JPWO2010128629A1 - Oxide sintered body sputtering target and method of manufacturing the same - Google Patents

Oxide sintered body sputtering target and method of manufacturing the same Download PDF

Info

Publication number
JPWO2010128629A1
JPWO2010128629A1 JP2011512326A JP2011512326A JPWO2010128629A1 JP WO2010128629 A1 JPWO2010128629 A1 JP WO2010128629A1 JP 2011512326 A JP2011512326 A JP 2011512326A JP 2011512326 A JP2011512326 A JP 2011512326A JP WO2010128629 A1 JPWO2010128629 A1 JP WO2010128629A1
Authority
JP
Japan
Prior art keywords
oxide
lanthanum
powder
sputtering target
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011512326A
Other languages
Japanese (ja)
Other versions
JP5234861B2 (en
Inventor
由将 小井土
由将 小井土
佐藤 和幸
和幸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011512326A priority Critical patent/JP5234861B2/en
Publication of JPWO2010128629A1 publication Critical patent/JPWO2010128629A1/en
Application granted granted Critical
Publication of JP5234861B2 publication Critical patent/JP5234861B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/721Carbon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/724Halogenide content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/726Sulfur content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/727Phosphorus or phosphorus compound content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1

Abstract

ランタン(La)とアルミニウム(Al)の酸化物からなる焼結体スパッタリングターゲットであって、当該酸化物の成分組成がLaAl(1.01−2)O3であることを特徴とする酸化物焼結体スパッタリングターゲット及び原料粉末としてLa2(CO3)3粉末とAl2O3粉末を使用し、AlとLaのモル比が1.01〜2となるように配合し混合した後、この混合粉末を大気中で加熱合成し、次にこの合成材料を粉砕して粉末とした後、この合成粉末をホットプレスして焼結体とすることを特徴とする成分組成がLaAl(1.01−2)O3である酸化物焼結体スパッタリングターゲットの製造方法。ランタン(La)とアルミニウム(Al)の酸化物からなる焼結体スパッタリングターゲットを提供するものであり、High−kゲート絶縁膜用酸化物を効率的かつ安定して提供できる技術を提供することを課題とする。Oxide sintering characterized in that it is a sintered sputtering target composed of an oxide of lanthanum (La) and aluminum (Al), and the component composition of the oxide is LaAl (1.01-2) O3 La2 (CO3) 3 powder and Al2O3 powder are used as the body sputtering target and the raw material powder, mixed and mixed so that the molar ratio of Al to La is 1.01-2, and then this mixed powder is heated in the air The synthetic composition is then pulverized to form a powder, and then the synthetic powder is hot-pressed to form a sintered body. The component composition is LaAl (1.01-2) O3 Manufacturing method of sintered compact sputtering target. The present invention provides a sintered sputtering target composed of an oxide of lanthanum (La) and aluminum (Al), and provides a technique capable of providing an oxide for a high-k gate insulating film efficiently and stably. Let it be an issue.

Description

本発明は、ランタン(La)とアルミニウム(Al)の酸化物からなる焼結体スパッタリングターゲット、同ターゲットの製造方法、ランタン(La)とアルミニウム(Al)の酸化物からなるゲート絶縁膜及び同ゲート絶縁膜の熱処理方法に関する。   The present invention relates to a sintered sputtering target composed of an oxide of lanthanum (La) and aluminum (Al), a method for producing the target, a gate insulating film composed of an oxide of lanthanum (La) and aluminum (Al), and the gate The present invention relates to a heat treatment method for an insulating film.

ランタン(La)は希土類元素の中に含まれるものであるが、鉱物資源として混合複合酸化物として地殻に含有されている。希土類元素は比較的希(まれ)に存在する鉱物から分離されたので、このような名称がついたが、地殻全体からみると決して希少ではない。ランタンの原子番号は57、原子量138.9の白色の金属であり、常温で複六方最密構造を備えている。融点は921°C、沸点3500°C、密度6.15g/cmであり、空気中では表面が酸化され、水には徐々にとける。熱水、酸に可溶である。延性はないが、展性はわずかにある。抵抗率は5.70×10−6Ωcmである。445°C以上で燃焼して酸化物(La)となる(理化学辞典参照)。
希土類元素は、一般に酸化数3の化合物が安定であるが、ランタンも3価である。最近ではランタンをメタルゲート材料、高誘電率材料(High−k)等の、電子材料として研究開発が進められており、注目されている金属である。
Lanthanum (La) is contained in rare earth elements, but is contained in the earth's crust as a mixed complex oxide as a mineral resource. Since rare earth elements were separated from relatively rare (rare) minerals, they were named as such, but they are not rare when viewed from the entire crust. Lanthanum is a white metal having an atomic number of 57 and an atomic weight of 138.9, and has a double hexagonal close-packed structure at room temperature. The melting point is 921 ° C., the boiling point is 3500 ° C., and the density is 6.15 g / cm 3. The surface is oxidized in the air and gradually dissolved in water. Soluble in hot water and acid. There is no ductility, but there is slight malleability. The resistivity is 5.70 × 10 −6 Ωcm. It burns at 445 ° C or higher to become oxide (La 2 O 3 ) (see Physics and Chemistry Dictionary).
As rare earth elements, compounds having an oxidation number of 3 are generally stable, but lanthanum is also trivalent. Recently, lanthanum is a metal that has been attracting attention as a result of research and development as an electronic material such as a metal gate material and a high dielectric constant material (High-k).

ランタン金属は、精製時に酸化し易いという問題があるため、高純度化が難しい材料であり、高純度製品は存在していなかった。また、ランタン金属を空気中に放置した場合には短時間で酸化し黒色に変色するので、取り扱いが容易でないという問題がある。
最近、次世代のMOSFETにおけるゲート絶縁膜として薄膜化が要求されているが、これまでゲート絶縁膜として使用されてきたSiOでは、トンネル効果によるリーク電流が増加し、正常動作が難しくなってきた。
このため、それに変わるものとして、高い誘電率、高い熱的安定性、シリコン中の正孔と電子に対して高いエネルギー障壁を有するHfO、ZrO、Al、Laが提案されている。特に、これらの材料の中でも、Laの評価が高く、電気的特性を調査し、次世代のMOSFETにおけるゲート絶縁膜としての研究報告がなされている(非特許文献1参照)。しかし、この特許文献の場合に、研究の対象となっているのは、La膜であり、La元素の特性と挙動については、特に触れてはいない。
Since lanthanum metal has a problem that it is easily oxidized during purification, lanthanum metal is a material that is difficult to be highly purified, and no high-purity product exists. In addition, when lanthanum metal is left in the air, it oxidizes in a short time and turns black, so that there is a problem that handling is not easy.
Recently, thinning is required as a gate insulating film in next-generation MOSFETs, but in SiO 2 that has been used as a gate insulating film so far, leakage current due to a tunnel effect increases and normal operation has become difficult. .
For this reason, HfO 2 , ZrO 2 , Al 2 O 3 , La 2 O 3 having a high dielectric constant, high thermal stability, and a high energy barrier against holes and electrons in silicon are proposed. Has been. In particular, among these materials, La 2 O 3 is highly evaluated, electrical characteristics have been investigated, and research reports as a gate insulating film in next-generation MOSFETs have been made (see Non-Patent Document 1). However, in the case of this patent document, a La 2 O 3 film is the subject of research, and the characteristics and behavior of the La element are not particularly mentioned.

このようにランタン(酸化ランタン)については、まだ研究の段階にあると言えるが、このようなランタン(酸化ランタン)の特性を調べる場合において、ランタン金属自体がスパッタリングターゲット材として存在すれば、基板上にランタンの薄膜を形成することが可能であり、またシリコン基板との界面の挙動、さらにはランタン化合物を形成して、高誘電率ゲート絶縁膜等の特性を調べることが容易であり、また製品としての自由度が増すという大きな利点を持つものである。 Thus, although lanthanum (lanthanum oxide) is still in the research stage, when investigating the characteristics of such lanthanum (lanthanum oxide), if the lanthanum metal itself exists as a sputtering target material, It is possible to form a thin film of lanthanum on the surface, and it is easy to investigate the behavior of the interface with the silicon substrate, and further the characteristics of a high dielectric constant gate insulating film by forming a lanthanum compound. It has a great advantage that the degree of freedom increases.

しかしながら、ランタンスパッタリングターゲットを作製しても、上記の通り、空気中で短時間に(10分程度で)酸化してしまう。ターゲットに酸化膜が形成されると、電気伝導度の低下がおき、スパッタリングの不良を招く。また、空気中に長時間放置しておくと、空気中の水分と反応して水酸化物の白い粉で覆われるという状態に至り、正常なスパッタリングができないという問題すら起こる。このために、ターゲット作製後、すぐ真空パックするか又は油脂で覆い酸化防止策を講ずる必要があるが、これは著しく煩雑な作業である。このような問題から、ランタン元素のターゲット材は、実用化に至っていないのが現状である。 However, even if a lanthanum sputtering target is manufactured, it is oxidized in the air in a short time (in about 10 minutes) as described above. When an oxide film is formed on the target, the electrical conductivity is lowered, resulting in poor sputtering. Further, if left in the air for a long time, it reacts with moisture in the air and is covered with a white powder of hydroxide, and there is even a problem that normal sputtering cannot be performed. For this reason, it is necessary to take a vacuum pack immediately after the production of the target or cover it with oils and fats, and take an anti-oxidation measure, which is a very complicated operation. Because of these problems, the lanthanum element target material has not yet been put into practical use.

一方、ランタン(酸化ランタン)を出発材料とするのではなく、ランタンアルミネート(LaAlO)として利用することが提案された(非特許文献2参照)。この文献では、次世代として提案されているHigh−k絶縁膜であるHfO、HfSiOよりも、さらに優れた材料であることが示唆されている。
この場合、成膜のプロセスが問題となっている。この文献によれば、室温成膜よりも高温成膜(700°Cでの成膜)の方が漏れ電流が少ないとされ、これは高温成膜の方が膜中の欠陥が消失すること及びLaAlOに存在する余剰酸素が取り除かれることが原因という説明されている。この文献では、成膜プロセスが明示されていないが、高温(700°C)成膜の説明があるので、反応性ガスを使用したプロセスであることが予想される。
この文献は、良好なHigh−k絶縁膜を形成するためには、成膜プロセスが高温であることが前提となるため、問題は解決していないと考えられる。
On the other hand, it has been proposed to use lanthanum aluminate (LaAlO 3 ) instead of lanthanum (lanthanum oxide) as a starting material (see Non-Patent Document 2). This document suggests that the material is superior to HfO 2 and HfSiO, which are high-k insulating films proposed as the next generation.
In this case, the film forming process is a problem. According to this document, it is considered that high-temperature film formation (film formation at 700 ° C.) has less leakage current than room-temperature film formation, which means that high-temperature film formation eliminates defects in the film. It is explained that the cause is that excess oxygen present in LaAlO 3 is removed. In this document, the film formation process is not specified, but since there is an explanation of high temperature (700 ° C.) film formation, it is expected that the process uses a reactive gas.
According to this document, in order to form a good High-k insulating film, it is presumed that the film forming process is at a high temperature, and thus the problem is not solved.

徳光永輔、外2名著、「High−k ゲート絶縁膜用酸化物材料の研究」電気学会電子材料研究会資料、Vol.6−13、Page.37−41、2001年9月21日発行Eisuke Tokumitsu and 2 other authors, “Study on oxide materials for high-k gate insulating films”, Electrochemical Society of Japan, Vol. 6-13, Page. 37-41, issued September 21, 2001 鈴木正道外2名著「ランタンアルミネート直接接合ゲート絶縁膜」、東芝レビュー、Vol.62、No.2(2007年)37〜41頁2 Masamichi Suzuki "Lantern aluminate direct junction gate insulating film", Toshiba review, Vol. 62, no. 2 (2007) 37-41

本発明は、ランタン(La)とアルミニウム(Al)の酸化物からなる焼結体スパッタリングターゲットを提供するものであり、High−kゲート絶縁膜用酸化物を効率的かつ安定して提供できる技術を提供することを課題とする。 The present invention provides a sintered sputtering target made of an oxide of lanthanum (La) and aluminum (Al), and provides a technology capable of providing an oxide for a high-k gate insulating film efficiently and stably. The issue is to provide.

上記従来技術に記載するように、ランタンは酸素と結合し易く、酸素の除去が難しい材料であるが、本願発明は、ランタン(酸化ランタン)を出発材料とするのではなく、中心成分として、ランタンアルミネートの焼結体として利用するものである。この意味では、上記文献2に似ているが、当該文献に示すような問題点は存在しない。そして、スパッタリングターゲットとして利用するものであり、さらに成分組成は、新規物質に相当する。 As described in the above prior art, lanthanum is a material that easily binds to oxygen and is difficult to remove oxygen, but the present invention does not use lanthanum (lanthanum oxide) as a starting material, but lanthanum as a central component. It is used as a sintered body of aluminate. In this sense, it is similar to the above document 2, but there is no problem as shown in the document. And it utilizes as a sputtering target, and also a component composition is equivalent to a novel substance.

本発明は、
1)ランタン(La)とアルミニウム(Al)の酸化物からなる焼結体スパッタリングターゲットであって、当該酸化物の成分組成がLaAl(1.01−2)であることを特徴とする酸化物焼結体スパッタリングターゲット
2)酸化物の成分組成がLaAl(1.05−1.2)であることを特徴とする上記1)記載の酸化物焼結体スパッタリングターゲット
3)相対密度98%以上、最大粒径が10μm以下であることを特徴とする上記1)又は2)記載の酸化物焼結体スパッタリングターゲット、を提供する。
The present invention
1) A sintered sputtering target comprising an oxide of lanthanum (La) and aluminum (Al), wherein the composition of the oxide is LaAl (1.01-2) 2 O 3 2) Oxide sintered sputtering target 2) Oxide component sputtering composition according to 1) above, wherein the component composition of the oxide is LaAl (1.05-1.2) O 3 3) Relative density 98 The oxide sintered sputtering target according to 1) or 2) above, wherein the oxide sintered body sputtering target is characterized by having a maximum particle size of 10% or more.

本発明は、さらに
4)原料粉末としてLa(CO粉末とAl粉末を使用し、AlとLaのモル比が1.01〜2となるように配合し混合した後、この混合粉末を大気中で加熱合成し、次にこの合成材料を粉砕して粉末とした後、この合成粉末をホットプレスして焼結体とすることを特徴とする成分組成がLaAl(1.01−2)である酸化物焼結体スパッタリングターゲットの製造方法
5)La(CO粉末とAl粉末を使用し、AlとLaのモル比が1.05〜1.2となるように配合し、焼結することを特徴とする成分組成がLaAl(1.05−1.2)である上記4)記載の酸化物焼結体スパッタリングターゲットの製造方法
6)混合を湿式ボールミルにより行い、合成を大気中1350〜1550°C、5〜25時間加熱して行うことを特徴とする上記4)又は5)記載の酸化物焼結体スパッタリングターゲットの製造方法
7)ホットプレスを1300〜1500°C、真空中、1〜5時間で行うことを特徴とする上記4)〜6)のいずれか一項に記載の酸化物焼結体スパッタリングターゲットの製造方法、を提供する。
The present invention further uses 4) La 2 (CO 3 ) 3 powder and Al 2 O 3 powder as raw material powder, and after blending and mixing so that the molar ratio of Al to La is 1.01-2, This mixed powder is heated and synthesized in the atmosphere, and then the synthetic material is pulverized to form a powder, and then the synthetic powder is hot-pressed to form a sintered body . 01-2) preparation method 5 of O 3 in which the oxide sintered sputtering target) La 2 (CO 3) using 3 powder and Al 2 O 3 powder, the molar ratio of Al and La is 1.05 The oxide composition sputtering target manufacturing method 6 according to the above 4), wherein the composition of the composition is LaAl (1.05-1.2) O 3, which is characterized in that it is blended so as to be .2 and sintered. ) Mixing by wet ball mill, synthesis in the atmosphere The method for producing an oxide sintered body sputtering target according to 4) or 5) above, wherein the heating is performed at 1350 to 1550 ° C. for 5 to 25 hours, and the hot press is performed at 1300 to 1500 ° C. in vacuum. The method for producing a sintered oxide sputtering target according to any one of 4) to 6) above, wherein the method is performed in 1 to 5 hours.

8)成分組成がLaAl(1.01−2)であるランタンとアルミニウムの酸化物からなるゲート絶縁膜
9)成分組成がLaAl(1.05−1.2)であることを特徴とする上記8)記載のゲート絶縁膜
10)成分組成がLaAl(1.01−2)であるランタンとアルミニウムの酸化物からなるゲート絶縁膜を形成した後、50〜300°Cで加熱処理することを特徴とするゲート絶縁膜の熱処理方法
11)成分組成がLaAl(1.05−1.2)のランタンとアルミニウムの酸化物からなる絶縁膜であることを特徴とする上記10)記載のゲート絶縁膜の熱処理方法、を提供する。
8) wherein the component composition LaAl (1.01-2) gate insulating film 9 consisting of oxides of lanthanum and aluminum are O 3) component composition is LaAl (1.05-1.2) O 3 8) After forming a gate insulating film made of an oxide of lanthanum and aluminum whose composition is LaAl (1.01-2) O 3 , heating at 50 to 300 ° C. 11) A heat treatment method of a gate insulating film characterized in that it is processed. 11) The insulating film is composed of a lanthanum of LaAl (1.05-1.2) O 3 and an oxide of aluminum. And a heat treatment method for the gate insulating film according to claim 1.

従来のランタン(酸化ランタン)スパッタリングターゲットを、空気中に長時間放置しておくと、空気中の水分と反応して水酸化物の白い粉で覆われるという状態になり、正常なスパッタリングができないという問題が起きるが、本発明のランタンとアルミニウムの酸化物からなるターゲットは、このような問題を発生しない。
また、化学量論的成分組成であるLaAlOよりもAlの量が過剰になっているので、これによって、ランタンとアルミニウムの酸化物に含有する遊離酸素又は余剰酸素を、酸化力が強いAlにより固定し、フリーの酸素がスパッタリング成膜したLaAlOの膜中を移動し、Siとの界面で反応して有害なSiOを形成することを防止できる、という大きな効果を有する。
When a conventional lanthanum (lanthanum oxide) sputtering target is left in the air for a long time, it reacts with moisture in the air and is covered with a white powder of hydroxide, and normal sputtering cannot be performed. Although a problem occurs, the target made of an oxide of lanthanum and aluminum of the present invention does not cause such a problem.
In addition, since the amount of Al is excessive as compared with LaAlO 3 which is the stoichiometric component composition, free oxygen or excess oxygen contained in the oxide of lanthanum and aluminum is thereby reduced by Al having a strong oxidizing power. It has a great effect that it can be prevented that free oxygen moves in the LaAlO 3 film formed by sputtering and reacts at the interface with Si to form harmful SiO 2 .

LaAl(1.07)である酸化物焼結体をCu製のバッキングプレートに接合したターゲットを示す外観図(写真)である。A LaAl (1.07) external view of the O 3 oxide sintered body is showing a target bonded to a backing plate made of Cu (photograph). LaAl(1.07)である酸化物焼結体ターゲットの組織観察した結果を示す顕微鏡写真である。LaAl (1.07) O 3 the result of structure observation of the oxide sintered compact target is a photomicrograph showing the. LaAl(1.07)である酸化物焼結体の端材の浸水テストした結果を示す外観図(写真)である。A LaAl (1.07) Appearance shows a flooded test result of the end member of O 3 in which the oxide sintered body diagram (photograph). LaAl(1.07)である酸化物焼結体の浸水テスト前と浸水テスト24時間後の端材のX線回折(XRD)による2θの強度(CPS)を測定した結果を示す図である。A diagram showing a result of measuring the LaAl (1.07) O 3 in which the intensity of 2θ by X-ray diffraction of the oxide sintered body end material after immersion test before and immersion tests 24 hours (XRD) (CPS) is there.

本発明の酸化物焼結体スパッタリングターゲットは、ランタン(La)とアルミニウム(Al)の酸化物からなる焼結体スパッタリングターゲットであり、当該酸化物の成分組成がLaAl(1.01−2)、より好ましくはLaAl(1.05−1.2)とするものである。
この組成比から明らかなように、化学量論的組成比よりもAlが過剰となっている。すなわち、AlとLaのモル比が1.01〜2となっている。AlとLaのモル比が1.01よりも少ないと、酸素をAlによって捕捉することができず、効果を達成できない。また、AlとLaのモル比が2を超えると、LaAlOとしての特性、特にHigh−k ゲート絶縁膜用酸化物材料としての、優れた特性を維持できなくなるので、上限値を上記のAlとLaのモル比を2とした。さらに推奨される条件は、AlとLaのモル比が1.05〜1.2である。
The oxide sintered body sputtering target of the present invention is a sintered body sputtering target made of an oxide of lanthanum (La) and aluminum (Al), and the component composition of the oxide is LaAl (1.01-2) 2 O 3 , more preferably LaAl (1.05-1.2) O 3 .
As is apparent from this composition ratio, Al is in excess of the stoichiometric composition ratio. That is, the molar ratio of Al to La is 1.01-2. When the molar ratio of Al to La is less than 1.01, oxygen cannot be captured by Al and the effect cannot be achieved. If the molar ratio of Al to La exceeds 2, the characteristics as LaAlO 3 , particularly the excellent characteristics as an oxide material for a high-k gate insulating film, cannot be maintained. The molar ratio of La was 2. Further recommended conditions are a molar ratio of Al to La of 1.05 to 1.2.

この酸化物焼結体ターゲットの製造に際しては、原料粉末としてLa(CO粉末とAl粉末を使用し、AlとLaのモル比が1.01〜2又はAlとLaのモル比が1.05〜1.2となるように配合し、これを混合した後、大気中で加熱合成し、次にこの合成材料を粉砕して粉末とし、さらにこの合成粉末をホットプレスして焼結体とすることにより製造することができる。
混合は湿式ボールミルにより行い、合成を大気中1350〜1550°C、5〜25時間程度、加熱して行うことが推奨される製造条件である。また、ホットプレスを1300〜1500°C、真空中、1〜5時間で行うことも焼結条件として推奨される製造条件である。以上は、合成及び焼結を能率的に行う条件である。したがって、これ以外の条件とすること及び他の条件を付加することは、当然なし得ることは理解されるべきことである。
In the production of this oxide sintered compact target, La 2 (CO 3 ) 3 powder and Al 2 O 3 powder are used as raw material powder, and the molar ratio of Al to La is 1.01 to 2 or Al and La. The mixture was blended so that the molar ratio was 1.05 to 1.2, mixed, and then heated and synthesized in the atmosphere. Next, the synthetic material was pulverized into powder, and this synthetic powder was further hot pressed. Can be manufactured by forming a sintered body.
It is recommended that the mixing be performed by a wet ball mill and the synthesis be performed by heating in the atmosphere at 1350 to 1550 ° C. for about 5 to 25 hours. In addition, performing the hot pressing in 1300 to 1500 ° C. in a vacuum for 1 to 5 hours is also a recommended manufacturing condition as a sintering condition. The above are the conditions for efficiently performing synthesis and sintering. Therefore, it should be understood that other conditions and other conditions can be added.

これによって、相対密度98%以上、最大粒径が10μm以下である酸化物焼結体スパッタリングターゲットを得ることができる。密度の向上と結晶粒径を微細化することは、ノジュールやパーティクルの発生を抑制でき、均一な成膜を行うことができる好ましい条件である。
また、一般にランタンに含有される希土類元素には、ランタン(La)以外に、Sc,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luがあるが、特性が似ているために、Laから分離精製することが難しい。特に、CeはLaと近似しているので、Ceの低減化は容易ではない。
Thereby, an oxide sintered sputtering target having a relative density of 98% or more and a maximum particle size of 10 μm or less can be obtained. Improving the density and reducing the crystal grain size are preferable conditions that can suppress the generation of nodules and particles and can form a uniform film.
In addition to lanthanum (La), rare earth elements generally contained in lanthanum are Sc, Y, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Although there is Lu, it is difficult to separate and purify from La due to similar characteristics. In particular, since Ce approximates La, it is not easy to reduce Ce.

しかしながら、これらの希土類元素は、性質が近似しているが故に、希土類元素合計で1000wtppm未満であれば、電子部品材料としての使用に際し、特に問題となるものでないことは理解されるであろう。したがって、本願発明におけるランタンの使用は、このレベルの希土類元素の含有は許容される。
これ以外にも、不可避的に混入する不純物が存在する。分析値を表1に示す。特に、Zrが多量(4200wtppm)に含有されるが、このような不純物が存在しても、なおかつLaAl(1.05−1.2)であるランタンとアルミニウムの酸化物からなるゲート絶縁膜として有効である。しかし、ランタン元素の特性を活かすためには、より低減させることは、好ましい条件である。本願発明は、これらを包含するものである。
However, since these rare earth elements have similar properties, it will be understood that when the total rare earth elements are less than 1000 wtppm, they are not particularly problematic when used as electronic component materials. Therefore, the use of lanthanum in the present invention is allowed to contain this level of rare earth elements.
In addition to this, there are impurities inevitably mixed. The analytical values are shown in Table 1. In particular, although a large amount (4200 wtppm) of Zr is contained, a gate insulating film made of an oxide of lanthanum and aluminum that is LaAl (1.05-1.2) O 3 even if such impurities are present. It is effective as However, in order to make use of the characteristics of the lanthanum element, further reduction is a preferable condition. The present invention includes these.

一般に、ガス成分として、C、N、O、S、Hが存在する。酸素は上記に示すように有害成分として、固定できるが、それ以外のガス成分は、特に問題とならない。これらは単独の元素として存在する場合もあるが、多くは化合物(CO、CO、SO等)又は構成元素との化合物の形態で存在することもある。これらのガス成分元素は原子量及び原子半径が小さいので、多量に含有されない限り、不純物として存在しても、材料の特性に大きく影響を与えることは少ない。したがって、本願発明のランタンの純度は、希土類、Zr、ガス成分を除く純度が3N以上とすることが望ましい。Generally, C, N, O, S, and H exist as gas components. As shown above, oxygen can be fixed as a harmful component, but other gas components are not particularly problematic. These may exist as single elements, but many may exist in the form of compounds (CO, CO 2 , SO 2 etc.) or compounds with constituent elements. Since these gas component elements have a small atomic weight and atomic radius, even if they are present as impurities, they do not significantly affect the properties of the material unless they are contained in large amounts. Therefore, the purity of the lanthanum of the present invention is preferably 3N or more excluding rare earth, Zr, and gas components.

上記ターゲットを用いてスパッタリングすることにより、成分組成がLaAl(1.01−2)、さらには成分組成がLaAl(1.05−1.2)であるランタンとアルミニウムの酸化物からなるゲート絶縁膜が形成できる。ターゲットの成分組成は、成膜に直接反映される。さらにこのように、形成した成分組成がLaAl(1.01−2)である又は成分組成がLaAl(1.05−1.2)であるランタンとアルミニウムの酸化物からなるゲート絶縁膜を形成した後、50〜300°Cで加熱処理することができる。
これは膜中に存在するフリーの酸素を、さらに固定しようとするもので、付加的に実施できる条件である。必須のものではないことを理解されるべきことである。特に、次世代のMOSFET等の製造条件において、このような加熱を嫌う製造条件においては、不要な条件である。
By sputtering with the use of the target, from a component composition LaAl (1.01-2) O 3, more oxides of lanthanum and aluminum component composition is LaAl (1.05-1.2) O 3 A gate insulating film can be formed. The component composition of the target is directly reflected in the film formation. Further Thus, gate insulating composed of the formed component composition is or component composition in LaAl (1.01-2) O 3 oxides of lanthanum and aluminum are LaAl (1.05-1.2) O 3 After forming the film, heat treatment can be performed at 50 to 300 ° C.
This is a condition that free oxygen existing in the film is further fixed and can be additionally implemented. It should be understood that it is not essential. In particular, in the manufacturing conditions for next-generation MOSFETs and the like, the manufacturing conditions that dislike such heating are unnecessary conditions.

次に、実施例について説明する。なお、この実施例は理解を容易にするためのものであり、本発明を制限するものではない。すなわち、本発明の技術思想の範囲内における、他の実施例及び変形は、本発明に含まれるものである。   Next, examples will be described. In addition, this Example is for understanding easily and does not restrict | limit this invention. That is, other embodiments and modifications within the scope of the technical idea of the present invention are included in the present invention.

(実施例1)
原料粉末としてLa(CO粉末とAl粉末を使用し、AlとLaのモル比が1.07となるように配合し、混合を湿式ボールミルにより混合した。この混合粉末を大気中で1450°C、20時間加熱して合成した。この合成材料を、ボールミルにより16時間湿式粉砕して粉末とした。この合成粉末を真空中で、1400°Cで2時間ホットプレスして焼結体とした。焼結体のサイズはφ190mmであり、プレス圧は300kg/cmで実施した。
これによって、成分組成がLaAl(1.07)である酸化物焼結体を得た。これを機械加工してスパッタリングターゲットとした。機械加工後のターゲットサイズはφ164mm×6mmtであった。また、ターゲットの相対密度は98.9%であった(6.436g/cm:理論密度は6.51g/cm)。
Example 1
La 2 (CO 3 ) 3 powder and Al 2 O 3 powder were used as raw material powders, blended so that the molar ratio of Al to La was 1.07, and the mixture was mixed by a wet ball mill. This mixed powder was synthesized by heating in the atmosphere at 1450 ° C. for 20 hours. This synthetic material was wet pulverized with a ball mill for 16 hours to obtain a powder. This synthetic powder was hot pressed in vacuum at 1400 ° C. for 2 hours to obtain a sintered body. The size of the sintered body was φ190 mm, and the press pressure was 300 kg / cm 2 .
Thus, the component composition was obtained oxide sintered body as a LaAl (1.07) O 3. This was machined to obtain a sputtering target. The target size after machining was φ164 mm × 6 mmt. The relative density of the target was 98.9% (6.436 g / cm 3 : theoretical density was 6.51 g / cm 3 ).

さらにこれを大気中でCu製のバッキングプレートに接合した。Cu製のバッキングプレートに接合したターゲットを図1に示す。また、ターゲットの組織観察した結果を図2に示す。この図2は、ターゲットの表面をランダムに5箇所を抽出し、その結果を示したものである。この図2に示すように、平均粒径は0.885〜1.64μm、最大粒径は2.33〜4.4μm、最小粒径0.2μm、ポアの面積率は0.053〜0.66%の範囲にあり、高密度で微細な組織が確認できた。 Further, this was joined to a Cu backing plate in the atmosphere. A target bonded to a Cu backing plate is shown in FIG. Moreover, the result of having observed the structure | tissue of the target is shown in FIG. FIG. 2 shows the results of extracting five locations on the target surface at random. As shown in FIG. 2, the average particle size is 0.885 to 1.64 μm, the maximum particle size is 2.33 to 4.4 μm, the minimum particle size is 0.2 μm, and the pore area ratio is 0.053 to 0.3. It was in the range of 66%, and a dense and fine structure could be confirmed.

このようにして作製した成分組成がLaAl(1.07)である酸化物焼結体の端材の浸水テストした結果を、図3に示す。図3は、左が浸水テスト前であり、右が浸水テスト24時間後の結果である。この図3に示すように、24時間の浸水テスト後でも、酸化又は水酸化による腐食の痕跡は全くなかった。
通常、ランタン(酸化ランタン)は、大気中に1時間放置するだけでも、酸化又は水酸化による腐食が急速に進み、最初は白色にさらに黒色に変色が見られるが、このLaAl(1.07)である酸化物焼結体に腐食は観察されなかった。
FIG. 3 shows the result of the immersion test of the end material of the oxide sintered body in which the component composition thus prepared is LaAl (1.07) O 3 . FIG. 3 shows the results before the water immersion test on the left and the results 24 hours after the water immersion test on the right. As shown in FIG. 3, there was no evidence of corrosion due to oxidation or hydroxylation even after the 24-hour immersion test.
Usually, lanthanum (lanthanum oxide) is rapidly corroded by oxidation or hydroxylation even if it is left in the atmosphere for 1 hour. At first, the color changes from white to black, but this LaAl (1.07) No corrosion was observed on the oxide sintered body of O 3 .

さらに、これを評価するために、前記浸水テスト前と浸水テスト24時間後の端材のX線回折(XRD)による2θの強度(CPS)を測定した。この結果を、図4に示す。図4に示すように、浸水テスト前と浸水テスト24時間後の端材、それが変わることがなかった。これによっても、酸化又は水酸化による腐食が進まないことが確認できた。
さらに、このターゲットを用い高周波スパッタリングを行い、Si基板上にLaAl(1.07)酸化物の薄膜を形成した。この結果、SiとLaAl(1.07)酸化物の薄膜との界面には、Si酸化膜層は全く観察されなかった。これは、ゲート絶縁膜の材料として有用であることを示すものである。
Furthermore, in order to evaluate this, the 2θ strength (CPS) was measured by X-ray diffraction (XRD) of the end material before the immersion test and 24 hours after the immersion test. The result is shown in FIG. As shown in FIG. 4, the end material before the immersion test and 24 hours after the immersion test did not change. This also confirmed that corrosion due to oxidation or hydroxylation did not progress.
Furthermore, high-frequency sputtering was performed using this target to form a LaAl (1.07) O 3 oxide thin film on the Si substrate. As a result, no Si oxide film layer was observed at the interface between Si and the LaAl (1.07) O 3 oxide thin film. This indicates that it is useful as a material for the gate insulating film.

(実施例2〜実施例8)
原料粉末としてLa(CO粉末とAl粉末を使用し、AlとLaのモル比が1.01、1.02、1.05、1.1、1.2、1.25、2.0となるように配合し、混合を湿式ボールミルにより混合した。製造条件は、実施例1と同一とした。この結果、実施例1と同様の組織及び浸水テスト結果が得られた。
AlとLaのモル比は、最小限のAlとLaのモル比が1.01を維持していれば、腐食の特に影響するものではないが、Alの多量の含有は、Laのもつ特性を低下させる傾向があるので、AlとLaのモル比の上限値は、2.0とする必要がある。
(Example 2 to Example 8)
La 2 (CO 3 ) 3 powder and Al 2 O 3 powder are used as the raw material powder, and the molar ratio of Al to La is 1.01, 1.02, 1.05, 1.1, 1.2, 1. It mix | blended so that it might become 25 and 2.0, and mixing was mixed with the wet ball mill. The manufacturing conditions were the same as in Example 1. As a result, the same structure and water immersion test results as in Example 1 were obtained.
The molar ratio of Al to La is not particularly affected by corrosion as long as the minimum molar ratio of Al to La is maintained at 1.01, but the inclusion of a large amount of Al has the characteristics of La. Since there is a tendency to lower, the upper limit of the molar ratio of Al to La needs to be 2.0.

(比較例1)
原料粉末としてLa(CO粉末とAl粉末を使用し、AlとLaのモル比が1.00となるように配合し、混合を湿式ボールミルにより混合した。以下の工程は、実施例1と同様である。すなわち、この混合粉末を大気中で1450°C、20時間加熱して合成した。この合成材料を、ボールミルにより16時間湿式粉砕して粉末とした。
この合成粉末を真空中で、1400°Cで2時間ホットプレスして焼結体とした。焼結体のサイズはφ190mmであり、プレス圧は300kg/cmで実施した。これによって酸化物焼結体を得た。この後も、この酸化物焼結体を用いて、実施例1と同様の工程によりターゲットを作製すると共に、酸化物焼結体ターゲットの端材を用いて浸水テストを行った。
(Comparative Example 1)
La 2 (CO 3 ) 3 powder and Al 2 O 3 powder were used as raw material powders, blended so that the molar ratio of Al to La was 1.00, and mixed by a wet ball mill. The following steps are the same as in Example 1. That is, the mixed powder was synthesized by heating in the atmosphere at 1450 ° C. for 20 hours. This synthetic material was wet pulverized with a ball mill for 16 hours to obtain a powder.
This synthetic powder was hot pressed in vacuum at 1400 ° C. for 2 hours to obtain a sintered body. The size of the sintered body was φ190 mm, and the press pressure was 300 kg / cm 2 . As a result, an oxide sintered body was obtained. Thereafter, using this oxide sintered body, a target was produced by the same process as in Example 1, and a water immersion test was performed using the end material of the oxide sintered body target.

この比較例1では、一部にLaリッチの化合物を生じた。この結果、若干ではあるが、作製したターゲットを空気中に放置すると粉化を生じ、また浸水試験でも、同様に粉化が発生した。
このことから、化学量論的成分組成であるLaAlOよりも、Alの量を過剰にすることが、遊離酸素や余剰酸素を捕捉する効果とともに、粉化現象を抑制する上でも、有効であることが確認できた。
In Comparative Example 1, a La-rich compound was partially produced. As a result, pulverization occurred when the produced target was left in the air, and pulverization occurred in the water immersion test.
From this fact, it is effective to make the amount of Al excessive as compared with LaAlO 3 which is a stoichiometric component composition, in addition to the effect of capturing free oxygen and excess oxygen, and also to suppress the pulverization phenomenon. I was able to confirm.

従来のランタン(酸化ランタン)スパッタリングターゲットを、空気中に長時間放置しておくと、空気中の水分と反応して水酸化物の白い粉で覆われるという状態になり、正常なスパッタリングができないという問題が起きるが、本発明のランタンとアルミニウムの酸化物からなるターゲットは、このような問題を発生しない。
また、化学量論的成分組成であるLaAlOよりもAlの量が過剰になっているので、これによって、ランタンとアルミニウムの酸化物に含有する遊離酸素又は余剰酸素を、酸化力が強いAlにより固定し、フリーの酸素がスパッタリング成膜したLaAlOの膜中を移動し、Siとの界面で反応して有害なSiOの形成を防止できる、という大きな効果を有する。したがって、このターゲットを用いて成膜することは、均一な膜を形成する上で、大きな効果を有すると共に、形成された薄膜は、特にシリコン基板に近接して配置される電子材料として、電子機器の機能を低下又は乱すことがなく、ゲート絶縁膜の材料として有用である。
When a conventional lanthanum (lanthanum oxide) sputtering target is left in the air for a long time, it reacts with moisture in the air and is covered with a white powder of hydroxide, and normal sputtering cannot be performed. Although a problem occurs, the target made of an oxide of lanthanum and aluminum of the present invention does not cause such a problem.
In addition, since the amount of Al is excessive as compared with LaAlO 3 which is the stoichiometric component composition, free oxygen or excess oxygen contained in the oxide of lanthanum and aluminum is thereby reduced by Al having a strong oxidizing power. It has a great effect that it can be fixed and free oxygen moves through the LaAlO 3 film formed by sputtering and reacts at the interface with Si to prevent the formation of harmful SiO 2 . Therefore, forming a film using this target has a great effect on the formation of a uniform film, and the formed thin film is an electronic material, particularly as an electronic material disposed close to a silicon substrate. It is useful as a material for a gate insulating film without lowering or disturbing the function of

【0004】
とするのではなく、中心成分として、ランタンアルミネートの焼結体として利用するものである。この意味では、上記文献2に似ているが、当該文献に示すような問題点は存在しない。そして、スパッタリングターゲットとして利用するものであり、さらに成分組成は、新規物質に相当する。
[0010]
本発明は、
1)ランタン(La)とアルミニウム(Al)の酸化物(ランタンアルミネート)からなる焼結体スパッタリングターゲットであって、当該酸化物の成分組成においてLaに対するAlのモル比が1.01〜2であることを特徴とする酸化物焼結体スパッタリングターゲット
2)酸化物の成分組成においてLaに対するAlのモル比が1.05〜1.2であることを特徴とする上記1)記載の酸化物焼結体スパッタリングターゲット
3)相対密度98%以上、最大粒径が10μm以下であることを特徴とする上記1)又は2)記載の酸化物焼結体スパッタリングターゲット、を提供する。
[0011]
本発明は、さらに
4)原料粉末としてLa(CO粉末とAl粉末を使用し、Laに対するAlのモル比が1.01〜2となるように配合し混合した後、この混合粉末を大気中で加熱合成し、次にこの合成材料を粉砕して粉末とした後、この合成粉末をホットプレスして焼結体とすることを特徴とする成分組成においてLaに対するAlのモル比が1.01〜2である酸化物(ランタンアルミネート)焼結体スパッタリングターゲットの製造方法
5)La(CO粉末とAl粉末を使用し、Laに対するAlのモル比が1.05〜1.2となるように配合し、焼結することを特徴とする成分組成においてLaに対するAlのモル比が1.05〜1.2である上記4)記載の酸化物焼結体スパッタリングターゲットの製造方法
6)混合を湿式ボールミルにより行い、合成を大気中1350〜1550°C、5〜25時間加熱して行うことを特徴とする上記4)又は5)記載の酸化物焼結体スパッタリングターゲットの製造方法
7)ホットプレスを1300〜1500°C、真空中、1〜5時間で行うことを特徴とする上記4)〜6)のいずれか一項に記載の酸化物焼結体スパッ
[0004]
Instead, it is used as a sintered body of lanthanum aluminate as a central component. In this sense, it is similar to the above document 2, but there is no problem as shown in the document. And it utilizes as a sputtering target, and also a component composition is equivalent to a novel substance.
[0010]
The present invention
1) A sintered sputtering target composed of an oxide (lanthanum aluminate) of lanthanum (La) and aluminum (Al), wherein the molar ratio of Al to La is 1.01 to 2 in the component composition of the oxide. Oxide sintered sputtering target characterized in that there is 2) The molar ratio of Al to La in the component composition of the oxide is 1.05 to 1.2. Conjugate sputtering target 3) The oxide sintered sputtering target according to 1) or 2) above, wherein the relative density is 98% or more and the maximum particle size is 10 μm or less.
[0011]
The present invention further uses 4) La 2 (CO 3 ) 3 powder and Al 2 O 3 powder as raw material powder, and after mixing and mixing so that the molar ratio of Al to La is 1.01-2, The mixed powder is heated and synthesized in the atmosphere, and then the synthetic material is pulverized into a powder, and then the synthetic powder is hot-pressed to form a sintered body. Method for producing oxide (lanthanum aluminate) sintered sputtering target having a molar ratio of 1.01 to 2 5) Using La 2 (CO 3 ) 3 powder and Al 2 O 3 powder, the mole of Al with respect to La The oxide according to the above 4), wherein the molar ratio of Al to La is 1.05 to 1.2 in the component composition characterized in that it is blended so as to have a ratio of 1.05 to 1.2 and sintered. Sintered body sputtering machine Production method of target 6) Oxide sintered sputtering according to 4) or 5) above, wherein the mixing is performed by a wet ball mill and the synthesis is performed by heating in the atmosphere at 1350 to 1550 ° C. for 5 to 25 hours. Method for producing target 7) Hot-pressing is performed at 1300 to 1500 ° C. in a vacuum for 1 to 5 hours, and the sintered oxide spatula according to any one of 4) to 6) above

【0005】
タリングターゲットの製造方法、を提供する。
[0012]
8)成分組成においてLaに対するAlのモル比が1.01〜2であるランタンとアルミニウムの酸化物(ランタンアルミネート)からなるゲート絶縁膜
9)成分組成においてLaに対するAlのモル比が1.05〜1.2であることを特徴とする上記8)記載のゲート絶縁膜
10)成分組成においてLaに対するAlのモル比が1.01〜2であるランタンとアルミニウムの酸化物からなるゲート絶縁膜を形成した後、50〜300°Cで加熱処理することを特徴とするゲート絶縁膜の熱処理方法
11)成分組成においてLaに対するAlのモル比が1.05〜1.2のランタンとアルミニウムの酸化物からなる絶縁膜であることを特徴とする上記10)記載のゲート絶縁膜の熱処理方法、を提供する。
発明の効果
[0013]
従来のランタン(酸化ランタン)スパッタリングターゲットを、空気中に長時間放置しておくと、空気中の水分と反応して水酸化物の白い粉で覆われるという状態になり、正常なスパッタリングができないという問題が起きるが、本発明のランタンとアルミニウムの酸化物からなるターゲットは、このような問題を発生しない。
また、化学量論的成分組成であるLaAlOよりもAlの量が過剰になっているので、これによって、ランタンとアルミニウムの酸化物に含有する遊離酸素又は余剰酸素を、酸化力が強いAlにより固定し、フリーの酸素がスパッタリング成膜したLaAlOの膜中を移動し、Siとの界面で反応して有害なSiOを形成することを防止できる、という大きな効果を有する。
図面の簡単な説明
[0014]
[図1]Laに対するAlのモル比が1.07である酸化物焼結体をCu製のバッキングプレートに接合したターゲットを示す外観図(写真)である。
[図2]Laに対するAlのモル比が1.07である酸化物焼結体ターゲットの組織観察した結果を示す顕微鏡写真である。
[図3]Laに対するAlのモル比が1.07である酸化物焼結体の端材の浸水テストした結果を
[0005]
A method for manufacturing a tulling target is provided.
[0012]
8) Gate insulating film made of lanthanum and aluminum oxide (lanthanum aluminate) in which the molar ratio of Al to La is 1.01 to 2 in the component composition 9) The molar ratio of Al to La is 1.05 in the component composition A gate insulating film made of lanthanum and aluminum oxide having a molar ratio of Al to La of 1.01 to 2 in the component composition, After forming, heat treatment method of gate insulating film characterized by heat treatment at 50 to 300 ° C. 11) Oxide of lanthanum and aluminum whose molar ratio of Al to La is 1.05 to 1.2 in component composition A method for heat-treating a gate insulating film as described in 10) above, which is an insulating film comprising:
Effects of the Invention [0013]
When a conventional lanthanum (lanthanum oxide) sputtering target is left in the air for a long time, it reacts with moisture in the air and is covered with a white powder of hydroxide, and normal sputtering cannot be performed. Although a problem occurs, the target made of an oxide of lanthanum and aluminum of the present invention does not cause such a problem.
In addition, since the amount of Al is excessive as compared with LaAlO 3 which is the stoichiometric component composition, free oxygen or excess oxygen contained in the oxide of lanthanum and aluminum is thereby reduced by Al having a strong oxidizing power. It has a great effect that it can be prevented that free oxygen moves in the LaAlO 3 film formed by sputtering and reacts at the interface with Si to form harmful SiO 2 .
BRIEF DESCRIPTION OF THE DRAWINGS [0014]
FIG. 1 is an external view (photograph) showing a target in which an oxide sintered body having a molar ratio of Al to La of 1.07 is joined to a Cu backing plate.
FIG. 2 is a photomicrograph showing the result of observation of the structure of an oxide sintered compact target having a molar ratio of Al to La of 1.07.
[FIG. 3] The result of the immersion test of the end material of the oxide sintered body in which the molar ratio of Al to La is 1.07.

【0006】
示す外観図(写真)である。
[図4]Laに対するAlのモル比が1.07である酸化物焼結体の浸水テスト前と浸水テスト24時間後の端材のX線回折(XRD)による2θの強度(CPS)を測定した結果を示す図である。
発明を実施するための形態
[0015]
本発明の酸化物焼結体スパッタリングターゲットは、ランタン(La)とアルミニウム(Al)の酸化物からなる焼結体スパッタリングターゲットであり、当該酸化物の成分組成においてLaに対するAlのモル比が1.01〜2、より好ましくはAlのモル比が1.05〜1.2とするものである。
この組成比から明らかなように、化学量論的組成比よりもAlが過剰となっている。すなわち、Laに対するAlのモル比が1.01〜2となっている。Laに対するAlのモル比が1.01よりも少ないと、酸素をAlによって捕捉することができず、効果を達成できない。また、Laに対するAlのモル比が2を超えると、LaAlOとしての特性、特にHigh−kゲート絶縁膜用酸化物材料としての、優れた特性を維持できなくなるので、上限値を上記のLaに対するAlのモル比を2とした。さらに推奨される条件は、Laに対するAlのモル比が1.05〜1.2である。
[0016]
この酸化物焼結体ターゲットの製造に際しては、原料粉末としてLa(CO粉末とAl粉末を使用し、Laに対するAlのモル比が1.01〜2又はLaに対するAlのモル比が1.05〜1.2となるように配合し、これを混合した後、大気中で加熱合成し、次にこの合成材料を粉砕して粉末とし、さらにこの合成粉末をホットプレスして焼結体とすることにより製造することができる。
混合は湿式ボールミルにより行い、合成を大気中1350〜1550°C、5〜25時間程度、加熱して行うことが推奨される製造条件である。また、ホットプレスを1300〜1500°C、真空中、1〜5時間で行うことも焼結条件として推奨される製造条件である。以上は、合成及び焼結を能率的に行う条件である。したがって、これ以外の条件とすること及び他の条件を
[0006]
It is an external view (photograph) shown.
[FIG. 4] Measurement of 2θ strength (CPS) by X-ray diffraction (XRD) of the end material before and 24 hours after the immersion test of the oxide sintered body in which the molar ratio of Al to La is 1.07 It is a figure which shows the result.
MODE FOR CARRYING OUT THE INVENTION [0015]
The oxide sintered body sputtering target of the present invention is a sintered body sputtering target made of an oxide of lanthanum (La) and aluminum (Al), and the molar ratio of Al to La in the component composition of the oxide is 1. 01 to 2, more preferably the molar ratio of Al is 1.05 to 1.2.
As is apparent from this composition ratio, Al is in excess of the stoichiometric composition ratio. That is, the molar ratio of Al to La is 1.01-2. If the molar ratio of Al to La is less than 1.01, oxygen cannot be captured by Al and the effect cannot be achieved. Further, if the molar ratio of Al to La exceeds 2, the characteristics as LaAlO 3 , particularly the excellent characteristics as an oxide material for a High-k gate insulating film cannot be maintained. The molar ratio of Al was 2. Further recommended conditions are a molar ratio of Al to La of 1.05-1.2.
[0016]
In the production of this oxide sintered compact target, La 2 (CO 3 ) 3 powder and Al 2 O 3 powder are used as the raw material powder, and the molar ratio of Al to La is 1.01-2 or Al to La The mixture was blended so that the molar ratio was 1.05 to 1.2, mixed, and then heated and synthesized in the atmosphere. Next, the synthetic material was pulverized into powder, and this synthetic powder was further hot pressed. Can be manufactured by forming a sintered body.
It is recommended that the mixing be performed by a wet ball mill and the synthesis be performed by heating in the atmosphere at 1350 to 1550 ° C. for about 5 to 25 hours. In addition, performing the hot pressing in 1300 to 1500 ° C. in a vacuum for 1 to 5 hours is also a recommended manufacturing condition as a sintering condition. The above are the conditions for efficiently performing synthesis and sintering. Therefore, other conditions and other conditions

【0007】
付加することは、当然なし得ることは理解されるべきことである。
[0017]
これによって、相対密度98%以上、最大粒径が10μm以下である酸化物焼結体スパッタリングターゲットを得ることができる。密度の向上と結晶粒径を微細化することは、ノジュールやパーティクルの発生を抑制でき、均一な成膜を行うことができる好ましい条件である。
また、一般にランタンに含有される希土類元素には、ランタン(La)以外に、Sc,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luがあるが、特性が似ているために、Laから分離精製することが難しい。特に、CeはLaと近似しているので、Ceの低減化は容易ではない。
[0018]
しかしながら、これらの希土類元素は、性質が近似しているが故に、希土類元素合計で1000wtppm未満であれば、電子部品材料としての使用に際し、特に問題となるものでないことは理解されるであろう。したがって、本願発明におけるランタンの使用は、このレベルの希土類元素の含有は許容される。
これ以外にも、不可避的に混入する不純物が存在する。分析値を表1に示す。特に、Zrが多量(4200wtppm)に含有されるが、このような不純物が存在しても、なおかつLaに対するAlのモル比が1.05〜1.2であるランタンとアルミニウムの酸化物からなるゲート絶縁膜として有効である。しかし、ランタン元素の特性を活かすためには、より低減させることは、好ましい条件である。本願発明は、これらを包含するものである。
[0019]
[0007]
It should be understood that adding can of course be done.
[0017]
Thereby, an oxide sintered sputtering target having a relative density of 98% or more and a maximum particle size of 10 μm or less can be obtained. Improving the density and reducing the crystal grain size are preferable conditions that can suppress the generation of nodules and particles and can form a uniform film.
In addition to lanthanum (La), rare earth elements generally contained in lanthanum are Sc, Y, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Although there is Lu, it is difficult to separate and purify from La due to similar characteristics. In particular, since Ce approximates La, it is not easy to reduce Ce.
[0018]
However, since these rare earth elements have similar properties, it will be understood that when the total rare earth elements are less than 1000 wtppm, they are not particularly problematic when used as electronic component materials. Therefore, the use of lanthanum in the present invention is allowed to contain this level of rare earth elements.
In addition to this, there are impurities inevitably mixed. The analytical values are shown in Table 1. In particular, a gate composed of an oxide of lanthanum and aluminum that contains a large amount (4200 wtppm) of Zr but has such an impurity, and has a molar ratio of Al to La of 1.05 to 1.2. It is effective as an insulating film. However, in order to make use of the characteristics of the lanthanum element, further reduction is a preferable condition. The present invention includes these.
[0019]

【0010】
[0020]
一般に、ガス成分として、C、N、O、S、Hが存在する。酸素は上記に示すように有害成分として、固定できるが、それ以外のガス成分は、特に問題とならない。これらは単独の元素として存在する場合もあるが、多くは化合物(CO、CO、SO等)又は構成元素との化合物の形態で存在することもある。これらのガス成分元素は原子量及び原子半径が小さいので、多量に含有されない限り、不純物として存在しても、材料の特性に大きく影響を与えることは少ない。したがって、本願発明のランタンの純度は、希土類、Zr、ガス成分を除く純度が3N以上とすることが望ましい。
[0021]
上記ターゲットを用いてスパッタリングすることにより、成分組成においてLaに対するAlのモル比が1.01〜2、さらには成分組成においてLaに対するAlのモル比が1.05〜1.2であるランタンとアルミニウムの酸化物からなるゲート絶縁膜が形成できる。ターゲットの成分組成は、成膜に直接反映される。さらにこのように、形成した成分組成においてLaに対するAlのモル比が1.01〜2である又は成分組成においてLaに対するAlのモル比が1.05〜1.2であるランタンとアルミニウムの酸化物からなるゲート絶縁膜を形成した後、50〜300°Cで加熱処理することができる。
これは膜中に存在するフリーの酸素を、さらに固定しようとするもので、付加的に実施できる条件である。必須のものではないことを理解されるべきことである。特に、次世代のMOSFET等の製造条件において、このような加熱を嫌う製造条件においては、不要な条件である。
実施例
[0022]
次に、実施例について説明する。なお、この実施例は理解を容易にするためのものであり、本発明を制限するものではない。すなわち、本発明の技術思想の範囲内における、他の実施例及び変形は、本発明に含まれるものである。
[0023]
(実施例1)
原料粉末としてLa(CO粉末とAl粉末を使用し、Laに対するAlのモル比が1.07となるように配合し、混合を湿式ボールミルにより混合した。この混合粉末を大気中で1450°C、20時間加熱して合成した。こ
[0010]
[0020]
Generally, C, N, O, S, and H exist as gas components. As shown above, oxygen can be fixed as a harmful component, but other gas components are not particularly problematic. These may exist as single elements, but many may exist in the form of compounds (CO, CO 2 , SO 2 etc.) or compounds with constituent elements. Since these gas component elements have a small atomic weight and atomic radius, even if they are present as impurities, they do not significantly affect the properties of the material unless they are contained in large amounts. Therefore, the purity of the lanthanum of the present invention is preferably 3N or more excluding rare earth, Zr, and gas components.
[0021]
By sputtering using the above target, lanthanum and aluminum whose component composition has a molar ratio of Al to La of 1.01 to 2, and further, in the component composition, the molar ratio of Al to La is 1.05 to 1.2. A gate insulating film made of the above oxide can be formed. The component composition of the target is directly reflected in the film formation. Further, the oxide of lanthanum and aluminum whose molar ratio of Al to La is 1.01-2 in the component composition thus formed or whose molar ratio of Al to La is 1.05-1.2 in the component composition. After the gate insulating film is formed, heat treatment can be performed at 50 to 300 ° C.
This is a condition that free oxygen existing in the film is further fixed and can be additionally implemented. It should be understood that it is not essential. In particular, in the manufacturing conditions for next-generation MOSFETs and the like, the manufacturing conditions that dislike such heating are unnecessary conditions.
Example [0022]
Next, examples will be described. In addition, this Example is for understanding easily and does not restrict | limit this invention. That is, other embodiments and modifications within the scope of the technical idea of the present invention are included in the present invention.
[0023]
Example 1
La 2 (CO 3 ) 3 powder and Al 2 O 3 powder were used as raw material powders, blended so that the molar ratio of Al to La was 1.07, and the mixture was mixed by a wet ball mill. This mixed powder was synthesized by heating in the atmosphere at 1450 ° C. for 20 hours. This

【0011】
の合成材料を、ボールミルにより16時間湿式粉砕して粉末とした。この合成粉末を真空中で、1400°Cで2時間ホットプレスして焼結体とした。焼結体のサイズはφ190mmであり、プレス圧は300kg/cmで実施した。
これによって、成分組成においてLaに対するAlのモル比が1.07である酸化物焼結体を得た。これを機械加工してスパッタリングターゲットとした。機械加工後のターゲットサイズはφ164mm×6mmtであった。また、ターゲットの相対密度は98.9%であった(6.436g/cm:理論密度は6.51g/cm)。
[0024]
さらにこれを大気中でCu製のバッキングプレートに接合した。Cu製のバッキングプレートに接合したターゲットを図1に示す。また、ターゲットの組織観察した結果を図2に示す。この図2は、ターゲットの表面をランダムに5箇所を抽出し、その結果を示したものである。この図2に示すように、平均粒径は0.885〜1.64μm、最大粒径は2.33〜4.4μm、最小粒径0.2μm、ポアの面積率は0.053〜0.66%の範囲にあり、高密度で微細な組織が確認できた。
[0025]
このようにして作製した成分組成においてLaに対するAlのモル比が1.07である酸化物焼結体の端材の浸水テストした結果を、図3に示す。図3は、左が浸水テスト前であり、右が浸水テスト24時間後の結果である。この図3に示すように、24時間の浸水テスト後でも、酸化又は水酸化による腐食の痕跡は全くなかった。
通常、ランタン(酸化ランタン)は、大気中に1時間放置するだけでも、酸化又は水酸化による腐食が急速に進み、最初は白色にさらに黒色に変色が見られるが、このLaに対するAlのモル比が1.07である酸化物焼結体に腐食は観察されなかった。
[0026]
さらに、これを評価するために、前記浸水テスト前と浸水テスト24時間後の端材のX線回折(XRD)による2θの強度(CPS)を測定した。この結果を、図4に示す。図4に示すように、浸水テスト前と浸水テスト24時
[0011]
The synthetic material was wet pulverized with a ball mill for 16 hours to obtain a powder. This synthetic powder was hot pressed in vacuum at 1400 ° C. for 2 hours to obtain a sintered body. The size of the sintered body was φ190 mm, and the press pressure was 300 kg / cm 2 .
As a result, an oxide sintered body having a component composition with a molar ratio of Al to La of 1.07 was obtained. This was machined to obtain a sputtering target. The target size after machining was φ164 mm × 6 mmt. The relative density of the target was 98.9% (6.436 g / cm 3 : theoretical density was 6.51 g / cm 3 ).
[0024]
Further, this was joined to a Cu backing plate in the atmosphere. A target bonded to a Cu backing plate is shown in FIG. Moreover, the result of having observed the structure | tissue of the target is shown in FIG. FIG. 2 shows the results of extracting five locations on the target surface at random. As shown in FIG. 2, the average particle size is 0.885 to 1.64 μm, the maximum particle size is 2.33 to 4.4 μm, the minimum particle size is 0.2 μm, and the pore area ratio is 0.053 to 0.003. It was in the range of 66%, and a dense and fine structure could be confirmed.
[0025]
FIG. 3 shows the result of the immersion test of the end material of the oxide sintered body having a molar ratio of Al to La of 1.07 in the component composition thus prepared. FIG. 3 shows the results before the water immersion test on the left and the results 24 hours after the water immersion test on the right. As shown in FIG. 3, there was no evidence of corrosion due to oxidation or hydroxylation even after the 24-hour immersion test.
Usually, lanthanum (lanthanum oxide) is rapidly corroded by oxidation or hydroxylation even if it is left in the atmosphere for 1 hour. At first, the color changes from white to black, but the molar ratio of Al to La Corrosion was not observed in the oxide sintered body having an A of 1.07.
[0026]
Furthermore, in order to evaluate this, the 2θ strength (CPS) was measured by X-ray diffraction (XRD) of the end material before the immersion test and 24 hours after the immersion test. The result is shown in FIG. As shown in Fig. 4, before the flood test and at 24 hours

【0012】
間後の端材、それが変わることがなかった。これによっても、酸化又は水酸化による腐食が進まないことが確認できた。
さらに、このターゲットを用い高周波スパッタリングを行い、Si基板上にLaに対するAlのモル比が1.07である酸化物の薄膜を形成した。この結果、SiとLaに対するAlのモル比が1.07である酸化物の薄膜との界面には、Si酸化膜層は全く観察されなかった。これは、ゲート絶縁膜の材料として有用であることを示すものである。
[0027]
(実施例2〜実施例8)
原料粉末としてLa(CO粉末とAl粉末を使用し、Laに対するAlのモル比が1.01、1.02、1.05、1.1、1.2、1.25、2.0となるように配合し、混合を湿式ボールミルにより混合した。製造条件は、実施例1と同一とした。この結果、実施例1と同様の組織及び浸水テスト結果が得られた。
Laに対するAlのモル比は、Laに対するAlのモル比が最小限1.01を維持していれば、腐食の特に影響するものではないが、Alの多量の含有は、Laのもつ特性を低下させる傾向があるので、Laに対するAlのモル比の上限値は、2.0とする必要がある。
[0028]
(比較例1)
原料粉末としてLa(CO粉末とAl粉末を使用し、Laに対するAlのモル比が1.00となるように配合し、混合を湿式ボールミルにより混合した。以下の工程は、実施例1と同様である。すなわち、この混合粉末を大気中で1450°C、20時間加熱して合成した。この合成材料を、ボールミルにより16時間湿式粉砕して粉末とした。
この合成粉末を真空中で、1400°Cで2時間ホットプレスして焼結体とした。焼結体のサイズはφ190mmであり、プレス圧は300kg/cmで実施した。これによって酸化物焼結体を得た。この後も、この酸化物焼結体を用いて、実施例1と同様の工程によりターゲットを作製すると共に、酸化物焼結体ターゲットの端材を用いて浸水テストを行った。
[0029]
この比較例1では、一部にLaリッチの化合物を生じた。この結果、若干で
[0012]
Soon after, it did not change. This also confirmed that corrosion due to oxidation or hydroxylation did not progress.
Furthermore, high-frequency sputtering was performed using this target, and an oxide thin film having a molar ratio of Al to La of 1.07 was formed on a Si substrate. As a result, no Si oxide film layer was observed at the interface with the oxide thin film having a molar ratio of Al to Si of 1.07. This indicates that it is useful as a material for the gate insulating film.
[0027]
(Example 2 to Example 8)
La 2 (CO 3 ) 3 powder and Al 2 O 3 powder are used as raw material powder, and the molar ratio of Al to La is 1.01, 1.02, 1.05, 1.1, 1.2, 1. It mix | blended so that it might become 25 and 2.0, and mixing was mixed with the wet ball mill. The manufacturing conditions were the same as in Example 1. As a result, the same structure and water immersion test results as in Example 1 were obtained.
The molar ratio of Al to La is not particularly affected by corrosion as long as the molar ratio of Al to La is maintained at a minimum of 1.01, but inclusion of a large amount of Al decreases the characteristics of La. Therefore, the upper limit of the molar ratio of Al to La needs to be 2.0.
[0028]
(Comparative Example 1)
La 2 (CO 3 ) 3 powder and Al 2 O 3 powder were used as raw material powders, blended so that the molar ratio of Al to La was 1.00, and mixed by a wet ball mill. The following steps are the same as in Example 1. That is, the mixed powder was synthesized by heating in the atmosphere at 1450 ° C. for 20 hours. This synthetic material was wet pulverized with a ball mill for 16 hours to obtain a powder.
This synthetic powder was hot pressed in vacuum at 1400 ° C. for 2 hours to obtain a sintered body. The size of the sintered body was φ190 mm, and the press pressure was 300 kg / cm 2 . As a result, an oxide sintered body was obtained. Thereafter, using this oxide sintered body, a target was produced by the same process as in Example 1, and a water immersion test was performed using the end material of the oxide sintered body target.
[0029]
In Comparative Example 1, a La-rich compound was partially produced. As a result,

本発明は、ランタン(La)とアルミニウム(Al)の酸化物からなる焼結体スパッタリングターゲット及び同ターゲットの製造方法に関する。 The present invention relates to a sintered sputtering target composed of an oxide of lanthanum (La) and aluminum (Al) and a method for producing the target .

ランタン(La)は希土類元素の中に含まれるものであるが、鉱物資源として混合複合酸化物として地殻に含有されている。希土類元素は比較的希(まれ)に存在する鉱物から分離されたので、このような名称がついたが、地殻全体からみると決して希少ではない。ランタンの原子番号は57、原子量138.9の白色の金属であり、常温で複六方最密構造を備えている。融点は921°C、沸点3500°C、密度6.15g/cmであり、空気中では表面が酸化され、水には徐々にとける。熱水、酸に可溶である。延性はないが、展性はわずかにある。抵抗率は5.70×10−6Ωcmである。445°C以上で燃焼して酸化物(La)となる(理化学辞典参照)。
希土類元素は、一般に酸化数3の化合物が安定であるが、ランタンも3価である。最近ではランタンをメタルゲート材料、高誘電率材料(High−k)等の、電子材料として研究開発が進められており、注目されている金属である。
Lanthanum (La) is contained in rare earth elements, but is contained in the earth's crust as a mixed complex oxide as a mineral resource. Since rare earth elements were separated from relatively rare (rare) minerals, they were named as such, but they are not rare when viewed from the entire crust. Lanthanum is a white metal having an atomic number of 57 and an atomic weight of 138.9, and has a double hexagonal close-packed structure at room temperature. The melting point is 921 ° C., the boiling point is 3500 ° C., and the density is 6.15 g / cm 3. The surface is oxidized in the air and gradually dissolved in water. Soluble in hot water and acid. There is no ductility, but there is slight malleability. The resistivity is 5.70 × 10 −6 Ωcm. It burns at 445 ° C or higher to become oxide (La 2 O 3 ) (see Physics and Chemistry Dictionary).
As rare earth elements, compounds having an oxidation number of 3 are generally stable, but lanthanum is also trivalent. Recently, lanthanum is a metal that has been attracting attention as a result of research and development as an electronic material such as a metal gate material and a high dielectric constant material (High-k).

ランタン金属は、精製時に酸化し易いという問題があるため、高純度化が難しい材料であり、高純度製品は存在していなかった。また、ランタン金属を空気中に放置した場合には短時間で酸化し黒色に変色するので、取り扱いが容易でないという問題がある。
最近、次世代のMOSFETにおけるゲート絶縁膜として薄膜化が要求されているが、これまでゲート絶縁膜として使用されてきたSiOでは、トンネル効果によるリーク電流が増加し、正常動作が難しくなってきた。
このため、それに変わるものとして、高い誘電率、高い熱的安定性、シリコン中の正孔と電子に対して高いエネルギー障壁を有するHfO、ZrO、Al、Laが提案されている。特に、これらの材料の中でも、Laの評価が高く、電気的特性を調査し、次世代のMOSFETにおけるゲート絶縁膜としての研究報告がなされている(非特許文献1参照)。しかし、この特許文献の場合に、研究の対象となっているのは、La膜であり、La元素の特性と挙動については、特に触れてはいない。
Since lanthanum metal has a problem that it is easily oxidized during purification, lanthanum metal is a material that is difficult to be highly purified, and no high-purity product exists. In addition, when lanthanum metal is left in the air, it oxidizes in a short time and turns black, so that there is a problem that handling is not easy.
Recently, thinning is required as a gate insulating film in next-generation MOSFETs, but in SiO 2 that has been used as a gate insulating film so far, leakage current due to a tunnel effect increases and normal operation has become difficult. .
For this reason, HfO 2 , ZrO 2 , Al 2 O 3 , La 2 O 3 having a high dielectric constant, high thermal stability, and a high energy barrier against holes and electrons in silicon are proposed. Has been. In particular, among these materials, La 2 O 3 is highly evaluated, electrical characteristics have been investigated, and research reports as a gate insulating film in next-generation MOSFETs have been made (see Non-Patent Document 1). However, in the case of this patent document, a La 2 O 3 film is the subject of research, and the characteristics and behavior of the La element are not particularly mentioned.

このようにランタン(酸化ランタン)については、まだ研究の段階にあると言えるが、このようなランタン(酸化ランタン)の特性を調べる場合において、ランタン金属自体がスパッタリングターゲット材として存在すれば、基板上にランタンの薄膜を形成することが可能であり、またシリコン基板との界面の挙動、さらにはランタン化合物を形成して、高誘電率ゲート絶縁膜等の特性を調べることが容易であり、また製品としての自由度が増すという大きな利点を持つものである。   Thus, although lanthanum (lanthanum oxide) is still in the research stage, when investigating the characteristics of such lanthanum (lanthanum oxide), if the lanthanum metal itself exists as a sputtering target material, It is possible to form a thin film of lanthanum on the surface, and it is easy to investigate the behavior of the interface with the silicon substrate, and further the characteristics of a high dielectric constant gate insulating film by forming a lanthanum compound. It has a great advantage that the degree of freedom increases.

しかしながら、ランタンスパッタリングターゲットを作製しても、上記の通り、空気中で短時間に(10分程度で)酸化してしまう。ターゲットに酸化膜が形成されると、電気伝導度の低下がおき、スパッタリングの不良を招く。また、空気中に長時間放置しておくと、空気中の水分と反応して水酸化物の白い粉で覆われるという状態に至り、正常なスパッタリングができないという問題すら起こる。このために、ターゲット作製後、すぐ真空パックするか又は油脂で覆い酸化防止策を講ずる必要があるが、これは著しく煩雑な作業である。このような問題から、ランタン元素のターゲット材は、実用化に至っていないのが現状である。   However, even if a lanthanum sputtering target is manufactured, it is oxidized in the air in a short time (in about 10 minutes) as described above. When an oxide film is formed on the target, the electrical conductivity is lowered, resulting in poor sputtering. Further, if left in the air for a long time, it reacts with moisture in the air and is covered with a white powder of hydroxide, and there is even a problem that normal sputtering cannot be performed. For this reason, it is necessary to take a vacuum pack immediately after the production of the target or cover it with oils and fats, and take an anti-oxidation measure, which is a very complicated operation. Because of these problems, the lanthanum element target material has not yet been put into practical use.

一方、ランタン(酸化ランタン)を出発材料とするのではなく、ランタンアルミネート(LaAlO)として利用することが提案された(非特許文献2参照)。この文献では、次世代として提案されているHigh−k絶縁膜であるHfO、HfSiOよりも、さらに優れた材料であることが示唆されている。
この場合、成膜のプロセスが問題となっている。この文献によれば、室温成膜よりも高温成膜(700°Cでの成膜)の方が漏れ電流が少ないとされ、これは高温成膜の方が膜中の欠陥が消失すること及びLaAlOに存在する余剰酸素が取り除かれることが原因という説明されている。この文献では、成膜プロセスが明示されていないが、高温(700°C)成膜の説明があるので、反応性ガスを使用したプロセスであることが予想される。
この文献は、良好なHigh−k絶縁膜を形成するためには、成膜プロセスが高温であることが前提となるため、問題は解決していないと考えられる。
On the other hand, it has been proposed to use lanthanum aluminate (LaAlO 3 ) instead of lanthanum (lanthanum oxide) as a starting material (see Non-Patent Document 2). This document suggests that the material is superior to HfO 2 and HfSiO, which are high-k insulating films proposed as the next generation.
In this case, the film forming process is a problem. According to this document, it is considered that high-temperature film formation (film formation at 700 ° C.) has less leakage current than room-temperature film formation, which means that high-temperature film formation eliminates defects in the film. It is explained that the cause is that excess oxygen present in LaAlO 3 is removed. In this document, the film formation process is not specified, but since there is an explanation of high temperature (700 ° C.) film formation, it is expected that the process uses a reactive gas.
According to this document, in order to form a good High-k insulating film, it is presumed that the film forming process is at a high temperature, and thus the problem is not solved.

徳光永輔、外2名著、「High−k ゲート絶縁膜用酸化物材料の研究」電気学会電子材料研究会資料、Vol.6−13、Page.37−41、2001年9月21日発行Eisuke Tokumitsu and 2 other authors, “Study on oxide materials for high-k gate insulating films”, Electrochemical Society of Japan, Vol. 6-13, Page. 37-41, issued September 21, 2001 鈴木正道外2名著「ランタンアルミネート直接接合ゲート絶縁膜」、東芝レビュー、Vol.62、No.2(2007年)37〜41頁2 Masamichi Suzuki "Lantern aluminate direct junction gate insulating film", Toshiba review, Vol. 62, no. 2 (2007) 37-41

本発明は、ランタン(La)とアルミニウム(Al)の酸化物からなる焼結体スパッタリングターゲットを提供するものであり、High−kゲート絶縁膜用酸化物を効率的かつ安定して提供できる技術を提供することを課題とする。   The present invention provides a sintered sputtering target made of an oxide of lanthanum (La) and aluminum (Al), and provides a technology capable of providing an oxide for a high-k gate insulating film efficiently and stably. The issue is to provide.

上記従来技術に記載するように、ランタンは酸素と結合し易く、酸素の除去が難しい材料であるが、本願発明は、ランタン(酸化ランタン)を出発材料とするのではなく、中心成分として、ランタンアルミネートの焼結体として利用するものである。この意味では、上記文献2に似ているが、当該文献に示すような問題点は存在しない。そして、スパッタリングターゲットとして利用するものであり、さらに成分組成は、新規物質に相当する。   As described in the above prior art, lanthanum is a material that easily binds to oxygen and is difficult to remove oxygen, but the present invention does not use lanthanum (lanthanum oxide) as a starting material, but lanthanum as a central component. It is used as a sintered body of aluminate. In this sense, it is similar to the above document 2, but there is no problem as shown in the document. And it utilizes as a sputtering target, and also a component composition is equivalent to a novel substance.

本発明は、
1)ランタン(La)とアルミニウム(Al)の酸化物(ランタンアルミネート)からなる焼結体スパッタリングターゲットであって、当該酸化物の成分組成においてLaに対するAlのモル比が1.01〜2であることを特徴とする酸化物焼結体スパッタリングターゲット
2)酸化物の成分組成においてLaに対するAlのモル比が1.05〜1.2であることを特徴とする上記1)記載の酸化物焼結体スパッタリングターゲット
3)相対密度98%以上、最大粒径が10μm以下であることを特徴とする上記1)又は2)記載の酸化物焼結体スパッタリングターゲット、を提供する。
The present invention
1) A sintered sputtering target composed of an oxide (lanthanum aluminate) of lanthanum (La) and aluminum (Al), wherein the molar ratio of Al to La is 1.01 to 2 in the component composition of the oxide. Oxide sintered sputtering target characterized in that there is 2) The molar ratio of Al to La in the component composition of the oxide is 1.05 to 1.2. Conjugate sputtering target 3) The oxide sintered sputtering target according to 1) or 2) above, wherein the relative density is 98% or more and the maximum particle size is 10 μm or less.

本発明は、さらに
4)原料粉末としてLa(CO粉末とAl粉末を使用し、Laに対するAlのモル比が1.01〜2となるように配合し混合した後、この混合粉末を大気中で加熱合成し、次にこの合成材料を粉砕して粉末とした後、この合成粉末をホットプレスして焼結体とすることを特徴とする成分組成においてLaに対するAlのモル比が1.01〜2である酸化物(ランタンアルミネート)焼結体スパッタリングターゲットの製造方法
5)La(CO粉末とAl粉末を使用し、Laに対するAlのモル比が1.05〜1.2となるように配合し、焼結することを特徴とする成分組成においてLaに対するAlのモル比が1.05〜1.2である上記4)記載の酸化物焼結体スパッタリングターゲットの製造方法
6)混合を湿式ボールミルにより行い、合成を大気中1350〜1550°C、5〜25時間加熱して行うことを特徴とする上記4)又は5)記載の酸化物焼結体スパッタリングターゲットの製造方法
7)ホットプレスを1300〜1500°C、真空中、1〜5時間で行うことを特徴とする上記4)〜6)のいずれか一項に記載の酸化物焼結体スパッタリングターゲットの製造方法、を提供する。
The present invention further uses 4) La 2 (CO 3 ) 3 powder and Al 2 O 3 powder as raw material powder, and after mixing and mixing so that the molar ratio of Al to La is 1.01-2, The mixed powder is heated and synthesized in the atmosphere, and then the synthetic material is pulverized into a powder, and then the synthetic powder is hot-pressed to form a sintered body. Method for producing oxide (lanthanum aluminate) sintered sputtering target having a molar ratio of 1.01 to 2 5) Using La 2 (CO 3 ) 3 powder and Al 2 O 3 powder, the mole of Al with respect to La The oxide according to the above 4), wherein the molar ratio of Al to La is 1.05 to 1.2 in the component composition characterized in that it is blended so as to have a ratio of 1.05 to 1.2 and sintered. Sintered body sputtering machine Production method of target 6) Oxide sintered sputtering according to 4) or 5) above, wherein the mixing is performed by a wet ball mill and the synthesis is performed by heating in the atmosphere at 1350 to 1550 ° C. for 5 to 25 hours. Method for producing target 7) Oxide sintered sputtering target according to any one of 4) to 6) above, wherein hot pressing is performed at 1300 to 1500 ° C. in a vacuum for 1 to 5 hours. A manufacturing method is provided.

8)成分組成においてLaに対するAlのモル比が1.01〜2であるランタンとアルミニウムの酸化物(ランタンアルミネート)からなるゲート絶縁膜
9)成分組成においてLaに対するAlのモル比が1.05〜1.2であることを特徴とする上記8)記載のゲート絶縁膜
10)成分組成においてLaに対するAlのモル比が1.01〜2であるランタンとアルミニウムの酸化物からなるゲート絶縁膜を形成した後、50〜300°Cで加熱処理することを特徴とするゲート絶縁膜の熱処理方法
11)成分組成においてLaに対するAlのモル比が1.05〜1.2のランタンとアルミニウムの酸化物からなる絶縁膜であることを特徴とする上記10)記載のゲート絶縁膜の熱処理方法、を提供する。
8) Gate insulating film made of lanthanum and aluminum oxide (lanthanum aluminate) in which the molar ratio of Al to La is 1.01 to 2 in the component composition 9) The molar ratio of Al to La is 1.05 in the component composition A gate insulating film made of lanthanum and aluminum oxide having a molar ratio of Al to La of 1.01 to 2 in the component composition, After forming, heat treatment method of gate insulating film characterized by heat treatment at 50 to 300 ° C. 11) Oxide of lanthanum and aluminum whose molar ratio of Al to La is 1.05 to 1.2 in component composition A method for heat-treating a gate insulating film as described in 10) above, which is an insulating film comprising:

従来のランタン(酸化ランタン)スパッタリングターゲットを、空気中に長時間放置しておくと、空気中の水分と反応して水酸化物の白い粉で覆われるという状態になり、正常なスパッタリングができないという問題が起きるが、本発明のランタンとアルミニウムの酸化物からなるターゲットは、このような問題を発生しない。
また、化学量論的成分組成であるLaAlOよりもAlの量が過剰になっているので、これによって、ランタンとアルミニウムの酸化物に含有する遊離酸素又は余剰酸素を、酸化力が強いAlにより固定し、フリーの酸素がスパッタリング成膜したLaAlOの膜中を移動し、Siとの界面で反応して有害なSiOを形成することを防止できる、という大きな効果を有する。
When a conventional lanthanum (lanthanum oxide) sputtering target is left in the air for a long time, it reacts with moisture in the air and is covered with a white powder of hydroxide, and normal sputtering cannot be performed. Although a problem occurs, the target made of an oxide of lanthanum and aluminum of the present invention does not cause such a problem.
In addition, since the amount of Al is excessive as compared with LaAlO 3 which is the stoichiometric component composition, free oxygen or excess oxygen contained in the oxide of lanthanum and aluminum is thereby reduced by Al having a strong oxidizing power. It has a great effect that it can be prevented that free oxygen moves in the LaAlO 3 film formed by sputtering and reacts at the interface with Si to form harmful SiO 2 .

Laに対するAlのモル比が1.07である酸化物焼結体をCu製のバッキングプレートに接合したターゲットを示す外観図(写真)である。It is an external view (photograph) which shows the target which joined the oxide sintered compact whose molar ratio of Al with respect to La is 1.07 to the backing plate made from Cu. Laに対するAlのモル比が1.07である酸化物焼結体ターゲットの組織観察した結果を示す顕微鏡写真である。It is a microscope picture which shows the structure observation result of the oxide sintered compact target whose molar ratio of Al with respect to La is 1.07. Laに対するAlのモル比が1.07である酸化物焼結体の端材の浸水テストした結果を示す外観図(写真)である。It is an external view (photograph) which shows the result of the water immersion test of the end material of the oxide sintered compact whose molar ratio of Al with respect to La is 1.07. Laに対するAlのモル比が1.07である酸化物焼結体の浸水テスト前と浸水テスト24時間後の端材のX線回折(XRD)による2θの強度(CPS)を測定した結果を示す図である。The result of measuring the intensity (CPS) of 2θ by X-ray diffraction (XRD) of the end material before and 24 hours after the immersion test of the oxide sintered body in which the molar ratio of Al to La is 1.07 is shown. FIG.

本発明の酸化物焼結体スパッタリングターゲットは、ランタン(La)とアルミニウム(Al)の酸化物からなる焼結体スパッタリングターゲットであり、当該酸化物の成分組成においてLaに対するAlのモル比が1.01〜2、より好ましくはAlのモル比が1.05〜1.2とするものである。
この組成比から明らかなように、化学量論的組成比よりもAlが過剰となっている。すなわち、Laに対するAlのモル比が1.01〜2となっている。Laに対するAlのモル比が1.01よりも少ないと、酸素をAlによって捕捉することができず、効果を達成できない。また、Laに対するAlのモル比が2を超えると、LaAlOとしての特性、特にHigh−k ゲート絶縁膜用酸化物材料としての、優れた特性を維持できなくなるので、上限値を上記のLaに対するAlのモル比を2とした。さらに推奨される条件は、Laに対するAlのモル比が1.05〜1.2である。
The oxide sintered body sputtering target of the present invention is a sintered body sputtering target made of an oxide of lanthanum (La) and aluminum (Al), and the molar ratio of Al to La in the component composition of the oxide is 1. 01 to 2, more preferably the molar ratio of Al is 1.05 to 1.2.
As is apparent from this composition ratio, Al is in excess of the stoichiometric composition ratio. That is, the molar ratio of Al to La is 1.01-2. If the molar ratio of Al to La is less than 1.01, oxygen cannot be captured by Al and the effect cannot be achieved. If the molar ratio of Al to La exceeds 2, the characteristics as LaAlO 3 , particularly the excellent characteristics as an oxide material for a High-k gate insulating film, cannot be maintained. The molar ratio of Al was 2. Further recommended conditions are a molar ratio of Al to La of 1.05-1.2.

この酸化物焼結体ターゲットの製造に際しては、原料粉末としてLa(CO粉末とAl粉末を使用し、Laに対するAlのモル比が1.01〜2又はLaに対するAlのモル比が1.05〜1.2となるように配合し、これを混合した後、大気中で加熱合成し、次にこの合成材料を粉砕して粉末とし、さらにこの合成粉末をホットプレスして焼結体とすることにより製造することができる。
混合は湿式ボールミルにより行い、合成を大気中1350〜1550°C、5〜25時間程度、加熱して行うことが推奨される製造条件である。また、ホットプレスを1300〜1500°C、真空中、1〜5時間で行うことも焼結条件として推奨される製造条件である。以上は、合成及び焼結を能率的に行う条件である。したがって、これ以外の条件とすること及び他の条件を付加することは、当然なし得ることは理解されるべきことである。
In the production of this oxide sintered compact target, La 2 (CO 3 ) 3 powder and Al 2 O 3 powder are used as the raw material powder, and the molar ratio of Al to La is 1.01-2 or Al to La The mixture was blended so that the molar ratio was 1.05 to 1.2, mixed, and then heated and synthesized in the atmosphere. Next, the synthetic material was pulverized into powder, and this synthetic powder was further hot pressed. Can be manufactured by forming a sintered body.
It is recommended that the mixing be performed by a wet ball mill and the synthesis be performed by heating in the atmosphere at 1350 to 1550 ° C. for about 5 to 25 hours. In addition, performing the hot pressing in 1300 to 1500 ° C. in a vacuum for 1 to 5 hours is also a recommended manufacturing condition as a sintering condition. The above are the conditions for efficiently performing synthesis and sintering. Therefore, it should be understood that other conditions and other conditions can be added.

これによって、相対密度98%以上、最大粒径が10μm以下である酸化物焼結体スパッタリングターゲットを得ることができる。密度の向上と結晶粒径を微細化することは、ノジュールやパーティクルの発生を抑制でき、均一な成膜を行うことができる好ましい条件である。
また、一般にランタンに含有される希土類元素には、ランタン(La)以外に、Sc,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luがあるが、特性が似ているために、Laから分離精製することが難しい。特に、CeはLaと近似しているので、Ceの低減化は容易ではない。
Thereby, an oxide sintered sputtering target having a relative density of 98% or more and a maximum particle size of 10 μm or less can be obtained. Improving the density and reducing the crystal grain size are preferable conditions that can suppress the generation of nodules and particles and can form a uniform film.
In addition to lanthanum (La), rare earth elements generally contained in lanthanum are Sc, Y, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Although there is Lu, it is difficult to separate and purify from La due to similar characteristics. In particular, since Ce approximates La, it is not easy to reduce Ce.

しかしながら、これらの希土類元素は、性質が近似しているが故に、希土類元素合計で1000wtppm未満であれば、電子部品材料としての使用に際し、特に問題となるものでないことは理解されるであろう。したがって、本願発明におけるランタンの使用は、このレベルの希土類元素の含有は許容される。
これ以外にも、不可避的に混入する不純物が存在する。分析値を表1に示す。特に、Zrが多量(4200wtppm)に含有されるが、このような不純物が存在しても、なおかつLaに対するAlのモル比が1.05〜1.2であるランタンとアルミニウムの酸化物からなるゲート絶縁膜として有効である。しかし、ランタン元素の特性を活かすためには、より低減させることは、好ましい条件である。本願発明は、これらを包含するものである。
However, since these rare earth elements have similar properties, it will be understood that when the total rare earth elements are less than 1000 wtppm, they are not particularly problematic when used as electronic component materials. Therefore, the use of lanthanum in the present invention is allowed to contain this level of rare earth elements.
In addition to this, there are impurities inevitably mixed. The analytical values are shown in Table 1. In particular, a gate composed of an oxide of lanthanum and aluminum that contains a large amount (4200 wtppm) of Zr but has such an impurity, and has a molar ratio of Al to La of 1.05 to 1.2. It is effective as an insulating film. However, in order to make use of the characteristics of the lanthanum element, further reduction is a preferable condition. The present invention includes these.

一般に、ガス成分として、C、N、O、S、Hが存在する。酸素は上記に示すように有害成分として、固定できるが、それ以外のガス成分は、特に問題とならない。これらは単独の元素として存在する場合もあるが、多くは化合物(CO、CO、SO等)又は構成元素との化合物の形態で存在することもある。これらのガス成分元素は原子量及び原子半径が小さいので、多量に含有されない限り、不純物として存在しても、材料の特性に大きく影響を与えることは少ない。したがって、本願発明のランタンの純度は、希土類、Zr、ガス成分を除く純度が3N以上とすることが望ましい。 Generally, C, N, O, S, and H exist as gas components. As shown above, oxygen can be fixed as a harmful component, but other gas components are not particularly problematic. These may exist as single elements, but many may exist in the form of compounds (CO, CO 2 , SO 2 etc.) or compounds with constituent elements. Since these gas component elements have a small atomic weight and atomic radius, even if they are present as impurities, they do not significantly affect the properties of the material unless they are contained in large amounts. Therefore, the purity of the lanthanum of the present invention is preferably 3N or more excluding rare earth, Zr, and gas components.

上記ターゲットを用いてスパッタリングすることにより、成分組成においてLaに対するAlのモル比が1.01〜2、さらには成分組成においてLaに対するAlのモル比が1.05〜1.2であるランタンとアルミニウムの酸化物からなるゲート絶縁膜が形成できる。ターゲットの成分組成は、成膜に直接反映される。さらにこのように、形成した成分組成においてLaに対するAlのモル比が1.01〜2である又は成分組成においてLaに対するAlのモル比が1.05〜1.2であるランタンとアルミニウムの酸化物からなるゲート絶縁膜を形成した後、50〜300°Cで加熱処理することができる。
これは膜中に存在するフリーの酸素を、さらに固定しようとするもので、付加的に実施できる条件である。必須のものではないことを理解されるべきことである。特に、次世代のMOSFET等の製造条件において、このような加熱を嫌う製造条件においては、不要な条件である。
By sputtering using the above target, lanthanum and aluminum whose component composition has a molar ratio of Al to La of 1.01 to 2, and further, in the component composition, the molar ratio of Al to La is 1.05 to 1.2. A gate insulating film made of the above oxide can be formed. The component composition of the target is directly reflected in the film formation. Further, the oxide of lanthanum and aluminum whose molar ratio of Al to La is 1.01-2 in the component composition thus formed or whose molar ratio of Al to La is 1.05-1.2 in the component composition. After the gate insulating film is formed, heat treatment can be performed at 50 to 300 ° C.
This is a condition that free oxygen existing in the film is further fixed and can be additionally implemented. It should be understood that it is not essential. In particular, in the manufacturing conditions for next-generation MOSFETs and the like, the manufacturing conditions that dislike such heating are unnecessary conditions.

次に、実施例について説明する。なお、この実施例は理解を容易にするためのものであり、本発明を制限するものではない。すなわち、本発明の技術思想の範囲内における、他の実施例及び変形は、本発明に含まれるものである。   Next, examples will be described. In addition, this Example is for understanding easily and does not restrict | limit this invention. That is, other embodiments and modifications within the scope of the technical idea of the present invention are included in the present invention.

(実施例1)
原料粉末としてLa(CO粉末とAl粉末を使用し、Laに対 するAlのモル比が1.07となるように配合し、混合を湿式ボールミルにより混合した。この混合粉末を大気中で1450°C、20時間加熱して合成した。この合成材料を、ボールミルにより16時間湿式粉砕して粉末とした。この合成粉末を真空中で、1400°Cで2時間ホットプレスして焼結体とした。焼結体のサイズはφ190mmであり、プレス圧は300kg/cmで実施した。これによって、成分組成においてLaに対するAlのモル比が1.07である酸化物焼結体を得た。これを機械加工してスパッタリングターゲットとした。機械加工後のターゲットサイズはφ164mm×6mmtであった。また、ターゲットの相対密度は98.9%であった(6.436g/cm:理論密度は6.51g/cm)。
Example 1
La 2 (CO 3 ) 3 powder and Al 2 O 3 powder were used as raw material powders, blended so that the molar ratio of Al to La was 1.07, and mixed by a wet ball mill. This mixed powder was synthesized by heating in the atmosphere at 1450 ° C. for 20 hours. This synthetic material was wet pulverized with a ball mill for 16 hours to obtain a powder. This synthetic powder was hot pressed in vacuum at 1400 ° C. for 2 hours to obtain a sintered body. The size of the sintered body was φ190 mm, and the press pressure was 300 kg / cm 2 . As a result, an oxide sintered body having a component composition with a molar ratio of Al to La of 1.07 was obtained. This was machined to obtain a sputtering target. The target size after machining was φ164 mm × 6 mmt. The relative density of the target was 98.9% (6.436 g / cm 3 : theoretical density was 6.51 g / cm 3 ).

さらにこれを大気中でCu製のバッキングプレートに接合した。Cu製のバッキングプレートに接合したターゲットを図1に示す。また、ターゲットの組織観察した結果を図2に示す。この図2は、ターゲットの表面をランダムに5箇所を抽出し、その結果を示したものである。この図2に示すように、平均粒径は0.885〜1.64μm、最大粒径は2.33〜4.4μm、最小粒径0.2μm、ポアの面積率は0.053〜0.66%の範囲にあり、高密度で微細な組織が確認できた。   Further, this was joined to a Cu backing plate in the atmosphere. A target bonded to a Cu backing plate is shown in FIG. Moreover, the result of having observed the structure | tissue of the target is shown in FIG. FIG. 2 shows the results of extracting five locations on the target surface at random. As shown in FIG. 2, the average particle size is 0.885 to 1.64 μm, the maximum particle size is 2.33 to 4.4 μm, the minimum particle size is 0.2 μm, and the pore area ratio is 0.053 to 0.3. It was in the range of 66%, and a dense and fine structure could be confirmed.

このようにして作製した成分組成においてLaに対するAlのモル比が1.07である酸化物焼結体の端材の浸水テストした結果を、図3に示す。図3は、左が浸水テスト前であり、右が浸水テスト24時間後の結果である。この図3に示すように、24時間の浸水テスト後でも、酸化又は水酸化による腐食の痕跡は全くなかった。
通常、ランタン(酸化ランタン)は、大気中に1時間放置するだけでも、酸化又は水酸化による腐食が急速に進み、最初は白色にさらに黒色に変色が見られるが、このLaに対するAlのモル比が1.07である酸化物焼結体に腐食は観察されなかった。
FIG. 3 shows the result of the immersion test of the end material of the oxide sintered body having a molar ratio of Al to La of 1.07 in the component composition thus prepared. FIG. 3 shows the results before the water immersion test on the left and the results 24 hours after the water immersion test on the right. As shown in FIG. 3, there was no evidence of corrosion due to oxidation or hydroxylation even after the 24-hour immersion test.
Usually, lanthanum (lanthanum oxide) is rapidly corroded by oxidation or hydroxylation even if it is left in the atmosphere for 1 hour. At first, the color changes from white to black, but the molar ratio of Al to La Corrosion was not observed in the oxide sintered body having an A of 1.07.

さらに、これを評価するために、前記浸水テスト前と浸水テスト24時間後の端材のX線回折(XRD)による2θの強度(CPS)を測定した。この結果を、図4に示す。図4に示すように、浸水テスト前と浸水テスト24時間後の端材、それが変わることがなかった。これによっても、酸化又は水酸化による腐食が進まないことが確認できた。
さらに、このターゲットを用い高周波スパッタリングを行い、Si基板上にLaに対するAlのモル比が1.07である酸化物の薄膜を形成した。この結果、SiとLaに対するAlのモル比が1.07である酸化物の薄膜との界面には、Si酸化膜層は全く観察されなかった。これは、ゲート絶縁膜の材料として有用であることを示すものである。
Furthermore, in order to evaluate this, the 2θ strength (CPS) was measured by X-ray diffraction (XRD) of the end material before the immersion test and 24 hours after the immersion test. The result is shown in FIG. As shown in FIG. 4, the end material before the immersion test and 24 hours after the immersion test did not change. This also confirmed that corrosion due to oxidation or hydroxylation did not progress.
Furthermore, high-frequency sputtering was performed using this target, and an oxide thin film having a molar ratio of Al to La of 1.07 was formed on a Si substrate. As a result, no Si oxide film layer was observed at the interface with the oxide thin film having a molar ratio of Al to Si of 1.07. This indicates that it is useful as a material for the gate insulating film.

(実施例2〜実施例8)
原料粉末としてLa(CO粉末とAl粉末を使用し、Laに対するAlのモル比が1.01、1.02、1.05、1.1、1.2、1.25、2.0となるように配合し、混合を湿式ボールミルにより混合した。製造条件は、実施例1と同一とした。この結果、実施例1と同様の組織及び浸水テスト結果が得られた。
Laに対するAlのモル比は、Laに対するAlのモル比が最小限1.01を維持していれば、腐食の特に影響するものではないが、Alの多量の含有は、Laのもつ特性を低下させる傾向があるので、Laに対するAlのモル比の上限値は、2.0とする必要がある。
(Example 2 to Example 8)
La 2 (CO 3 ) 3 powder and Al 2 O 3 powder are used as raw material powder, and the molar ratio of Al to La is 1.01, 1.02, 1.05, 1.1, 1.2, 1. It mix | blended so that it might become 25 and 2.0, and mixing was mixed with the wet ball mill. The manufacturing conditions were the same as in Example 1. As a result, the same structure and water immersion test results as in Example 1 were obtained.
The molar ratio of Al to La is not particularly affected by corrosion as long as the molar ratio of Al to La is maintained at a minimum of 1.01, but inclusion of a large amount of Al decreases the characteristics of La. Therefore, the upper limit of the molar ratio of Al to La needs to be 2.0.

(比較例1)
原料粉末としてLa(CO粉末とAl粉末を使用し、Laに対するAlのモル比が1.00となるように配合し、混合を湿式ボールミルにより混合した。以下の工程は、実施例1と同様である。すなわち、この混合粉末を大気中で1450°C、20時間加熱して合成した。この合成材料を、ボールミルにより16時間湿式粉砕して粉末とした。
この合成粉末を真空中で、1400°Cで2時間ホットプレスして焼結体とした。焼結体のサイズはφ190mmであり、プレス圧は300kg/cmで実施した。これによって酸化物焼結体を得た。この後も、この酸化物焼結体を用いて、実施例1と同様の工程によりターゲットを作製すると共に、酸化物焼結体ターゲットの端材を用いて浸水テストを行った。
(Comparative Example 1)
La 2 (CO 3 ) 3 powder and Al 2 O 3 powder were used as raw material powders, blended so that the molar ratio of Al to La was 1.00, and mixed by a wet ball mill. The following steps are the same as in Example 1. That is, the mixed powder was synthesized by heating in the atmosphere at 1450 ° C. for 20 hours. This synthetic material was wet pulverized with a ball mill for 16 hours to obtain a powder.
This synthetic powder was hot pressed in vacuum at 1400 ° C. for 2 hours to obtain a sintered body. The size of the sintered body was φ190 mm, and the press pressure was 300 kg / cm 2 . As a result, an oxide sintered body was obtained. Thereafter, using this oxide sintered body, a target was produced by the same process as in Example 1, and a water immersion test was performed using the end material of the oxide sintered body target.

この比較例1では、一部にLaリッチの化合物を生じた。この結果、若干ではあるが、作製したターゲットを空気中に放置すると粉化を生じ、また浸水試験でも、同様に粉化が発生した。
このことから、化学量論的成分組成であるLaAlOよりも、Alの量を過剰にすることが、遊離酸素や余剰酸素を捕捉する効果とともに、粉化現象を抑制する上でも、有効であることが確認できた。
In Comparative Example 1, a La-rich compound was partially produced. As a result, pulverization occurred when the produced target was left in the air, and pulverization occurred in the water immersion test.
From this fact, it is effective to make the amount of Al excessive as compared with LaAlO 3 which is a stoichiometric component composition, in addition to the effect of capturing free oxygen and excess oxygen, and also to suppress the pulverization phenomenon. I was able to confirm.

従来のランタン(酸化ランタン)スパッタリングターゲットを、空気中に長時間放置しておくと、空気中の水分と反応して水酸化物の白い粉で覆われるという状態になり、正常なスパッタリングができないという問題が起きるが、本発明のランタンとアルミニウムの酸化物からなるターゲットは、このような問題を発生しない。
また、化学量論的成分組成であるLaAlOよりもAlの量が過剰になっているので、これによって、ランタンとアルミニウムの酸化物に含有する遊離酸素又は余剰酸素を、酸化力が強いAlにより固定し、フリーの酸素がスパッタリング成膜したLaAlOの膜中を移動し、Siとの界面で反応して有害なSiOの形成を防止できる、という大きな効果を有する。したがって、このターゲットを用いて成膜することは、均一な膜を形成する上で、大きな効果を有すると共に、形成された薄膜は、特にシリコン基板に近接して配置される電子材料として、電子機器の機能を低下又は乱すことがなく、ゲート絶縁膜の材料として有用である。
When a conventional lanthanum (lanthanum oxide) sputtering target is left in the air for a long time, it reacts with moisture in the air and is covered with a white powder of hydroxide, and normal sputtering cannot be performed. Although a problem occurs, the target made of an oxide of lanthanum and aluminum of the present invention does not cause such a problem.
In addition, since the amount of Al is excessive as compared with LaAlO 3 which is the stoichiometric component composition, free oxygen or excess oxygen contained in the oxide of lanthanum and aluminum is thereby reduced by Al having a strong oxidizing power. It has a great effect that it can be fixed and free oxygen moves through the LaAlO 3 film formed by sputtering and reacts at the interface with Si to prevent the formation of harmful SiO 2 . Therefore, forming a film using this target has a great effect on the formation of a uniform film, and the formed thin film is an electronic material, particularly as an electronic material disposed close to a silicon substrate. It is useful as a material for a gate insulating film without lowering or disturbing the function of

Claims (11)

ランタン(La)とアルミニウム(Al)の酸化物からなる焼結体スパッタリングターゲットであって、当該酸化物の成分組成がLaAl(1.01−2)であることを特徴とする酸化物焼結体スパッタリングターゲット。A sintered sputtering target comprising an oxide of lanthanum (La) and aluminum (Al), wherein the oxide has a component composition of LaAl (1.01-2) O 3. Combined sputtering target. 酸化物の成分組成がLaAl(1.05−1.2)であることを特徴とする請求項1記載の酸化物焼結体スパッタリングターゲット。2. The oxide sintered sputtering target according to claim 1, wherein the component composition of the oxide is LaAl 2 (1.05-1.2) 2 O 3 . 相対密度98%以上、最大粒径が10μm以下であることを特徴とする請求項1又は2記載の酸化物焼結体スパッタリングターゲット。 The oxide sintered compact sputtering target according to claim 1 or 2, wherein the relative density is 98% or more and the maximum particle size is 10 µm or less. 原料粉末としてLa(CO粉末とAl粉末を使用し、AlとLaのモル比が1.01〜2となるように配合し混合した後、この混合粉末を大気中で加熱合成し、次にこの合成材料を粉砕して粉末とした後、この合成粉末をホットプレスして焼結体とすることを特徴とする成分組成がLaAl(1.01−2)である酸化物焼結体スパッタリングターゲットの製造方法。La 2 (CO 3 ) 3 powder and Al 2 O 3 powder are used as raw material powder, mixed and mixed so that the molar ratio of Al to La is 1.01-2, and then this mixed powder is used in the atmosphere. The composition composition is characterized in that LaAl (1.01-2) O 3 is obtained by heat synthesis and then pulverizing the synthetic material into a powder, and then hot-pressing the synthetic powder to form a sintered body. A manufacturing method of a certain oxide sintered compact sputtering target. La(CO粉末とAl粉末を使用し、AlとLaのモル比が1.05〜1.2となるように配合し、焼結することを特徴とする成分組成がLaAl(1.05−1.2)である請求項4記載の酸化物焼結体スパッタリングターゲットの製造方法。A component composition characterized by using La 2 (CO 3 ) 3 powder and Al 2 O 3 powder, blending so that the molar ratio of Al to La is 1.05 to 1.2, and sintering. LaAl (1.05-1.2) O 3 in which it claims 4 oxide sintered sputtering target manufacturing method according. 混合を湿式ボールミルにより行い、合成を大気中1350〜1550°C、5〜25時間加熱して行うことを特徴とする請求項4又は5記載の酸化物焼結体スパッタリングターゲットの製造方法。   The method for producing a sintered oxide sputtering target according to claim 4 or 5, wherein the mixing is performed by a wet ball mill, and the synthesis is performed by heating in the atmosphere at 1350 to 1550 ° C for 5 to 25 hours. ホットプレスを1300〜1500°C、真空中、1〜5時間で行うことを特徴とする請求項4〜6のいずれか一項に記載の酸化物焼結体スパッタリングターゲットの製造方法。   Hot press is performed in 1300-1500 degreeC and a vacuum for 1 to 5 hours, The manufacturing method of the oxide sintered compact sputtering target as described in any one of Claims 4-6 characterized by the above-mentioned. 成分組成比がLaAl(1.01−2)であるランタンとアルミニウムの酸化物からなるゲート絶縁膜。A gate insulating film made of an oxide of lanthanum and aluminum having a component composition ratio of LaAl (1.01-2) O 3 . 成分組成比がLaAl(1.05−1.2)であることを特徴とする請求項8記載のゲート絶縁膜。The gate insulating film according to claim 8, wherein a component composition ratio is LaAl (1.05-1.2) O 3 . 成分組成がLaAl(1.01−2)であるランタンとアルミニウムの酸化物からなるゲート絶縁膜を形成した後、50〜300°Cで加熱処理することを特徴とするゲート絶縁膜の熱処理方法。A heat treatment of the gate insulating film, wherein a heat treatment is performed at 50 to 300 ° C. after forming a gate insulating film made of an oxide of lanthanum and aluminum whose component composition is LaAl (1.01-2) O 3 Method. 成分組成がLaAl(1.05−1.2)のランタンとアルミニウムの酸化物からなる絶縁膜であることを特徴とする請求項10記載のゲート絶縁膜の熱処理方法。 11. The heat treatment method for a gate insulating film according to claim 10, wherein the insulating film is made of an oxide of lanthanum of LaAl (1.05-1.2) O 3 and aluminum.
JP2011512326A 2009-05-07 2010-04-23 Oxide sintered body sputtering target and method of manufacturing the same Expired - Fee Related JP5234861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011512326A JP5234861B2 (en) 2009-05-07 2010-04-23 Oxide sintered body sputtering target and method of manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009112629 2009-05-07
JP2009112629 2009-05-07
PCT/JP2010/057231 WO2010128629A1 (en) 2009-05-07 2010-04-23 Oxide sintered body sputtering target, method for producing the target, gate insulating film formed from oxide, and method for heat-treating the gate insulating film
JP2011512326A JP5234861B2 (en) 2009-05-07 2010-04-23 Oxide sintered body sputtering target and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPWO2010128629A1 true JPWO2010128629A1 (en) 2012-11-01
JP5234861B2 JP5234861B2 (en) 2013-07-10

Family

ID=43050131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011512326A Expired - Fee Related JP5234861B2 (en) 2009-05-07 2010-04-23 Oxide sintered body sputtering target and method of manufacturing the same

Country Status (3)

Country Link
JP (1) JP5234861B2 (en)
TW (1) TWI480402B (en)
WO (1) WO2010128629A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6670996B2 (en) 2014-09-26 2020-03-25 パナソニックIpマネジメント株式会社 Display device and display method
CN116497324A (en) * 2023-06-09 2023-07-28 深圳市汉嵙新材料技术有限公司 Composite perovskite target material, preparation method thereof and preparation method of perovskite solar cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920009654B1 (en) * 1990-07-12 1992-10-22 재단법인 한국전자통신연구소 Lanthanum aluminate thin film manufacturing sputtering target manufacture method
JP2008243996A (en) * 2007-03-26 2008-10-09 Toshiba Corp Semiconductor device and manufacturing method thereof
JP5057834B2 (en) * 2007-04-25 2012-10-24 株式会社東芝 Method for producing lanthanoid aluminate film
JP5178152B2 (en) * 2007-11-05 2013-04-10 株式会社東芝 Complementary semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
WO2010128629A1 (en) 2010-11-11
JP5234861B2 (en) 2013-07-10
TWI480402B (en) 2015-04-11
TW201042068A (en) 2010-12-01

Similar Documents

Publication Publication Date Title
EP3244474B1 (en) Oriented apatite-type oxide ion conductor and method for manufacturing same
Li et al. Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range
JP5301541B2 (en) Lanthanum oxide-based sintered body, sputtering target comprising the sintered body, method for producing lanthanum oxide-based sintered body, and method for producing sputtering target by the same production method
Li et al. Synthesis and electrical properties of apatite-type La10Si6O27
WO2018195011A1 (en) Lithium-garnet solid electrolyte composite, tape articles, and methods thereof
Kim et al. Thermoelectric properties of La3+ and Ce3+ co-doped CaMnO3 prepared by tape casting
JP5301542B2 (en) Oxide sintered body, sputtering target comprising the sintered body, method for producing the sintered body, and method for producing the sintered sputtering target gate
Liu et al. Effect of Sm substitution for Gd on the electrical conductivity of fluorite-type Gd2Zr2O7
Polat et al. Thermo-electrical and structural properties of Gd2O3 and Lu2O3 double-doped Bi2O3
Liu et al. Ultrahigh electrical conductivities and low lattice thermal conductivities of La, Dy, and Nb Co-doped SrTiO3 thermoelectric materials with complex structures
Chou et al. The effects of MgO doping and sintering temperature on the microstructure of the lead-free piezoelectric ceramic of Bi0. 5Na0. 5TiO3
Fulgêncio et al. Misfit Ca-cobaltite from a mixture of mollusk shells and cobalt oxide as potential SOFC cathode material
Cheng et al. A strategy for improving sinterability and electrical properties of gadolinium-doped ceria electrolyte using calcium oxide additive
CA2801857C (en) Aluminium nitride substrate for circuit board and production method thereof
JP5234861B2 (en) Oxide sintered body sputtering target and method of manufacturing the same
CN113548893B (en) Lithium garnet composite ceramic electrolyte
US8454860B2 (en) Aluminum-containing zinc oxide-based n-type thermoelectric conversion material
Fisher et al. Inhibition of abnormal grain growth in BaTiO3 by addition of Al2O3
Katsuyama et al. Synthesis of NaxCo2O4 by the hydrothermal hot-pressing and its thermoelectric properties
CN109355528A (en) A kind of TiCx-Al2O3/Cu based composites and its preparation method and application
JP5931413B2 (en) P-type thermoelectric conversion material, method for producing the same, thermoelectric conversion element, and thermoelectric conversion module
Zhang et al. Thermoelectric properties of Yb-La-Nb-doped SrTiO3
CN115991600B (en) Lithium metal oxide/lithium garnet composite film and preparation method thereof
Choi et al. Synthesis and Characterization of Nanocrystalline Gd and Tb Co-Doped Ceria-Based Electrolyte Materials for IT-SOFC
JPH0566339B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees