JPWO2010134219A1 - Biodiesel fuel oil production method and apparatus - Google Patents

Biodiesel fuel oil production method and apparatus Download PDF

Info

Publication number
JPWO2010134219A1
JPWO2010134219A1 JP2011514284A JP2011514284A JPWO2010134219A1 JP WO2010134219 A1 JPWO2010134219 A1 JP WO2010134219A1 JP 2011514284 A JP2011514284 A JP 2011514284A JP 2011514284 A JP2011514284 A JP 2011514284A JP WO2010134219 A1 JPWO2010134219 A1 JP WO2010134219A1
Authority
JP
Japan
Prior art keywords
oil
pyrolysis
temperature
fuel oil
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011514284A
Other languages
Japanese (ja)
Other versions
JP5296200B2 (en
Inventor
孝 立花
孝 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EARTHRECYCLE CO., LTD.
Original Assignee
EARTHRECYCLE CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EARTHRECYCLE CO., LTD. filed Critical EARTHRECYCLE CO., LTD.
Priority to JP2011514284A priority Critical patent/JP5296200B2/en
Publication of JPWO2010134219A1 publication Critical patent/JPWO2010134219A1/en
Application granted granted Critical
Publication of JP5296200B2 publication Critical patent/JP5296200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

【課題】 パーム果房等を熱分解して低粘性・低流動点・高セタン価の燃料油を製造するようにした方法を提供する。【解決手段】 パーム果房、パーム果実、パーム粉末、パーム油、ココヤシの果実、ココナッツ油、ジャトロファの果実、植物性廃食用油、動物性廃食用油及びこれらの腐敗物の群から選ばれる1又は複数の原料を360°C以上510°C以下の温度に加熱し、440°C〜470°Cの範囲内の温度を設定温度としたとき360°C以上上記設定温度未満の範囲内の温度で、脱水後の原料にアルカリ性化合物を添加して低温熱分解を行わせ、設定温度に達したときに多孔質無機酸化物から選ばれる分解触媒を添加し、設定温度以上510°C以下の範囲内の温度で高温熱分解を行わせ、得られた熱分解中質油から低粘性で高流動性、しかも高セタン価の燃料油を得る。分解触媒には酸化シリコン−酸化アルミニウム、天然白土又はゼオライトを用いることができる。PROBLEM TO BE SOLVED: To provide a method for producing a fuel oil having a low viscosity, a low pour point and a high cetane number by pyrolyzing palm fruit bunches and the like. [MEANS FOR SOLVING PROBLEMS] Palm fruit bunch, palm fruit, palm powder, palm oil, coconut fruit, coconut oil, jatropha fruit, vegetable waste edible oil, animal waste edible oil and these septics Alternatively, when a plurality of raw materials are heated to a temperature of 360 ° C. or more and 510 ° C. or less and a temperature within a range of 440 ° C. to 470 ° C. is set as a set temperature, a temperature within a range of 360 ° C. or more and less than the above set temperature Then, an alkaline compound is added to the raw material after dehydration to perform low-temperature pyrolysis, and when the set temperature is reached, a decomposition catalyst selected from porous inorganic oxides is added, and the temperature is in the range from the set temperature to 510 ° C. High-temperature pyrolysis is performed at the internal temperature, and a low-viscosity, high-fluidity, and high-cetane fuel oil is obtained from the resulting pyrolysis medium oil. As the cracking catalyst, silicon oxide-aluminum oxide, natural clay or zeolite can be used.

Description

本発明はバイオディーゼル燃料油の製造方法及びその装置に関し、特にパーム果房、パーム果実、パーム粉末、パーム油、ココヤシの果実、ココナッツ油、ジャトロファの果実、植物性廃食用油、動物性廃食用油、これらの腐敗物を熱分解して低粘性・低流動点・高セタン価の燃料油を収率よく製造するようにした方法及び装置に関する。   The present invention relates to a method and apparatus for producing biodiesel fuel oil, and in particular, palm fruit bunch, palm fruit, palm powder, palm oil, coconut fruit, coconut oil, jatropha fruit, vegetable waste edible oil, animal waste food. The present invention relates to a method and an apparatus for producing a fuel oil having a low viscosity, a low pour point and a high cetane number by thermally decomposing oil and these septics.

最近、化石燃料に代替されるバイオマスエネルギーが盛んに研究されているが、バイオマスエネルギーの中でバイオディーゼル燃料(以下、BDFという)が、軽油代替燃料として注目されている。BDFの原料としては主に大豆が使用されているが、大豆は人間の主食や家畜の飼料に利用されているので、BDFへの大豆の利用は食糧難を引き起こすおそれがある。   Recently, biomass energy that can be substituted for fossil fuels has been actively researched, and biodiesel fuel (hereinafter referred to as BDF) is attracting attention as an alternative to light oil. Although soybean is mainly used as a raw material for BDF, since soybean is used for human staple food and livestock feed, the use of soybean for BDF may cause food difficulties.

従来、BDFを製造する場合、動植物の油脂に、メタノール、アルカリ性化合物等を加えて60°C〜260°Cの範囲内の温度でエステル交換反応を行わせることにより製造する方法(特許文献1、特許文献2)、パーム油、大豆油、廃食物油等のオイルをエステル交換してBDFを得る方法が提案されている。   Conventionally, when producing BDF, a method of producing a fat or oil of animals or plants by adding methanol, an alkaline compound or the like and causing a transesterification reaction at a temperature within a range of 60 ° C. to 260 ° C. (Patent Document 1, Patent Document 2), a method for obtaining BDF by transesterifying oils such as palm oil, soybean oil, and waste food oil has been proposed.

しかし、例えばパームを原料とする場合、パーム房実(Fresh Fruit Bunch、以下「FFB」ともいう)に蒸気を当てる蒸煮法によって果実の状態にし、そのパーム果実を搾油し洗浄して粗パーム油(CPO)にする必要があるので、コスト高になるばかりでなく、FFBから果実を得る際に生じる大量の廃水が問題となる。   However, when palm is used as a raw material, for example, a fruit is obtained by steaming a palm fruit bun (Fresh Fruit Bunch, hereinafter referred to as “FFB”), and the palm fruit is squeezed and washed to obtain crude palm oil ( CPO) is not only expensive, but also a large amount of wastewater generated when obtaining fruit from FFB becomes a problem.

更に、CPOを原料とする場合にはCPOの前段階のパーム果実に対し、得られるBDFは25重量%程度であり、パーム果実が比較的安価であるといっても結果としてコスト高になり、実用化のためには収率の向上が必要である。   Furthermore, when CPO is used as a raw material, the resulting BDF is about 25% by weight with respect to the palm fruit in the previous stage of CPO, and even if palm fruit is relatively inexpensive, the resulting cost increases. For practical use, the yield must be improved.

また、エステル交換によってBDFを製造すると、BDFの粘度が高くなり、流動性が悪くて目詰まりを起こしやすいことから、寒冷地での使用には不向きである。   In addition, when BDF is produced by transesterification, the viscosity of BDF increases, fluidity is poor, and clogging is likely to occur, so that it is not suitable for use in cold regions.

これに対し、植物油脂に炭酸ナトリウムや水酸化カリウムなどを添加して熱分解によって液状油を得る方法(非特許文献1)、ヒマワリ油に炭酸ナトリウムを加えて400°C又は420°Cで熱分解して熱分解油を製造する方法(非特許文献2)、パーム油を熱分解してディーゼル燃料に近い性状の燃料油を製造する方法(非特許文献3)、油脂原料を取り除いたオイルパーム空房や油脂が搾取された果実の外皮に対し、アルカリ触媒を用いて熱分解油を得る方法(非特許文献4、非特許文献5)、が知られている。   In contrast, a method of obtaining liquid oil by pyrolysis by adding sodium carbonate or potassium hydroxide to vegetable oil (Non-patent Document 1), adding sodium carbonate to sunflower oil and heating at 400 ° C. or 420 ° C. A method for producing pyrolyzed oil by decomposition (Non-patent Document 2), a method for producing a fuel oil having properties similar to diesel fuel by pyrolyzing palm oil (Non-Patent Document 3), and an oil palm from which oil and fat raw materials are removed There are known methods (non-patent literature 4 and non-patent literature 5) for obtaining pyrolyzed oil using an alkali catalyst with respect to the fruit skin from which bunches and fats are extracted.

上述のアルカリ性化合物の存在下の熱分解法によるBDFの製造方法では得られた燃料油の粘性はエステル交換法に比して低く、流動性がよく目詰まりを起こし難いBDFを製造することができる。   In the method for producing BDF by the pyrolysis method in the presence of the above-mentioned alkaline compound, the viscosity of the obtained fuel oil is lower than that of the transesterification method, and BDF having good fluidity and less clogging can be produced. .

特開2005−29715号公報JP 2005-29715 A 特開2008−81730号公報JP 2008-81730 A

Fuel Processing Technology, 1998年, No.57, p81-92Fuel Processing Technology, 1998, No.57, p81-92 J.Anal. Appl. Pyrolysis, 2004,No.71, p.987-996J. Anal. Appl. Pyrolysis, 2004, No. 71, p.987-996 Energy Sources, Part A, 2008年6 月1 日, Vol.30, No.9, p.1060-1064Energy Sources, Part A, June 1, 2008, Vol.30, No.9, p.1060-1064 社団法人資源・素材学会春季大会講演集(II) 素材編,2006年, p.1-12Proceedings of the Spring Meeting of Japan Society of Resources and Materials (II) Materials, 2006, p.1-12 Energy Sources, 2000年, Vol.22, No.7, p.631-639Energy Sources, 2000, Vol.22, No.7, p.631-639

上述の非特許文献1〜5記載の熱分解によるBDF製造方法ではエステル交換法に比してBDFの粘度は低いものの、寒冷地で使用する上で依然として粘度が高く、しかも流動点(冷却時に目詰まりが起こる最低温度)が高く、実際には使用が難しいのが実情であった。   In the BDF production method by pyrolysis described in Non-Patent Documents 1 to 5 above, the viscosity of BDF is lower than that of the transesterification method, but the viscosity is still high when used in a cold district, and the pour point (on cooling) In fact, the minimum temperature at which clogging occurs was high and it was actually difficult to use.

本発明はかかる問題点に鑑み、寒冷地での使用に適した低粘性でかつ低流動点の燃料油を高い収率でもって製造できるようにしたバイオディーゼル燃料油の製造方法及びその製造装置を提供することを課題とする。   In view of such problems, the present invention provides a method for producing biodiesel fuel oil and a device for producing the same, which can produce a low viscosity and low pour point fuel oil suitable for use in cold regions with a high yield. The issue is to provide.

そこで、本発明に係るバイオディーゼル燃料油の製造方法は、パーム果房、パーム果実、パーム粉末、パーム油、ココヤシの果実、ココナッツ油、ジャトロファの果実、植物性廃食用油、動物性廃食用油及びこれらの腐敗物の群から選ばれる1又は複数の原料から燃料油を製造する方法であって、上記1又は複数の原料を360°C以上510°C以下の温度に加熱し、440°C〜470°Cの範囲内の温度を設定温度としたとき360°C以上設定温度未満の範囲内の温度で、脱水後の上記原料にアルカリ性化合物を添加して該アルカリ性化合物の存在下に低温熱分解を行わせ、上記設定温度に達したときに多孔質無機酸化物から選ばれる分解触媒を添加し、上記設定温度以上510°C以下の範囲内の温度で上記分解触媒の存在下に高温熱分解を行わせ、得られた熱分解中質油から低粘性で低流動点、かつ高セタン価の燃料油を得るようにしたことを特徴とする。   Therefore, the method for producing biodiesel fuel oil according to the present invention includes palm fruit bunch, palm fruit, palm powder, palm oil, coconut fruit, coconut oil, jatropha fruit, vegetable waste edible oil, and animal waste edible oil. And a method of producing fuel oil from one or more raw materials selected from the group of these septics, wherein the one or more raw materials are heated to a temperature of 360 ° C. or more and 510 ° C. or less, and 440 ° C. When a temperature within a range of ˜470 ° C. is set as a set temperature, an alkaline compound is added to the raw material after dehydration at a temperature within a range of 360 ° C. or higher and lower than the set temperature, and low-temperature heat is present in the presence of the alkaline compound. When the decomposition temperature is reached and the set temperature is reached, a decomposition catalyst selected from porous inorganic oxides is added, and high temperature heat is present in the presence of the decomposition catalyst at a temperature within the range of the set temperature to 510 ° C. Solution was performed and the resulting low pour point from the pyrolysis of fuel oil at low viscosity, and is characterized in that to obtain a high cetane number fuel oil.

本発明の特徴の1つはパーム果房、パーム果実、パーム粉末、パーム油、ココヤシの果実、ココナッツ油、ジャトロファの果実、植物性廃食用油、動物性廃食用油及びこれらの腐敗物の群から選ばれる1又は複数の原料にアルカリ性化合物を添加して440°C〜470°Cの範囲内の設定温度未満で低温熱分解を行った後、設定温度以上で分解触媒を添加して高温熱分解を行うようにした点にある。   One of the features of the present invention is palm fruit bunch, palm fruit, palm powder, palm oil, coconut fruit, coconut oil, jatropha fruit, vegetable waste edible oil, animal waste edible oil and groups of these septics After adding an alkaline compound to one or more raw materials selected from the above and performing low temperature pyrolysis at a temperature lower than the set temperature within the range of 440 ° C. to 470 ° C., the decomposition catalyst is added above the set temperature and high temperature heat is applied. It is in the point which made it decompose.

アルカリ性化合物の存在下設定温度未満の低温熱分解によってパーム果房等からワックス留分(重質油成分)の少ない低粘性でかつ高流動性の燃料油を得ることができ、ワックス留分の残った高粘性の未分解油は(アルカリ性化合が残存しているときにはアルカリ性化合物に加えて)分解触媒の存在下に設定温度以上の高温で熱分解されるので、ワックス留分の少ない燃料油を得ることができる。   A low-viscosity and high-fluidity fuel oil with less wax fraction (heavy oil component) can be obtained from palm fruit bunches, etc. by low-temperature pyrolysis below the set temperature in the presence of alkaline compounds, and the wax fraction remains The highly viscous undecomposed oil (in addition to the alkaline compound when the alkaline compound remains) is pyrolyzed at a high temperature above the set temperature in the presence of a cracking catalyst, so that a fuel oil with a low wax fraction is obtained. be able to.

その結果、燃料油の粘性及び流動点は大幅に低くなり、しかもセタン価は高くなり、寒冷地におけるバイオディーゼル燃料油の使用が可能となった。BDFはガスクロマトグラフ−質量分析(GC−MS)で分析した結果、炭素数はC9 〜C18が得られた。これは石油から得られる軽油(C13〜C17)に類似し、高いセタン価を確認された。   As a result, the viscosity and pour point of the fuel oil were significantly lowered, and the cetane number was increased, making it possible to use biodiesel fuel oil in cold regions. BDF was analyzed by gas chromatograph-mass spectrometry (GC-MS), and as a result, C9 to C18 were obtained. This was similar to light oil (C13 to C17) obtained from petroleum, and a high cetane number was confirmed.

本発明では燃料油の原料にはパーム果房、パーム果実、パーム粉末、パーム油、ココヤシの果実、ココナッツ抽、ジャトロファの果実、植物性廃食用油、動物性廃食用油及びこれらの腐敗物を用いるが、特にパーム果房及びその腐敗物を主原料として燃料油を製造するのに適している。   In the present invention, the raw material of the fuel oil is palm fruit bunch, palm fruit, palm powder, palm oil, coconut fruit, coconut extract, jatropha fruit, vegetable waste edible oil, animal waste edible oil and these septics. Although it is used, it is particularly suitable for producing fuel oil using palm fruit bunch and its rot as a main raw material.

植物性廃食用油には例えば大豆油、菜種油、ひまわり油、綿実油、胡麻油、落花生油、椿油等の植物性油脂の使用済み廃油を挙げることができ、又動物性廃食用油には牛脂、豚脂、馬脂、魚油、鯨油等の動物性油脂の使用済み廃油を挙げることができる。   Examples of vegetable waste edible oils include used waste oils of vegetable oils such as soybean oil, rapeseed oil, sunflower oil, cottonseed oil, sesame oil, peanut oil, coconut oil, and animal waste edible oils include beef fat, pork Examples include used waste oils of animal fats such as fat, horse fat, fish oil and whale oil.

本発明ではアルカリ性化合物存在下に設定温度未満の低温熱分解と、分解触媒存在下に設定温度以上の高温熱分解を行うので、熱分解し難い原料、具体的にはパーム果房、パーム果実、パーム粉末、パーム油、ココヤシの果実、ココナッツ油、ジャトロファの果実、植物性廃食用油、動物性廃食用油の腐敗物をも原料として用いることができる。   In the present invention, since low-temperature pyrolysis below the set temperature in the presence of an alkaline compound and high-temperature pyrolysis above the set temperature in the presence of a decomposition catalyst, raw materials that are difficult to pyrolyze, specifically palm fruit bunch, palm fruit, Palm powder, palm oil, coconut fruit, coconut oil, jatropha fruit, vegetable waste edible oil, and animal waste edible oil can be used as raw materials.

また、従来は廃棄されていた廃食用油を燃料油の原料として用いることができるので、省資源の観点からも環境上の観点からも大きなメリットがあり、極めて有用である。   In addition, since waste edible oil that has been disposed of in the past can be used as a raw material for fuel oil, it is extremely useful from the viewpoint of resource saving and environmental viewpoint.

さらに、アルカリ性化合物の存在下で熱分解するので、オイルに加工されていないパーム果房、パーム果実、ココヤシの果実、ジャトロファの果実を燃料油の原料として用いることができ、しかもオイルに加工する工程を必要としないので、製造の効率が高く、低コスト化を実現できる。本発明の製造方法はオイル加工されていない原料を直接用いることができる点で、従来のバイオディーゼル燃料油の製造方法とは技術的に大きく相違している。   Furthermore, since it is thermally decomposed in the presence of an alkaline compound, palm fruit bunch, palm fruit, coconut fruit and jatropha fruit that have not been processed into oil can be used as a raw material for fuel oil, and further processed into oil Therefore, the manufacturing efficiency is high and the cost can be reduced. The production method of the present invention is technically different from the conventional production method of biodiesel fuel oil in that a raw material not processed with oil can be directly used.

通常、パームの木からは果房(FFB)の状態で採取され、このFFBを蒸煮法等により処理することによりパーム果実とすることができる。さらに、パーム果実を搾油し洗浄してパーム油(CPO)を得ることができる。本発明ではパーム果房、パーム果実、ココヤシの果実、ジャトロファの果実を粗破砕して熱分解の原料として用いるのがよい。   Usually, it is extract | collected from the palm tree in the state of a fruit bunch (FFB), and it can be set as a palm fruit by processing this FFB by a steaming method etc. Furthermore, palm oil can be extracted and washed to obtain palm oil (CPO). In the present invention, palm fruit bunch, palm fruit, coconut fruit and jatropha fruit are roughly crushed and used as a raw material for thermal decomposition.

FFBを果実に加工するときの凝縮水の量は多く、BOD値も高いので、通常の廃水処理方法では処理が難しく、環境問題を招来し、廃棄処理がコスト高になるが、本発明ではFFBを果実やパーム油に加工する前処理工程が不要となり、コストを大幅に低減でき、廃水もでないため環境面でのメリットも大きい。   Since the amount of condensed water when processing FFB into fruit is large and the BOD value is high, it is difficult to treat with a normal wastewater treatment method, resulting in environmental problems and costly disposal. The pre-treatment process for processing the fruit into palm oil or palm oil is no longer necessary, and the cost can be greatly reduced.

さらに、粗破砕したFFBを熱分解の原料に用いると、従来、果実やオイルに加工する際に廃棄していた部分を熱分解して有用な分解ガス、カ−ボン残渣、燃料油が得られるのでバイオディーゲル燃料油の収率も向上できる。   Furthermore, when the roughly crushed FFB is used as a raw material for pyrolysis, a portion that has conventionally been discarded when it is processed into fruit or oil is thermally decomposed to obtain useful cracked gas, carbon residue, and fuel oil. Therefore, the yield of biodiesel fuel oil can be improved.

アルカリ性化合物にはワックス留分を少なくする上で、グリセリンに溶解し得る水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、水酸化ナトリウム、又は水酸化カリウムを用いるのがよい。   In order to reduce the wax fraction, it is preferable to use calcium hydroxide, calcium oxide, sodium carbonate, sodium hydroxide, or potassium hydroxide that can be dissolved in glycerin as the alkaline compound.

分解触媒の多孔質無機酸化物には重質油分(WAX)を多量に含む未分解油を高温で分解できる触媒、具体的には安価な酸化シリコン−酸化アルミニウム、天然白土、ゼオライトの1又は複数を用いることができる。   The porous inorganic oxide of the cracking catalyst is a catalyst capable of cracking undecomposed oil containing a large amount of heavy oil (WAX) at high temperature, specifically one or more of inexpensive silicon oxide-aluminum oxide, natural clay, zeolite Can be used.

熱分解中質油はそのままでは酸価(mgKOH/g)値が高い。そこで、本発明では熱分解中質油から燃料油を溶媒抽出する。溶媒によって不純物を除去すると適切な酸価にすることができ、又臭気も低減することができる。溶媒抽出は2回以上行ってもよい。複数回行うことにより、酸価をより改善できる。   The pyrolysis medium oil has a high acid value (mgKOH / g) as it is. Accordingly, in the present invention, the fuel oil is solvent-extracted from the pyrolysis medium oil. When impurities are removed by a solvent, an appropriate acid value can be obtained, and odor can also be reduced. The solvent extraction may be performed twice or more. By performing the treatment a plurality of times, the acid value can be further improved.

上述の溶媒としては例えばメタノール、エタノール等のアルコール類、アセトン等のケトン類等、ジメチルエーテル等のエーテル類を挙げることができるが、抽出効果が高く、入手し易い点からもアルコール類が好ましい。   Examples of the solvent include alcohols such as methanol and ethanol, ketones such as acetone, and ethers such as dimethyl ether. Alcohols are preferable from the viewpoint of high extraction effect and availability.

抽出方法は例えば熱分解中質油と溶媒とを十分に混合した後静置し、不純物を含む溶媒層を分離することにより燃料油を抽出することができる。不純物を含む溶媒は溶媒のみを蒸発させて不純物を分離し、再利用するのがよい。   As the extraction method, for example, the pyrolysis intermediate oil and the solvent are sufficiently mixed and allowed to stand, and the fuel oil can be extracted by separating the solvent layer containing impurities. The solvent containing impurities should be reused by separating the impurities by evaporating only the solvent.

また、溶媒抽出に代え、水素ガス添加低圧反応によって熱分解中質油を精製するようにしてもよい。すなわち、熱分解中質油を260°C〜427°Cの範囲内の温度に予熱した後、水素ガスとともに反応塔に送り、反応塔で3.5kg/cm2 ・g〜56kg/cm2 ・gの圧力で、再生可能な金属酸化物の触媒の存在下で反応させると、色相及び酸化安定性が向上し、不純物か減少し、臭いを改善することができる。得られた燃料油から水素を分離し、水素ガスは再使用する。Further, instead of solvent extraction, the pyrolysis medium oil may be purified by hydrogen gas addition low pressure reaction. That is, after the thermal decomposition in the fuel oil is preheated to a temperature in the range of 260 ° C~427 ° C, feeding the reactor with hydrogen gas, in the reaction tower 3.5kg / cm 2 · g~56kg / cm 2 · When the reaction is carried out at a pressure of g in the presence of a reproducible metal oxide catalyst, the hue and oxidation stability are improved, impurities are reduced, and the odor can be improved. Hydrogen is separated from the obtained fuel oil, and hydrogen gas is reused.

加熱脱水及び熱分解の熱源には熱分解槽からの脱水蒸気を600°C以上(好ましくは800°C以下)の温度の燃焼炉に2〜3秒の間滞留させて加熱脱臭し、過熱蒸気を多く含む高温燃焼ガスは原料の脱水及び熱分解の熱源として用いる。これにより廃熱を有効に活用することができる。   As a heat source for heat dehydration and pyrolysis, dewatered steam from the pyrolysis tank is retained in a combustion furnace at a temperature of 600 ° C. or higher (preferably 800 ° C. or lower) for 2 to 3 seconds to heat and deodorize, and superheated steam Is used as a heat source for dehydration and pyrolysis of the raw material. Thereby, waste heat can be utilized effectively.

処理量が多く、熱分解槽ジャケット、加熱板伝熱面積で脱水蒸気の廃熱だけでは熱量が不足する場合には熱分解軽質油や熱的に安定な流体(例えば、トルエン)を循環炉で加熱し、あるいはパーム油やワックス留分を例えば約450°Cに加熱し、熱分解槽に吹き込むようにするのがよい。600°Cの過熱蒸気を熱分解槽に直接吹き込むのも有用である。その時の量はmax0.16ton/kl−feedである。   When the amount of processing is large and the amount of heat is insufficient with the heat transfer area of the pyrolysis tank jacket and the heat transfer area of the heat removal steam alone, pyrolysis light oil or a thermally stable fluid (for example, toluene) is used in a circulating furnace. It is preferable to heat or heat the palm oil or wax fraction to about 450 ° C. and blow it into the pyrolysis tank. It is also useful to blow 600 ° C superheated steam directly into the pyrolysis tank. The amount at that time is max 0.16 ton / kl-feed.

すなわち、原料の脱水及び熱分解の熱源として、加熱脱臭した脱水蒸気に加え、さらに熱分解軽質油又はトルエンを加熱して用いることができる。また、原料の脱水及び熱分解の熱源として、加熱脱臭した脱水蒸気に加え、パーム油又はワックス留分を加熱して用いることができる。   That is, as a heat source for the dehydration and pyrolysis of the raw material, in addition to the deodorized water vapor that has been deodorized by heating, it is possible to further heat and use pyrolysis light oil or toluene. Further, as a heat source for dehydration and pyrolysis of the raw material, palm oil or wax fraction can be heated and used in addition to the deodorized water vapor dehydrated by heating.

熱分解軽質油、トルエン、パーム油、ワックス留分の加熱用燃料としては熱分解ガスや熱分解軽質油を用いるが、不足する場合には熱分解残渣を固形燃料として用いることができる。   Pyrolysis gas and pyrolysis light oil are used as the fuel for heating the pyrolysis light oil, toluene, palm oil, and wax fraction, but if there is a shortage, the pyrolysis residue can be used as the solid fuel.

アルカリ性化合物は原料に対して5〜15重量%、分解触媒は未分解油に対して3〜10重量%添加する。これによりワックス留分の少ない燃料油を得ることができ、結果的にBDFの収率増に繋がる。   The alkaline compound is added in an amount of 5 to 15% by weight based on the raw material, and the cracking catalyst is added in an amount of 3 to 10% by weight based on the undecomposed oil. As a result, a fuel oil with a small wax fraction can be obtained, resulting in an increase in the yield of BDF.

熱分解温度(液相下部温度)と反応時間は例えば次のような条件を採用することができる。
1.360°C〜390°Cを3〜5時間保持し、アルカリ性化合物を添加して第1段目の低温熱分解を液相で行う。この場合、当該範囲内で一定温度に保持してもよく、又当該範囲内で昇温させるようにしてもよい。
2.390°C〜450°Cで3〜4時間保持し、第2段目の低温熱分解を液相で行う。この場合も当該範囲内で一定温度に保持してもよく、又当該範囲内で昇温させるようにしてもよい。
3.450°C〜510°Cで2〜3時間保持し、分解触媒を添加し、第3段目の高温熱分解を液相で行う。この場合も当該範囲内で一定温度に保持してもよく、又当該範囲内で昇温させるようにしてもよい。
For example, the following conditions can be adopted as the thermal decomposition temperature (liquid phase lower temperature) and the reaction time.
The temperature is maintained at 1.360 ° C. to 390 ° C. for 3 to 5 hours, an alkaline compound is added, and the first stage low temperature pyrolysis is performed in the liquid phase. In this case, the temperature may be kept constant within the range, or the temperature may be raised within the range.
2. Hold at 390 ° C. to 450 ° C. for 3 to 4 hours, and perform the second stage low temperature pyrolysis in the liquid phase. In this case, the temperature may be kept constant within the range, or the temperature may be raised within the range.
3. Hold at 450 ° C. to 510 ° C. for 2 to 3 hours, add cracking catalyst, and perform third stage high temperature pyrolysis in liquid phase. In this case, the temperature may be kept constant within the range, or the temperature may be raised within the range.

熱分解槽は槽壁にジャケットを設け、内部に複数の加熱板を設けた構造とし、加熱板の間隔を最大1mとする。また、熱分解槽の頂部には原料投入・洗浄口を設ける。熱分解槽の内壁に生成するコーキング(Coking) 物質は原料投入・洗浄口から飽和蒸気(5kg/cm2 以上)や高圧水を吹き込んで洗浄する。このとき凝縮水でアルカリ性化合物や分解触媒を残渣から除去することもできるが、アルカリ性化合物や分解触媒の付着した熱分解残渣を取り出すようにしてもよい。The pyrolysis tank has a structure in which a jacket is provided on the tank wall and a plurality of heating plates are provided inside, and the maximum distance between the heating plates is 1 m. In addition, a raw material charging / cleaning port is provided at the top of the pyrolysis tank. The coking substance produced on the inner wall of the pyrolysis tank is cleaned by blowing in saturated steam (5 kg / cm 2 or more) or high-pressure water from the raw material input / cleaning port. At this time, the alkaline compound and the decomposition catalyst can be removed from the residue with condensed water, but the thermal decomposition residue to which the alkaline compound and the decomposition catalyst are attached may be taken out.

熱分解油のうち150°C〜350°Cの留分は空気に触れる前に蒸留塔で分解油ガス、軽質油(沸点:150°C)、ワックス留分を分離する。熱分解中質油は冷却後に溶媒、例えばメタノールによって不純物を抽出するが、条件は常圧、30°C〜59°Cとし、メタノールは処理すべき熱分解中質油に対して容量で1〜2倍量を接触させる。メタノールは約95重量%再使用できる。また、溶媒抽出に代えて水素ガス添加低圧反応によって不純物を少なくすることもできる。   Among the pyrolysis oil, a fraction of 150 ° C. to 350 ° C. is separated from cracked oil gas, light oil (boiling point: 150 ° C.), and wax fraction in a distillation column before being exposed to air. The pyrolyzed medium oil is extracted with a solvent such as methanol after cooling, but the conditions are normal pressure, 30 ° C to 59 ° C, and methanol is 1 to 1 in volume relative to the pyrolyzed medium oil to be treated. Contact twice as much. Methanol can be reused about 95% by weight. Moreover, it can replace with solvent extraction and can reduce impurities by the hydrogen gas addition low-pressure reaction.

系外に排出された未分解油は加熱して油分を蒸発させ、カーボン残渣とするのが好ましい。このカーボン残渣は自家燃料、または活性炭原料、高付加価値炭素材料として使用し得る。   The undecomposed oil discharged out of the system is preferably heated to evaporate the oil to form a carbon residue. This carbon residue can be used as an in-house fuel, an activated carbon raw material, or a high-value-added carbon material.

得られる熱分解油のうち、沸点150°C以上の中質油は、バイオディーゼル燃料(BDF)として使用できる。本発明に係る製造方法によって得られる中質油は、セタン価が60、目詰まり点(流動点)が−17.5°C、硫黄分2ppmであり、自動車用ディーゼル燃料、ボイラー用燃料、発電機用燃料として極めて有用であり、大気汚染防止にも有効である。   Of the obtained pyrolysis oil, medium oil having a boiling point of 150 ° C. or higher can be used as biodiesel fuel (BDF). The medium oil obtained by the production method according to the present invention has a cetane number of 60, a clogging point (pour point) of -17.5 ° C., a sulfur content of 2 ppm, automobile diesel fuel, boiler fuel, and power generation. It is extremely useful as a machine fuel and effective in preventing air pollution.

なお、アルカリ性合成物の存在下に熱分解する方法が提案されているが、この技術では燃料油の重質油成分(ワックス留分)が多く、重質油成分を除いて燃料油とすると、収率が原料に対して25重量%程度と低く、収率を高くしようとすると重質油成分の量が多くなって燃料油の粘性は高くなってしまい、寒冷地で使用するには問題がある。   In addition, although the method of thermally decomposing in presence of an alkaline compound is proposed, in this technique, there are many heavy oil components (wax fraction) of fuel oil, and if it removes a heavy oil component and uses it as fuel oil, The yield is as low as about 25% by weight with respect to the raw material. If the yield is to be increased, the amount of heavy oil component increases and the viscosity of the fuel oil increases, which is problematic for use in cold regions. is there.

これに対し、本発明ではワックス留分(重質油成分)を分解触媒の存在下高温でさらに熱分解するようにしているので、燃料油の粘性が低く、流動点を低下できるとともに、収率を前記アルカリ性合成物の存在下に熱分解する方法に比して約3重量%以上アップでき、原料に対して約28〜29重量%の収率を確保できることが確認された。   In contrast, in the present invention, the wax fraction (heavy oil component) is further thermally decomposed at a high temperature in the presence of a cracking catalyst, so that the viscosity of the fuel oil is low, the pour point can be lowered, and the yield It was confirmed that the yield of about 28 to 29% by weight can be ensured with respect to the raw material, as compared with the method of thermally decomposing in the presence of the alkaline compound.

植物性油脂や動物性油脂の熱分解油は酸価が高いので、変質(変色、臭気、沈殿物)しやすいが、メタノール等による溶媒抽出や水素ガス添加低圧反応を採用することにより、油質は安定し、長期保存が可能となる。   Pyrolysis oils of vegetable oils and animal fats are high in acid value, so they are likely to be altered (discoloration, odor, precipitate). However, by adopting solvent extraction with methanol or hydrogen gas addition low-pressure reaction, the oil quality Is stable and can be stored for a long time.

また、パームのFFBや果実を原料とした場合の熱分解残渣は、椰子がら炭であるので、付加価値の高い粒状活性炭の原料となる。特に、熱分解残渣は燃焼させて熱分解槽や乾燥機などの熱源として使用することができるが、熱分解残渣には分解触媒やアルカリ性化合物が含まれているので、残った灰には有用なアルカリ成分が含有されており、肥料に最適である。   Moreover, since the pyrolysis residue at the time of using palm FFB and fruit as a raw material is coconut husk charcoal, it becomes a raw material of granular activated carbon with high added value. In particular, the pyrolysis residue can be burned and used as a heat source for pyrolysis tanks and dryers, but the pyrolysis residue contains a decomposition catalyst and an alkaline compound, so it is useful for the remaining ash. It contains an alkaline component and is ideal for fertilizers.

また、本発明に係るバイオディーゼル燃料油の製造装置は、パーム果房、パーム果実、パーム粉末、パーム油、ココヤシの果実、ココナッツ油、ジャトロファの果実、植物性廃食用油、動物性廃食用油及びこれらの腐敗物の群から選ばれる1又は複数の原料をアルカリ性化合物及び分解触媒の存在下に熱分解する燃料油の製造装置であって、熱分解軽質油又は過熱蒸気を含む高温燃焼ガスを熱源とし、上記1又は複数の原料が投入され、上記1又は複数の原料を360°C以上510°C以下の温度に加熱し、440°C〜470°Cの範囲内の温度を設定温度としたとき360°C以上上記設定温度未満の範囲内の温度で、脱水後の上記原料をアルカリ性化合物の存在下に低温熱分解し、上記設定温度以上510°C以下の範囲内の温度で多孔質無機酸化物から選ばれる分解触媒の存在下に高温熱分解する熱分解槽と、該熱分解槽の熱分解油ガスから熱分解油を凝縮する凝縮器と、凝縮された熱分解油を蒸留し、軽質油と中質油を分離する蒸留塔と、分離された熱分解中質油から燃料油を精製する精製器と、を備えたことを特徴とする。   The biodiesel fuel oil production apparatus according to the present invention includes palm fruit bunch, palm fruit, palm powder, palm oil, coconut fruit, coconut oil, jatropha fruit, vegetable waste edible oil, animal waste edible oil And a fuel oil production apparatus for thermally decomposing one or more raw materials selected from the group of these septic products in the presence of an alkaline compound and a cracking catalyst, comprising a high-temperature combustion gas containing pyrolyzed light oil or superheated steam The heat source is charged with the one or more raw materials, the one or more raw materials are heated to a temperature of 360 ° C. or higher and 510 ° C. or lower, and a temperature within a range of 440 ° C. to 470 ° C. is set as a set temperature. The raw material after dehydration is pyrolyzed at a low temperature in the presence of an alkaline compound at a temperature in the range of 360 ° C. or higher and lower than the preset temperature, and porous at a temperature in the range of the preset temperature to 510 ° C. or lower. A pyrolysis tank that thermally decomposes at high temperature in the presence of a cracking catalyst selected from inorganic oxides, a condenser that condenses the pyrolysis oil from the pyrolysis oil gas of the pyrolysis tank, and the condensed pyrolysis oil is distilled. And a distillation column for separating light oil and medium oil, and a purifier for purifying fuel oil from the separated pyrolysis medium oil.

ここで、原料の加熱脱水は熱分解槽で行ってもよいが、熱分解槽の前段に脱水機を設け、1又は複数の原料の加熱脱水を行った後、脱水後の原料を熱分解槽に送り込むようにしてもよい。   Here, the heat dehydration of the raw material may be performed in a pyrolysis tank, but a dehydrator is provided in the previous stage of the pyrolysis tank, and after heat dehydration of one or a plurality of raw materials, the dehydrated raw material is converted into a pyrolysis tank You may make it send to.

熱分解槽は連続運転すると槽内に大きな液面変動などがあるので、通常はバッチ式で運転するが、原料を連続的に投入し、熱分解残渣を連続的に排出できる場合には連続運転も可能である。   Since the thermal decomposition tank has a large liquid level fluctuation in the tank when it is continuously operated, it is usually operated in a batch mode. However, when the raw material can be continuously charged and the pyrolysis residue can be discharged continuously, it is continuously operated. Is also possible.

熱分解残渣は燃料として利用できるので、流動床構造の焼却炉で焼却し、焼却炉の熱砂を乾燥機、予熱機、熱分解槽に送って熱源として用いることができる。   Since the pyrolysis residue can be used as a fuel, it can be incinerated in a fluidized bed incinerator and the hot sand in the incinerator can be sent to a dryer, preheater, or pyrolysis tank and used as a heat source.

また、1又は複数の原料からの脱水蒸気を600°C以上(好ましくは800°C以下)に加熱して加熱脱臭し、この過熱蒸気を含む高温燃焼ガスを熱分解槽及び/又は脱水機の供給する加熱炉(熱風炉)を更に備えるのがよい。   In addition, the dewatered steam from one or more raw materials is heated to 600 ° C. or higher (preferably 800 ° C. or lower) to be heated and deodorized, and the high-temperature combustion gas containing this superheated steam is removed from It is good to further provide a heating furnace (hot blast furnace) to be supplied.

熱分解槽内には複数の加熱板を相互に所定の間隔をあけて設けるとともに、熱分解槽の外壁にはジャケットを設け、加熱板及びジャケットには脱水蒸気を含む高温燃焼ガスを流通させるようにすることができる。   A plurality of heating plates are provided in the pyrolysis tank at predetermined intervals, a jacket is provided on the outer wall of the pyrolysis tank, and a high-temperature combustion gas containing dewatered steam is circulated through the heating plate and the jacket. Can be.

一つの熱分解槽で脱水及び熱分解を行なう場合における本発明に係るバイオディーゼル燃料油の製造装置の好ましい実施形態を示す概念図である。It is a conceptual diagram which shows preferable embodiment of the manufacturing apparatus of the biodiesel fuel oil based on this invention in the case of performing spin-drying | dehydration and thermal decomposition in one thermal decomposition tank. 上記実施形態における熱分解槽の構造の1例を示す構成図である。It is a block diagram which shows an example of the structure of the thermal decomposition tank in the said embodiment. 実施例によって得られた燃料油の物性をガスクロマトグラフ−水素炎イオン化型検出器を用いて測定した結果のチャートを示す図である。It is a figure which shows the chart of the result of having measured the physical property of the fuel oil obtained by the Example using the gas chromatograph-hydrogen flame ionization type | mold detector. 他のチャートを示す図である。It is a figure which shows another chart. 脱水と熱分解を別工程で行う場合における第2の実施形態を示す概念図である。It is a conceptual diagram which shows 2nd Embodiment in the case of performing dehydration and thermal decomposition by another process. 上記実施形態における熱分解槽の運転スケジュールの例を示す図である。It is a figure which shows the example of the operation schedule of the thermal decomposition tank in the said embodiment. 第3の実施形態を示す図である。It is a figure which shows 3rd Embodiment. 第4の実施形態を示す図である。It is a figure which shows 4th Embodiment. 第5の実施形態を示す図である。It is a figure which shows 5th Embodiment. 第6の実施形態を示す図である。It is a figure which shows 6th Embodiment.

以下、本発明を図面に示す具体例に基づいて詳細に説明する。図1及び図2は本発明に係るバイオディーゼル燃料油の製造装置の好ましい実施形態を示す。図において、1は原料を粗破砕する破砕機、2は粗破砕された原料を貯留するホッパー、3、4は原料を脱水し熱分解する熱分解槽、5は残渣を受ける残渣受槽、6は原料の脱水蒸気を加熱脱臭して熱分解槽3、4に熱源として与える熱風炉(加熱炉)、7はサイクロン、8は熱分解油ガスを凝縮する凝縮器、9は凝縮された熱分解油を受ける熱分解油槽、10は熱分解油を蒸留する蒸留塔、11は軽質油を凝縮する軽質油凝縮器、12は軽質油を受ける軽質油槽、13は燃料油を冷却するBDF冷却器、14はメタノールと燃料油を分離する分離槽、15、16はメタノールを蒸発させるメタノール蒸発器、17はメタノールを凝縮させるメタノール凝縮器、18はメタノール受槽、19は煙突、21は加熱板である。   Hereinafter, the present invention will be described in detail based on specific examples shown in the drawings. 1 and 2 show a preferred embodiment of a biodiesel fuel oil production apparatus according to the present invention. In the figure, 1 is a crusher for roughly crushing the raw material, 2 is a hopper for storing the roughly crushed raw material, 3 is a thermal decomposition tank for dehydrating and pyrolyzing the raw material, 5 is a residue receiving tank for receiving residues, 6 is A hot blast furnace (heating furnace) that heats and deodorizes the raw water vapor and supplies it to the pyrolysis tanks 3 and 4 as a heat source, 7 is a cyclone, 8 is a condenser that condenses the pyrolysis oil gas, and 9 is a condensed pyrolysis oil. 10 is a distillation column for distilling pyrolysis oil, 11 is a light oil condenser for condensing light oil, 12 is a light oil tank for receiving light oil, 13 is a BDF cooler for cooling fuel oil, 14 Is a separation tank for separating methanol and fuel oil, 15 and 16 are methanol evaporators for evaporating methanol, 17 is a methanol condenser for condensing methanol, 18 is a methanol receiving tank, 19 is a chimney, and 21 is a heating plate.

熱分解槽3、4は例えば図2に示されるような構造を採用することができる。槽壁30にはジャケット31が設けられ、槽内には複数の加熱板32が設けられ、加熱板32の相互の間隔及び加熱板32と槽壁30との間の間隔は1m以下に設定されている。槽蓋33には原料投入洗浄口34が加熱板32の間、加熱板32と槽壁31の間に対応する位置に設けられ、槽底には残渣の排出口35が形成され、高温燃焼ガスが熱分解槽3、4のジャケット31と加熱板32に導入されるとともに、熱分解槽3、4内には加熱された熱分解重質油(WAX)が直接吹き込まれるようになっている。   For example, a structure as shown in FIG. The tank wall 30 is provided with a jacket 31, and the tank is provided with a plurality of heating plates 32. The distance between the heating plates 32 and the distance between the heating plate 32 and the tank wall 30 are set to 1 m or less. ing. The tank lid 33 is provided with a raw material charging / cleaning port 34 between the heating plates 32 and between the heating plate 32 and the tank wall 31, a residue discharge port 35 is formed at the bottom of the tank, and high temperature combustion gas Is introduced into the jacket 31 and the heating plate 32 of the pyrolysis tanks 3 and 4, and heated pyrolysis heavy oil (WAX) is directly blown into the pyrolysis tanks 3 and 4.

燃料油を製造する場合、パーム果房及びその腐敗物を主原料として準備する。必要に応じて、パーム果実、パーム粉末、パーム油、ココヤシの果実、ココナッツ油、ジャトロファの果実、植物性廃食用油、動物性廃食用油及びこれらの腐敗物の1又は複数を副原料として準備することができる。これらの原料を破砕機1で粗破砕し、ホッパー2に貯留しておく。   When producing fuel oil, a palm fruit bunch and its spoilage are prepared as main raw materials. As necessary, one or more of palm fruit, palm powder, palm oil, coconut fruit, coconut oil, jatropha fruit, vegetable waste edible oil, animal waste edible oil, and these septics are prepared as auxiliary ingredients. can do. These raw materials are roughly crushed by the crusher 1 and stored in the hopper 2.

熱風炉6で過熱蒸気を多く含む高温燃焼ガスを生成し、熱分解槽3、4のジャケット31及び加熱板32に供給し、熱分解槽3、4を昇温させる一方、温度低下した蒸気は煙突19から大気に放出する。熱分解槽3、4は運転スケジュールに従って交互に運転する。粗破砕した原料は熱分解槽3、4内に投入する。原料からは含有水分が蒸発し、蒸気はサイクロン7で凝縮されることなく分離され、熱風炉6に送られ、熱風炉6で例えば700°C以上、2〜3秒滞留されて加熱脱臭された後、この過熱蒸気を多く含む高温燃焼ガスは熱分解槽3、4のジャケット31及び加熱板32に供給され、熱分解槽3、4が昇温される。   A high-temperature combustion gas containing a large amount of superheated steam is generated in the hot stove 6 and supplied to the jacket 31 and the heating plate 32 of the pyrolysis tanks 3 and 4 to raise the temperature of the pyrolysis tanks 3 and 4, while the steam whose temperature has decreased Released from the chimney 19 to the atmosphere. The pyrolysis tanks 3 and 4 operate alternately according to the operation schedule. The roughly crushed raw material is put into the pyrolysis tanks 3 and 4. The moisture contained in the raw material was evaporated, and the steam was separated without being condensed in the cyclone 7, sent to the hot stove 6, and kept in the hot stove 6, for example, at 700 ° C. or more for 2 to 3 seconds and deodorized by heating. Thereafter, the high-temperature combustion gas containing a large amount of superheated steam is supplied to the jacket 31 and the heating plate 32 of the thermal decomposition tanks 3 and 4, and the thermal decomposition tanks 3 and 4 are heated.

脱水された原料が熱分解槽3、4で360°C〜390°Cの範囲内の温度に達すると、熱分解槽3、4の原料投入洗浄口34からアルカリ性化合物、例えば水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、水酸化ナトリウム、又は水酸化カリウムを投入する。投入量は原料に対して5〜15重量%とする。熱分解槽3、4内の原料を360°C〜390°Cの範囲内の温度にて3〜5時間かけて第1段目の低温熱分解を行わせた後、390°C〜450°Cの範囲内の温度に昇温させ、3〜4時間をかけて第2段目の低温熱分解を行わせる。熱分解槽3,4の温度コントロールは高温燃焼ガスや熱分解重質油の流速の制御によって行うことができる。   When the dehydrated raw material reaches a temperature in the range of 360 ° C. to 390 ° C. in the pyrolysis tanks 3 and 4, an alkaline compound such as calcium hydroxide, oxidized from the raw material charging and cleaning port 34 of the pyrolysis tanks 3 and 4. Calcium, sodium carbonate, sodium hydroxide, or potassium hydroxide is added. The input amount is 5 to 15% by weight with respect to the raw material. After the raw materials in the pyrolysis tanks 3 and 4 are subjected to the first stage low temperature pyrolysis at a temperature within the range of 360 ° C to 390 ° C for 3 to 5 hours, 390 ° C to 450 ° The temperature is raised to a temperature within the range of C, and the low-temperature pyrolysis of the second stage is performed over 3 to 4 hours. The temperature control of the pyrolysis tanks 3 and 4 can be performed by controlling the flow rate of high-temperature combustion gas or pyrolysis heavy oil.

粗破砕され脱水された原料がアルカリ性化合物の存在下で2段階で低温熱分解され、ワックス留分の少ない熱分解油ガスは凝縮器8に送られて沸点が150°C以上の熱分解中質油が凝縮され、熱分解油ガスのうち、沸点150°C以下の軽質油は凝縮器11で凝縮され、熱分解軽質油槽12に貯留され、熱風炉6の燃料として用いられる。   The crudely crushed and dehydrated raw material is pyrolyzed at low temperature in two stages in the presence of an alkaline compound, and the pyrolysis oil gas having a small wax fraction is sent to the condenser 8 and the pyrolysis medium having a boiling point of 150 ° C. or higher. The oil is condensed, and among the pyrolysis oil gas, light oil having a boiling point of 150 ° C. or less is condensed by the condenser 11, stored in the pyrolysis light oil tank 12, and used as fuel for the hot stove 6.

熱分解油ガスの凝縮油は蒸留塔10に送られ、蒸留油分のうち軽質油成分は凝縮器11に戻され、蒸留油分のうちの中質油は冷却器13で冷却された後、メタノールと混合され、常圧、30°C〜59°Cの条件で分離槽14で熱分解中質油中の不純物がメタノールに抽出分離される。メタノールは抽出処理すべき熱分解中質油に対して容量で1〜2倍量用いる。   The condensed oil of the pyrolysis oil gas is sent to the distillation tower 10, the light oil component of the distilled oil component is returned to the condenser 11, and the medium oil of the distilled oil component is cooled by the cooler 13 and then methanol and After mixing, impurities in the pyrolysis medium oil are extracted and separated into methanol in the separation tank 14 under the conditions of normal pressure and 30 ° C to 59 ° C. Methanol is used in an amount of 1 to 2 times the volume of pyrolysis medium oil to be extracted.

熱分解中質油とメタノールは分離槽14から蒸発器15、16に送られ、不純物を含んだメタノールが蒸発されて熱分解中質油から分離され、メタノールは凝縮器17で凝縮され、受槽18で貯留される。メタノールは約95重量%再使用される。蒸発器15、16から、メタノールが分離された熱分解中質油がワックス留分の少ない良質の燃料油BDFとして得られる。蒸留塔10の塔底のワックス分を含んだ重質油分は加熱して熱分解槽3、4に戻され、熱源として用いられるとともに再度熱分解される。   The pyrolysis intermediate oil and methanol are sent from the separation tank 14 to the evaporators 15 and 16, the methanol containing impurities is evaporated and separated from the pyrolysis intermediate oil, the methanol is condensed by the condenser 17, and the receiving tank 18. It is stored at. Methanol is reused about 95% by weight. From the evaporators 15 and 16, the pyrolysis intermediate oil from which methanol has been separated is obtained as a high-quality fuel oil BDF with a small wax fraction. The heavy oil containing the wax content at the bottom of the distillation column 10 is heated and returned to the thermal decomposition tanks 3 and 4 and used as a heat source and again thermally decomposed.

熱分解槽3、4の槽底には熱分解されなかったワックス留分などの多い高粘性の未分解油が残存する。そこで、熱分解槽3、4の未分解油が450°Cに達すると、分解触媒を投入し、450°C〜510°Cの範囲内の温度で2〜3時間かけて分解触媒の存在下に高温熱分解を行う。分解触媒には多孔質無機酸化物、例えば酸化シリコン−酸化アルミニウム、天然白土又はゼオライトを採用する。分解触媒の添加量は未分解油に対して3〜10重量%とする。   Highly viscous undecomposed oil such as wax fraction that has not been pyrolyzed remains in the bottom of the pyrolysis tanks 3 and 4. Therefore, when the undecomposed oil in the thermal cracking tanks 3 and 4 reaches 450 ° C, the cracking catalyst is added, and in the presence of the cracking catalyst at a temperature within the range of 450 ° C to 510 ° C over 2 to 3 hours. High-temperature pyrolysis is performed. As the decomposition catalyst, a porous inorganic oxide such as silicon oxide-aluminum oxide, natural clay or zeolite is employed. The addition amount of the cracking catalyst is 3 to 10% by weight based on the undecomposed oil.

すると、未分解油はアルカリ性化合物が残存している場合にはアルカリ性化合物に加え、分解触媒の存在下でさらに高温熱分解され、450°C未満の場合と同様に熱分解油ガスからワックス留分の少ない熱分解中質油が凝縮され、メタノールで不純物を抽出分離され、ワックス留分の少ない低粘性、低流動点で、しかも高セタン価の良質の燃料油が製造される。   Then, in the presence of the alkaline compound, the undecomposed oil is further pyrolyzed at a high temperature in the presence of the decomposition catalyst in addition to the alkaline compound, and the wax fraction from the pyrolysis oil gas is the same as in the case of less than 450 ° C. Pyrolytic intermediate oil with a small amount of water is condensed, impurities are extracted and separated with methanol, and a high-quality fuel oil with a low viscosity, a low pour point and a high cetane number is produced.

熱分解が終了すると、熱分解残渣は排出口35から排出する。原料投入洗浄口34から5kg/cm2以上の飽和蒸気(又は高圧水)を熱分解槽3、4内に吹き込み、熱分解槽3、4の内壁に生じたCoking物質を洗浄する。熱分解残渣に付着したアルカリ性化合物や分解触媒は飽和蒸気(又は高圧水)によって洗浄して除去することができるが、アルカリ性化合物や分解触媒が付着した熱分解残渣は熱風炉6の燃料として用いることができ、燃焼灰にはアルカリ成分などが多量に含まれているので、肥料などに用いることができる。最後に、排出口35から残渣を受槽5に排出する。When the thermal decomposition is completed, the thermal decomposition residue is discharged from the discharge port 35. Saturated steam (or high-pressure water) of 5 kg / cm 2 or more is blown into the thermal decomposition tanks 3 and 4 from the raw material charging and cleaning port 34 to clean the Coking substance generated on the inner walls of the thermal decomposition tanks 3 and 4. Alkaline compounds and decomposition catalysts adhering to the pyrolysis residue can be removed by washing with saturated steam (or high-pressure water), but the pyrolysis residues adhering to the alkaline compound and decomposition catalyst should be used as fuel for the hot stove 6. Since the combustion ash contains a large amount of alkali components, it can be used for fertilizers. Finally, the residue is discharged from the discharge port 35 to the receiving tank 5.

一方の熱分解槽3、4での熱分解が済むと、他方の熱分解槽4、3で原料の熱分解を行う。熱分解槽3,4は運転スケジュ−ルに沿って投入→脱水→3段階の熱分解→焼絞め→槽内冷却→残渣排出→槽内洗浄が行われる。   After the thermal decomposition in one of the thermal decomposition tanks 3 and 4 is finished, the raw material is thermally decomposed in the other thermal decomposition tanks 4 and 3. The pyrolysis tanks 3 and 4 are charged in accordance with the operation schedule → dehydration → three-stage pyrolysis → firing / stiffening → cooling in the tank → residue discharging → cleaning in the tank.

上記実施例によって得られた燃料油の物性を測定した。測定はガスクロマトグラフ−水素炎イオン化型検出器を用いて行った。測定は表1の条件で行った。分析結果のチャートを図3、図4及び表2に示す。分析の結果、得られた燃料油は主成分であるC10〜C15から、N−パラフィン系炭化水素と同定することができた。   The physical properties of the fuel oil obtained by the above examples were measured. The measurement was performed using a gas chromatograph-hydrogen flame ionization detector. The measurement was performed under the conditions shown in Table 1. The analysis result charts are shown in FIGS. As a result of the analysis, the obtained fuel oil could be identified as N-paraffinic hydrocarbon from C10 to C15 as the main components.

Figure 2010134219
Figure 2010134219

Figure 2010134219
Figure 2010134219

図5は第2の実施形態を示す。図において、101は破砕機、102はホッパー、103はロータリキルン式の脱水機、104はサイクロン、105は熱風炉(加熱炉)、106は乾燥物・触媒混合槽、107は供給触媒、108A,B,Cは熱分解槽,109A,B,Cは残渣受槽、110は熱分解油受槽、111は熱分解油凝縮器、112軽質油凝縮器、113軽質油受槽、114は蒸留塔、115は溶剤抽出部、116は循環油加熱炉、117は煙突、120はロータリキルン式の予熱機である。   FIG. 5 shows a second embodiment. In the figure, 101 is a crusher, 102 is a hopper, 103 is a rotary kiln type dehydrator, 104 is a cyclone, 105 is a hot air furnace (heating furnace), 106 is a dry matter / catalyst mixing tank, 107 is a feed catalyst, 108A, B, C are pyrolysis tanks, 109A, B, C are residue receiving tanks, 110 is a pyrolysis oil receiving tank, 111 is a pyrolysis oil condenser, 112 light oil condenser, 113 light oil receiving tank, 114 is a distillation tower, 115 is A solvent extraction unit, 116 is a circulating oil heating furnace, 117 is a chimney, and 120 is a rotary kiln type preheater.

熱風炉105で過熱蒸気を多く含んだ600°C以上、例えば800°Cの高温燃焼ガスを生成し、熱分解槽108のジャケット及び加熱板に供給し昇温させる。温度低下した蒸気は煙突117から大気に放出する。また、熱量的に不足する場合、循環油加熱炉116で蒸留塔底油(ワックス留分)を500°Cに加熱し熱分解槽108A、108Bに吹き込む。   A hot combustion gas of 600 ° C. or more, for example, 800 ° C. containing a large amount of superheated steam is generated in the hot air furnace 105, and supplied to the jacket and heating plate of the thermal decomposition tank 108 to raise the temperature. The steam whose temperature has decreased is discharged from the chimney 117 to the atmosphere. If the amount of heat is insufficient, the distillation bottom oil (wax fraction) is heated to 500 ° C. in the circulating oil heating furnace 116 and blown into the pyrolysis tanks 108A and 108B.

他方、粗破砕した原料はホッパー102から脱水機103内に投入する。脱水機103のジャケットには過熱蒸気を含む高温燃焼ガスが熱風炉105から供給されて加熱されており、投入された原料からは含有水分が蒸発し、蒸気はサイクロン104で凝縮されることなく分離され、熱風炉105に送られ、熱風炉105で700°C以上、2〜3秒滞留されて加熱脱臭された後、熱分解槽108のジャケットや加熱板及び脱水機103に供給され、原料の脱水や熱分解の熱源とされる。熱風炉105は熱分解残渣及び熱分解軽質油の分解ガスを燃料として用いる。   On the other hand, the roughly crushed raw material is put into the dehydrator 103 from the hopper 102. A high-temperature combustion gas containing superheated steam is supplied from the hot air furnace 105 to the jacket of the dehydrator 103 and heated, and the contained moisture evaporates from the charged raw material, and the steam is separated without being condensed in the cyclone 104. And then sent to the hot stove 105 and kept in the hot stove 105 at 700 ° C. or more for 2 to 3 seconds to be deodorized by heating, and then supplied to the jacket and heating plate of the pyrolysis tank 108 and the dehydrator 103, It is a heat source for dehydration and pyrolysis. The hot stove 105 uses pyrolysis residue and pyrolysis light oil cracked gas as fuel.

脱水された原料は混合槽106でアルカリ触媒(アルカリ性化合物)107、例えば水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、水酸化ナトリウム、又は水酸化カリウムと混合する。投入量は原料に対して5〜15重量%とする。原料はアルカリ触媒と混合された後、予熱機120で約300°Cまで予熱され、熱分解槽108A、108B、108Cに張込まれ、360°C〜390°Cの範囲の温度に達すると、アルカリ触媒の存在下、3〜5時間かけて第1段目の低温熱分解を行わせ、その後3〜4時間かけて450°Cとして第2段目の低温熱分解を行わせ、最後に分解触媒を投入し2〜3時間かけて510℃に到達させ、第3段目の高温熱分解を行わせる。   The dehydrated raw material is mixed with an alkali catalyst (alkaline compound) 107 such as calcium hydroxide, calcium oxide, sodium carbonate, sodium hydroxide, or potassium hydroxide in a mixing tank 106. The input amount is 5 to 15% by weight with respect to the raw material. After the raw material is mixed with the alkali catalyst, it is preheated to about 300 ° C. by the preheater 120, and is put into the pyrolysis tanks 108A, 108B, 108C, and reaches a temperature in the range of 360 ° C. to 390 ° C. In the presence of an alkali catalyst, the first-stage low-temperature pyrolysis is performed over 3 to 5 hours, and then the second-stage low-temperature pyrolysis is performed at 450 ° C. over 3 to 4 hours. The catalyst is charged and allowed to reach 510 ° C. over 2 to 3 hours, and the third stage high temperature thermal decomposition is performed.

すると、熱分解油ガスは360〜390°Cから生成し、熱分解油は390°C以上から留出し始める。熱分解油ガスは凝縮器111に送られて沸点が150°C以上の熱分解油が凝縮され、熱分解油ガスのうち、沸点150°C以下の軽質油は凝縮器112で凝縮され、軽質油受槽113に貯留され、分解ガスと水分は分離される。   Then, pyrolysis oil gas is produced | generated from 360-390 degreeC, and pyrolysis oil begins to distill from 390 degreeC or more. The pyrolysis oil gas is sent to the condenser 111 to condense the pyrolysis oil having a boiling point of 150 ° C. or higher, and among the pyrolysis oil gas, the light oil having a boiling point of 150 ° C. or less is condensed in the condenser 112 to be light. It is stored in the oil receiving tank 113 and the cracked gas and water are separated.

沸点150°C以上の熱分解油は蒸留塔114に送られ、蒸留油分のうち軽質油成分は凝縮器112に戻され、蒸留油分のうちの中質油は冷却後にメタノール(溶剤)が混合されて溶剤抽出槽115に送られ、BDFとなる。   Pyrolysis oil having a boiling point of 150 ° C or higher is sent to the distillation tower 114, light oil components of the distillate oil are returned to the condenser 112, and medium oil of the distillate oil is mixed with methanol (solvent) after cooling. And sent to the solvent extraction tank 115 to become BDF.

熱量が不足する場合や大型プラント化する場合には蒸留塔114の底油(ワックス留分)を循環油加熱炉116でほぼ500°Cに加熱されて熱分解槽108A,108B,108Cの熱源に使用すると同時に、再熱分解に供する。また、熱に安定なトルエンを使用し、循環加熱炉116で550°Cに加熱昇温させ、100%ガス状態で熱分解槽108A,108B,108C内に直接吹き込むことも可能である。また、550°Cの過熱蒸気を熱分解槽108A,108B,108C内に直接吹き込むことも、Cokingの抑制及び残渣性状の均一化の点で有用である。   When the amount of heat is insufficient or when making a large plant, the bottom oil (wax fraction) of the distillation column 114 is heated to approximately 500 ° C. in the circulating oil heating furnace 116 to serve as a heat source for the pyrolysis tanks 108A, 108B, and 108C. At the same time of use, it is subjected to re-pyrolysis. It is also possible to use heat-stable toluene, raise the temperature to 550 ° C. in the circulating heating furnace 116, and blow directly into the pyrolysis tanks 108A, 108B, and 108C in a 100% gas state. In addition, it is also useful to directly blow superheated steam at 550 ° C. into the pyrolysis tanks 108A, 108B, and 108C in terms of suppressing cocking and making the residue properties uniform.

熱分解中質油とメタノールは溶媒抽出槽115に送られ、不純物を含んだメタノールが蒸発されて熱分解中質油から分離され、ワックス留分などの少ない低粘性で良質の燃料油BDFとして得られる。メタノールは凝縮して再利用することができる。   The pyrolysis intermediate oil and methanol are sent to the solvent extraction tank 115, where the methanol containing impurities is evaporated and separated from the pyrolysis intermediate oil, and obtained as a low-viscosity and good-quality fuel oil BDF with little wax fraction. It is done. Methanol can be condensed and reused.

残渣は熱分解槽108A、108B、108Cから残渣受槽109A、109B、109Cに排出される。熱分解が済むと、5kg/cm2以上の蒸気(又は高圧水)を熱分解槽108A、108B、108Cに吹き込み、熱分解槽108A、108B、108Cの内壁に生じたCoking物質を洗浄する。このとき熱分解残渣に付着したアルカリ性化合物や分解触媒を除去することもできる。Residues are discharged from the pyrolysis tanks 108A, 108B, 108C to the residue receiving tanks 109A, 109B, 109C. When the thermal decomposition is completed, steam (or high-pressure water) of 5 kg / cm 2 or more is blown into the thermal decomposition tanks 108A, 108B, 108C, and the Coking substance generated on the inner walls of the thermal decomposition tanks 108A, 108B, 108C is cleaned. At this time, the alkaline compound and decomposition catalyst adhering to the thermal decomposition residue can also be removed.

図6は本例の熱分解槽108A、108B、108Cのバッチ式の運転スケジュールの例を示す。熱分解槽108Aが原料投入・昇温の工程I、加熱・熱分解の工程II、冷却・残渣抜き・清掃の工程IIIが例えば8時間ごとに行われる。熱分解槽108Bは熱分解槽108Aの工程I、工程II、工程IIIと同期して工程II、工程III、工程I、熱分解槽108Cは工程III、工程I、工程IIと行われる。   FIG. 6 shows an example of a batch type operation schedule of the pyrolysis tanks 108A, 108B, and 108C of this example. In the pyrolysis tank 108A, a raw material charging / heating step I, a heating / pyrolysis step II, and a cooling / residue removal / cleaning step III are performed, for example, every 8 hours. The pyrolysis tank 108B is synchronized with the process I, process II, and process III of the pyrolysis tank 108A, and the process II, process III, process I, and the pyrolysis tank 108C are performed as process III, process I, and process II.

図7は第3の実施形態を示し、図において図5と同一又は相当部分を示す。本例では脱水機103の次段にロータリキルン式の予熱機120を設け、脱水した原料を300°Cまで昇温予熱して熱分解槽108A又は108Bに供給するようにしている。   FIG. 7 shows a third embodiment, in which the same or corresponding parts as FIG. 5 are shown. In this example, a rotary kiln-type preheater 120 is provided at the next stage of the dehydrator 103 so that the dehydrated raw material is heated up to 300 ° C. and supplied to the thermal decomposition tank 108A or 108B.

粗破砕した原料はホッパー102から脱水機103内に投入する。投入された原料からは含有水分が蒸発し、蒸気はサイクロン104で分離され、熱風炉105に送られ、熱風炉105で600°C以上、例えば800°Cに2〜3秒滞留されて加熱脱臭された後、脱水機103や予熱機120のジャケット、及び熱分解槽108のジャケットや加熱板に供給され、原料の脱水や熱分解の熱源とされる。   The roughly crushed raw material is put into the dehydrator 103 from the hopper 102. Moisture content is evaporated from the charged raw material, and the vapor is separated by the cyclone 104 and sent to the hot air oven 105, where it is retained in the hot air oven 105 at 600 ° C. or higher, for example, 800 ° C. for 2 to 3 seconds for heating deodorization. After that, it is supplied to the jacket of the dehydrator 103 and the preheater 120 and the jacket and heating plate of the thermal decomposition tank 108 to serve as a heat source for the dehydration and thermal decomposition of the raw material.

脱水された原料は混合槽106でアルカリ性化合物107と混合された後、予熱機120で300°Cに予熱され、熱分解槽108A、108Bに張込まれ、360°C〜390°Cの範囲の温度に達すると、3〜5時間かけて第1段目の低温熱分解を行わせ、その後3〜4時間かけて450°Cとして第2段目の低温熱分解を行わせ、最後に分解触媒を投入し2〜3時間かけて510℃に到達させ、第3段目の高温熱分解を行わせる。   The dehydrated raw material is mixed with the alkaline compound 107 in the mixing tank 106, then preheated to 300 ° C. by the preheater 120, and inserted into the pyrolysis tanks 108 A and 108 B, and in the range of 360 ° C. to 390 ° C. When the temperature is reached, the first stage low temperature pyrolysis is carried out over 3 to 5 hours, and then the second stage low temperature pyrolysis is carried out at 450 ° C. over 3 to 4 hours. And is allowed to reach 510 ° C. over 2 to 3 hours, and the third stage high temperature pyrolysis is performed.

熱分解油ガスは360〜390°Cから生成し、熱分解油は390°C以上から留出し始める。熱分解油ガスは凝縮器111に送られて沸点が150°C以上の熱分解油が凝縮され、熱分解ガスのうち、沸点150°C以下の軽質油は凝縮器112で凝縮され、軽質油受槽113に貯留され、分解ガスと水分は分離される。   The pyrolysis oil gas is generated from 360 to 390 ° C, and the pyrolysis oil starts to distill from 390 ° C or higher. The pyrolysis oil gas is sent to the condenser 111 to condense pyrolysis oil having a boiling point of 150 ° C. or higher, and among the pyrolysis gas, light oil having a boiling point of 150 ° C. or less is condensed by the condenser 112, It is stored in the receiving tank 113 and the decomposition gas and moisture are separated.

沸点150°C以上の熱分解油は蒸留塔114に送られ、蒸留油分のうち軽質油成分は凝縮器112に戻され、蒸留油分のうちの中質油は冷却後にメタノール(溶剤)が混合されて溶剤抽出槽115に送られ、BDFとなる。   Pyrolysis oil having a boiling point of 150 ° C or higher is sent to the distillation tower 114, light oil components of the distillate oil are returned to the condenser 112, and medium oil of the distillate oil is mixed with methanol (solvent) after cooling. And sent to the solvent extraction tank 115 to become BDF.

熱量が不足する場合や大型プラント化する場合には蒸留塔底油(ワックス留分)を循環油加熱炉116でほぼ500°Cに加熱されて熱分解槽108A,108Bの熱源に使用する。また、熱に安定なトルエンを使用し、循環加熱炉116で550°Cに加熱昇温させ、100%ガス状態で熱分解槽108A,108B内に直接吹き込むことも可能である。また、550°Cの過熱蒸気を熱分解槽108A,108B内に直接吹き込むことも、Cokingの抑制及び残渣性状の均一化の点で有用である。   When the amount of heat is insufficient or when making a large plant, distillation tower bottom oil (wax fraction) is heated to approximately 500 ° C. in the circulating oil heating furnace 116 and used as a heat source for the pyrolysis tanks 108A and 108B. It is also possible to use heat-stable toluene, raise the temperature to 550 ° C. in the circulating heating furnace 116, and blow directly into the pyrolysis tanks 108A and 108B in a 100% gas state. In addition, it is also useful to directly blow superheated steam at 550 ° C. into the thermal decomposition tanks 108A and 108B in terms of suppressing cocking and making the residue properties uniform.

熱分解中質油とメタノールは溶媒抽出槽115に送られ、不純物を含んだメタノールが蒸発されて熱分解中質油から分離され、ワックス留分などの少ない低粘性で良質の燃料油BDFとして得られる。メタノールは凝縮して再利用することができる。   The pyrolysis intermediate oil and methanol are sent to the solvent extraction tank 115, where the methanol containing impurities is evaporated and separated from the pyrolysis intermediate oil, and obtained as a low-viscosity and good-quality fuel oil BDF with little wax fraction. It is done. Methanol can be condensed and reused.

残渣は熱分解槽108A、108Bから残渣受槽109A、109Bに排出される。熱分解が済むと、5kg/cm2以上の蒸気(又は高圧水)を熱分解槽108A、108Bに吹き込み、熱分解槽108A、108Bの内壁に生じたCoking物質を洗浄する。このとき熱分解残渣に付着したアルカリ性化合物や分解触媒を除去することができる。The residue is discharged from the pyrolysis tanks 108A and 108B to the residue receiving tanks 109A and 109B. When the thermal decomposition is completed, steam (or high-pressure water) of 5 kg / cm 2 or more is blown into the thermal decomposition tanks 108A and 108B, and the Coking substance generated on the inner walls of the thermal decomposition tanks 108A and 108B is cleaned. At this time, the alkaline compound and decomposition catalyst adhering to the thermal decomposition residue can be removed.

以上のように、本例では脱水・予熱が連続的に行われ、熱分解はバッチ式に行われ、蒸留・溶媒抽出は連続的に行われる。熱分解槽108A、108Bの残渣受槽109A、109Bに代え、残渣排出スクリューを設けて連続的に排出するようにすると、熱分解を連続的に行うこともできる。   As described above, in this example, dehydration and preheating are continuously performed, thermal decomposition is performed in a batch manner, and distillation and solvent extraction are continuously performed. In place of the residue receiving tanks 109A and 109B of the pyrolysis tanks 108A and 108B, if a residue discharge screw is provided to continuously discharge, the thermal decomposition can be performed continuously.

図8は第4の実施形態を示し、図において図7と同一符号は同一又は相当部分を示す。本例では熱分解槽108を1槽とし、450°Cに加熱した熱分解重質油(WAX)を熱分解槽108内に直接吹き込み、熱源を与えるようにしている。熱分解槽108は連続運転され、熱分解残渣は残渣排出スクリュー121で連続的に排出される。他の動作は第3の実施形態と同様であるので、その説明は省略する。   FIG. 8 shows a fourth embodiment, in which the same reference numerals as those in FIG. 7 denote the same or corresponding parts. In this example, one pyrolysis tank 108 is used, and pyrolysis heavy oil (WAX) heated to 450 ° C. is directly blown into the pyrolysis tank 108 to provide a heat source. The pyrolysis tank 108 is continuously operated, and the pyrolysis residue is continuously discharged by the residue discharge screw 121. Since other operations are the same as those in the third embodiment, a description thereof will be omitted.

以上のように、本例では脱水・予熱、熱分解及び蒸留・溶媒抽出は連続的に行われることとなる。   As described above, in this example, dehydration / preheating, thermal decomposition, distillation / solvent extraction are performed continuously.

図9は第5の実施形態を示し、図において図7及び図8と同一符号は同一又は相当部分を示す。本例では槽構造の熱分解槽108の後段に流動床構造の焼却炉130が設けられ、熱分解槽108でアルカリ性化合物の存在下に450°Cまでの低温熱分解が2段に行われた後、450°C以上510°Cまでの温度で分解触媒の存在下に高温熱分解が行われ、熱分解残渣は残渣排出スクリュー122によって流動床構造の焼却炉130に送られ、約800°Cで焼却される。   FIG. 9 shows a fifth embodiment, in which the same reference numerals as those in FIGS. 7 and 8 denote the same or corresponding parts. In this example, an incinerator 130 having a fluidized bed structure is provided after the thermal decomposition tank 108 having a tank structure, and low-temperature thermal decomposition to 450 ° C. is performed in two stages in the presence of an alkaline compound in the thermal decomposition tank 108. Thereafter, high-temperature pyrolysis is performed in the presence of a cracking catalyst at a temperature of 450 ° C. or more and 510 ° C., and the pyrolysis residue is sent to the incinerator 130 having a fluidized bed structure by the residue discharge screw 122 and about 800 ° C. Incinerated at.

流動床構造の焼却炉130から抽出された500°C〜600°Cの熱砂は予熱機120及び熱分解槽108に供給され、予熱機120及び熱分解槽108の熱源として利用されるとともに、焼却炉130で生成された高温の熱風は乾燥機103及び予熱機120のジャケットに送られ、乾燥機103及び予熱機120を加熱する。   The hot sand of 500 ° C to 600 ° C extracted from the fluidized bed incinerator 130 is supplied to the preheater 120 and the pyrolysis tank 108 and used as a heat source for the preheater 120 and the pyrolysis tank 108 and incinerated. Hot hot air generated in the furnace 130 is sent to the jacket of the dryer 103 and the preheater 120 to heat the dryer 103 and the preheater 120.

乾燥機103で乾燥された原料は予熱機120で熱砂とともに回転されて320°Cまで昇温された後、アルカリ性化合物及び熱砂とともに熱分解槽108に投入され、撹拌機によって攪拌されながら360°C〜390°Cの範囲内の温度での第1段目の低温熱分解と、390°C〜450°Cの範囲内の温度での第2段目の低温熱分解が行われる。   The raw material dried by the dryer 103 is rotated with hot sand by the preheater 120 and heated to 320 ° C., and then charged into the pyrolysis tank 108 together with the alkaline compound and hot sand, and 360 ° C. while being stirred by the stirrer. First-stage low-temperature pyrolysis at a temperature in the range of ˜390 ° C. and second-stage low-temperature pyrolysis at a temperature in the range of 390 ° C. to 450 ° C. are performed.

低温熱分解が済むと、つまり原料が450°Cに達すると、熱分解槽108に分解触媒が投入され、ワックス留分を含む未分解油は分解触媒の存在下に450°C〜510°C、3〜6時間をかけて高温熱分解される。   When the low temperature pyrolysis is completed, that is, when the raw material reaches 450 ° C., the cracking catalyst is put into the pyrolysis tank 108, and the undecomposed oil containing the wax fraction is 450 ° C. to 510 ° C. in the presence of the cracking catalyst. , It is pyrolyzed at high temperature over 3-6 hours.

高温熱分解が済むと、ワックス留分を含む未分解油(熱分解残渣)は残渣排出スクリュー122によって流動床構造の焼却炉130に送られ、約800°Cで焼却される。焼却炉130から抽出された流動床の熱砂は500°C〜600°Cに昇温されており、予熱機120及び熱分解槽108に投入され、熱源として利用される。   After high-temperature pyrolysis, undecomposed oil (thermal decomposition residue) containing a wax fraction is sent to an incinerator 130 having a fluidized bed structure by a residue discharge screw 122 and incinerated at about 800 ° C. The hot sand in the fluidized bed extracted from the incinerator 130 is heated to 500 ° C. to 600 ° C., and is put into the preheater 120 and the thermal decomposition tank 108 to be used as a heat source.

流動床構造の焼却炉130にはエアーが送り込まれ、これによって流動床が攪拌されるとともに、炉内に火炎が形成されて800°C程度まで昇温する。   Air is fed into the incinerator 130 having a fluidized bed structure, whereby the fluidized bed is agitated and a flame is formed in the furnace to raise the temperature to about 800 ° C.

図10は第6の実施形態を示す。本例は熱分解中質油の溶媒抽出に代え、水素添加低圧反応を行うシステムを示す。図において、熱分解中質油は水素ガスとともに予熱器134に送られ、260°C〜427°Cの範囲内の温度に予熱され、反応塔131に送られ、再生可能な金属酸化物の触媒、例えば50kg/cm2 ・gの圧力下で反応させ、不純物を減少されて燃料油が得られる。この燃料油は冷却器132で冷却され、分離器133で水素ガスが分離され、水素ガスは再使用される。FIG. 10 shows a sixth embodiment. This example shows a system for performing a hydrogenation low-pressure reaction in place of solvent extraction of pyrolysis medium oil. In the figure, pyrolytic intermediate oil is sent to a preheater 134 together with hydrogen gas, preheated to a temperature within a range of 260 ° C. to 427 ° C., sent to a reaction tower 131, and a recyclable metal oxide catalyst. For example, the reaction is performed under a pressure of 50 kg / cm 2 · g, and impurities are reduced to obtain a fuel oil. The fuel oil is cooled by the cooler 132, the hydrogen gas is separated by the separator 133, and the hydrogen gas is reused.

3、4、108、108A、108B、108B 熱分解槽
103 脱水機
5,105,116 加熱炉
8,111 凝縮器
10,114 蒸留塔
14,115 分離槽
120 予熱機
130 焼却炉
131 反応器
3, 4, 108, 108A, 108B, 108B Pyrolysis tank 103 Dehydrator 5, 105, 116 Heating furnace 8,111 Condenser 10,114 Distillation tower 14,115 Separation tank 120 Preheater 130 Incinerator 131 Reactor

Claims (20)

パーム果房、パーム果実、パーム粉末、パーム油、ココヤシの果実、ココナッツ油、ジャトロファの果実、植物性廃食用油、動物性廃食用油及びこれらの腐敗物の群から選ばれる1又は複数の原料からバイオディーゼル燃料油を製造する方法であって、
上記1又は複数の原料を360°C以上510°C以下の温度に加熱し、
440°C〜470°Cの範囲内の温度を設定温度としたとき360°C以上上記設定温度未満の範囲内の温度で、脱水後の上記原料にアルカリ性化合物を添加して該アルカリ性化合物の存在下に低温熱分解を行わせ、
上記設定温度に達したときに多孔質無機酸化物から選ばれる分解触媒を添加し、設定温度以上510°C以下の範囲内の温度で上記分解触媒の存在下に高温熱分解を行わせ、
得られた熱分解中質油から低粘性・低流動点・高セタン価の燃料油を得るようにしたことを特徴とするバイオディーゼル燃料油の製造方法。
One or more ingredients selected from the group of palm fruit bunch, palm fruit, palm powder, palm oil, coconut fruit, coconut oil, jatropha fruit, vegetable waste edible oil, animal waste edible oil, and these septics A method for producing biodiesel fuel from
Heating the one or more raw materials to a temperature of 360 ° C. or higher and 510 ° C. or lower;
Presence of the alkaline compound by adding an alkaline compound to the raw material after dehydration at a temperature in the range of 360 ° C. or higher and lower than the preset temperature when the temperature within the range of 440 ° C. to 470 ° C. is set as the set temperature. Let low temperature pyrolysis underneath,
When the set temperature is reached, a cracking catalyst selected from porous inorganic oxides is added, and high-temperature pyrolysis is performed in the presence of the cracking catalyst at a temperature in the range of the set temperature to 510 ° C,
A method for producing a biodiesel fuel oil, characterized in that a low viscosity, low pour point, high cetane number fuel oil is obtained from the obtained pyrolytic intermediate oil.
360°C以上390°C未満の範囲内の温度で、脱水後の上記1又は複数の原料にアルカリ性化合物を添加して第1段目の低温熱分解を行わせ、390°C以上上記設定温度未満の範囲内の温度で、第2段目の低温熱分解を行わせるようにした請求項1記載のバイオディーゼル燃料油の製造方法。   At a temperature in the range of 360 ° C. or higher and lower than 390 ° C., an alkaline compound is added to the one or more raw materials after dehydration to perform first-stage low-temperature pyrolysis, and the set temperature is 390 ° C. or higher. The method for producing biodiesel fuel oil according to claim 1, wherein the second-stage low-temperature pyrolysis is performed at a temperature within a range of less than. 上記アルカリ性化合物は、水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、水酸化ナトリウム、水酸化カリウムから選ばれる化合物である請求項1記載のバイオディーゼル燃料油の製造方法。   The method for producing biodiesel fuel oil according to claim 1, wherein the alkaline compound is a compound selected from calcium hydroxide, calcium oxide, sodium carbonate, sodium hydroxide, and potassium hydroxide. 上記分解触媒は、酸化シリコン−酸化アルミニウム、天然白土又はゼオライトから選ばれる多孔質無機酸化物である請求項1記載のバイオディーゼル燃料油の製造方法。   The method for producing biodiesel fuel according to claim 1, wherein the cracking catalyst is a porous inorganic oxide selected from silicon oxide-aluminum oxide, natural clay, or zeolite. 上記アルカリ性化合物を上記原料に対して5〜15重量%、上記分解触媒を未分解油に対して3〜10重量%添加するようにした請求項1記載のバイオディーゼル燃料油の製造方法。   The method for producing biodiesel fuel oil according to claim 1, wherein 5-15% by weight of the alkaline compound is added to the raw material and 3-10% by weight of the cracking catalyst is added to the undecomposed oil. 上記原料の加熱脱水及び熱分解を熱分解槽(3,4)にて行うようにした請求項1記載のバイオディーゼル燃料油の製造方法。   The method for producing biodiesel fuel oil according to claim 1, wherein the heat dehydration and pyrolysis of the raw material are performed in a pyrolysis tank (3,4). 熱分解の前工程に脱水機(103)を設け、該脱水機(103)で原料の加熱脱水を行った後、脱水後の原料に対して熱分解を行うようにした請求項1記載のバイオディーゼル燃料油の製造方法。   The biodepositor according to claim 1, wherein a dehydrator (103) is provided in a pre-thermal decomposition step, and the raw material after the dehydration (103) is heated and dehydrated, and then the dehydrated raw material is pyrolyzed. A method for producing diesel fuel oil. パーム果房又はその腐敗物からの脱水蒸気を600°C以上の燃焼炉に2〜3秒の間滞留させて加熱脱臭し、この脱水蒸気を含む高温燃焼ガスを原料の脱水及び熱分解の熱源として用いるようにした請求項1記載のバイオディーゼル燃料油の製造方法。   The dewatered steam from the palm fruit bunch or its septic is retained in a combustion furnace at 600 ° C. or higher for 2 to 3 seconds to heat and deodorize, and the high-temperature combustion gas containing this dewatered steam is used as a heat source for dehydration and thermal decomposition of raw materials. The method for producing a biodiesel fuel oil according to claim 1, wherein the biodiesel fuel oil is used as a fuel. 上記脱水蒸気を含む高温燃焼ガスによる熱量が不足するときに、熱分解油のうちのワックス留分、軽質油又は熱に安定なトルエンを500°Cに加熱して熱分解槽内に直接吹き込むか、又は550°Cの過熱蒸気を熱分解槽内に直接吹き込むことにより加熱脱水及び熱分解の熱量を補うようにした請求項8記載のバイオディーゼル燃料油の製造方法。   Whether the wax fraction, light oil, or heat-stable toluene of the pyrolysis oil is heated to 500 ° C and blown directly into the pyrolysis tank when the amount of heat generated by the high-temperature combustion gas containing degassed steam is insufficient The method for producing biodiesel fuel oil according to claim 8, wherein the heat amount of heat dehydration and pyrolysis is compensated by directly blowing superheated steam at 550 ° C into the pyrolysis tank. 複数の熱分解槽(3,4,108A,108B,108C)を設け、複数の熱分解槽(3,4,108A,108B,108C)における熱分解を運転スケジュ−ルに基づいて行うとともに、各熱分解槽(3,4,108A,108B,108C)における熱分解をバッチ式で行うようにした請求項1記載のバイオディーゼル燃料油の製造方法。   A plurality of thermal decomposition tanks (3,4, 108A, 108B, 108C) are provided, and thermal decomposition in the plurality of thermal decomposition tanks (3,4, 108A, 108B, 108C) is performed based on the operation schedule, and each thermal decomposition The method for producing biodiesel fuel according to claim 1, wherein the thermal decomposition in the tank (3,4, 108A, 108B, 108C) is carried out in a batch manner. 上記熱分解槽(108) の熱分解残渣を流動床構造の焼却炉(130) に投入して焼却し、焼却炉(130) の熱砂を乾燥機(103) 、予熱機(120) 及び熱分解槽(108) の少なくとも1つに供給して熱源とするようにした請求項1記載のバイオディーゼル燃料油の製造方法。   The pyrolysis residue of the pyrolysis tank (108) is put into a fluidized bed incinerator (130) for incineration, and the hot sand in the incinerator (130) is dried by a dryer (103), preheater (120) and pyrolysis The method for producing biodiesel fuel oil according to claim 1, wherein the heat source is supplied to at least one of the tanks (108). 上記得られた熱分解中質油から燃料油を溶媒抽出するようにした請求項1記載のバイオディーゼル燃料油の製造方法。   The method for producing a biodiesel fuel oil according to claim 1, wherein the fuel oil is solvent-extracted from the obtained pyrolytic medium oil. 上記得られた熱分解中質油を所定の低圧力下に水素ガスと反応させて燃料油を得るようにした請求項1記載のバイオディーゼル燃料油の製造方法。   The method for producing a biodiesel fuel oil according to claim 1, wherein the obtained pyrolytic intermediate oil is reacted with hydrogen gas under a predetermined low pressure to obtain a fuel oil. 上記熱分解残渣が分解触媒及び/又はアルカリ性化合物を含んでいる請求項1記載のバイオディーゼル燃料油の製造方法。   The method for producing a biodiesel fuel oil according to claim 1, wherein the thermal decomposition residue contains a decomposition catalyst and / or an alkaline compound. パーム果房、パーム果実、パーム粉末、パーム油、ココヤシの果実、ココナッツ油、ジャトロファの果実、植物性廃食用油、動物性廃食用油及びこれらの腐敗物の群から選ばれる1又は複数の原料をアルカリ性化合物及び分解触媒の存在下に熱分解する燃料油の製造装置であって、
上記1又は複数の原料が投入され、上記1又は複数の原料を360°C以上510°C以下の温度に加熱し、440°C〜470°Cの範囲内の温度を設定温度としたとき360°C以上設定温度未満の範囲内の温度で、脱水後の上記原料をアルカリ性化合物の存在下に低温熱分解し、上記設定温度以上510°C以下の範囲内の温度で多孔質無機酸化物から選ばれる分解触媒の存在下に高温熱分解する熱分解槽(3,4,108,108A,108B,108C)と、
該熱分解槽(3,4,108,108A,108B,108C)の熱分解ガスから熱分解油を凝縮する凝縮器(8,111)と、
凝縮された熱分解油を蒸留し、軽質油と中質油を分離する蒸留塔(10,114)と、
分離された熱分解中質油から燃料油を精製する精製器(14,115,131)と、
を備えたことを特徴とするバイオディーゼル燃料油の製造装置。
One or more ingredients selected from the group of palm fruit bunch, palm fruit, palm powder, palm oil, coconut fruit, coconut oil, jatropha fruit, vegetable waste edible oil, animal waste edible oil, and these septics Is a fuel oil production apparatus for thermally decomposing oil in the presence of an alkaline compound and a cracking catalyst,
When the one or more raw materials are charged, the one or more raw materials are heated to a temperature of 360 ° C. or higher and 510 ° C. or lower, and a temperature in the range of 440 ° C. to 470 ° C. is set as a set temperature 360 The raw material after dehydration is pyrolyzed at a low temperature in the presence of an alkaline compound at a temperature in the range of ° C or higher and lower than the set temperature, and from the porous inorganic oxide at a temperature in the range of the set temperature to 510 ° C or lower. A pyrolysis tank (3,4,108,108A, 108B, 108C) that undergoes high-temperature pyrolysis in the presence of a selected cracking catalyst;
A condenser (8, 111) for condensing pyrolysis oil from the pyrolysis gas of the pyrolysis tank (3,4, 108, 108A, 108B, 108C);
A distillation column (10,114) for distilling the condensed pyrolysis oil and separating light oil and medium oil;
A refiner (14,115,131) for refining fuel oil from the separated pyrolysis medium oil;
An apparatus for producing biodiesel fuel oil, comprising:
上記熱分解槽(108,108A,108B) の前段に設けられ、上記1又は複数の原料の加熱脱水を行った後、脱水後の原料を熱分解槽(108,108A,108B) に与える脱水機(103)を更に備えた請求項15記載のバイオディーゼル燃料油の製造装置。   A dehydrator (103) provided in a preceding stage of the thermal decomposition tank (108, 108A, 108B), which heat-dehydrates the one or more raw materials and then supplies the dehydrated raw materials to the thermal decomposition tank (108, 108A, 108B). The apparatus for producing biodiesel fuel oil according to claim 15, further comprising: 上記1又は複数の原料からの脱水蒸気を600°C以上の温度に加熱して加熱脱臭し、この脱水蒸気を含む高温燃焼ガスを上記熱分解槽(3,4,108A,108B,108C)及び/又は脱水機(103) に供給する加熱炉(6,105,116) を更に備えた請求項15記載のバイオディーゼル燃料油の製造装置。   The dewatered steam from the one or more raw materials is heated to a temperature of 600 ° C. or higher and deodorized by heating, and the high-temperature combustion gas containing the dewatered steam is converted into the pyrolysis tank (3,4, 108A, 108B, 108C) and / or The apparatus for producing biodiesel fuel oil according to claim 15, further comprising a heating furnace (6, 105, 116) for supplying to the dehydrator (103). 上記加熱炉(105) の熱源が熱分解残渣及び/又は熱分解軽質油である請求項17記載のバイオディーゼル燃料油の製造装置。   18. The biodiesel fuel oil production apparatus according to claim 17, wherein the heat source of the heating furnace (105) is a pyrolysis residue and / or a pyrolysis light oil. 上記熱分解槽(108) から排出された熱分解残渣を焼却する流動床構造の焼却炉(130) を更に備え、上記焼却炉(130) からの熱砂が乾燥機(103) 、予熱機(120) 及び熱分解槽(108) に熱源として供給される請求項15記載のバイオディーゼル燃料油の製造装置。   A fluidized bed incinerator (130) for incinerating the pyrolysis residue discharged from the pyrolysis tank (108) is further provided, and the hot sand from the incinerator (130) is dried by a dryer (103), a preheater (120 And the pyrolysis tank (108) as a heat source. 上記熱分解槽(3,4) 内には複数の加熱板(32)が相互に所定の間隔をあけて設けられるとともに、上記熱分解槽(3,4) の外壁にはジャケット(31)が設けられ、上記加熱板(32)及びジャケット(31)には上記脱水蒸気を含む高温燃焼ガスが流通されるようになっている請求項17記載のバイオディーゼル燃料油の製造装置。   A plurality of heating plates (32) are provided at predetermined intervals in the pyrolysis tank (3,4), and a jacket (31) is provided on the outer wall of the pyrolysis tank (3,4). 18. The biodiesel fuel oil production apparatus according to claim 17, wherein the heating plate (32) and the jacket (31) are provided with a high-temperature combustion gas containing the dewatered steam.
JP2011514284A 2009-05-21 2009-09-18 Biodiesel fuel oil production method and apparatus Active JP5296200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011514284A JP5296200B2 (en) 2009-05-21 2009-09-18 Biodiesel fuel oil production method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009122751 2009-05-21
JP2009122751 2009-05-21
PCT/JP2009/066347 WO2010134219A1 (en) 2009-05-21 2009-09-18 Method for producing biodiesel fuel oil and production device therefor
JP2011514284A JP5296200B2 (en) 2009-05-21 2009-09-18 Biodiesel fuel oil production method and apparatus

Publications (2)

Publication Number Publication Date
JPWO2010134219A1 true JPWO2010134219A1 (en) 2012-11-08
JP5296200B2 JP5296200B2 (en) 2013-09-25

Family

ID=43125913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011514284A Active JP5296200B2 (en) 2009-05-21 2009-09-18 Biodiesel fuel oil production method and apparatus

Country Status (2)

Country Link
JP (1) JP5296200B2 (en)
WO (1) WO2010134219A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5707068B2 (en) * 2010-09-08 2015-04-22 アースリサイクル株式会社 Biodiesel fuel oil production system
JP5623928B2 (en) * 2011-02-07 2014-11-12 株式会社タクマ Diesel fuel production system and diesel fuel production method
JP6073560B2 (en) * 2012-02-20 2017-02-01 株式会社実践環境研究所 Biomass fuel manufacturing method and manufacturing apparatus
JP6846725B1 (en) * 2020-04-07 2021-03-24 株式会社デマンド・サービス Sterilization and drying treatment equipment using superheated steam gas and method for producing processed products by this equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169858A (en) * 1998-12-07 2000-06-20 Hitachi Ltd Convertion of waste plastic material into oil and device therefor

Also Published As

Publication number Publication date
JP5296200B2 (en) 2013-09-25
WO2010134219A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
Sellin et al. Oxidative fast pyrolysis of banana leaves in fluidized bed reactor
Islam et al. Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis
KR101319737B1 (en) Method for producing biomass charcoal and device for producing biomass charcoal to be used therefor
KR101162612B1 (en) Oil production system from waste material and catalyst therefor
CN110451754A (en) A kind of method for innocent treatment of greasy filth pyrolysis
CN102537973A (en) Novel process for pyrolysis of solid wastes
Ahmad et al. Characterization of bio-oil from palm kernel shell pyrolysis
KR20170135480A (en) A Hybrid Bio-coal Manufacturing Technology by Hydrothermal Carbonization
Halim et al. A comparative assessment of biofuel products from rice husk and oil palm empty fruit bunch obtained from conventional and microwave pyrolysis
Mong et al. Progress and challenges in sustainable pyrolysis technology: Reactors, feedstocks and products
RU2395559C1 (en) Method for thermal processing material containing organic substances
CN110451753A (en) A kind of processing method of danger solid waste greasy filth
JP5296200B2 (en) Biodiesel fuel oil production method and apparatus
Silvestre et al. Fodder radish (Raphanus sativus L.) seed cake as a feedstock for pyrolysis
CN105710114B (en) Domestic garbage and agricultural and forestry waste carbonization cycle comprehensive treatment system and method
CN102719279B (en) Process for preparing gas by microwave carbon pyrolysis of municipal solid waste
JP2012224677A (en) System and method for carbonizing wet biomass
Munawar et al. Thermochemical conversions of municipal solid waste into fuels and chemicals
Rambli et al. Characterization of Sago-based Biochar as Potential Feedstock for Solid Fuel
CN206173193U (en) Quick catalytic pyrolysis device of organic sludge
JP5707068B2 (en) Biodiesel fuel oil production system
Jeguirim et al. Thermochemical conversion of tomato wastes
CN211871883U (en) Range-dividing domestic garbage drying pyrolysis purification technology
JP2010001400A (en) Method for producing fuel oil
WO2001079123A1 (en) Method for conditioning biogenic solid substances

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5296200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250