JPWO2011048743A1 - Color densitometer and density measuring method - Google Patents

Color densitometer and density measuring method Download PDF

Info

Publication number
JPWO2011048743A1
JPWO2011048743A1 JP2011537107A JP2011537107A JPWO2011048743A1 JP WO2011048743 A1 JPWO2011048743 A1 JP WO2011048743A1 JP 2011537107 A JP2011537107 A JP 2011537107A JP 2011537107 A JP2011537107 A JP 2011537107A JP WO2011048743 A1 JPWO2011048743 A1 JP WO2011048743A1
Authority
JP
Japan
Prior art keywords
light receiving
receiving system
reflectance coefficient
illumination light
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011537107A
Other languages
Japanese (ja)
Other versions
JP5440609B2 (en
Inventor
健二 井村
健二 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Optics Inc
Original Assignee
Konica Minolta Optics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Optics Inc filed Critical Konica Minolta Optics Inc
Priority to JP2011537107A priority Critical patent/JP5440609B2/en
Publication of JPWO2011048743A1 publication Critical patent/JPWO2011048743A1/en
Application granted granted Critical
Publication of JP5440609B2 publication Critical patent/JP5440609B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/0036Devices for scanning or checking the printed matter for quality control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0224Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using polarising or depolarising elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0264Electrical interface; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0272Handheld
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/501Colorimeters using spectrally-selective light sources, e.g. LEDs

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Quality & Reliability (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本発明にかかる色彩濃度計10および濃度測定方法では、第1照明受光系を用いて印刷物の試料1の非偏光分光反射率係数が測定され、ジオメトリーが前記第1照明受光系と近似した第2および第3照明受光系を用いて、試料1の非交差偏光反射率係数および交差偏光反射率係数がそれぞれ測定され、そして、測定された前記非交差偏光反射率係数と前記交差偏光反射率係数との差から試料1の表面反射率係数が求められ、この求められた表面反射率係数を各波長における前記非偏光分光反射率係数から一律に減算することで、表面反射を除去した前記試料の分光反射率係数が求められる。In the color densitometer 10 and the density measuring method according to the present invention, the non-polarized spectral reflectance coefficient of the sample 1 of the printed matter is measured using the first illumination light receiving system, and the geometry approximates that of the first illumination light receiving system. And the third illumination light receiving system, the non-cross-polarized reflectance coefficient and the cross-polarized reflectance coefficient of the sample 1 are measured, respectively, and the measured non-cross-polarized reflectance coefficient and the cross-polarized reflectance coefficient are The surface reflectance coefficient of the sample 1 is obtained from the difference between the two, and the obtained surface reflectance coefficient is uniformly subtracted from the non-polarized spectral reflectance coefficient at each wavelength to thereby remove the spectral reflectance of the sample from which the surface reflection has been removed. A reflectance coefficient is determined.

Description

本発明は、印刷物の反射特性の測定に関し、特に、その測定結果から、前記印刷物のインク濃度および色彩値を求める色彩濃度計および濃度測定方法に関する。   The present invention relates to measurement of reflection characteristics of printed matter, and more particularly, to a color densitometer and a density measuring method for obtaining ink density and color value of the printed matter from the measurement result.

前記印刷物では、印刷機から作業者が適宜該印刷物を抜取り、該印刷物の本来の印刷領域外に形成されたCMYKのテストパッチにおける反射特性を、色彩濃度計によって測定することによって、印刷品質の管理、たとえば不良品の判別が行われている。前記印刷品質は、インク濃度で管理され、その濃度は、ISO5−4に準じて測定される。   With respect to the printed matter, the operator appropriately removes the printed matter from the printing press, and measures the reflection characteristics of the CMYK test patch formed outside the original printing area of the printed matter with a color densitometer, thereby controlling the print quality. For example, a defective product is identified. The print quality is managed by ink density, and the density is measured according to ISO5-4.

図11は、その測定方法を説明するための図である。前記インク濃度は、図11に示すように、試料面Isの法線に対して45度方向からの照明光Ilによって該試料面Isを照明し、法線方向の反射光を受光系Dで受光する45:0ジオメトリーによって測定される。あるいは、前記インク濃度は、これら前記照明光I1と前記受光系Dとを入れ替えた0:45ジオメトリーによって測定される。   FIG. 11 is a diagram for explaining the measurement method. As shown in FIG. 11, the ink density illuminates the sample surface Is with illumination light Il from a direction of 45 degrees with respect to the normal line of the sample surface Is, and the reflected light in the normal direction is received by the light receiving system D. Measured by 45: 0 geometry. Alternatively, the ink density is measured by a 0:45 geometry in which the illumination light I1 and the light receiving system D are interchanged.

ここで、図11(A)は、印刷直後の状態を示し、図11(B)は、充分時間が経過した後を示す。印刷直後では、図11(A)に示すように、インク層Ikが乾燥しておらず、紙Pの表面Psにおける凹凸を、該インク層Ikが埋め合わせるため、該インク層Ikの表面(前記試料面Is)は、平滑になる。したがって、インク層Ikの表面(前記試料面Is)での反射光Ssは、法線に対し−45度方向に正反射され、法線方向の受光系Dに入射する成分を持たない。一方、前記インク層Ikに入射した照明光の成分は、紙Pに到達し、その内部で拡散された後、一部が表面Psから拡散放射され、再びインク層Ikを通り、表面(前記試料面Is)から拡散放射(破線矢印で示す)される。この拡散光は、インクによって着色されており、その法線成分Dpが受光系Dに入射される。   Here, FIG. 11A shows a state immediately after printing, and FIG. 11B shows a state after sufficient time has passed. Immediately after printing, as shown in FIG. 11A, the ink layer Ik is not dried, and the ink layer Ik compensates for the irregularities on the surface Ps of the paper P. The surface Is) becomes smooth. Therefore, the reflected light Ss on the surface of the ink layer Ik (the sample surface Is) is specularly reflected in the direction of −45 degrees with respect to the normal line, and does not have a component incident on the light receiving system D in the normal direction. On the other hand, the component of the illumination light incident on the ink layer Ik reaches the paper P and is diffused therein, and then a part is diffused and radiated from the surface Ps, and again passes through the ink layer Ik and passes through the surface (the sample). Diffuse radiation (indicated by dashed arrows) is emitted from the surface Is). This diffused light is colored by ink, and its normal component Dp is incident on the light receiving system D.

これに対して、インク層Ikが乾燥すると、図11(B)に示すように、紙Pの表面Psに沿って、該インク層Ikの表面Isにも凹凸が生じる。このため、インク層Ikの表面(前記試料面Is)で乱反射が生じ、インクによって着色されていない表面からの乱反射光(2点鎖線矢印で示す)の法線成分Dsが、着色された拡散光の法線成分Dpとともに受光系Dに入射される。つまり、観察される乾燥後の印刷面からの反射光には、インク層Ikの内部からの着色された拡散光(破線矢印で示す)とともに、インク層Ik表面からの照明光Ilの分光特性をほぼ維持した乱反射光が重畳されている。こうして、乾燥後の濃度は、印刷直後の濃度より低くなり、この現象は、ドライダウンあるいはドライバックと呼ばれる。   On the other hand, when the ink layer Ik is dried, the surface Is of the ink layer Ik is uneven along the surface Ps of the paper P as shown in FIG. For this reason, irregular reflection occurs on the surface of the ink layer Ik (the sample surface Is), and the normal component Ds of irregularly reflected light (indicated by a two-dot chain line arrow) from the surface not colored by the ink is colored diffused light. The normal component Dp is incident on the light receiving system D. That is, the reflected light from the printed surface after drying has the spectral characteristics of the illumination light Il from the surface of the ink layer Ik as well as the colored diffused light (indicated by the dashed arrows) from the inside of the ink layer Ik. Almost maintained irregularly reflected light is superimposed. Thus, the density after drying is lower than the density immediately after printing, and this phenomenon is called dry down or dry back.

したがって、印刷中の濃度変化に迅速に対応して、前記不良品の発生を抑えるためには、印刷直後の濃度を測定する必要があるが、上記のドライダウンのために、印刷直後の濃度を、直接、乾燥状態の基準サンプルの濃度と比較することができない。   Therefore, in order to respond quickly to the density change during printing and suppress the occurrence of the defective product, it is necessary to measure the density immediately after printing. It cannot be directly compared with the concentration of the reference sample in the dry state.

そこで、前記ドライダウンの影響を排除して、印刷直後の濃度を基準サンプルの濃度と比較できるように、照明系と受光系との光路に、偏光特性が互いに直交する偏光フィルターを挿入して濃度測定することが、例えば、特許文献1や特許文献2などで、従来から行われている。これは、紙P内での拡散によって偏光が解消されている着色拡散光の法線成分Dpは、およそ半分が受光系の偏光フィルターを通過し、受光される一方で、表面反射光は照明光の偏光特性が維持されているので、受光系の偏光フィルターでブロックされることを、利用したものである。こうして、インク層Ikの表面(前記試料面Is)の状態に拘わらず、表面反射光の影響を排除して、印刷直後でも、乾燥状態と互いに比較可能な濃度を得ることができる。   Therefore, in order to eliminate the influence of the dry down and compare the density immediately after printing with the density of the reference sample, a polarizing filter having polarization characteristics orthogonal to each other is inserted in the optical path between the illumination system and the light receiving system. Measurement is conventionally performed in, for example, Patent Document 1 and Patent Document 2. This is because the normal component Dp of the colored diffused light, which has been depolarized by diffusion in the paper P, is approximately half of the normal component Dp that passes through the polarization filter of the light receiving system and is received. Since the polarization characteristic is maintained, it is utilized that the light is blocked by a polarizing filter of the light receiving system. Thus, irrespective of the state of the surface of the ink layer Ik (the sample surface Is), it is possible to eliminate the influence of the surface reflected light and obtain a density comparable to the dry state even immediately after printing.

しかしながら、前記偏光フィルターの透過率は、高くても40%程度であり、光量ロスによるS/N(SN比)の低下と、それが招く繰り返し精度の低下は、最善でも、挿入前の1/6以下となってしまう(発光側と受光側との2枚のフィルターで、(0.4))。However, the transmittance of the polarizing filter is about 40% at the highest, and the decrease in S / N (SN ratio) due to the light loss and the decrease in the repeatability caused by it are at best 1 / 6 or less ((0.4) 2 with two filters on the light emitting side and the light receiving side).

一方、乾燥後の印刷製品の目視評価に相関するべき色彩値は、目視評価と同様、表面反射光を加味して測定する必要があるので、濃度と色彩値との双方を測定する色彩濃度計は、乾燥後に、表面反射光を除去するのか、表面反射光を加味するのかに応じて、偏光フィルターを着脱する必要がある。これには、手動で着脱するタイプと、着脱のための駆動機構を内蔵したタイプとがあるが、前者は、使用者に負担がかかり、後者は、コストがかかってしまう。また、表面の異方性の影響を抑えるために、全方位からリング状に照明する45a(a:annular):0照明では、前記偏光フィルターがリング状となり、コストがかかってしまう。   On the other hand, the color value that should be correlated with the visual evaluation of the printed product after drying needs to be measured in consideration of the surface reflected light as in the case of the visual evaluation. Therefore, a color densitometer that measures both the density and the color value. After drying, it is necessary to attach and detach the polarizing filter depending on whether the surface reflection light is removed or the surface reflection light is added. This includes a type that is manually attached and detached, and a type that incorporates a drive mechanism for attachment and detachment, but the former places a burden on the user, and the latter is expensive. Further, in order to suppress the influence of the surface anisotropy, in the 45a (a: annular): 0 illumination that illuminates in a ring shape from all directions, the polarizing filter becomes a ring shape and costs increase.

米国特許第4961646号公報U.S. Pat. No. 4,961,646 特開2001−158083号公報JP 2001-158083 A

本発明は、上述の事情に鑑みて為された発明であり、その目的は、簡単かつ低コストな構成で、表面反射光を除去あるいは加味した分光反射率係数を測定可能な色彩濃度計および濃度測定方法を提供することである。
本発明にかかる色彩濃度計および濃度測定方法では、第1照明受光系を用いて印刷物の試料の非偏光分光反射率係数が測定され、ジオメトリーが前記第1照明受光系と近似した第2および第3照明受光系を用いて、前記試料の非交差偏光反射率係数および交差偏光反射率係数がそれぞれ測定され、そして、測定された前記非交差偏光反射率係数と前記交差偏光反射率係数との差から前記試料の表面反射率係数が求められ、この求められた表面反射率係数を各波長における前記非偏光分光反射率係数から一律に減算することで、表面反射を除去した前記試料の分光反射率係数が求められる。このため、本発明にかかる色彩濃度計および濃度測定方法は、簡単かつ低コストな構成で、表面反射光を除去あるいは加味した分光反射率係数を測定することができる。
上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
The present invention has been made in view of the above circumstances, and its object is to provide a color densitometer and a density capable of measuring a spectral reflectance coefficient by removing or taking into account surface reflected light with a simple and low-cost configuration. It is to provide a measurement method.
In the color densitometer and the density measuring method according to the present invention, the non-polarized spectral reflectance coefficient of the sample of the printed matter is measured using the first illumination light receiving system, and the second and second geometries approximate to the first illumination light receiving system are measured. Using a three-illumination light receiving system, the non-cross-polarized reflectance coefficient and the cross-polarized reflectance coefficient of the sample were measured, respectively, and the difference between the measured non-cross-polarized reflectance coefficient and the cross-polarized reflectance coefficient The surface reflectance coefficient of the sample is obtained from the sample, and the obtained surface reflectance coefficient is uniformly subtracted from the non-polarized spectral reflectance coefficient at each wavelength, thereby removing the spectral reflectance of the sample. A coefficient is determined. For this reason, the color densitometer and the density measuring method according to the present invention can measure the spectral reflectance coefficient with the surface reflection light removed or added with a simple and low-cost configuration.
The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.

本発明の実施の第1の形態に係る色彩濃度計の構造を示すブロック図である。It is a block diagram which shows the structure of the color densitometer which concerns on the 1st Embodiment of this invention. 図1で示す色彩濃度計による試料の表面反射光の影響を除去した分光反射率係数の測定過程を説明するためのフローチャートである。It is a flowchart for demonstrating the measurement process of the spectral reflectance coefficient which removed the influence of the surface reflected light of the sample by the color densitometer shown in FIG. マゼンタ印刷面の表面反射を含んだ分光反射率係数と表面反射を除去した分光反射率係数との関係を示すグラフである。It is a graph which shows the relationship between the spectral reflectance coefficient containing surface reflection of the magenta printing surface, and the spectral reflectance coefficient which removed surface reflection. 白色LEDと紫LEDとの発光特性を示すグラフである。It is a graph which shows the light emission characteristic of white LED and purple LED. 本発明の実施の第2の形態に係る色彩濃度計の構造を示すブロック図である。It is a block diagram which shows the structure of the color densitometer which concerns on the 2nd Embodiment of this invention. 図5で示す色彩濃度計における光ファイバーの入射端の正面図である。It is a front view of the incident end of the optical fiber in the color densitometer shown in FIG. 図5で示す色彩濃度計における第1〜第3照明受光系の光路図である。FIG. 6 is an optical path diagram of first to third illumination light receiving systems in the color densitometer shown in FIG. 5. 本発明の実施の第3の形態に係る色彩濃度計における光路図である。It is an optical path diagram in the color densitometer which concerns on the 3rd Embodiment of this invention. 本発明の実施の第4の形態に係る色彩濃度計における照明受光系の図である。It is a figure of the illumination light-receiving system in the color densitometer which concerns on the 4th Embodiment of this invention. 本発明の実施の第5の形態に係る色彩濃度計における照明受光系の図である。It is a figure of the illumination light-receiving system in the color densitometer which concerns on the 5th Embodiment of this invention. 印刷試料面の入反射光を説明するための図である。It is a figure for demonstrating the incident reflected light of the printing sample surface.

以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。   Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably.

(実施の形態1)
図1は、本発明の実施の第1の形態に係る色彩濃度計10の構造を示すブロック図である。図1(A)は、光学系の正面を示し、図1(B)は、側面を示す。この色彩濃度計10は、図1に示すように、駆動回路2dおよび白色LED2と、円筒面鏡3と、反射鏡4aおよび対物レンズ4と、駆動回路5d、紫LED51および偏光フィルター51fと、分光装置6と、演算制御部7と、外部IF8と、偏光フィルター9f、受光素子9およびI−V変換回路9dとを備え、印刷物の試料1に照明光を照射して、その分光反射特性を測定し、インク濃度および色彩値を求めるものである。そのために、先ず、白色LED2の放射光2aが、一部を切り欠いて形成される円筒面鏡3で反射され、この反射された放射光2aによって試料1の測定面1sが、面法線からの角度45度で略全方位から照明される。そして、この照明による、前記測定面1sからの反射光における法線方向の成分2bが、反射鏡4aおよび対物レンズ4を介して分光装置6に入射され、反射光の非偏光分光分布Inp(λ)が測定される。そして、前記非偏光分光分布Inp(λ)は、インクおよび紙内部からの拡散反射光と、表面(散乱)反射光とを含んだ非偏光分光反射率係数Rnp(λ)に変換される。
(Embodiment 1)
FIG. 1 is a block diagram showing the structure of a color densitometer 10 according to the first embodiment of the present invention. 1A shows the front of the optical system, and FIG. 1B shows the side. As shown in FIG. 1, the color densitometer 10 includes a drive circuit 2d and a white LED 2, a cylindrical mirror 3, a reflecting mirror 4a and an objective lens 4, a drive circuit 5d, a purple LED 51 and a polarizing filter 51f, a spectral filter The apparatus 6, the arithmetic control unit 7, the external IF 8, the polarizing filter 9 f, the light receiving element 9, and the IV conversion circuit 9 d are provided, and the specimen 1 of the printed material is irradiated with illumination light and its spectral reflection characteristics are measured. The ink density and the color value are obtained. For this purpose, first, the emitted light 2a of the white LED 2 is reflected by a cylindrical mirror 3 formed by cutting out a part thereof, and the measurement surface 1s of the sample 1 is reflected from the surface normal by the reflected emitted light 2a. Illuminated from almost all directions at an angle of 45 degrees. The component 2b in the normal direction in the reflected light from the measurement surface 1s due to this illumination is incident on the spectroscopic device 6 via the reflecting mirror 4a and the objective lens 4, and the non-polarized spectral distribution Inp (λ ) Is measured. The non-polarized spectral distribution Inp (λ) is converted into a non-polarized spectral reflectance coefficient Rnp (λ) including diffuse reflected light from the inside of the ink and paper and surface (scattered) reflected light.

一方、インク乾燥後のドライダウンの影響を排除するべく、測定した前記非偏光分光反射率係数Rnp(λ)から、表面反射を除去した試料の分光反射率係数Rse(λ)を求める(推定する)ために、偏光が利用される。この偏光を利用するために、本実施形態の色彩濃度計10は、前記分光反射特性を測定する測定系に偏光特性を持たせるのではなく、別途に設けた特定の波長の測定系に偏光特性を持たせている。   On the other hand, in order to eliminate the influence of dry-down after ink drying, the spectral reflectance coefficient Rse (λ) of the sample from which the surface reflection is removed is obtained (estimated) from the measured non-polarized spectral reflectance coefficient Rnp (λ). For this purpose, polarized light is used. In order to use this polarized light, the color densitometer 10 of the present embodiment does not give the measurement system for measuring the spectral reflection characteristic a polarization characteristic, but a polarization characteristic in a measurement system of a specific wavelength provided separately. Is given.

すなわち、前記非偏光分光反射率係数Rnp(λ)を測定する構成が第1測定部とされる。この第1測定部における第1照明受光系と、測定面1sに対する幾何学的関係(ジオメトリー)が近似した第2および第3照明受光系をそれぞれ備える第2および第3測定部が設けられる。より具体的には、前記第2、第3測定部の照明光束と、受光される前記測定面反射光束との前記測定面1sの面法線からの角度が、各々、前記第1測定部の照明光束と、受光される前記測定面反射光束との前記面法線からの角度に近似するように、前記第2、第3測定部が設けられ、第2測定部では予め定める波長、たとえば単色LEDの波長で前記試料1の非交差偏光強度Inxが測定され、これが非交差偏光反射率係数Rnxに変換される。また、第3測定部では前記第3照明受光系における照明系と受光系とが互いに直交する偏光特性を持ち、前記第2測定部と同じ波長で試料1の交差偏光強度Ixが測定され、これが交差偏光反射率係数Rxに変換される。   That is, the first measurement unit is configured to measure the non-polarized spectral reflectance coefficient Rnp (λ). There are provided second and third measurement units each including a first illumination light receiving system in the first measurement unit and second and third illumination light receiving systems that approximate a geometric relationship (geometry) with respect to the measurement surface 1s. More specifically, the angles from the surface normal of the measurement surface 1s between the illumination light flux of the second and third measurement units and the received measurement surface reflected light flux are respectively the values of the first measurement unit. The second and third measurement units are provided so as to approximate the angle from the surface normal to the illumination light beam and the received measurement surface reflected light beam, and the second measurement unit has a predetermined wavelength, for example, a single color. The non-crossed polarization intensity Inx of the sample 1 is measured at the wavelength of the LED, and this is converted into a non-crossed polarization reflectance coefficient Rnx. The third measurement unit has polarization characteristics in which the illumination system and the light reception system in the third illumination light receiving system are orthogonal to each other, and the cross polarization intensity Ix of the sample 1 is measured at the same wavelength as the second measurement unit. It is converted into a cross polarization reflectance coefficient Rx.

より詳しくは、前記第1照明受光系は、45a:0ジオメトリーを形成し、照明系にも受光系にも偏光フィルターを含まない。これに対して、第2測定部の第2照明受光系では、たとえば中心波長410nmの紫LED51の放射光51aが、偏光フィルター51fを経て、測定面1sを面法線からの角度45度で1方位から照明し、測定面1sからの反射光における法線方向の成分51bが、反射鏡4aおよび対物レンズ4を介して、円筒面鏡3の切り欠いた部分から分光装置6で受光され、非交差偏光強度Inxが測定される。   More specifically, the first illumination light receiving system forms a 45a: 0 geometry, and neither the illumination system nor the light receiving system includes a polarizing filter. On the other hand, in the second illumination light receiving system of the second measurement unit, for example, the radiated light 51a of the purple LED 51 having a center wavelength of 410 nm passes through the polarizing filter 51f and passes through the measurement surface 1s at an angle of 45 degrees from the surface normal. Illuminated from the azimuth direction, the component 51b in the normal direction in the reflected light from the measurement surface 1s is received by the spectroscopic device 6 from the notched portion of the cylindrical surface mirror 3 via the reflecting mirror 4a and the objective lens 4, The cross polarization intensity Inx is measured.

また、第3測定部の第3照明受光系では、紫LED51の放射光51aが、偏光フィルター51fを経て、測定面1sを面法線からの角度45度で1方位から照明し、測定面1sからの反射光における法線近傍の成分51cが、偏光フィルター9fを介して受光素子9で受光され、この受光により生じた電流がI−V変換回路9dで電圧値に変換されて、交差偏光強度Ixが測定される。   Further, in the third illumination light receiving system of the third measurement unit, the radiated light 51a of the purple LED 51 passes through the polarizing filter 51f and illuminates the measurement surface 1s from one direction at an angle of 45 degrees from the surface normal to measure the measurement surface 1s. The component 51c in the vicinity of the normal line in the reflected light from the light is received by the light receiving element 9 through the polarizing filter 9f, and the current generated by this light reception is converted into a voltage value by the IV conversion circuit 9d, and the cross polarization intensity Ix is measured.

したがって、分光装置6に至る第2照明受光系は、45:0ジオメトリーを形成し、受光素子9に至る第3照明受光系は、45:0に近似のジオメトリーを形成する。そして、第3照明受光系の受光素子9の前に配置される偏光フィルター9fは、偏光フィルター51fと偏光方向が直交しており、第2照明受光系は、非交差反射率係数Rnxを測定し、第3照明受光系は、交差反射率係数Rxを測定する。   Accordingly, the second illumination light receiving system reaching the spectroscopic device 6 forms a 45: 0 geometry, and the third illumination light receiving system reaching the light receiving element 9 forms a geometry approximate to 45: 0. The polarization filter 9f disposed in front of the light receiving element 9 of the third illumination light receiving system is orthogonal to the polarization filter 51f, and the second illumination light receiving system measures the non-crossing reflectance coefficient Rnx. The third illumination light receiving system measures the cross reflectance coefficient Rx.

このように第2および第3照明受光系に、発光素子として単色の紫LED51を用いることによって、コストを削減することができる。また、第2照明受光系を、第3照明受光系の照明系と、偏光フィルター9fを持たない第1照明受光系の受光系とを備えて構成し、照明系を第3照明受光系と共有し、受光系を前記第1照明受光系の受光系と共有することによって、構成がより簡単になり、コストを削減することができる。この場合は、第1照明受光系の前記410nmの波長域部分が第2照明受光系となる。   Thus, the cost can be reduced by using the monochrome purple LED 51 as the light emitting element in the second and third illumination light receiving systems. The second illumination light receiving system includes an illumination system of the third illumination light receiving system and a light receiving system of the first illumination light receiving system that does not have the polarizing filter 9f, and the illumination system is shared with the third illumination light receiving system. By sharing the light receiving system with the light receiving system of the first illumination light receiving system, the configuration becomes simpler and the cost can be reduced. In this case, the 410 nm wavelength region portion of the first illumination light receiving system is the second illumination light receiving system.

演算制御部7は、駆動回路2dおよび5dを介して、前記白色LED2および紫LED51をそれぞれ制御するとともに、分光装置6を制御する。また、演算制御部7は、前記第1、第2および第3照明受光系による前記の非偏光分光分布Inp(λ)、非交差偏光強度Inx、交差偏光強度Ixを、それぞれ非偏光分光反射率係数Rnp(λ)、非交差偏光反射率係数Rnx、交差偏光反射率係数Rxにそれぞれ変換する。さらに、演算制御部7は、非偏光分光反射率係数Rnp(λ)を、後述するようにして、表面反射を除去した分光反射率係数Rse(λ)に変換し、さらにその分光反射率係数Rnp(λ)やRse(λ)を、色彩値や濃度に変換するとともに、外部インターフェース(外部IF)8を通じて、パーソナルコンピュータなどの外部機器と通信を行う。   The arithmetic control unit 7 controls the white LED 2 and the purple LED 51 and the spectroscopic device 6 via the drive circuits 2d and 5d, respectively. In addition, the arithmetic control unit 7 sets the non-polarized spectral distribution Inp (λ), the non-cross polarized intensity Inx, and the cross-polarized intensity Ix by the first, second, and third illumination light receiving systems to the non-polarized spectral reflectance, respectively. The coefficient Rnp (λ), the non-cross polarization reflectance coefficient Rnx, and the cross polarization reflectance coefficient Rx are respectively converted. Further, the arithmetic control unit 7 converts the non-polarized spectral reflectance coefficient Rnp (λ) into a spectral reflectance coefficient Rse (λ) from which surface reflection has been removed as described later, and further the spectral reflectance coefficient Rnp. (Λ) and Rse (λ) are converted into color values and densities, and communicated with an external device such as a personal computer through an external interface (external IF) 8.

濃度および色彩値の算出方法は、以下の通りである。先ず、色彩値の基準となる三刺激値X,Y,Zは、試料の分光反射率係数R(λ)と、照明光の分光分布I(λ)と分光感度s(λ)との積和S;
S=∫I(λ)・R(λ)・s(λ)dλ
と、白色基準面の分光反射率係数rw(λ)について同様に求められた積和Sw;
Sw=∫I(λ)・Rw(λ)・s(λ)dλ
との比R;
R=S/Sw
から求められる。
The calculation method of the density and the color value is as follows. First, the tristimulus values X, Y, and Z that serve as a reference for the color value are the sum of products of the spectral reflectance coefficient R (λ) of the sample, the spectral distribution I (λ) of the illumination light, and the spectral sensitivity s (λ). S;
S = ∫I (λ) · R (λ) · s (λ) dλ
And the product sum Sw similarly obtained for the spectral reflectance coefficient rw (λ) of the white reference surface;
Sw = ∫I (λ) · Rw (λ) · s (λ) dλ
And the ratio R;
R = S / Sw
It is requested from.

ここで、分光感度s(λ)には、CIEが規定する標準観察者の等色関数x(λ),y(λ),z(λ)が用いられ、各々に対応して三刺激値X,Y,Zが求められる。また、印刷試料の色彩測定には、CIEが規定する標準イルミナントD50を照明光とすることが推奨されている。   Here, the standard observer color matching functions x (λ), y (λ), and z (λ) defined by the CIE are used for the spectral sensitivity s (λ). , Y, Z are obtained. In addition, it is recommended that the standard illuminant D50 defined by the CIE be used as illumination light for the color measurement of a printed sample.

一方、濃度Dは、印刷用紙の非印刷面を白色基準として、同様に求められたRsから、
D=−log(1/Rs)
によって求められる。ここで、分光感度s(λ)にはISO5−33等で規定する分光感度r(λ),g(λ),b(λ),v(λ)が用いられ、各々に対応して、濃度Dr,Dg,Db,Dvが求められる。また、印刷試料の濃度測定には、CIEが規定する標準イルミナントAを照明光とすることが推奨されている。
On the other hand, the density D is obtained from Rs similarly obtained using the non-printing surface of the printing paper as a white reference.
D = −log (1 / Rs)
Sought by. Here, spectral sensitivities r (λ), g (λ), b (λ), and v (λ) defined by ISO 5-33 or the like are used as the spectral sensitivities s (λ). Dr, Dg, Db, and Dv are obtained. For measuring the density of a printed sample, it is recommended that the standard illuminant A defined by the CIE is used as illumination light.

図2は、上述のように構成される色彩濃度計による試料1の表面反射光の影響を除去した分光反射率係数Rse(λ)の測定過程を説明するためのフローチャートである。演算処理部7は、先ず駆動回路2dを介して白色LED2を点灯し(#1)、前記第1照明受光系によって照明した試料反射光の法線方向の成分2bを、分光装置6によって、非偏光分光分布Inp(λ)として測定し(#2)、さらに予め測定された白色LED2照明光による白色基準面反射光の分光分布を用いて、非偏光分光反射率係数Rnp(λ)に変換し(#3)、前記白色LED2を消灯する(#4)。   FIG. 2 is a flowchart for explaining the process of measuring the spectral reflectance coefficient Rse (λ) from which the influence of the surface reflected light of the sample 1 is removed by the color densitometer configured as described above. The arithmetic processing unit 7 first turns on the white LED 2 via the drive circuit 2d (# 1), and the spectroscopic device 6 removes the component 2b in the normal direction of the sample reflected light illuminated by the first illumination light receiving system. Measured as a polarized spectral distribution Inp (λ) (# 2), and converted into a non-polarized spectral reflectance coefficient Rnp (λ) using the spectral distribution of the white reference surface reflected light by the white LED 2 illumination light measured in advance. (# 3), the white LED 2 is turned off (# 4).

演算制御部7は、続いて、駆動回路5dを介して紫LED51を点灯し(#5)、前記第2照明受光系によって照明した試料反射光の法線方向の成分51b,51cを、分光装置6と受光素子9とによって、410nm近辺での試料の非交差偏光強度Inxと交差偏光強度Ixとしてそれぞれ測定する(#6)(#7)。そして、演算処理部7は、非交差偏光強度Inxと交差偏光強度Ixとを、予め第2および第3照明受光系で測定された紫LED51照明光による白色基準面反射光の強度を用いて、非交差偏光反射率係数Rnxと交差偏光反射率係数Rxとにそれぞれ変換し(#8)(#9)、紫LED51を消灯する(#10)。さらに、演算処理部7は、非交差偏光反射率係数Rnxと交差偏光反射率係数Rxとの差から、410nm近辺での表面反射率係数Rsを求める(Rs=Rnx−Rx)(#11)。   Subsequently, the arithmetic control unit 7 turns on the purple LED 51 via the drive circuit 5d (# 5), and converts the components 51b and 51c in the normal direction of the sample reflected light illuminated by the second illumination light receiving system into the spectroscopic device. 6 and the light receiving element 9 respectively measure the non-cross polarization intensity Inx and the cross polarization intensity Ix of the sample in the vicinity of 410 nm (# 6) (# 7). And the arithmetic processing part 7 uses the intensity | strength of the white reference surface reflected light by purple LED51 illumination light previously measured by the 2nd and 3rd illumination light reception system with non-cross polarization intensity | strength Inx and cross polarization intensity | strength Ix, Conversion into the non-cross polarization reflectance coefficient Rnx and the cross polarization reflectance coefficient Rx is performed (# 8) (# 9), and the purple LED 51 is turned off (# 10). Further, the arithmetic processing unit 7 obtains the surface reflectance coefficient Rs in the vicinity of 410 nm (Rs = Rnx−Rx) (# 11) from the difference between the non-cross polarization reflectance coefficient Rnx and the cross polarization reflectance coefficient Rx.

最後に、演算処理部7は、非偏光分光反射率係数Rnp(λ)から表面反射率係数Rsを一律に減じて表面反射を除去した分光反射率係数Rse(λ)を求めて出力する(Rse(λ)=Rnp(λ)−Rs)(#12)。   Finally, the arithmetic processing unit 7 obtains and outputs the spectral reflectance coefficient Rse (λ) obtained by removing the surface reflection by uniformly subtracting the surface reflectance coefficient Rs from the non-polarized spectral reflectance coefficient Rnp (λ) (Rse). (Λ) = Rnp (λ) −Rs) (# 12).

ここで、表面反射率係数Rsは、空気と試料1との界面(1s)の反射率と、面粗さによる反射光の散乱特性とに依存する。しかしながら、試料1が印刷面の場合、界面の反射は、インクの屈折率に依存するフレネル反射であり、可視域での波長依存性は、ごく小さい。また、インク面の数ミクロンから数十ミクロンの面粗さによる散乱の波長依存性も小さい。このため、結果的に表面反射率係数Rsの波長依存性は、無視できる。図3は、マゼンタ印刷面の表面反射を含んだ分光反射率係数(―の実線で示す)と、表面反射を除去した分光反射率係数(■のプロットで示す)とを示すグラフである。図3から理解されるように、分光表面反射率係数Rs(λ)に相当する両者の差は、ほぼ一定であり、波長依存性が極めて小さいことを示している。   Here, the surface reflectance coefficient Rs depends on the reflectance of the interface (1s) between the air and the sample 1 and the scattering characteristics of the reflected light due to the surface roughness. However, when the sample 1 is a printing surface, the reflection at the interface is Fresnel reflection depending on the refractive index of the ink, and the wavelength dependency in the visible region is very small. Further, the wavelength dependence of scattering due to surface roughness of several microns to several tens of microns on the ink surface is also small. For this reason, as a result, the wavelength dependence of the surface reflectance coefficient Rs can be ignored. FIG. 3 is a graph showing the spectral reflectance coefficient including the surface reflection of the magenta printing surface (indicated by a solid line) and the spectral reflectance coefficient after removing the surface reflection (indicated by a plot of ■). As understood from FIG. 3, the difference between the two corresponding to the spectral surface reflectance coefficient Rs (λ) is substantially constant, indicating that the wavelength dependency is extremely small.

したがって、前記第1、第2および第3照明受光系のジオメトリーが互いに近似していれば、第2および第3照明受光系による反射率係数Rnx,Rxの差で求められる410nm近辺での表面反射率係数Rsを、上述のようにして第1照明受光系による表面反射光を含んだ非偏光分光反射率係数Rnp(λ)から一律に減じて表面反射を除去した分光反射率係数Rse(λ)としても、その誤差は、小さい。   Therefore, if the geometries of the first, second, and third illumination light receiving systems are close to each other, the surface reflection near 410 nm obtained by the difference between the reflectance coefficients Rnx, Rx by the second and third illumination light receiving systems. The spectral reflectance coefficient Rse (λ) is obtained by uniformly reducing the rate coefficient Rs from the non-polarized spectral reflectance coefficient Rnp (λ) including the surface reflected light by the first illumination light receiving system as described above to remove the surface reflection. Even so, the error is small.

したがって、測定した非偏光分光反射率係数Rnp(λ)をそのまま用いて、目視評価と同様に表面反射光を加味したインク乾燥後の色彩値を求めることができるとともに、非偏光分光反射率係数Rnp(λ)から表面反射率係数Rsを除いた分光反射率係数Rse(λ)を用いて、インク乾燥前後で互いに比較可能な濃度を求めることができる。こうして、第1照明受光系に偏光フィルターによる光量ロスを生じることなく、目的に応じて、表面反射光を含んだ非偏光分光反射率係数Rnp(λ)と、表面反射光を除去した分光反射率係数Rse(λ)とを測定することができる。また、第2および第3照明受光系では、偏光フィルター5f,9fを用いるものの、本実施形態の色彩濃度計10は、その着脱のための煩雑な構成のない簡単かつ低コストな構成を実現することができる。   Therefore, using the measured non-polarized spectral reflectance coefficient Rnp (λ) as it is, it is possible to obtain the color value after drying the ink in consideration of the surface reflected light in the same manner as the visual evaluation, and the non-polarized spectral reflectance coefficient Rnp. Using spectral reflectance coefficient Rse (λ) obtained by removing surface reflectance coefficient Rs from (λ), it is possible to obtain densities that can be compared with each other before and after ink drying. Thus, the non-polarized spectral reflectance coefficient Rnp (λ) including the surface reflected light and the spectral reflectance obtained by removing the surface reflected light depending on the purpose without causing a light amount loss due to the polarizing filter in the first illumination light receiving system. The coefficient Rse (λ) can be measured. Moreover, although the polarization filters 5f and 9f are used in the second and third illumination light receiving systems, the color densitometer 10 of the present embodiment realizes a simple and low-cost configuration without a complicated configuration for attaching and detaching. be able to.

なお、前記第2照明受光系では、分光装置6によって410nm近辺での非交差偏光の分光反射率係数Rnx(λ)が測定されるが、第1照明受光系による非偏光分光反射率係数Rnp(λ)は、白色LED2の発光強度が低い410nm近辺で精度が低いので、前記410nm近辺の非偏光分光反射率係数Rnp(λ)が、非交差偏光の分光反射率係数Rnx(λ)に置き換えられてもよい。   In the second illumination light receiving system, the spectral reflectance coefficient Rnx (λ) of non-cross-polarized light in the vicinity of 410 nm is measured by the spectroscopic device 6, but the non-polarized spectral reflectance coefficient Rnp (λ) by the first illumination light receiving system is measured. λ) has a low accuracy in the vicinity of 410 nm where the emission intensity of the white LED 2 is low, and thus the non-polarized spectral reflectance coefficient Rnx (λ) in the vicinity of 410 nm is replaced with the spectral reflectance coefficient Rnx (λ) of non-cross-polarized light. May be.

すなわち、図4に示すように、白色LED2は、青色光を発生する発光ダイオードに、その青色光を550〜600nmを中心とするブロードバンド光に変換する黄色の蛍光体を備えて構成されており、前記410nm近辺で発光強度が低い。一方、前述の図3に関連して説明したように、表面反射を含んだ反射率係数(非交差偏光反射率係数Rnx)と、表面反射を除去した反射率係数(交差偏光反射率係数Rx)との差、すなわち表面反射率係数Rsの波長依存性は、極めて小さく、前記表面反射率係数Rsは、紫LED51に限らず、何れの波長で求められてもよい。しかしながら、前記表面反射率係数Rsを求める光源は、上記のように非偏光分光反射率係数Rnp(λ)を求めるための光源(白色LED2)の発光強度の低い部分に合わせ、その発光強度を補うことで、第1測定部による非偏光分光反射率係数Rnp(λ)の測定精度が高められ、好適である。   That is, as shown in FIG. 4, the white LED 2 includes a light emitting diode that generates blue light and a yellow phosphor that converts the blue light into broadband light centered at 550 to 600 nm. The emission intensity is low at around 410 nm. On the other hand, as described with reference to FIG. 3, the reflectance coefficient including the surface reflection (non-cross polarization reflectance coefficient Rnx) and the reflectance coefficient from which the surface reflection is removed (cross polarization reflectance coefficient Rx). , That is, the wavelength dependency of the surface reflectance coefficient Rs is extremely small, and the surface reflectance coefficient Rs is not limited to the purple LED 51 and may be obtained at any wavelength. However, the light source for obtaining the surface reflectance coefficient Rs is supplemented to the light emission intensity of the light source (white LED 2) for obtaining the non-polarized spectral reflectance coefficient Rnp (λ) as described above. Thus, the measurement accuracy of the non-polarized spectral reflectance coefficient Rnp (λ) by the first measurement unit is improved, which is preferable.

(実施の形態2)
図5は、本発明の実施の第2の形態に係る色彩濃度計20の構造を示すブロック図である。この色彩濃度計20は、前述の色彩濃度計10に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。ここで、本実施の形態における色彩濃度計20では、前記対物レンズ4の焦点の位置に、前記分光装置6に接続される光ファイバー6gの入射端6aが配置され、それに隣接して前記受光素子9に共通に接続される光ファイバー9g,9hの入射端9i,9j(図6参照)が配置されている。
(Embodiment 2)
FIG. 5 is a block diagram showing the structure of the color densitometer 20 according to the second embodiment of the present invention. The color densitometer 20 is similar to the above-described color densitometer 10, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. Here, in the color densitometer 20 according to the present embodiment, the incident end 6a of the optical fiber 6g connected to the spectroscopic device 6 is disposed at the focal position of the objective lens 4 and adjacent to the light receiving element 9. The optical fiber 9g, 9h incident ends 9i, 9j (see FIG. 6) are connected in common.

白色LED1または紫LED51によって照明された試料1の法線方向の反射光2bまたは51bは、レンズ4および反射鏡4aによって入射端6aに入射し、光ファイバー6gによって分光装置6の入射スリットに導かれる。また、紫LED51によって照明された試料1の法線近傍の反射光51g,51h(後述の図7参照)は、入射端9i,9jに入射し、光ファイバー9g,9hによってそれぞれ受光素子9に導かれる。   The reflected light 2b or 51b in the normal direction of the sample 1 illuminated by the white LED 1 or the purple LED 51 is incident on the incident end 6a by the lens 4 and the reflecting mirror 4a, and is guided to the incident slit of the spectroscope 6 by the optical fiber 6g. Reflected lights 51g and 51h (see FIG. 7 described later) near the normal line of the sample 1 illuminated by the purple LED 51 enter the incident ends 9i and 9j, and are guided to the light receiving element 9 by the optical fibers 9g and 9h, respectively. .

図6は、光ファイバー6g;9g,9hの入射端6a;9i,9jの正面図であり、図7は、前記第1〜第3照明受光系の光路図である。ここで、レンズ4の焦点面には、第2および第3照明受光系の照明系の偏光フィルター51fと直交する偏光方向を持つ第3照明受光系の受光系の偏光フィルター9fが配置されている。ここで、第1照明受光系の光ファイバー6gの入射端6aに面する部分には開口が設けられているので、第3照明受光系の光ファイバー9g,9hに入射して受光素子9によって受光される光束のみが、偏光フィルター9fを通過する。したがって、図1の第1の実施形態と同様に、演算制御部7は、白色LED2を点灯し、該白色LED2から分光装置6に至る第1照明受光系によって非偏光分光反射率係数Rnp(λ)を求めた後、紫LED51を点灯し、該紫LED51から分光装置6に至る第2照明受光系によって非交差偏光反射率係数Rnxを求め、同時に、偏光フィルター9fを経て受光素子9に至る第3照明受光系によって交差偏光分光反射率係数Rxを求め、さらに、図1の実施形態と同様の処理で、表面反射Rsを除去した試料1の分光反射率係数Rse(λ)を求める。   6 is a front view of the incident ends 6a; 9i, 9j of the optical fibers 6g; 9g, 9h, and FIG. 7 is an optical path diagram of the first to third illumination light receiving systems. Here, on the focal plane of the lens 4, a light receiving system polarization filter 9 f having a polarization direction orthogonal to the second and third illumination light receiving system illumination filters 51 f is disposed. . Here, since an opening is provided in the portion facing the incident end 6a of the optical fiber 6g of the first illumination light receiving system, the light enters the optical fibers 9g and 9h of the third illumination light receiving system and is received by the light receiving element 9. Only the light beam passes through the polarizing filter 9f. Accordingly, as in the first embodiment of FIG. 1, the arithmetic control unit 7 turns on the white LED 2 and the first illumination light receiving system from the white LED 2 to the spectroscopic device 6 performs non-polarized spectral reflectance coefficient Rnp (λ ), The purple LED 51 is turned on, and the non-crossed polarization reflectance coefficient Rnx is obtained by the second illumination light receiving system from the purple LED 51 to the spectroscopic device 6, and at the same time, the first light reaching the light receiving element 9 through the polarizing filter 9f. The cross-polarized spectral reflectance coefficient Rx is obtained by the three illumination light receiving system, and further, the spectral reflectance coefficient Rse (λ) of the sample 1 from which the surface reflection Rs is removed is obtained by the same processing as in the embodiment of FIG.

このように構成した場合、図7に示すように、光ファイバー9g,9hには領域51mからの光束51h,51gが、光ファイバー6gには領域1mからの光束2bが、共通のマスク4bおよびレンズ4を経て入射する。そして、入射端6a;9i,9jが隣接しているので、領域1mと領域51mとがほぼ一致し、第1、第2および第3照明受光系のジオメトリーの近似性も高い。このため、第1照明受光系による非偏光分光反射率係数Rnp(λ)に含まれている表面反射率係数と、第2および第3照明受光系による表面反射率係数との近似性が高くなり、表面反射を除去した試料1の分光反射率係数Rse(λ)を高精度に求めることができる。   In this case, as shown in FIG. 7, the optical fibers 9g and 9h have the light beams 51h and 51g from the region 51m, and the optical fiber 6g has the light beam 2b from the region 1m and the common mask 4b and the lens 4. After incident. Since the incident ends 6a; 9i and 9j are adjacent to each other, the region 1m and the region 51m substantially coincide with each other, and the first, second, and third illumination light receiving systems have high geometric approximation. Therefore, the approximation between the surface reflectance coefficient included in the non-polarized spectral reflectance coefficient Rnp (λ) by the first illumination light receiving system and the surface reflectance coefficient by the second and third illumination light receiving systems becomes high. The spectral reflectance coefficient Rse (λ) of the sample 1 from which the surface reflection is removed can be obtained with high accuracy.

なお、光ファイバー6g;9g,9hの配列は、入射端6a;9i,9j側(図6)から見て一列であったが、三角形であってもよい。   The optical fibers 6g; 9g, 9h are arranged in a single line as viewed from the incident end 6a; 9i, 9j side (FIG. 6), but may be triangular.

(実施の形態3)
図8は、本発明の実施の第3の形態に係る色彩濃度計30における光路図である。この色彩濃度計には、前述の図5〜図7で示す色彩濃度計20の構成を用いることができる。ここで、本実施の形態における色彩濃度計30では、前述の図7とこの図8とを比較して、偏光フィルター9fが光ファイバー9gの入射端9iの前にのみ置かれ、光ファイバー9hの入射端9jの前には置かれていないことである。また、偏光フィルター9fを経た光束が入射する光ファイバー9gは、第2の実施形態と同様に、受光素子9に導かれ、第3照明受光系を形成するが、偏光フィルターを経ない光束が入射する光ファイバー9hは、図示しない第2の受光素子に導かれ、第2照明受光系を形成する。
(Embodiment 3)
FIG. 8 is an optical path diagram in the color densitometer 30 according to the third embodiment of the present invention. The configuration of the color densitometer 20 shown in FIGS. 5 to 7 can be used for this color densitometer. Here, in the color densitometer 30 according to the present embodiment, the polarizing filter 9f is placed only in front of the incident end 9i of the optical fiber 9g, comparing FIG. 7 with FIG. 8, and the incident end of the optical fiber 9h. It is not placed before 9j. Similarly to the second embodiment, the optical fiber 9g on which the light beam that has passed through the polarizing filter 9f enters is guided to the light receiving element 9 to form the third illumination light receiving system, but the light beam that does not pass through the polarizing filter enters. The optical fiber 9h is guided to a second light receiving element (not shown) to form a second illumination light receiving system.

したがって、光ファイバー9hには領域51nからの光束51hが、光ファイバー9gには領域51mからの光束51gが、光ファイバー6gには領域1mからの光束2bが、共通のマスク4bおよびレンズ4を経てそれぞれ入射する。このように構成することで、非交差偏光反射率係数Rnxを求める第2照明受光系と交差偏光反射率係数Rxを求める第3照明受光系とが、ジオメトリーだけでなく、受光素子に至る系の全ての要素が近似するので、非交差および交差偏光反射率係数Rnx,Rxの差によって表面反射率係数Rsを求める場合に、経時あるいは温度変化等による誤差が相殺され、精度が高くなる。   Therefore, the light beam 51h from the region 51n enters the optical fiber 9h, the light beam 51g from the region 51m enters the optical fiber 9g, and the light beam 2b from the region 1m enters the optical fiber 6g through the common mask 4b and the lens 4, respectively. . With this configuration, the second illumination light receiving system for obtaining the non-cross polarization reflectance coefficient Rnx and the third illumination light receiving system for obtaining the cross polarization reflectance coefficient Rx are not only the geometry but also the system leading to the light receiving element. Since all the elements are approximated, when the surface reflectance coefficient Rs is obtained by the difference between the non-crossing and crossed polarization reflectance coefficients Rnx and Rx, errors due to time or temperature change are offset, and the accuracy is increased.

(実施の形態4)
図9は、本発明の実施の第4の形態に係る色彩濃度計40における第2および第3照明受光系の図である。この色彩濃度計40は、図示を省略するが、第1の実施の形態の色彩濃度計10と同じ第1照明受光系を備え、偏光フィルター51fを経た紫LED51の放射光51aで面法線から45度で1方位から照明し、試料面反射光の法線近傍の成分51bを、偏光フィルター51fと偏光方向が直交する偏光フィルター9fを経て、受光素子9で受光し、交差偏光反射率係数Rxを求める第3照明受光系を備えて構成される。ここで、本実施の形態における色彩濃度計40では、偏光フィルターを経ない第2の紫LED52の放射光52aで試料面を面法線から45度で放射光5aとは異なる方位から照明し、法線近傍の成分52bを同じ偏光フィルター9fを経て受光素子9で受光し、非交差偏光反射率係数Rnxを求める第2照明受光系を備えている。すなわち、この色彩濃度計40では、前記第2照明受光系は、前記第3照明受光系の受光系と、該第3照明受光系の照明系と同じ分光分布の照明光を放射し、偏光フィルターをもたない照明系とを備えて構成される。
(Embodiment 4)
FIG. 9 is a diagram of the second and third illumination light receiving systems in the color densitometer 40 according to the fourth embodiment of the present invention. Although not shown, the color densitometer 40 includes the same first illumination light receiving system as the color densitometer 10 of the first embodiment, and is emitted from the surface normal by the radiated light 51a of the purple LED 51 that has passed through the polarizing filter 51f. Illuminated from one direction at 45 degrees, the component 51b in the vicinity of the normal line of the sample surface reflected light is received by the light receiving element 9 through the polarizing filter 9f whose polarization direction is orthogonal to the polarizing filter 51f, and the cross polarization reflectance coefficient Rx Is provided with a third illumination light receiving system. Here, in the color densitometer 40 in the present embodiment, the sample surface is illuminated at 45 degrees from the surface normal by the radiated light 52a of the second purple LED 52 that does not pass through the polarizing filter, from a different direction from the radiated light 5a. A component 52b in the vicinity of the normal line is received by the light receiving element 9 through the same polarizing filter 9f, and a second illumination light receiving system for obtaining a non-crossed polarization reflectance coefficient Rnx is provided. That is, in this color densitometer 40, the second illumination light receiving system emits illumination light having the same spectral distribution as the light receiving system of the third illumination light receiving system and the illumination system of the third illumination light receiving system, and the polarization filter And an illumination system having no.

このように構成してもまた、第3の実施形態と同様に、非交差偏光反射率係数Rnxを求める第2照明受光系と交差偏光反射率係数Rxを求める第3照明受光系とは、ジオメトリーだけでなく、受光素子9に至る系の全ての要素が近似するので、非交差および交差偏光反射率係数Rnx,Rxの差によって表面反射率係数Rsを求める場合に、誤差が相殺され、精度が高くなる。また、第2照明受光系が、受光系を第3照明受光系と共有しているので、本実施の形態における色彩濃度計40は、その構成が簡単になり、コストを削減できる。   Even in this configuration, as in the third embodiment, the second illumination light receiving system for obtaining the non-cross polarization reflectance coefficient Rnx and the third illumination light reception system for obtaining the cross polarization reflectance coefficient Rx are geometrical. In addition, since all elements of the system reaching the light receiving element 9 are approximated, when the surface reflectance coefficient Rs is obtained by the difference between the non-crossing and crossing polarization reflectance coefficients Rnx and Rx, the error is offset and the accuracy is improved. Get higher. In addition, since the second illumination light receiving system shares the light receiving system with the third illumination light receiving system, the color densitometer 40 according to the present embodiment has a simple configuration and can reduce costs.

(実施の形態5)
図10は、本発明の実施の第5の形態に係る色彩濃度計50における光路図である。この色彩濃度計50も、図示を省略するが、第1の実施の形態の色彩濃度計10と同じ第1照明受光系を備え、偏光フィルター51fを経た紫LED51の放射光51aと、偏光フィルター51fと同じ偏光方向の偏光フィルター53fを経た赤色LED53の放射光53aとで面法線から45度でそれぞれ1方位から照明し、試料面反射光の法線近傍の成分51bと53bとを偏光フィルター9fを経て受光素子9で受光し、交差偏光反射率係数Rxを求める第3照明受光系と、反射光の法線方向の成分を第1照明受光系の受光系で受光し、非交差偏光反射率係数Rnxを求める第2照明受光系とを備えて構成される。ここで、本実施の形態における色彩濃度計50では、第2および第3照明受光系の共通の照明系が、中心波長410nmの紫LED51と、中心波長660nmの赤色LED53との2つのサブ照明系から構成され、面法線から同じ45度で異なる方位から各々、偏光フィルター51f,53fを経て試料面を照明する。
(Embodiment 5)
FIG. 10 is an optical path diagram in the color densitometer 50 according to the fifth embodiment of the present invention. Although not shown, this color densitometer 50 also includes the same first illumination light receiving system as the color densitometer 10 of the first embodiment, and the emitted light 51a of the purple LED 51 that has passed through the polarizing filter 51f and the polarizing filter 51f. And the radiated light 53a of the red LED 53 that has passed through the polarizing filter 53f of the same polarization direction as above, respectively, is illuminated from one direction at 45 degrees from the surface normal, and the components 51b and 53b in the vicinity of the normal of the sample surface reflected light are polarized by the polarizing filter 9f. The light receiving element 9 passes through the third illumination light receiving system for obtaining the cross polarization reflectance coefficient Rx, and the normal direction component of the reflected light is received by the light receiving system of the first illumination light receiving system, and the non-cross polarization reflectance is received. And a second illumination light receiving system for obtaining the coefficient Rnx. Here, in the color densitometer 50 in the present embodiment, the common illumination system of the second and third illumination light receiving systems is two sub illumination systems of a purple LED 51 having a center wavelength of 410 nm and a red LED 53 having a center wavelength of 660 nm. The sample surface is illuminated through the polarizing filters 51f and 53f from the same 45 degrees from the surface normal and different orientations.

そして、試料1の測定に際し、前記演算制御部7は、白色LED2を点灯し、第1照明受光系によって非偏光分光反射率係数Rnp(λ)を求めた後、紫LED51を点灯し、第2および第3照明受光系によって非交差偏光反射率係数Rnx(λ1)と交差偏光反射率係数Rx(λ1)とを測定し、波長410nm近傍での第1表面反射率係数Rs(λ1)を求め、さらに、赤色LED53を点灯し、同様に、非交差偏光反射率係数Rnx(λ2)と交差偏光反射率係数Rx(λ2)とを測定して波長660nm近傍での第2表面反射率係数Rs(λ2)を求める。演算制御部7は、さらに、波長410nmおよび660nm近傍の第1および第2表面反射係数Rs(λ1),Rs(λ2)を直線補間して、所定の波長域の分光表面反射係数Rs(λ)を求め、前記非偏光分光反射率係数Rnp(λ)から減じて表面反射を除去した試料1の分光反射率係数Rse(λ)を求める。   In the measurement of the sample 1, the arithmetic control unit 7 turns on the white LED 2 and obtains the non-polarized spectral reflectance coefficient Rnp (λ) by the first illumination light receiving system, and then turns on the purple LED 51. And the non-cross polarization reflectance coefficient Rnx (λ1) and the cross polarization reflectance coefficient Rx (λ1) are measured by the third illumination light receiving system, and the first surface reflectance coefficient Rs (λ1) in the vicinity of the wavelength of 410 nm is obtained. Further, the red LED 53 is turned on, and similarly, the non-cross polarization reflectance coefficient Rnx (λ2) and the cross polarization reflectance coefficient Rx (λ2) are measured, and the second surface reflectance coefficient Rs (λ2) near the wavelength of 660 nm is measured. ) The arithmetic control unit 7 further linearly interpolates the first and second surface reflection coefficients Rs (λ1) and Rs (λ2) in the vicinity of wavelengths 410 nm and 660 nm, and thereby the spectral surface reflection coefficient Rs (λ) in a predetermined wavelength region. And the spectral reflectance coefficient Rse (λ) of the sample 1 obtained by subtracting from the non-polarized spectral reflectance coefficient Rnp (λ) and removing the surface reflection is obtained.

このように構成することで、表面反射率係数Rsに多少の波長依存性があっても、それによる誤差を軽減して、高精度に表面反射を除去した試料1の分光反射率係数Rse(λ)を求めることができる。   With this configuration, even if the surface reflectance coefficient Rs has some wavelength dependence, the error due to this is reduced, and the spectral reflectance coefficient Rse (λ of the sample 1 from which surface reflection is removed with high accuracy. ).

本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。   The present specification discloses various aspects of the technology as described above, and the main technologies are summarized below.

一態様にかかる色彩濃度計は、印刷物の試料の反射特性を測定し、インク濃度および色彩値を求める色彩濃度計であって、第1照明受光系を備え、所定の波長域、たとえば可視域で前記試料の非偏光分光反射率係数(Rnp(λ))を測定する第1測定部と、試料面に対する幾何学的関係が前記第1照明受光系と近似した第2照明受光系を備え、予め定める波長、たとえば単色LEDの波長域で前記試料の非交差偏光反射率係数(Rnx)を測定する第2測定部と、試料面に対する幾何学的関係が前記第1照明受光系と近似し、照明系と受光系とが互いに直交する偏光特性を持つ第3照明受光系を備え、前記第2照明受光系と同じ波長で前記試料の交差偏光反射率係数(Rx)を測定する第3測定部と、測定された前記非交差偏光反射率係数(Rnx)と交差偏光反射率係数(Rx)との差から前記試料の表面反射率係数(Rs)を求め、求められた表面反射率係数(Rs)を各波長における前記非偏光分光反射率係数(Rnp(λ))から一律に減算することで、表面反射を除去した試料の分光反射率係数(Rse(λ))を求める演算制御部とを含む。   A color densitometer according to one aspect is a color densitometer that measures a reflection characteristic of a sample of a printed matter and obtains an ink density and a color value. The color densitometer includes a first illumination light receiving system and has a predetermined wavelength range, for example, a visible range. A first measurement unit for measuring the non-polarized spectral reflectance coefficient (Rnp (λ)) of the sample, and a second illumination light receiving system whose geometrical relationship with respect to the sample surface approximates that of the first illumination light receiving system. A second measuring unit that measures the non-cross-polarized reflectance coefficient (Rnx) of the sample in a predetermined wavelength, for example, a wavelength region of a monochromatic LED, and a geometric relationship with the sample surface approximates that of the first illumination light receiving system, A third measuring unit for measuring a cross-polarized reflectance coefficient (Rx) of the sample at the same wavelength as that of the second illumination receiving system; Measured non-cross-polarized reflectance coefficient The surface reflectance coefficient (Rs) of the sample is obtained from the difference between Rnx) and the cross polarization reflectance coefficient (Rx), and the obtained surface reflectance coefficient (Rs) is determined as the non-polarized spectral reflectance coefficient ( And an arithmetic control unit that obtains the spectral reflectance coefficient (Rse (λ)) of the sample from which surface reflection has been removed by uniformly subtracting from Rnp (λ)).

また、他の一態様にかかる濃度測定方法は、印刷物の試料の反射特性を測定し、インク濃度を求める濃度測定方法であって、第1照明受光系を用いて、所定の波長域、たとえば可視域で前記試料の非偏光分光反射率係数(Rnp(λ))を測定するステップと、試料面に対する幾何学的関係が前記第1照明受光系と近似した第2照明受光系を用いて、予め定める波長、たとえば単色LEDの波長域で前記試料の非交差偏光反射率係数(Rnx)を測定するステップと、試料面に対する幾何学的関係が前記第1照明受光系と近似し、照明系と受光系とが互いに直交する偏光特性を持つ第3照明受光系を用いて、前記第2照明受光系と同じ波長で前記試料の交差偏光反射率係数(Rx)を測定するステップと、前記第2照明受光系を用いて測定された前記非交差偏光反射率係数(Rnx)と、前記第3照明受光系を用いて測定された交差偏光反射率係数(Rx)との差から前記試料の表面反射率係数(Rs)を求めるステップと、前記表面反射率係数(Rs)を、前記第1照明受光系を用いて測定された各波長における前記非偏光分光反射率係数(Rnp(λ))から一律に減算することで、表面反射を除去した試料の分光反射率係数(Rse(λ))を求めるステップとを含む。   A density measuring method according to another aspect is a density measuring method for determining the ink density by measuring the reflection characteristics of a sample of printed matter, and using a first illumination light receiving system, for example, a visible wavelength range, for example, visible. Measuring a non-polarized spectral reflectance coefficient (Rnp (λ)) of the sample in a region, and using a second illumination light receiving system whose geometrical relationship to the sample surface approximates that of the first illumination light receiving system. The step of measuring the non-cross-polarized reflectance coefficient (Rnx) of the sample at a predetermined wavelength, for example, the wavelength range of a monochromatic LED, and the geometric relationship with the sample surface approximate to the first illumination light receiving system, and the illumination system and light receiving Measuring a cross polarization reflectance coefficient (Rx) of the sample at the same wavelength as the second illumination light receiving system using a third illumination light receiving system having polarization characteristics orthogonal to each other; and the second illumination Measured using light receiving system The surface reflectance coefficient (Rs) of the sample is obtained from the difference between the non-cross polarization reflectance coefficient (Rnx) and the cross polarization reflectance coefficient (Rx) measured using the third illumination light receiving system. Then, the surface reflectance coefficient (Rs) is uniformly subtracted from the non-polarized spectral reflectance coefficient (Rnp (λ)) at each wavelength measured using the first illumination light receiving system. Obtaining a spectral reflectance coefficient (Rse (λ)) of the sample from which is removed.

上記構成によれば、印刷物の試料に照明光を照射して、その分光反射特性を測定し、インク濃度および色彩値を求めるようにした色彩濃度計において、可視域などの所定の波長域の照明光を照射して測定したインクおよび紙内部からの拡散光と、表面(散乱)反射光を含む非偏光分光反射率係数(Rnp(λ))から、インク乾燥後のドライダウンの影響を排除するべく、表面反射を除去した試料の分光反射率係数Rse(λ)を求める(推定する)ために、偏光が利用される。この偏光を利用する場合に、背景技術のように、前記所定の波長域で分光反射特性を測定する測定系が偏光特性を持つのではなく、上記構成では、別途に設けた特定の波長の測定系が偏光特性を持つ。   According to the above configuration, in a color densitometer that irradiates a sample of printed matter with illumination light, measures its spectral reflection characteristics, and obtains ink density and color value, illumination in a predetermined wavelength range such as the visible range. Eliminates the effect of dry-down after drying ink from diffused light from inside the ink and paper measured by irradiating light and non-polarized spectral reflectance coefficient (Rnp (λ)) including surface (scattered) reflected light Therefore, polarized light is used to obtain (estimate) the spectral reflectance coefficient Rse (λ) of the sample from which the surface reflection is removed. When using this polarized light, the measurement system for measuring the spectral reflection characteristic in the predetermined wavelength range does not have the polarization characteristic as in the background art, but in the above configuration, the measurement of a specific wavelength provided separately is performed. The system has polarization characteristics.

すなわち、前記非偏光分光反射率係数(Rnp(λ))を測定する構成が、第1測定部とされ、その第1測定部における第1照明受光系と、試料面に対する幾何学的関係(ジオメトリー)が近似した第2および第3照明受光系をそれぞれ備える第2および第3測定部が設けられる。その第2測定部では、予め定める波長、たとえば単色LEDの波長で前記試料の非交差偏光反射率係数(Rnx)が測定され、第3測定部では、前記第3照明受光系における照明系と受光系とが互いに直交する偏光特性を持ち、前記第2測定部と同じ波長で前記試料の交差偏光反射率係数(Rx)が測定される。   That is, the configuration for measuring the non-polarized spectral reflectance coefficient (Rnp (λ)) is the first measurement unit, and the first illumination light receiving system in the first measurement unit and the geometric relationship (geometry) with respect to the sample surface. ) Are provided, the second and third measurement units respectively including the second and third illumination light receiving systems are provided. In the second measurement unit, the non-cross polarization reflectance coefficient (Rnx) of the sample is measured at a predetermined wavelength, for example, the wavelength of a monochromatic LED. In the third measurement unit, the illumination system and the light reception in the third illumination light receiving system are measured. The system has polarization characteristics orthogonal to each other, and the cross-polarized reflectance coefficient (Rx) of the sample is measured at the same wavelength as the second measurement unit.

そして、表面反射率係数(Rs)は、空気と試料との界面の反射率と、面粗さによる反射光の散乱特性とに依存するが、試料が印刷面の場合、界面の反射は、インクの屈折率に依存するフレネル反射であり、可視域での波長依存性はごく小さく、インク面の面粗さによる散乱の波長依存性も小さいので、結果的に波長依存性が無視できることを利用して、演算制御部でRs=Rnx−Rxを求め、さらにRse(λ)=Rnp(λ)−Rsを求める。   The surface reflectance coefficient (Rs) depends on the reflectance at the interface between the air and the sample and the scattering characteristics of the reflected light due to the surface roughness. The Fresnel reflection depends on the refractive index of the light, and the wavelength dependence in the visible range is very small, and the wavelength dependence of scattering due to the surface roughness of the ink surface is also small, so that the wavelength dependence can be ignored as a result. Then, Rs = Rnx−Rx is obtained by the arithmetic control unit, and further Rse (λ) = Rnp (λ) −Rs is obtained.

したがって、このような構成の色彩濃度計および濃度測定方法は、測定した非偏光分光反射率係数(Rnp(λ))をそのままを用いて、目視評価と同様に表面反射光を加味したインク乾燥後の色彩値を求めることができるとともに、前記非偏光分光反射率係数(Rnp(λ))から表面反射率係数(Rs)を除いた分光反射率係数(Rse(λ))を用いて、インク乾燥前後で互いに比較可能な濃度を求めることができる。こうして、第1照明受光系に偏光フィルターによる光量ロスを生じることなく、目的に応じて、表面反射光を含んだ非偏光分光反射率係数(Rnp(λ))と、表面反射光を除去した分光反射率係数(Rse(λ))とを測定することができる。また、第2および第3照明受光系では、偏光フィルターを用いるものの、その着脱のための煩雑な構成のない簡単かつ低コストな構成を実現することができる。   Therefore, the color densitometer and the density measuring method with such a configuration use the measured non-polarized spectral reflectance coefficient (Rnp (λ)) as it is, and after drying the ink in consideration of the surface reflected light as in the visual evaluation. Ink drying is performed using the spectral reflectance coefficient (Rse (λ)) obtained by removing the surface reflectance coefficient (Rs) from the non-polarized spectral reflectance coefficient (Rnp (λ)). Concentrations comparable to each other before and after can be obtained. In this way, without causing light loss due to the polarizing filter in the first illumination light receiving system, the non-polarized spectral reflectance coefficient (Rnp (λ)) including the surface reflected light and the spectrum from which the surface reflected light is removed depending on the purpose. The reflectance coefficient (Rse (λ)) can be measured. In the second and third illumination light receiving systems, although a polarizing filter is used, a simple and low-cost configuration without a complicated configuration for attaching and detaching the filter can be realized.

また、他の一態様では、上述の色彩濃度計において、好ましくは、前記試料からの反射光を集光するレンズをさらに備え、前記第1ないし第3照明受光系において、各受光系に、それぞれ光ファイバーを有し、前記光ファイバーの入射面が、前記レンズの焦点付近に隣接して配置される。   In another aspect, the color densitometer described above preferably further includes a lens that collects reflected light from the sample, and in each of the first to third illumination light receiving systems, An optical fiber is provided, and an incident surface of the optical fiber is arranged adjacent to a focal point of the lens.

上記構成によれば、前記光ファイバーを束ね、その入射面を前記試料からの反射光を集光するレンズの焦点付近に隣接して配置することで、前記幾何学的関係(ジオメトリー)を近似させることができる。   According to the above configuration, the geometric relationship is approximated by bundling the optical fibers and arranging the incident surface adjacent to the vicinity of the focal point of the lens that collects the reflected light from the sample. Can do.

したがって、第1照明受光系による非偏光分光反射率係数Rnp(λ)に含まれている表面反射率係数と、第2および第3照明受光系による表面反射率係数との近似性が高くなり、表面反射を除去した試料の分光反射率係数Rse(λ)を高精度に求めることができる。   Therefore, the approximation between the surface reflectance coefficient included in the non-polarized spectral reflectance coefficient Rnp (λ) by the first illumination light receiving system and the surface reflectance coefficient by the second and third illumination light receiving systems becomes high, The spectral reflectance coefficient Rse (λ) of the sample from which the surface reflection is removed can be obtained with high accuracy.

また、他の一態様では、上述の色彩濃度計において、好ましくは、前記第3照明受光系は、照明光の偏光特性を維持した表面反射光を除去して前記交差偏光反射率係数(Rx)を測定するために、照明系と受光系とのそれぞれの光束中に介在される偏光素子として、偏光方向が互いに直交した偏光フィルターを備える。   In another aspect, in the color densitometer described above, preferably, the third illumination light receiving system removes the surface reflected light that maintains the polarization characteristics of the illumination light, and the cross-polarized reflectance coefficient (Rx). In order to measure, a polarizing filter having polarization directions orthogonal to each other is provided as a polarizing element interposed in each light flux of the illumination system and the light receiving system.

その場合に、好ましくは、前記第2照明受光系は、前記第3照明受光系の照明系と、偏光フィルターを持たない受光系とを備えて構成される。   In this case, the second illumination light receiving system is preferably configured to include an illumination system of the third illumination light receiving system and a light receiving system having no polarization filter.

上記構成によれば、第2照明受光系における照明系を第3照明受光系と共有するので、このような構成の色彩濃度計は、その構成が簡単になり、コストを削減できる。   According to the above configuration, since the illumination system in the second illumination light receiving system is shared with the third illumination light receiving system, the color densitometer having such a configuration is simplified and the cost can be reduced.

また、他の一態様では、上述の色彩濃度計において、好ましくは、前記偏光フィルターを持たない受光系は、前記第1照明受光系の受光系である。   In another aspect, in the above color densitometer, preferably, the light receiving system that does not have the polarizing filter is a light receiving system of the first illumination light receiving system.

上記構成によれば、照明系を第3照明受光系と共有するだけでなく、受光系を第1照明受光系と共有するので、このような構成の色彩濃度計は、その構成がより簡単になり、コストを削減できる。   According to the above configuration, not only the illumination system is shared with the third illumination light receiving system, but also the light reception system is shared with the first illumination light receiving system, so that the color densitometer having such a configuration is easier to configure. Therefore, the cost can be reduced.

また、他の一態様では、上述の色彩濃度計において、好ましくは、前記第2照明受光系は、前記第3照明受光系の受光系と、該第3照明受光系の照明系と同じ分光分布の照明光を放射し、偏光フィルターをもたない照明系とを備えて構成される。   In another aspect, in the above color densitometer, preferably, the second illumination light receiving system has the same spectral distribution as the light receiving system of the third illumination light receiving system and the illumination system of the third illumination light receiving system. And an illumination system that does not have a polarizing filter.

上記構成によれば、第2照明受光系が、受光系を第3照明受光系と共有しているので、のような構成の色彩濃度計は、その構成が簡単になり、コストを削減できる。   According to the above configuration, since the second illumination light receiving system shares the light reception system with the third illumination light receiving system, the configuration of the color densitometer configured as described above is simplified and the cost can be reduced.

また、他の一態様では、上述の色彩濃度計において、好ましくは、前記第3照明受光系の照明系は、互いに異なる波長(λ1,λ2)の照明光を放射する2つのサブ照明系で構成され、前記演算制御部は、前記2つのサブ照明系を順次駆動して、各サブ照明系での前記非交差偏光反射率係数(Rnx(λ1),Rnx(λ2))と、交差偏光反射率係数(Rx(λ1),Rx(λ2))とをそれぞれ測定し、それらから求めた前記2つの波長(λ1,λ2)での表面反射率係数(Rs(λ1),Rs(λ2))から、各波長(λ)での分光表面反射率係数(Rs(λ))を補間演算し、前記非偏光分光反射率係数(Rnp(λ))からそれぞれ減算することで、表面反射を除去した試料の分光反射率係数(Rse(λ))を求める。   In another aspect, in the color densitometer described above, preferably, the illumination system of the third illumination light receiving system includes two sub illumination systems that emit illumination lights having different wavelengths (λ1, λ2). The arithmetic control unit sequentially drives the two sub illumination systems, and the non-cross polarization reflectivity coefficients (Rnx (λ1), Rnx (λ2)) and the cross polarization reflectivities in each sub illumination system. Coefficients (Rx (λ1), Rx (λ2)) are measured, and from the surface reflectance coefficients (Rs (λ1), Rs (λ2)) at the two wavelengths (λ1, λ2) obtained from them, Interpolation of spectral surface reflectance coefficient (Rs (λ)) at each wavelength (λ) and subtraction from the non-polarized spectral reflectance coefficient (Rnp (λ)), respectively, thereby removing the surface reflection of the sample. A spectral reflectance coefficient (Rse (λ)) is obtained.

上記構成によれば、各波長(λ)での分光表面反射率係数(Rs(λ))を近似的に求めて、非偏光分光反射率係数(Rnp(λ))からそれぞれ減算することで、表面反射を除去した試料の分光反射率係数(Rse(λ))を求めるので、表面反射率係数(Rs)に波長依存性のある試料でも、該分光反射率係数(Rse(λ))を精度良く求めることができる。   According to the above configuration, the spectral surface reflectance coefficient (Rs (λ)) at each wavelength (λ) is approximately obtained and subtracted from the non-polarized spectral reflectance coefficient (Rnp (λ)), respectively. Since the spectral reflectance coefficient (Rse (λ)) of the sample from which the surface reflection is removed is obtained, the spectral reflectance coefficient (Rse (λ)) is accurate even for a sample whose surface reflectance coefficient (Rs) is wavelength-dependent. You can ask well.

また、他の一態様では、上述の色彩濃度計において、好ましくは、前記第1照明受光系における発光素子は、白色LEDであり、前記第2および第3照明受光系における発光素子は、前記白色LEDにおける発光強度の低い波長成分の光を発する単色LEDである。   In another aspect, in the color densitometer described above, preferably, the light emitting element in the first illumination light receiving system is a white LED, and the light emitting element in the second and third illumination light receiving systems is the white color. This is a monochromatic LED that emits light of a wavelength component with low emission intensity in the LED.

上記構成によれば、第1照明受光系において白色LEDを用いて前記非偏光分光反射率係数(Rnp(λ))を測定する際に、その白色LEDにおける発光強度の低い波長成分の光は、第2および第3照明受光系における発光素子によって、その波長成分が補われる。   According to the above configuration, when measuring the non-polarized spectral reflectance coefficient (Rnp (λ)) using the white LED in the first illumination light receiving system, the light of the wavelength component having a low emission intensity in the white LED is The wavelength components are supplemented by the light emitting elements in the second and third illumination light receiving systems.

したがって、単色LEDを発光素子とするので、特定の波長域で試料の非交差偏光反射率係数(Rnx)および交差偏光反射率係数(Rx)を測定する第2および第3測定部を、簡単かつ低コストで構成することができるとともに、第1測定部による非偏光分光反射率係数Rnpの測定精度を高めることもできる。   Accordingly, since the monochromatic LED is used as the light emitting element, the second and third measuring units for measuring the non-cross polarization reflectance coefficient (Rnx) and the cross polarization reflectance coefficient (Rx) of the sample in a specific wavelength range can be simply and While being able to comprise at low cost, the measurement precision of the non-polarization spectral reflectance coefficient Rnp by a 1st measurement part can also be raised.

この出願は、2009年10月23日に出願された日本国特許出願特願2009−244848を基礎とするものであり、その内容は、本願に含まれるものである。   This application is based on Japanese Patent Application No. 2009-244848 filed on Oct. 23, 2009, the contents of which are included in this application.

本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。   In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.

本発明によれば、色彩濃度計および濃度測定方法を提供することができる。   According to the present invention, a color densitometer and a density measuring method can be provided.

Claims (9)

印刷物の試料の反射特性を測定し、インク濃度および色彩値を求める色彩濃度計であって、
第1照明受光系を備え、前記試料の非偏光分光反射率係数を測定する第1測定部と、
試料面に対する幾何学的関係が前記第1照明受光系と近似した第2照明受光系を備え、予め定める波長で前記試料の非交差偏光反射率係数を測定する第2測定部と、
前記試料面に対する幾何学的関係が前記第1照明受光系と近似した第3照明受光系を備え、前記第2照明受光系と同じ波長で前記試料の交差偏光反射率係数を測定する第3測定部と、
測定された前記非交差偏光反射率係数と前記交差偏光反射率係数との差から前記試料の表面反射率係数を求め、求められた表面反射率係数を各波長における前記非偏光分光反射率係数から一律に減算することで、表面反射を除去した試料の分光反射率係数を求める演算制御部とを含むこと
を特徴とする色彩濃度計。
A color densitometer that measures the reflection characteristics of a sample of a printed matter to obtain ink density and color value,
A first measurement unit comprising a first illumination light receiving system and measuring a non-polarized spectral reflectance coefficient of the sample;
A second measuring unit comprising a second illumination receiving system whose geometrical relationship to the sample surface approximates that of the first illumination receiving system, and measuring a non-cross-polarized reflectance coefficient of the sample at a predetermined wavelength;
A third measurement for measuring a cross-polarized reflectance coefficient of the sample at the same wavelength as that of the second illumination light receiving system, comprising a third illumination light receiving system whose geometrical relation to the sample surface approximates that of the first illumination light receiving system; And
The surface reflectance coefficient of the sample is determined from the difference between the measured non-cross-polarized reflectance coefficient and the cross-polarized reflectance coefficient, and the determined surface reflectance coefficient is determined from the non-polarized spectral reflectance coefficient at each wavelength. A color densitometer comprising: an arithmetic control unit that obtains a spectral reflectance coefficient of a sample from which surface reflection has been removed by subtracting uniformly.
前記第3照明受光系は、前記交差偏光反射率係数を測定するために、照明系と受光系とのそれぞれの光束中に介在される偏光素子として、偏光方向が互いに直交した偏光フィルターを備えること
を特徴とする請求項1に記載の色彩濃度計。
The third illumination light receiving system includes polarizing filters whose polarization directions are orthogonal to each other as polarizing elements interposed in the respective light fluxes of the illumination system and the light receiving system in order to measure the cross polarization reflectance coefficient. The color densitometer according to claim 1.
前記試料からの反射光を集光するレンズをさらに備え、
前記第1ないし第3照明受光系において、各受光系に、それぞれ光ファイバーを有し、前記光ファイバーの入射面が、前記レンズの焦点付近に隣接して配置されること
を特徴とする請求項1に記載の色彩濃度計。
A lens for collecting the reflected light from the sample;
2. The first to third illumination light receiving systems according to claim 1, wherein each light receiving system has an optical fiber, and an incident surface of the optical fiber is disposed adjacent to a focal point of the lens. The described color densitometer.
前記第2照明受光系は、前記第3照明受光系の照明系と、偏光フィルターを持たない受光系とを備えて構成されること
を特徴とする請求項2に記載の色彩濃度計。
The color densitometer according to claim 2, wherein the second illumination light receiving system includes an illumination system of the third illumination light receiving system and a light receiving system having no polarization filter.
前記偏光フィルターを持たない受光系は、前記第1照明受光系の受光系であること
を特徴とする請求項4に記載の色彩濃度計。
The color densitometer according to claim 4, wherein the light receiving system having no polarizing filter is a light receiving system of the first illumination light receiving system.
前記第2照明受光系は、前記第3照明受光系の受光系と、該第3照明受光系の照明系と同じ分光分布の照明光を放射し、偏光フィルターを持たない照明系とを備えて構成されること
を特徴とする請求項3に記載の色彩濃度計。
The second illumination light receiving system includes a light receiving system of the third illumination light receiving system and an illumination system that emits illumination light having the same spectral distribution as the illumination system of the third illumination light receiving system and does not have a polarization filter. The color densitometer according to claim 3, wherein the color densitometer is configured.
前記第3照明受光系の照明系は、互いに異なる波長の照明光を放射する2つのサブ照明系で構成され、
前記演算制御部は、前記2つのサブ照明系を順次駆動して、各サブ照明系での前記非交差偏光反射率係数と、前記交差偏光反射率係数とを測定し、それらから求めた前記2つの波長での表面反射率係数から、各波長での分光表面反射率係数を補間演算し、前記非偏光分光反射率係数からそれぞれ減算することで、表面反射を除去した試料の分光反射率係数を求めること
を特徴とする請求項1に記載の色彩濃度計。
The illumination system of the third illumination light receiving system is composed of two sub-illumination systems that emit illumination light having different wavelengths,
The arithmetic control unit sequentially drives the two sub-illumination systems, measures the non-cross-polarized reflectance coefficient and the cross-polarized reflectance coefficient in each sub-illuminated system, and calculates the 2 obtained from them. By interpolating the spectral surface reflectance coefficient at each wavelength from the surface reflectance coefficients at one wavelength and subtracting each from the non-polarized spectral reflectance coefficient, the spectral reflectance coefficient of the sample from which the surface reflection has been removed is calculated. The color densitometer according to claim 1, wherein the color densitometer is obtained.
前記第1照明受光系における発光素子は白色LEDであり、前記第2および第3照明受光系における発光素子は、前記白色LEDにおける発光強度の低い波長成分の光を発する単色LEDであること
を特徴とする請求項1に記載の色彩濃度計。
The light emitting element in the first illumination light receiving system is a white LED, and the light emitting element in the second and third illumination light receiving systems is a monochromatic LED that emits light of a wavelength component with low emission intensity in the white LED. The color densitometer according to claim 1.
印刷物の試料の反射特性を測定し、インク濃度を求める濃度測定方法であって、
第1照明受光系を用いて、前記試料の非偏光分光反射率係数を測定するステップと、
試料面に対する幾何学的関係が前記第1照明受光系と近似した第2照明受光系を用いて、予め定める波長で前記試料の非交差偏光反射率係数を測定するステップと、
試料面に対する幾何学的関係が前記第1照明受光系と近似した第3照明受光系を用いて、前記第2照明受光系と同じ波長で前記試料の交差偏光反射率係数を測定するステップと、
前記第2照明受光系を用いて測定された前記非交差偏光反射率係数と、前記第3照明受光系を用いて測定された交差偏光反射率係数との差から前記試料の表面反射率係数を求めるステップと、
前記表面反射率係数を、前記第1照明受光系を用いて測定された各波長における前記非偏光分光反射率係数から一律に減算することで、表面反射を除去した試料の分光反射率係数を求めるステップとを含むこと
を特徴とする濃度測定方法。
A density measurement method for measuring the reflection characteristics of a sample of a printed material to obtain an ink density,
Measuring a non-polarized spectral reflectance coefficient of the sample using a first illumination light receiving system;
Measuring a non-cross-polarized reflectance coefficient of the sample at a predetermined wavelength using a second illumination receiver system whose geometric relationship to the sample surface approximates the first illumination receiver system;
Measuring a cross-polarized reflectance coefficient of the sample at the same wavelength as the second illumination light receiving system using a third illumination light receiving system whose geometrical relationship to the sample surface approximates that of the first illumination light receiving system;
From the difference between the non-cross-polarized reflectance coefficient measured using the second illumination receiving system and the cross-polarized reflectance coefficient measured using the third illumination receiving system, the surface reflectance coefficient of the sample is calculated. Seeking steps,
The surface reflectance coefficient of the sample from which the surface reflection is removed is obtained by uniformly subtracting the surface reflectance coefficient from the non-polarized spectral reflectance coefficient at each wavelength measured using the first illumination light receiving system. A concentration measuring method comprising the steps of:
JP2011537107A 2009-10-23 2010-09-09 Color densitometer and density measuring method Expired - Fee Related JP5440609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011537107A JP5440609B2 (en) 2009-10-23 2010-09-09 Color densitometer and density measuring method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009244848 2009-10-23
JP2009244848 2009-10-23
PCT/JP2010/005522 WO2011048743A1 (en) 2009-10-23 2010-09-09 Color densitometer and density measuring method
JP2011537107A JP5440609B2 (en) 2009-10-23 2010-09-09 Color densitometer and density measuring method

Publications (2)

Publication Number Publication Date
JPWO2011048743A1 true JPWO2011048743A1 (en) 2013-03-07
JP5440609B2 JP5440609B2 (en) 2014-03-12

Family

ID=43899988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011537107A Expired - Fee Related JP5440609B2 (en) 2009-10-23 2010-09-09 Color densitometer and density measuring method

Country Status (2)

Country Link
JP (1) JP5440609B2 (en)
WO (1) WO2011048743A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6080410B2 (en) * 2012-07-13 2017-02-15 キヤノン株式会社 Spectral colorimeter
US11473968B2 (en) * 2019-08-06 2022-10-18 Apple Inc. Electronic devices with light sensor system having polarized light source and light detector to detect reflected light used to determine reflectivity of an object
CN111896489B (en) * 2020-08-05 2023-06-30 曲阜师范大学 Cross polarization-based six-channel multispectral measurement system and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781404A4 (en) * 1994-09-14 1999-07-21 X Rite Inc Compact spectrophotometer
US6597454B1 (en) * 2000-05-12 2003-07-22 X-Rite, Incorporated Color measurement instrument capable of obtaining simultaneous polarized and nonpolarized data
DE10257981A1 (en) * 2002-01-15 2003-07-24 Heidelberger Druckmasch Ag Color control of printing machine with spectral based color measurement used to determine actual vale of spectral reflectance

Also Published As

Publication number Publication date
JP5440609B2 (en) 2014-03-12
WO2011048743A1 (en) 2011-04-28

Similar Documents

Publication Publication Date Title
US7675620B2 (en) Optical property measuring method and optical property measuring apparatus
US8288739B2 (en) Method and apparatus for measuring optical property of fluorescent sample
GB2312506A (en) Photoelectric measuring device
US11694324B2 (en) Inspection apparatus and inspection method
TWI526679B (en) Spectral characteristic measurement method
JP2005249602A (en) Film thickness measurement method and apparatus
US10999477B2 (en) Image processing apparatus, method and storage medium
JP5440609B2 (en) Color densitometer and density measuring method
WO2012132380A1 (en) Optical characteristics measuring apparatus and method
JP4111040B2 (en) Gloss evaluation method and apparatus
WO2001001070A1 (en) Light source device, spectroscope comprising the light source device, and film thickness sensor
US20120201559A1 (en) Calibrated reflection densitometer
JP5609377B2 (en) measuring device
JP5424163B2 (en) Film thickness measuring method, film thickness measuring apparatus and program
JP2010266421A (en) Irradiation light measuring method of headlight for vehicle, and device therefor
JP5794149B2 (en) Color density measurement system
JP2014215257A (en) Haze value measuring device
JP2013231662A (en) Method for inspecting laminate, method for manufacturing laminate, and apparatus for inspecting laminate
JP6984651B2 (en) A method for measuring the spectral radiation characteristics of a fluorescent whitening sample and a device for measuring the spectral radiation characteristics of a fluorescent whitening sample.
US8125625B2 (en) Hard copy re-emission color measurement system
CN112534224A (en) Spectrometer and method for calibrating a spectrometer
JP2002206967A (en) Photometer and colorimeter
EP4286808A1 (en) Colorimeter and chromaticity measurement method
JP2015203587A (en) Color evaluation method of sheet and the like using transmission light
JP6551094B2 (en) Colorimeter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees