JPWO2011007575A1 - Resin composition and optical fiber and electric wire using the same - Google Patents

Resin composition and optical fiber and electric wire using the same Download PDF

Info

Publication number
JPWO2011007575A1
JPWO2011007575A1 JP2011522740A JP2011522740A JPWO2011007575A1 JP WO2011007575 A1 JPWO2011007575 A1 JP WO2011007575A1 JP 2011522740 A JP2011522740 A JP 2011522740A JP 2011522740 A JP2011522740 A JP 2011522740A JP WO2011007575 A1 JPWO2011007575 A1 JP WO2011007575A1
Authority
JP
Japan
Prior art keywords
resin composition
resin
component
formula
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011522740A
Other languages
Japanese (ja)
Other versions
JP5860282B2 (en
Inventor
赤塚 泰昌
泰昌 赤塚
茂木 繁
繁 茂木
内田 誠
誠 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2011522740A priority Critical patent/JP5860282B2/en
Publication of JPWO2011007575A1 publication Critical patent/JPWO2011007575A1/en
Application granted granted Critical
Publication of JP5860282B2 publication Critical patent/JP5860282B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables

Abstract

本発明は、低温硬化が可能で、その硬化物が耐熱性に優れ、かつ難燃剤を用いることなく優れた難燃性を発現する光ファイバ又は電線被覆用樹脂組成物に関し、より詳細には、下記式(1):The present invention relates to an optical fiber or a resin composition for coating an electric wire that can be cured at low temperature, and the cured product has excellent heat resistance and exhibits excellent flame retardancy without using a flame retardant, more specifically, Following formula (1):

Description

本発明は、難燃性と耐熱性を同時に備え、しかも生産効率に優れた光ファイバおよび電線被覆用樹脂組成物に関するものである。   The present invention relates to an optical fiber and a resin composition for coating an electric wire that have both flame retardancy and heat resistance and are excellent in production efficiency.

近年の光通信の発展と需要増大に伴い、局内、構内、その他各種の情報機器において光ファイバが使用されている。この光ファイバは、単心、多心の光ファイバ心線、光コード、光ケーブルなどの各種の使用形態に応じたものが用いられており、これらいずれの形態においても、光ファイバには種々の環境下での耐熱性や火災時の難燃性が求められている。また電線用途においても電力量の増大に伴い、高温下での信頼性が求められている。   With the recent development of optical communication and increasing demand, optical fibers are used in offices, campuses, and other various information devices. These optical fibers are used in accordance with various usage forms such as single-core, multi-core optical fibers, optical cords, and optical cables. In any of these forms, the optical fibers have various environments. There is a need for heat resistance below and fire resistance in the event of a fire. Also, in electric wire applications, reliability at high temperatures is required as the amount of electric power increases.

従来、被覆光ファイバ心線の外部被覆としては、塩化ビニル樹脂に代表されるハロゲン含有樹脂が用いられていたが、ハロゲン含有樹脂は、燃焼時にハロゲンガスを発生したり、あるいはダイオキシン等の発生原因になるとされ、環境対策上ハロゲン含有樹脂に代わり得る外部被覆が求められている。特許文献1には、樹脂皮膜を有する光ファイバ心線の最外周を、リン系や金属水酸化物の難燃剤を添加したポリアミド系やポリエステル系の熱可塑性樹脂で被覆した構造を有する光ファイバが開示されている。特許文献2には、機械特性や耐熱性には優れるが難燃性が不十分な熱可塑性のポリアミド樹脂に、特定量のトリアジン系化合物を添加することにより難燃性を付与した電線被覆用樹脂組成物が開示されている。   Conventionally, halogen-containing resins represented by vinyl chloride resin have been used as the outer coating of coated optical fiber cores. However, halogen-containing resins generate halogen gas during combustion or cause of generation of dioxins, etc. Therefore, an external coating that can replace the halogen-containing resin is required for environmental measures. Patent Document 1 discloses an optical fiber having a structure in which an outermost outer periphery of an optical fiber having a resin film is coated with a polyamide-based or polyester-based thermoplastic resin to which a flame retardant such as phosphorus or metal hydroxide is added. It is disclosed. Patent Document 2 discloses an electric wire coating resin provided with flame retardancy by adding a specific amount of a triazine compound to a thermoplastic polyamide resin having excellent mechanical properties and heat resistance but insufficient flame retardancy. A composition is disclosed.

また、昨今、高温高湿の環境下において使用される耐熱性の光ファイバとして、特許文献3には、光ファイバ心線の外周を被覆する芳香族ポリイミド樹脂からなる第一の被覆層、第一の被覆層を被覆するシリコン系樹脂からなる第二の被覆層、及び第二の被覆層を被覆するフッ素系樹脂等からなる第三の被覆層を有する光ファイバが開示されている。   Further, as a heat-resistant optical fiber used in a high-temperature and high-humidity environment recently, Patent Document 3 discloses a first coating layer made of an aromatic polyimide resin that covers the outer periphery of an optical fiber core wire, first An optical fiber having a second coating layer made of a silicon-based resin for covering the coating layer and a third coating layer made of a fluorine-based resin for coating the second coating layer is disclosed.

特開2001−147353号公報JP 2001-147353 A 特開2006−152039号公報JP 2006-152039 A 国際公開第00/76931号International Publication No. 00/76931

しかしながら、リン系難燃剤や金属水和物を用いて被覆材に高い難燃性を付与するためにはこれらを大量に添加する必要があり、それによる力学的強度やその他の特性の著しい低下は避けられないという問題がある。また、熱可塑性のポリアミド系樹脂を用いた被覆材は、ポリマー分子間が架橋されていないことから、非プロトン性極性溶媒等に対する耐性が問題となる恐れがある。   However, it is necessary to add a large amount of these materials in order to impart high flame retardancy to the coating material using phosphorus-based flame retardants and metal hydrates. As a result, the mechanical strength and other properties are significantly reduced. There is an inevitable problem. In addition, since a coating material using a thermoplastic polyamide-based resin is not crosslinked between polymer molecules, there is a possibility that resistance to an aprotic polar solvent or the like becomes a problem.

一方、ポリイミド樹脂を用いて光ファイバや電線を被覆する場合、ポリイミドの前駆体であるポリアミック酸のワニスを石英ファイバや金属心線上に塗布して加熱によって溶剤を除去した後、ポリアミック酸からイミド環への閉環反応を完結させるために200〜400℃で3〜4時間加熱する必要があり、このような高温下で長時間反応させることは生産性の面から非常に不利である。生産性を高めるために反応温度を下げたり、或は反応時間を短縮したりする場合には、閉環反応が十分進まず、結果としてポリアミック酸が樹脂中に残存し、樹脂物性を低下させる原因になるといった問題がある。   On the other hand, when coating an optical fiber or electric wire using polyimide resin, after applying a polyamic acid varnish, which is a polyimide precursor, onto a quartz fiber or a metal core wire and removing the solvent by heating, an imide ring is formed from the polyamic acid. In order to complete the ring-closure reaction, it is necessary to heat at 200 to 400 ° C. for 3 to 4 hours, and it is very disadvantageous from the viewpoint of productivity to react at such a high temperature for a long time. When the reaction temperature is lowered or the reaction time is shortened in order to increase productivity, the ring closure reaction does not proceed sufficiently, and as a result, polyamic acid remains in the resin, resulting in a decrease in resin physical properties. There is a problem of becoming.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、特定構造のポリアミド樹脂、エポキシ樹脂、硬化促進剤および有機溶剤からなる樹脂組成物を被覆材として用いて製造された光ファイバ被覆線および被覆電線(以下、本発明の明細書においては、「光ファイバ被覆線および被覆電線」を総称して「ケーブル」とも記載される)は、ポリイミド樹脂を被覆材に用いたケーブルと同等の耐熱性を有しながら低温で且つ短時間での硬化(分子間架橋)が可能であり、またリン系や金属水酸化物などの難燃剤の添加が無くても難燃性を発現できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have obtained light produced using a resin composition comprising a polyamide resin having a specific structure, an epoxy resin, a curing accelerator and an organic solvent as a coating material. A fiber-coated wire and a covered electric wire (hereinafter, in the specification of the present invention, “optical fiber-coated wire and covered electric wire” are collectively referred to as “cable”) are a cable using a polyimide resin as a covering material. It can be cured at low temperature and in a short time (intermolecular crosslinking) while having the same heat resistance, and can exhibit flame retardancy without the addition of a flame retardant such as phosphorus or metal hydroxide. As a result, the present invention has been completed.

即ち、本発明の構成は次のとおりである。
(1)下記式(1):

Figure 2011007575
(式中、m及びnは、繰り返し単位の平均繰り返し数を表し、n/(m+n)>0.05および0<m+n≦200の関係を満たす。Ar1は二価の芳香族基を表し、Ar2はフェノール性水酸基を有する二価の芳香族基を表し、Ar3は二価の芳香族基を表す。)で表される繰り返し単位を構造中に有するフェノール性水酸基含有芳香族ポリアミド樹脂(A)、エポキシ樹脂(B)、硬化促進剤(C)及び有機溶剤(D)を含有するケーブル用樹脂組成物。
(2)下記式(2):
Figure 2011007575
(式中Ar3、nおよびmは、上記式(1)において定義されたものと同義である。xは平均置換基数であって1〜4の正数を表す。)で表される繰り返し単位を構造中に有するフェノール性水酸基含有芳香族ポリアミド樹脂(A)、エポキシ樹脂(B)、硬化促進剤(C)および有機溶剤(D)を含有するケーブル用樹脂組成物。
(3)上記(1)または(2)に記載のケーブル用樹脂組成物の硬化物を被覆材として有する石英光ファイバ。
(4)上記(1)または(2)に記載のケーブル用樹脂組成物の硬化物を被覆材として有する電線。That is, the configuration of the present invention is as follows.
(1) The following formula (1):
Figure 2011007575
(In the formula, m and n represent the average number of repeating units and satisfy the relationship of n / (m + n)> 0.05 and 0 <m + n ≦ 200. Ar 1 represents a divalent aromatic group; Ar 2 represents a divalent aromatic group having a phenolic hydroxyl group, and Ar 3 represents a divalent aromatic group.) A phenolic hydroxyl group-containing aromatic polyamide resin having a repeating unit represented by the structure A resin composition for cables containing A), an epoxy resin (B), a curing accelerator (C), and an organic solvent (D).
(2) The following formula (2):
Figure 2011007575
(Wherein Ar 3 , n and m are as defined in the above formula (1). X is the average number of substituents and represents a positive number of 1 to 4). A resin composition for a cable containing a phenolic hydroxyl group-containing aromatic polyamide resin (A), an epoxy resin (B), a curing accelerator (C), and an organic solvent (D).
(3) A quartz optical fiber having a cured product of the resin composition for cable according to (1) or (2) as a coating material.
(4) An electric wire having a cured product of the resin composition for cables according to (1) or (2) as a covering material.

本発明のケーブル用樹脂組成物(以下、単に「本発明の樹脂組成物」とも記載される)の硬化温度は、ポリイミドの硬化温度である200〜450℃よりも低く、通常160〜350℃の範囲内であるため、ケーブルの生産効率を高めることができ、またその硬化物はポリイミドと同等の耐熱性を有すると共にハロゲンやリン系化合物、金属水酸化物を含むことなく難燃性を発現できるため、機械強度を低下させないケーブルを得ることができる。   The curing temperature of the resin composition for cables of the present invention (hereinafter also simply referred to as “resin composition of the present invention”) is lower than the curing temperature of polyimide, which is 200 to 450 ° C., and is usually 160 to 350 ° C. Because it is within the range, the production efficiency of the cable can be increased, and the cured product has heat resistance equivalent to that of polyimide and can exhibit flame retardancy without containing halogen, phosphorus compound, or metal hydroxide. Therefore, a cable that does not reduce the mechanical strength can be obtained.

以下に、本発明の樹脂組成物を詳細に説明する。本発明の樹脂組成物は、上記式(1)で表される繰り返し単位を構造中に有するフェノール性水酸基含有芳香族ポリアミド樹脂(A)(以下、単に「成分(A)」)とも記載される)を含有することを要し、該フェノール性水酸基含有芳香族ポリアミド樹脂(A)は、上記式(2)で表される繰り返し単位を構造中に有することが好ましい。ここで、成分(A)は、フェノール性水酸基を含有する芳香族ポリアミド樹脂であり、上記式(1)及び(2)において、−COAr1CO−NHAr3NH−で表される繰り返し単位と−COAr2CO−NHAr3NH−で表される繰り返し単位の配列は、特に限定されるものではなく、任意配列である。Below, the resin composition of this invention is demonstrated in detail. The resin composition of the present invention is also described as a phenolic hydroxyl group-containing aromatic polyamide resin (A) (hereinafter simply referred to as “component (A)”) having a repeating unit represented by the above formula (1) in its structure. ), And the phenolic hydroxyl group-containing aromatic polyamide resin (A) preferably has a repeating unit represented by the above formula (2) in its structure. Here, the component (A) is an aromatic polyamide resin containing a phenolic hydroxyl group, and in the above formulas (1) and (2), a repeating unit represented by —COAr 1 CO—NHAr 3 NH— The sequence of the repeating unit represented by COAr 2 CO—NHAr 3 NH— is not particularly limited, and is an arbitrary sequence.

式(1)におけるAr1は二価の芳香族基を表し、Ar2はフェノール性水酸基を有する二価の芳香族基を表し、Ar3は二価の芳香族基を表す。尚、本明細書において「二価の芳香族基」とは、その構造中に少なくとも一つ以上の芳香族基を有する化合物の芳香環から水素原子を二個除いた構造を意味しており、例えばジフェニルエーテルにおいて酸素を挟んで両側に位置する別々のベンゼン環から、それぞれ一つずつ水素原子を除いた構造も本明細書でいう「二価の芳香族基」の範疇に含まれる。Ar 1 represents a divalent aromatic group in formula (1), Ar 2 represents a divalent aromatic group having a phenolic hydroxyl group, Ar 3 represents a divalent aromatic group. In the present specification, the “divalent aromatic group” means a structure in which two hydrogen atoms are removed from an aromatic ring of a compound having at least one aromatic group in the structure, For example, a structure in which one hydrogen atom is removed from each benzene ring located on both sides of oxygen in diphenyl ether is also included in the category of “divalent aromatic group” in the present specification.

式(1)におけるAr1の具体例としては、フタル酸、イソフタル酸、テレフタル酸、4,4’−オキシ二安息香酸、4,4’−ビフェニルジカルボン酸、3,3’−メチレン二安息香酸、4,4’−メチレン二安息香酸、4,4’−チオ二安息香酸、3,3’−カルボニル二安息香酸、4,4’−カルボニル二安息香酸、4,4’−スルフォニル二安息香酸、1,5−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸及び1,2−ナフタレンジカルボン酸等のジカルボン酸類から二個のカルボキシル基を除いた残基が挙げられ、イソフタル酸の残基が好ましい。
式(1)におけるAr2の具体例としては、5−ヒドロキシイソフタル酸、4−ヒドロキシイソフタル酸、2−ヒドロキシイソフタル酸、3−ヒドロキシイソフタル酸及び2−ヒドロキシテレフタル酸等のフェノール性水酸基を有するジカルボン酸類から二個のカルボキシル基を除いた残基が挙げられ、5−ヒドロキシイソフタル酸の残基が好ましい。
なお、式(2)におけるxは、ヒドロキシ基の平均置換基数であり、1〜4の正数を表す。
Specific examples of Ar 1 in the formula (1) include phthalic acid, isophthalic acid, terephthalic acid, 4,4′-oxydibenzoic acid, 4,4′-biphenyldicarboxylic acid, and 3,3′-methylene dibenzoic acid. 4,4′-methylenedibenzoic acid, 4,4′-thiodibenzoic acid, 3,3′-carbonyldibenzoic acid, 4,4′-carbonyldibenzoic acid, 4,4′-sulfonyldibenzoic acid 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,2-naphthalenedicarboxylic acid and other dicarboxylic acids such as residues obtained by removing two carboxyl groups. The residue of isophthalic acid is preferred.
Specific examples of Ar 2 in formula (1) include dicarboxylic acids having a phenolic hydroxyl group such as 5-hydroxyisophthalic acid, 4-hydroxyisophthalic acid, 2-hydroxyisophthalic acid, 3-hydroxyisophthalic acid, and 2-hydroxyterephthalic acid. Examples include residues obtained by removing two carboxyl groups from acids, and the residue of 5-hydroxyisophthalic acid is preferable.
In addition, x in Formula (2) is the average number of substituents of a hydroxy group, and represents the positive number of 1-4.

式(1)及び式(2)におけるAr3の具体例としては、m−フェニレンジアミン、p−フェニレンジアミン及びm−トリレンジアミン等のフェニレンジアミン類;4,4’−ジアミノジフェニルエーテル、3,3’−ジメチル−4,4’−ジアミノジフェニルエーテル、及び3,4’−ジアミノジフェニルエーテル等のジアミノジフェニルエーテル類;4,4’−ジアミノジフェニルチオエーテル、3,3’−ジメチル−4,4’−ジアミノジフェニルチオエーテル、3,3’−ジエトキシ−4,4’−ジアミノジフェニルチオエーテル、3,3’−ジアミノジフェニルチオエーテル及び3,3’−ジメトキシ−4,4’−ジアミノジフェニルチオエーテル等のジアミノジフェニルチオエーテル類;4,4’−ジアミノベンゾフェノン及び3,3’−ジメチル−4,4’−ジアミノベンゾフェノン等のジアミノベンゾフェノン類;4,4’−ジアミノジフェニルスルホキシド等のジアミノジフェニルスルホキシド類;4,4’−ジアミノジフェニルスルホン等のジアミノジフェニルスルホン類;ベンチジン、3,3’−ジメチルベンチジン及び3,3’−ジメトキシベンチジン等のベンチジン類;3,3’−ジアミノビフェニル等のジアミノビフェニル類;p−キシリレンジアミン、m−キシリレンジアミン及びo−キシリレンジアミン等のキシリレンジアミン類並びに4,4’−ジアミノジフェニルメタン等のジアミノジフェニルメタン類等のジアミン類から二個のアミノ基を除いた残基が挙げられ、フェニレンジアミン類、ジアミノジフェニルメタン類またはジアミノジフェニルエーテル類の残基が好ましく、ジアミノジフェニルメタン類またはジアミノジフェニルエーテル類の残基がより好ましく、得られるポリマーの溶剤溶解性や難燃性の面から3,4’−ジアミノジフェニルエーテルまたは4,4’−ジアミノジフェニルエーテルの残基が特に好ましい。Specific examples of Ar 3 in formula (1) and formula (2) include phenylenediamines such as m-phenylenediamine, p-phenylenediamine and m-tolylenediamine; 4,4′-diaminodiphenyl ether, 3,3 Diaminodiphenyl ethers such as'-dimethyl-4,4'-diaminodiphenyl ether and 3,4'-diaminodiphenyl ether; 4,4'-diaminodiphenyl thioether, 3,3'-dimethyl-4,4'-diaminodiphenyl thioether 3,3′-diethoxy-4,4′-diaminodiphenyl thioether, 3,3′-diaminodiphenyl thioether, 3,3′-dimethoxy-4,4′-diaminodiphenyl thioether, and the like; 4'-diaminobenzophenone and 3,3'-dimethyl- Diaminobenzophenones such as 4,4′-diaminobenzophenone; diaminodiphenyl sulfoxides such as 4,4′-diaminodiphenyl sulfoxide; diaminodiphenyl sulfones such as 4,4′-diaminodiphenylsulfone; benzidine, 3,3′- Bendidines such as dimethylbenzidine and 3,3′-dimethoxybenzidine; diaminobiphenyls such as 3,3′-diaminobiphenyl; xylylene such as p-xylylenediamine, m-xylylenediamine and o-xylylenediamine Examples include residues obtained by removing two amino groups from diamines such as range amines and diaminodiphenylmethanes such as 4,4′-diaminodiphenylmethane, and residues of phenylenediamines, diaminodiphenylmethanes or diaminodiphenyl ethers. Preferably More preferred are residues of diaminodiphenylmethanes or diaminodiphenyl ethers, and particularly preferred are residues of 3,4'-diaminodiphenyl ether or 4,4'-diaminodiphenyl ether from the viewpoint of solvent solubility and flame retardancy of the resulting polymer. .

式(1)及び式(2)におけるm及びnは、繰り返し単位の平均繰り返し数を表し、n/(m+n)>0.05および0<m+n≦200の関係を満たす。
式(1)及び式(2)におけるn/(n+m)の値が0.05以下の場合は、エポキシ樹脂(B)(以下、単に「成分(B)」とも記載される)と成分(A)中のフェノール性水酸基との架橋反応が十分に進行せず、硬化物の接着性や機械強度等が低下する。
成分(A)は、フェノール性水酸基を有することを必須とするが、成分(A)中のフェノール性水酸基が多すぎる場合に、水酸基当量に等しいエポキシ樹脂を添加すると硬化物の架橋密度が高くなりすぎることでケーブルの被覆材に求められる柔軟性が低下する恐れがあり、またエポキシ樹脂を水酸基当量より少なく添加すると耐熱性が低下する恐れがあるため、式(1)及び式(2)におけるn/(n+m)の値は、好ましくは0.05を超え且つ0.70以下であり、より好ましくは0.05を超え且つ0.50以下であり、特に好ましくは0.06〜0.30、最も好ましくは0.07〜0.13である。
式(1)及び式(2)におけるm+nの値が0の場合、即ち成分(A)を用いない場合はフレキシビリティーが発現できず、本発明の用途には適さない。また、m+nの値が200よりも大きい場合は、溶剤溶解性が極端に低下するため、成分(A)の生産性やワニスとしての作業性に問題が生じる。ワニスとしての粘度と硬化物の諸物性とのバランスから、式(1)及び式(2)におけるm+nの値は、好ましくは2〜150、より好ましくは5〜100、特に好ましくは10〜70、最も好ましくは20〜60である。
M and n in Formula (1) and Formula (2) represent the average number of repeating units, and satisfy the relationship of n / (m + n)> 0.05 and 0 <m + n ≦ 200.
When the value of n / (n + m) in the formula (1) and the formula (2) is 0.05 or less, the epoxy resin (B) (hereinafter also simply referred to as “component (B)”) and the component (A ), The cross-linking reaction with the phenolic hydroxyl group does not proceed sufficiently, and the adhesiveness and mechanical strength of the cured product decrease.
Component (A) must have a phenolic hydroxyl group, but when there are too many phenolic hydroxyl groups in component (A), adding an epoxy resin equal to the hydroxyl equivalent will increase the crosslink density of the cured product. If the amount is too large, the flexibility required for the cable covering material may be reduced, and if the epoxy resin is added in an amount less than the hydroxyl equivalent, the heat resistance may be reduced. Therefore, n in the formula (1) and the formula (2) / (N + m) is preferably more than 0.05 and 0.70 or less, more preferably more than 0.05 and 0.50 or less, particularly preferably 0.06 to 0.30, Most preferably, it is 0.07-0.13.
When the value of m + n in the formula (1) and the formula (2) is 0, that is, when the component (A) is not used, the flexibility cannot be exhibited and it is not suitable for the use of the present invention. In addition, when the value of m + n is larger than 200, the solvent solubility is extremely lowered, which causes a problem in the productivity of the component (A) and workability as a varnish. From the balance between the viscosity as a varnish and various physical properties of the cured product, the value of m + n in formula (1) and formula (2) is preferably 2 to 150, more preferably 5 to 100, particularly preferably 10 to 70, Most preferably, it is 20-60.

成分(A)は、特に限定されるものではなく、例えば、上記式(1)の説明において例示されるジカルボン酸類、フェノール性水酸基を有するジカルボン酸類およびジアミン類を用いて既知の方法により重縮合反応を行うことにより合成でき、より具体的には、特開2006−124545号公報に記載されるように、上記式(1)の説明において例示されるジカルボン酸類、フェノール性水酸基を有するジカルボン酸類およびジアミン類を、亜リン酸トリフェニル等の芳香族亜リン酸エステルを用いて溶剤中で縮合重合し、次いで、反応溶液中に加熱下で水を滴下し、水層と油層に層分離が生じた段階で静置し、水層を除去することにより得られる。
尚、本発明においては、成分(A)を成分(B)の硬化剤として使用する。
Component (A) is not particularly limited. For example, polycondensation reaction can be performed by a known method using dicarboxylic acids, dicarboxylic acids having a phenolic hydroxyl group, and diamines exemplified in the description of formula (1). More specifically, as described in JP-A-2006-124545, dicarboxylic acids, dicarboxylic acids having a phenolic hydroxyl group, and diamines exemplified in the description of the above formula (1) Were polymerized in a solvent using an aromatic phosphite such as triphenyl phosphite, and then water was dropped into the reaction solution under heating, resulting in separation of the water and oil layers. It is obtained by standing in stages and removing the aqueous layer.
In the present invention, component (A) is used as a curing agent for component (B).

本発明の樹脂組成物が含有する成分(B)としては、1分子中にエポキシ基を2個以上有するエポキシ樹脂であれば特に制限はなく、具体的にはノボラック型エポキシ樹脂、ジシクロペンタジエンフェノール縮合型エポキシ樹脂、キシリレン骨格含有フェノールノボラック型エポキシ樹脂、ビフェニル骨格含有ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂およびテトラメチルビフェノール型エポキシ樹脂などが挙げられるが、その硬化物が高耐熱性と強靭性を有することから、NC−3000(商品名、日本化薬株式会社製)等のビフェニル骨格含有ノボラック型エポキシ樹脂が好ましい。これら成分(B)は2種以上を併用することも出来る。
本発明の樹脂組成物における成分(B)の使用量は、成分(A)の有する活性水素(フェノール性水酸基の水素等のエポキシ基と反応し得る水素)1モルに対して、成分(B)のエポキシ基が通常0.01〜1.0モル、好ましくは0.1〜1.0モルとなる量である。
The component (B) contained in the resin composition of the present invention is not particularly limited as long as it is an epoxy resin having two or more epoxy groups in one molecule. Specifically, it is a novolak type epoxy resin, dicyclopentadienephenol. Condensation type epoxy resin, xylylene skeleton-containing phenol novolak type epoxy resin, biphenyl skeleton containing novolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethylbiphenol type epoxy resin, etc. are mentioned. A biphenyl skeleton-containing novolac type epoxy resin such as NC-3000 (trade name, manufactured by Nippon Kayaku Co., Ltd.) is preferable because it has high heat resistance and toughness. Two or more of these components (B) can be used in combination.
The amount of component (B) used in the resin composition of the present invention is such that component (B) is based on 1 mole of active hydrogen (hydrogen capable of reacting with an epoxy group such as hydrogen of a phenolic hydroxyl group) possessed by component (A). The amount of the epoxy group is usually 0.01 to 1.0 mol, preferably 0.1 to 1.0 mol.

本発明の樹脂組成物には、成分(A)以外の他の硬化剤を成分(A)と併用して用いても良い。併用し得る硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、フェノールノボラック樹脂、トリスフェノールメタン及びこれらの変性物、イミダゾール、BF3−アミン錯体、並びにグアニジン誘導体などが挙げられるが、これらに限定されるものではない。これら他の硬化剤を併用する場合、成分(A)が全硬化剤中に占める割合は通常20質量%以上であり、好ましくは30質量%以上である。尚、他の硬化剤を併用する場合は、成分(A)及び他の硬化剤の有する活性水素1モルに対して、成分(B)のエポキシ基が通常0.01〜1.0モル、好ましくは0.1〜1.0モルとなる量を用いる。In the resin composition of the present invention, a curing agent other than the component (A) may be used in combination with the component (A). Specific examples of curing agents that can be used in combination include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, triethylene anhydride. Mellitic acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic acid anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phenol novolac resin, trisphenolmethane and these Examples include, but are not limited to, modified products, imidazole, BF 3 -amine complexes, and guanidine derivatives. When these other curing agents are used in combination, the proportion of the component (A) in the total curing agent is usually 20% by mass or more, and preferably 30% by mass or more. In addition, when using together with another hardening | curing agent, the epoxy group of a component (B) is 0.01-1.0 mol normally with respect to 1 mol of active hydrogen which a component (A) and another hardening | curing agent have, Preferably Is used in an amount of 0.1 to 1.0 mol.

本発明の樹脂組成物が含有する硬化促進剤(C)(以下、単に「成分(C)」とも記載される)の具体例としては、2−メチルイミダゾール、2−エチルイミダゾールおよび2−エチル−4−メチルイミダゾール等のイミダゾール類、2−(ジメチルアミノメチル)フェノールおよび1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、オクチル酸スズ等の金属化合物等が挙げられる。本発明の樹脂組成物における成分(C)の使用量は、成分(A)100質量部に対して通常0.1〜5.0質量部、好ましくは1.0〜5.0質量部、より好ましくは1.5〜5.0質量部、特に好ましくは2.0〜5.0質量部である。   Specific examples of the curing accelerator (C) (hereinafter also simply referred to as “component (C)”) contained in the resin composition of the present invention include 2-methylimidazole, 2-ethylimidazole and 2-ethyl- Imidazoles such as 4-methylimidazole, tertiary amines such as 2- (dimethylaminomethyl) phenol and 1,8-diaza-bicyclo (5,4,0) undecene-7, and phosphines such as triphenylphosphine And metal compounds such as tin octylate. The usage-amount of the component (C) in the resin composition of this invention is 0.1-5.0 mass parts normally with respect to 100 mass parts of components (A), Preferably it is 1.0-5.0 mass parts. Preferably it is 1.5-5.0 mass parts, Most preferably, it is 2.0-5.0 mass parts.

本発明の樹脂組成物が含有する有機溶剤(D)(以下、単に「成分(D)」とも記載される)としては、例えばγ−ブチロラクトン類、N−メチルピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミドおよびN,N−ジメチルイミダゾリジノン等のアミド系溶剤、テトラメチレンスルホン等のスルホン類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテートおよびプロピレングリコールモノブチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノンおよびシクロヘキサノン等のケトン系溶剤、トルエンおよびキシレン等の芳香族系溶剤が挙げられる。成分(D)の使用量は、本発明の樹脂組成物の総量に対して通常20〜90質量%、好ましくは30〜80質量%である。   Examples of the organic solvent (D) (hereinafter also simply referred to as “component (D)”) contained in the resin composition of the present invention include γ-butyrolactones, N-methylpyrrolidone (NMP), N, N— Amide solvents such as dimethylformamide (DMF), N, N-dimethylacetamide and N, N-dimethylimidazolidinone, sulfones such as tetramethylene sulfone, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, Ether solvents such as propylene glycol monomethyl ether monoacetate and propylene glycol monobutyl ether, and ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone. , Aromatic solvents such as toluene and xylene. The usage-amount of a component (D) is 20-90 mass% normally with respect to the total amount of the resin composition of this invention, Preferably it is 30-80 mass%.

本発明の樹脂組成物は、必要に応じて無機充填材を含有してもよい。使用し得る無機充填材の具体例としてはシリカ、アルミナ、タルクおよびガラス短繊維等が挙げられる。無機充填材は、本発明の樹脂組成物中において0〜90質量%を占める量で使用してもよい。
更に本発明の樹脂組成物には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛およびステアリン酸カルシウム等の離型剤、顔料等の種々の配合剤を添加することができる。
The resin composition of the present invention may contain an inorganic filler as necessary. Specific examples of the inorganic filler that can be used include silica, alumina, talc, and short glass fiber. You may use an inorganic filler in the quantity which occupies 0-90 mass% in the resin composition of this invention.
Furthermore, various compounding agents such as a silane coupling agent, a release agent such as stearic acid, palmitic acid, zinc stearate and calcium stearate, and a pigment can be added to the resin composition of the present invention.

本発明の樹脂組成物は、例えば、成分(A)、(B)、(C)及び(D)並びに必要に応じて加えられる任意成分を公知の手法で均一に混合することにより得ることができる。   The resin composition of the present invention can be obtained, for example, by uniformly mixing the components (A), (B), (C) and (D) and optional components added as necessary by a known method. .

次に、本発明の石英光ファイバ又は電線(以下、本発明のケーブルともいう)を詳細に説明する。本発明のケーブルは、上述の樹脂組成物の硬化物を被覆材として有することを特徴とし、本発明のケーブルは、例えば、石英や銅をはじめとする金属からなる心線の表面に、上述の樹脂組成物を従来公知の方法で均質に塗布し、加熱により乾燥及び硬化を行うことにより得ることができる。乾燥及び硬化温度は通常120〜350℃、好ましくは150〜300℃であり、乾燥及び硬化時間は通常20秒間〜3時間、好ましくは30秒間〜2時間である。
加熱により成分(A)と成分(B)の架橋反応が起こるのに伴って、上記樹脂組成物の溶剤類(例えば、上記成分(D))への耐性は向上する。従って、反応条件は、加熱後の樹脂組成物(硬化物)の成分(D)への耐性を目安にして適宜決めればよいが、ケーブルの生産効率向上の意味では、乾燥及び硬化に用いる加熱炉等の能力の範囲内で硬化温度を出来るだけ高く設定し、同時に架橋反応に支障のない範囲で硬化時間を極力短くすることがより好ましい。本発明のケーブルにおいて、上述の樹脂組成物の乾燥及び硬化温度が250℃を超える場合、数十秒〜数分程度の乾燥及び硬化時間で成分(D)に対する耐性が発現するため、ケーブルの生産効率を著しく向上させることができる。
なお、本発明のケーブルにおいて、樹脂被覆層(樹脂組成物の硬化物からなる被覆材)の厚さは、通常3〜400μmであり、好ましくは5〜350μmである。
Next, the quartz optical fiber or electric wire (hereinafter also referred to as the cable of the present invention) of the present invention will be described in detail. The cable of the present invention is characterized by having a cured product of the above-mentioned resin composition as a coating material, and the cable of the present invention is formed on the surface of a core wire made of a metal such as quartz or copper. The resin composition can be obtained by uniformly applying the resin composition by a conventionally known method, followed by drying and curing by heating. The drying and curing temperature is usually 120 to 350 ° C., preferably 150 to 300 ° C., and the drying and curing time is usually 20 seconds to 3 hours, preferably 30 seconds to 2 hours.
As the crosslinking reaction between the component (A) and the component (B) occurs by heating, the resistance of the resin composition to the solvents (for example, the component (D)) is improved. Accordingly, the reaction conditions may be appropriately determined based on the resistance to the component (D) of the resin composition (cured product) after heating, but in the sense of improving cable production efficiency, a heating furnace used for drying and curing It is more preferable to set the curing temperature as high as possible within the range of the ability, etc., and at the same time to shorten the curing time as much as possible within a range that does not hinder the crosslinking reaction. In the cable of the present invention, when the drying and curing temperature of the above-mentioned resin composition exceeds 250 ° C., resistance to the component (D) is manifested in the drying and curing time of about several tens of seconds to several minutes. Efficiency can be significantly improved.
In the cable of the present invention, the thickness of the resin coating layer (coating material comprising a cured product of the resin composition) is usually 3 to 400 μm, preferably 5 to 350 μm.

石英心線の外装には、密着性を向上させるために、紫外線硬化樹脂やシリコーン樹脂などをコートし、その上に上記樹脂組成物を塗布して乾燥及び硬化させることも可能である。また、銅をはじめとする金属心線の外装には、絶縁皮膜等をコートし、その上に上記樹脂組成物を塗布して乾燥及び硬化させることも可能である。   It is also possible to coat the exterior of the quartz core wire with an ultraviolet curable resin, a silicone resin, or the like in order to improve adhesion, and apply the resin composition thereon to dry and cure. Moreover, it is also possible to coat the exterior of a metal core wire such as copper with an insulating film or the like, apply the resin composition thereon, and dry and cure.

次に、本発明を更に実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(実施例1)
温度計、冷却管、分留管、撹拌機を取り付けたフラスコに、窒素パージを施しながら、5−ヒドロキシイソフタル酸18.2質量部、イソフタル酸149.4質量部、3,4’−ジアミノジフェニルエーテル204質量部、塩化リチウム12.8質量部、N−メチルピロリドン1360質量部、ピリジン272質量部を加えて撹拌溶解させた後、亜リン酸トリフェニル490質量部を加えて95℃で4時間縮合反応をさせることにより、成分(A)の反応液を得た。この反応液に撹拌を施しながら、90℃で水1300質量部を3時間かけて滴下し、更に90℃で1時間撹拌し、60℃まで冷却して30分静置した。上層が水層、下層が油層(樹脂層)に層分離したため、上層をデカンテーションによって除去した。廃水の量は1200質量部であった。油層(樹脂層)にN,N−ジメチルホルムアミド1200質量部を加えて希釈した。この水添加、層分離、デカンテーション及び溶剤添加による水洗工程を更に4回繰り返し、成分(A)の洗浄を行った。このようにして得られた成分(A)の溶液を、2流体ノズルを用いて、撹拌された水6000質量部中に噴霧し、析出した粒径5〜50μmの成分(A)の微粉を濾別した。得られた析出物のウェットケーキを、メタノール3200質量部に分散させ撹拌下で2時間還流した。次いでメタノールを濾別し、濾取した析出物を水3200質量部で洗浄し、その後、乾燥することにより、下記式(3):

Figure 2011007575
で表される繰り返し単位を構造中に有する成分(A)332質量部を得た。この成分(A)中に含まれる元素量を蛍光X線測定装置で定量したところ、全リン量は150ppm、全塩素量は20ppmであった。また、得られた成分(A)の固有粘度は0.52dl/g(ジメチルアセトアミド溶液、30℃)であり、ゲルパーミエイションクロマトグラフィーの測定結果を元にポリスチレン換算で求めた数平均分子量、及び合成反応に用いた各成分のモル比から算出した式(3)中のmの値は約36であり、nの値は約4であった。Example 1
A flask equipped with a thermometer, a condenser tube, a fractionator tube, and a stirrer was purged with nitrogen while 18.2 parts by mass of 5-hydroxyisophthalic acid, 149.4 parts by mass of isophthalic acid, 3,4'-diaminodiphenyl ether 204 parts by mass, 12.8 parts by mass of lithium chloride, 1360 parts by mass of N-methylpyrrolidone, and 272 parts by mass of pyridine were added and dissolved by stirring. By making it react, the reaction liquid of the component (A) was obtained. While stirring this reaction solution, 1300 parts by mass of water was added dropwise at 90 ° C. over 3 hours, further stirred at 90 ° C. for 1 hour, cooled to 60 ° C., and allowed to stand for 30 minutes. Since the upper layer was separated into an aqueous layer and the lower layer was separated into an oil layer (resin layer), the upper layer was removed by decantation. The amount of waste water was 1200 parts by mass. The oil layer (resin layer) was diluted by adding 1200 parts by mass of N, N-dimethylformamide. The water washing step by water addition, layer separation, decantation and solvent addition was further repeated 4 times to wash the component (A). The component (A) solution thus obtained is sprayed into 6000 parts by mass of stirred water using a two-fluid nozzle, and the precipitated fine powder of component (A) having a particle size of 5 to 50 μm is filtered. Separated. The obtained wet cake of the precipitate was dispersed in 3200 parts by mass of methanol and refluxed for 2 hours with stirring. Next, methanol was filtered off, and the precipitate collected by filtration was washed with 3200 parts by mass of water and then dried to obtain the following formula (3):
Figure 2011007575
332 parts by mass of the component (A) having a repeating unit represented by When the amount of elements contained in this component (A) was quantified with a fluorescent X-ray measuring apparatus, the total phosphorus content was 150 ppm and the total chlorine content was 20 ppm. Moreover, the intrinsic viscosity of the obtained component (A) is 0.52 dl / g (dimethylacetamide solution, 30 ° C.), and the number average molecular weight determined in terms of polystyrene based on the measurement result of gel permeation chromatography, The value of m in the formula (3) calculated from the molar ratio of each component used in the synthesis reaction was about 36, and the value of n was about 4.

このようにして得られた成分(A)100質量部に対し、成分(B)としてNC−3000(商品名、日本化薬株式会社製、エポキシ当量275g/eq.)を10質量部、成分(C)として2−フェニル−4,5−ジヒドロキシメチルイミダゾール(2PHZ)を2質量部、成分(D)としてジメチルホルムアミド260質量部を加え、均一に混合することにより、本発明の樹脂組成物を得た。   Thus, with respect to 100 parts by mass of the component (A) obtained, 10 parts by mass of NC-3000 (trade name, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 275 g / eq.) As the component (B) The resin composition of the present invention is obtained by adding 2 parts by mass of 2-phenyl-4,5-dihydroxymethylimidazole (2PHZ) as C) and 260 parts by mass of dimethylformamide as component (D) and mixing them uniformly. It was.

このようにして得られた本発明の樹脂組成物を、ロールコーターを用いて、乾燥後の厚さが15μmになるように厚さ1.2mmの石英ガラス上に塗布し、180℃で1時間の加熱条件で溶剤の除去および硬化を行った。得られた石英ガラス上の硬化膜に幅1cmの切れ込みを入れ、その一方の端を石英ガラスから剥離させてテンシロン試験機(株式会社島津製作所製、オートグラフ AGS−J 500N)を用いて90°の角度で剥離強度を測定したところ1.5Nと十分に高い値であった。また、得られた硬化膜の表面にDMFを滴下して5分間放置し、DMFを拭き取った後の外観を観察したが特に異常は見られず、溶剤に対する耐性を発現できる程度まで硬化(架橋)していることを確認した。   The resin composition of the present invention thus obtained was applied on a quartz glass having a thickness of 1.2 mm so as to have a thickness of 15 μm after drying using a roll coater, and then at 180 ° C. for 1 hour. The solvent was removed and cured under the following heating conditions. A notch with a width of 1 cm is made in the cured film on the obtained quartz glass, and one end thereof is peeled off from the quartz glass, and 90 ° using a Tensilon tester (manufactured by Shimadzu Corporation, Autograph AGS-J 500N). The peel strength was measured at an angle of 1.5N, which was a sufficiently high value of 1.5N. In addition, DMF was dropped on the surface of the obtained cured film and allowed to stand for 5 minutes, and the appearance after wiping off DMF was observed. However, no abnormality was observed, and it was cured (cross-linked) to the extent that resistance to the solvent could be expressed. I confirmed that

また、このようにして得られた本発明の樹脂組成物を、ロールコーターを用いて、乾燥後の厚さが40μmになるように厚さ25μmの銅箔上に塗布し、300℃で1分間の加熱条件で溶剤の除去および硬化を行った。得られた銅箔上の硬化膜に幅1cmの切れ込みを入れ、その一方の端を銅箔から剥離させてテンシロン試験機(株式会社島津製作所製、オートグラフ AGS−J 500N)を用いて90°の角度で剥離強度を測定したところ1.9Nと十分に高い値であった。また、得られた硬化膜の表面にDMFを滴下して5分間放置し、DMFを拭き取った後の外観を観察したが特に異常は見られず、溶剤に対する耐性を発現できる程度まで硬化(架橋)していることを確認した。   In addition, the resin composition of the present invention thus obtained was applied onto a 25 μm thick copper foil using a roll coater so that the thickness after drying was 40 μm, and at 300 ° C. for 1 minute. The solvent was removed and cured under the following heating conditions. A notch with a width of 1 cm is made in the cured film on the obtained copper foil, one end thereof is peeled off from the copper foil, and 90 ° using a Tensilon tester (manufactured by Shimadzu Corporation, Autograph AGS-J 500N). The peel strength was measured at an angle of 1.9 N, which was a sufficiently high value. In addition, DMF was dropped on the surface of the obtained cured film and allowed to stand for 5 minutes, and the appearance after wiping off DMF was observed. However, no abnormality was observed, and it was cured (cross-linked) to the extent that resistance to the solvent could be expressed. I confirmed that

更に、上記の本発明の樹脂組成物を、乾燥後の厚さが50μmになるようにPETフィルム上に塗布し、180℃で1時間の加熱条件で溶剤の除去および硬化を行い、PETフィルムを除去してシート状のサンプルを得た。得られたサンプルは折り曲げてもひび割れすることがなく、十分なフレキシビリティーを有していた。この硬化物にUL94−VTMに準じた難燃性試験を行ったところ、難燃性の指標であるV−0をクリアした。また、DMAによってこのサンプルのガラス転移温度を測定したところ254℃であった。   Further, the above resin composition of the present invention was applied onto a PET film so that the thickness after drying was 50 μm, and the solvent was removed and cured under heating conditions at 180 ° C. for 1 hour. The sheet-like sample was obtained by removing. The obtained sample did not crack even when bent, and had sufficient flexibility. When the flame retardant test according to UL94-VTM was done to this hardened | cured material, V-0 which is a flame-retardant parameter | index was cleared. Moreover, it was 254 degreeC when the glass transition temperature of this sample was measured by DMA.

以上のことから、本発明の樹脂組成物は、200℃以下の低温で、或は300℃においては1分間の短時間で硬化させても、石英ガラスや銅に対して高い接着性を示し、その硬化物はポリイミド樹脂の硬化物に匹敵する高耐熱性を示すと共に、ハロゲン、リン、金属酸化物などの添加剤を加えなくても難燃性を有することが分かる。これらの結果から、本発明の樹脂組成物は、ケーブル用途に極めて有用である。   From the above, the resin composition of the present invention exhibits high adhesion to quartz glass and copper even when cured at a low temperature of 200 ° C. or lower, or at 300 ° C. for a short time of 1 minute, It can be seen that the cured product exhibits high heat resistance comparable to that of a cured polyimide resin, and has flame retardancy without adding additives such as halogen, phosphorus, and metal oxide. From these results, the resin composition of the present invention is extremely useful for cable applications.

本発明のケーブル用樹脂組成物は、一般的なポリイミド樹脂よりも低い温度で、或は高温の場合には短時間での硬化が可能なため、ケーブルの生産効率を高めることが可能である。しかも、本発明のケーブル用樹脂組成物の硬化物は、ポリイミド樹脂の硬化物と同等の耐熱性を有すると共に、ハロゲンやリン系化合物、金属水酸化物を含むことなく難燃性を発現するため、ケーブルの被覆材として用いた場合、機械強度が保持されるケーブルを得ることができる。
The resin composition for a cable of the present invention can be cured at a temperature lower than that of a general polyimide resin or in a short time when the temperature is high, so that the production efficiency of the cable can be increased. In addition, the cured product of the resin composition for cable of the present invention has the same heat resistance as the cured product of the polyimide resin, and exhibits flame retardancy without containing halogen, a phosphorus compound, or a metal hydroxide. When used as a cable covering material, a cable that maintains mechanical strength can be obtained.

Claims (4)

下記式(1):
Figure 2011007575
(式中、m及びnは、繰り返し単位の平均繰り返し数を表し、n/(m+n)>0.05および0<m+n≦200の関係を満たす。Ar1は二価の芳香族基を表し、Ar2はフェノール性水酸基を有する二価の芳香族基を表し、Ar3は二価の芳香族基を表す。)で表される繰り返し単位を構造中に有するフェノール性水酸基含有芳香族ポリアミド樹脂(A)、エポキシ樹脂(B)、硬化促進剤(C)及び有機溶剤(D)を含有するケーブル用樹脂組成物。
Following formula (1):
Figure 2011007575
(In the formula, m and n represent the average number of repeating units and satisfy the relationship of n / (m + n)> 0.05 and 0 <m + n ≦ 200. Ar 1 represents a divalent aromatic group; Ar 2 represents a divalent aromatic group having a phenolic hydroxyl group, and Ar 3 represents a divalent aromatic group.) A phenolic hydroxyl group-containing aromatic polyamide resin having a repeating unit represented by the structure A resin composition for cables containing A), an epoxy resin (B), a curing accelerator (C), and an organic solvent (D).
下記式(2):
Figure 2011007575
(式中Ar3、nおよびmは、上記式(1)において定義されたものと同義である。xは平均置換基数であって1〜4の正数を表す。)で表される繰り返し単位を構造中に有するフェノール性水酸基含有芳香族ポリアミド樹脂(A)、エポキシ樹脂(B)、硬化促進剤(C)および有機溶剤(D)を含有するケーブル用樹脂組成物。
Following formula (2):
Figure 2011007575
(Wherein Ar 3 , n and m are as defined in the above formula (1). X is the average number of substituents and represents a positive number of 1 to 4). A resin composition for a cable containing a phenolic hydroxyl group-containing aromatic polyamide resin (A), an epoxy resin (B), a curing accelerator (C), and an organic solvent (D).
請求項1または2に記載のケーブル用樹脂組成物の硬化物を被覆材として有する石英光ファイバ。   A quartz optical fiber having a cured product of the resin composition for a cable according to claim 1 or 2 as a coating material. 請求項1または2に記載のケーブル用樹脂組成物の硬化物を被覆材として有する電線。   An electric wire having a cured product of the resin composition for a cable according to claim 1 or 2 as a covering material.
JP2011522740A 2009-07-16 2010-07-15 Resin composition and optical fiber and electric wire using the same Expired - Fee Related JP5860282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011522740A JP5860282B2 (en) 2009-07-16 2010-07-15 Resin composition and optical fiber and electric wire using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009167778 2009-07-16
JP2009167778 2009-07-16
JP2009215726 2009-09-17
JP2009215726 2009-09-17
JP2011522740A JP5860282B2 (en) 2009-07-16 2010-07-15 Resin composition and optical fiber and electric wire using the same
PCT/JP2010/004611 WO2011007575A1 (en) 2009-07-16 2010-07-15 Resin composition, and optical fiber and electric wire each comprising same

Publications (2)

Publication Number Publication Date
JPWO2011007575A1 true JPWO2011007575A1 (en) 2012-12-20
JP5860282B2 JP5860282B2 (en) 2016-02-16

Family

ID=43449185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011522740A Expired - Fee Related JP5860282B2 (en) 2009-07-16 2010-07-15 Resin composition and optical fiber and electric wire using the same

Country Status (2)

Country Link
JP (1) JP5860282B2 (en)
WO (1) WO2011007575A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021150B2 (en) * 2012-12-05 2016-11-09 中部電力株式会社 Low temperature resistant resin composition and superconducting wire using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4722922U (en) * 1971-03-27 1972-11-15
JPH01173006A (en) * 1987-12-28 1989-07-07 Sumitomo Electric Ind Ltd Heat resisting optical fiber core
JPH04115412A (en) * 1990-09-05 1992-04-16 Sumitomo Electric Ind Ltd Insulated wire
JP2003300755A (en) * 2002-04-05 2003-10-21 Fujikura Ltd Resin coating method for optical fiber with thin film
JP2005032533A (en) * 2003-07-11 2005-02-03 Goto Denshi Kk Forming device of varnish to electric wire, and forming method of varnish
JP2006119459A (en) * 2004-10-22 2006-05-11 Fujikura Ltd Optical fiber cable
JP2008138191A (en) * 2006-11-07 2008-06-19 Nippon Kayaku Co Ltd Polyamide resin varnish, cured product therefrom and article
JP2008285664A (en) * 2007-04-16 2008-11-27 Nippon Kayaku Co Ltd Polyamide resin composition, cured product thereof and article

Also Published As

Publication number Publication date
WO2011007575A1 (en) 2011-01-20
JP5860282B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
US7608336B2 (en) Flame-retardant epoxy resin composition and cured product obtained therefrom
JP4996473B2 (en) Rubber-modified polyamide resin, epoxy resin composition, and cured product thereof
JP5311823B2 (en) Polyamide resin, epoxy resin composition and cured product thereof
US20030091842A1 (en) Cover-lay film and printed circuit board having the same
JP4616771B2 (en) Flame retardant epoxy resin composition and cured product thereof
JP4884298B2 (en) Copper foil with resin layer
JP2007204598A (en) Resin composition and cured product thereof
JP5165047B2 (en) Polyimide precursor resin solution
JP4104107B2 (en) Epoxy resin composition and use thereof
US20100096169A1 (en) Polyamide Resin as Well as Epoxy Resin Composition Using the Same and Use Thereof
JP2003136632A (en) Method for manufacturing polyimide film with metal and polyimide with metal obtained by the method
JP5860282B2 (en) Resin composition and optical fiber and electric wire using the same
JP2003174247A (en) Cover-laid film, and circuit board using the film
JP4428505B2 (en) Aromatic polyamide resin, epoxy resin composition and cured product thereof
JP3978656B2 (en) Metal foil laminate and double-sided metal foil laminate
JP5460322B2 (en) Thermosetting resin composition and cured product thereof
JP6819062B2 (en) Thermosetting resin composition, prepreg using it, film with resin, laminated board, printed wiring board and semiconductor package, and imide resin and its manufacturing method.
JP2005089616A (en) Thermosetting resin composition and cured product thereof
JP4042886B2 (en) Epoxy resin composition and flexible printed wiring board material using the same
JP4509539B2 (en) Epoxy resin composition sheet
JP4605681B2 (en) Polycresol resin, epoxy resin composition and cured product thereof
JP2001119129A (en) Cover lay film
JP4895065B2 (en) Epoxy resin composition and cured product thereof
TW202311337A (en) Modified epoxy resin, resin composition, cured article, laminated board for electric/electronic circuits, and method for producing modified epoxy resin
TW202106748A (en) Multifunctional active ester compound, resin composition, cured product and buildup film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151218

R150 Certificate of patent or registration of utility model

Ref document number: 5860282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees