented by Formula 3,
Figure 2011052759
Where
R 9 to R 10 are C 1 to C 10 alkyl, R 9 and R 10 are bonded together, and (CH 2 ) n , (CH 2 ) n O (CH 2 ) n , (CH 2 ) n S (CH 2 ) n , (CH 2 ) n NX (CH 2 ) n , (CH 2 ) n CY (CH 2 ) n ,
X is CH 3 CO, CF 3 CO, or R 1 CO;
Y is oxygen (= O), a (OCH 2) n,
n is an integer of 2 to 4, and a compound represented by Formula 3 is reacted in the presence of an ammonium salt to produce a 2,6-substituted-4-piperidone derivative;
Oxidizing the 2,6-substituted-4-piperidone derivative;
Chemical formula 1 produced by a method comprising
Figure 2011052759
A compound represented by
請求項5記載の化合物であって、この化合物は、以下の化学式、
Figure 2011052759
Figure 2011052759
で示されるニトロキシラジカル化合物。
6. The compound of claim 5, wherein the compound has the following chemical formula:
Figure 2011052759
Figure 2011052759
A nitroxy radical compound represented by
請求項5記載の化合物であって、この化合物は、胃粘膜損傷の治療に使用されるものである、化合物。   6. A compound according to claim 5, wherein the compound is used for the treatment of gastric mucosal damage. 請求項5記載の化合物であって、この化合物は、高血圧の治療に使用されるものである、化合物。   6. A compound according to claim 5, wherein the compound is used for the treatment of hypertension. 請求項5記載の化合物と薬学的に許容可能な担体とを有する、医薬組成物。   A pharmaceutical composition comprising the compound according to claim 5 and a pharmaceutically acceptable carrier. 胃粘膜損傷を治療する方法であって、この方法は、請求項5記載の化合物を対象に投与する工程を含むものである、方法。   A method of treating gastric mucosal damage, comprising the step of administering to a subject a compound according to claim 5. 請求項10記載の方法において、前記化合物は、約0.0001〜4g/日の量で投与されるものである、方法。   12. The method of claim 10, wherein the compound is to be administered in an amount of about 0.0001-4 g / day. 高血圧を治療する方法であって、この方法は、請求項5記載の化合物を対象に投与する工程を含むものである、方法。   A method of treating hypertension, the method comprising administering to a subject a compound according to claim 5. 請求項12記載の方法において、前記化合物は、約0.0001〜4g/日の量で投与されるものである、方法。   13. The method of claim 12, wherein the compound is to be administered in an amount of about 0.0001-4 g / day.
JP2011538512A 2009-10-29 2010-10-29 Novel nitroxyl radical compound and method for producing the same Expired - Fee Related JP5911131B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US25618409P 2009-10-29 2009-10-29
US61/256,184 2009-10-29
PCT/JP2010/069385 WO2011052759A1 (en) 2009-10-29 2010-10-29 Novel nitroxyl radical compound and process for production thereof

Publications (2)

Publication Number Publication Date
JPWO2011052759A1 true JPWO2011052759A1 (en) 2013-03-21
JP5911131B2 JP5911131B2 (en) 2016-05-11

Family

ID=43922181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011538512A Expired - Fee Related JP5911131B2 (en) 2009-10-29 2010-10-29 Novel nitroxyl radical compound and method for producing the same

Country Status (2)

Country Link
JP (1) JP5911131B2 (en)
WO (1) WO2011052759A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026610A (en) * 1999-05-11 2001-01-30 Sankyo Co Ltd Preparation of polymer and polymerization mediator
JP2001081076A (en) * 1999-07-09 2001-03-27 Sankyo Co Ltd Polymerization mediator and production of polystyrene
JP5311472B2 (en) * 2007-01-31 2013-10-09 国立大学法人九州大学 Synthesis of nitroxyl radical

Also Published As

Publication number Publication date
WO2011052759A1 (en) 2011-05-05
JP5911131B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
JP6690861B2 (en) Compounds for the modification of hemoglobin and their use
JP6401771B2 (en) Compounds for the modification of hemoglobin and their use
CA3153529A1 (en) Brd9 bifunctional degraders and their methods of use
US9517989B2 (en) 2-cycloalkyl resorcinol cannabinergic ligands
CN116120314A (en) Compositions and methods for modulating hair growth
WO2023061095A1 (en) 14-CHLORO-β-ELEMENE NITRIC OXIDE DONOR TYPE DERIVATIVE, PREPARATION AND APPLICATION THEREOF
JP2022502510A (en) Nitroxoline prodrug and its use
WO2020156189A1 (en) Camptothecin derivative and water-soluble prodrug thereof, pharmaceutical composition containing same, preparation method, and use
CN112384503A (en) Lactic acid enhancing compounds and uses thereof
CN108794423B (en) Urea derivatives
JP2515556B2 (en) Hydroxybutenolide derivative and method for producing the same
JP5911131B2 (en) Novel nitroxyl radical compound and method for producing the same
EP2032561A2 (en) Dual molecules containing a peroxide derivative, their synthesis and therapeutic uses
CN104447322A (en) Water-soluble monodemethoxycurcumin derivative, and preparation method and use of water-soluble derivative
US6486201B1 (en) Agarofuan derivatives, their preparation, pharmaceutical composition containing them and their use as medicine
CN111166745A (en) Composition containing racemic oxypyramine or salt thereof and application
CN113768915B (en) Application of chrysin derivative in preparation of medicines
KR101457637B1 (en) A dihydropyrazolecarbothioamide derivative, Method of preparing the same, and anti-cancer agent comprising the same
JP4541879B2 (en) Cinnamic acid dimer, process for its production and its use for the treatment of degenerative brain disease
US6660745B1 (en) Purine derivative dihydrate, drugs containing the same as the active ingredient and intermediate in the production thereof
CN114957222B (en) Compound and preparation method and application thereof
KR20230103526A (en) Preparation of the alkyne derivatives of ginger-derived minor components and use thereof
WO2023146914A1 (en) Silyl-lipid cannabinoids with enhanced biological activity
WO2023150374A1 (en) Inducers of klf2 and methods of use thereof
JP5476650B2 (en) New DIF-1 derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160325

R150 Certificate of patent or registration of utility model

Ref document number: 5911131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees