JPWO2010116764A1 - Radio base station apparatus, radio terminal apparatus, frequency resource allocation method, and transmission signal forming method - Google Patents

Radio base station apparatus, radio terminal apparatus, frequency resource allocation method, and transmission signal forming method Download PDF

Info

Publication number
JPWO2010116764A1
JPWO2010116764A1 JP2011508260A JP2011508260A JPWO2010116764A1 JP WO2010116764 A1 JPWO2010116764 A1 JP WO2010116764A1 JP 2011508260 A JP2011508260 A JP 2011508260A JP 2011508260 A JP2011508260 A JP 2011508260A JP WO2010116764 A1 JPWO2010116764 A1 JP WO2010116764A1
Authority
JP
Japan
Prior art keywords
band
frequency
unit
srs
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011508260A
Other languages
Japanese (ja)
Other versions
JP5474053B2 (en
Inventor
岩井 敬
敬 岩井
西尾 昭彦
昭彦 西尾
今村 大地
大地 今村
中尾 正悟
正悟 中尾
佳彦 小川
佳彦 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2011508260A priority Critical patent/JP5474053B2/en
Publication of JPWO2010116764A1 publication Critical patent/JPWO2010116764A1/en
Application granted granted Critical
Publication of JP5474053B2 publication Critical patent/JP5474053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Abstract

上り回線において非連続帯域送信及びSRS送信が採用される場合に、チャネル推定精度の低下を防止できる無線基地局装置及び無線端末装置。基地局装置(100)において、SRS抽出部(103)にSRSの受信帯域を設定し、CQI推定部(104)及び割当部(105)に周波数割当単位(RBG)を設定する割当単位設定部(106)が、SRS受信帯域の端の周波数位置をいずれかの周波数割当単位の端の周波数位置と一致させ、リファレンス信号の受信帯域幅を周波数割当単位の帯域幅の自然数倍とする。端末装置(200)において、送信帯域及び周波数割当単位(RBG)を設定する帯域情報設定部(204)が、送信帯域の端の周波数位置をいずれかの周波数割当単位の端の周波数位置と一致させ、SRSの送信帯域幅を周波数割当単位の帯域幅の自然数倍とする。A radio base station apparatus and a radio terminal apparatus capable of preventing a decrease in channel estimation accuracy when discontinuous band transmission and SRS transmission are employed in an uplink. In the base station apparatus (100), an allocation unit setting unit (sets an SRS reception band in the SRS extraction unit (103) and sets a frequency allocation unit (RBG) in the CQI estimation unit (104) and the allocation unit (105) ( 106) matches the frequency position of the end of the SRS reception band with the frequency position of the end of any frequency allocation unit, and makes the reception bandwidth of the reference signal a natural number multiple of the bandwidth of the frequency allocation unit. In the terminal device (200), the band information setting unit (204) for setting the transmission band and the frequency allocation unit (RBG) matches the frequency position of the end of the transmission band with the frequency position of the end of any frequency allocation unit. The SRS transmission bandwidth is a natural number multiple of the bandwidth of the frequency allocation unit.

Description

本発明は、無線基地局装置、無線端末装置、周波数リソース割当方法、及び、送信信号形成方法に関する。   The present invention relates to a radio base station apparatus, a radio terminal apparatus, a frequency resource allocation method, and a transmission signal forming method.

3GPP LTE(3rd Generation Partnership Project Long−term Evolution)の発展形であるLTE−A(LTE−Advanced)の上り回線では、セクタスループット性能の改善のために、連続帯域送信に加えて、「非連続帯域送信」を用いることが検討されている(非特許文献1参照)。   In the uplink of LTE-A (LTE-Advanced), which is an evolution of 3GPP LTE (3rd Generation Partnership Project Long-term Evolution), in addition to continuous band transmission, in addition to non-continuous band transmission, The use of “transmission” has been studied (see Non-Patent Document 1).

非連続帯域送信は、データ信号および参照信号を広い帯域に分散された非連続な周波数帯域に割り当てて送信する方法である。図1に示すように、非連続帯域送信では、データ信号および参照信号は、離散した周波数帯域に割り当てることができる。よって、非連続帯域送信では、連続帯域送信に比べて、各端末のデータ信号および参照信号の周波数帯域割当の自由度が向上する。これにより、より大きな周波数スケジューリング効果を得ることができる。   Non-continuous band transmission is a method in which a data signal and a reference signal are assigned to non-continuous frequency bands distributed over a wide band and transmitted. As shown in FIG. 1, in non-continuous band transmission, the data signal and the reference signal can be assigned to discrete frequency bands. Therefore, in non-continuous band transmission, the degree of freedom of frequency band allocation of the data signal and reference signal of each terminal is improved as compared with continuous band transmission. Thereby, a larger frequency scheduling effect can be obtained.

基地局から端末への非連続帯域送信用周波数リソース割当情報の通知方法として、システム帯域内の各RBG(Resource Block Group)について割り当てする/しないをビットマップで通知する方法がある(非特許文献2参照)。図2に示すように、基地局は、所定のRBGごと(図2では、4[RB]ごと)に、その周波数リソースを割当てるか否かを周波数割当対象端末に対して1bitで通知する。すなわち、基地局は、システム帯域が所定数のRBごとに分割された複数のRBGにおいて、周波数割当対象端末へ割り当てられたRBG(以下、「割当RBG」と呼ばれることがある)及び割り当てられないRBG(以下、「非割当RBG」と呼ばれることがある)のうち、一方にビット値1を付与し他方にビット値0を付与することにより得られる周波数割当ビット列を周波数割当対象端末へ通知する。図2において、ビット「1」が付与されたRBGは割当対象端末に対して割り当てられた周波数領域である一方、ビット「0」が付与されたRBGは割当対象端末に対して割り当てられない周波数領域である。よって、周波数リソース割当情報に必要なシグナリングビット数は、システム帯域内のRBG数に一致する。   As a method of notifying non-continuous band transmission frequency resource allocation information from a base station to a terminal, there is a method of notifying each RBG (Resource Block Group) in the system band whether to allocate or not using a bitmap (Non-patent Document 2). reference). As shown in FIG. 2, the base station notifies the frequency allocation target terminal in 1 bit whether or not to allocate the frequency resource for each predetermined RBG (in FIG. 2, every 4 [RB]). That is, the base station, in a plurality of RBGs in which the system band is divided into a predetermined number of RBs, RBGs allocated to frequency allocation target terminals (hereinafter sometimes referred to as “allocated RBGs”) and unassigned RBGs (Hereinafter, sometimes referred to as “non-allocation RBG”), a frequency allocation bit string obtained by assigning bit value 1 to one and assigning bit value 0 to the other is notified to the frequency allocation target terminal. In FIG. 2, the RBG to which the bit “1” is assigned is the frequency region assigned to the allocation target terminal, while the RBG to which the bit “0” is assigned is not assigned to the allocation target terminal. It is. Therefore, the number of signaling bits necessary for the frequency resource allocation information matches the number of RBGs in the system band.

なお、LTEでは、図3に示すように、RBGサイズ(=P)はシステム帯域幅に依存して変わる(非特許文献3参照)。図3に示すように、システム帯域幅が大きいほど、RBGサイズが大きくされることにより、シグナリングビット数が低減されている。   In LTE, as shown in FIG. 3, the RBG size (= P) varies depending on the system bandwidth (see Non-Patent Document 3). As shown in FIG. 3, the larger the system bandwidth, the larger the RBG size, thereby reducing the number of signaling bits.

また、LTEでは、上り回線のSounding Reference Signal(SRS)が用いられる。ここで、Soundingとは、回線品質を推定することを意味する。SRSは、主に、上り回線データチャネルのCQI(Channel Quality Indicator)推定を行うために、特定のシンボルにデータと時間多重されて送信される。   In LTE, an uplink sounding reference signal (SRS) is used. Here, “Sounding” means estimating channel quality. The SRS is mainly time-multiplexed with data on a specific symbol and transmitted to perform CQI (Channel Quality Indicator) estimation of the uplink data channel.

また、SRSの送信方法には、システム帯域幅相当の送信帯域幅でSRSを送信する方法(つまり、広帯域のSRS送信方法)と、送信周波数帯域を時間的に変えながら(つまり、周波数ホッピングして)、各送信タイミングでは狭帯域でSRSを送信する方法(つまり、狭帯域のSRS送信方法)とがある。広帯域のSRS送信方法が用いられる場合には、一度に広帯域に亘ってCQIが推定される。また、狭帯域のSRS送信方法が用いられる場合には、狭帯域で送信されたSRSをいくつか用いることにより、広帯域に亘ってCQIが推定される。   The SRS transmission method includes a method of transmitting an SRS with a transmission bandwidth equivalent to the system bandwidth (that is, a broadband SRS transmission method) and a method of changing the transmission frequency band in time (that is, frequency hopping). ), There is a method of transmitting SRS in a narrow band at each transmission timing (that is, a narrow-band SRS transmission method). When a broadband SRS transmission method is used, CQI is estimated over a wide band at a time. Further, when a narrowband SRS transmission method is used, CQI is estimated over a wide band by using several SRSs transmitted in a narrowband.

一般的に、セル境界付近に存在する端末から送信されて基地局で受信される信号は、パスロスが大きい。また、端末の最大送信電力が限られているため、広帯域のSRS送信の場合には、単位周波数あたりの基地局受信電力が低くなり、受信SINRが低くなる。この結果、CQI推定精度が劣化する。従って、セル境界付近の端末は、限られた電力を所定の周波数帯域に絞って送信する、狭帯域のSRS送信方法をとる。逆に、セル中央付近に存在する端末から送信されて基地局で受信される信号は、パスロスが小さい。このため、広帯域のSRS送信方法が採用されても、単位周波数あたりの基地局受信電力は、十分確保される。この結果、セル中央付近に存在する端末は、広帯域のSRS送信方法をとる。   In general, a signal transmitted from a terminal existing near a cell boundary and received by a base station has a large path loss. In addition, since the maximum transmission power of the terminal is limited, in the case of broadband SRS transmission, the base station reception power per unit frequency is low, and the reception SINR is low. As a result, the CQI estimation accuracy deteriorates. Therefore, a terminal near the cell boundary adopts a narrowband SRS transmission method in which limited power is transmitted in a predetermined frequency band. Conversely, a signal transmitted from a terminal existing near the center of the cell and received by the base station has a small path loss. For this reason, even if the broadband SRS transmission method is adopted, the base station received power per unit frequency is sufficiently secured. As a result, terminals existing near the center of the cell adopt a broadband SRS transmission method.

また、LTEでは、広帯域のSRS送信方法又は狭帯域のSRS送信方法に関わらず、SRSを送信できる周波数帯域(つまり、Sounding帯域、換言すれば、CQI推定可能な周波数帯域)を同じにするために、広帯域のSRS送信方法における送信帯域幅は、狭帯域のSRS送信方法における送信帯域幅のN倍(Nは整数)としている。すなわち、狭帯域のSRS送信方法が採用される場合には、N回だけ周波数ホッピングが適用されることにより、広帯域のSRS送信方法と同じ周波数帯域のCQIが推定される。具体的には、LTEでは、SRSの最小送信帯域幅は、4RBであり、SRSの送信帯域幅は、すべて4の倍数となる(非特許文献4参照)。   Also, in LTE, regardless of the wideband SRS transmission method or the narrowband SRS transmission method, the frequency band in which SRS can be transmitted (that is, the sounding band, in other words, the frequency band where CQI estimation is possible) can be made the same. The transmission bandwidth in the broadband SRS transmission method is N times (N is an integer) the transmission bandwidth in the narrowband SRS transmission method. That is, when the narrowband SRS transmission method is adopted, frequency hopping is applied only N times, so that the CQI in the same frequency band as that of the wideband SRS transmission method is estimated. Specifically, in LTE, the minimum transmission bandwidth of SRS is 4 RBs, and all the transmission bandwidths of SRS are multiples of 4 (see Non-Patent Document 4).

3GPP R1−090257, Panasonic, “System performance of uplink non−contiguous resource allocation”3GPP R1-090257, Panasonic, “System performance of uplink non-contiguous resource allocation” 3GPP TS36.212 V8.5.0. 5.3.3.1.2 Format1, “E−UTRA Multiplexing and channel coding (Release8)”3GPP TS36.212 V8.5. 5.3.3.1.2 Format1, “E-UTRA Multiplexing and channel coding (Release8)” 3GPP TS36.213 V8.5.0. 7.1.6.1 Resource allocation type 0,“Physical layer procedures (Release8)”3GPP TS36.213 V8.5.0. 7.1.6.1 Resource allocation type 0, “Physical layer procedures (Release 8)” 3GPP TS36.211 V8.5.0. 5.5.3.2 Mapping to physical resources,“Physical Channels and Modulation (Release8)”3GPP TS36.211 V8.5.0. 5.5.3.2 Mapping to physical resources, “Physical Channels and Modulation (Release 8)”

ところで、上述した従来の非連続帯域送信用周波数リソース割当情報の通知方法と、SRS送信方法とを単純に組み合わせた場合には、SRS送信帯域とRBGとの境界が一致しない場合がある。例えば、システム帯域幅が50RBの場合、図3によりRBGサイズは、3RBとなる一方で、SRSの送信帯域幅は、システム帯域幅によらず、4の倍数[RB]となる。このとき、一部のRBGのCQI推定精度が劣化するため、周波数スケジューリングゲインが低下し、結果として、システムスループットが劣化してしまう。   By the way, when the above-described conventional method for reporting frequency resource allocation information for non-continuous band transmission and the SRS transmission method are simply combined, the boundary between the SRS transmission band and the RBG may not match. For example, when the system bandwidth is 50 RBs, the RBG size is 3 RBs according to FIG. 3, while the SRS transmission bandwidth is a multiple [RB] of 4 regardless of the system bandwidth. At this time, since the CQI estimation accuracy of some RBGs deteriorates, the frequency scheduling gain decreases, and as a result, the system throughput deteriorates.

より詳細には、広帯域のSRS送信方法が採用される場合、図4に示すように、SRSの送信帯域の端に有るRBGは、RBG内の一部の帯域でしかSRSが送信されない。このため、RBG内の平均的なCQI推定を正しく算出できず、CQI推定精度が劣化してしまう。   More specifically, when the broadband SRS transmission method is adopted, as shown in FIG. 4, the RBG at the end of the SRS transmission band transmits the SRS only in a part of the band within the RBG. For this reason, the average CQI estimation in the RBG cannot be calculated correctly, and the CQI estimation accuracy deteriorates.

一方、狭帯域のSRS送信方法が採用される場合、図5に示すように、SRSのSounding帯域(SRSが送信される帯域全体)の端に有るRBGは、広帯域のSRS送信方法の場合と同様に、RBG内の一部の帯域でしかSRSが送信されない。これに加えて、狭帯域のSRSの境界に位置するRBGでは、複数のSRSが送信されて初めて、そのRBG内の帯域すべてでSRSが送信されることになる。その複数のSRSの送信タイミングには時間的間隔が存在するため、時間フェージングが存在する環境等では、RBG内の平均的なCQI推定を正しく算出できず、CQI推定精度が劣化してしまう。   On the other hand, when the narrowband SRS transmission method is adopted, as shown in FIG. 5, the RBG at the end of the SRS sounding band (the entire band in which the SRS is transmitted) is the same as in the wideband SRS transmission method. In addition, the SRS is transmitted only in a part of the band in the RBG. In addition to this, in the RBG located at the boundary of the narrow band SRS, the SRS is transmitted in all the bands in the RBG only after a plurality of SRSs are transmitted. Since there is a time interval between the transmission timings of the plurality of SRSs, in an environment where time fading exists, an average CQI estimation in the RBG cannot be calculated correctly, and the CQI estimation accuracy deteriorates.

本発明は、かかる点に鑑みてなされたものであり、上り回線において非連続帯域送信及びSRS送信が採用される場合に、チャネル推定精度の低下を防止できる無線基地局装置、無線端末装置、周波数リソース割当方法、及び、送信信号形成方法を提供することを目的とする。   The present invention has been made in view of the above points, and in the case where discontinuous band transmission and SRS transmission are employed in the uplink, a radio base station apparatus, a radio terminal apparatus, and a frequency that can prevent a decrease in channel estimation accuracy It is an object to provide a resource allocation method and a transmission signal formation method.

本発明の一態様の無線基地局装置は、設定された受信帯域に基づいて、受信信号に含まれるリファレンス信号を抽出する抽出手段と、前記抽出されたリファレンス信号に基づいて、周波数割当単位ごとにチャネル品質を推定するチャネル推定手段と、前記チャネル品質推定結果に基づいて、端末に対して前記周波数割当単位ごとに周波数リソースを割り当てる割当手段と、前記抽出手段に前記リファレンス信号の受信帯域を設定し、前記チャネル推定手段及び前記割当手段に前記周波数割当単位を設定する手段であって、前記受信帯域の端の周波数位置をいずれかの前記周波数割当単位の端の周波数位置と一致させ、前記リファレンス信号の受信帯域の幅を前記周波数割当単位の帯域幅の自然数倍とする割当単位設定手段と、を具備する構成を採る。   A radio base station apparatus according to an aspect of the present invention includes an extraction unit that extracts a reference signal included in a reception signal based on a set reception band, and a frequency allocation unit based on the extracted reference signal. Channel estimation means for estimating channel quality, assignment means for assigning frequency resources for each frequency assignment unit to a terminal based on the channel quality estimation result, and reception band for the reference signal is set in the extraction means Means for setting the frequency allocation unit in the channel estimation means and the allocation means, wherein the frequency position of the end of the reception band is made to coincide with the frequency position of the end of any of the frequency allocation units, and the reference signal An allocation unit setting means for setting the reception band width of the frequency allocation unit to be a natural number multiple of the bandwidth of the frequency allocation unit. Take.

本発明の一態様の無線端末装置は、設定された送信帯域にリファレンス信号をマッピングし、周波数割当単位ごとの割当情報に基づいて送信データをマッピングすることにより、送信信号を形成する形成手段と、前記送信帯域及び前記周波数割当単位を設定する手段であって、前記送信帯域の端の周波数位置をいずれかの前記周波数割当単位の端の周波数位置と一致させ、前記リファレンス信号の送信帯域の幅を前記周波数割当単位の帯域幅の自然数倍とする帯域設定手段と、を具備する構成を採る。   The wireless terminal device according to an aspect of the present invention includes: a forming unit that forms a transmission signal by mapping a reference signal to a set transmission band and mapping transmission data based on allocation information for each frequency allocation unit; A means for setting the transmission band and the frequency allocation unit, the frequency position of the end of the transmission band being matched with the frequency position of the end of any of the frequency allocation units, and the width of the transmission band of the reference signal And a bandwidth setting means for setting a natural number times the bandwidth of the frequency allocation unit.

本発明の一態様の周波数リソース割当方法は、リファレンス信号の受信帯域及び周波数割当単位を設定するステップと、前記設定された受信帯域に基づいて、受信信号に含まれるリファレンス信号を抽出するステップと、前記抽出されたリファレンス信号に基づいて、前記設定された周波数割当単位ごとにチャネル品質を推定するステップと、前記チャネル品質推定結果に基づいて、端末に対して前記周波数割当単位ごとに周波数リソースを割り当てるステップと、を具備し、前記受信帯域の端の周波数位置はいずれかの前記周波数割当単位の端の周波数位置と一致し、前記リファレンス信号の受信帯域の幅は前記周波数割当単位の帯域幅の自然数倍である。   The frequency resource allocation method of one aspect of the present invention includes a step of setting a reception band and a frequency allocation unit of a reference signal, a step of extracting a reference signal included in the reception signal based on the set reception band, Estimating channel quality for each set frequency allocation unit based on the extracted reference signal, and allocating frequency resources for each frequency allocation unit to a terminal based on the channel quality estimation result A frequency position of an end of the reception band coincides with a frequency position of an end of any of the frequency allocation units, and a width of the reception band of the reference signal is a natural bandwidth of the frequency allocation unit. It is several times.

本発明の一態様の送信信号形成方法は、送信帯域及び周波数割当単位を設定するステップと、前記設定された送信帯域にリファレンス信号をマッピングし、前記設定された周波数割当単位ごとの割当情報に基づいて送信データをマッピングすることにより、送信信号を形成するステップと、を具備し、前記送信帯域の端の周波数位置はいずれかの前記周波数割当単位の端の周波数位置と一致し、前記リファレンス信号の送信帯域の幅は前記周波数割当単位の帯域幅の自然数倍である。   The transmission signal forming method of one aspect of the present invention includes a step of setting a transmission band and a frequency allocation unit, mapping a reference signal to the set transmission band, and based on allocation information for each of the set frequency allocation units Mapping transmission data to form a transmission signal, and the frequency position of the end of the transmission band matches the frequency position of the end of any of the frequency allocation units, and the reference signal The width of the transmission band is a natural number times the bandwidth of the frequency allocation unit.

本発明によれば、上り回線において非連続帯域送信及びSRS送信が採用される場合に、チャネル推定精度の低下を防止できる無線基地局装置、無線端末装置、周波数リソース割当方法、及び、送信信号形成方法を提供することができる。   According to the present invention, when non-continuous band transmission and SRS transmission are employed in the uplink, a radio base station apparatus, a radio terminal apparatus, a frequency resource allocation method, and transmission signal formation that can prevent a decrease in channel estimation accuracy A method can be provided.

非連続帯域送信の説明に供する図Diagram for explaining discontinuous band transmission 非連続帯域送信用周波数リソース割当情報の通知方法の説明に供する図The figure which uses for the description of the notification method of the frequency resource allocation information for non-continuous band transmission RBGサイズのシステム帯域幅に対する依存性を示す図The figure which shows the dependence with respect to the system bandwidth of RBG size 上り回線において非連続帯域送信及び広帯域のSRS送信が採用される場合の説明に供する図FIG. 7 is a diagram for explaining the case where discontinuous band transmission and broadband SRS transmission are employed in the uplink. 上り回線において非連続帯域送信及び狭帯域のSRS送信が採用される場合の説明に供する図FIG. 5 is a diagram for explaining the case where discontinuous band transmission and narrow band SRS transmission are employed in the uplink. 本発明の実施の形態1に係る基地局装置の構成を示すブロック図The block diagram which shows the structure of the base station apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る端末装置の構成を示すブロック図The block diagram which shows the structure of the terminal device which concerns on Embodiment 1 of this invention. SRSの送信帯域幅を4RBとした場合のRBGの基本サイズを示す図The figure which shows the basic size of RBG when the transmission bandwidth of SRS is 4RB 基地局装置の動作説明に供する図Diagram for explaining operation of base station equipment システム帯域におけるSounding帯域の位置に応じてシステム帯域内に規定されるRBG群の説明に供する図The figure which uses for description of the RBG group prescribed | regulated in a system band according to the position of the Sounding band in a system band 基地局装置の動作説明に供する図Diagram for explaining operation of base station equipment 基地局装置の動作説明に供する図Diagram for explaining operation of base station equipment 基地局装置の動作説明に供する図Diagram for explaining operation of base station equipment 本発明の実施の形態2に係る基地局装置の構成を示すブロック図The block diagram which shows the structure of the base station apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る端末装置の構成を示すブロック図The block diagram which shows the structure of the terminal device which concerns on Embodiment 2 of this invention. 基地局装置の動作説明に供する図Diagram for explaining operation of base station equipment

以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the embodiment, the same components are denoted by the same reference numerals, and the description thereof will be omitted because it is duplicated.

(実施の形態1)
図6は、本発明の実施の形態1に係る基地局装置100の構成を示すブロック図である。図6において、基地局装置100は、無線受信部101と、復調部102と、SRS抽出部103と、CQI推定部104と、割当部105と、割当単位設定部106と、制御信号生成部107と、変調部108と、無線送信部109とを有する。
(Embodiment 1)
FIG. 6 is a block diagram showing a configuration of base station apparatus 100 according to Embodiment 1 of the present invention. In FIG. 6, base station apparatus 100 includes radio reception section 101, demodulation section 102, SRS extraction section 103, CQI estimation section 104, allocation section 105, allocation unit setting section 106, and control signal generation section 107. And a modulation unit 108 and a wireless transmission unit 109.

無線受信部101は、アンテナを介して受信した、後述する端末装置200からの信号にダウンコンバート、A/D変換等の受信処理を施し、受信処理を施した信号を復調部102へ出力する。   The wireless reception unit 101 performs reception processing such as down-conversion and A / D conversion on a signal received from the terminal device 200 (described later) received via the antenna, and outputs the signal subjected to the reception processing to the demodulation unit 102.

復調部102は、無線受信部101から受け取る受信信号を復調し、SRS抽出部103へ出力する。   Demodulation section 102 demodulates the reception signal received from radio reception section 101 and outputs the demodulated signal to SRS extraction section 103.

SRS抽出部103は、割当単位設定部106から受け取るSRS情報に基づいて、端末装置200から送信されたSRSを抽出する。SRS情報には、端末装置200がSRSを送信する、送信帯域幅、送信帯域位置、及び、周波数ホッピングパターンに関する情報が含まれる。基地局装置100から見れば、SRS情報には、1つのタイミングにおけるSRSの受信帯域幅及び受信帯域位置、並びに、当該受信帯域位置のホッピングパターンに関する情報が含まれる。抽出されたSRSは、CQI推定部104へ出力される。   The SRS extraction unit 103 extracts the SRS transmitted from the terminal device 200 based on the SRS information received from the allocation unit setting unit 106. The SRS information includes information regarding a transmission bandwidth, a transmission band position, and a frequency hopping pattern with which the terminal device 200 transmits the SRS. From the viewpoint of the base station apparatus 100, the SRS information includes information regarding the reception bandwidth and reception band position of the SRS at one timing and the hopping pattern of the reception band position. The extracted SRS is output to CQI estimation section 104.

CQI推定部104は、SRS抽出部103にて抽出された受信SRSと、基地局装置100と端末装置200との間で既知のSRSレプリカとの相関演算を行うことにより、端末装置200との間のチャネル品質(CQI)を推定する。この相関演算は、割当単位設定部106から受け取るRBG情報に基づいて、RBGごとに行われる。RBG情報には、RBGの基本サイズ及び位置が含まれる。   The CQI estimating unit 104 performs a correlation operation between the received SRS extracted by the SRS extracting unit 103 and a known SRS replica between the base station device 100 and the terminal device 200, so that the CQI estimating unit 104 Channel quality (CQI). This correlation calculation is performed for each RBG based on the RBG information received from the allocation unit setting unit 106. The RBG information includes the basic size and position of the RBG.

チャネル品質の推定結果は、割当部105へ出力される。ここで、上記した従来技術と同様に、広帯域のSRS送信方法が採用される場合には、1つのタイミングにSounding帯域全体のチャネル品質の推定結果が得られる一方、狭帯域のSRS送信方法が採用される場合には、1つのタイミングにはSounding帯域の一部の送信帯域でのみSRSが送信されるので、受信SRSに対して相関演算が複数回行われることにより、Sounding帯域全体のチャネル品質の推定結果が得られる。   The channel quality estimation result is output to allocating section 105. Here, similarly to the above-described prior art, when a wideband SRS transmission method is adopted, an estimation result of the channel quality of the entire sounding band can be obtained at one timing, while a narrowband SRS transmission method is adopted. In such a case, since SRS is transmitted only in a part of the transmission band of the sounding band at one timing, the correlation calculation is performed a plurality of times on the received SRS, so that the channel quality of the entire sounding band is improved. An estimation result is obtained.

割当部105は、割当単位設定部106から受け取るRBG情報により定まるRBG単位で、周波数割当対象端末200に対して周波数リソースの割り当てを行う。この周波数リソースの割り当ては、各RBGについてCQI推定部104で得られたチャネル推定結果に基づいて行われる。割当部105は、システム帯域において割り当てられたRBG及び割り当てられないRBGの配列パターンに対応する周波数リソース割当ビット列を生成し、制御信号生成部107へ出力する。   The allocation unit 105 allocates frequency resources to the frequency allocation target terminal 200 in RBG units determined by RBG information received from the allocation unit setting unit 106. This frequency resource allocation is performed based on the channel estimation result obtained by the CQI estimation unit 104 for each RBG. Allocation section 105 generates a frequency resource allocation bit string corresponding to the array pattern of RBGs allocated and not allocated in the system band, and outputs them to control signal generation section 107.

割当単位設定部106は、端末装置200が1つのタイミングにSRSを送信する、送信帯域幅、送信帯域位置、及び、周波数ホッピングパターンに関する情報が含まれるSRS情報をSRS抽出部103へ出力するとともに、RBGの基本サイズ及び周波数位置が含まれるRBG情報を割当部105へ出力する。ここで、SRS情報によって定まる任意のSRS送信帯域端の周波数位置は、RBG情報によって定まるいずれかのRBGの端の周波数位置と一致する。さらに、RBG情報に含まれるRBGの基本サイズ(つまり、RBGの基本帯域幅)は、SRS情報に含まれる送信帯域幅の約数となっている。すなわち、SRS情報に含まれる送信帯域幅は、RBG情報に含まれるRBGの基本サイズの自然数倍となっている。   The allocation unit setting unit 106 outputs SRS information including information on transmission bandwidth, transmission band position, and frequency hopping pattern to which the terminal device 200 transmits SRS at one timing to the SRS extraction unit 103, and RBG information including the basic size and frequency position of RBG is output to allocating section 105. Here, the frequency position at the end of any SRS transmission band determined by the SRS information matches the frequency position at the end of any RBG determined by the RBG information. Further, the basic size of the RBG included in the RBG information (that is, the basic bandwidth of the RBG) is a divisor of the transmission bandwidth included in the SRS information. That is, the transmission bandwidth included in the SRS information is a natural number multiple of the basic size of the RBG included in the RBG information.

具体的には、割当単位設定部106は、SRS情報設定部111と、RBG情報設定部112とを有する。   Specifically, the allocation unit setting unit 106 includes an SRS information setting unit 111 and an RBG information setting unit 112.

SRS情報設定部111は、SRS情報をSRS抽出部103へ出力する。また、SRS情報設定部111は、SRSの最小帯域幅(RBの個数で表される)、及び、SRSの送信帯域境界情報をRBG情報設定部112へ出力する。SRSの送信帯域境界情報とは、例えば、Sounding帯域の開始位置を指す。   The SRS information setting unit 111 outputs the SRS information to the SRS extraction unit 103. Further, the SRS information setting unit 111 outputs the SRS minimum bandwidth (expressed by the number of RBs) and SRS transmission band boundary information to the RBG information setting unit 112. The SRS transmission band boundary information indicates, for example, the starting position of the Sounding band.

RBG情報設定部112は、システム帯域幅に応じて、RBGの基本サイズを決定する。このRBGの基本サイズは、端末装置200が1つのタイミングにSRSを送信する送信帯域幅の約数である。また、RBG情報設定部112は、SRS情報設定部111から受け取るSRSの送信帯域境界情報の示す送信帯域端の周波数位置とRBGの端の周波数位置とが一致するように、RBGの周波数位置を決定する。   The RBG information setting unit 112 determines the basic size of the RBG according to the system bandwidth. The basic size of the RBG is a divisor of the transmission bandwidth at which the terminal device 200 transmits the SRS at one timing. Also, the RBG information setting unit 112 determines the frequency position of the RBG so that the frequency position at the end of the transmission band indicated by the transmission band boundary information of the SRS received from the SRS information setting unit 111 matches the frequency position at the end of the RBG. To do.

こうして決定されたRBGの基本サイズ及びRBGの周波数位置に関する情報は、RBG情報として、CQI推定部104及び割当部105へ出力される。   Information regarding the basic size of the RBG and the frequency position of the RBG thus determined is output to the CQI estimation unit 104 and the allocation unit 105 as RBG information.

制御信号生成部107は、割当部105からの周波数リソース割当ビット列を含む制御信号を生成し、変調部108へ出力する。   The control signal generation unit 107 generates a control signal including the frequency resource allocation bit string from the allocation unit 105 and outputs the control signal to the modulation unit 108.

変調部108は、制御信号を変調し、無線送信部109へ出力する。   Modulation section 108 modulates the control signal and outputs it to radio transmission section 109.

無線送信部109は、変調信号に対し、D/A変換、アップコンバート、増幅等の送信処理を施し、アンテナを介して無線送信する。   The wireless transmission unit 109 performs transmission processing such as D / A conversion, up-conversion, and amplification on the modulated signal, and wirelessly transmits the signal via an antenna.

図7は、本発明の実施の形態1に係る端末装置200の構成を示すブロック図である。図7において、端末装置200は、無線受信部201と、復調部202と、復号部203と、帯域情報設定部204と、送信帯域設定部205と、符号化部206と、変調部207と、DFT部208と、SRS生成部209と、マッピング部210,211と、IDFT部212,213と、多重部214と、無線送信部215とを有する。   FIG. 7 is a block diagram showing a configuration of terminal apparatus 200 according to Embodiment 1 of the present invention. In FIG. 7, the terminal device 200 includes a radio reception unit 201, a demodulation unit 202, a decoding unit 203, a band information setting unit 204, a transmission band setting unit 205, an encoding unit 206, a modulation unit 207, It includes a DFT unit 208, an SRS generation unit 209, mapping units 210 and 211, IDFT units 212 and 213, a multiplexing unit 214, and a wireless transmission unit 215.

無線受信部201は、アンテナを介して受信した受信信号に対し、ダウンコンバート、A/D変換等の受信処理を施し、復調部202へ出力する。   Radio reception section 201 performs reception processing such as down-conversion and A / D conversion on the received signal received via the antenna, and outputs the result to demodulation section 202.

復調部202は、受信信号を復調し、復号部203へ出力する。   Demodulation section 202 demodulates the received signal and outputs it to decoding section 203.

復号部203は、復調部202から受け取る信号に復号処理を施し、復号結果から基地局装置100によって送信された周波数リソース割当ビット列を含む制御信号を抽出する。   Decoding section 203 performs decoding processing on the signal received from demodulation section 202, and extracts a control signal including a frequency resource allocation bit string transmitted by base station apparatus 100 from the decoding result.

帯域情報設定部204は、端末装置200が1つのタイミングにSRSを送信する、送信帯域幅、送信帯域位置、及び、周波数ホッピングパターンに関する情報が含まれるSRS情報をマッピング部211へ出力するとともに、RBGの基本サイズ及び周波数位置が含まれるRBG情報を送信帯域設定部205へ出力する。ここで、SRS情報によって定まる任意のSRS送信帯域端の周波数位置は、RBG情報によって定まるいずれかのRBGの端の周波数位置と一致する。さらに、RBG情報に含まれるRBGの基本サイズ(つまり、RBGの基本帯域幅)は、SRS情報に含まれる送信帯域幅の約数となっている。すなわち、SRS情報に含まれる送信帯域幅は、RBG情報に含まれるRBGの基本サイズの自然数倍となっている。   The band information setting unit 204 outputs to the mapping unit 211 SRS information including information related to the transmission bandwidth, transmission band position, and frequency hopping pattern, in which the terminal device 200 transmits the SRS at one timing, and RBG. RBG information including the basic size and frequency position is output to transmission band setting section 205. Here, the frequency position at the end of any SRS transmission band determined by the SRS information matches the frequency position at the end of any RBG determined by the RBG information. Further, the basic size of the RBG included in the RBG information (that is, the basic bandwidth of the RBG) is a divisor of the transmission bandwidth included in the SRS information. That is, the transmission bandwidth included in the SRS information is a natural number multiple of the basic size of the RBG included in the RBG information.

具体的には、帯域情報設定部204は、SRS情報設定部221と、RBG情報設定部222とを有する。   Specifically, the band information setting unit 204 includes an SRS information setting unit 221 and an RBG information setting unit 222.

SRS情報設定部221は、SRS情報をマッピング部211へ出力する。また、SRS情報設定部221は、SRSの最小帯域幅(RBの個数で表される)、及び、SRSの送信帯域境界情報をRBG情報設定部222へ出力する。SRSの送信帯域境界情報とは、例えば、Sounding帯域の開始位置を指す。   The SRS information setting unit 221 outputs the SRS information to the mapping unit 211. Also, the SRS information setting unit 221 outputs the SRS minimum bandwidth (represented by the number of RBs) and SRS transmission band boundary information to the RBG information setting unit 222. The SRS transmission band boundary information indicates, for example, the starting position of the Sounding band.

RBG情報設定部222は、システム帯域幅に応じて、RBGの基本サイズを決定する。このRBGの基本サイズは、端末装置200が1つのタイミングにSRSを送信する送信帯域幅の約数である。また、RBG情報設定部222は、SRS情報設定部221から受け取るSRSの送信帯域境界情報の示す送信帯域端の周波数位置とRBGの端の周波数位置と一致するように、RBGの周波数位置を決定する。こうして決定されたRBGの基本サイズ及びRBGの周波数位置に関する情報は、RBG情報として、送信帯域設定部205へ出力される。   The RBG information setting unit 222 determines the basic size of the RBG according to the system bandwidth. The basic size of the RBG is a divisor of the transmission bandwidth at which the terminal device 200 transmits the SRS at one timing. Further, the RBG information setting unit 222 determines the frequency position of the RBG so that the frequency position at the end of the transmission band indicated by the transmission band boundary information of the SRS received from the SRS information setting unit 221 matches the frequency position at the end of the RBG. . Information regarding the basic size of the RBG and the frequency position of the RBG thus determined is output to the transmission band setting unit 205 as RBG information.

送信帯域設定部205は、帯域情報設定部204から受け取るRBG情報に基づいて基本サイズ及び周波数位置が特定されるRBG群のうち、復号部203から受け取る制御情報に含まれる周波数リソース割当ビット列の構成ビットのビット値に基づいて割当RBGを特定し、特定した割当RBGの基本サイズ及び周波数位置を送信帯域情報としてマッピング部210へ出力する。すなわち、割当RBGの基本サイズ及び周波数位置から特定される帯域が送信帯域である。   Transmission band setting section 205 is a component bit of a frequency resource allocation bit string included in control information received from decoding section 203 among RBG groups whose basic size and frequency position are specified based on RBG information received from band information setting section 204 The assigned RBG is specified based on the bit value of the received RBG, and the basic size and frequency position of the specified assigned RBG are output to the mapping unit 210 as transmission band information. That is, the band specified from the basic size and frequency position of the assigned RBG is the transmission band.

符号化部206は、送信データを符号化し、得られた符号化データを変調部207へ出力する。   Encoding section 206 encodes transmission data and outputs the obtained encoded data to modulation section 207.

変調部207は、符号化部206から受け取る符号化データを変調し、データ変調信号をDFT部208へ出力する。   Modulation section 207 modulates the encoded data received from encoding section 206 and outputs a data modulation signal to DFT section 208.

DFT部208は、変調部207から受け取るデータ変調信号にDFT処理を施し、得られた周波数領域のデータ信号をマッピング部210へ出力する。   The DFT unit 208 performs DFT processing on the data modulation signal received from the modulation unit 207, and outputs the obtained frequency domain data signal to the mapping unit 210.

マッピング部210は、送信帯域設定部205から受け取る送信帯域情報の示す周波数リソースにDFT部208から受け取るデータ信号をマッピングし、得られた信号をIDFT部212へ出力する。   Mapping section 210 maps the data signal received from DFT section 208 to the frequency resource indicated by the transmission band information received from transmission band setting section 205, and outputs the obtained signal to IDFT section 212.

IDFT部212は、マッピング部210から受け取る信号にIDFT処理を施し、得られた信号を多重部214へ出力する。   The IDFT unit 212 performs IDFT processing on the signal received from the mapping unit 210 and outputs the obtained signal to the multiplexing unit 214.

SRS生成部209は、上り回線データチャネルの品質を測定するためのSRSを生成し、マッピング部211へ出力する。   SRS generation section 209 generates an SRS for measuring the quality of the uplink data channel and outputs the SRS to mapping section 211.

マッピング部211は、帯域情報設定部204から受け取るSRS情報によって特定される周波数/時間リソースに配置し、得られた信号をIDFT部213へ出力する。   Mapping section 211 arranges the frequency / time resource specified by the SRS information received from band information setting section 204 and outputs the obtained signal to IDFT section 213.

IDFT部213は、マッピング部211から受け取る信号にIDFT処理を施し、得られた信号を多重部214へ出力する。   The IDFT unit 213 performs IDFT processing on the signal received from the mapping unit 211 and outputs the obtained signal to the multiplexing unit 214.

多重部214は、IDFT部213から受け取るデータ信号とSRSとを多重し、得られた多重信号を無線送信部215へ出力する。   The multiplexing unit 214 multiplexes the data signal received from the IDFT unit 213 and the SRS, and outputs the obtained multiplexed signal to the wireless transmission unit 215.

無線送信部215は、多重部214から受け取る多重信号にD/A変換、アップコンバート、増幅等の送信処理を施し、得られた無線信号をアンテナから基地局装置100へ送信する。   Radio transmitting section 215 performs transmission processing such as D / A conversion, up-conversion, amplification, etc. on the multiplexed signal received from multiplexing section 214, and transmits the obtained radio signal to base station apparatus 100 from the antenna.

次に、以上の構成を有する基地局装置100及び端末装置200の動作について説明する。   Next, operations of base station apparatus 100 and terminal apparatus 200 having the above configuration will be described.

基地局装置100は、各RBGについて得られたチャネル推定結果に基づいて、周波数割当対象端末200に対してRBG単位で周波数リソースの割り当てを行い、システム帯域において割り当てられたRBG及び割り当てられないRBGの配列パターンに対応する周波数リソース割当ビット列を生成する。そして、基地局装置100は、周波数リソース割当ビット列を端末装置200へ送信する。端末装置200は、受信した周波数リソース割当ビット列に基づいて特定される周波数リソースを用いてデータ送信する。   Based on the channel estimation result obtained for each RBG, the base station apparatus 100 allocates frequency resources in units of RBGs to the frequency allocation target terminal 200, and RBGs allocated in the system band and RBGs not allocated A frequency resource allocation bit string corresponding to the arrangement pattern is generated. Then, base station apparatus 100 transmits a frequency resource allocation bit string to terminal apparatus 200. The terminal device 200 transmits data using the frequency resource specified based on the received frequency resource allocation bit string.

具体的には、基地局装置100において、SRS抽出部103は、無線受信部101及び復調部102を介して受け取る受信信号から、割当単位設定部106から受け取るSRS情報に基づいて特定されるSRS受信帯域にてSRSを抽出する。SRS情報には、1つのタイミングにおけるSRSの受信帯域幅及び受信帯域位置、並びに、当該受信帯域位置のホッピングパターンに関する情報が含まれる。上記したようにSRSの送信方法には、広帯域のSRS送信方法及び狭帯域のSRS送信方法がある。広帯域のSRS送信方法では、すべてのSRS送信タイミングで同じ送信帯域(つまり、Sounding帯域)でSRSが送信される。従って、広帯域のSRS送信方法が採用される場合、SRS情報には、受信帯域位置がホッピングしないことを示す情報が含まれる。   Specifically, in the base station apparatus 100, the SRS extraction unit 103 is identified based on the SRS information received from the allocation unit setting unit 106 from the reception signals received via the radio reception unit 101 and the demodulation unit 102. SRS is extracted in the band. The SRS information includes information regarding the reception bandwidth and reception band position of the SRS at one timing and the hopping pattern of the reception band position. As described above, the SRS transmission method includes a wideband SRS transmission method and a narrowband SRS transmission method. In the broadband SRS transmission method, the SRS is transmitted in the same transmission band (that is, the sounding band) at all SRS transmission timings. Therefore, when the broadband SRS transmission method is adopted, the SRS information includes information indicating that the reception band position does not hop.

CQI推定部104は、SRS抽出部103にて抽出された受信SRSとSRSレプリカとの相関演算を、割当単位設定部106から受け取るRBG情報に基づいて特定されるRGBごとに行うことにより、RGBごとのチャネル推定結果を得る。RBG情報には、RBGの基本サイズ及び位置が含まれる。   The CQI estimating unit 104 performs the correlation operation between the received SRS and the SRS replica extracted by the SRS extracting unit 103 for each RGB specified based on the RBG information received from the allocation unit setting unit 106. Channel estimation results are obtained. The RBG information includes the basic size and position of the RBG.

割当部105は、CQI推定部104で得られたチャネル推定結果に基づいて、割当単位設定部106から受け取るRBG情報により定まるRBG単位で、周波数割当対象端末200に対して周波数リソースの割り当てを行い、システム帯域において割り当てられたRBG及び割り当てられないRBGの配列パターンに対応する周波数リソース割当ビット列を生成する。   Allocation unit 105 allocates frequency resources to frequency allocation target terminal 200 in RBG units determined by RBG information received from allocation unit setting unit 106, based on the channel estimation result obtained by CQI estimation unit 104. A frequency resource allocation bit string corresponding to an array pattern of RBGs allocated and not allocated in the system band is generated.

ここで、SRS情報によって定まる任意のSRS送信帯域端の周波数位置は、RBG情報によって定まるいずれかのRBGの端の周波数位置と一致する。さらに、RBG情報に含まれるRBGの基本サイズ(つまり、RBGの基本帯域幅)は、SRS情報に含まれる送信帯域幅の約数となっている。すなわち、SRS情報に含まれる送信帯域幅は、RBG情報に含まれるRBGの基本サイズの自然数倍となっている。例えば、LTEのSRSの最小帯域幅が4RBであるので、割当単位設定部106で決定するRBGの基本サイズは、図8に示すように、4RBの約数である1、2、4RBに制限される。   Here, the frequency position at the end of any SRS transmission band determined by the SRS information matches the frequency position at the end of any RBG determined by the RBG information. Further, the basic size of the RBG included in the RBG information (that is, the basic bandwidth of the RBG) is a divisor of the transmission bandwidth included in the SRS information. That is, the transmission bandwidth included in the SRS information is a natural number multiple of the basic size of the RBG included in the RBG information. For example, since the minimum bandwidth of LTE SRS is 4 RBs, the basic size of the RBG determined by the allocation unit setting unit 106 is limited to 1, 2, 4 RBs which are divisors of 4 RBs as shown in FIG. The

こうすることで、図9に示すように、Sounding帯域内にある各RBGでは1つのSRSが隙間なく送信される。従って、各RGBでは同一タイミングに送信されたSRSを用いたチャネル推定結果が得られるので、CQI推定精度の劣化を防止できる。この結果、基地局装置100が精度劣化の無いCQIを用いて端末装置200を周波数リソース割当できるので、システスループット性能の劣化を防止できる。また、SRS送信方法はLTEの方法と同じなので、LTEシステム専用の端末とLTE−Aシステムにも適用可能な端末とを区別することなく、同一セル内で複数端末のSRSを多重することができる。   By doing so, as shown in FIG. 9, one SRS is transmitted without a gap in each RBG in the Sounding band. Therefore, since each RGB can obtain a channel estimation result using SRS transmitted at the same timing, it is possible to prevent deterioration of CQI estimation accuracy. As a result, since the base station apparatus 100 can allocate frequency resources to the terminal apparatus 200 using CQI with no accuracy deterioration, it is possible to prevent deterioration of system throughput performance. Further, since the SRS transmission method is the same as the LTE method, it is possible to multiplex SRSs of a plurality of terminals in the same cell without distinguishing between terminals dedicated to the LTE system and terminals applicable to the LTE-A system. .

またここで、本実施の形態のように、Sounding帯域を基準に、RBGの端をSounding帯域の端に一致させる場合には、システム帯域におけるSounding帯域の位置によって、システム帯域の両端部に、大きさが基本サイズに満たないRBGが生じる場合がある。   Here, as in the present embodiment, when the end of the RBG is matched with the end of the sounding band with reference to the sounding band, the size is increased at both ends of the system band depending on the position of the sounding band in the system band. RBG that is less than the basic size may occur.

図10は、システム帯域におけるSounding帯域の位置に応じてシステム帯域内に規定されるRBG群の説明に供する図である。図10Aでは、システム帯域の端からRBGを順次敷き詰めた状態でSounding帯域の端の周波数位置がRGBの端の周波数位置と一致している。一方、図10Bでは、システム帯域の端からRBGを順次敷き詰めた状態でSounding帯域の端の周波数位置がRGBの端の周波数位置と一致しないので、一致するようにRBGの周波数位置がずらされている。   FIG. 10 is a diagram for explaining the RBG group defined in the system band according to the position of the Sounding band in the system band. In FIG. 10A, the frequency position at the end of the Sounding band coincides with the frequency position at the end of RGB in a state where RBGs are sequentially spread from the end of the system band. On the other hand, in FIG. 10B, since the frequency position of the sounding band edge does not match the frequency position of the RGB edge in the state where the RBG is sequentially spread from the edge of the system band, the frequency position of the RBG is shifted so as to match. .

図10Aと図10Bとでは、システム帯域幅及びSounding帯域幅が一致する一方で、Sounding帯域の位置が異なっている。この違いによって、図10Aでは、周波数リソース割当ビット列の構成ビットの数が8ビットである一方で、図10Bでは、9ビットとなる。これは、図10Bでは、システム帯域両端部の基本サイズに満たないRBGが、それぞれ1つのRBGとしてカウントされるからである。   In FIG. 10A and FIG. 10B, the system bandwidth and the sounding bandwidth are the same, but the position of the sounding bandwidth is different. Due to this difference, the number of constituent bits of the frequency resource allocation bit string is 8 bits in FIG. 10A, whereas it is 9 bits in FIG. 10B. This is because, in FIG. 10B, RBGs that are less than the basic size at both ends of the system band are counted as one RBG.

このように基地局装置100から端末装置200へ送信される周波数リソース割当ビット列の構成ビットの数が変わると、制御信号の送信フォーマットが変わることになり、端末装置200において送信フォーマット検出のための復号処理が増加してしまう。   When the number of constituent bits of the frequency resource allocation bit string transmitted from the base station apparatus 100 to the terminal apparatus 200 changes in this way, the transmission format of the control signal changes, and the terminal apparatus 200 performs decoding for detecting the transmission format. Processing increases.

このような不都合を解消するためには、以下に示す3つの方法がある。   In order to eliminate such inconvenience, there are the following three methods.

第1の方法は、割当部105が、システム帯域の両端にある、大きさが基本サイズに満たない2つのRBGを1つの纏まりとして、周波数割当対象端末へ割り当てる(図11参照)。これにより、システム帯域の両端にある2つのRBGが割り当てられているか否かを1ビットで周波数割当対象端末へ通知することが可能となる。この結果、割当部105は、図10Bのような状況でも、図10Aのような状況での構成ビット数と同じビット数で、周波数リソース割当ビット列を生成することができる。   In the first method, the allocation unit 105 allocates two RBGs at both ends of the system band that are less than the basic size as a group to the frequency allocation target terminal (see FIG. 11). Thereby, it is possible to notify the frequency allocation target terminal by 1 bit whether or not two RBGs at both ends of the system band are allocated. As a result, the allocation unit 105 can generate the frequency resource allocation bit string with the same number of bits as the configuration bit number in the situation shown in FIG. 10A even in the situation shown in FIG. 10B.

第2の方法は、割当部105が、システム帯域の両端にある、大きさが基本サイズに満たない2つのRBGのうち一方のみを割当対象とし、他方を非割当対象とする(図12参照)。ただし、ここでの「非割当対象」とは、周波数リソース割当ビット列で割り当てられているか否かを通知する対象ではないことを意味する。従って、この非割当対象のRBGを、別のシグナリング方法(例えば、連続帯域送信用の周波数リソース割当ビット列)によって周波数割当対象端末に対して割り当てることは可能である。これにより、図10A及びBのいずれの状況でも、1つのシグナリングフォーマットを使うことができる。この結果、端末装置200においてシグナリングフォーマットの検出のための復号処理を省略できるので、端末装置200の処理量増加を防止することができる。   In the second method, the allocation unit 105 sets only one of two RBGs at both ends of the system band whose size is less than the basic size as an allocation target and the other as a non-allocation target (see FIG. 12). . However, the “non-allocation target” here means that it is not a target for notifying whether or not the frequency resource allocation bit string is allocated. Therefore, it is possible to allocate the non-allocation target RBG to the frequency allocation target terminal by another signaling method (for example, a frequency resource allocation bit string for continuous band transmission). This allows one signaling format to be used in both situations of FIGS. 10A and 10B. As a result, since the decoding process for detecting the signaling format can be omitted in the terminal device 200, an increase in the processing amount of the terminal device 200 can be prevented.

第3の方法は、割当部105が、システム帯域の両端にある、大きさが基本サイズに満たない2つのRBGのいずれも非割当対象とする。すなわち、割当部105が割当可能な帯域とSounding帯域と一致させる(図13参照)。こうして、システム帯域の両端にある、大きさが基本サイズに満たない2つのRBGのいずれも非割当対象とするので、シグナリングビット数を低減できる。ただし、ここでも、非割当対象のRBGを、別のシグナリング方法(例えば、連続帯域送信用の周波数リソース割当ビット列)によって周波数割当対象端末に対して割り当てることは可能である。また、Sounding帯域幅をセル内で設定可能な最大値とすれば、シグナリングビット数がセル内で共通化されるので、セル内でシグナリングフォーマットも共通化できる。   In the third method, the allocating unit 105 sets two RBGs at both ends of the system band that are less than the basic size as non-allocation targets. That is, the allocation unit 105 matches the band that can be allocated with the sounding band (see FIG. 13). In this way, since two RBGs at both ends of the system band that are less than the basic size are not allocated, the number of signaling bits can be reduced. However, here too, it is possible to allocate the non-allocation target RBG to the frequency allocation target terminal by another signaling method (for example, a frequency resource allocation bit string for continuous band transmission). Further, if the sounding bandwidth is set to the maximum value that can be set in the cell, the number of signaling bits is made common in the cell, so that the signaling format can be made common in the cell.

以上のように本実施の形態によれば、基地局装置100において、SRS抽出部103にSRSの受信帯域を設定し、CQI推定部104及び割当部105に周波数割当単位(RBG)を設定する割当単位設定部106が、SRS受信帯域の端の周波数位置をいずれかの周波数割当単位の端の周波数位置と一致させ、リファレンス信号の受信帯域幅を周波数割当単位の帯域幅の自然数倍とする。   As described above, according to the present embodiment, in base station apparatus 100, an SRS receiving band is set in SRS extracting section 103, and a frequency allocation unit (RBG) is set in CQI estimating section 104 and allocating section 105. Unit setting section 106 matches the frequency position of the end of the SRS reception band with the frequency position of the end of any frequency allocation unit, and sets the reception bandwidth of the reference signal to a natural number multiple of the bandwidth of the frequency allocation unit.

また、端末装置200において、送信帯域及び周波数割当単位(RBG)を設定する帯域情報設定部204が、送信帯域の端の周波数位置をいずれかの周波数割当単位の端の周波数位置と一致させ、SRSの送信帯域幅を周波数割当単位の帯域幅の自然数倍とする。   Further, in the terminal device 200, the band information setting unit 204 that sets the transmission band and the frequency allocation unit (RBG) matches the frequency position of the end of the transmission band with the frequency position of the end of any frequency allocation unit. Is a natural number multiple of the bandwidth of the frequency allocation unit.

こうすることで、各RBGでは1つのSRSが隙間なく送信される。従って、各RGBでは同一タイミングに送信されたSRSを用いたチャネル推定結果が得られるので、CQI推定精度の劣化を防止できる。この結果、基地局装置100が精度劣化の無いCQIを用いて端末装置200を周波数リソース割当できるので、システスループット性能の劣化を防止できる。   By doing so, one SRS is transmitted without a gap in each RBG. Therefore, since each RGB can obtain a channel estimation result using SRS transmitted at the same timing, it is possible to prevent deterioration of CQI estimation accuracy. As a result, since the base station apparatus 100 can allocate frequency resources to the terminal apparatus 200 using CQI with no accuracy deterioration, it is possible to prevent deterioration of system throughput performance.

(実施の形態2)
実施の形態1では、Sounding帯域を基準に、RGBの基本サイズが決定されるとともに、RBGの端がSounding帯域の端に一致させられる。実施の形態2では、RGBの基本サイズ及び位置を基準に、端末装置200が1つのタイミングにSRSを送信する送信帯域幅が決定されるとともに、そのSRSの送信帯域の端がRGBの端に一致させられる。
(Embodiment 2)
In the first embodiment, the basic size of RGB is determined based on the sounding band, and the end of the RBG is made to coincide with the end of the sounding band. In the second embodiment, the transmission bandwidth at which the terminal device 200 transmits the SRS at one timing is determined based on the RGB basic size and position, and the end of the SRS transmission band matches the end of the RGB Be made.

図14は、本発明の実施の形態2に係る基地局装置300の構成を示すブロック図である。基地局装置300は、割当単位設定部301を有する。   FIG. 14 is a block diagram showing a configuration of base station apparatus 300 according to Embodiment 2 of the present invention. Base station apparatus 300 has allocation unit setting section 301.

割当単位設定部301は、後述する端末装置400が1つのタイミングにSRSを送信する、送信帯域幅、送信帯域位置、及び、周波数ホッピングパターンに関する情報が含まれるSRS情報をSRS抽出部103へ出力するとともに、RBGの基本サイズ及び周波数位置が含まれるRBG情報を割当部105へ出力する。ここで、SRS情報によって定まる任意のSRS送信帯域端の周波数位置は、RBG情報によって定まるいずれかのRBGの端の周波数位置と一致する。さらに、SRS情報に含まれる送信帯域幅は、RBG情報に含まれるRBGの基本サイズの自然数倍となっている。   The allocation unit setting unit 301 outputs, to the SRS extraction unit 103, SRS information including information on a transmission bandwidth, a transmission band position, and a frequency hopping pattern, which is transmitted by the terminal device 400 described later at one timing. At the same time, the RBG information including the basic size and frequency position of the RBG is output to the assignment unit 105. Here, the frequency position at the end of any SRS transmission band determined by the SRS information matches the frequency position at the end of any RBG determined by the RBG information. Furthermore, the transmission bandwidth included in the SRS information is a natural number multiple of the basic size of the RBG included in the RBG information.

具体的には、割当単位設定部301は、RBG情報設定部311と、SRS情報設定部312とを有する。   Specifically, the allocation unit setting unit 301 includes an RBG information setting unit 311 and an SRS information setting unit 312.

RBG情報設定部311は、システム帯域幅に応じてRBGの基本サイズを決定するとともに、RBGの周波数位置を決定する。決定されたRBGの基本サイズ及び周波数位置に関する情報は、RBG情報として割当部105、CQI推定部104及びSRS情報設定部312へ出力される。このRBG情報に従えば、RBGは、システム帯域の端からシステム帯域全体に隈無く敷き詰められる。   The RBG information setting unit 311 determines the basic size of the RBG according to the system bandwidth and also determines the frequency position of the RBG. Information on the determined basic size and frequency position of the RBG is output to the allocating unit 105, the CQI estimating unit 104, and the SRS information setting unit 312 as RBG information. According to this RBG information, the RBG is spread throughout the entire system band from the end of the system band.

SRS情報設定部312は、RBG情報設定部311から受け取るRBG情報に含まれる基本サイズに応じて、端末装置400が1つのタイミングにSRSを送信する送信帯域幅を決定する。また、SRS情報設定部312は、RBG情報設定部311から受け取るRBG情報に含まれる基本サイズ及び周波数位置によって特定されるRBGの端の周波数位置とSRS送信帯域端の周波数位置とが一致するように、SRSの周波数位置を決定する。   The SRS information setting unit 312 determines the transmission bandwidth for the terminal device 400 to transmit the SRS at one timing according to the basic size included in the RBG information received from the RBG information setting unit 311. The SRS information setting unit 312 also matches the frequency position at the end of the RBG specified by the basic size and the frequency position included in the RBG information received from the RBG information setting unit 311 with the frequency position at the SRS transmission band end. , SRS frequency position is determined.

こうして決定されたSRS送信帯域幅、各SRS送信帯域の周波数位置、及び、当該周波数位置のホッピングパターンに関する情報は、SRS情報としてSRS抽出部103へ出力される。   Information regarding the SRS transmission bandwidth determined in this way, the frequency position of each SRS transmission band, and the hopping pattern at the frequency position is output to the SRS extraction unit 103 as SRS information.

図15は、本発明の実施の形態2に係る端末装置400の構成を示すブロック図である。図15において、端末装置400は、帯域情報設定部401を有する。   FIG. 15 is a block diagram showing a configuration of terminal apparatus 400 according to Embodiment 2 of the present invention. In FIG. 15, the terminal device 400 includes a band information setting unit 401.

帯域情報設定部401は、端末装置400が1つのタイミングにSRSを送信する、送信帯域幅、送信帯域位置、及び、周波数ホッピングパターンに関する情報が含まれるSRS情報をマッピング部211へ出力するとともに、RBGの基本サイズ及び周波数位置が含まれるRBG情報を送信帯域設定部205へ出力する。ここで、SRS情報によって定まる任意のSRS送信帯域端の周波数位置は、RBG情報によって定まるいずれかのRBGの端の周波数位置と一致する。さらに、SRS情報に含まれる送信帯域幅は、RBG情報に含まれるRBGの基本サイズの自然数倍となっている。   The band information setting unit 401 outputs SRS information including information on a transmission bandwidth, a transmission band position, and a frequency hopping pattern to which the terminal device 400 transmits SRS at one timing to the mapping unit 211, and RBG RBG information including the basic size and frequency position is output to transmission band setting section 205. Here, the frequency position at the end of any SRS transmission band determined by the SRS information matches the frequency position at the end of any RBG determined by the RBG information. Furthermore, the transmission bandwidth included in the SRS information is a natural number multiple of the basic size of the RBG included in the RBG information.

具体的には、帯域情報設定部401は、RBG情報設定部411と、SRS情報設定部412とを有する。   Specifically, the band information setting unit 401 includes an RBG information setting unit 411 and an SRS information setting unit 412.

RBG情報設定部411は、システム帯域幅に応じてRBGの基本サイズを決定するとともに、RBGの周波数位置を決定する。決定されたRBGの基本サイズ及び周波数位置に関する情報は、RBG情報として送信帯域設定部205及びSRS情報設定部412へ出力される。このRBG情報に従えば、RBGは、システム帯域の端からシステム帯域全体に隈無く敷き詰められる。   The RBG information setting unit 411 determines the basic size of the RBG according to the system bandwidth and also determines the frequency position of the RBG. Information on the determined basic size and frequency position of the RBG is output to the transmission band setting unit 205 and the SRS information setting unit 412 as RBG information. According to this RBG information, the RBG is spread throughout the entire system band from the end of the system band.

SRS情報設定部412は、RBG情報設定部411から受け取るRBG情報に含まれる基本サイズに応じて、端末装置400が1つのタイミングにSRSを送信する送信帯域幅を決定する。また、SRS情報設定部412は、RBG情報設定部411から受け取るRBG情報に含まれる基本サイズ及び周波数位置によって特定されるRBGの端の周波数位置とSRS送信帯域端の周波数位置とが一致するように、SRSの周波数位置を決定する。   The SRS information setting unit 412 determines the transmission bandwidth for the terminal device 400 to transmit the SRS at one timing according to the basic size included in the RBG information received from the RBG information setting unit 411. The SRS information setting unit 412 also matches the frequency position at the end of the RBG specified by the basic size and the frequency position included in the RBG information received from the RBG information setting unit 411 with the frequency position at the end of the SRS transmission band. , SRS frequency position is determined.

こうして決定されたSRS送信帯域幅、各SRS送信帯域の周波数位置、及び、当該周波数位置のホッピングパターンに関する情報は、SRS情報としてマッピング部211へ出力される。   Information regarding the SRS transmission bandwidth determined in this way, the frequency position of each SRS transmission band, and the hopping pattern at the frequency position is output to the mapping unit 211 as SRS information.

以上の構成を有する基地局装置300及び端末装置400の動作について説明する。   The operations of base station apparatus 300 and terminal apparatus 400 having the above configuration will be described.

基地局装置300は、各RBGについて得られたチャネル推定結果に基づいて、周波数割当対象端末400に対してRBG単位で周波数リソースの割り当てを行い、システム帯域において割り当てられたRBG及び割り当てられないRBGの配列パターンに対応する周波数リソース割当ビット列を生成する。そして、基地局装置300は、周波数リソース割当ビット列を端末装置400へ送信する。端末装置400は、受信した周波数リソース割当ビット列に基づいて特定される周波数リソースを用いてデータ送信する。   Based on the channel estimation result obtained for each RBG, the base station apparatus 300 allocates frequency resources in units of RBGs to the frequency allocation target terminal 400, and RBGs allocated in the system band and unassigned RBGs A frequency resource allocation bit string corresponding to the arrangement pattern is generated. Base station apparatus 300 then transmits the frequency resource allocation bit string to terminal apparatus 400. The terminal device 400 transmits data using the frequency resource specified based on the received frequency resource allocation bit string.

具体的には、基地局装置300において、割当部105は、CQI推定部104で得られたチャネル推定結果に基づいて、割当単位設定部301から受け取るRBG情報により定まるRBG単位で、周波数割当対象端末400に対して周波数リソースの割り当てを行い、システム帯域において割り当てられたRBG及び割り当てられないRBGの配列パターンに対応する周波数リソース割当ビット列を生成する。   Specifically, in base station apparatus 300, allocation section 105 performs frequency allocation target terminals in units of RBGs determined by RBG information received from allocation unit setting section 301 based on the channel estimation result obtained by CQI estimation section 104. Frequency resources are allocated to 400, and a frequency resource allocation bit string corresponding to an arrangement pattern of RBGs allocated and not allocated in the system band is generated.

ここで、SRS情報によって定まる任意のSRS送信帯域端の周波数位置は、RBG情報によって定まるいずれかのRBGの端の周波数位置と一致する。さらに、SRS情報に含まれる送信帯域幅は、RBG情報に含まれるRBGの基本サイズの自然数倍となっている。   Here, the frequency position at the end of any SRS transmission band determined by the SRS information matches the frequency position at the end of any RBG determined by the RBG information. Furthermore, the transmission bandwidth included in the SRS information is a natural number multiple of the basic size of the RBG included in the RBG information.

こうすることで、図16に示すように、Sounding帯域内にある各RBGでは1つのSRSが隙間なく送信される。従って、各RGBでは同一タイミングに送信されたSRSを用いたチャネル推定結果が得られるので、CQI推定精度の劣化を防止できる。この結果、基地局装置300が精度劣化の無いCQIを用いて端末装置400を周波数リソース割当できるので、システスループット性能の劣化を防止できる。   By doing so, as shown in FIG. 16, one SRS is transmitted without a gap in each RBG in the Sounding band. Therefore, since each RGB can obtain a channel estimation result using SRS transmitted at the same timing, it is possible to prevent deterioration of CQI estimation accuracy. As a result, since the base station apparatus 300 can allocate the frequency resource to the terminal apparatus 400 using the CQI with no accuracy deterioration, it is possible to prevent the system throughput performance from being deteriorated.

なお、SRSの送信帯域幅は、システムで取り得る全てのRBGサイズの最小公倍数の倍数としても良い。これにより、上述した効果に加え、RBGサイズの変更に依存しないSRSの送信帯域幅が設定されるので、端末装置400における処理が容易になる。例えば、システムで用いるRBGサイズが1、2、3、4RBの範囲で変わる場合は、SRSの送信帯域幅は、それらの最小公倍数である12RBの整数倍(12、24、36RBなど)に設定する。これにより、RBGサイズの変更に依存したSRSの送信帯域幅の変更が必要なくなる。   The SRS transmission bandwidth may be a multiple of the least common multiple of all RBG sizes that can be taken by the system. Thereby, in addition to the above-described effects, the SRS transmission bandwidth that does not depend on the change of the RBG size is set, so that the processing in the terminal device 400 is facilitated. For example, when the RBG size used in the system changes in the range of 1, 2, 3, 4 RB, the SRS transmission bandwidth is set to an integer multiple of 12 RB (12, 24, 36 RB, etc.) that is the least common multiple thereof. . Thereby, it is not necessary to change the transmission bandwidth of the SRS depending on the change of the RBG size.

以上のように本実施の形態によれば、基地局装置300において、SRS抽出部103にSRSの受信帯域を設定し、CQI推定部104及び割当部105に周波数割当単位(RBG)を設定する割当単位設定部301が、SRS受信帯域の端の周波数位置をいずれかの周波数割当単位の端の周波数位置と一致させ、リファレンス信号の受信帯域幅を周波数割当単位の帯域幅の自然数倍とする。   As described above, according to the present embodiment, in base station apparatus 300, an SRS receiving band is set in SRS extracting section 103, and a frequency allocation unit (RBG) is set in CQI estimating section 104 and allocating section 105. The unit setting unit 301 matches the frequency position of the end of the SRS reception band with the frequency position of the end of any frequency allocation unit, and sets the reception bandwidth of the reference signal to a natural number multiple of the bandwidth of the frequency allocation unit.

また、端末装置400において、送信帯域及び周波数割当単位(RBG)を設定する帯域情報設定部401が、送信帯域の端の周波数位置をいずれかの周波数割当単位の端の周波数位置と一致させ、SRSの送信帯域幅を周波数割当単位の帯域幅の自然数倍とする。   Further, in the terminal device 400, the band information setting unit 401 that sets the transmission band and the frequency allocation unit (RBG) matches the frequency position of the end of the transmission band with the frequency position of the end of any frequency allocation unit, and the SRS Is a natural number multiple of the bandwidth of the frequency allocation unit.

こうすることで、各RBGでは1つのSRSが隙間なく送信される。従って、各RGBでは同一タイミングに送信されたSRSを用いたチャネル推定結果が得られるので、CQI推定精度の劣化を防止できる。この結果、基地局装置300が精度劣化の無いCQIを用いて端末装置400を周波数リソース割当できるので、システスループット性能の劣化を防止できる。   By doing so, one SRS is transmitted without a gap in each RBG. Therefore, since each RGB can obtain a channel estimation result using SRS transmitted at the same timing, it is possible to prevent deterioration of CQI estimation accuracy. As a result, since the base station apparatus 300 can allocate the frequency resource to the terminal apparatus 400 using the CQI with no accuracy deterioration, it is possible to prevent the system throughput performance from being deteriorated.

なお、上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。   Note that although cases have been described with the above embodiment as examples where the present invention is configured by hardware, the present invention can also be realized by software.

また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。   Each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. The name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.

また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。   Further, the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.

さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。   Furthermore, if integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. Biotechnology can be applied.

2009年4月10日出願の特願2009−096221の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。   The disclosures of the specification, drawings, and abstract included in the Japanese application of Japanese Patent Application No. 2009-096221 filed on Apr. 10, 2009 are all incorporated herein by reference.

本発明の無線基地局装置、無線端末装置、周波数リソース割当方法、及び、送信信号形成方法は、上り回線において非連続帯域送信及びSRS送信が採用される場合に、チャネル推定精度の低下を防止できるものとして有用である。   The radio base station apparatus, radio terminal apparatus, frequency resource allocation method, and transmission signal formation method of the present invention can prevent a decrease in channel estimation accuracy when discontinuous band transmission and SRS transmission are employed in the uplink. Useful as a thing.

100,300 基地局装置
101,201 無線受信部
102,202 復調部
103 SRS抽出部
104 CQI推定部
105 割当部
106,301 割当単位設定部
107 制御信号生成部
108,207 変調部
109,215 無線送信部
111,221,312,412 SRS情報設定部
112,222,311,411 RBG情報設定部
200,400 端末装置
203 復号部
204,401 帯域情報設定部
205 送信帯域設定部
206 符号化部
208 DFT部
209 SRS生成部
210,211 マッピング部
212,213 IDFT部
214 多重部
100, 300 Base station apparatus 101, 201 Radio reception unit 102, 202 Demodulation unit 103 SRS extraction unit 104 CQI estimation unit 105 Allocation unit 106, 301 Allocation unit setting unit 107 Control signal generation unit 108, 207 Modulation unit 109, 215 Radio transmission Units 111, 221, 312, 412 SRS information setting unit 112, 222, 311, 411 RBG information setting unit 200, 400 terminal device 203 decoding unit 204, 401 band information setting unit 205 transmission band setting unit 206 encoding unit 208 DFT unit 209 SRS generator 210, 211 Mapping unit 212, 213 IDFT unit 214 Multiplexer

本発明は、無線基地局装置、無線端末装置、周波数リソース割当方法、及び、送信信号形成方法に関する。   The present invention relates to a radio base station apparatus, a radio terminal apparatus, a frequency resource allocation method, and a transmission signal forming method.

3GPP LTE(3rd Generation Partnership Project Long−term Evolution)の発展形であるLTE−A(LTE−Advanced)の上り回線では、セクタスループット性能の改善のために、連続帯域送信に加えて、「非連続帯域送信」を用いることが検討されている(非特許文献1参照)。   In the uplink of LTE-A (LTE-Advanced), which is an evolution of 3GPP LTE (3rd Generation Partnership Project Long-term Evolution), in addition to continuous band transmission, in addition to non-continuous band transmission, The use of “transmission” has been studied (see Non-Patent Document 1).

非連続帯域送信は、データ信号および参照信号を広い帯域に分散された非連続な周波数帯域に割り当てて送信する方法である。図1に示すように、非連続帯域送信では、データ信号および参照信号は、離散した周波数帯域に割り当てることができる。よって、非連続帯域送信では、連続帯域送信に比べて、各端末のデータ信号および参照信号の周波数帯域割当の自由度が向上する。これにより、より大きな周波数スケジューリング効果を得ることができる。   Non-continuous band transmission is a method in which a data signal and a reference signal are assigned to non-continuous frequency bands distributed over a wide band and transmitted. As shown in FIG. 1, in non-continuous band transmission, the data signal and the reference signal can be assigned to discrete frequency bands. Therefore, in the non-continuous band transmission, the degree of freedom of frequency band allocation of the data signal and the reference signal of each terminal is improved as compared with the continuous band transmission. Thereby, a larger frequency scheduling effect can be obtained.

基地局から端末への非連続帯域送信用周波数リソース割当情報の通知方法として、システム帯域内の各RBG(Resource Block Group)について割り当てする/しないをビットマップで通知する方法がある(非特許文献2参照)。図2に示すように、基地局は、所定のRBGごと(図2では、4[RB]ごと)に、その周波数リソースを割当てるか否かを周波数割当対象端末に対して1bitで通知する。すなわち、基地局は、システム帯域が所定数のRBごとに分割された複数のRBGにおいて、周波数割当対象端末へ割り当てられたRBG(以下、「割当RBG」と呼ばれることがある)及び割り当てられないRBG(以下、「非割当RBG」と呼ばれることがある)のうち、一方にビット値1を付与し他方にビット値0を付与することにより得られる周波数割当ビット列を周波数割当対象端末へ通知する。図2において、ビット「1」が付与されたRBGは割当対象端末に対して割り当てられた周波数領域である一方、ビット「0」が付与されたRBGは割当対象端末に対して割り当てられない周波数領域である。よって、周波数リソース割当情報に必要なシグナリングビット数は、システム帯域内のRBG数に一致する。   As a method of notifying non-continuous band transmission frequency resource allocation information from a base station to a terminal, there is a method of notifying each RBG (Resource Block Group) in the system band whether to allocate or not using a bitmap (Non-patent Document 2). reference). As shown in FIG. 2, the base station notifies the frequency allocation target terminal in 1 bit whether or not to allocate the frequency resource for each predetermined RBG (in FIG. 2, every 4 [RB]). That is, the base station, in a plurality of RBGs in which the system band is divided into a predetermined number of RBs, RBGs allocated to frequency allocation target terminals (hereinafter sometimes referred to as “allocated RBGs”) and unassigned RBGs (Hereinafter, sometimes referred to as “non-allocation RBG”), a frequency allocation bit string obtained by assigning bit value 1 to one and assigning bit value 0 to the other is notified to the frequency allocation target terminal. In FIG. 2, the RBG to which the bit “1” is assigned is the frequency region assigned to the allocation target terminal, while the RBG to which the bit “0” is assigned is not assigned to the allocation target terminal. It is. Therefore, the number of signaling bits necessary for the frequency resource allocation information matches the number of RBGs in the system band.

なお、LTEでは、図3に示すように、RBGサイズ(=P)はシステム帯域幅に依存して変わる(非特許文献3参照)。図3に示すように、システム帯域幅が大きいほど、RBGサイズが大きくされることにより、シグナリングビット数が低減されている。   In LTE, as shown in FIG. 3, the RBG size (= P) varies depending on the system bandwidth (see Non-Patent Document 3). As shown in FIG. 3, the larger the system bandwidth, the larger the RBG size, thereby reducing the number of signaling bits.

また、LTEでは、上り回線のSounding Reference Signal(SRS)が用いられる。ここで、Soundingとは、回線品質を推定することを意味する。SRSは、主に、上り回線データチャネルのCQI(Channel Quality Indicator)推定を行うために、特定のシンボルにデータと時間多重されて送信される。   In LTE, an uplink sounding reference signal (SRS) is used. Here, “Sounding” means estimating channel quality. The SRS is mainly time-multiplexed with data on a specific symbol and transmitted to perform CQI (Channel Quality Indicator) estimation of the uplink data channel.

また、SRSの送信方法には、システム帯域幅相当の送信帯域幅でSRSを送信する方法(つまり、広帯域のSRS送信方法)と、送信周波数帯域を時間的に変えながら(つまり、周波数ホッピングして)、各送信タイミングでは狭帯域でSRSを送信する方法(つまり、狭帯域のSRS送信方法)とがある。広帯域のSRS送信方法が用いられる場合に
は、一度に広帯域に亘ってCQIが推定される。また、狭帯域のSRS送信方法が用いられる場合には、狭帯域で送信されたSRSをいくつか用いることにより、広帯域に亘ってCQIが推定される。
The SRS transmission method includes a method of transmitting an SRS with a transmission bandwidth equivalent to the system bandwidth (that is, a broadband SRS transmission method) and a method of changing the transmission frequency band in time (that is, frequency hopping). ), There is a method of transmitting SRS in a narrow band at each transmission timing (that is, a narrow band SRS transmission method). When a broadband SRS transmission method is used, CQI is estimated over a wide band at a time. Further, when a narrowband SRS transmission method is used, CQI is estimated over a wide band by using several SRSs transmitted in a narrowband.

一般的に、セル境界付近に存在する端末から送信されて基地局で受信される信号は、パスロスが大きい。また、端末の最大送信電力が限られているため、広帯域のSRS送信の場合には、単位周波数あたりの基地局受信電力が低くなり、受信SINRが低くなる。この結果、CQI推定精度が劣化する。従って、セル境界付近の端末は、限られた電力を所定の周波数帯域に絞って送信する、狭帯域のSRS送信方法をとる。逆に、セル中央付近に存在する端末から送信されて基地局で受信される信号は、パスロスが小さい。このため、広帯域のSRS送信方法が採用されても、単位周波数あたりの基地局受信電力は、十分確保される。この結果、セル中央付近に存在する端末は、広帯域のSRS送信方法をとる。   In general, a signal transmitted from a terminal existing near a cell boundary and received by a base station has a large path loss. In addition, since the maximum transmission power of the terminal is limited, in the case of broadband SRS transmission, the base station reception power per unit frequency is low, and the reception SINR is low. As a result, the CQI estimation accuracy deteriorates. Therefore, a terminal near the cell boundary adopts a narrowband SRS transmission method in which limited power is transmitted in a predetermined frequency band. Conversely, a signal transmitted from a terminal existing near the center of the cell and received by the base station has a small path loss. For this reason, even if the broadband SRS transmission method is adopted, the base station received power per unit frequency is sufficiently secured. As a result, terminals existing near the center of the cell adopt a broadband SRS transmission method.

また、LTEでは、広帯域のSRS送信方法又は狭帯域のSRS送信方法に関わらず、SRSを送信できる周波数帯域(つまり、Sounding帯域、換言すれば、CQI推定可能な周波数帯域)を同じにするために、広帯域のSRS送信方法における送信帯域幅は、狭帯域のSRS送信方法における送信帯域幅のN倍(Nは整数)としている。すなわち、狭帯域のSRS送信方法が採用される場合には、N回だけ周波数ホッピングが適用されることにより、広帯域のSRS送信方法と同じ周波数帯域のCQIが推定される。具体的には、LTEでは、SRSの最小送信帯域幅は、4RBであり、SRSの送信帯域幅は、すべて4の倍数となる(非特許文献4参照)。   Also, in LTE, regardless of the wideband SRS transmission method or the narrowband SRS transmission method, the frequency band in which SRS can be transmitted (that is, the sounding band, in other words, the frequency band where CQI estimation is possible) can be made the same. The transmission bandwidth in the broadband SRS transmission method is N times (N is an integer) the transmission bandwidth in the narrowband SRS transmission method. That is, when the narrowband SRS transmission method is adopted, frequency hopping is applied only N times, so that the CQI in the same frequency band as that of the wideband SRS transmission method is estimated. Specifically, in LTE, the minimum transmission bandwidth of SRS is 4 RBs, and all the transmission bandwidths of SRS are multiples of 4 (see Non-Patent Document 4).

3GPP R1−090257, Panasonic, “System performance of uplink non−contiguous resource allocation”3GPP R1-090257, Panasonic, “System performance of uplink non-contiguous resource allocation” 3GPP TS36.212 V8.5.0. 5.3.3.1.2 Format1, “E−UTRA Multiplexing and channel coding (Release8)”3GPP TS36.212 V8.5. 5.3.3.1.2 Format1, “E-UTRA Multiplexing and channel coding (Release8)” 3GPP TS36.213 V8.5.0. 7.1.6.1 Resource allocation type 0,“Physical layer procedures (Release8)”3GPP TS36.213 V8.5.0. 7.1.6.1 Resource allocation type 0, “Physical layer procedures (Release 8)” 3GPP TS36.211 V8.5.0. 5.5.3.2 Mapping to physical resources,“Physical Channels and Modulation (Release8)”3GPP TS36.211 V8.5.0. 5.5.3.2 Mapping to physical resources, “Physical Channels and Modulation (Release 8)”

ところで、上述した従来の非連続帯域送信用周波数リソース割当情報の通知方法と、SRS送信方法とを単純に組み合わせた場合には、SRS送信帯域とRBGとの境界が一致しない場合がある。例えば、システム帯域幅が50RBの場合、図3によりRBGサイズは、3RBとなる一方で、SRSの送信帯域幅は、システム帯域幅によらず、4の倍数[RB]となる。このとき、一部のRBGのCQI推定精度が劣化するため、周波数スケジューリングゲインが低下し、結果として、システムスループットが劣化してしまう。   By the way, when the above-described conventional method for reporting frequency resource allocation information for non-continuous band transmission and the SRS transmission method are simply combined, the boundary between the SRS transmission band and the RBG may not match. For example, when the system bandwidth is 50 RBs, the RBG size is 3 RBs according to FIG. 3, while the SRS transmission bandwidth is a multiple [RB] of 4 regardless of the system bandwidth. At this time, since the CQI estimation accuracy of some RBGs deteriorates, the frequency scheduling gain decreases, and as a result, the system throughput deteriorates.

より詳細には、広帯域のSRS送信方法が採用される場合、図4に示すように、SRSの送信帯域の端に有るRBGは、RBG内の一部の帯域でしかSRSが送信されない。このため、RBG内の平均的なCQI推定を正しく算出できず、CQI推定精度が劣化して
しまう。
More specifically, when the broadband SRS transmission method is adopted, as shown in FIG. 4, the RBG at the end of the SRS transmission band transmits the SRS only in a part of the band within the RBG. For this reason, the average CQI estimation in the RBG cannot be calculated correctly, and the CQI estimation accuracy deteriorates.

一方、狭帯域のSRS送信方法が採用される場合、図5に示すように、SRSのSounding帯域(SRSが送信される帯域全体)の端に有るRBGは、広帯域のSRS送信方法の場合と同様に、RBG内の一部の帯域でしかSRSが送信されない。これに加えて、狭帯域のSRSの境界に位置するRBGでは、複数のSRSが送信されて初めて、そのRBG内の帯域すべてでSRSが送信されることになる。その複数のSRSの送信タイミングには時間的間隔が存在するため、時間フェージングが存在する環境等では、RBG内の平均的なCQI推定を正しく算出できず、CQI推定精度が劣化してしまう。   On the other hand, when the narrowband SRS transmission method is adopted, as shown in FIG. 5, the RBG at the end of the SRS sounding band (the entire band in which the SRS is transmitted) is the same as in the wideband SRS transmission method. In addition, the SRS is transmitted only in a part of the band in the RBG. In addition to this, in the RBG located at the boundary of the narrow band SRS, the SRS is transmitted in all the bands in the RBG only after a plurality of SRSs are transmitted. Since there is a time interval between the transmission timings of the plurality of SRSs, in an environment where time fading exists, an average CQI estimation in the RBG cannot be calculated correctly, and the CQI estimation accuracy deteriorates.

本発明は、かかる点に鑑みてなされたものであり、上り回線において非連続帯域送信及びSRS送信が採用される場合に、チャネル推定精度の低下を防止できる無線基地局装置、無線端末装置、周波数リソース割当方法、及び、送信信号形成方法を提供することを目的とする。   The present invention has been made in view of the above points, and in the case where discontinuous band transmission and SRS transmission are employed in the uplink, a radio base station apparatus, a radio terminal apparatus, and a frequency that can prevent a decrease in channel estimation accuracy It is an object to provide a resource allocation method and a transmission signal formation method.

本発明の一態様の無線基地局装置は、設定された受信帯域に基づいて、受信信号に含まれるリファレンス信号を抽出する抽出手段と、前記抽出されたリファレンス信号に基づいて、周波数割当単位ごとにチャネル品質を推定するチャネル推定手段と、前記チャネル品質推定結果に基づいて、端末に対して前記周波数割当単位ごとに周波数リソースを割り当てる割当手段と、前記抽出手段に前記リファレンス信号の受信帯域を設定し、前記チャネル推定手段及び前記割当手段に前記周波数割当単位を設定する手段であって、前記受信帯域の端の周波数位置をいずれかの前記周波数割当単位の端の周波数位置と一致させ、前記リファレンス信号の受信帯域の幅を前記周波数割当単位の帯域幅の自然数倍とする割当単位設定手段と、を具備する構成を採る。   A radio base station apparatus according to an aspect of the present invention includes an extraction unit that extracts a reference signal included in a reception signal based on a set reception band, and a frequency allocation unit based on the extracted reference signal. Channel estimation means for estimating channel quality, assignment means for assigning frequency resources for each frequency assignment unit to a terminal based on the channel quality estimation result, and reception band for the reference signal is set in the extraction means Means for setting the frequency allocation unit in the channel estimation means and the allocation means, wherein the frequency position of the end of the reception band is made to coincide with the frequency position of the end of any of the frequency allocation units, and the reference signal An allocation unit setting means for setting the reception band width of the frequency allocation unit to be a natural number multiple of the bandwidth of the frequency allocation unit. Take.

本発明の一態様の無線端末装置は、設定された送信帯域にリファレンス信号をマッピングし、周波数割当単位ごとの割当情報に基づいて送信データをマッピングすることにより、送信信号を形成する形成手段と、前記送信帯域及び前記周波数割当単位を設定する手段であって、前記送信帯域の端の周波数位置をいずれかの前記周波数割当単位の端の周波数位置と一致させ、前記リファレンス信号の送信帯域の幅を前記周波数割当単位の帯域幅の自然数倍とする帯域設定手段と、を具備する構成を採る。   The wireless terminal device according to an aspect of the present invention includes: a forming unit that forms a transmission signal by mapping a reference signal to a set transmission band and mapping transmission data based on allocation information for each frequency allocation unit; A means for setting the transmission band and the frequency allocation unit, the frequency position of the end of the transmission band being matched with the frequency position of the end of any of the frequency allocation units, and the width of the transmission band of the reference signal And a bandwidth setting means for setting a natural number times the bandwidth of the frequency allocation unit.

本発明の一態様の周波数リソース割当方法は、リファレンス信号の受信帯域及び周波数割当単位を設定するステップと、前記設定された受信帯域に基づいて、受信信号に含まれるリファレンス信号を抽出するステップと、前記抽出されたリファレンス信号に基づいて、前記設定された周波数割当単位ごとにチャネル品質を推定するステップと、前記チャネル品質推定結果に基づいて、端末に対して前記周波数割当単位ごとに周波数リソースを割り当てるステップと、を具備し、前記受信帯域の端の周波数位置はいずれかの前記周波数割当単位の端の周波数位置と一致し、前記リファレンス信号の受信帯域の幅は前記周波数割当単位の帯域幅の自然数倍である。   The frequency resource allocation method of one aspect of the present invention includes a step of setting a reception band and a frequency allocation unit of a reference signal, a step of extracting a reference signal included in the reception signal based on the set reception band, Estimating channel quality for each set frequency allocation unit based on the extracted reference signal, and allocating frequency resources for each frequency allocation unit to a terminal based on the channel quality estimation result A frequency position of an end of the reception band coincides with a frequency position of an end of any of the frequency allocation units, and a width of the reception band of the reference signal is a natural bandwidth of the frequency allocation unit. It is several times.

本発明の一態様の送信信号形成方法は、送信帯域及び周波数割当単位を設定するステップと、前記設定された送信帯域にリファレンス信号をマッピングし、前記設定された周波数割当単位ごとの割当情報に基づいて送信データをマッピングすることにより、送信信号を形成するステップと、を具備し、前記送信帯域の端の周波数位置はいずれかの前記周波数割当単位の端の周波数位置と一致し、前記リファレンス信号の送信帯域の幅は前記周波数割当単位の帯域幅の自然数倍である。   The transmission signal forming method of one aspect of the present invention includes a step of setting a transmission band and a frequency allocation unit, mapping a reference signal to the set transmission band, and based on allocation information for each of the set frequency allocation units Mapping transmission data to form a transmission signal, and the frequency position of the end of the transmission band matches the frequency position of the end of any of the frequency allocation units, and the reference signal The width of the transmission band is a natural number times the bandwidth of the frequency allocation unit.

本発明によれば、上り回線において非連続帯域送信及びSRS送信が採用される場合に、チャネル推定精度の低下を防止できる無線基地局装置、無線端末装置、周波数リソース割当方法、及び、送信信号形成方法を提供することができる。   According to the present invention, when non-continuous band transmission and SRS transmission are employed in the uplink, a radio base station apparatus, a radio terminal apparatus, a frequency resource allocation method, and transmission signal formation that can prevent a decrease in channel estimation accuracy A method can be provided.

非連続帯域送信の説明に供する図Diagram for explaining discontinuous band transmission 非連続帯域送信用周波数リソース割当情報の通知方法の説明に供する図The figure which uses for the description of the notification method of the frequency resource allocation information for non-continuous band transmission RBGサイズのシステム帯域幅に対する依存性を示す図The figure which shows the dependence with respect to the system bandwidth of RBG size 上り回線において非連続帯域送信及び広帯域のSRS送信が採用される場合の説明に供する図FIG. 7 is a diagram for explaining the case where discontinuous band transmission and broadband SRS transmission are employed in the uplink. 上り回線において非連続帯域送信及び狭帯域のSRS送信が採用される場合の説明に供する図FIG. 5 is a diagram for explaining the case where discontinuous band transmission and narrow band SRS transmission are employed in the uplink. 本発明の実施の形態1に係る基地局装置の構成を示すブロック図The block diagram which shows the structure of the base station apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る端末装置の構成を示すブロック図The block diagram which shows the structure of the terminal device which concerns on Embodiment 1 of this invention. SRSの送信帯域幅を4RBとした場合のRBGの基本サイズを示す図The figure which shows the basic size of RBG when the transmission bandwidth of SRS is 4RB 基地局装置の動作説明に供する図Diagram for explaining operation of base station equipment システム帯域におけるSounding帯域の位置に応じてシステム帯域内に規定されるRBG群の説明に供する図The figure which uses for description of the RBG group prescribed | regulated in a system band according to the position of the Sounding band in a system band 基地局装置の動作説明に供する図Diagram for explaining operation of base station equipment 基地局装置の動作説明に供する図Diagram for explaining operation of base station equipment 基地局装置の動作説明に供する図Diagram for explaining operation of base station equipment 本発明の実施の形態2に係る基地局装置の構成を示すブロック図The block diagram which shows the structure of the base station apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る端末装置の構成を示すブロック図The block diagram which shows the structure of the terminal device which concerns on Embodiment 2 of this invention. 基地局装置の動作説明に供する図Diagram for explaining operation of base station equipment

以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the embodiment, the same components are denoted by the same reference numerals, and the description thereof will be omitted because it is duplicated.

(実施の形態1)
図6は、本発明の実施の形態1に係る基地局装置100の構成を示すブロック図である。図6において、基地局装置100は、無線受信部101と、復調部102と、SRS抽出部103と、CQI推定部104と、割当部105と、割当単位設定部106と、制御信号生成部107と、変調部108と、無線送信部109とを有する。
(Embodiment 1)
FIG. 6 is a block diagram showing a configuration of base station apparatus 100 according to Embodiment 1 of the present invention. In FIG. 6, base station apparatus 100 includes radio reception section 101, demodulation section 102, SRS extraction section 103, CQI estimation section 104, allocation section 105, allocation unit setting section 106, and control signal generation section 107. And a modulation unit 108 and a wireless transmission unit 109.

無線受信部101は、アンテナを介して受信した、後述する端末装置200からの信号にダウンコンバート、A/D変換等の受信処理を施し、受信処理を施した信号を復調部102へ出力する。   The wireless reception unit 101 performs reception processing such as down-conversion and A / D conversion on a signal received from the terminal device 200 (described later) received via the antenna, and outputs the signal subjected to the reception processing to the demodulation unit 102.

復調部102は、無線受信部101から受け取る受信信号を復調し、SRS抽出部103へ出力する。   Demodulation section 102 demodulates the reception signal received from radio reception section 101 and outputs the demodulated signal to SRS extraction section 103.

SRS抽出部103は、割当単位設定部106から受け取るSRS情報に基づいて、端末装置200から送信されたSRSを抽出する。SRS情報には、端末装置200がSRSを送信する、送信帯域幅、送信帯域位置、及び、周波数ホッピングパターンに関する情報が含まれる。基地局装置100から見れば、SRS情報には、1つのタイミングにおけるSRSの受信帯域幅及び受信帯域位置、並びに、当該受信帯域位置のホッピングパターンに関する情報が含まれる。抽出されたSRSは、CQI推定部104へ出力される。   The SRS extraction unit 103 extracts the SRS transmitted from the terminal device 200 based on the SRS information received from the allocation unit setting unit 106. The SRS information includes information regarding a transmission bandwidth, a transmission band position, and a frequency hopping pattern with which the terminal device 200 transmits the SRS. From the viewpoint of the base station apparatus 100, the SRS information includes information regarding the reception bandwidth and reception band position of the SRS at one timing and the hopping pattern of the reception band position. The extracted SRS is output to CQI estimation section 104.

CQI推定部104は、SRS抽出部103にて抽出された受信SRSと、基地局装置
100と端末装置200との間で既知のSRSレプリカとの相関演算を行うことにより、端末装置200との間のチャネル品質(CQI)を推定する。この相関演算は、割当単位設定部106から受け取るRBG情報に基づいて、RBGごとに行われる。RBG情報には、RBGの基本サイズ及び位置が含まれる。
The CQI estimating unit 104 performs a correlation operation between the received SRS extracted by the SRS extracting unit 103 and a known SRS replica between the base station device 100 and the terminal device 200, so that the CQI estimating unit 104 Channel quality (CQI). This correlation calculation is performed for each RBG based on the RBG information received from the allocation unit setting unit 106. The RBG information includes the basic size and position of the RBG.

チャネル品質の推定結果は、割当部105へ出力される。ここで、上記した従来技術と同様に、広帯域のSRS送信方法が採用される場合には、1つのタイミングにSounding帯域全体のチャネル品質の推定結果が得られる一方、狭帯域のSRS送信方法が採用される場合には、1つのタイミングにはSounding帯域の一部の送信帯域でのみSRSが送信されるので、受信SRSに対して相関演算が複数回行われることにより、Sounding帯域全体のチャネル品質の推定結果が得られる。   The channel quality estimation result is output to allocating section 105. Here, similarly to the above-described prior art, when a wideband SRS transmission method is adopted, an estimation result of the channel quality of the entire sounding band can be obtained at one timing, while a narrowband SRS transmission method is adopted. In such a case, since SRS is transmitted only in a part of the transmission band of the sounding band at one timing, the correlation calculation is performed a plurality of times on the received SRS, so that the channel quality of the entire sounding band is improved. An estimation result is obtained.

割当部105は、割当単位設定部106から受け取るRBG情報により定まるRBG単位で、周波数割当対象端末200に対して周波数リソースの割り当てを行う。この周波数リソースの割り当ては、各RBGについてCQI推定部104で得られたチャネル推定結果に基づいて行われる。割当部105は、システム帯域において割り当てられたRBG及び割り当てられないRBGの配列パターンに対応する周波数リソース割当ビット列を生成し、制御信号生成部107へ出力する。   The allocation unit 105 allocates frequency resources to the frequency allocation target terminal 200 in RBG units determined by RBG information received from the allocation unit setting unit 106. This frequency resource allocation is performed based on the channel estimation result obtained by the CQI estimation unit 104 for each RBG. Allocation section 105 generates a frequency resource allocation bit string corresponding to the array pattern of RBGs allocated and not allocated in the system band, and outputs them to control signal generation section 107.

割当単位設定部106は、端末装置200が1つのタイミングにSRSを送信する、送信帯域幅、送信帯域位置、及び、周波数ホッピングパターンに関する情報が含まれるSRS情報をSRS抽出部103へ出力するとともに、RBGの基本サイズ及び周波数位置が含まれるRBG情報を割当部105へ出力する。ここで、SRS情報によって定まる任意のSRS送信帯域端の周波数位置は、RBG情報によって定まるいずれかのRBGの端の周波数位置と一致する。さらに、RBG情報に含まれるRBGの基本サイズ(つまり、RBGの基本帯域幅)は、SRS情報に含まれる送信帯域幅の約数となっている。すなわち、SRS情報に含まれる送信帯域幅は、RBG情報に含まれるRBGの基本サイズの自然数倍となっている。   The allocation unit setting unit 106 outputs SRS information including information on transmission bandwidth, transmission band position, and frequency hopping pattern to which the terminal device 200 transmits SRS at one timing to the SRS extraction unit 103, and RBG information including the basic size and frequency position of RBG is output to allocating section 105. Here, the frequency position at the end of any SRS transmission band determined by the SRS information matches the frequency position at the end of any RBG determined by the RBG information. Further, the basic size of the RBG included in the RBG information (that is, the basic bandwidth of the RBG) is a divisor of the transmission bandwidth included in the SRS information. That is, the transmission bandwidth included in the SRS information is a natural number multiple of the basic size of the RBG included in the RBG information.

具体的には、割当単位設定部106は、SRS情報設定部111と、RBG情報設定部112とを有する。   Specifically, the allocation unit setting unit 106 includes an SRS information setting unit 111 and an RBG information setting unit 112.

SRS情報設定部111は、SRS情報をSRS抽出部103へ出力する。また、SRS情報設定部111は、SRSの最小帯域幅(RBの個数で表される)、及び、SRSの送信帯域境界情報をRBG情報設定部112へ出力する。SRSの送信帯域境界情報とは、例えば、Sounding帯域の開始位置を指す。   The SRS information setting unit 111 outputs the SRS information to the SRS extraction unit 103. Further, the SRS information setting unit 111 outputs the SRS minimum bandwidth (expressed by the number of RBs) and SRS transmission band boundary information to the RBG information setting unit 112. The SRS transmission band boundary information indicates, for example, the starting position of the Sounding band.

RBG情報設定部112は、システム帯域幅に応じて、RBGの基本サイズを決定する。このRBGの基本サイズは、端末装置200が1つのタイミングにSRSを送信する送信帯域幅の約数である。また、RBG情報設定部112は、SRS情報設定部111から受け取るSRSの送信帯域境界情報の示す送信帯域端の周波数位置とRBGの端の周波数位置とが一致するように、RBGの周波数位置を決定する。   The RBG information setting unit 112 determines the basic size of the RBG according to the system bandwidth. The basic size of the RBG is a divisor of the transmission bandwidth at which the terminal device 200 transmits the SRS at one timing. Also, the RBG information setting unit 112 determines the frequency position of the RBG so that the frequency position at the end of the transmission band indicated by the transmission band boundary information of the SRS received from the SRS information setting unit 111 matches the frequency position at the end of the RBG. To do.

こうして決定されたRBGの基本サイズ及びRBGの周波数位置に関する情報は、RBG情報として、CQI推定部104及び割当部105へ出力される。   Information regarding the basic size of the RBG and the frequency position of the RBG thus determined is output to the CQI estimation unit 104 and the allocation unit 105 as RBG information.

制御信号生成部107は、割当部105からの周波数リソース割当ビット列を含む制御信号を生成し、変調部108へ出力する。   The control signal generation unit 107 generates a control signal including the frequency resource allocation bit string from the allocation unit 105 and outputs the control signal to the modulation unit 108.

変調部108は、制御信号を変調し、無線送信部109へ出力する。   Modulation section 108 modulates the control signal and outputs it to radio transmission section 109.

無線送信部109は、変調信号に対し、D/A変換、アップコンバート、増幅等の送信処理を施し、アンテナを介して無線送信する。   The wireless transmission unit 109 performs transmission processing such as D / A conversion, up-conversion, and amplification on the modulated signal, and wirelessly transmits the signal via an antenna.

図7は、本発明の実施の形態1に係る端末装置200の構成を示すブロック図である。図7において、端末装置200は、無線受信部201と、復調部202と、復号部203と、帯域情報設定部204と、送信帯域設定部205と、符号化部206と、変調部207と、DFT部208と、SRS生成部209と、マッピング部210,211と、IDFT部212,213と、多重部214と、無線送信部215とを有する。   FIG. 7 is a block diagram showing a configuration of terminal apparatus 200 according to Embodiment 1 of the present invention. In FIG. 7, the terminal device 200 includes a radio reception unit 201, a demodulation unit 202, a decoding unit 203, a band information setting unit 204, a transmission band setting unit 205, an encoding unit 206, a modulation unit 207, It includes a DFT unit 208, an SRS generation unit 209, mapping units 210 and 211, IDFT units 212 and 213, a multiplexing unit 214, and a wireless transmission unit 215.

無線受信部201は、アンテナを介して受信した受信信号に対し、ダウンコンバート、A/D変換等の受信処理を施し、復調部202へ出力する。   Radio reception section 201 performs reception processing such as down-conversion and A / D conversion on the received signal received via the antenna, and outputs the result to demodulation section 202.

復調部202は、受信信号を復調し、復号部203へ出力する。   Demodulation section 202 demodulates the received signal and outputs it to decoding section 203.

復号部203は、復調部202から受け取る信号に復号処理を施し、復号結果から基地局装置100によって送信された周波数リソース割当ビット列を含む制御信号を抽出する。   Decoding section 203 performs decoding processing on the signal received from demodulation section 202, and extracts a control signal including a frequency resource allocation bit string transmitted by base station apparatus 100 from the decoding result.

帯域情報設定部204は、端末装置200が1つのタイミングにSRSを送信する、送信帯域幅、送信帯域位置、及び、周波数ホッピングパターンに関する情報が含まれるSRS情報をマッピング部211へ出力するとともに、RBGの基本サイズ及び周波数位置が含まれるRBG情報を送信帯域設定部205へ出力する。ここで、SRS情報によって定まる任意のSRS送信帯域端の周波数位置は、RBG情報によって定まるいずれかのRBGの端の周波数位置と一致する。さらに、RBG情報に含まれるRBGの基本サイズ(つまり、RBGの基本帯域幅)は、SRS情報に含まれる送信帯域幅の約数となっている。すなわち、SRS情報に含まれる送信帯域幅は、RBG情報に含まれるRBGの基本サイズの自然数倍となっている。   The band information setting unit 204 outputs to the mapping unit 211 SRS information including information related to the transmission bandwidth, transmission band position, and frequency hopping pattern, in which the terminal device 200 transmits the SRS at one timing, and RBG. RBG information including the basic size and frequency position is output to transmission band setting section 205. Here, the frequency position at the end of any SRS transmission band determined by the SRS information matches the frequency position at the end of any RBG determined by the RBG information. Further, the basic size of the RBG included in the RBG information (that is, the basic bandwidth of the RBG) is a divisor of the transmission bandwidth included in the SRS information. That is, the transmission bandwidth included in the SRS information is a natural number multiple of the basic size of the RBG included in the RBG information.

具体的には、帯域情報設定部204は、SRS情報設定部221と、RBG情報設定部222とを有する。   Specifically, the band information setting unit 204 includes an SRS information setting unit 221 and an RBG information setting unit 222.

SRS情報設定部221は、SRS情報をマッピング部211へ出力する。また、SRS情報設定部221は、SRSの最小帯域幅(RBの個数で表される)、及び、SRSの送信帯域境界情報をRBG情報設定部222へ出力する。SRSの送信帯域境界情報とは、例えば、Sounding帯域の開始位置を指す。   The SRS information setting unit 221 outputs the SRS information to the mapping unit 211. Also, the SRS information setting unit 221 outputs the SRS minimum bandwidth (represented by the number of RBs) and SRS transmission band boundary information to the RBG information setting unit 222. The SRS transmission band boundary information indicates, for example, the starting position of the Sounding band.

RBG情報設定部222は、システム帯域幅に応じて、RBGの基本サイズを決定する。このRBGの基本サイズは、端末装置200が1つのタイミングにSRSを送信する送信帯域幅の約数である。また、RBG情報設定部222は、SRS情報設定部221から受け取るSRSの送信帯域境界情報の示す送信帯域端の周波数位置とRBGの端の周波数位置と一致するように、RBGの周波数位置を決定する。こうして決定されたRBGの基本サイズ及びRBGの周波数位置に関する情報は、RBG情報として、送信帯域設定部205へ出力される。   The RBG information setting unit 222 determines the basic size of the RBG according to the system bandwidth. The basic size of the RBG is a divisor of the transmission bandwidth at which the terminal device 200 transmits the SRS at one timing. Further, the RBG information setting unit 222 determines the frequency position of the RBG so that the frequency position at the end of the transmission band indicated by the transmission band boundary information of the SRS received from the SRS information setting unit 221 matches the frequency position at the end of the RBG. . Information regarding the basic size of the RBG and the frequency position of the RBG thus determined is output to the transmission band setting unit 205 as RBG information.

送信帯域設定部205は、帯域情報設定部204から受け取るRBG情報に基づいて基本サイズ及び周波数位置が特定されるRBG群のうち、復号部203から受け取る制御情報に含まれる周波数リソース割当ビット列の構成ビットのビット値に基づいて割当RBGを特定し、特定した割当RBGの基本サイズ及び周波数位置を送信帯域情報としてマッピング部210へ出力する。すなわち、割当RBGの基本サイズ及び周波数位置から特定さ
れる帯域が送信帯域である。
Transmission band setting section 205 is a component bit of a frequency resource allocation bit string included in control information received from decoding section 203 among RBG groups whose basic size and frequency position are specified based on RBG information received from band information setting section 204 The assigned RBG is specified based on the bit value of the received RBG, and the basic size and frequency position of the specified assigned RBG are output to the mapping unit 210 as transmission band information. That is, the band specified from the basic size and frequency position of the assigned RBG is the transmission band.

符号化部206は、送信データを符号化し、得られた符号化データを変調部207へ出力する。   Encoding section 206 encodes transmission data and outputs the obtained encoded data to modulation section 207.

変調部207は、符号化部206から受け取る符号化データを変調し、データ変調信号をDFT部208へ出力する。   Modulation section 207 modulates the encoded data received from encoding section 206 and outputs a data modulation signal to DFT section 208.

DFT部208は、変調部207から受け取るデータ変調信号にDFT処理を施し、得られた周波数領域のデータ信号をマッピング部210へ出力する。   The DFT unit 208 performs DFT processing on the data modulation signal received from the modulation unit 207, and outputs the obtained frequency domain data signal to the mapping unit 210.

マッピング部210は、送信帯域設定部205から受け取る送信帯域情報の示す周波数リソースにDFT部208から受け取るデータ信号をマッピングし、得られた信号をIDFT部212へ出力する。   Mapping section 210 maps the data signal received from DFT section 208 to the frequency resource indicated by the transmission band information received from transmission band setting section 205, and outputs the obtained signal to IDFT section 212.

IDFT部212は、マッピング部210から受け取る信号にIDFT処理を施し、得られた信号を多重部214へ出力する。   The IDFT unit 212 performs IDFT processing on the signal received from the mapping unit 210 and outputs the obtained signal to the multiplexing unit 214.

SRS生成部209は、上り回線データチャネルの品質を測定するためのSRSを生成し、マッピング部211へ出力する。   SRS generation section 209 generates an SRS for measuring the quality of the uplink data channel and outputs the SRS to mapping section 211.

マッピング部211は、帯域情報設定部204から受け取るSRS情報によって特定される周波数/時間リソースに配置し、得られた信号をIDFT部213へ出力する。   Mapping section 211 arranges the frequency / time resource specified by the SRS information received from band information setting section 204 and outputs the obtained signal to IDFT section 213.

IDFT部213は、マッピング部211から受け取る信号にIDFT処理を施し、得られた信号を多重部214へ出力する。   The IDFT unit 213 performs IDFT processing on the signal received from the mapping unit 211 and outputs the obtained signal to the multiplexing unit 214.

多重部214は、IDFT部213から受け取るデータ信号とSRSとを多重し、得られた多重信号を無線送信部215へ出力する。   The multiplexing unit 214 multiplexes the data signal received from the IDFT unit 213 and the SRS, and outputs the obtained multiplexed signal to the wireless transmission unit 215.

無線送信部215は、多重部214から受け取る多重信号にD/A変換、アップコンバート、増幅等の送信処理を施し、得られた無線信号をアンテナから基地局装置100へ送信する。   Radio transmitting section 215 performs transmission processing such as D / A conversion, up-conversion, amplification, etc. on the multiplexed signal received from multiplexing section 214, and transmits the obtained radio signal to base station apparatus 100 from the antenna.

次に、以上の構成を有する基地局装置100及び端末装置200の動作について説明する。   Next, operations of base station apparatus 100 and terminal apparatus 200 having the above configuration will be described.

基地局装置100は、各RBGについて得られたチャネル推定結果に基づいて、周波数割当対象端末200に対してRBG単位で周波数リソースの割り当てを行い、システム帯域において割り当てられたRBG及び割り当てられないRBGの配列パターンに対応する周波数リソース割当ビット列を生成する。そして、基地局装置100は、周波数リソース割当ビット列を端末装置200へ送信する。端末装置200は、受信した周波数リソース割当ビット列に基づいて特定される周波数リソースを用いてデータ送信する。   Based on the channel estimation result obtained for each RBG, the base station apparatus 100 allocates frequency resources in units of RBGs to the frequency allocation target terminal 200, and RBGs allocated in the system band and RBGs not allocated A frequency resource allocation bit string corresponding to the arrangement pattern is generated. Then, base station apparatus 100 transmits a frequency resource allocation bit string to terminal apparatus 200. The terminal device 200 transmits data using the frequency resource specified based on the received frequency resource allocation bit string.

具体的には、基地局装置100において、SRS抽出部103は、無線受信部101及び復調部102を介して受け取る受信信号から、割当単位設定部106から受け取るSRS情報に基づいて特定されるSRS受信帯域にてSRSを抽出する。SRS情報には、1つのタイミングにおけるSRSの受信帯域幅及び受信帯域位置、並びに、当該受信帯域位置のホッピングパターンに関する情報が含まれる。上記したようにSRSの送信方法には、広帯域のSRS送信方法及び狭帯域のSRS送信方法がある。広帯域のSRS送信方法
では、すべてのSRS送信タイミングで同じ送信帯域(つまり、Sounding帯域)でSRSが送信される。従って、広帯域のSRS送信方法が採用される場合、SRS情報には、受信帯域位置がホッピングしないことを示す情報が含まれる。
Specifically, in the base station apparatus 100, the SRS extraction unit 103 is identified based on the SRS information received from the allocation unit setting unit 106 from the reception signals received via the radio reception unit 101 and the demodulation unit 102. SRS is extracted in the band. The SRS information includes information regarding the reception bandwidth and reception band position of the SRS at one timing and the hopping pattern of the reception band position. As described above, the SRS transmission method includes a wideband SRS transmission method and a narrowband SRS transmission method. In the broadband SRS transmission method, the SRS is transmitted in the same transmission band (that is, the sounding band) at all SRS transmission timings. Therefore, when the broadband SRS transmission method is adopted, the SRS information includes information indicating that the reception band position does not hop.

CQI推定部104は、SRS抽出部103にて抽出された受信SRSとSRSレプリカとの相関演算を、割当単位設定部106から受け取るRBG情報に基づいて特定されるRGBごとに行うことにより、RGBごとのチャネル推定結果を得る。RBG情報には、RBGの基本サイズ及び位置が含まれる。   The CQI estimating unit 104 performs the correlation operation between the received SRS and the SRS replica extracted by the SRS extracting unit 103 for each RGB specified based on the RBG information received from the allocation unit setting unit 106. Channel estimation results are obtained. The RBG information includes the basic size and position of the RBG.

割当部105は、CQI推定部104で得られたチャネル推定結果に基づいて、割当単位設定部106から受け取るRBG情報により定まるRBG単位で、周波数割当対象端末200に対して周波数リソースの割り当てを行い、システム帯域において割り当てられたRBG及び割り当てられないRBGの配列パターンに対応する周波数リソース割当ビット列を生成する。   Allocation unit 105 allocates frequency resources to frequency allocation target terminal 200 in RBG units determined by RBG information received from allocation unit setting unit 106, based on the channel estimation result obtained by CQI estimation unit 104. A frequency resource allocation bit string corresponding to an array pattern of RBGs allocated and not allocated in the system band is generated.

ここで、SRS情報によって定まる任意のSRS送信帯域端の周波数位置は、RBG情報によって定まるいずれかのRBGの端の周波数位置と一致する。さらに、RBG情報に含まれるRBGの基本サイズ(つまり、RBGの基本帯域幅)は、SRS情報に含まれる送信帯域幅の約数となっている。すなわち、SRS情報に含まれる送信帯域幅は、RBG情報に含まれるRBGの基本サイズの自然数倍となっている。例えば、LTEのSRSの最小帯域幅が4RBであるので、割当単位設定部106で決定するRBGの基本サイズは、図8に示すように、4RBの約数である1、2、4RBに制限される。   Here, the frequency position at the end of any SRS transmission band determined by the SRS information matches the frequency position at the end of any RBG determined by the RBG information. Further, the basic size of the RBG included in the RBG information (that is, the basic bandwidth of the RBG) is a divisor of the transmission bandwidth included in the SRS information. That is, the transmission bandwidth included in the SRS information is a natural number multiple of the basic size of the RBG included in the RBG information. For example, since the minimum bandwidth of LTE SRS is 4 RBs, the basic size of the RBG determined by the allocation unit setting unit 106 is limited to 1, 2, 4 RBs which are divisors of 4 RBs as shown in FIG. The

こうすることで、図9に示すように、Sounding帯域内にある各RBGでは1つのSRSが隙間なく送信される。従って、各RGBでは同一タイミングに送信されたSRSを用いたチャネル推定結果が得られるので、CQI推定精度の劣化を防止できる。この結果、基地局装置100が精度劣化の無いCQIを用いて端末装置200を周波数リソース割当できるので、システスループット性能の劣化を防止できる。また、SRS送信方法はLTEの方法と同じなので、LTEシステム専用の端末とLTE−Aシステムにも適用可能な端末とを区別することなく、同一セル内で複数端末のSRSを多重することができる。   By doing so, as shown in FIG. 9, one SRS is transmitted without a gap in each RBG in the Sounding band. Therefore, since each RGB can obtain a channel estimation result using SRS transmitted at the same timing, it is possible to prevent deterioration of CQI estimation accuracy. As a result, since the base station apparatus 100 can allocate frequency resources to the terminal apparatus 200 using CQI with no accuracy deterioration, it is possible to prevent deterioration of system throughput performance. Further, since the SRS transmission method is the same as the LTE method, it is possible to multiplex SRSs of a plurality of terminals in the same cell without distinguishing between terminals dedicated to the LTE system and terminals applicable to the LTE-A system. .

またここで、本実施の形態のように、Sounding帯域を基準に、RBGの端をSounding帯域の端に一致させる場合には、システム帯域におけるSounding帯域の位置によって、システム帯域の両端部に、大きさが基本サイズに満たないRBGが生じる場合がある。   Here, as in the present embodiment, when the end of the RBG is matched with the end of the sounding band with reference to the sounding band, the size is increased at both ends of the system band depending on the position of the sounding band in the system band. RBG that is less than the basic size may occur.

図10は、システム帯域におけるSounding帯域の位置に応じてシステム帯域内に規定されるRBG群の説明に供する図である。図10Aでは、システム帯域の端からRBGを順次敷き詰めた状態でSounding帯域の端の周波数位置がRGBの端の周波数位置と一致している。一方、図10Bでは、システム帯域の端からRBGを順次敷き詰めた状態でSounding帯域の端の周波数位置がRGBの端の周波数位置と一致しないので、一致するようにRBGの周波数位置がずらされている。   FIG. 10 is a diagram for explaining the RBG group defined in the system band according to the position of the Sounding band in the system band. In FIG. 10A, the frequency position at the end of the Sounding band coincides with the frequency position at the end of RGB in a state where RBGs are sequentially spread from the end of the system band. On the other hand, in FIG. 10B, since the frequency position of the sounding band edge does not match the frequency position of the RGB edge in the state where the RBG is sequentially spread from the edge of the system band, the frequency position of the RBG is shifted so as to match. .

図10Aと図10Bとでは、システム帯域幅及びSounding帯域幅が一致する一方で、Sounding帯域の位置が異なっている。この違いによって、図10Aでは、周波数リソース割当ビット列の構成ビットの数が8ビットである一方で、図10Bでは、9ビットとなる。これは、図10Bでは、システム帯域両端部の基本サイズに満たないRBGが、それぞれ1つのRBGとしてカウントされるからである。   In FIG. 10A and FIG. 10B, the system bandwidth and the sounding bandwidth are the same, but the position of the sounding bandwidth is different. Due to this difference, the number of constituent bits of the frequency resource allocation bit string is 8 bits in FIG. 10A, whereas it is 9 bits in FIG. 10B. This is because, in FIG. 10B, RBGs that are less than the basic size at both ends of the system band are counted as one RBG.

このように基地局装置100から端末装置200へ送信される周波数リソース割当ビット列の構成ビットの数が変わると、制御信号の送信フォーマットが変わることになり、端末装置200において送信フォーマット検出のための復号処理が増加してしまう。   When the number of constituent bits of the frequency resource allocation bit string transmitted from the base station apparatus 100 to the terminal apparatus 200 changes in this way, the transmission format of the control signal changes, and the terminal apparatus 200 performs decoding for detecting the transmission format. Processing increases.

このような不都合を解消するためには、以下に示す3つの方法がある。   In order to eliminate such inconvenience, there are the following three methods.

第1の方法は、割当部105が、システム帯域の両端にある、大きさが基本サイズに満たない2つのRBGを1つの纏まりとして、周波数割当対象端末へ割り当てる(図11参照)。これにより、システム帯域の両端にある2つのRBGが割り当てられているか否かを1ビットで周波数割当対象端末へ通知することが可能となる。この結果、割当部105は、図10Bのような状況でも、図10Aのような状況での構成ビット数と同じビット数で、周波数リソース割当ビット列を生成することができる。   In the first method, the allocation unit 105 allocates two RBGs at both ends of the system band that are less than the basic size as a group to the frequency allocation target terminal (see FIG. 11). Thereby, it is possible to notify the frequency allocation target terminal by 1 bit whether or not two RBGs at both ends of the system band are allocated. As a result, the allocation unit 105 can generate the frequency resource allocation bit string with the same number of bits as the configuration bit number in the situation shown in FIG. 10A even in the situation shown in FIG. 10B.

第2の方法は、割当部105が、システム帯域の両端にある、大きさが基本サイズに満たない2つのRBGのうち一方のみを割当対象とし、他方を非割当対象とする(図12参照)。ただし、ここでの「非割当対象」とは、周波数リソース割当ビット列で割り当てられているか否かを通知する対象ではないことを意味する。従って、この非割当対象のRBGを、別のシグナリング方法(例えば、連続帯域送信用の周波数リソース割当ビット列)によって周波数割当対象端末に対して割り当てることは可能である。これにより、図10A及びBのいずれの状況でも、1つのシグナリングフォーマットを使うことができる。この結果、端末装置200においてシグナリングフォーマットの検出のための復号処理を省略できるので、端末装置200の処理量増加を防止することができる。   In the second method, the allocation unit 105 sets only one of two RBGs at both ends of the system band whose size is less than the basic size as an allocation target and the other as a non-allocation target (see FIG. 12). . However, the “non-allocation target” here means that it is not a target for notifying whether or not the frequency resource allocation bit string is allocated. Therefore, it is possible to allocate the non-allocation target RBG to the frequency allocation target terminal by another signaling method (for example, a frequency resource allocation bit string for continuous band transmission). This allows one signaling format to be used in both situations of FIGS. 10A and 10B. As a result, since the decoding process for detecting the signaling format can be omitted in the terminal device 200, an increase in the processing amount of the terminal device 200 can be prevented.

第3の方法は、割当部105が、システム帯域の両端にある、大きさが基本サイズに満たない2つのRBGのいずれも非割当対象とする。すなわち、割当部105が割当可能な帯域とSounding帯域と一致させる(図13参照)。こうして、システム帯域の両端にある、大きさが基本サイズに満たない2つのRBGのいずれも非割当対象とするので、シグナリングビット数を低減できる。ただし、ここでも、非割当対象のRBGを、別のシグナリング方法(例えば、連続帯域送信用の周波数リソース割当ビット列)によって周波数割当対象端末に対して割り当てることは可能である。また、Sounding帯域幅をセル内で設定可能な最大値とすれば、シグナリングビット数がセル内で共通化されるので、セル内でシグナリングフォーマットも共通化できる。   In the third method, the allocating unit 105 sets two RBGs at both ends of the system band that are less than the basic size as non-allocation targets. That is, the allocation unit 105 matches the band that can be allocated with the sounding band (see FIG. 13). In this way, since two RBGs at both ends of the system band that are less than the basic size are not allocated, the number of signaling bits can be reduced. However, here too, it is possible to allocate the non-allocation target RBG to the frequency allocation target terminal by another signaling method (for example, a frequency resource allocation bit string for continuous band transmission). Further, if the sounding bandwidth is set to the maximum value that can be set in the cell, the number of signaling bits is made common in the cell, so that the signaling format can be made common in the cell.

以上のように本実施の形態によれば、基地局装置100において、SRS抽出部103にSRSの受信帯域を設定し、CQI推定部104及び割当部105に周波数割当単位(RBG)を設定する割当単位設定部106が、SRS受信帯域の端の周波数位置をいずれかの周波数割当単位の端の周波数位置と一致させ、リファレンス信号の受信帯域幅を周波数割当単位の帯域幅の自然数倍とする。   As described above, according to the present embodiment, in base station apparatus 100, an SRS receiving band is set in SRS extracting section 103, and a frequency allocation unit (RBG) is set in CQI estimating section 104 and allocating section 105. Unit setting section 106 matches the frequency position of the end of the SRS reception band with the frequency position of the end of any frequency allocation unit, and sets the reception bandwidth of the reference signal to a natural number multiple of the bandwidth of the frequency allocation unit.

また、端末装置200において、送信帯域及び周波数割当単位(RBG)を設定する帯域情報設定部204が、送信帯域の端の周波数位置をいずれかの周波数割当単位の端の周波数位置と一致させ、SRSの送信帯域幅を周波数割当単位の帯域幅の自然数倍とする。   Further, in the terminal device 200, the band information setting unit 204 that sets the transmission band and the frequency allocation unit (RBG) matches the frequency position of the end of the transmission band with the frequency position of the end of any frequency allocation unit. Is a natural number multiple of the bandwidth of the frequency allocation unit.

こうすることで、各RBGでは1つのSRSが隙間なく送信される。従って、各RGBでは同一タイミングに送信されたSRSを用いたチャネル推定結果が得られるので、CQI推定精度の劣化を防止できる。この結果、基地局装置100が精度劣化の無いCQIを用いて端末装置200を周波数リソース割当できるので、システスループット性能の劣化を防止できる。   By doing so, one SRS is transmitted without a gap in each RBG. Therefore, since each RGB can obtain a channel estimation result using SRS transmitted at the same timing, it is possible to prevent deterioration of CQI estimation accuracy. As a result, since the base station apparatus 100 can allocate frequency resources to the terminal apparatus 200 using CQI with no accuracy deterioration, it is possible to prevent deterioration of system throughput performance.

(実施の形態2)
実施の形態1では、Sounding帯域を基準に、RGBの基本サイズが決定されるとともに、RBGの端がSounding帯域の端に一致させられる。実施の形態2では、RGBの基本サイズ及び位置を基準に、端末装置200が1つのタイミングにSRSを送信する送信帯域幅が決定されるとともに、そのSRSの送信帯域の端がRGBの端に一致させられる。
(Embodiment 2)
In the first embodiment, the basic size of RGB is determined based on the sounding band, and the end of the RBG is made to coincide with the end of the sounding band. In the second embodiment, the transmission bandwidth at which the terminal device 200 transmits the SRS at one timing is determined based on the RGB basic size and position, and the end of the SRS transmission band matches the end of the RGB Be made.

図14は、本発明の実施の形態2に係る基地局装置300の構成を示すブロック図である。基地局装置300は、割当単位設定部301を有する。   FIG. 14 is a block diagram showing a configuration of base station apparatus 300 according to Embodiment 2 of the present invention. Base station apparatus 300 has allocation unit setting section 301.

割当単位設定部301は、後述する端末装置400が1つのタイミングにSRSを送信する、送信帯域幅、送信帯域位置、及び、周波数ホッピングパターンに関する情報が含まれるSRS情報をSRS抽出部103へ出力するとともに、RBGの基本サイズ及び周波数位置が含まれるRBG情報を割当部105へ出力する。ここで、SRS情報によって定まる任意のSRS送信帯域端の周波数位置は、RBG情報によって定まるいずれかのRBGの端の周波数位置と一致する。さらに、SRS情報に含まれる送信帯域幅は、RBG情報に含まれるRBGの基本サイズの自然数倍となっている。   The allocation unit setting unit 301 outputs, to the SRS extraction unit 103, SRS information including information on a transmission bandwidth, a transmission band position, and a frequency hopping pattern, which is transmitted by the terminal device 400 described later at one timing. At the same time, the RBG information including the basic size and frequency position of the RBG is output to the assignment unit 105. Here, the frequency position at the end of any SRS transmission band determined by the SRS information matches the frequency position at the end of any RBG determined by the RBG information. Furthermore, the transmission bandwidth included in the SRS information is a natural number multiple of the basic size of the RBG included in the RBG information.

具体的には、割当単位設定部301は、RBG情報設定部311と、SRS情報設定部312とを有する。   Specifically, the allocation unit setting unit 301 includes an RBG information setting unit 311 and an SRS information setting unit 312.

RBG情報設定部311は、システム帯域幅に応じてRBGの基本サイズを決定するとともに、RBGの周波数位置を決定する。決定されたRBGの基本サイズ及び周波数位置に関する情報は、RBG情報として割当部105、CQI推定部104及びSRS情報設定部312へ出力される。このRBG情報に従えば、RBGは、システム帯域の端からシステム帯域全体に隈無く敷き詰められる。   The RBG information setting unit 311 determines the basic size of the RBG according to the system bandwidth and also determines the frequency position of the RBG. Information on the determined basic size and frequency position of the RBG is output to the allocating unit 105, the CQI estimating unit 104, and the SRS information setting unit 312 as RBG information. According to this RBG information, the RBG is spread throughout the entire system band from the end of the system band.

SRS情報設定部312は、RBG情報設定部311から受け取るRBG情報に含まれる基本サイズに応じて、端末装置400が1つのタイミングにSRSを送信する送信帯域幅を決定する。また、SRS情報設定部312は、RBG情報設定部311から受け取るRBG情報に含まれる基本サイズ及び周波数位置によって特定されるRBGの端の周波数位置とSRS送信帯域端の周波数位置とが一致するように、SRSの周波数位置を決定する。   The SRS information setting unit 312 determines the transmission bandwidth for the terminal device 400 to transmit the SRS at one timing according to the basic size included in the RBG information received from the RBG information setting unit 311. The SRS information setting unit 312 also matches the frequency position at the end of the RBG specified by the basic size and the frequency position included in the RBG information received from the RBG information setting unit 311 with the frequency position at the SRS transmission band end. , SRS frequency position is determined.

こうして決定されたSRS送信帯域幅、各SRS送信帯域の周波数位置、及び、当該周波数位置のホッピングパターンに関する情報は、SRS情報としてSRS抽出部103へ出力される。   Information regarding the SRS transmission bandwidth determined in this way, the frequency position of each SRS transmission band, and the hopping pattern at the frequency position is output to the SRS extraction unit 103 as SRS information.

図15は、本発明の実施の形態2に係る端末装置400の構成を示すブロック図である。図15において、端末装置400は、帯域情報設定部401を有する。   FIG. 15 is a block diagram showing a configuration of terminal apparatus 400 according to Embodiment 2 of the present invention. In FIG. 15, the terminal device 400 includes a band information setting unit 401.

帯域情報設定部401は、端末装置400が1つのタイミングにSRSを送信する、送信帯域幅、送信帯域位置、及び、周波数ホッピングパターンに関する情報が含まれるSRS情報をマッピング部211へ出力するとともに、RBGの基本サイズ及び周波数位置が含まれるRBG情報を送信帯域設定部205へ出力する。ここで、SRS情報によって定まる任意のSRS送信帯域端の周波数位置は、RBG情報によって定まるいずれかのRBGの端の周波数位置と一致する。さらに、SRS情報に含まれる送信帯域幅は、RBG情報に含まれるRBGの基本サイズの自然数倍となっている。   The band information setting unit 401 outputs SRS information including information on a transmission bandwidth, a transmission band position, and a frequency hopping pattern to which the terminal device 400 transmits SRS at one timing to the mapping unit 211, and RBG RBG information including the basic size and frequency position is output to transmission band setting section 205. Here, the frequency position at the end of any SRS transmission band determined by the SRS information matches the frequency position at the end of any RBG determined by the RBG information. Furthermore, the transmission bandwidth included in the SRS information is a natural number multiple of the basic size of the RBG included in the RBG information.

具体的には、帯域情報設定部401は、RBG情報設定部411と、SRS情報設定部412とを有する。   Specifically, the band information setting unit 401 includes an RBG information setting unit 411 and an SRS information setting unit 412.

RBG情報設定部411は、システム帯域幅に応じてRBGの基本サイズを決定するとともに、RBGの周波数位置を決定する。決定されたRBGの基本サイズ及び周波数位置に関する情報は、RBG情報として送信帯域設定部205及びSRS情報設定部412へ出力される。このRBG情報に従えば、RBGは、システム帯域の端からシステム帯域全体に隈無く敷き詰められる。   The RBG information setting unit 411 determines the basic size of the RBG according to the system bandwidth and also determines the frequency position of the RBG. Information on the determined basic size and frequency position of the RBG is output to the transmission band setting unit 205 and the SRS information setting unit 412 as RBG information. According to this RBG information, the RBG is spread throughout the entire system band from the end of the system band.

SRS情報設定部412は、RBG情報設定部411から受け取るRBG情報に含まれる基本サイズに応じて、端末装置400が1つのタイミングにSRSを送信する送信帯域幅を決定する。また、SRS情報設定部412は、RBG情報設定部411から受け取るRBG情報に含まれる基本サイズ及び周波数位置によって特定されるRBGの端の周波数位置とSRS送信帯域端の周波数位置とが一致するように、SRSの周波数位置を決定する。   The SRS information setting unit 412 determines the transmission bandwidth for the terminal device 400 to transmit the SRS at one timing according to the basic size included in the RBG information received from the RBG information setting unit 411. The SRS information setting unit 412 also matches the frequency position at the end of the RBG specified by the basic size and the frequency position included in the RBG information received from the RBG information setting unit 411 with the frequency position at the end of the SRS transmission band. , SRS frequency position is determined.

こうして決定されたSRS送信帯域幅、各SRS送信帯域の周波数位置、及び、当該周波数位置のホッピングパターンに関する情報は、SRS情報としてマッピング部211へ出力される。   Information regarding the SRS transmission bandwidth determined in this way, the frequency position of each SRS transmission band, and the hopping pattern at the frequency position is output to the mapping unit 211 as SRS information.

以上の構成を有する基地局装置300及び端末装置400の動作について説明する。   The operations of base station apparatus 300 and terminal apparatus 400 having the above configuration will be described.

基地局装置300は、各RBGについて得られたチャネル推定結果に基づいて、周波数割当対象端末400に対してRBG単位で周波数リソースの割り当てを行い、システム帯域において割り当てられたRBG及び割り当てられないRBGの配列パターンに対応する周波数リソース割当ビット列を生成する。そして、基地局装置300は、周波数リソース割当ビット列を端末装置400へ送信する。端末装置400は、受信した周波数リソース割当ビット列に基づいて特定される周波数リソースを用いてデータ送信する。   Based on the channel estimation result obtained for each RBG, the base station apparatus 300 allocates frequency resources in units of RBGs to the frequency allocation target terminal 400, and RBGs allocated in the system band and unassigned RBGs A frequency resource allocation bit string corresponding to the arrangement pattern is generated. Base station apparatus 300 then transmits the frequency resource allocation bit string to terminal apparatus 400. The terminal device 400 transmits data using the frequency resource specified based on the received frequency resource allocation bit string.

具体的には、基地局装置300において、割当部105は、CQI推定部104で得られたチャネル推定結果に基づいて、割当単位設定部301から受け取るRBG情報により定まるRBG単位で、周波数割当対象端末400に対して周波数リソースの割り当てを行い、システム帯域において割り当てられたRBG及び割り当てられないRBGの配列パターンに対応する周波数リソース割当ビット列を生成する。   Specifically, in base station apparatus 300, allocation section 105 performs frequency allocation target terminals in units of RBGs determined by RBG information received from allocation unit setting section 301 based on the channel estimation result obtained by CQI estimation section 104. Frequency resources are allocated to 400, and a frequency resource allocation bit string corresponding to an arrangement pattern of RBGs allocated and not allocated in the system band is generated.

ここで、SRS情報によって定まる任意のSRS送信帯域端の周波数位置は、RBG情報によって定まるいずれかのRBGの端の周波数位置と一致する。さらに、SRS情報に含まれる送信帯域幅は、RBG情報に含まれるRBGの基本サイズの自然数倍となっている。   Here, the frequency position at the end of any SRS transmission band determined by the SRS information matches the frequency position at the end of any RBG determined by the RBG information. Furthermore, the transmission bandwidth included in the SRS information is a natural number multiple of the basic size of the RBG included in the RBG information.

こうすることで、図16に示すように、Sounding帯域内にある各RBGでは1つのSRSが隙間なく送信される。従って、各RGBでは同一タイミングに送信されたSRSを用いたチャネル推定結果が得られるので、CQI推定精度の劣化を防止できる。この結果、基地局装置300が精度劣化の無いCQIを用いて端末装置400を周波数リソース割当できるので、システスループット性能の劣化を防止できる。   By doing so, as shown in FIG. 16, one SRS is transmitted without a gap in each RBG in the Sounding band. Therefore, since each RGB can obtain a channel estimation result using SRS transmitted at the same timing, it is possible to prevent deterioration of CQI estimation accuracy. As a result, since the base station apparatus 300 can allocate the frequency resource to the terminal apparatus 400 using the CQI with no accuracy deterioration, it is possible to prevent the system throughput performance from being deteriorated.

なお、SRSの送信帯域幅は、システムで取り得る全てのRBGサイズの最小公倍数の倍数としても良い。これにより、上述した効果に加え、RBGサイズの変更に依存しないSRSの送信帯域幅が設定されるので、端末装置400における処理が容易になる。例えば、システムで用いるRBGサイズが1、2、3、4RBの範囲で変わる場合は、SRSの送信帯域幅は、それらの最小公倍数である12RBの整数倍(12、24、36RBなど)に設定する。これにより、RBGサイズの変更に依存したSRSの送信帯域幅の変更
が必要なくなる。
The SRS transmission bandwidth may be a multiple of the least common multiple of all RBG sizes that can be taken by the system. Thereby, in addition to the above-described effects, the SRS transmission bandwidth that does not depend on the change of the RBG size is set, so that the processing in the terminal device 400 is facilitated. For example, when the RBG size used in the system changes in the range of 1, 2, 3, 4 RB, the SRS transmission bandwidth is set to an integer multiple of 12 RB (12, 24, 36 RB, etc.) that is the least common multiple thereof. . Thereby, it is not necessary to change the transmission bandwidth of the SRS depending on the change of the RBG size.

以上のように本実施の形態によれば、基地局装置300において、SRS抽出部103にSRSの受信帯域を設定し、CQI推定部104及び割当部105に周波数割当単位(RBG)を設定する割当単位設定部301が、SRS受信帯域の端の周波数位置をいずれかの周波数割当単位の端の周波数位置と一致させ、リファレンス信号の受信帯域幅を周波数割当単位の帯域幅の自然数倍とする。   As described above, according to the present embodiment, in base station apparatus 300, an SRS receiving band is set in SRS extracting section 103, and a frequency allocation unit (RBG) is set in CQI estimating section 104 and allocating section 105. The unit setting unit 301 matches the frequency position of the end of the SRS reception band with the frequency position of the end of any frequency allocation unit, and sets the reception bandwidth of the reference signal to a natural number multiple of the bandwidth of the frequency allocation unit.

また、端末装置400において、送信帯域及び周波数割当単位(RBG)を設定する帯域情報設定部401が、送信帯域の端の周波数位置をいずれかの周波数割当単位の端の周波数位置と一致させ、SRSの送信帯域幅を周波数割当単位の帯域幅の自然数倍とする。   Further, in the terminal device 400, the band information setting unit 401 that sets the transmission band and the frequency allocation unit (RBG) matches the frequency position of the end of the transmission band with the frequency position of the end of any frequency allocation unit, and the SRS Is a natural number multiple of the bandwidth of the frequency allocation unit.

こうすることで、各RBGでは1つのSRSが隙間なく送信される。従って、各RGBでは同一タイミングに送信されたSRSを用いたチャネル推定結果が得られるので、CQI推定精度の劣化を防止できる。この結果、基地局装置300が精度劣化の無いCQIを用いて端末装置400を周波数リソース割当できるので、システスループット性能の劣化を防止できる。   By doing so, one SRS is transmitted without a gap in each RBG. Therefore, since each RGB can obtain a channel estimation result using SRS transmitted at the same timing, it is possible to prevent deterioration of CQI estimation accuracy. As a result, since the base station apparatus 300 can allocate the frequency resource to the terminal apparatus 400 using the CQI with no accuracy deterioration, it is possible to prevent the system throughput performance from being deteriorated.

なお、上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。   Note that although cases have been described with the above embodiment as examples where the present invention is configured by hardware, the present invention can also be realized by software.

また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。   Each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. The name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.

また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。   Further, the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.

さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。   Furthermore, if integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. Biotechnology can be applied.

2009年4月10日出願の特願2009−096221の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。   The disclosures of the specification, drawings, and abstract included in the Japanese application of Japanese Patent Application No. 2009-096221 filed on Apr. 10, 2009 are all incorporated herein by reference.

本発明の無線基地局装置、無線端末装置、周波数リソース割当方法、及び、送信信号形成方法は、上り回線において非連続帯域送信及びSRS送信が採用される場合に、チャネル推定精度の低下を防止できるものとして有用である。   The radio base station apparatus, radio terminal apparatus, frequency resource allocation method, and transmission signal formation method of the present invention can prevent a decrease in channel estimation accuracy when discontinuous band transmission and SRS transmission are employed in the uplink. Useful as a thing.

100,300 基地局装置
101,201 無線受信部
102,202 復調部
103 SRS抽出部
104 CQI推定部
105 割当部
106,301 割当単位設定部
107 制御信号生成部
108,207 変調部
109,215 無線送信部
111,221,312,412 SRS情報設定部
112,222,311,411 RBG情報設定部
200,400 端末装置
203 復号部
204,401 帯域情報設定部
205 送信帯域設定部
206 符号化部
208 DFT部
209 SRS生成部
210,211 マッピング部
212,213 IDFT部
214 多重部
100, 300 Base station apparatus 101, 201 Radio reception unit 102, 202 Demodulation unit 103 SRS extraction unit 104 CQI estimation unit 105 Allocation unit 106, 301 Allocation unit setting unit 107 Control signal generation unit 108, 207 Modulation unit 109, 215 Radio transmission Units 111, 221, 312, 412 SRS information setting unit 112, 222, 311, 411 RBG information setting unit 200, 400 terminal device 203 decoding unit 204, 401 band information setting unit 205 transmission band setting unit 206 encoding unit 208 DFT unit 209 SRS generator 210, 211 Mapping unit 212, 213 IDFT unit 214 Multiplexer

Claims (12)

設定された受信帯域に基づいて、受信信号に含まれるリファレンス信号を抽出する抽出手段と、
前記抽出されたリファレンス信号に基づいて、周波数割当単位ごとにチャネル品質を推定するチャネル推定手段と、
前記チャネル品質推定結果に基づいて、端末に対して前記周波数割当単位ごとに周波数リソースを割り当てる割当手段と、
前記抽出手段に前記リファレンス信号の受信帯域を設定し、前記チャネル推定手段及び前記割当手段に前記周波数割当単位を設定する手段であって、前記受信帯域の端の周波数位置をいずれかの前記周波数割当単位の端の周波数位置と一致させ、前記リファレンス信号の受信帯域の幅を前記周波数割当単位の帯域幅の自然数倍とする割当単位設定手段と、
を具備する無線基地局装置。
Extraction means for extracting a reference signal included in the received signal based on the set reception band;
Channel estimation means for estimating channel quality for each frequency allocation unit based on the extracted reference signal;
Allocating means for allocating frequency resources for each frequency allocation unit to a terminal based on the channel quality estimation result;
A means for setting the reception band of the reference signal in the extraction means, and a means for setting the frequency allocation unit in the channel estimation means and the allocation means, wherein the frequency allocation at the end of the reception band is set as one of the frequency allocations An allocation unit setting means for matching the frequency position of the end of the unit and setting the width of the reception band of the reference signal to be a natural number multiple of the bandwidth of the frequency allocation unit;
A radio base station apparatus comprising:
前記割当単位設定手段は、前記リファレンス信号の受信帯域を決定する受信帯域決定手段と、前記周波数割当単位を決定する周波数割当単位決定手段と、を具備し、
前記周波数割当決定手段は、前記決定された受信帯域の端の周波数位置といずれかの前記周波数割当単位の端の周波数位置とを一致させ、前記周波数割当単位の帯域幅を前記決定された受信帯域の幅の約数とするように前記周波数割当単位を決定する、
請求項1に記載の無線基地局装置。
The allocation unit setting means comprises: reception band determining means for determining a reception band of the reference signal; and frequency allocation unit determining means for determining the frequency allocation unit,
The frequency allocation determining means matches the frequency position of the end of the determined reception band with the frequency position of the end of any one of the frequency allocation units, and sets the bandwidth of the frequency allocation unit to the determined reception band Determining the frequency allocation unit to be a divisor of the width of
The radio base station apparatus according to claim 1.
前記割当手段は、システム帯域において前記端末に対して割り当てられた周波数割当単位及び割り当てられない周波数割当単位の配列パターンに対応する周波数リソース割当ビット列を生成し、前記システム帯域から前記システム帯域内で前記受信帯域が移動可能なサウンディング帯域を除く前記システム帯域の両端部を1つの周波数割当単位とする、
請求項1に記載の無線基地局装置。
The allocating unit generates a frequency resource allocation bit string corresponding to an arrangement pattern of frequency allocation units allocated to the terminal in the system band and frequency allocation units not allocated in the system band, and the system band includes the frequency resource allocation bit string in the system band. Both end portions of the system band excluding the sounding band in which the reception band is movable are set as one frequency allocation unit.
The radio base station apparatus according to claim 1.
前記割当手段は、システム帯域において前記端末に対して割り当てられた周波数割当単位及び割り当てられない周波数割当単位の配列パターンに対応する周波数リソース割当ビット列を生成し、前記システム帯域から前記システム帯域内で前記受信帯域が移動可能なサウンディング帯域を除く前記システム帯域の両端部のうち一方のみを周波数割当単位とする、
請求項1に記載の無線基地局装置。
The allocating unit generates a frequency resource allocation bit string corresponding to an arrangement pattern of frequency allocation units allocated to the terminal in the system band and frequency allocation units not allocated in the system band, and the system band includes the frequency resource allocation bit string in the system band. Only one of both ends of the system band excluding the sounding band in which the reception band is movable is a frequency allocation unit.
The radio base station apparatus according to claim 1.
前記割当手段は、前記端末に対して割当可能な帯域を、前記システム帯域から前記システム帯域内で前記受信帯域が移動可能なサウンディング帯域と一致させる、
請求項1に記載の無線基地局装置。
The allocating unit matches a band that can be allocated to the terminal with a sounding band in which the reception band can move within the system band from the system band.
The radio base station apparatus according to claim 1.
前記割当単位設定手段は、前記周波数割当単位を決定する周波数割当単位決定手段と、前記リファレンス信号の受信帯域を決定する受信帯域決定手段とを具備し、
前記受信帯域決定手段は、前記受信帯域の端の周波数位置と前記決定されたいずれかの周波数割当単位の端の周波数位置とを一致させ、前記リファレンス信号の受信帯域の幅を前記周波数割当単位の帯域幅の自然数倍とするように前記受信帯域を決定する、
請求項1に記載の無線基地局装置。
The allocation unit setting means comprises frequency allocation unit determination means for determining the frequency allocation unit, and reception band determination means for determining a reception band of the reference signal,
The reception band determining means matches the frequency position of the end of the reception band with the frequency position of the end of any one of the determined frequency allocation units, and sets the width of the reception band of the reference signal to the frequency allocation unit. Determining the reception band to be a natural number multiple of the bandwidth;
The radio base station apparatus according to claim 1.
前記受信帯域決定手段は、前記リファレンス信号の受信帯域の幅を、システム帯域幅に応じて取り得る周波数割当単位の複数の帯域幅の最小公倍数を自然数倍した帯域幅とする、
請求項6に記載の無線基地局装置。
The reception band determination means sets the reception band width of the reference signal to a bandwidth obtained by multiplying the least common multiple of a plurality of bandwidths of frequency allocation units that can be taken according to the system bandwidth by a natural number,
The radio base station apparatus according to claim 6.
設定された送信帯域にリファレンス信号をマッピングし、周波数割当単位ごとの割当情報に基づいて送信データをマッピングすることにより、送信信号を形成する形成手段と、
前記送信帯域及び前記周波数割当単位を設定する手段であって、前記送信帯域の端の周波数位置をいずれかの前記周波数割当単位の端の周波数位置と一致させ、前記リファレンス信号の送信帯域の幅を前記周波数割当単位の帯域幅の自然数倍とする帯域設定手段と、
を具備する無線端末装置。
Forming means for mapping a reference signal to a set transmission band and mapping transmission data based on allocation information for each frequency allocation unit, thereby forming a transmission signal;
A means for setting the transmission band and the frequency allocation unit, the frequency position of the end of the transmission band being matched with the frequency position of the end of any of the frequency allocation units, and the width of the transmission band of the reference signal Band setting means for setting a natural number times the bandwidth of the frequency allocation unit;
A wireless terminal device comprising:
前記帯域設定手段は、前記リファレンス信号の送信帯域を決定する送信帯域決定手段と、前記周波数割当単位を決定する周波数割当単位決定手段とを具備し、
前記周波数割当単位決定手段は、前記決定された送信帯域の端の周波数位置といずれかの前記周波数割当単位の端の周波数位置とを一致させ、周波数割当単位の帯域幅を前記決定された送信帯域の幅の約数とするように前記周波数割当単位を決定する、
請求項8に記載の無線端末装置。
The band setting unit includes a transmission band determining unit that determines a transmission band of the reference signal, and a frequency allocation unit determining unit that determines the frequency allocation unit,
The frequency allocation unit determining means matches the frequency position of the end of the determined transmission band with the frequency position of the end of any one of the frequency allocation units, and sets the bandwidth of the frequency allocation unit to the determined transmission band Determining the frequency allocation unit to be a divisor of the width of
The wireless terminal device according to claim 8.
前記帯域設定手段は、前記周波数割当単位を決定する周波数割当単位決定手段と、前記リファレンス信号の送信帯域を決定する送信帯域決定手段とを具備し、前記送信帯域決定手段は、前記送信帯域の端の周波数位置と前記決定されたいずれかの周波数割当単位の端の周波数位置とを一致させ、前記リファレンス信号の送信帯域の幅を前記周波数割当単位の帯域幅の自然数倍とするように前記送信帯域を決定する、
請求項8に記載の無線端末装置。
The band setting unit includes a frequency allocation unit determination unit that determines the frequency allocation unit, and a transmission band determination unit that determines a transmission band of the reference signal, and the transmission band determination unit includes an end of the transmission band. The frequency position of the reference signal is matched with the frequency position at the end of one of the determined frequency allocation units, and the transmission bandwidth of the reference signal is set to be a natural number multiple of the bandwidth of the frequency allocation unit. Determine the bandwidth,
The wireless terminal device according to claim 8.
リファレンス信号の受信帯域及び周波数割当単位を設定するステップと、
前記設定された受信帯域に基づいて、受信信号に含まれるリファレンス信号を抽出するステップと、
前記抽出されたリファレンス信号に基づいて、前記設定された周波数割当単位ごとにチャネル品質を推定するステップと、
前記チャネル品質推定結果に基づいて、端末に対して前記周波数割当単位ごとに周波数リソースを割り当てるステップと、
を具備し、
前記受信帯域の端の周波数位置はいずれかの前記周波数割当単位の端の周波数位置と一致し、前記リファレンス信号の受信帯域の幅は前記周波数割当単位の帯域幅の自然数倍である、
周波数リソース割当方法。
Setting a reference signal reception band and frequency allocation unit;
Extracting a reference signal included in a received signal based on the set reception band;
Estimating channel quality for each set frequency allocation unit based on the extracted reference signal;
Allocating frequency resources for each frequency allocation unit to a terminal based on the channel quality estimation result;
Comprising
The frequency position at the end of the reception band coincides with the frequency position at the end of any of the frequency allocation units, and the width of the reception band of the reference signal is a natural number multiple of the bandwidth of the frequency allocation unit.
Frequency resource allocation method.
送信帯域及び周波数割当単位を設定するステップと、
前記設定された送信帯域にリファレンス信号をマッピングし、前記設定された周波数割当単位ごとの割当情報に基づいて送信データをマッピングすることにより、送信信号を形成するステップと、
を具備し、
前記送信帯域の端の周波数位置はいずれかの前記周波数割当単位の端の周波数位置と一致し、前記リファレンス信号の送信帯域の幅は前記周波数割当単位の帯域幅の自然数倍である、
送信信号形成方法。
Setting a transmission band and a frequency allocation unit;
Mapping a reference signal to the set transmission band and mapping transmission data based on allocation information for each set frequency allocation unit, thereby forming a transmission signal;
Comprising
The frequency position of the end of the transmission band matches the frequency position of the end of any of the frequency allocation units, and the width of the transmission band of the reference signal is a natural number multiple of the bandwidth of the frequency allocation unit.
Transmission signal forming method.
JP2011508260A 2009-04-10 2010-04-09 Terminal device and mapping method Active JP5474053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011508260A JP5474053B2 (en) 2009-04-10 2010-04-09 Terminal device and mapping method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009096221 2009-04-10
JP2009096221 2009-04-10
PCT/JP2010/002616 WO2010116764A1 (en) 2009-04-10 2010-04-09 Wireless base station apparatus, wireless terminal apparatus, frequency resource allocation method, and method of forming transmission signal
JP2011508260A JP5474053B2 (en) 2009-04-10 2010-04-09 Terminal device and mapping method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014010484A Division JP5730420B2 (en) 2009-04-10 2014-01-23 Base station apparatus, receiving method and integrated circuit

Publications (2)

Publication Number Publication Date
JPWO2010116764A1 true JPWO2010116764A1 (en) 2012-10-18
JP5474053B2 JP5474053B2 (en) 2014-04-16

Family

ID=42936054

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2011508260A Active JP5474053B2 (en) 2009-04-10 2010-04-09 Terminal device and mapping method
JP2014010484A Active JP5730420B2 (en) 2009-04-10 2014-01-23 Base station apparatus, receiving method and integrated circuit
JP2015077687A Active JP5954721B2 (en) 2009-04-10 2015-04-06 Terminal device, mapping method and integrated circuit
JP2016111998A Active JP6168432B2 (en) 2009-04-10 2016-06-03 Base station apparatus, communication method and integrated circuit

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2014010484A Active JP5730420B2 (en) 2009-04-10 2014-01-23 Base station apparatus, receiving method and integrated circuit
JP2015077687A Active JP5954721B2 (en) 2009-04-10 2015-04-06 Terminal device, mapping method and integrated circuit
JP2016111998A Active JP6168432B2 (en) 2009-04-10 2016-06-03 Base station apparatus, communication method and integrated circuit

Country Status (4)

Country Link
US (7) US9019906B2 (en)
EP (1) EP2418905A1 (en)
JP (4) JP5474053B2 (en)
WO (1) WO2010116764A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9019906B2 (en) 2009-04-10 2015-04-28 Panasonic Intellectual Property Corporation Of America Wireless base station apparatus, wireless terminal apparatus, frequency resource allocation method, and method of forming transmission signal
WO2015163748A1 (en) * 2014-04-25 2015-10-29 엘지전자 주식회사 Method and device for transmitting/receiving radio signal in wireless communication system
US9980257B2 (en) 2014-09-26 2018-05-22 Qualcomm Incorporated Ultra-low latency LTE reference signal transmission
US9955462B2 (en) 2014-09-26 2018-04-24 Qualcomm Incorporated Ultra-low latency LTE control data communication
US9844072B2 (en) * 2014-09-26 2017-12-12 Qualcomm Incorporated Ultra-low latency LTE uplink frame structure
US10257853B2 (en) * 2014-12-18 2019-04-09 Qualcomm Incorporated Techniques for identifying resources to transmit a channel reservation signal
WO2016155990A1 (en) * 2015-03-31 2016-10-06 Sony Corporation Mobile communications network, methods, base station, relay node and communications terminal
WO2017164664A1 (en) * 2016-03-25 2017-09-28 엘지전자 주식회사 Method for transmitting and receiving uplink signal in wireless communication system supporting non-licensed band, and apparatus for supporting same
CN116506089A (en) * 2017-01-06 2023-07-28 松下电器(美国)知识产权公司 Communication device and communication method
CN110178434B (en) * 2017-01-17 2021-04-09 Oppo广东移动通信有限公司 Method for transmitting sounding reference signal, terminal equipment and network equipment
US11018828B2 (en) * 2017-02-06 2021-05-25 Qualcomm Incorporated Uplink MIMO reference signals and data transmission schemes
CN108633059B (en) * 2017-03-25 2021-06-29 华为技术有限公司 Method and equipment for resource allocation, method and equipment for determining partial bandwidth and method and equipment for indicating partial bandwidth

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220108B (en) * 2007-02-15 2016-02-10 株式会社Ntt都科摩 Travelling carriage and base station apparatus
BRPI0809222B1 (en) * 2007-03-19 2020-09-15 Lg Electronics, Inc METHOD FOR RECEIVING DATA ON USER EQUIPMENT IN A MOBILE COMMUNICATION SYSTEM AND METHOD FOR TRANSMITING DATA BY A BASE STATION IN A MOBILE COMMUNICATION SYSTEM
CN101682896A (en) * 2007-03-30 2010-03-24 株式会社Ntt都科摩 Mobile communication system, base station device, and user device and method
KR101491964B1 (en) * 2007-07-30 2015-03-09 삼성전자주식회사 Method and system for transmitting and receiving different signal types in communication systems
US8238297B2 (en) * 2007-07-31 2012-08-07 Samsung Electronics Co., Ltd Method and system for dimensioning scheduling assignments in a communication system
WO2009022932A1 (en) 2007-08-02 2009-02-19 Buddha Biopharma Oy Ltd Pharmaceutical compositions comprising monocholine succinate salts
WO2009022392A1 (en) 2007-08-10 2009-02-19 Fujitsu Limited Transmitter, receiver, and communication method
EP3968661B1 (en) * 2007-08-14 2022-10-05 Panasonic Holdings Corporation Radio communication device and radio communication method
US20090046674A1 (en) * 2007-08-17 2009-02-19 Chun Yan Gao Method and apparatus for providing channel feedback information
JP5041952B2 (en) 2007-10-12 2012-10-03 株式会社日立製作所 Driving arrangement support system, method and program thereof
PL2241049T3 (en) * 2008-01-08 2019-09-30 Hmd Global Oy Sounding reference signal arrangement
EP2294771B1 (en) * 2008-03-20 2013-06-26 Nokia Siemens Networks OY Frequency hopping pattern and arrangement for sounding reference signal
US8493835B2 (en) * 2008-03-26 2013-07-23 Qualcomm, Incorporated Method and apparatus for mapping virtual resources to physical resources in a wireless communication system
JP2009302686A (en) * 2008-06-10 2009-12-24 Fujitsu Ltd Wireless communication apparatus and method
EP2166694A3 (en) * 2008-09-18 2012-01-04 Samsung Electronics Co., Ltd. Transmission of sounding reference signals in TDD communication systems
JP5281453B2 (en) 2009-03-25 2013-09-04 株式会社エヌ・ティ・ティ・ドコモ Radio base station and mobile communication method
US9019906B2 (en) * 2009-04-10 2015-04-28 Panasonic Intellectual Property Corporation Of America Wireless base station apparatus, wireless terminal apparatus, frequency resource allocation method, and method of forming transmission signal

Also Published As

Publication number Publication date
US9019906B2 (en) 2015-04-28
US20150270941A1 (en) 2015-09-24
JP2014068410A (en) 2014-04-17
US9438398B2 (en) 2016-09-06
US20120008589A1 (en) 2012-01-12
US20170187505A1 (en) 2017-06-29
EP2418905A1 (en) 2012-02-15
US10305658B2 (en) 2019-05-28
US9843426B2 (en) 2017-12-12
JP5954721B2 (en) 2016-07-20
US9634868B2 (en) 2017-04-25
WO2010116764A1 (en) 2010-10-14
US9184891B2 (en) 2015-11-10
JP2015165677A (en) 2015-09-17
US20190238291A1 (en) 2019-08-01
US10771217B2 (en) 2020-09-08
US20180083754A1 (en) 2018-03-22
JP5730420B2 (en) 2015-06-10
US20160301547A1 (en) 2016-10-13
JP5474053B2 (en) 2014-04-16
JP2016174416A (en) 2016-09-29
US20160028523A1 (en) 2016-01-28
JP6168432B2 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
JP6168432B2 (en) Base station apparatus, communication method and integrated circuit
JP7345098B2 (en) Communication device, communication method, and integrated circuit

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130930

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5474053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z02

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313133

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250