JPWO2010110291A1 - Multilayer piezoelectric element, injection device using the same, and fuel injection system - Google Patents

Multilayer piezoelectric element, injection device using the same, and fuel injection system Download PDF

Info

Publication number
JPWO2010110291A1
JPWO2010110291A1 JP2011506072A JP2011506072A JPWO2010110291A1 JP WO2010110291 A1 JPWO2010110291 A1 JP WO2010110291A1 JP 2011506072 A JP2011506072 A JP 2011506072A JP 2011506072 A JP2011506072 A JP 2011506072A JP WO2010110291 A1 JPWO2010110291 A1 JP WO2010110291A1
Authority
JP
Japan
Prior art keywords
piezoelectric element
internal electrode
electrode layers
stacking direction
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011506072A
Other languages
Japanese (ja)
Other versions
JP5409772B2 (en
Inventor
佐藤 政宏
政宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011506072A priority Critical patent/JP5409772B2/en
Publication of JPWO2010110291A1 publication Critical patent/JPWO2010110291A1/en
Application granted granted Critical
Publication of JP5409772B2 publication Critical patent/JP5409772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

【課題】 活性領域と不活性領域との境界部分に発生する応力を積層体全体で分散および低減させて、耐久性を向上させた積層型圧電素子を提供すること。【解決手段】 積層型圧電素子1は、圧電体層2および内部電極層3a,3bが交互に複数積層された積層体5と、積層体5の対向する一対の側面に接合されて、それぞれ内部電極層3a,3bの第1の組(3a)および第2の組(3b)が接続された外部電極4a,4bとを含む積層型圧電素子1において、第1の組の内部電極層3aが接続された第1の外部電極4aと第2の組の内部電極層3bとの間は絶縁されて不活性領域A2となっており、不活性領域A2における第1の外部電極4aと第2の組の内部電極層3bとの間の幅wが、積層体5の積層方向の中央部よりも端部で小さくなっている。【選択図】 図1PROBLEM TO BE SOLVED: To provide a multilayer piezoelectric element having improved durability by dispersing and reducing stress generated at a boundary portion between an active region and an inactive region in the entire laminated body. SOLUTION: A laminated piezoelectric element 1 is bonded to a laminated body 5 in which a plurality of piezoelectric layers 2 and internal electrode layers 3a and 3b are alternately laminated, and a pair of side surfaces opposed to each other, and each is internally connected. In the laminated piezoelectric element 1 including the external electrodes 4a and 4b to which the first set (3a) and the second set (3b) of the electrode layers 3a and 3b are connected, the internal electrode layer 3a of the first set includes The connected first external electrode 4a and the second set of internal electrode layers 3b are insulated to form an inactive region A2, and the first external electrode 4a and the second external electrode A2 in the inactive region A2 are insulated. The width w between the set of internal electrode layers 3b is smaller at the end than the central portion of the stacked body 5 in the stacking direction. [Selection] Figure 1

Description

本発明は、例えば、駆動素子(圧電アクチュエータ),センサ素子および回路素子等に用いられる積層型圧電素子およびそれを用いた噴射装置ならびに燃料噴射システムに関するものである。   The present invention relates to a laminated piezoelectric element used for, for example, a drive element (piezoelectric actuator), a sensor element, a circuit element, and the like, an injection device using the same, and a fuel injection system.

従来から、積層型圧電素子等の積層型電子部品は、セラミックグリーンシートに内部電極層となる導電性ペーストを印刷し、この導電性ペーストが塗布されたセラミックグリーンシートを複数積層して積層成形体を作製し、この積層成形体を焼成して焼成された積層体を作製し、積層体に研削加工等の加工を施すことによって作製される。   Conventionally, multilayer electronic components such as multilayer piezoelectric elements have a multilayer molded body in which a conductive paste serving as an internal electrode layer is printed on a ceramic green sheet, and a plurality of ceramic green sheets coated with the conductive paste are stacked. Is produced by firing the laminated molded body to produce a fired laminated body, and subjecting the laminated body to processing such as grinding.

内部電極層は一層おきに正負の外部電極に接続される。正の外部電極に接続された内部電極層と、それに隣接する、負の外部電極に接続された内部電極層とが、積層体の積層方向において重なる部位は活性領域となり、重ならない部位は不活性領域となる。活性領域は、正の外部電極に接続された内部電極層と、それに隣接する、負の外部電極に接続された内部電極層とに挟まれた圧電体層が伸縮駆動する部位である。不活性領域は、正の外部電極に接続された内部電極層と、それに隣接する、負の外部電極に接続された内部電極層とに挟まれた圧電体層が伸縮駆動しない部位である。   Every other internal electrode layer is connected to positive and negative external electrodes. The part where the internal electrode layer connected to the positive external electrode and the adjacent internal electrode layer connected to the negative external electrode overlap in the stacking direction of the laminate is the active region, and the part that does not overlap is inactive It becomes an area. The active region is a portion where the piezoelectric layer sandwiched between the internal electrode layer connected to the positive external electrode and the internal electrode layer adjacent to the negative external electrode is driven to expand and contract. The inactive region is a portion where the piezoelectric layer sandwiched between the internal electrode layer connected to the positive external electrode and the adjacent internal electrode layer connected to the negative external electrode is not stretched and driven.

従来、積層体においては、不活性領域の面積はほぼ一定であり、活性領域と不活性領域との境界部分に応力が集中していた。そこで、不活性領域の配列順列を規定して積層型圧電素子の耐久特性を改善することが提案されている(以下の特許文献1を参照)。   Conventionally, in the laminated body, the area of the inactive region is almost constant, and stress is concentrated on the boundary portion between the active region and the inactive region. Therefore, it has been proposed to improve the durability characteristics of the multilayer piezoelectric element by defining the arrangement permutation of the inactive regions (see Patent Document 1 below).

特許文献1には、電歪/圧電材料の表面に内部電極を形成した薄板を多数枚積層し、一対の外部電極により各内部電極を交互に一層おきに接続した積層型素子において、薄板は、それに形成する内部電極と片側の外部電極との導通を阻止するための無電極部を備え、無電極部は、幅が異なるn種類(但し、nは2以上の整数で、各無電極部の幅の大小はW1<W2<・・・<Wnとする)存在し、それらの薄板が無電極部の幅に応じて、・・・,W1,W2,・・・,Wn,Wn,・・・,W2,W1,W2,・・・の順序で積層されている積層型電歪/圧電素子が記載されている。In Patent Document 1, in a laminated element in which a large number of thin plates each having an internal electrode formed on the surface of an electrostrictive / piezoelectric material are stacked and each internal electrode is alternately connected by a pair of external electrodes, the thin plate is It has an electrodeless portion for preventing conduction between the internal electrode formed on one side and the external electrode on one side, and the electrodeless portion has n types with different widths (where n is an integer of 2 or more, W 1 <W 2 <... <W n ) and the width of the thin plate depends on the width of the electrodeless portion..., W 1 , W 2 ,. A stacked electrostrictive / piezoelectric element stacked in the order of n 1 , W n ,..., W 2 , W 1 , W 2 ,.

即ち、特許文献1の積層型電歪/圧電素子は、無電極部の幅が、積層方向において波状に変化するように形成されている。   That is, the multilayer electrostrictive / piezoelectric element of Patent Document 1 is formed such that the width of the electrodeless portion changes in a wave shape in the stacking direction.

上記の構成により、素子端部での電界強度分布が段階的に緩やかに変化することとなり、内部応力の分散を図ることができる。そのため、応力歪みによる破壊を防止できる。また、電界強度分布が緩やかになることにより、絶縁破壊も防止できる。これらによって、積層型電歪/圧電素子は、高い電圧で駆動できるため、小さな素子であっても大きな変位を発生させることが可能となる。   With the above configuration, the electric field strength distribution at the end portion of the element changes gradually in steps, and the internal stress can be dispersed. Therefore, the breakage due to stress strain can be prevented. Further, since the electric field strength distribution becomes gentle, dielectric breakdown can be prevented. As a result, the multilayer electrostrictive / piezoelectric element can be driven at a high voltage, so that even a small element can generate a large displacement.

特許第2645628号公報Japanese Patent No. 2645628

しかしながら、近年、高電圧および高圧力下で長期間連続駆動できることが積層型圧電素子に要求されてきており、さらなる耐久性の向上が望まれている。   However, in recent years, the multilayer piezoelectric element has been required to be able to be driven continuously for a long time under high voltage and high pressure, and further improvement in durability is desired.

例えば、特許文献1の積層型電歪/圧電素子は、無電極部の幅が、積層方向において波状に変化するように形成されていることから、応力歪みが積層方向において周期的に大きくなる部位が発生し、応力歪みが大きくなる部位で破損等が発生しやすいという問題点があった。   For example, the laminated electrostrictive / piezoelectric element of Patent Document 1 is formed so that the width of the electrodeless portion changes in a wave shape in the laminating direction, so that the stress strain periodically increases in the laminating direction. This causes a problem that breakage or the like is likely to occur at a portion where stress strain increases.

従って、本発明は、上記従来の問題点に鑑みて案出されたものであり、その目的は、活性領域と不活性領域との境界部分に発生する応力を積層体全体で分散および低減させて、耐久性を向上させた積層型圧電素子およびそれを用いた噴射装置ならびに燃料噴射システムを提供することである。   Therefore, the present invention has been devised in view of the above-mentioned conventional problems, and its purpose is to disperse and reduce the stress generated at the boundary between the active region and the inactive region over the entire laminate. Another object of the present invention is to provide a laminated piezoelectric element with improved durability, an injection device using the same, and a fuel injection system.

本発明の積層型圧電素子は、圧電体層および内部電極層が交互に複数積層された積層体と、該積層体の対向する一対の側面に接合されて、それぞれ前記内部電極層の第1の組および第2の組が接続された外部電極とを含む積層型圧電素子において、第1の組の前記内部電極層が接続された第1の前記外部電極と第2の組の前記内部電極層との間は絶縁されて不活性領域となっており、該不活性領域における第1の前記外部電極と第2の組の前記内部電極層との間の幅が、前記積層体の積層方向の中央部よりも端部で小さくなっていることを特徴とするものである。   The laminated piezoelectric element of the present invention is bonded to a laminated body in which a plurality of piezoelectric layers and internal electrode layers are alternately laminated, and a pair of opposite side surfaces of the laminated body. In a multilayer piezoelectric element including a set and an external electrode connected to a second set, the first external electrode connected to the first set of internal electrode layers and the second set of internal electrode layers Between the first external electrode and the second set of internal electrode layers in the inactive region is in the stacking direction of the stacked body. It is smaller at the end than at the center.

また、本発明の積層型圧電素子は、上記の構成において、前記不活性領域における第1の前記外部電極と第2の組の前記内部電極層との間の幅が、前記積層体の積層方向の中央部よりも両方の端部で小さくなっていることを特徴とするものである。   In the multilayer piezoelectric element of the present invention, in the above configuration, the width between the first external electrode and the second set of internal electrode layers in the inactive region is the stacking direction of the multilayer body. It is characterized in that it is smaller at both end portions than the central portion.

また、本発明の積層型圧電素子は、上記の構成において、第1の前記外部電極に対向している第2の組の前記内部電極層の縁の形状が、両側よりも中央で第1の前記外部電極から遠い弧状であることを特徴とするものである。   In the multilayer piezoelectric element of the present invention, in the configuration described above, the edge shape of the second set of internal electrode layers facing the first external electrode is the first in the center rather than on both sides. The arc shape is far from the external electrode.

また、本発明の積層型圧電素子は、上記の構成において、前記不活性領域における第1の前記外部電極と第2の組の前記内部電極層との間の幅が、前記積層体の積層方向の端部において中央部側から端に向かって次第に小さくなっていることを特徴とするものである。   In the multilayer piezoelectric element of the present invention, in the above configuration, the width between the first external electrode and the second set of internal electrode layers in the inactive region is the stacking direction of the multilayer body. It is characterized in that it gradually decreases from the central part side toward the end at the end part.

また、本発明の積層型圧電素子は、上記の構成において、前記積層体の積層方向の中央部よりも端部で、前記圧電体層の厚みが厚くなっており、前記内部電極層間の間隔が広くなっていることを特徴とするものである。   In the multilayer piezoelectric element of the present invention, in the above configuration, the piezoelectric layer is thicker at the end than the center in the stacking direction of the stacked body, and the interval between the internal electrode layers is It is characterized by widening.

また、本発明の積層型圧電素子は、上記の構成において、第2の組の前記内部電極層が接続された第2の前記外部電極と第1の組の前記内部電極層との間の不活性領域の幅も、前記積層体の積層方向の中央部よりも端部で小さくなっていることを特徴とするものである。   In the multilayer piezoelectric element of the present invention, in the configuration described above, the non-connection between the second external electrode to which the second set of internal electrode layers is connected and the first set of internal electrode layers is provided. The width of the active region is also smaller at the end than the central portion in the stacking direction of the stacked body.

本発明の噴射装置は、噴射孔を有する容器と、上記本発明の積層型圧電素子とを備え、前記容器内に蓄えられた流体が前記積層型圧電素子の駆動により前記噴射孔から吐出されることを特徴とするものである。   An ejection device according to the present invention includes a container having an ejection hole and the multilayer piezoelectric element according to the present invention, and fluid stored in the container is discharged from the ejection hole by driving the multilayer piezoelectric element. It is characterized by this.

本発明の燃料噴射システムは、高圧燃料を蓄えるコモンレールと、該コモンレールに蓄えられた前記高圧燃料を噴射する上記本発明の噴射装置と、前記コモンレールに前記高圧燃料を供給する圧力ポンプと、前記噴射装置に駆動信号を与える噴射制御ユニットとを備えたことを特徴とするものである。   The fuel injection system of the present invention includes a common rail that stores high-pressure fuel, the injection device of the present invention that injects the high-pressure fuel stored in the common rail, a pressure pump that supplies the high-pressure fuel to the common rail, and the injection And an injection control unit for supplying a drive signal to the apparatus.

本発明の積層型圧電素子によれば、圧電体層および内部電極層が交互に複数積層された積層体と、積層体の対向する一対の側面に接合されて、それぞれ内部電極層の第1の組および第2の組が接続された外部電極とを含む積層型圧電素子において、第1の組の内部電極層が接続された第1の外部電極と第2の組の内部電極層との間は絶縁されて不活性領域となっており、不活性領域における第1の外部電極と第2の組の内部電極層との間の幅が、積層体の積層方向の中央部よりも端部で小さくなっていることから、活性領域と不活性領域との境界部分に発生する応力を積層体の中央部から端部にかけて分散および低減させて、耐久性を向上させたものとなる。即ち、活性領域と不活性領域との境界部分に発生する応力は、平面視で第2の組の内部電極層同士の重なる位置が揃わないので分散し、その結果、積層型圧電素子の耐久性が向上する。また、積層体の端部の内部電極層の面積が大きくなるので、積層体の端部において一定の駆動電力に対して伸縮駆動する圧電体層の体積が増大するために、積層体の端部で応力がより分散する。その結果、積層体にクラック等の損傷が発生しにくくなり、耐久性が向上する。   According to the multilayer piezoelectric element of the present invention, the multilayer body in which a plurality of piezoelectric layers and internal electrode layers are alternately stacked and the pair of opposite side surfaces of the multilayer body are joined to each other, In a stacked piezoelectric element including an external electrode to which the set and the second set are connected, between the first external electrode to which the first set of internal electrode layers is connected and the second set of internal electrode layers Is insulated and becomes an inactive region, and the width between the first external electrode and the second set of internal electrode layers in the inactive region is closer to the end than the central portion in the stacking direction of the stacked body. Since it is small, the stress generated at the boundary portion between the active region and the inactive region is dispersed and reduced from the center portion to the end portion of the laminate, thereby improving the durability. That is, the stress generated at the boundary between the active region and the inactive region is dispersed because the overlapping positions of the second set of internal electrode layers are not aligned in a plan view. As a result, the durability of the multilayer piezoelectric element is reduced. Will improve. In addition, since the area of the internal electrode layer at the end of the multilayer body increases, the volume of the piezoelectric layer that expands and contracts with respect to a constant driving power at the end of the multilayer body increases. The stress is more dispersed. As a result, damage such as cracks is less likely to occur in the laminate, and durability is improved.

また、本発明の積層型圧電素子は、不活性領域における第1の外部電極と第2の組の内部電極層との間の幅が、積層体の積層方向の中央部よりも両方の端部で小さくなっているときには、積層体の全体にわたって応力を分散および低減させることができる。   In the multilayer piezoelectric element of the present invention, the width between the first external electrode and the second set of internal electrode layers in the inactive region is at both ends of the stacked body in the stacking direction. When it is small, stress can be dispersed and reduced throughout the laminate.

また、本発明の積層型圧電素子は、第1の外部電極に対向している第2の組の内部電極層の縁の形状が、両側よりも中央で第1の外部電極から遠い弧状であるときには、活性領域と不活性領域との境界部分において応力が集中する箇所がなくなるので、さらに応力が分散されて圧電体層にクラック等の破損が発生しにくくなり、耐久性が向上する。   In the multilayer piezoelectric element of the present invention, the shape of the edge of the second set of internal electrode layers facing the first external electrode is an arc shape that is farther from the first external electrode in the center than on both sides. In some cases, there is no portion where stress concentrates at the boundary between the active region and the inactive region, so that the stress is further dispersed and the piezoelectric layer is less likely to be damaged such as cracks, and durability is improved.

また、本発明の積層型圧電素子は、不活性領域における第1の外部電極と第2の組の内部電極層との間の幅が、積層体の積層方向の端部において中央部側から端に向かって次第に小さくなっているときには、積層体の積層方向の端部において中央部側から端にかけて応力をより分散および低減させて、耐久性をより向上させたものとなる。   In the multilayer piezoelectric element of the present invention, the width between the first external electrode and the second set of internal electrode layers in the inactive region is such that the end of the multilayer body in the stacking direction extends from the center side. When the thickness gradually decreases toward the end, the durability is further improved by further dispersing and reducing the stress from the center to the end at the end in the stacking direction of the stack.

また、本発明の積層型圧電素子は、積層体の積層方向の中央部よりも端部で、圧電体層の厚みが厚くなっており、内部電極層間の間隔が広くなっているときには、応力が高くなる積層体の積層方向の端部において1層あたりの歪量が小さくなり、応力の緩和効果が高くなり、耐久性が向上する。   Further, in the multilayer piezoelectric element of the present invention, when the thickness of the piezoelectric layer is thicker at the end than the central portion in the stacking direction of the multilayer body, and the distance between the internal electrode layers is wide, the stress is The amount of strain per layer is reduced at the end portion in the stacking direction of the stacked body, which increases the stress relaxation effect and improves the durability.

また、本発明の積層型圧電素子は、第2の組の内部電極層が接続された第2の外部電極と第1の組の内部電極層との間の不活性領域の幅も、積層体の積層方向の中央部よりも端部で小さくなっているときには、積層体の第1の外部電極の側および第2の外部電極の側の両方において、活性領域と不活性領域との境界部分に発生する応力を積層体の中央部から端部にかけてより分散および低減させることができる。従って、より耐久性を向上させた積層型圧電素子が得られる。   The laminated piezoelectric element according to the present invention also has a width of the inactive region between the second external electrode connected to the second set of internal electrode layers and the first set of internal electrode layers. At the end of the stack in the stacking direction at the boundary between the active region and the inactive region on both the first external electrode side and the second external electrode side of the stack. The generated stress can be more dispersed and reduced from the center to the end of the laminate. Therefore, a laminated piezoelectric element with improved durability can be obtained.

本発明の噴射装置によれば、噴射孔を有する容器と、上記本発明の積層型圧電素子とを備え、容器内に蓄えられた流体が積層型圧電素子の駆動により噴射孔から吐出されることから、耐久性を向上させた積層型圧電素子を備えているために、耐久性が向上した噴射装置となる。   According to the injection device of the present invention, the container having the injection hole and the multilayer piezoelectric element of the present invention are provided, and the fluid stored in the container is discharged from the injection hole by driving the multilayer piezoelectric element. Therefore, since the multilayer piezoelectric element having improved durability is provided, the injection device has improved durability.

本発明の燃料噴射システムは、高圧燃料を蓄えるコモンレールと、コモンレールに蓄えられた高圧燃料を噴射する上記本発明の噴射装置と、コモンレールに高圧燃料を供給する圧力ポンプと、噴射装置に駆動信号を与える噴射制御ユニットとを備えたことから、耐久性を向上させた噴射装置を備えているために、耐久性が向上した燃料噴射システムとなる。   The fuel injection system of the present invention includes a common rail that stores high-pressure fuel, the above-described injection device of the present invention that injects high-pressure fuel stored in the common rail, a pressure pump that supplies high-pressure fuel to the common rail, and a drive signal to the injection device. Since the injection control unit is provided, the fuel injection system with improved durability is provided because the injection device with improved durability is provided.

本発明の積層型圧電素子について実施の形態の一例を示す斜視図である。It is a perspective view which shows an example of embodiment about the lamination type piezoelectric element of this invention. 本発明の積層型圧電素子について実施の形態の他の例を示す斜視図である。It is a perspective view which shows the other example of embodiment about the lamination type piezoelectric element of this invention. 本発明の積層型圧電素子における第2の組の内部電極について実施の形態の一例を示す平面図である。It is a top view which shows an example of embodiment about the 2nd set of internal electrode in the lamination type piezoelectric element of this invention. 本発明の積層型圧電素子について実施の形態の他の例を示す斜視図である。It is a perspective view which shows the other example of embodiment about the lamination type piezoelectric element of this invention. 本発明の積層型圧電素子について実施の形態の他の例を示す斜視図である。It is a perspective view which shows the other example of embodiment about the lamination type piezoelectric element of this invention. 本発明の噴射装置について実施の形態の一例を示す概略的な断面図である。It is a schematic sectional drawing which shows an example of embodiment about the injection apparatus of this invention. 本発明の燃料噴射システムについて実施の形態の一例を示す概略的なブロック図である。It is a schematic block diagram which shows an example of embodiment about the fuel-injection system of this invention.

以下、本発明の積層型圧電素子について実施の形態の例を図面を参照し詳細に説明する。図1は、本実施の形態の積層型圧電素子(以下、素子ともいう)1を示す斜視図である。この積層型圧電素子1は、圧電体層2と内部電極層3a,3bが交互に複数積層された積層体5を有している。積層体5の側面には、一対の外部電極4a,4bが形成されている。積層体5は、内部電極層3a,3bが対向する対向部6と、この対向部6に対して積層方向の両端部側に位置する非対向部7とを備えている。   Hereinafter, an example of an embodiment of the multilayer piezoelectric element of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a laminated piezoelectric element (hereinafter also referred to as element) 1 of the present embodiment. The laminated piezoelectric element 1 has a laminated body 5 in which a plurality of piezoelectric layers 2 and internal electrode layers 3a and 3b are alternately laminated. A pair of external electrodes 4 a and 4 b are formed on the side surface of the multilayer body 5. The stacked body 5 includes a facing portion 6 that the internal electrode layers 3a and 3b face each other, and a non-facing portion 7 that is positioned on both ends in the stacking direction with respect to the facing portion 6.

対向部6は、圧電体層2が伸縮駆動する活性部であり、非対向部7は、圧電体層2が伸縮駆動しない不活性部である。   The facing portion 6 is an active portion that the piezoelectric layer 2 is driven to expand and contract, and the non-facing portion 7 is an inactive portion that the piezoelectric layer 2 is not expanded and driven.

そして、本実施の形態の積層型圧電素子1は、圧電体層2および内部電極層3a,3bが交互に複数積層された積層体5と、積層体5の対向する一対の側面に接合されて、それぞれ内部電極層3a,3bの第1の組(3a)および第2の組(3b)が接続された外部電極4a,4bとを含む積層型圧電素子1において、第1の組の内部電極層3aが接続された第1の外部電極4aと第2の組の内部電極層3bとの間は絶縁されて不活性領域A2となっており、不活性領域A2における第1の外部電極4aと第2の組の内部電極層3bとの間の幅wが、積層体5の積層方向の中央部よりも端部で小さくなっている。   The laminated piezoelectric element 1 according to the present embodiment is bonded to a laminated body 5 in which a plurality of piezoelectric layers 2 and internal electrode layers 3 a and 3 b are alternately laminated, and a pair of side surfaces facing the laminated body 5. In the multilayer piezoelectric element 1 including the external electrodes 4a and 4b to which the first set (3a) and the second set (3b) of the internal electrode layers 3a and 3b are respectively connected, the first set of internal electrodes The first external electrode 4a to which the layer 3a is connected and the second set of internal electrode layers 3b are insulated to form an inactive region A2, and the first external electrode 4a in the inactive region A2 The width w between the second set of internal electrode layers 3 b is smaller at the end than the central portion of the stacked body 5 in the stacking direction.

上記の構成により、活性領域と不活性領域との境界部分に発生する応力を積層体の中央部から端部にかけて分散および低減させて、耐久性を向上させたものとなる。即ち、活性領域と不活性領域との境界部分に発生する応力は、平面視で第2の組の内部電極層同士の重なる位置が揃わないので分散し、その結果、積層型圧電素子の耐久性が向上する。また、積層体の端部の内部電極層の面積が大きくなるので、積層体の端部において一定の駆動電力に対して伸縮駆動する圧電体層の体積が増大するために、積層体の端部で応力がより分散する。その結果、積層体にクラック等の損傷が発生しにくくなり、耐久性が向上する。   With the above configuration, the stress generated at the boundary between the active region and the inactive region is dispersed and reduced from the center portion to the end portion of the laminate, thereby improving durability. That is, the stress generated at the boundary between the active region and the inactive region is dispersed because the overlapping positions of the second set of internal electrode layers are not aligned in a plan view. As a result, the durability of the multilayer piezoelectric element is reduced. Will improve. In addition, since the area of the internal electrode layer at the end of the multilayer body increases, the volume of the piezoelectric layer that expands and contracts with respect to a constant driving power at the end of the multilayer body increases. The stress is more dispersed. As a result, damage such as cracks is less likely to occur in the laminate, and durability is improved.

本実施の形態の積層型圧電素子1において、積層体5の積層方向の中央部は、積層体5の積層方向の全長の10%〜30%程度の長さを有する中央部を意味する。積層体5の積層方向の端部は、積層体5の積層方向の全長の5%〜10%程度の長さを有する端部を意味する。   In the multilayer piezoelectric element 1 of the present embodiment, the central portion in the stacking direction of the multilayer body 5 means a central portion having a length of about 10% to 30% of the total length of the multilayer body 5 in the stacking direction. The end portion in the stacking direction of the stacked body 5 means an end portion having a length of about 5% to 10% of the total length of the stacked body 5 in the stacking direction.

不活性領域A2における第1の外部電極4aと第2の組の内部電極層3bとの間の幅wが、積層体5の積層方向の中央部よりも端部で小さくなる割合は、5%〜10%ずつ小さくなることが好ましい。この範囲内とすることにより、活性領域と不活性領域との境界部分に発生する応力を積層体の中央部から端部にかけて分散および低減させることができ、また、幅wの変化の割合が大きすぎることにより変位方向が不安定になる不具合を抑えることができる。   The ratio in which the width w between the first external electrode 4a and the second set of internal electrode layers 3b in the inactive region A2 is smaller at the end than the center in the stacking direction of the stacked body 5 is 5% It is preferable to decrease by ~ 10%. By setting it within this range, the stress generated at the boundary between the active region and the inactive region can be dispersed and reduced from the center to the end of the laminate, and the rate of change in the width w is large. It is possible to suppress the problem that the displacement direction becomes unstable due to being too much.

また、幅wの変化の割合は一定であってもよいが、積層体5の積層方向において変化していてもよい。例えば、幅wが、積層体5の積層方向の全長の10%〜30%程度の長さを有する中央部で一定(幅wの変化の割合は0)であり、積層体5の積層方向の中央部から端部にかけて、幅wの変化の割合が一定で、幅wが次第に小さくなるものであってもよい。この場合、積層体5における変位の方向が安定し、また、変位量が急激に変化する部位が発生しにくいものとなる。   Further, the rate of change of the width w may be constant, but may change in the stacking direction of the stacked body 5. For example, the width w is constant (the rate of change of the width w is 0) in the central portion having a length of about 10% to 30% of the total length of the stacked body 5 in the stacking direction. The ratio of the change of the width w may be constant from the center to the end, and the width w may be gradually reduced. In this case, the direction of displacement in the stacked body 5 is stable, and a portion where the amount of displacement changes rapidly is unlikely to occur.

また、積層体5の積層方向の中央部で幅wの変化の割合が一定であり、積層体5の積層方向の中央部から端部にかけて次第に幅wの変化の割合が大きくなるものであってもよい。この場合端部での応力緩和効果が高くなり、耐久性が向上するという効果がある。   Further, the rate of change of the width w is constant at the center of the laminate 5 in the stacking direction, and the rate of change of the width w gradually increases from the center to the end of the stack 5 in the stacking direction. Also good. In this case, there is an effect that the stress relaxation effect at the end portion is increased and the durability is improved.

また、幅wが一定の部分と変化している部分とが交互にあるようにして、積層体5の積層方向の中央部から端部にかけて幅wが階段状に変化するようにしてもよい。   Further, the width w may be changed stepwise from the center portion to the end portion in the stacking direction of the stacked body 5 so that the portions where the width w is constant and the changing portions are alternately arranged.

また、本実施の形態の積層型圧電素子1は、図2に示すように、不活性領域A2における第1の外部電極4aと第2の組の内部電極層3bとの間の幅wが、積層体5の積層方向の中央部よりも両方の端部で小さくなっていることが好ましい。この構成により、積層体5の全体にわたって応力を分散および低減させることができる。   Further, as shown in FIG. 2, the multilayer piezoelectric element 1 of the present embodiment has a width w between the first external electrode 4a and the second set of internal electrode layers 3b in the inactive region A2. It is preferable that both end portions are smaller than the central portion in the stacking direction of the stacked body 5. With this configuration, it is possible to disperse and reduce stress over the entire laminate 5.

この場合、積層体5の積層方向の中央部から一方の端部にかけての幅wの変化の仕方と、積層体5の積層方向の中央部から他方の端部にかけての幅wの変化の仕方とが同じであることが好ましい。この構成により、積層体5の積層方向における応力の分散が対称的なものとなり、偏りが発生しないために、積層型圧電素子1の耐久性がより向上する。   In this case, the method of changing the width w from the central portion of the stacked body 5 in the stacking direction to one end, and the method of changing the width w of the stack 5 from the central portion in the stacking direction to the other end Are preferably the same. With this configuration, the stress distribution in the stacking direction of the stacked body 5 becomes symmetrical, and no bias is generated, so that the durability of the stacked piezoelectric element 1 is further improved.

また、幅wの変化の割合は一定であってもよいが、積層体5の積層方向において変化していてもよい。例えば、幅wが、積層体5の積層方向の全長の5%〜20%程度の長さを有する中央部で一定(幅wの変化の割合は0)であり、積層体5の積層方向の中央部から両方の端部にかけて、幅wの変化の割合が一定で、幅wが次第に小さくなるものであってもよい。この場合、積層体5における変位の方向が安定し、また、変位量が急激に変化する部位が発生しにくいものとなる。   Further, the rate of change of the width w may be constant, but may change in the stacking direction of the stacked body 5. For example, the width w is constant (the rate of change in the width w is 0) in the central portion having a length of about 5% to 20% of the total length of the stacked body 5 in the stacking direction. The rate of change of the width w may be constant from the center to both ends, and the width w may be gradually reduced. In this case, the direction of displacement in the stacked body 5 is stable, and a portion where the amount of displacement changes rapidly is unlikely to occur.

また、積層体5の積層方向の中央部で幅wの変化の割合が一定であり、積層体5の積層方向の中央部から両方の端部にかけて次第に幅wの変化の割合が大きくなるものであってもよい。この場合、端部での応力緩和効果が高くなり、耐久性が向上するという効果がある。   In addition, the rate of change of the width w is constant at the center portion in the stacking direction of the stacked body 5, and the rate of change of the width w gradually increases from the center portion in the stacking direction of the stack 5 to both ends. There may be. In this case, there is an effect that the stress relaxation effect at the end portion is increased and the durability is improved.

また、幅wが一定の部分と変化している部分とが交互にあるようにして、積層体5の積層方向の中央部から両方の端部にかけて幅wが階段状に変化するようにしてもよい。   Moreover, the width w may be changed stepwise from the center in the stacking direction of the stacked body 5 to both ends so that the portions with a constant width w and the portions with the width w are alternated. Good.

また、本実施の形態の積層型圧電素子は、図3に示すように、第1の外部電極4aに対向している第2の組の内部電極層3bの縁の形状が、両側よりも中央で第1の外部電極4aから遠い弧状であることが好ましい。この構成により、活性領域A1と不活性領域A2との境界部分において応力が集中する箇所がなくなるので、さらに応力が分散されて圧電体層2にクラック等の破損が発生しにくくなり、耐久性が向上する。   Further, as shown in FIG. 3, the multilayer piezoelectric element of the present embodiment is such that the edge shape of the second set of internal electrode layers 3b facing the first external electrode 4a is centered more than both sides. It is preferable that the arc shape is far from the first external electrode 4a. With this configuration, there is no portion where stress is concentrated at the boundary between the active region A1 and the inactive region A2, and therefore, the stress is further dispersed, and the piezoelectric layer 2 is less likely to be damaged such as cracks, resulting in durability. improves.

この場合、弧状の形状が一定の曲率半径を有する円弧状、楕円弧状等のなめらかな曲線状である場合、活性領域A1と不活性領域A2との境界部分において応力が集中することをより有効に抑えることができ、好ましい。弧状の形状が一定の曲率半径を有する円弧状である場合、曲率半径(R)は10mm〜100mm程度であることがより好ましい。この範囲内とすることにより、活性領域A1と不活性領域A2との境界部分において応力が集中することをより有効に抑えることができ、また、第2の組の内部電極層3bの縁の形状が直線状に近づいて応力分散の効果が低下することを抑えることができる。   In this case, when the arc shape is a smooth curved shape such as an arc shape having a constant radius of curvature or an elliptical arc shape, it is more effective that stress is concentrated at the boundary portion between the active region A1 and the inactive region A2. This is preferable because it can be suppressed. When the arc shape is an arc shape having a constant radius of curvature, the radius of curvature (R) is more preferably about 10 mm to 100 mm. By setting it within this range, it is possible to more effectively suppress stress concentration at the boundary between the active region A1 and the inactive region A2, and the shape of the edge of the second set of internal electrode layers 3b. It can be suppressed that the effect of the stress dispersion is lowered due to the fact that the film approaches a straight line.

また、弧状の形状が複数の直線部を繋げて全体として弧状としたものであってもよい。この場合、直線部同士を繋げた箇所が折り曲がった形状となり、その折り曲がった部位に応力が集中しやすくなるが、折り曲がりの角度が45°程度以上に十分に大きければ応力の集中を抑えることができ、好ましい。   Moreover, the arc shape may connect the plurality of straight portions to form an arc shape as a whole. In this case, the portion where the straight portions are connected to each other has a bent shape, and stress tends to concentrate on the bent portion, but if the angle of bending is sufficiently large to be about 45 ° or more, the concentration of stress is suppressed. Can be preferred.

また、本実施の形態の積層型圧電素子1は、不活性領域A2における第1の外部電極4aと第2の組の内部電極層3bとの間の幅wが、積層体5の積層方向の端部において中央部側から端に向かって次第に小さくなっていることが好ましい。この構成により、積層体5の積層方向の端部において中央部側から端にかけて応力をより分散および低減させて、耐久性をより向上させたものとなる。   In the multilayer piezoelectric element 1 of the present embodiment, the width w between the first external electrode 4a and the second set of internal electrode layers 3b in the inactive region A2 is set in the stacking direction of the stacked body 5. It is preferable that the end portion gradually decreases from the center side toward the end. With this configuration, the durability is further improved by further dispersing and reducing the stress from the center side to the end at the end in the stacking direction of the stacked body 5.

この場合、積層体5の積層方向の端部において中央部側から端に向かって次第に小さくなっているその端部は、積層体5の積層方向の全長の5%〜40%程度の長さの端部であることが好ましい。この範囲内とすることにより、積層体5の積層方向の端部において中央部側から端にかけて応力を分散および低減させる効果がより高くなる。   In this case, the end portion of the stacked body 5 that is gradually reduced from the center side toward the end at the end portion in the stacking direction has a length of about 5% to 40% of the total length of the stacked body 5 in the stacking direction. It is preferable that it is an edge part. By setting it within this range, the effect of dispersing and reducing the stress from the center side to the end at the end in the stacking direction of the stacked body 5 becomes higher.

また、幅wが、積層体5の積層方向の端部において中央部側から端に向かって次第に小さくなっているが、この場合の幅wの変化の割合はほぼ一定である。その結果、幅wが次第に小さくなるように滑らかに変化する。幅wの変化の割合は、1%以下ずつ小さくなることがよい。この範囲内とすることにより、積層体5の積層方向の端部において中央部側から端にかけて応力を分散および低減させる効果がさらに高くなる。   Further, the width w gradually decreases from the central portion side toward the end at the end portion of the stacked body 5 in the stacking direction. In this case, the change rate of the width w is substantially constant. As a result, the width w changes smoothly so as to gradually decrease. The change rate of the width w is preferably 1% or less. By setting it within this range, the effect of dispersing and reducing the stress from the center side to the end at the end of the stack 5 in the stacking direction is further enhanced.

また、積層体5の積層方向の中央部においては、幅wは一定でもよく、または中央部においても幅wが中心から端部側に向かって小さくなっていてもよい。   In addition, the width w may be constant in the central portion of the stacked body 5 in the stacking direction, or the width w may decrease from the center toward the end portion in the central portion.

また、本実施の形態の積層型圧電素子1は、積層体5の積層方向の中央部よりも端部で、圧電体層2の厚みが厚くなっており、内部電極層3a,3b間の間隔が広くなっていることが好ましい。この構成により、積層体5の積層方向の端部において不活性領域A2の体積も増大するために、端部での応力緩和効果が高くなり、耐久性が向上する。この場合、積層体5の積層方向の中央部における内部電極層3a,3b間の間隔(D1)に対して、積層体5の積層方向の端部における内部電極層3a,3b間の間隔(D2)の比が、D2/D1=1.1〜3程度となるように広くなっていることがより好ましい。この範囲内とすることにより、積層体5の積層方向の端部における応力の緩和効果が高くなり、また、D2が大きくなりすぎることによる積層体5の大型化による伸縮駆動性が低下することを抑えることができる。   In the multilayer piezoelectric element 1 of the present embodiment, the piezoelectric layer 2 is thicker at the end than the central portion of the multilayer body 5 in the stacking direction, and the distance between the internal electrode layers 3a and 3b is increased. Is preferably wide. With this configuration, the volume of the inactive region A2 is also increased at the end of the stacked body 5 in the stacking direction, so that the stress relaxation effect at the end is increased and the durability is improved. In this case, the interval (D2) between the internal electrode layers 3a and 3b at the end portion in the stacking direction of the multilayer body 5 with respect to the interval (D1) between the internal electrode layers 3a and 3b in the center portion in the stacking direction of the stacked body 5. ) Is more preferably widened so that D2 / D1 = about 1.1 to 3. By making it within this range, the stress relaxation effect at the end in the stacking direction of the stacked body 5 is increased, and the stretch driveability due to the enlargement of the stacked body 5 due to the excessively large D2 is reduced. Can be suppressed.

また、本実施の形態の積層型圧電素子1は、図4、図5に示すように、第2の組の内部電極層3bが接続された第2の外部電極4bと第1の組の内部電極層3aとの間の不活性領域A3の幅w1も、積層体5の積層方向の中央部よりも端部で小さくなっていることが好ましい。この構成により、積層体5の第1の外部電極4aの側および第2の外部電極4bの側の両方において、活性領域A1と不活性領域A2,A3との境界部分に発生する応力を積層体5の中央部から端部にかけてより分散および低減させることができる。従って、より耐久性を向上させた積層型圧電素子1が得られる。   Further, as shown in FIGS. 4 and 5, the multilayer piezoelectric element 1 of the present embodiment includes a second external electrode 4b to which the second set of internal electrode layers 3b are connected and the interior of the first set. It is preferable that the width w1 of the inactive region A3 between the electrode layer 3a is also smaller at the end than the central portion of the stacked body 5 in the stacking direction. With this configuration, on both the first external electrode 4a side and the second external electrode 4b side of the multilayer body 5, the stress generated at the boundary between the active region A1 and the inactive regions A2 and A3 is laminated body. 5 can be further dispersed and reduced from the center to the end. Therefore, the laminated piezoelectric element 1 with improved durability can be obtained.

この場合、積層体5の第1の外部電極4aの側における積層方向での不活性領域A2の幅wの変化の仕方と、積層体5の第2の外部電極4bの側における積層方向での不活性領域A3の幅w1の変化の仕方とが同じであることがより好ましい。これにより、積層体5の第1の外部電極4aの側と第2の外部電極4bの側とで同様に応力を分散でき、応力が集中したり偏る箇所がなくなるために、積層型圧電素子1の耐久性がより向上する。   In this case, the method of changing the width w of the inactive region A2 in the stacking direction on the first external electrode 4a side of the stacked body 5 and the stacking direction on the second external electrode 4b side of the stacked body 5 are described. More preferably, the way of changing the width w1 of the inactive region A3 is the same. Thereby, stress can be similarly distributed between the first external electrode 4a side and the second external electrode 4b side of the multilayer body 5, and there is no place where the stress is concentrated or biased. Durability is further improved.

次に、本実施の形態の積層型圧電素子1の製造方法について説明する。まず、例えばチタン酸ジルコン酸鉛(PZT)の粉末と、アクリル系、ブチラール系等の有機高分子からなるバインダーと、DBP(フタル酸ジブチル)、DOP(フタル酸ジオクチル)等の可塑剤とを混合してスラリーを作製する。   Next, a method for manufacturing the multilayer piezoelectric element 1 of the present embodiment will be described. First, for example, lead zirconate titanate (PZT) powder, a binder made of an acrylic or butyral organic polymer, and a plasticizer such as DBP (dibutyl phthalate) or DOP (dioctyl phthalate) are mixed. To prepare a slurry.

次に、得られたスラリーをドクターブレード法、カレンダーロール法等のテープ成形法を用いてセラミックグリーンシートに成形する。   Next, the obtained slurry is formed into a ceramic green sheet using a tape forming method such as a doctor blade method or a calender roll method.

次に、内部電極層3a,3bとなる導電性ペーストを作製する。この導電性ペーストは、主に銀−パラジウム合金からなる金属粉末にバインダー、可塑剤等を添加混合して得る。この導電性ペーストをセラミックグリーンシートの片面にスクリーン印刷法等によって内部電極層3a,3bのパターンに印刷する。このとき、積層体5の端部側へいくほど導電性ペーストのパターンの面積が大きくなるようにする。   Next, a conductive paste to be the internal electrode layers 3a and 3b is produced. This conductive paste is obtained by adding and mixing a binder, a plasticizer and the like to a metal powder mainly composed of a silver-palladium alloy. This conductive paste is printed on the pattern of the internal electrode layers 3a and 3b on one side of the ceramic green sheet by screen printing or the like. At this time, the area of the pattern of the conductive paste is increased toward the end of the laminate 5.

次に、導電性ペーストが印刷されたセラミックグリーンシートを、例えば図1に示す構成の積層体5となるように積層し、乾燥させることによって積層成形体を得る。この積層成形体の積層方向のさらに両端側に導電性ペーストを印刷していない非対向部7用のセラミックグリーンシートを複数層積層する。なお、積層成形体は、必要に応じて積層方向に沿って裁断して所望の形状にしてもよい。   Next, the ceramic green sheet on which the conductive paste is printed is laminated so as to be, for example, the laminated body 5 having the configuration shown in FIG. 1 and dried to obtain a laminated molded body. A plurality of ceramic green sheets for the non-facing portion 7 on which the conductive paste is not printed are laminated on both end sides in the stacking direction of the stacked molded body. In addition, you may cut | judge a laminated molded object along a lamination direction as needed, and may make it a desired shape.

次に、積層成形体を所定の温度で脱バインダー処理した後、900〜1150℃で焼成することにより積層体5を得る。必要に応じて積層体5の側面を研磨してもよい。また、焼成時に積層体5の各側面の全体が僅かに円弧状の曲面となるように変形させて焼成し、その後積層体5の側面を平面状に研磨することにより、積層体5の両端部の部分電極部を小さくすることも可能である。   Next, after delaminating the laminated molded body at a predetermined temperature, the laminated body 5 is obtained by firing at 900 to 1150 ° C. You may grind the side surface of the laminated body 5 as needed. Further, both sides of the laminate 5 are polished by deforming and firing so that the entire side surface of the laminate 5 is slightly arcuately curved at the time of firing, and then polishing the sides of the laminate 5 in a flat shape. It is also possible to make the partial electrode portion smaller.

次に、積層体5の側面に外部電極4a,4bを形成する。外部電極4a,4bは、主に銀からなる金属粉末にバインダー、可塑剤、ガラス粉末等を添加混合して導電性ペーストを作製し、この導電性ペーストを積層体5の側面にスクリーン印刷法等によって印刷して600〜800℃で焼成することにより形成できる。さらに、外部電極4a,4bの外面に、金属から成るメッシュ状体またはメッシュ状の金属板が埋設された導電性接着剤からなる導電性補助部材を形成してもよい。金属から成るメッシュ状体とは、金属線を編み込んだものであり、メッシュ状の金属板とは、金属板に多数の貫通孔を形成してメッシュ状にしたものである。   Next, external electrodes 4 a and 4 b are formed on the side surfaces of the multilayer body 5. The external electrodes 4a and 4b are prepared by adding a binder, a plasticizer, glass powder or the like to a metal powder mainly composed of silver to produce a conductive paste, and applying the conductive paste to the side surface of the laminate 5 by a screen printing method or the like. It can be formed by printing and baking at 600 to 800 ° C. Furthermore, a conductive auxiliary member made of a conductive adhesive in which a mesh-like body made of metal or a mesh-like metal plate is embedded on the outer surfaces of the external electrodes 4a and 4b may be formed. A mesh-like body made of metal is a braided metal wire, and a mesh-like metal plate is a metal plate in which a large number of through holes are formed in a mesh shape.

その後、外部電極4a,4bにリード線を半田等で接続した後、外部電極4a,4bを含む積層体5の側面に、シリコーンゴム等からなる外装樹脂をディッピング等の手法を用いてコーティングすることにより、積層型圧電素子1を得る。   Then, after connecting the lead wires to the external electrodes 4a and 4b with solder or the like, the exterior resin made of silicone rubber or the like is coated on the side surface of the laminate 5 including the external electrodes 4a and 4b using a technique such as dipping. Thus, the multilayer piezoelectric element 1 is obtained.

図6は、本実施の形態の噴射装置を示す概略的な断面図である。図6に示すように、本実施の形態の噴射装置25は、一端に噴射孔27を有する収納容器29の内部に上記実施の形態の積層型圧電素子1が収納されている。収納容器29内には、噴射孔27を開閉することができるニードルバルブ31が配設されている。噴射孔27には燃料通路33がニードルバルブ31の動きに応じて連通可能に配設されている。この燃料通路33は外部の燃料供給源に連結され、燃料通路33に常時一定の高圧で燃料が供給されている。従って、ニードルバルブ31が噴射孔27を開放すると、燃料通路33に供給されていた燃料が一定の高圧で図示しない内燃機関の燃料室内に噴出される。   FIG. 6 is a schematic cross-sectional view showing the injection device of the present embodiment. As shown in FIG. 6, in the injection device 25 of the present embodiment, the multilayer piezoelectric element 1 of the above-described embodiment is stored in a storage container 29 having an injection hole 27 at one end. A needle valve 31 that can open and close the injection hole 27 is disposed in the storage container 29. A fuel passage 33 is disposed in the injection hole 27 so as to be communicable in accordance with the movement of the needle valve 31. The fuel passage 33 is connected to an external fuel supply source, and fuel is always supplied to the fuel passage 33 at a constant high pressure. Therefore, when the needle valve 31 opens the injection hole 27, the fuel supplied to the fuel passage 33 is injected into a fuel chamber of an internal combustion engine (not shown) at a constant high pressure.

また、ニードルバルブ31の上端部は内径が大きくなっており、収納容器29に形成されたシリンダ35と摺動可能なピストン37が配置されている。そして、収納容器29内には、上記の積層型圧電素子1を備えた圧電アクチュエータが収納されている。   The upper end of the needle valve 31 has a large inner diameter, and a cylinder 37 formed in the storage container 29 and a piston 37 that can slide are disposed. And in the storage container 29, the piezoelectric actuator provided with the said laminated piezoelectric element 1 is accommodated.

このような噴射装置25では、圧電アクチュエータが電圧を印加されて伸長すると、ピストン35が押圧され、ニードルバルブ31が噴射孔27を閉塞し、燃料の供給が停止される。また、電圧の印加が停止されると圧電アクチュエータが収縮し、皿バネ39がピストン37を押し返し、噴射孔27が燃料通路33と連通して燃料の噴射が行なわれるようになっている。   In such an injection device 25, when the piezoelectric actuator is extended by applying a voltage, the piston 35 is pressed, the needle valve 31 closes the injection hole 27, and the supply of fuel is stopped. When the application of voltage is stopped, the piezoelectric actuator contracts, the disc spring 39 pushes back the piston 37, and the injection hole 27 communicates with the fuel passage 33 so that fuel is injected.

また、本実施の形態の噴射装置25は、噴射孔27を有する容器と、積層型圧電素子1とを備え、容器内に充填された液体が積層型圧電素子1の駆動により噴射孔27から吐出させるように構成されていてもよい。すなわち、素子1が必ずしも容器の内部にある必要はなく、積層型圧電素子1の駆動によって容器の内部に圧力が加わるように構成されていればよい。なお、本実施の形態において、液体とは、燃料、インクなどの他、種々の液状流体(導電性ペースト等)が含まれる。   The injection device 25 according to the present embodiment includes a container having the injection hole 27 and the multilayer piezoelectric element 1, and the liquid filled in the container is discharged from the injection hole 27 by driving the multilayer piezoelectric element 1. You may be comprised so that it may make. That is, the element 1 does not necessarily have to be inside the container, and it is sufficient that the multilayer piezoelectric element 1 is driven so that pressure is applied to the inside of the container. In the present embodiment, the liquid includes various liquid fluids (such as conductive paste) in addition to fuel and ink.

図7は、本実施の形態の燃料噴射システムを示す概略的なブロック図である。図7に示すように、本実施の形態の燃料噴射システム41は、高圧燃料を蓄えるコモンレール43と、このコモンレール43に蓄えられた燃料を噴射する複数の噴射装置25と、コモンレール43に高圧の燃料を供給する圧力ポンプ45と、噴射装置25に駆動信号を与える噴射制御ユニット47と、を備えている。   FIG. 7 is a schematic block diagram showing the fuel injection system of the present embodiment. As shown in FIG. 7, the fuel injection system 41 of the present embodiment includes a common rail 43 that stores high-pressure fuel, a plurality of injection devices 25 that inject fuel stored in the common rail 43, and high-pressure fuel in the common rail 43. And a pressure control unit 47 for supplying a drive signal to the spray device 25.

噴射制御ユニット47は、エンジンの燃焼室内の状況をセンサ等で感知しながら燃料噴射の量やタイミングを制御するものである。圧力ポンプ45は、燃料タンク49から燃料を1000〜2000気圧(約101MPa〜約203MPa)程度、好ましくは1500〜1700気圧(約152MPa〜約172MPa)程度にしてコモンレール43に送り込む役割を果たす。コモンレール43では、圧力ポンプ45から送られてきた燃料を蓄え、適宜噴射装置25に送り込む。噴射装置25は、上述したように噴射孔27から少量の燃料を燃焼室内に霧状に噴射する。   The injection control unit 47 controls the amount and timing of fuel injection while sensing the state in the combustion chamber of the engine with a sensor or the like. The pressure pump 45 plays a role of sending fuel from the fuel tank 49 to the common rail 43 at a pressure of about 1000 to 2000 atmospheres (about 101 MPa to about 203 MPa), preferably about 1500 to 1700 atmospheres (about 152 MPa to about 172 MPa). In the common rail 43, the fuel sent from the pressure pump 45 is stored and sent to the injection device 25 as appropriate. As described above, the injection device 25 injects a small amount of fuel into the combustion chamber from the injection hole 27 in the form of a mist.

本発明の積層型圧電素子の実施例について以下に説明する。   Examples of the multilayer piezoelectric element of the present invention will be described below.

先ず、PZT主成分の圧電体セラミックスの仮焼粉末と、有機高分子からなるバインダーと、可塑剤とを混合したスラリーを作製し、スリップキャステイング法により、厚み150μmのセラミックグリーンシートを作製した。   First, a slurry was prepared by mixing a calcined powder of a PZT main component piezoelectric ceramic, a binder made of an organic polymer, and a plasticizer, and a ceramic green sheet having a thickness of 150 μm was prepared by a slip casting method.

次に、このセラミックグリーンシートの片面に、銀の含有量が70質量%でパラジウムの含有量が30質量%である銀−パラジウム合金の粉末と、銀−パラジウム合金の粉末の100質量部に対する含有比率が30質量部の圧電セラミックスとを含む導電性ペーストを、スクリーン印刷法により、所望のパターン形状として5μmの厚みに印刷した。   Next, on one side of the ceramic green sheet, the silver content is 70% by mass and the palladium content is 30% by mass, and the silver-palladium alloy powder is contained in 100 parts by mass. A conductive paste containing 30 parts by mass of piezoelectric ceramic was printed as a desired pattern shape to a thickness of 5 μm by screen printing.

次に、導電性ペースト層を乾燥させた後、導電性ペースト層が塗布された複数のセラミックグリーンシートを100枚積層し、1次積層成形体を作製した。さらに、1次積層成形体の積層方向の上側端部に導電性ペーストが塗布されていないセラミックグリーンシートを10枚積層し、下側端部に20枚積層し、積層成形体を作製した。   Next, after the conductive paste layer was dried, 100 ceramic green sheets coated with the conductive paste layer were laminated to produce a primary laminated molded body. Furthermore, 10 ceramic green sheets not coated with conductive paste were laminated on the upper end portion in the laminating direction of the primary laminated molded body, and 20 ceramic green sheets were laminated on the lower end portion to produce a laminated molded body.

次に、この積層成形体を100℃で加熱しながら加圧し、積層成形体のセラミックグリーンシートを一体化した。   Next, this laminated molded body was pressurized while being heated at 100 ° C. to integrate the ceramic green sheets of the laminated molded body.

次に、積層成形体を断面が8mm×8mmの四角形状で長さが18mmの四角柱状に切断した後、800℃で10時間の脱バインダーを行ない、1130℃で2時間積層成形体を焼成することにより、積層体を得た。焼成の際に使用した焼成鉢は、密閉構造のMgO製の鉢を用い、積層成形体および積層成形体に含まれるセラミックスと同じ組成のセラミック粉末を鉢に入れて焼成した。また、積層体における圧電体層の厚みは100μmであった。   Next, after cutting the laminated molded body into a quadrangular prism having a cross section of 8 mm × 8 mm and a length of 18 mm, the binder is removed at 800 ° C. for 10 hours, and the laminated molded body is fired at 1130 ° C. for 2 hours. As a result, a laminate was obtained. The firing pot used at the time of firing was an MgO bowl having a closed structure, and ceramic powder having the same composition as the ceramic contained in the multilayer molded body and the multilayer molded body was placed in the bowl and fired. Further, the thickness of the piezoelectric layer in the laminate was 100 μm.

次に、積層体の4つの側面を、0.2mmの厚み分ずつ、平面研削盤を用いて研磨した。   Next, the four side surfaces of the laminate were polished by a thickness of 0.2 mm using a surface grinder.

次に、積層体の互いに対向する2つの側面において、内部電極層の端面を含む圧電体層の端面に、積層体の2つの側面において互い違いになるように、圧電体層の1層おきに深さ200μm、積層方向の幅75μmの溝を形成した。そして、これらの溝にシリコーンゴムを充填してシリコーンゴムから成る絶縁体を形成し、内部電極層の端部を積層体の2つの側面に露出させた。即ち、第1の組の内部電極層の端部が第1の外部電極側の積層体の側面に露出し、第2の組の内部電極層の端部が第2の外部電極側の積層体の側面に露出するようにした。   Next, in two opposite side surfaces of the multilayer body, every other layer of the piezoelectric layer has a depth so as to alternate with the end surface of the piezoelectric layer including the end surface of the internal electrode layer on the two side surfaces of the multilayer body. A groove having a thickness of 200 μm and a width in the stacking direction of 75 μm was formed. These grooves were filled with silicone rubber to form an insulator made of silicone rubber, and the ends of the internal electrode layer were exposed on the two side surfaces of the laminate. That is, the end portion of the first set of internal electrode layers is exposed on the side surface of the first external electrode side laminate, and the end portion of the second set of internal electrode layers is the second external electrode side laminate. I was exposed to the side of the.

次に、積層体の2つの側面に、銀とポリイミド樹脂を含む導電性接着剤を塗布し、この導電性接着剤中に、ステンレスから成るメッシュ状体を埋め込み、この状態で200℃に加熱し導電性接着剤を硬化させることにより、第1および第2の外部電極を形成した。   Next, a conductive adhesive containing silver and polyimide resin is applied to the two side surfaces of the laminate, and a mesh-like body made of stainless steel is embedded in the conductive adhesive and heated to 200 ° C. in this state. The first and second external electrodes were formed by curing the conductive adhesive.

次に、正極用の外部電極(第1の外部電極)、負極用の外部電極(第2の外部電極)に、それぞれリード線をはんだで接続し、積層型圧電素子の表面をアルコールで洗浄した。その後、プライマーによって積層体に表面処理を施して外装樹脂の密着性を向上させた後に、ディッピング法によってシリコーンゴムから成る外装樹脂を積層体の表面に被覆し、積層型圧電素子を作製した。   Next, the lead wires were connected to the positive external electrode (first external electrode) and the negative external electrode (second external electrode) with solder, respectively, and the surface of the multilayer piezoelectric element was washed with alcohol. . Thereafter, the laminate was subjected to a surface treatment with a primer to improve the adhesion of the exterior resin, and then the exterior resin made of silicone rubber was coated on the surface of the laminate by a dipping method to produce a multilayer piezoelectric element.

最後に、積層型圧電素子に1kVの分極電圧を印加し、積層型圧電素子の圧電体層全体に分極処理を施して、本発明の積層型圧電素子を得た。   Finally, a polarization voltage of 1 kV was applied to the multilayer piezoelectric element, and the entire piezoelectric body layer of the multilayer piezoelectric element was subjected to polarization treatment to obtain the multilayer piezoelectric element of the present invention.

このとき、積層体における内部電極層の構成を表1のように5種類のものとした5種類の積層型圧電素子を作製した。   At this time, five types of stacked piezoelectric elements were produced in which the internal electrode layers in the stack had five types as shown in Table 1.

試料番号1の積層型圧電素子は、図1に示す構成のものであり、不活性領域における第1の外部電極と第2の組の内部電極層との間の幅が、積層体の積層方向の中央部よりも一方の端部で小さくなっている構成である。この場合、積層体の積層方向の中央部は、積層体の積層方向の全長(15mm)の10%の長さを有する中央部であり、積層体の積層方向の端部は、積層体の積層方向の全長の5%の長さを有する端部である。また、不活性領域における第1の外部電極と第2の組の内部電極層との間の幅が、積層体の積層方向の中央部よりも端部で小さくなる割合は、1%ずつ小さくなるようにした。   The laminated piezoelectric element of sample number 1 has the structure shown in FIG. 1, and the width between the first external electrode and the second set of internal electrode layers in the inactive region is the stacking direction of the stacked body. This is a configuration that is smaller at one end than at the center. In this case, the central portion in the stacking direction of the stacked body is a central portion having a length of 10% of the total length (15 mm) in the stacking direction of the stacked body, and the end portion in the stacking direction of the stacked body is the stack of the stacked body. An end having a length of 5% of the total length in the direction. Further, the rate at which the width between the first external electrode and the second set of internal electrode layers in the inactive region becomes smaller at the end than the central portion in the stacking direction of the stacked body is decreased by 1%. I did it.

試料番号2の積層型圧電素子は、図2に示す構成のものであり、不活性領域における第1の外部電極と第2の組の内部電極層との間の幅が、積層体の積層方向の中央部よりも両方の端部で小さくなっている構成である。この場合、積層体の積層方向の中央部は、積層体の積層方向の全長(15mm)の10%の長さを有する中央部であり、積層体の積層方向の端部は、積層体の積層方向の全長の5%の長さを有する端部である。また、不活性領域における第1の外部電極と第2の組の内部電極層との間の幅が、積層体の積層方向の中央部よりも両方の端部で小さくなる割合は、1%ずつ小さくなるようにした。   The laminated piezoelectric element of sample number 2 has the configuration shown in FIG. 2, and the width between the first external electrode and the second set of internal electrode layers in the inactive region is the stacking direction of the stacked body. It is the structure which is smaller at both ends than the central part. In this case, the central portion in the stacking direction of the stacked body is a central portion having a length of 10% of the total length (15 mm) in the stacking direction of the stacked body, and the end portion in the stacking direction of the stacked body is the stack of the stacked body. An end having a length of 5% of the total length in the direction. Further, the rate at which the width between the first external electrode and the second set of internal electrode layers in the inactive region becomes smaller at both ends than the central portion in the stacking direction of the stacked body is 1% each. I tried to make it smaller.

試料番号3の積層型圧電素子は、図1、図3に示す構成のものであり、不活性領域における第1の外部電極と第2の組の内部電極層との間の幅が、積層体の積層方向の中央部よりも一方の端部で小さくなっているとともに、第1の外部電極に対向している第2の組の内部電極層の縁の形状が、両側よりも中央で第1の外部電極から遠い弧状である構成である。この場合、積層体の積層方向の中央部は、積層体の積層方向の全長(15mm)の10%の長さを有する中央部であり、積層体の積層方向の端部は、積層体の積層方向の全長の5%の長さを有する端部である。また、不活性領域における第1の外部電極と第2の組の内部電極層との間の幅が、積層体の積層方向の中央部よりも端部で小さくなる割合は、1%ずつ小さくなるようにした。このとき、第1の外部電極と第2の組の内部電極層との間の幅は、第1の外部電極と弧状の中間の部位との間の幅とした。また、弧状の形状は一定の曲率半径を有する円弧状であり、その曲率半径は30mmである。   The laminated piezoelectric element of sample number 3 has the structure shown in FIGS. 1 and 3, and the width between the first external electrode and the second set of internal electrode layers in the inactive region is the laminated body. The edge shape of the second set of internal electrode layers facing the first external electrode is smaller at the one end than the central portion in the stacking direction, and the shape of the edge of the second set of internal electrodes is the first at the center rather than the both sides. It is the structure which is an arc shape far from the external electrode. In this case, the central portion in the stacking direction of the stacked body is a central portion having a length of 10% of the total length (15 mm) in the stacking direction of the stacked body, and the end portion in the stacking direction of the stacked body is the stack of the stacked body. An end having a length of 5% of the total length in the direction. Further, the rate at which the width between the first external electrode and the second set of internal electrode layers in the inactive region becomes smaller at the end than the central portion in the stacking direction of the stacked body is decreased by 1%. I did it. At this time, the width between the first external electrode and the second set of internal electrode layers was the width between the first external electrode and the arc-shaped intermediate portion. The arc shape is an arc shape having a constant radius of curvature, and the radius of curvature is 30 mm.

試料番号4の積層型圧電素子は、不活性領域における第1の外部電極と第2の組の内部電極層との間の幅が、積層体の積層方向の端部において中央部側から端に向かって次第に小さくなっている構成である。この場合、積層体の積層方向の端部は、積層体の積層方向の全長の5%の長さの端部である。また、第1の外部電極と第2の組の内部電極層との間の幅の変化の割合は1%で一定である。また、積層体の積層方向の中央部においては、第1の外部電極と第2の組の内部電極層との間の幅は1mmで一定である。   In the laminated piezoelectric element of sample number 4, the width between the first external electrode and the second set of internal electrode layers in the inactive region is from the center to the end at the end in the stacking direction of the stack. It is the structure which becomes small gradually. In this case, the end portion in the stacking direction of the stacked body is an end portion having a length of 5% of the total length in the stacking direction of the stacked body. The ratio of the change in width between the first external electrode and the second set of internal electrode layers is constant at 1%. Further, in the central portion in the stacking direction of the stacked body, the width between the first external electrode and the second set of internal electrode layers is constant at 1 mm.

試料番号5の積層型圧電素子は、図1に示す構成の試料番号1の積層型圧電素子であって、積層体の積層方向の中央部よりも端部で、圧電体層の厚みが厚くなっており、内部電極層間の間隔が広くなっている構成である。積層体の積層方向の中央部における内部電極層間の間隔(D1=120μm)に対して、積層体の積層方向の端部における内部電極層間の間隔(D2=240μm)の比が、D2/D1=2である。   The multilayer piezoelectric element of sample number 5 is the multilayer piezoelectric element of sample number 1 having the configuration shown in FIG. 1, and the thickness of the piezoelectric layer is thicker at the end than the center in the stacking direction of the multilayer body. In other words, the interval between the internal electrode layers is wide. The ratio of the distance between the internal electrode layers (D2 = 240 μm) at the end in the stacking direction of the stacked body to the distance between the internal electrode layers (D1 = 120 μm) at the center in the stacking direction of the stacked body is D2 / D1 = 2.

これらの積層型圧電素子にそれぞれ200Vの直流電圧を印加した結果、各積層型圧電素子とも伸縮駆動による10μmの変位が得られた。   As a result of applying a DC voltage of 200 V to each of these laminated piezoelectric elements, a displacement of 10 μm was obtained for each laminated piezoelectric element due to expansion and contraction driving.

さらに、これらの積層型圧電素子に0V〜+200Vの交流電界を200Hzの周波数で印加し、150℃で駆動試験を行なった。駆動試験は、積層型圧電素子を1×10サイクル連続駆動した後の変位を測定し、初期の変位からの変化を調べた。このとき、変化量の絶対値が0.5μm以下のものを異常なしとした。Further, an AC electric field of 0 V to +200 V was applied to these multilayer piezoelectric elements at a frequency of 200 Hz, and a driving test was performed at 150 ° C. In the driving test, the displacement after continuously driving the laminated piezoelectric element for 1 × 10 9 cycles was measured, and the change from the initial displacement was examined. At this time, an absolute value of the change amount of 0.5 μm or less was regarded as no abnormality.

なお、変位量の測定は、試料を防振台上に固定し、試料上面にアルミニウム箔を張り付けて、レーザ変位計により素子の中心部および両端部の3箇所で測定することによって行ない、3箇所の変位量の平均値を積層型圧電素子の変位量とした。   The displacement is measured by fixing the sample on a vibration isolation table, attaching an aluminum foil on the upper surface of the sample, and measuring at three locations at the center and both ends of the element with a laser displacement meter. The average value of the displacement amounts was defined as the displacement amount of the multilayer piezoelectric element.

Figure 2010110291
Figure 2010110291

表1より、試料番号1の積層型圧電素子は、初期の変位に対して、1×10サイクル連続駆動後の変位量が0.4μm変化(増大)したが、異常は認められなかった。From Table 1, the laminated piezoelectric element of Sample No. 1 changed (increased) 0.4 μm in the displacement after 1 × 10 9 cycles of continuous driving with respect to the initial displacement, but no abnormality was observed.

試料番号2〜5の積層型圧電素子は、初期の変位に対して、1×10サイクル連続駆動後の変位が変化しなかった。In the laminated piezoelectric elements of Sample Nos. 2 to 5, the displacement after continuous driving of 1 × 10 9 cycles did not change with respect to the initial displacement.

なお、本発明は、上記実施の形態及び実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を加えても何等差し支えない。例えば、積層体の非対向部は、電圧印加時に駆動に寄与する内部電極層が対向していない部位、すなわち自らは駆動しない部位であるが、非対向部に金属層などが含まれていてもよい。   The present invention is not limited to the above-described embodiment and examples, and various modifications may be made without departing from the scope of the present invention. For example, the non-opposing portion of the laminate is a portion where the internal electrode layer contributing to driving at the time of voltage application is not facing, that is, a portion that does not drive itself, but the non-facing portion includes a metal layer or the like. Good.

1:積層型圧電素子
2:圧電体層
3a:第1の組の内部電極層
3b:第2の組の内部電極層
4a:第1の外部電極
4b:第2の外部電極
5:積層体
6:積層体の対向部
7:積層体の非対向部
1: laminated piezoelectric element 2: piezoelectric layer 3a: first set of internal electrode layers 3b: second set of internal electrode layers 4a: first external electrode 4b: second external electrode 5: laminated body 6 : Opposite part of laminate 7: Non-opposite part of laminate

Claims (8)

圧電体層および内部電極層が交互に複数積層された積層体と、該積層体の対向する一対の側面に接合されて、それぞれ前記内部電極層の第1の組および第2の組が接続された外部電極とを含む積層型圧電素子において、第1の組の前記内部電極層が接続された第1の前記外部電極と第2の組の前記内部電極層との間は絶縁されて不活性領域となっており、該不活性領域における第1の前記外部電極と第2の組の前記内部電極層との間の幅が、前記積層体の積層方向の中央部よりも端部で小さくなっていることを特徴とする積層型圧電素子。   A laminated body in which a plurality of piezoelectric layers and internal electrode layers are alternately laminated, and a pair of opposed side surfaces of the laminated body are joined to each other, and the first set and the second set of the internal electrode layers are connected to each other. In the laminated piezoelectric element including the external electrode, the first external electrode connected to the first set of internal electrode layers and the second set of internal electrode layers are insulated and inactive. The width between the first external electrode and the second set of internal electrode layers in the inactive region is smaller at the end than the central portion in the stacking direction of the stacked body. A laminated piezoelectric element characterized by comprising: 前記不活性領域における第1の前記外部電極と第2の組の前記内部電極層との間の幅が、前記積層体の積層方向の中央部よりも両方の端部で小さくなっていることを特徴とする請求項1に記載の積層型圧電素子。   The width between the first external electrode and the second set of internal electrode layers in the inactive region is smaller at both ends than the central portion in the stacking direction of the stacked body. The multilayer piezoelectric element according to claim 1, wherein 第1の前記外部電極に対向している第2の組の前記内部電極層の縁の形状が、両側よりも中央で第1の前記外部電極から遠い弧状であることを特徴とする請求項1に記載の積層型圧電素子。   The shape of the edge of the second set of internal electrode layers facing the first external electrode is an arc shape that is farther from the first external electrode in the center than on both sides. The laminated piezoelectric element according to 1. 前記不活性領域における第1の前記外部電極と第2の組の前記内部電極層との間の幅が、前記積層体の積層方向の端部において中央部側から端に向かって次第に小さくなっていることを特徴とする請求項1に記載の積層型圧電素子。   The width between the first external electrode and the second set of internal electrode layers in the inactive region is gradually reduced from the central side toward the end at the end in the stacking direction of the stacked body. The multilayer piezoelectric element according to claim 1, wherein: 前記積層体の積層方向の中央部よりも端部で、前記圧電体層の厚みが厚くなっており、前記内部電極層間の間隔が広くなっていることを特徴とする請求項1に記載の積層型圧電素子。   2. The laminate according to claim 1, wherein a thickness of the piezoelectric layer is thicker at an end portion than a center portion in a stacking direction of the laminate, and a gap between the internal electrode layers is widened. Type piezoelectric element. 第2の組の前記内部電極層が接続された第2の前記外部電極と第1の組の前記内部電極層との間の不活性領域の幅も、前記積層体の積層方向の中央部よりも端部で小さくなっていることを特徴とする請求項1に記載の積層型圧電素子。   The width of the inactive region between the second external electrode to which the second set of internal electrode layers are connected and the first set of internal electrode layers is also greater than the central portion in the stacking direction of the stacked body. The laminated piezoelectric element according to claim 1, wherein the laminated piezoelectric element is also small at the end. 噴射孔を有する容器と、請求項1乃至請求項6のいずれかに記載の積層型圧電素子とを備え、前記容器内に蓄えられた流体が前記積層型圧電素子の駆動により前記噴射孔から吐出されることを特徴とする噴射装置。   A container having an injection hole and the multilayer piezoelectric element according to any one of claims 1 to 6, wherein fluid stored in the container is discharged from the injection hole by driving the multilayer piezoelectric element. An injection device. 高圧燃料を蓄えるコモンレールと、該コモンレールに蓄えられた前記高圧燃料を噴射する請求項7に記載の噴射装置と、前記コモンレールに前記高圧燃料を供給する圧力ポンプと、前記噴射装置に駆動信号を与える噴射制御ユニットとを備えたことを特徴とする燃料噴射システム。   A common rail for storing high-pressure fuel, an injection device according to claim 7 for injecting the high-pressure fuel stored in the common rail, a pressure pump for supplying the high-pressure fuel to the common rail, and a drive signal for the injection device A fuel injection system comprising an injection control unit.
JP2011506072A 2009-03-25 2010-03-24 Multilayer piezoelectric element, injection device using the same, and fuel injection system Active JP5409772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011506072A JP5409772B2 (en) 2009-03-25 2010-03-24 Multilayer piezoelectric element, injection device using the same, and fuel injection system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009073174 2009-03-25
JP2009073174 2009-03-25
PCT/JP2010/055036 WO2010110291A1 (en) 2009-03-25 2010-03-24 Layered piezoelectric element, injection device utilizing same, and fuel injection system
JP2011506072A JP5409772B2 (en) 2009-03-25 2010-03-24 Multilayer piezoelectric element, injection device using the same, and fuel injection system

Publications (2)

Publication Number Publication Date
JPWO2010110291A1 true JPWO2010110291A1 (en) 2012-09-27
JP5409772B2 JP5409772B2 (en) 2014-02-05

Family

ID=42780985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011506072A Active JP5409772B2 (en) 2009-03-25 2010-03-24 Multilayer piezoelectric element, injection device using the same, and fuel injection system

Country Status (2)

Country Link
JP (1) JP5409772B2 (en)
WO (1) WO2010110291A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5465337B2 (en) * 2010-10-28 2014-04-09 京セラ株式会社 Multilayer piezoelectric element, injection device using the same, and fuel injection system
JP5403170B2 (en) * 2010-11-01 2014-01-29 株式会社村田製作所 Multilayer piezoelectric actuator and piezoelectric vibration device
WO2012065989A1 (en) 2010-11-15 2012-05-24 Epcos Ag Piezoelectric component
US9294846B2 (en) * 2012-05-07 2016-03-22 Kyocera Corporation Piezoelectric vibration element, and piezoelectric vibration device and portable terminal using piezoelectric vibration element
JP5620450B2 (en) * 2012-10-02 2014-11-05 Tdk株式会社 Piezoelectric element
JP6367693B2 (en) * 2014-11-21 2018-08-01 京セラ株式会社 Piezoelectric element, piezoelectric vibration device, acoustic generator, acoustic generator, and electronic device
KR20170031010A (en) * 2015-09-10 2017-03-20 조인셋 주식회사 Method for producing composite filter
JP7164847B2 (en) * 2020-02-28 2022-11-02 日本特殊陶業株式会社 piezoelectric actuator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086880A (en) * 1983-10-19 1985-05-16 Nec Corp Electrostrictive-effect element
JPH06312505A (en) * 1992-12-17 1994-11-08 Seiko Epson Corp Laminated type piezoelectric displacement element and ink jet record head using the same
JP2000225702A (en) * 1999-02-09 2000-08-15 Ricoh Co Ltd Fabrication of piezoelectric element and ink jet head
US20080203853A1 (en) * 2005-07-26 2008-08-28 Carsten Schuh Method For Producing a Monolithic Piezo Actuator With Stack Elements, Monilithic Piezo Actuator With Stack Elements, and Use of the Piezo Actuator
US7564173B2 (en) * 2006-08-23 2009-07-21 Ngk Insulators, Ltd. Piezoelectric actuator device for ultrasonic motor
WO2008072767A1 (en) * 2006-12-15 2008-06-19 Kyocera Corporation Laminated piezoelectric element, jetting device provided with the laminated piezoelectric element, and fuel jetting system and

Also Published As

Publication number Publication date
JP5409772B2 (en) 2014-02-05
WO2010110291A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5409772B2 (en) Multilayer piezoelectric element, injection device using the same, and fuel injection system
JP4933554B2 (en) Multilayer piezoelectric element, injection apparatus and fuel injection system using the same, and method for manufacturing multilayer piezoelectric element
JP5586777B2 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
EP2237337B1 (en) Laminated piezoelectric element, and injection device and fuel injection system using the same
JP5465337B2 (en) Multilayer piezoelectric element, injection device using the same, and fuel injection system
JP5518090B2 (en) Multilayer piezoelectric element, injection device using the same, and fuel injection system
JP5355681B2 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
JP5270578B2 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
JP5787547B2 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
JP5342919B2 (en) Multilayer piezoelectric element, injection device and fuel injection system using the same
JP6196134B2 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
JP3730893B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
WO2016121278A1 (en) Laminated piezoelectric element, injection device provided with same, and fuel injection system
WO2012011302A1 (en) Laminated piezoelectric element, and jetting device and fuel jetting system provided with the laminated piezoelectric element
JPWO2015114866A1 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
JP5319196B2 (en) Multilayer piezoelectric element, injection device and fuel injection system using the same
JP6619515B2 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
JP5701397B2 (en) Multilayer piezoelectric element, piezoelectric actuator including the same, injection device, and fuel injection system
JP3872349B2 (en) Manufacturing method of multilayer piezoelectric element
JP6913516B2 (en) Laminated piezoelectric element, injection device equipped with it, and fuel injection system
JP5797339B2 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
JPWO2018020921A1 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
JPWO2015114879A1 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

R150 Certificate of patent or registration of utility model

Ref document number: 5409772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150