JPWO2010052909A1 - Method for producing methacrylic acid and catalyst for producing methacrylic acid - Google Patents

Method for producing methacrylic acid and catalyst for producing methacrylic acid Download PDF

Info

Publication number
JPWO2010052909A1
JPWO2010052909A1 JP2010536690A JP2010536690A JPWO2010052909A1 JP WO2010052909 A1 JPWO2010052909 A1 JP WO2010052909A1 JP 2010536690 A JP2010536690 A JP 2010536690A JP 2010536690 A JP2010536690 A JP 2010536690A JP WO2010052909 A1 JPWO2010052909 A1 JP WO2010052909A1
Authority
JP
Japan
Prior art keywords
catalyst
methacrylic acid
positive number
producing methacrylic
isobutylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010536690A
Other languages
Japanese (ja)
Other versions
JP5574434B2 (en
Inventor
康弘 荒谷
康弘 荒谷
竜彦 倉上
竜彦 倉上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2010536690A priority Critical patent/JP5574434B2/en
Publication of JPWO2010052909A1 publication Critical patent/JPWO2010052909A1/en
Application granted granted Critical
Publication of JP5574434B2 publication Critical patent/JP5574434B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • B01J35/19
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J35/58
    • B01J35/63

Abstract

本発明は、イソブチレンを直結二段接触気相酸化法で、酸化してメタクリル酸を製造する際に、前段におけるイソブチレン転化率を95〜98%で反応を行い、後段に、モリブデン、バナジウム、リン、及び、カリウム、ルビジウム、セシウム及びアンモニウム成分からなる群から選ばれる一種又は2種、を含む触媒組成物を焼成して得られた触媒、特にアンモニウム成分含む触媒を使用することにより、長期間に亘り安定したメタクリル酸を高い収率で製造しうるメタクリル酸の製造方法及び直結二段接触気相酸化法用のメタクリル酸製造用触媒に関するものである。In the present invention, when isobutylene is oxidized by a direct-coupled two-stage contact gas phase oxidation method to produce methacrylic acid, the reaction is performed at a conversion of isobutylene of 95 to 98% in the former stage, and molybdenum, vanadium, phosphorus, and the like in the latter stage. By using a catalyst obtained by calcining a catalyst composition containing one or two kinds selected from the group consisting of potassium, rubidium, cesium and ammonium components, particularly a catalyst containing ammonium components, for a long period of time. The present invention relates to a method for producing methacrylic acid capable of producing a stable methacrylic acid in a high yield and a catalyst for producing methacrylic acid for a direct-coupled two-stage contact gas phase oxidation method.

Description

本発明は、第1段目において、酸化触媒の存在下にイソブチレンを酸化してメタクロレインとし、得られた反応生成ガスを、第2段目において、酸化触媒の存在下にメタクロレインを酸化してメタクリル酸を得る直結二段接触気相酸化法によるメタクリル酸の製造方法及びそのための、2段目用(メタクロレイン酸化用)酸化触媒に関する。  In the first stage, the present invention oxidizes isobutylene to methacrolein in the presence of an oxidation catalyst to obtain methacrolein, and in the second stage, oxidizes methacrolein in the presence of an oxidation catalyst. The present invention relates to a method for producing methacrylic acid by a direct-coupled two-stage contact gas phase oxidation method for obtaining methacrylic acid and a second-stage (for methacrolein oxidation) oxidation catalyst therefor.

メタクロレインを接触気相酸化反応しメタクリル酸を製造する方法及び同反応において使用する触媒は数多く提案されており(例えば特許文献1〜5)、その一部は工業的規模の生産に用いられている。   Many methods for producing methacrylic acid by catalytic gas phase oxidation reaction of methacrolein and catalysts used in the reaction have been proposed (for example, Patent Documents 1 to 5), some of which are used for industrial scale production. Yes.

また、メタクリル酸を製造する方法の1つとして、第1段目において、イソブチレンを酸化してメタクロレインとし、得られた反応生成ガスを、第2段目に供給して、メタクロレインを酸化してメタクリル酸を得る直結二段接触気相酸化法も検討されている(非特許文献1)。   As one method for producing methacrylic acid, in the first stage, isobutylene is oxidized to methacrolein, and the resulting reaction product gas is supplied to the second stage to oxidize methacrolein. Thus, a direct-coupled two-stage contact gas phase oxidation method for obtaining methacrylic acid has been studied (Non-patent Document 1).

直結二段接触気相酸化法によるイソブチレンからのメタクリル酸製造法においては、第1段目及び第2段目を直結して反応を行うと未反応イソブチレンが後段触媒の活性に悪影響を与えるため、未反応イソブチレンを減らすため、前段反応のイソブチレンの転化率は98%を超えて運転されるのが一般的である。   In the method of producing methacrylic acid from isobutylene by the direct-coupled two-stage contact gas phase oxidation method, if the reaction is performed by directly coupling the first and second stages, the unreacted isobutylene adversely affects the activity of the subsequent catalyst. In order to reduce unreacted isobutylene, the conversion of isobutylene in the first stage reaction is generally operated at over 98%.

特開昭50−101316号公報Japanese Patent Laid-Open No. 50-101316 特開昭57−177347号公報JP-A-57-177347 特開平4−63139号公報JP-A-4-63139 特開平5−31368号公報JP-A-5-31368 特開平6−91172号公報JP-A-6-91172

和田正大,触媒,Vol. 32,4,223(1990)Masahiro Wada, Catalyst, Vol. 32, 4, 223 (1990)

しかしながら、モリブデン‐バナジウム系触媒を用いたアクロレインの接触気相酸化反応によるアクリル酸の製造と比較すると、メタクロレインの接触気相酸化反応によるメタクリル酸製造法及びメタクリル酸製造用触媒は一部工業化されているものの、反応収率(活性及び選択性)が低く、触媒寿命も短いため、改良が求められている。特に、イソブチレンからの直結二段接触気相酸化によるメタクリル酸の製造では、第2段目の反応での未反応イソブチレンによる触媒活性の低下、触媒寿命の短命化を避けるため、98%を超えるイソブチレン転化率での反応が好ましいと考えられている。
一方、第一段目反応を99%以上の転化率で、反応を行うと、高温での反応が必要とされ、一段目触媒の寿命が短縮されると共に、メタクロレイン及びメタクリル酸への選択率(有効選択率)も下がる傾向がある。そのため、触媒への熱的負荷も少なく、有効選択率も高い、イソブチレン転化率95〜98モル%程度で行うことは望ましい。そのため、未反応イソブチレンの残存率が2〜5%という比較的高い値においても、未反応イソブチレンでの悪影響の少ない触媒の開発が求められている。
However, compared with the production of acrylic acid by the catalytic gas phase oxidation reaction of acrolein using a molybdenum-vanadium catalyst, the methacrylic acid production method and the catalyst for methacrylic acid production by the catalytic gas phase oxidation reaction of methacrolein are partially industrialized. However, since the reaction yield (activity and selectivity) is low and the catalyst life is short, there is a need for improvement. In particular, in the production of methacrylic acid by direct-coupled two-stage gas phase oxidation from isobutylene, in order to avoid reduction in catalyst activity due to unreacted isobutylene in the second stage reaction and shortening of catalyst life, isobutylene exceeding 98% Reaction at conversion is considered preferred.
On the other hand, when the reaction at the first stage reaction is carried out at a conversion rate of 99% or more, the reaction at a high temperature is required, the life of the first stage catalyst is shortened, and the selectivity to methacrolein and methacrylic acid. (Effective selection rate) also tends to decrease. Therefore, it is desirable to carry out the reaction at an isobutylene conversion rate of about 95 to 98 mol% with little thermal load on the catalyst and high effective selectivity. For this reason, there is a demand for the development of a catalyst with little adverse effect on unreacted isobutylene even when the residual ratio of unreacted isobutylene is a relatively high value of 2 to 5%.

イソブチレンの接触気相酸化反応によりメタクロレインを生成させ、又はターシャリーブチルアルコールの脱水反応により生成したイソブチレンの接触気相酸化反応によりメタクロレイン生成させ、該メタクロレインの接触気相酸化反応によりメタクリル酸を製造する直結二段接触気相酸化法によるメタクリル酸製造方法において、後段の触媒として特定の触媒を使用することにより、比較的高い、未反応イソブチレンの残存下においても、イソブチレンでの悪影響が少なく、比較的高いメタクロレイン転化率及びメタクリル酸選択率維持することが出来ることを見出し、本発明を完成した。 Formation of methacrolein by catalytic gas phase oxidation reaction of isobutylene or formation of methacrolein by catalytic gas phase oxidation reaction of isobutylene generated by dehydration reaction of tertiary butyl alcohol, and methacrylic acid by catalytic gas phase oxidation reaction of the methacrolein In the methacrylic acid production method by the direct-coupled two-stage contact gas phase oxidation method for producing the product, by using a specific catalyst as the latter catalyst, there is little adverse effect on isobutylene even in the presence of relatively high unreacted isobutylene. The present inventors have found that a relatively high methacrolein conversion rate and methacrylic acid selectivity can be maintained, thereby completing the present invention.

即ち、本発明は下記に関するものである。
(1)(a)イソブチレンを、酸化触媒の存在下に、分子状酸素または分子状酸素含有ガスにより気相にてメタクロレインに酸化し(工程(a))、
(b)得られた、未反応イソブチレン及びメタクロレインを含む、反応生成ガスを、酸化触媒の存在下に、分子状酸素または分子状酸素含有ガスにより気相にて酸化してメタクリル酸を製造する(工程(b))、
方法であって、
工程(a)におけるイソブチレンの転化率を95モル%以上、98モル%以下で、反応を行い、工程(b)の酸化触媒が、モリブデン、バナジウム、リン、及び、カリウム、ルビジウム、セシウム及びアンモニア成分からなる群から選ばれる一種又は二種、を含む触媒組成物を成形及び焼成して得られた触媒であることを特徴とするメタクリル酸の製造方法。
(2) 工程(b)における、酸化触媒が、一般式(1)
Mo10(NH (1)
(式中Moはモリブデン、Vはバナジウム、Pはリン、(NH)はアンモニウム基を、XはK、Rb、Csから選ばれる少なくとも一種の元素、YはSb、As、Cu、Ag、Mg、Zn、Al、B、Ge、Sn、Pb、Ti、Zr、Cr、Re、Bi、W、Fe、Co、Ni、Ce、Thからなる群から選ばれる少なくとも一種の元素をそれぞれ表し、a〜fは、それぞれの元素の原子比を表し、aは0.1≦a≦6.0の正数、bは0.5≦b≦6.0の正数、cは0.1≦c≦10.0の正数、dは0.1≦d≦3.0の正数、eは0≦e≦3.0の正数をそれぞれ表す。)で表される活性成分組成を有する触媒組成物を成型及び焼成することにより得られたメタクリル酸製造用触媒である上記(1)に記載のメタクリル酸の製造方法。
That is, the present invention relates to the following.
(1) (a) isobutylene is oxidized to methacrolein in the gas phase with molecular oxygen or a molecular oxygen-containing gas in the presence of an oxidation catalyst (step (a)),
(B) The obtained reaction product gas containing unreacted isobutylene and methacrolein is oxidized in the gas phase with molecular oxygen or a molecular oxygen-containing gas in the presence of an oxidation catalyst to produce methacrylic acid. (Step (b)),
A method,
The reaction is performed at a conversion rate of isobutylene in the step (a) of 95 mol% or more and 98 mol% or less, and the oxidation catalyst of the step (b) is molybdenum, vanadium, phosphorus, potassium, rubidium, cesium and ammonia components. A method for producing methacrylic acid, which is a catalyst obtained by molding and firing a catalyst composition containing one or two kinds selected from the group consisting of:
(2) The oxidation catalyst in step (b) is represented by the general formula (1)
Mo 10 V a P b (NH 4) c X d Y e O f (1)
(Wherein Mo is molybdenum, V is vanadium, P is phosphorus, (NH 4 ) is an ammonium group, X is at least one element selected from K, Rb, and Cs, Y is Sb, As, Cu, Ag, Mg) Represents at least one element selected from the group consisting of Zn, Al, B, Ge, Sn, Pb, Ti, Zr, Cr, Re, Bi, W, Fe, Co, Ni, Ce, and Th; f represents the atomic ratio of each element, a is a positive number of 0.1 ≦ a ≦ 6.0, b is a positive number of 0.5 ≦ b ≦ 6.0, and c is 0.1 ≦ c ≦ A positive number of 10.0, d is a positive number of 0.1 ≦ d ≦ 3.0, and e is a positive number of 0 ≦ e ≦ 3.0. Production of methacrylic acid according to the above (1), which is a catalyst for producing methacrylic acid obtained by molding and firing a product Law.

(3) 一般式(1)で表される活性成分組成を有する触媒組成物を焼成する温度が300〜400℃未満で焼成することにより得られたメタクリル酸製造用触媒を使用する上記(1)又は(2)に記載のメタクリル酸の製造方法。
(4) YがSb、As及びCuからなる群から選ばれる少なくとも2種の元素である上記(2)〜(3)の何れか1項に記載のメタクリル酸の製造方法。
(5) YがAs及びCuの両者である上記(4)に記載のメタクリル酸の製造方法。
(6) 触媒組成物の成型が、該組成物のスラリー乾燥体を、強度向上剤と共に、水又は炭素数1〜4のアルコールをバインダーとし、球状担体上に被覆して、球状被覆触媒とするものである上記(1)〜(5)の何れか1項に記載のメタクリル酸の製造方法。
(7) 触媒組成物の成型が、該組成物のスラリー乾燥体を、強度向上剤及び細孔形成剤と共に、水又は炭素数1〜4のアルコールをバインダーとし、球状担体上に被覆して、球状被覆触媒とするものである上記(1)〜(5)の何れか1項に記載のメタクリル酸の製造方法。
(8) 工程(a)において、ビスマス‐モリブデン含有複合酸化物触媒を使用する上記(1)〜(7)の何れか1項に記載のメタクリル酸の製造方法。
(9) ビスマス‐モリブデン含有複合酸化物触媒が、モリブデン、ビスマス、鉄及びコバルトの4者、及び、ニッケル、錫、亜鉛、タングステン、クロム、マンガン、マグネシウム、アンチモン、セリウム、チタンからなる群から選択される少なくとも一種、更に、アルカリ金属又はタリウムを含む複合酸化物触媒を使用する上記(8)に記載のメタクリル酸の製造方法。
(10) 工程(b)における、未反応イソブチレン及びメタクロレインを含む、反応生成ガスが、反応生成ガスの総量中に、未反応イソブチレンを2〜5モル%含むものである上記(1)〜(9)の何れか1項に記載のメタクリル酸の製造方法。
(3) The above (1) using the catalyst for methacrylic acid production obtained by calcining the catalyst composition having the active ingredient composition represented by the general formula (1) at a temperature of 300 to less than 400 ° C. Or the manufacturing method of methacrylic acid as described in (2).
(4) The method for producing methacrylic acid according to any one of (2) to (3) above, wherein Y is at least two elements selected from the group consisting of Sb, As and Cu.
(5) The method for producing methacrylic acid according to the above (4), wherein Y is both As and Cu.
(6) The catalyst composition is molded by coating the dried slurry of the composition with a strength improver and water or an alcohol having 1 to 4 carbon atoms on a spherical carrier to form a spherical coated catalyst. The manufacturing method of methacrylic acid of any one of said (1)-(5) which is what.
(7) The catalyst composition is formed by coating the dried slurry of the composition with a strength improver and a pore-forming agent on a spherical carrier using water or an alcohol having 1 to 4 carbon atoms as a binder. The method for producing methacrylic acid according to any one of the above (1) to (5), which is a spherical coating catalyst.
(8) The method for producing methacrylic acid according to any one of (1) to (7), wherein a bismuth-molybdenum-containing composite oxide catalyst is used in step (a).
(9) The bismuth-molybdenum-containing composite oxide catalyst is selected from the group consisting of molybdenum, bismuth, iron and cobalt, and the group consisting of nickel, tin, zinc, tungsten, chromium, manganese, magnesium, antimony, cerium, and titanium. The method for producing methacrylic acid according to (8) above, wherein a composite oxide catalyst containing at least one kind of alkali metal or thallium is used.
(10) The above (1) to (9), wherein the reaction product gas containing unreacted isobutylene and methacrolein in step (b) contains 2 to 5 mol% of unreacted isobutylene in the total amount of reaction product gas. The method for producing methacrylic acid according to any one of the above.

(11)一般式(1)
Mo10(NH (1)
(式中Moはモリブデン、Vはバナジウム、Pはリン、(NH)はアンモニウム基を、XはK、Rb、Csから選ばれる少なくとも一種の元素、YはSb、As、Cu、Ag、Mg、Zn、Al、B、Ge、Sn、Pb、Ti、Zr、Cr、Re、Bi、W、Fe、Co、Ni、Ce、Thから選ばれる少なくとも一種の元素をそれぞれ表し、a〜fは、それぞれの元素の原子比を表し、aは0.1≦a≦6.0の正数、bは0.5≦b≦6.0の正数、cは0.1≦c≦10.0の正数、dは0.1≦d≦3.0の正数、eは0≦e≦3.0の正数をそれぞれ表す。)で表される活性成分組成を有する触媒組成物のスラリー乾燥体を、強度向上剤及び細孔形成剤と共に、水又は炭素数1〜4のアルコールをバインダーとし、球状担体上に被覆して、球状被覆触媒に成形し、100〜450℃で焼成することにより得られた上記(1)における工程(b)用メタクリル酸製造用酸化触媒。
(11) General formula (1)
Mo 10 V a P b (NH 4) c X d Y e O f (1)
(Wherein Mo is molybdenum, V is vanadium, P is phosphorus, (NH 4 ) is an ammonium group, X is at least one element selected from K, Rb, and Cs, Y is Sb, As, Cu, Ag, Mg) Represents at least one element selected from Zn, Al, B, Ge, Sn, Pb, Ti, Zr, Cr, Re, Bi, W, Fe, Co, Ni, Ce, Th, Represents the atomic ratio of each element, a is a positive number of 0.1 ≦ a ≦ 6.0, b is a positive number of 0.5 ≦ b ≦ 6.0, and c is 0.1 ≦ c ≦ 10.0. A positive number of 0.1 ≦ d ≦ 3.0, e represents a positive number of 0 ≦ e ≦ 3.0, and a slurry of a catalyst composition having an active component composition represented by: The dried product is combined with a strength improver and a pore forming agent, and water or an alcohol having 1 to 4 carbon atoms as a binder, Coated with, formed into spherical coated catalyst, 100 to 450 steps in the above (1) obtained by firing ° C. (b) for producing methacrylic acid oxidation catalyst.

(12) YはSb、As及びCuからなる群から選ばれる少なくとも2種の元素である請求項11に記載の工程(b)用メタクリル酸製造用触媒。
(13) YがAs及びCuからなる群から選ばれる少なくとも一種の元素である一般式(1)で表される活性成分組成を有する触媒組成物を成型し、次いで250〜400℃で焼成することにより得られた上記(11)又は(12)に記載の工程(b)用メタクリル酸製造用酸化触媒。
(14) 球状被覆触媒全体に対する活性成分の割合が10〜60質量%である上記(11)〜(13)に記載の工程(b)用メタクリル酸製造用酸化触媒。
(15) 細孔形成剤の割合が活性成分に対して1〜40質量%である上記(11)〜(14)に記載の工程(b)用メタクリル酸製造用酸化触媒。
(16) 工程(b)用の、触媒組成物を成型及び焼成することにより得られた触媒が、下記一般式(a’−1)
Mo10(NHc’dd (a’−1)
(式中,Moはモリブデン、Vはバナジウム、Pはリン、(NH)はアンモニウム基を、XはK、Rb、Csから選ばれる少なくとも一種の元素、YはSb、As、Cu、Ag、Mg、Zn、Al、B、Ge、Sn、Pb、Ti、Zr、Cr、Re、Bi、W、Fe、Co、Ni、Ce、Thから選ばれる少なくとも一種の元素をそれぞれ表し、a、b、c’、dd、g及びfは、それぞれの元素の原子比を表し、aは0.1≦a≦6.0の正数、bは0.5≦b≦6.0の正数、c’は0≦c’≦10の正数、ddは0≦dd≦3.0の正数、eは0≦e≦3.0の正数をそれぞれ表す。)
で表される活性成分組成を有する触媒である上記(1)に記載のメタクリル酸の製造方法。
(17) 触媒組成物の成型が、該組成物のスラリー乾燥体を、強度向上剤及び細孔形成剤と共に、水又は炭素数1〜4のアルコールをバインダーとし、球状担体上に被覆して、球状被覆触媒とするものである上記(16)に記載のメタクリル酸の製造方法。
(18) YがSb、As及びCuからなる群から選ばれる少なくとも2種の元素である上記(16)又は(17)に記載のメタクリル酸の製造方法。
(19) c’が0.01≦c’≦5の正数である上記(16)〜(18)に記載のメタクリル酸の製造方法。
(20) ddが0.1≦dd≦3.0の正数である上記(16)〜(19)の何れか1項に記載のメタクリル酸の製造方法。
(12) The catalyst for producing methacrylic acid for step (b) according to claim 11, wherein Y is at least two elements selected from the group consisting of Sb, As and Cu.
(13) Molding a catalyst composition having an active component composition represented by the general formula (1), wherein Y is at least one element selected from the group consisting of As and Cu, and then firing at 250 to 400 ° C. The oxidation catalyst for methacrylic acid production for the step (b) according to the above (11) or (12) obtained by the method.
(14) The oxidation catalyst for producing methacrylic acid for the step (b) according to the above (11) to (13), wherein the ratio of the active ingredient to the whole spherical coated catalyst is 10 to 60% by mass.
(15) The oxidation catalyst for producing methacrylic acid for the step (b) according to the above (11) to (14), wherein the ratio of the pore forming agent is 1 to 40% by mass with respect to the active ingredient.
(16) The catalyst obtained by molding and firing the catalyst composition for the step (b) is represented by the following general formula (a′-1)
Mo 10 V a P b (NH 4) c 'X dd Y e O f (a'-1)
(Wherein Mo is molybdenum, V is vanadium, P is phosphorus, (NH 4 ) is an ammonium group, X is at least one element selected from K, Rb, and Cs, Y is Sb, As, Cu, Ag, Each represents at least one element selected from Mg, Zn, Al, B, Ge, Sn, Pb, Ti, Zr, Cr, Re, Bi, W, Fe, Co, Ni, Ce, and Th; c ′, dd, g and f represent the atomic ratio of each element, a is a positive number of 0.1 ≦ a ≦ 6.0, b is a positive number of 0.5 ≦ b ≦ 6.0, c 'Represents a positive number of 0 ≦ c' ≦ 10, dd represents a positive number of 0 ≦ dd ≦ 3.0, and e represents a positive number of 0 ≦ e ≦ 3.0.)
The manufacturing method of methacrylic acid as described in said (1) which is a catalyst which has an active ingredient composition represented by these.
(17) The catalyst composition is formed by coating the dried slurry of the composition on a spherical carrier with water or an alcohol having 1 to 4 carbon atoms as a binder together with a strength improver and a pore-forming agent. The method for producing methacrylic acid according to the above (16), which is a spherical coating catalyst.
(18) The method for producing methacrylic acid according to the above (16) or (17), wherein Y is at least two elements selected from the group consisting of Sb, As and Cu.
(19) The method for producing methacrylic acid according to the above (16) to (18), wherein c ′ is a positive number of 0.01 ≦ c ′ ≦ 5.
(20) The method for producing methacrylic acid according to any one of (16) to (19), wherein dd is a positive number satisfying 0.1 ≦ dd ≦ 3.0.

本発明によれば、イソブチレンの直結二段接触気相酸化によるメタクリル酸の製造においても、イソブチレンの転化率を98モル%以上、特に99%以上という高い転化率にする必要がなく、最適な転化率での運転が可能であり、更に、高いイソブチレン転化率にする必要がないことから、第1段目(本発明における工程(a))の反応温度を下げることが可能であり、第1段目触媒への熱的負荷が小さく、第1段目触媒の寿命が延び、且つ、第2段目において、イソブチレン被毒に強い触媒を使用することから、長期の安定した運転が可能となる。また、前段反応を有効成分収率の高い範囲で運転することが可能となることから、イソブチレンに対するメタクリル酸の収率を高めることが可能である。   According to the present invention, even in the production of methacrylic acid by direct-coupled two-stage gas phase oxidation of isobutylene, the conversion of isobutylene does not need to be as high as 98 mol% or more, particularly 99% or more, and optimal conversion is achieved. The reaction temperature of the first stage (step (a) in the present invention) can be lowered because the isobutylene conversion is not required to be carried out at a high rate. Since the thermal load on the eye catalyst is small, the life of the first stage catalyst is extended, and a catalyst strong against isobutylene poisoning is used in the second stage, so that stable operation for a long period of time becomes possible. In addition, since it is possible to operate the pre-stage reaction in a range where the yield of active ingredients is high, it is possible to increase the yield of methacrylic acid with respect to isobutylene.

以下、本発明を詳細に説明する。本発明で対象とするのは、イソブチレンからメタクロレインを経由してメタクリル酸を製造するメタクリル酸製造方法であり、第1段目(工程(a))の酸化反応器と第2段目(工程(b))の酸化反応器の間に精製装置を設けない直結二段接触気相酸化によるメタクリル酸の製造方法である。
原料イソブチレンは、イソブチレンを直接用いても、また、ターシャリーブチルアルコールの脱水反応により生成したイソブチレンであってもよい。
本発明の直結二段接触気相酸化法によるメタクリル酸の製造方法においては、前段(工程(a))のイソブチレンの接触気相酸化反応を、イソブチレンの転化率(モル%:以下同じ)が95%以上で98%以下、より好ましくは96以上で、98%未満、更に好ましくは、97%以上で、98%未満となる条件で行うのが好ましい。また、メタクロレイン及びメタクリル酸の合計選択率(以下前段有効選択率ともいう)が、80%以上、より好ましくは84%以上となるように反応させるのが、メタクリル酸の最終収率を向上させる上で好ましい。上記合計選択率の上限は100%が最も好ましいが、実際は、95%以下、より普通には90%以下である。
前段工程(a)のイソブチレン転化率は、使用触媒、反応温度やガス流量などによって上記の範囲に調節することが出来る。これらは前段反応用触媒の性能及び前段反応器の形状を考慮して、適宜予備的試験を行うことにより、当業者は容易に決定することが出来る。
Hereinafter, the present invention will be described in detail. The object of the present invention is a methacrylic acid production method for producing methacrylic acid from isobutylene via methacrolein. The oxidation reactor in the first stage (step (a)) and the second stage (step) This is a method for producing methacrylic acid by directly coupled two-stage contact gas phase oxidation without providing a purification apparatus between the oxidation reactors of (b)).
The raw material isobutylene may be isobutylene directly used or may be isobutylene produced by a dehydration reaction of tertiary butyl alcohol.
In the method for producing methacrylic acid by the direct-coupled two-stage contact gas phase oxidation method of the present invention, the isobutylene catalytic gas phase oxidation reaction in the previous stage (step (a)) is conducted at a conversion rate of isobutylene (mol%: the same applies hereinafter) of 95. % Or more and 98% or less, more preferably 96 or more and less than 98%, still more preferably 97% or more and less than 98%. In addition, the final yield of methacrylic acid is improved by reacting so that the total selectivity of methacrolein and methacrylic acid (hereinafter also referred to as pre-stage effective selectivity) is 80% or more, more preferably 84% or more. Preferred above. The upper limit of the total selectivity is most preferably 100%, but in practice it is 95% or less, more usually 90% or less.
The isobutylene conversion rate in the preceding step (a) can be adjusted to the above range depending on the catalyst used, the reaction temperature, the gas flow rate, and the like. These can be easily determined by those skilled in the art by appropriately conducting preliminary tests in consideration of the performance of the pre-reaction catalyst and the shape of the pre-reactor.

工程(a)のイソブチレンの接触気相酸化に使用する触媒は、一般に、イソブチレンの接触気相酸化でのメタクロレインの製造用触媒として知られている触媒で、上記の性能を達成するものであればいずれも使用出来る。そのような触媒は一般に多く知られている。
例えば、最も一般的にはビスマス‐モリブデン含有複合酸化物触媒である。それらは、特開2007−61763、特開平10−216523、特開2009−114119等に開示された触媒を挙げることが出来る。好ましい触媒の一例としては、モリブデン、ビスマス及び鉄の3者、及びコバルト、ニッケル(Ni)、錫(Sn)、亜鉛(Zn)、タングステン(W)、クロム(Cr)、マンガン(Mn)、マグネシウム(Mg)、アンチモン(Sb)、セリウム(Ce)、チタン(Ti)からなる群から選択される少なくとも一種(好ましくはコバルト及びニッケルの何れか一種又は二種)、更に、アルカリ金属(好ましくはカリウム、ルビジウム、及びセシウムからなる群から選ばれる少なくとも一種)又はタリウムを含む複合酸化物触媒を挙げることが出来る。
The catalyst used for the catalytic gas phase oxidation of isobutylene in step (a) is generally a catalyst known as a catalyst for the production of methacrolein in the catalytic gas phase oxidation of isobutylene and achieves the above performance. Any can be used. Many such catalysts are generally known.
For example, it is most commonly a bismuth-molybdenum-containing composite oxide catalyst. Examples thereof include the catalysts disclosed in JP 2007-61763 A, JP 10-216523 A, JP 2009-114119 A, and the like. Examples of preferred catalysts include molybdenum, bismuth and iron, and cobalt, nickel (Ni), tin (Sn), zinc (Zn), tungsten (W), chromium (Cr), manganese (Mn), magnesium (Mg), antimony (Sb), cerium (Ce), at least one selected from the group consisting of titanium (Ti) (preferably one or two of cobalt and nickel), and an alkali metal (preferably potassium , At least one selected from the group consisting of rubidium and cesium) or composite oxide catalysts containing thallium.

該複合酸化触媒の一例としては、下記一般式(2)
Mo13 Biaa Febb Cocc XXd’ YYe’f’ (2)
(式中,Moはモリブデン、Biはビスマス、Feは鉄、Coはコバルト、 XXはアルカリ金属(好ましくはカリウム、ルビジウム及びセシウムから選ばれる少なくとも一種)又はタリウム、YYはニッケル(Ni)、錫(Sn)、亜鉛(Zn)、タングステン(W)、クロム(Cr)、マンガン(Mn)、マグネシウム(Mg)、アンチモン(Sb)、セリウム(Ce)、チタン(Ti)からなる群から選択される少なくとも一種の元素を表し、aa、bb、cc、d’、e’、f’は、それぞれの元素の原子比を表し、aaは0.1≦aa≦10の正数、bbは0.1≦bb≦10.0の正数、ccは1≦cc≦10.0の正数、d’は0.01≦d’≦2の正数、e’は0≦e’≦2.0の正数をそれぞれ表す、また、f’は焼成による各元素の酸化程度により決まる値を表す。)で表される複合酸化触媒を挙げることが出来る。XXとしてはセシウムがより好ましく、YYとしてはニッケルがより好ましい。
より好ましい触媒としては、上記式(2)において、XXがカリウム、ルビジウム及びセシウムから選ばれる少なくとも一種(好ましくはセシウム)であり、YYがニッケルである触媒である。
As an example of the composite oxidation catalyst, the following general formula (2)
Mo 13 Bi aa Fe bb Co cc XX d ′ YY e ′ Of ' (2)
(Wherein Mo is molybdenum, Bi is bismuth, Fe is iron, Co is cobalt, XX is an alkali metal (preferably at least one selected from potassium, rubidium and cesium) or thallium, YY is nickel (Ni), tin ( At least selected from the group consisting of Sn), zinc (Zn), tungsten (W), chromium (Cr), manganese (Mn), magnesium (Mg), antimony (Sb), cerium (Ce), and titanium (Ti). Aa, bb, cc, d ′, e ′, and f ′ represent the atomic ratio of each element, aa is a positive number of 0.1 ≦ aa ≦ 10, and bb is 0.1 ≦ bb ≦ 10.0 positive number, cc is 1 ≦ cc ≦ 10.0 positive number, d ′ is 0.01 ≦ d ′ ≦ 2 positive number, e ′ is 0 ≦ e ′ ≦ 2.0 positive number Each represents a number, and f ′ is the acid of each element by firing Represents a value determined by the degree.) Represented by may be mentioned composite oxide catalyst. As XX, cesium is more preferable, and as YY, nickel is more preferable.
As a more preferable catalyst, in the above formula (2), XX is at least one selected from potassium, rubidium and cesium (preferably cesium), and YY is nickel.

本発明の直結二段接触気相酸化によるメタクリル酸の製造方法の工程(b)で使用するメタクリル酸製造用触媒は、触媒の活性成分(モリブデン、リン、バナジウム、及び、アンモニア、カリウム、ルビジウム及びセシウムから選ばれる少なくとも一種の元素)の一種又は二種以上を含有する化合物を、全ての活性成分が含まれるように、含む水溶液または該化合物の水分散体(以下、両者をあわせてスラリーという)を乾燥し、得られた乾燥粉末を成型、焼成することにより得ることが出来る。
本発明において使用する触媒は上記の活性成分(モリブデン、リン、バナジウム、及び、アンモニア、カリウム、ルビジウム及びセシウムから選ばれる少なくとも一種の元素)以外に、活性成分としては、アンチモン、砒素、銅、銀、マグネシウム、亜鉛、アルミニウム、硼素、ゲルマニウム、錫、鉛、チタン、ジルコニウム、クロム、レニウム、ビスマス、タングステン、鉄、コバルト、ニッケル、セリウム、トリウムから選ばれる少なくとも一種の元素を任意成分として含んでもよい。
The catalyst for producing methacrylic acid used in the step (b) of the method for producing methacrylic acid by direct-coupled two-stage contact gas phase oxidation of the present invention comprises catalyst active components (molybdenum, phosphorus, vanadium, ammonia, potassium, rubidium and An aqueous solution containing a compound containing one or more of at least one element selected from cesium) or an aqueous dispersion of the compound so that all active ingredients are contained (hereinafter, both are referred to as a slurry) Can be obtained by molding and baking the obtained dry powder.
In addition to the above active components (molybdenum, phosphorus, vanadium, and at least one element selected from ammonia, potassium, rubidium and cesium), the catalyst used in the present invention includes antimony, arsenic, copper, silver , Magnesium, zinc, aluminum, boron, germanium, tin, lead, titanium, zirconium, chromium, rhenium, bismuth, tungsten, iron, cobalt, nickel, cerium, thorium may be included as an optional component .

本発明の工程(b)で使用する好ましい触媒の焼成前の、酸素を除く活性成分元素の組成は、原料化合物の添加割合から、下記一般式(a−1)で表すことができる。
Mo10(NHdd (a−1)
(式中の、一般式(1)と同じ記号は、何れも、一般式(1)と同じ意味を表し、ddは0≦d≦3.0を表す。)
上記触媒において、XとしてはCsがより好ましく、YとしてはSb、As及びCuからなる群から選ばれる少なくとも2種の元素がより好ましい。また、場合により、上記式(a−1)において、YがAs及びCuの2種である触媒も好ましい。
後段工程(b)で使用する触媒は、スラリー調製時に、アンモニウム基含有化合物を添加して、スラリーを調製し、前記式(a−1)で表される組成とするのが好ましい。従って、この元素組成を有する乾燥組成物を、成形、焼成して得られた触媒は、本発明の後段工程(b)で使用する触媒として好ましい。
この焼成後の触媒組成は、下記一般式(a’−1)
Mo10(NHc’dd (a’−1)
(式中,c’は0≦c’≦10の正数を表し、fは焼成による各元素の酸化程度により決まる値を表し、他の記号は、上記一般式(a−1)と同じ意味を表す)
で表すことができる。
上記式において好ましいc’は0.01≦c’≦5の正数であり、好ましいddは0.1≦d≦3.0の正数である。
また、焼成温度を400℃以下にして、焼成後の触媒中にアンモニウム成分が含まれるようにした触媒は、より好ましい。
The composition of the active component element excluding oxygen before firing of the preferred catalyst used in the step (b) of the present invention can be represented by the following general formula (a-1) from the addition ratio of the raw material compounds.
Mo 10 V a P b (NH 4) c X dd Y e (a-1)
(In the formula, the same symbols as in general formula (1) all have the same meaning as in general formula (1), and dd represents 0 ≦ d ≦ 3.0.)
In the above catalyst, X is more preferably Cs, and Y is more preferably at least two elements selected from the group consisting of Sb, As and Cu. In some cases, a catalyst in which Y is two types of As and Cu in the formula (a-1) is also preferable.
The catalyst used in the subsequent step (b) is preferably prepared by adding an ammonium group-containing compound during slurry preparation to prepare a slurry and having a composition represented by the formula (a-1). Therefore, a catalyst obtained by molding and calcining a dry composition having this elemental composition is preferable as a catalyst used in the subsequent step (b) of the present invention.
The catalyst composition after calcination has the following general formula (a′-1)
Mo 10 V a P b (NH 4) c 'X dd Y e O f (a'-1)
(Where c ′ represents a positive number of 0 ≦ c ′ ≦ 10, f represents a value determined by the degree of oxidation of each element by firing, and the other symbols have the same meaning as in the general formula (a-1)). Represents
Can be expressed as
In the above formula, preferable c ′ is a positive number of 0.01 ≦ c ′ ≦ 5, and preferable dd is a positive number of 0.1 ≦ d ≦ 3.0.
Further, a catalyst in which the calcination temperature is set to 400 ° C. or lower so that an ammonium component is contained in the baked catalyst is more preferable.

本発明の工程(b)で使用する触媒のより好ましい態様一つは、活性成分含有化合物の添加割合から、焼成後の触媒組成を表すと、一般式(1)
Mo10(NH (1)
(式中Moはモリブデン、Vはバナジウム、Pはリン、(NH)はアンモニウム基を、XはK、Rb、Csから選ばれる少なくとも一種の元素、YはSb、As、Cu、Ag、Mg、Zn、Al、B、Ge、Sn、Pb、Ti、Zr、Cr、Re、Bi、W、Fe、Co、Ni、Ce、Thから選ばれる少なくとも一種の元素をそれぞれ表し、a〜hは、それぞれの元素の原子比を表し、aは0.1≦a≦6.0、好ましくは0.3≦a≦2.0、bは0.5≦b≦6.0、好ましくは0.7≦b≦2.0、cは0.1≦c≦10.0、好ましくは0.5≦c≦5.0、dは0.1≦d≦3.0、好ましくは0.4≦d≦1.5、eは0≦e≦3.0、好ましくは0.01≦e≦0.5、fは焼成後の酸化状態により決まる値である)
で表される。
One of the more preferable embodiments of the catalyst used in the step (b) of the present invention is represented by the general formula (1) when the catalyst composition after calcination is expressed from the addition ratio of the active ingredient-containing compound.
Mo 10 V a P b (NH 4) c X d Y e O f (1)
(Wherein Mo is molybdenum, V is vanadium, P is phosphorus, (NH 4 ) is an ammonium group, X is at least one element selected from K, Rb, and Cs, Y is Sb, As, Cu, Ag, Mg) Represents at least one element selected from Zn, Al, B, Ge, Sn, Pb, Ti, Zr, Cr, Re, Bi, W, Fe, Co, Ni, Ce, Th, Represents the atomic ratio of each element, a is 0.1 ≦ a ≦ 6.0, preferably 0.3 ≦ a ≦ 2.0, and b is 0.5 ≦ b ≦ 6.0, preferably 0.7 ≦ b ≦ 2.0, c is 0.1 ≦ c ≦ 10.0, preferably 0.5 ≦ c ≦ 5.0, d is 0.1 ≦ d ≦ 3.0, preferably 0.4 ≦ d ≦ 1.5, e is 0 ≦ e ≦ 3.0, preferably 0.01 ≦ e ≦ 0.5, f is a value determined by the oxidized state after firing)
It is represented by

しかし、触媒を焼成した際に、アンモニウム成分は、300〜400℃程度の高温での焼成ではかなり失われ、420℃を超える焼成においては、ほぼ完全に失われることが知られている(特開平4−63139)ので、実際の焼成後の触媒でのアンモニウム成分の量は、焼成条件により、上記式(1)におけるcは0〜10の範囲となる。焼成後の好ましいcの値は痕跡(0.001)程度から、5程度までであり、最も好ましくは0.01〜1程度と考えられる。
従って、上記より好ましい態様における焼成後の組成は、下記一般式(1’)
Mo10(NHc’ (1’)
(式中、c’は0≦c’≦10の正数を表し、他の記号は、上記一般式(1)と同じ意味を表す)
で表される元素組成を有し、c’が0.01〜5の時より好ましく、0.01〜1の時、更に好ましい。
上記式(1)及び(1’)の触媒において、XとしてはCsがより好ましく、YとしてはSb、As及びCuからなる群から選ばれる少なくとも2種の元素がより好ましい。また、場合により、上記式(a−1)において、YがAs及びCuの2種である触媒も好ましい。
However, it is known that when the catalyst is calcined, the ammonium component is considerably lost when calcined at a high temperature of about 300 to 400 ° C. and almost completely lost when calcined at a temperature exceeding 420 ° C. 4-63139), the amount of the ammonium component in the catalyst after the actual firing is in the range of 0 to 10 in the above formula (1) depending on the firing conditions. A preferable value of c after firing is from about a trace (0.001) to about 5, and most preferably about 0.01 to 1.
Therefore, the composition after firing in the more preferred embodiment has the following general formula (1 ′).
Mo 10 V a P b (NH 4) c 'X d Y e O f (1')
(In the formula, c ′ represents a positive number of 0 ≦ c ′ ≦ 10, and other symbols represent the same meaning as in the general formula (1)).
It is more preferable when c ′ is 0.01 to 5 and more preferable when c ′ is 0.01 to 1.
In the catalysts of the above formulas (1) and (1 ′), X is more preferably Cs, and Y is more preferably at least two elements selected from the group consisting of Sb, As and Cu. In some cases, a catalyst in which Y is two types of As and Cu in the formula (a-1) is also preferable.

上記何れの式で表される触媒においても、スラリーの乾燥粉体を成形した後、焼成して、本発明の工程(b)で使用する触媒とされる。成形は触媒として使用出来る形態であれば何れでも良い。好ましい形態としては、粒状単体を、スラリーの乾燥粉体で被覆して得られる被覆触媒が好ましい。
また、上記の被覆の際に、後記するバインダーを使用するのが好ましい。
更に、触媒の強度向上剤及び細孔形成剤を配合して得られる被覆触媒は、本発明の工程(b)用触媒として、更に好ましい。特に、細孔形成剤を使用した触媒は、未反応イソブチレンでの被毒を受けにくく、直結二段接触気相酸化によるメタクリル酸の製造に適しており、メタクリル酸の収率向上、及び、触媒寿命の延長に好ましい。
本発明の工程(b)で使用する触媒は、上記の条件を満たす触媒であれば、未反応イソブチレンの存在下においても、被毒が少なく、前段工程(a)を前記した最適条件下において、反応させても、未反応イソブチレン被毒によるメタクロレインの転化率の低下が少なく、メタクリル酸の収率向上を図ることが出来る。
上記のような特定の酸化触媒を、工程(b)で使用すると、他の触媒を使用した場合に比して、未反応イソブチレンでの被毒による、メタクロレイン転化率の低下が少なく、メタクリル酸の収量を多くできると共に、被毒による触媒寿命の短命化が少なくて済むことから、触媒寿命を長くすることが出来る。
In any catalyst represented by any of the above formulas, a slurry dry powder is formed and then calcined to provide a catalyst for use in the step (b) of the present invention. Molding may be in any form that can be used as a catalyst. As a preferred form, a coated catalyst obtained by coating a granular simple substance with a slurry dry powder is preferred.
Moreover, it is preferable to use the binder mentioned later in the above coating.
Furthermore, a coated catalyst obtained by blending a catalyst strength improver and a pore forming agent is more preferred as the catalyst for step (b) of the present invention. In particular, a catalyst using a pore-forming agent is less susceptible to poisoning with unreacted isobutylene and is suitable for the production of methacrylic acid by direct-coupled two-stage contact gas phase oxidation, and improves the yield of methacrylic acid, and the catalyst It is preferable for extending the life.
If the catalyst used in the step (b) of the present invention is a catalyst that satisfies the above conditions, it is less poisoned even in the presence of unreacted isobutylene, and the preceding step (a) is performed under the optimum conditions described above. Even if the reaction is carried out, the reduction in methacrolein conversion due to unreacted isobutylene poisoning is small, and the yield of methacrylic acid can be improved.
When the specific oxidation catalyst as described above is used in step (b), the reduction in methacrolein conversion rate due to poisoning with unreacted isobutylene is less than when other catalysts are used. The yield of the catalyst can be increased and the catalyst life due to poisoning can be reduced, so that the catalyst life can be extended.

例えば、未反応イソブチレンの存在による悪影響(被毒とも言う)を、
(1)前段工程(a)をイソブチレン転化率を99%より高い転化率で反応させた、未反応イソブチレンがほとんど存在しない状態の反応生成ガスと、
(2)前段工程(a)をイソブチレン転化率を96%より高く、98未満の転化率で反応させた、未反応イソブチレンが2%より多く、4%未満である反応生成ガスを用いて、その他の条件を全く同一として、直結二段接触気相酸化反応行い、両者のメタクロレイン転化率及びメタクリル酸の選択率の違いを見た結果、下記の事実が判明した。
1.上記工程(b)用酸化触媒を用いても、最も好ましい実施例2を除き、実施例1,3〜4では、未反応イソブチレンの存在する反応生成ガスを用いた場合は、未反応イソブチレンの存在しない反応生成ガスを用いた場合に比して、メタクリル酸の選択率は多少上がっているが、何れもメタクロレイン転化率はそれ以上に低下している。
即ち、未反応イソブチレンが2%より多く3%より少ない量で存在する反応生成ガスを用いた場合、メタクロレイン転化率は8〜12%低下し、メタクリル酸の選択率の1〜2%の上昇では、到底補い得ない、低下である。更に、未反応イソブチレンの多い方が、メタクロレイン転化率の低下が大きい。未反応イソブチレンが3%より多く4%より少ない量で存在する反応生成ガスを用いた場合、メタクロレイン転化率は19〜23%低下し、メタクリル酸の選択率の4〜8%の上昇では、到底補い得ない、低下である。
For example, adverse effects (also called poisoning) due to the presence of unreacted isobutylene,
(1) a reaction product gas in a state where there is almost no unreacted isobutylene obtained by reacting the preceding step (a) at a conversion rate of isobutylene higher than 99%;
(2) The reaction of the preceding step (a) with an isobutylene conversion rate higher than 96% and a conversion rate lower than 98, using a reaction product gas containing more than 2% unreacted isobutylene and less than 4%, As a result of conducting a direct-coupled two-stage contact gas phase oxidation reaction under the same conditions, and examining the difference in the methacrolein conversion rate and the selectivity of methacrylic acid, the following facts were found.
1. Even when the oxidation catalyst for the above step (b) is used, except for the most preferable Example 2, in Examples 1 and 3 to 4, when a reaction product gas containing unreacted isobutylene is used, the presence of unreacted isobutylene Although the selectivity of methacrylic acid is slightly increased as compared with the case where the reaction product gas is not used, the methacrolein conversion rate is further decreased.
That is, when a reaction product gas in which unreacted isobutylene is present in an amount of more than 2% and less than 3% is used, the methacrolein conversion is reduced by 8 to 12% and the selectivity of methacrylic acid is increased by 1 to 2% Then, it is a decrease that cannot be compensated for. Furthermore, the more unreacted isobutylene, the greater the reduction in methacrolein conversion. When a reaction product gas in which unreacted isobutylene is present in an amount of more than 3% and less than 4% is used, the methacrolein conversion is reduced by 19 to 23%, and the selectivity of methacrylic acid is increased by 4 to 8%. This is a decline that cannot be compensated for.

このように、本発明で使用する特定な触媒を用いても、未反応イソブチレンの悪影響(被毒)を避けることができないが、一応、その転化率の低下が、25%以内である点で、評価することが出来る。一方、実施例4の触媒は、実施例1及び3の触媒が、その低下率は19%程度と、20%以内にとどまっているのに対して23%と、20%を超えて低下していることから、本発明の他の触媒に比して、未反応イソブチレンの悪影響(被毒)を受けやすいことが判明した。即ち、本発明の上記工程(b)で使用する触媒においても、アンモニウム成分を、触媒調製時に用いていない触媒は、アンモニウム成分を用いた触媒に比して、被毒し易いと考えられる。
なお本発明中に記載されている触媒活性成分の原子比は、特に断りの無い限り、原料仕込み量から算出されたものである。また、一般式(1)における酸素のfは焼成条件等により、自然に決まる値である。
Thus, even if the specific catalyst used in the present invention is used, the adverse effect (poisoning) of unreacted isobutylene cannot be avoided. However, in the meantime, the reduction in the conversion rate is within 25%. Can be evaluated. On the other hand, in the catalyst of Example 4, the rate of decrease of the catalyst of Examples 1 and 3 was about 19%, staying within 20%, whereas it decreased to 23%, exceeding 20%. Therefore, it was found that the unreacted isobutylene is susceptible to adverse effects (poisoning) as compared with other catalysts of the present invention. That is, even in the catalyst used in the step (b) of the present invention, a catalyst that does not use an ammonium component during catalyst preparation is considered to be more poisonous than a catalyst that uses an ammonium component.
The atomic ratio of the catalytically active component described in the present invention is calculated from the raw material charge unless otherwise specified. Further, f of oxygen in the general formula (1) is a value that is naturally determined depending on the firing conditions and the like.

以降、上記の工程に従って実施形態を説明する。これらは、前記の工程(b)用の触媒全てに共通である。
工程1:スラリーの調製
本発明において、触媒調製用に用いられる活性成分含有化合物としては、活性成分元素の塩化物、硫酸塩、硝酸塩、酸化物又は酢酸塩等が挙げられる。好ましい化合物をより具体的に例示すると硝酸カリウム又は硝酸コバルト等の硝酸塩、酸化モリブデン、五酸化バナジウム、三酸化アンチモン、酸化セリウム、酸化亜鉛又は酸化ゲルマニウム等の酸化物、酢酸セシウム、酢酸アンモニウム等の酢酸塩、水酸化セシウム、水酸化アンモニウム等の水酸化物、正リン酸、リン酸、硼酸、リン酸アルミニウム又は12タングストリン酸等の酸(又はその塩)等が挙げられる。これら活性成分を含む化合物は単独で使用してもよいし、2種以上を混合して使用してもよい。スラリーは、各活性成分含有化合物と水とを均一に混合して得ることができる。スラリーを調製する際の活性成分含有化合物の添加順序は、モリブデン、バナジウム、リン及び必要により他の金属元素を含有する化合物を十分に溶解し、その後、カリウム、ルビジウム及びセシウムからなる群から選ばれる少なくとも一種の元素を含む化合物及びアンモニウム化合物をスラリーに添加する方が好ましい。この場合の必須活性成分以外の金属化合物として例えば、銅化合物としては酢酸銅(酢酸第一銅、酢酸第二銅、又は塩基性酢酸銅等、好ましくは酢酸第二銅)または酸化銅(酸化第一銅、酸化第二銅)を使用すると好ましい効果を奏する場合がある。
アンモニウム成分のためには、アンモニウム基を有する化合物であればよいが、水酸化アンモニウム、酢酸アンモニウム等が好ましく、酢酸アンモニウムが最も好ましい。
Hereinafter, embodiments will be described according to the above-described steps. These are common to all the catalysts for the step (b).
Step 1: Preparation of Slurry In the present invention, the active ingredient-containing compound used for catalyst preparation includes chloride, sulfate, nitrate, oxide or acetate of the active ingredient element. Specific examples of preferred compounds include nitrates such as potassium nitrate and cobalt nitrate, oxides such as molybdenum oxide, vanadium pentoxide, antimony trioxide, cerium oxide, zinc oxide and germanium oxide, and acetates such as cesium acetate and ammonium acetate. , Hydroxides such as cesium hydroxide and ammonium hydroxide, and acids (or salts thereof) such as orthophosphoric acid, phosphoric acid, boric acid, aluminum phosphate or 12 tungstophosphoric acid. The compounds containing these active ingredients may be used alone or in combination of two or more. The slurry can be obtained by uniformly mixing each active ingredient-containing compound and water. The order of addition of the active ingredient-containing compound in preparing the slurry is selected from the group consisting of potassium, rubidium and cesium after sufficiently dissolving the compound containing molybdenum, vanadium, phosphorus and other metal elements as required. It is preferable to add a compound containing at least one element and an ammonium compound to the slurry. As a metal compound other than the essential active component in this case, for example, as a copper compound, copper acetate (cuprous acetate, cupric acetate, basic copper acetate, etc., preferably cupric acetate) or copper oxide (oxidized oxide) When using cuprous, cupric oxide), a preferable effect may be obtained.
For the ammonium component, any compound having an ammonium group may be used, but ammonium hydroxide, ammonium acetate and the like are preferable, and ammonium acetate is most preferable.

スラリーを調製する際の温度は、モリブデン、リン、バナジウム及び必要により他の金属元素を含有する化合物を充分溶解できる温度まで加熱することが好ましい。カリウム、ルビジウム及びセシウムからなる群から選ばれる少なくとも一種の元素を含む化合物及びアンモニウム化合物を添加する際の温度は、通常0〜35℃、好ましくは10〜30℃程度の範囲が好ましい。この場合、得られる触媒が高活性になる傾向がある。スラリーにおける水の使用量は、用いる化合物の全量を完全に溶解できるか、または均一に混合できる量であれば特に制限はない。 乾燥方法や乾燥条件等を勘案して、水の使用量を適宜決定すれば良い。通常、スラリー調製用化合物の合計質量100質量部に対して、200〜2000質量部程度である。水の量は多くてもよいが、多過ぎると乾燥工程のエネルギーコストが高くなり、又完全に乾燥できない場合も生ずるなどデメリットが多い。   The temperature at which the slurry is prepared is preferably heated to a temperature at which molybdenum, phosphorus, vanadium and, if necessary, a compound containing another metal element can be sufficiently dissolved. The temperature when adding the compound containing at least one element selected from the group consisting of potassium, rubidium and cesium and the ammonium compound is usually in the range of 0 to 35 ° C, preferably about 10 to 30 ° C. In this case, the resulting catalyst tends to be highly active. The amount of water used in the slurry is not particularly limited as long as the total amount of the compound used can be completely dissolved or mixed uniformly. The amount of water used may be appropriately determined in consideration of the drying method and drying conditions. Usually, it is about 200-2000 mass parts with respect to 100 mass parts of total mass of the compound for slurry preparation. The amount of water may be large, but if it is too large, the energy cost of the drying process becomes high, and there are many disadvantages such as the case where it cannot be completely dried.

工程2:乾燥
次いで上記で得られたスラリーを乾燥し、乾燥粉体(複合酸化物)とする。乾燥方法は、スラリーが完全に乾燥できる方法であれば特に制限はないが、例えばドラム乾燥、凍結乾燥、噴霧乾燥、蒸発乾固などが挙げられる。これらのうち本発明においては、スラリー状態から短時間に粉末又は顆粒に乾燥することができる噴霧乾燥が特に好ましい。
噴霧乾燥の乾燥温度はスラリーの濃度、送液速度等によって異なるが、概ね乾燥機の出口における温度が70〜150℃である。また、この際得られるスラリー乾燥体の平均粒径が30〜700μmとなるように乾燥するのが好ましい。
Step 2: Drying Next, the slurry obtained above is dried to obtain a dry powder (composite oxide). The drying method is not particularly limited as long as the slurry can be completely dried. Examples thereof include drum drying, freeze drying, spray drying, and evaporation to dryness. Among these, in the present invention, spray drying which can be dried from a slurry state into powder or granules in a short time is particularly preferable.
The drying temperature of spray drying varies depending on the slurry concentration, the liquid feeding speed, etc., but the temperature at the outlet of the dryer is generally 70 to 150 ° C. Moreover, it is preferable to dry so that the average particle diameter of the slurry dry body obtained in this case may be 30-700 micrometers.

工程3:成型
工程2で得られた乾燥粉体(活性成分粉体)は、酸化反応において反応ガスの圧力損失を小さくするために、柱状物、錠剤、リング状、球状等に成型し使用する。このうち選択性の向上や反応熱の除去が期待できることから、不活性担体にこれらを被覆し、被覆触媒とするのが特に好ましい。
この被覆工程は以下に述べる転動造粒法が好ましい。この方法は、例えば固定容器内の底部に、平らなあるいは凹凸のある円盤を有する装置中で、円盤を高速で回転することにより、容器内の担体を自転運動と公転運動の繰返しにより激しく撹拌させ、ここにバインダーと乾燥粉体並びにこれらに、必要により、他の添加剤例えば成型助剤、強度向上剤及び細孔形成剤を添加した被覆用混合物を担体に被覆する方法である。バインダーの添加方法は、1)前記被覆用混合物に予め混合しておく、2)被覆用混合物を固定容器内に添加するのと同時に添加、3)被覆用混合物を固定容器内に添加した後に添加、4)被覆用混合物を固定容器内に添加する前に添加、5)被覆用混合物とバインダーをそれぞれ分割し、2)〜4)を適宜組み合わせて全量添加する等の方法が任意に採用しうる。このうち5)においては、例えば被覆用混合物の固定容器壁への付着、被覆用混合物同士の凝集がなく担体上に所定量が担持されるようオートフィーダー等を用いて添加速度を調節して行うのが好ましい。
バインダーは水及び1気圧下での沸点が150℃以下の有機化合物からなる群から選ばれる少なくとも1種であれば特に制限はない。水以外のバインダーの具体例としてはメタノール、エタノール、プロパノール類、ブタノール類等のアルコール、好ましくは炭素数1〜4のアルコール、エチルエーテル、ブチルエーテル又はジオキサン等のエーテル、酢酸エチル又は酢酸ブチル等のエステル、アセトン又はメチルエチルケトン等のケトン等並びにそれらの水溶液が挙げられ、特にエタノールが好ましい。バインダーとしてエタノールを使用する場合、エタノール/水=10/0〜0/10(質量比)、好ましくは水と混合し9/1〜1/9(質量比)とすることが好ましい。これらバインダーの使用量は、被覆用混合物100質量部に対して通常2〜60質量部、好ましくは10〜50質量部である。
Step 3: Molding The dry powder (active ingredient powder) obtained in Step 2 is used after being molded into a columnar shape, tablet, ring shape, spherical shape, etc., in order to reduce the pressure loss of the reaction gas in the oxidation reaction. . Of these, it is particularly preferable to coat an inert carrier to form a coated catalyst, since selectivity can be improved and reaction heat can be removed.
This coating step is preferably the rolling granulation method described below. In this method, for example, in a device having a flat or uneven disk at the bottom in a fixed container, the support in the container is vigorously stirred by repeated rotation and revolution movements by rotating the disk at high speed. In this method, the carrier is coated with a binder, a dry powder, and a coating mixture to which other additives such as a molding aid, a strength improver, and a pore-forming agent are added if necessary. The method of adding the binder is as follows: 1) Preliminarily mix with the coating mixture 2) Add at the same time as adding the coating mixture into the fixed container 3) Add after adding the coating mixture into the fixed container 4) Addition of the coating mixture before it is added to the fixed container, 5) Dividing the coating mixture and the binder, respectively, and combining 2) to 4) as appropriate, and adding the total amount, etc. can be arbitrarily adopted. . Of these, in 5), for example, the coating rate is adjusted by using an auto feeder or the like so that a predetermined amount is supported on the carrier without adhesion of the coating mixture to the fixed container wall and aggregation of the coating mixture. Is preferred.
The binder is not particularly limited as long as it is at least one selected from the group consisting of water and an organic compound having a boiling point of 150 ° C. or less at 1 atm. Specific examples of binders other than water include alcohols such as methanol, ethanol, propanols and butanols, preferably alcohols having 1 to 4 carbon atoms, ethers such as ethyl ether, butyl ether or dioxane, and esters such as ethyl acetate or butyl acetate. , Ketones such as acetone or methyl ethyl ketone, and aqueous solutions thereof, and ethanol is particularly preferable. When ethanol is used as the binder, ethanol / water = 10/0 to 0/10 (mass ratio), preferably 9/1 to 1/9 (mass ratio) by mixing with water. The usage-amount of these binders is 2-60 mass parts normally with respect to 100 mass parts of coating mixtures, Preferably it is 10-50 mass parts.

上記被覆触媒における担体の具体例としては、炭化珪素、アルミナ、シリカアルミナ、ムライト、アランダム等の直径1〜15mm、好ましくは2.5〜10mmの球形担体等が挙げられる。これら担体は通常は10〜70%の空孔率を有するものが用いられる。担体と被覆用混合物の割合は通常、被覆用混合物/(被覆用混合物+担体)=10〜75質量%、好ましくは15〜60質量%となる量使用する。
被覆用混合物の割合が大きい場合、被覆触媒の反応活性は大きくなるが、機械的強度が小さくなる傾向にある。逆に、被覆用混合物の割合が小さい場合、機械的強度は大きいが、反応活性は小さくなる傾向がある。
なお、前記において必要により使用する成型助剤としては、シリカゲル、珪藻土、アルミナ粉末等が挙げられる。成型助剤の使用量は、乾燥粉体100質量部に対して通常1〜60質量部である。
また、更に必要により触媒活性成分及び反応ガスに対して不活性な無機繊維(例えば、セラミックス繊維又はウイスカー等)を強度向上剤として用いることは、触媒の機械的強度の向上に有用であり、好ましい。これら繊維の使用量は、乾燥粉体100質量部に対して通常1〜30質量部である。
また、前記において必要により使用する細孔形成剤としては、小麦粉、精製デンプンやセルロース等の有機高分子化合物が挙げられ、好ましくは分解点もしくは転移点が430℃未満のものを使用する。更に好ましくは小麦粉又は精製デンプン等デンプン類であり、最も好ましくは小麦粉である。細孔形成剤の使用量は、前記乾燥粉体(活性成分粉体)100質量部に対して通常1〜40質量部、好ましくは1〜30質量部である。
細孔形成剤を加えて焼成した触媒は、前記した何れの触媒であっても、未反応イソブチレンの残存下においても、悪影響を受けにくくなることから、細孔形成剤の添加は好ましい。
このようにして乾燥粉体を担体に被覆するが、この際得られる被覆品は通常直径が3〜15mm程度である。
Specific examples of the carrier in the coated catalyst include a spherical carrier having a diameter of 1 to 15 mm, preferably 2.5 to 10 mm, such as silicon carbide, alumina, silica alumina, mullite and alundum. These carriers are usually those having a porosity of 10 to 70%. The ratio of the carrier to the coating mixture is usually used in such an amount that the coating mixture / (coating mixture + carrier) = 10 to 75% by mass, preferably 15 to 60% by mass.
When the ratio of the coating mixture is large, the reaction activity of the coated catalyst increases, but the mechanical strength tends to decrease. On the contrary, when the ratio of the coating mixture is small, the mechanical strength is large, but the reaction activity tends to be small.
In addition, silica gel, diatomaceous earth, an alumina powder etc. are mentioned as a shaping | molding adjuvant used as needed in the above. The usage-amount of a shaping | molding adjuvant is 1-60 mass parts normally with respect to 100 mass parts of dry powder.
Further, if necessary, the use of inorganic fibers (for example, ceramic fibers or whiskers) inert to the catalytically active component and the reaction gas as a strength improver is useful for improving the mechanical strength of the catalyst, and is preferable. . The amount of these fibers used is usually 1 to 30 parts by mass with respect to 100 parts by mass of the dry powder.
Examples of the pore-forming agent used as necessary in the above include organic polymer compounds such as wheat flour, purified starch, and cellulose, and those having a decomposition point or a transition point of less than 430 ° C. are preferably used. More preferred are wheat flour and starches such as purified starch, and most preferred is wheat flour. The amount of the pore forming agent used is usually 1 to 40 parts by mass, preferably 1 to 30 parts by mass with respect to 100 parts by mass of the dry powder (active ingredient powder).
The catalyst calcined with the pore-forming agent added is preferably any of the above-mentioned catalysts because it is less susceptible to adverse effects even in the presence of unreacted isobutylene.
In this way, the dry powder is coated on the carrier, and the coated product obtained at this time usually has a diameter of about 3 to 15 mm.

工程4:焼成
前記のようにして得られた被覆触媒はそのまま触媒として接触気相酸化反応に供することができるが、焼成すると触媒活性が向上する場合があり好ましい。この場合の焼成温度は通常100〜450℃、好ましくは250〜420℃、より好ましくはアンモニウム成分を残存させるため、250〜400℃未満であり、更に好ましくは300〜400℃未満である。焼成時間は1〜20時間である。
上記のようにして得られた被覆触媒全体に対する、活性成分の割合は、10〜60質量%である。
Step 4: Calcination The coated catalyst obtained as described above can be directly used for the catalytic gas phase oxidation reaction as a catalyst, but calcination is preferred because the catalyst activity may be improved. The firing temperature in this case is usually 100 to 450 ° C., preferably 250 to 420 ° C., more preferably 250 to less than 400 ° C., more preferably 300 to less than 400 ° C. in order to leave the ammonium component. The firing time is 1 to 20 hours.
The ratio of the active component to the entire coated catalyst obtained as described above is 10 to 60% by mass.

以下、本発明の直結二段接触気相反応によるメタクリル酸の製造法について説明する。
本発明の直結二段接触気相反応によるメタクリル酸の製造方法においては、前段(工程(a))の反応器に、イソブチレンをメタクロレインに酸化する酸化触媒を充填し、それと直結した、後段(工程(b))の反応器に、後段用の前記触媒を充填し、イソブチレン、酸素及び希釈ガスの混合ガスを、前段の反応器に供給して、前段の酸化反応及び後段の酸化反応を行うことにより、目的のメタクリル酸を製造することが出来る。
上記酸素としては、純酸素ガス、及び空気等の酸素を含むガスが挙げられる。また、上記希釈ガスの例としては、窒素、二酸化炭素、水蒸気及びこれらの混合ガス等が挙げられる。
前段の接触気相酸化反応は、イソブチレン、酸素及び希釈ガスの混合ガス、例えば、イソブチレン:酸素:水蒸気:窒素をモル比で、イソブチレン1:酸素2−5:水蒸気1:窒素10−20からなる混合ガスを、前段反応器に供給し、前段反応浴温度200℃〜450℃で、前記した、イソブチレン転化率95〜98%となるように、調製して反応させる。この場合好ましくは前段有効選択率が80%以上になるよう反応させるのが好ましい。原料ガスの供給速度は、通常空間速度400〜4000/hr[常温常圧(NTP)条件下]で供給し、上記イソブチレン転化率を維持すればよい。次いで、反応生成ガスは、そのまま後段の反応器に供給される。該反応生成ガスは、2%〜5%の未反応イソブチレンを含む。
後段の酸化反応は、反応浴温度200〜450℃、好ましくは250〜400℃、更に好ましくは、260℃〜360℃程度である。メタクロレインの転化率が50%以上で85%以下、好ましくは60%以上85%以下、更に好ましくは70%以上85%以下程度で反応させるのが好ましい。
また、上記前段及び後段における接触気相酸化反応は加圧下または減圧下でも可能ではあるが、一般的には大気圧付近の圧力が適している。
Hereafter, the manufacturing method of methacrylic acid by the direct connection two-stage contact gas phase reaction of this invention is demonstrated.
In the method for producing methacrylic acid by the direct-coupled two-stage contact gas phase reaction of the present invention, the reactor in the former stage (step (a)) is charged with an oxidation catalyst for oxidizing isobutylene to methacrolein, and the latter stage ( The reactor of the step (b)) is filled with the catalyst for the latter stage, and a mixed gas of isobutylene, oxygen and a dilution gas is supplied to the reactor of the former stage, and the preceding oxidation reaction and the latter stage oxidation reaction are performed. Thus, the desired methacrylic acid can be produced.
Examples of the oxygen include pure oxygen gas and gas containing oxygen such as air. Examples of the dilution gas include nitrogen, carbon dioxide, water vapor, and a mixed gas thereof.
The preceding catalytic gas phase oxidation reaction comprises a mixed gas of isobutylene, oxygen and diluent gas, for example, isobutylene: oxygen: water vapor: nitrogen in a molar ratio of isobutylene 1: oxygen 2-5: water vapor 1: nitrogen 10-20. The mixed gas is supplied to the pre-stage reactor, and prepared and reacted at the pre-stage reaction bath temperature of 200 ° C. to 450 ° C. so that the conversion of isobutylene is 95 to 98%. In this case, it is preferable to carry out the reaction so that the pre-stage effective selectivity is 80% or more. The source gas may be supplied at a normal space velocity of 400 to 4000 / hr [normal temperature and normal pressure (NTP) conditions] to maintain the isobutylene conversion rate. Next, the reaction product gas is supplied as it is to the subsequent reactor. The reaction product gas contains 2% to 5% unreacted isobutylene.
The subsequent oxidation reaction is performed at a reaction bath temperature of 200 to 450 ° C., preferably 250 to 400 ° C., more preferably about 260 ° C. to 360 ° C. It is preferable to carry out the reaction at a methacrolein conversion rate of 50% to 85%, preferably 60% to 85%, more preferably 70% to 85%.
In addition, the catalytic gas phase oxidation reaction in the preceding stage and the subsequent stage can be performed under pressure or under reduced pressure, but generally a pressure around atmospheric pressure is suitable.

以下に本発明を実施例により更に具体的に説明するが本発明は実施例に限定されるものではない。
なお下記において転化率、選択率及び収率は次のとおりに定義される。
イソブチレン転化率=(反応したイソブチレンのモル数/供給したイソブチレンのモル数)×100
メタクロレイン転化率=(後段で反応したメタクロレインのモル数/後段に供給されたメタクロレインのモル数)×100
前段有効選択率={(前段で生成したメタクロレインのモル数+前段で生成したメタクリル酸のモル数)/反応したイソブチレンのモル数}×100
後段メタクリル酸選択率=(後段で生成したメタクリル酸のモル数/後段で反応したメタクロレインのモル数)×100
メタクリル酸収率=(前段及び後段において生成したメタクリル酸の合計モル数/供給したイソブチレンのモル数)×100
以下の実施例における触媒組成は、酸素を除く活性成分組成で示す。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the examples.
In the following, the conversion rate, selectivity and yield are defined as follows.
Isobutylene conversion rate = (number of moles of reacted isobutylene / number of moles of supplied isobutylene) × 100
Conversion rate of methacrolein = (number of moles of methacrolein reacted in the latter stage / number of moles of methacrolein supplied in the latter stage) × 100
First stage effective selectivity = {(number of moles of methacrolein produced in the first stage + number of moles of methacrylic acid produced in the first stage) / number of moles of reacted isobutylene} × 100
Subsequent methacrylic acid selectivity = (number of moles of methacrylic acid produced in the latter stage / number of moles of methacrolein reacted in the latter stage) × 100
Methacrylic acid yield = (total number of moles of methacrylic acid produced in the former and latter stages / number of moles of isobutylene supplied) x 100
The catalyst composition in the following examples is an active component composition excluding oxygen.

実施例1
1)触媒の調製
純水5680mlに三酸化モリブデン800g、五酸化バナジウム40.43g、85質量%正燐酸73.67g及び60質量%砒酸水溶液26.29gを添加し、92℃で3時間加熱撹拌して赤褐色の透明溶液を得た。続いて、この溶液を15〜20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液944.8gを徐々に添加し、15〜20℃で1時間熟成させて黄色のスラリーを得た。
続いて、さらにそのスラリーに酢酸アンモニウム89.87gを添加し、さらに15〜20℃で30分熟成した。
続いて、さらにそのスラリーに酢酸第二銅44.37gを添加し、さらに15〜20℃で30分熟成した。
続いて、このスラリーを噴霧乾燥し複合酸化物を得た。得られた複合酸化物の組成は
Mo100.81.15As0.2Cu0.4Cs1.0(NH2.1
である。
次いで複合酸化物144g、強度向上剤(セラミック繊維)24gを均一に混合して、球状多孔質アルミナ担体(粒径4.0mm)166gに90質量%エタノール水溶液約80gをバインダーとして被覆成型した。次いで得られた成型物を空気流通下において360℃で5時間かけて焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はアンモニウム成分が焼成により、大部分失われて、0.01〜1.0程度となっていると考えられる以外は、上記組成と同じである。
Example 1
1) Preparation of catalyst To 5680 ml of pure water, 800 g of molybdenum trioxide, 40.43 g of vanadium pentoxide, 73.67 g of 85 mass% normal phosphoric acid and 26.29 g of 60 mass% arsenic acid aqueous solution were added, and the mixture was heated and stirred at 92 ° C. for 3 hours. A clear reddish brown solution was obtained. Subsequently, the solution was cooled to 15 to 20 ° C., and 944.8 g of a 9.1% by mass cesium hydroxide aqueous solution was gradually added with stirring, and aged at 15 to 20 ° C. for 1 hour to give a yellow slurry Got.
Subsequently, 89.87 g of ammonium acetate was further added to the slurry, and further aged at 15 to 20 ° C. for 30 minutes.
Subsequently, 44.37 g of cupric acetate was further added to the slurry and further aged at 15 to 20 ° C. for 30 minutes.
Subsequently, this slurry was spray-dried to obtain a composite oxide. The composition of the obtained composite oxide was Mo 10 V 0.8 P 1.15 As 0.2 Cu 0.4 Cs 1.0 (NH 4 ) 2.1
It is.
Next, 144 g of the composite oxide and 24 g of the strength improver (ceramic fiber) were uniformly mixed, and 166 g of a spherical porous alumina support (particle size: 4.0 mm) was coated and molded using about 80 g of a 90% by mass ethanol aqueous solution as a binder. Subsequently, the obtained molded product was calcined at 360 ° C. for 5 hours under an air flow to obtain a target coated catalyst. The composition of the obtained catalyst is the same as the above composition except that the ammonium component is largely lost by calcination and is considered to be about 0.01 to 1.0.

2)イソブチレンの二段酸化反応
2本の反応管を直列に配置し、それぞれにメタクロレイン製造用触媒及びメタクリル酸製造用触媒を充填し、原料ガスを供給することによりメタクリル酸を得る反応を行った。以下に詳細を示す。
前段酸化反応用の触媒としてビスマス‐モリブデン系複合酸化物を上記実施例1の触媒と同様に成型して得られた被覆触媒を用いた。この触媒の活性成分組成は
Mo12Bi1.7Fe1.8Co7.0Ni0.8Cs0.1
である。触媒を内径22.2mmのステンレス反応管に17ml充填し、原料ガス(組成(モル比);イソブチレン:酸素:水蒸気:窒素=1:2.2:1:12.5)を空間速度(SV)1200h−1の条件でイソブチレンの酸化反応を実施した。
前段酸化反応においては、イソブチレン転化率を最初に約99%を超えるように調整し、順次同転化率を、97%台、及び96%台へ下げて、反応を行った。この際の反応浴温度は、イソブチレン転化率が99%以上の場合は、360〜 370 ℃、イソブチレン転化率が97%台の場合は、345〜350℃、イソブチレン転化率が96%台の場合は、340〜342℃であった。
後段酸化反応用には上記1)で調製した触媒を用いた。触媒を内径18.4mmのステンレス反応管に25ml充填し、上記前段酸化反応の生成ガスを導入し、後段酸化反応を実施した。後段反応浴温度は275℃で一定とし、前段酸化反応で生成した反応ガス組成が、上記前段酸化反応でのイソブチレン転化率の相違により変わる以外は、後段反応条件を一定とし、前段でのイソブチレンの転化率の相違(未反応イソブチレン量の相違)で、後段におけるメタクロレインの転化率、メタクリル酸選択率がどのように変化するか反応成績の測定を行った。
結果を表1に示す。
2) Two-stage oxidation reaction of isobutylene Two reaction tubes are arranged in series, each filled with a catalyst for producing methacrolein and a catalyst for producing methacrylic acid, and a reaction for obtaining methacrylic acid by supplying a raw material gas is performed. It was. Details are shown below.
A coated catalyst obtained by molding a bismuth-molybdenum-based composite oxide in the same manner as the catalyst of Example 1 was used as a catalyst for the preceding oxidation reaction. The active component composition of this catalyst is Mo 12 Bi 1.7 Fe 1.8 Co 7.0 Ni 0.8 Cs 0.1
It is. 17 ml of a stainless steel reaction tube having an inner diameter of 22.2 mm is filled with the catalyst, and a raw material gas (composition (molar ratio); isobutylene: oxygen: water vapor: nitrogen = 1: 2.2: 1: 12.5) is a space velocity (SV). The oxidation reaction of isobutylene was performed under conditions of 1200 h −1 .
In the pre-stage oxidation reaction, the isobutylene conversion rate was first adjusted to exceed about 99%, and the reaction was carried out by sequentially lowering the conversion rate to the 97% level and the 96% level. In this case, the reaction bath temperature is 360 to 370 ° C. when the isobutylene conversion rate is 99% or more, 345 to 350 ° C. when the isobutylene conversion rate is 97%, and the isobutylene conversion rate is 96%. 340-342 ° C.
The catalyst prepared in 1) above was used for the latter stage oxidation reaction. The catalyst was filled in 25 ml of a stainless steel reaction tube having an inner diameter of 18.4 mm, and the product gas of the above-mentioned pre-stage oxidation reaction was introduced to carry out the post-stage oxidation reaction. The post-reaction bath temperature was constant at 275 ° C., and the reaction gas composition produced in the pre-stage oxidation reaction was changed depending on the difference in the conversion of isobutylene in the pre-stage oxidation reaction. The reaction results were measured to determine how the methacrolein conversion rate and methacrylic acid selectivity change in the latter stage due to the difference in conversion rate (difference in the amount of unreacted isobutylene).
The results are shown in Table 1.

実施例2
実施例1において複合酸化物144g、強度向上剤(セラミック繊維)24g及び細孔形成剤(小麦粉)14gを混合したこと以外は実施例1と同様の方法で被覆触媒を調製した。焼成前の複合酸化物における活性成分組成は
Mo100.81.15As0.2Cu0.4Cs1.0(NH2.1
である。
焼成後の触媒の組成は、アンモニウム成分が焼成により、大部分失われて、0.01〜1.0程度となっていると考えられること以外は、上記組成と同じである。
この被覆触媒を使用したことと後段酸化反応の反応浴温度を280℃としたこと以外は、実施例1と同様にイソブチレンの二段酸化反応を行った。結果を表1に示す。
Example 2
A coated catalyst was prepared in the same manner as in Example 1 except that 144 g of the composite oxide, 24 g of the strength improver (ceramic fiber) and 14 g of the pore forming agent (wheat flour) were mixed in Example 1. The active component composition in the composite oxide before firing is Mo 10 V 0.8 P 1.15 As 0.2 Cu 0.4 Cs 1.0 (NH 4 ) 2.1
It is.
The composition of the catalyst after calcination is the same as the above composition except that the ammonium component is largely lost by calcination and is considered to be about 0.01 to 1.0.
A two-stage oxidation reaction of isobutylene was carried out in the same manner as in Example 1 except that this coated catalyst was used and the reaction bath temperature of the latter stage oxidation reaction was 280 ° C. The results are shown in Table 1.

実施例3
純水5680mlに三酸化モリブデン800g、五酸化バナジウム40.43g及び85質量%正燐酸73.67gを添加し、92℃で3時間加熱撹拌して赤褐色の透明溶液を得た。続いて、この溶液を15〜20℃に冷却して、そこに、撹拌しながら9.1質量%の水酸化セシウム水溶液283.4gを徐々に添加した。得られた混合物を15〜20℃で1時間熟成させて黄色のスラリーを得た。
続いて、さらにそのスラリーに酢酸アンモニウム89.87gを添加し、さらに15〜20℃で30分熟成した。
続いて、さらにそのスラリーに酢酸第二銅44.37gを添加し、さらに15〜20℃で30分熟成した。
続いて、このスラリーを噴霧乾燥し複合酸化物を得た。得られた複合酸化物の組成は
Mo100.81.15As0.2Cu0.4Cs0.3(NH2.1
である。
次いで、この複合酸化物顆粒を空気流通下310℃で5時間かけて焼成し、予備焼成顆粒を得た。予備焼成により約4%の質量減があった。この予備焼成顆粒131gに三酸化アンチモン10g、強度向上剤(セラミック繊維)7gを均一に混合した。得られた顆粒を、球状多孔質アルミナ担体(粒径4.0mm)179g上に、50質量%エタノール水溶液約70gをバインダーとして、被覆成型した。次いで得られた成型物を空気流通下において380℃で5時間かけて焼成を行い目的とする被覆触媒を得た。得られた触媒の組成は、アンモニウム成分が焼成により、大部分失われて、0.01〜1.0程度となっていると考えられる以外は、上記組成と同じである。
この被覆触媒を使用したことと後段酸化反応の反応浴温度を300℃としたこと以外は、実施例1と同様にイソブチレンの二段酸化反応を行った。結果を表1に示す。
Example 3
To 5680 ml of pure water, 800 g of molybdenum trioxide, 40.43 g of vanadium pentoxide and 73.67 g of 85% by mass orthophosphoric acid were added and stirred at 92 ° C. for 3 hours to obtain a reddish brown transparent solution. Subsequently, this solution was cooled to 15 to 20 ° C., and 283.4 g of a 9.1 mass% cesium hydroxide aqueous solution was gradually added thereto while stirring. The obtained mixture was aged at 15 to 20 ° C. for 1 hour to obtain a yellow slurry.
Subsequently, 89.87 g of ammonium acetate was further added to the slurry, and further aged at 15 to 20 ° C. for 30 minutes.
Subsequently, 44.37 g of cupric acetate was further added to the slurry and further aged at 15 to 20 ° C. for 30 minutes.
Subsequently, this slurry was spray-dried to obtain a composite oxide. The composition of the obtained composite oxide was Mo 10 V 0.8 P 1.15 As 0.2 Cu 0.4 Cs 0.3 (NH 4 ) 2.1
It is.
Next, this composite oxide granule was fired at 310 ° C. for 5 hours under air flow to obtain a pre-fired granule. There was a mass loss of about 4% due to pre-firing. To 131 g of the pre-fired granules, 10 g of antimony trioxide and 7 g of a strength improver (ceramic fiber) were uniformly mixed. The obtained granule was coated and molded on 179 g of a spherical porous alumina carrier (particle size: 4.0 mm) using about 70 g of a 50% by mass ethanol aqueous solution as a binder. The resulting molded product was then calcined at 380 ° C. for 5 hours under air flow to obtain the desired coated catalyst. The composition of the obtained catalyst is the same as the above composition except that the ammonium component is largely lost by calcination and is considered to be about 0.01 to 1.0.
A two-stage oxidation reaction of isobutylene was carried out in the same manner as in Example 1 except that this coated catalyst was used and the reaction bath temperature of the latter stage oxidation reaction was set to 300 ° C. The results are shown in Table 1.

実施例4
純水5680mlに三酸化モリブデン800g、五酸化バナジウム40.43g、85質量%正燐酸73.67g及び60質量%砒酸水溶液65.73gを添加し、92℃で3時間加熱撹拌して赤褐色の透明溶液を得た。
続いて、さらにその溶液に酢酸第二銅44.37gを添加し、さらに92℃で30分熟成した。
続いて、このスラリーを噴霧乾燥し複合酸化物を得た。得られた複合酸化物の組成は
Mo100.81.15Cu0.4As0.5
である。
次いで複合酸化物214g、強度向上剤(セラミック繊維)30gを均一に混合して、球状多孔質アルミナ担体(粒径4.0mm)200gに90質量%エタノール水溶液約50gをバインダーとして被覆成型した。次いで得られた成型物を空気流通下において310℃で5時間かけて焼成を行い目的とする被覆触媒を得た。得られた触媒の組成は上記と同じである。
この被覆触媒を使用したことと後段酸化反応の反応浴温度を305℃としたこと以外は、実施例1と同様にイソブチレンの二段酸化反応を行った。
結果を表1に示す。
Example 4
800 g of molybdenum trioxide, 40.43 g of vanadium pentoxide, 73.67 g of 85 mass% normal phosphoric acid and 65.73 g of 60 mass% arsenic acid aqueous solution were added to 5680 ml of pure water, and the mixture was heated and stirred at 92 ° C. for 3 hours to obtain a reddish brown transparent solution Got.
Subsequently, 44.37 g of cupric acetate was further added to the solution, followed by further aging at 92 ° C. for 30 minutes.
Subsequently, this slurry was spray-dried to obtain a composite oxide. The composition of the obtained composite oxide was Mo 10 V 0.8 P 1.15 Cu 0.4 As 0.5
It is.
Next, 214 g of the composite oxide and 30 g of the strength improver (ceramic fiber) were uniformly mixed, and 200 g of a spherical porous alumina support (particle size: 4.0 mm) was coated and molded using about 50 g of a 90% by mass ethanol aqueous solution as a binder. Next, the obtained molded product was calcined at 310 ° C. for 5 hours under an air flow to obtain a target coated catalyst. The composition of the obtained catalyst is the same as described above.
A two-stage oxidation reaction of isobutylene was carried out in the same manner as in Example 1 except that this coated catalyst was used and the reaction bath temperature of the latter stage oxidation reaction was 305 ° C.
The results are shown in Table 1.

Figure 2010052909
Figure 2010052909

上記の結果より、下記の事項が判明した。
イソブチレン転化率を下げることによるメタクロレイン転化率の低下が少ない触媒ほどイソブチレンの吸着被毒の影響を受けにくいといえる。
実施例1のようにモリブデン10に対してX成分の添加量が0.4〜1.5である触媒はイソブチレンの吸着被毒の影響を受けにくい。
実施例2のように細孔形成剤を適宜添加することにより、イソブチレンの吸着被毒の影響は大幅に低減する。
また、実施例3のように、請求項2に記載した組成を満たしている触媒であれば、イソブチレンの吸着被毒の影響を低減する効果がある。
なお、上表では、未反応残存イソブチレンの、メタクロレイン転化率への悪影響を見ている関係で、メタクリル酸収率が記載されていないが、上記実施例におけるメタクリル酸収率は、前段で生成したメタクリル酸及び後段で生成したメタクリル酸を合わせて、供給したイソブチレンに対して48モル%〜59モル%弱であった。実施例1、3及び4の何れにおいても、イソブチレン転化率が99%以上の場合に、最も高いメタクリル酸収率を達成したが、イソブチレン転化率99%以上では、第1段目触媒が熱的負荷が大きいことから、触媒寿命が短くなることを考慮すると、イソブチレン転化率95モル%以上、98モル%以下、特に96モル%以上、98モル%未満での反応が最も好ましいと考えられる。
特に、実施例2においては、未反応イソブチレンの存在での悪影響が見られず、イソブチレン転化率が、99.01モル%の場合に比して、イソブチレン転化率97.92モル%及び96.43モル%の場合、後段におけるメタクロレイン転化率はむしろ、向上している。即ち、メタクリル酸の収率も、それぞれ、54.65モル%(イソブチレン転化率が、99.01モル%の場合)、56.10モル%(イソブチレン転化率が、97.92モル%の場合)及び55.41モル%(イソブチレン転化率が、96.43モル%の場合)となっており、アンモニウム成分及び細孔形成剤の共存は、特に好ましいことを示している。
From the above results, the following matters were found.
It can be said that a catalyst having a lower decrease in methacrolein conversion rate by lowering the isobutylene conversion rate is less susceptible to the adsorption poisoning of isobutylene.
As in Example 1, the catalyst in which the addition amount of the X component is 0.4 to 1.5 with respect to molybdenum 10 is not easily affected by the adsorption poisoning of isobutylene.
By appropriately adding a pore forming agent as in Example 2, the influence of the adsorption poisoning of isobutylene is greatly reduced.
Further, as in Example 3, the catalyst satisfying the composition described in claim 2 has an effect of reducing the influence of the adsorption poisoning of isobutylene.
In the above table, the yield of methacrylic acid in the above examples is not shown because the unreacted residual isobutylene has an adverse effect on the methacrolein conversion rate, but the methacrylic acid yield is not shown. The combined methacrylic acid and methacrylic acid produced in the latter stage were 48 mol% to slightly less than 59 mol% based on the supplied isobutylene. In any of Examples 1, 3 and 4, the highest methacrylic acid yield was achieved when the isobutylene conversion rate was 99% or more. However, when the isobutylene conversion rate was 99% or more, the first stage catalyst was thermally Considering that the catalyst life is shortened due to the large load, it is considered that the reaction at an isobutylene conversion of 95 mol% or more and 98 mol% or less, particularly 96 mol% or more and less than 98 mol% is most preferable.
In particular, in Example 2, there was no adverse effect due to the presence of unreacted isobutylene, and the conversion of isobutylene was 97.92 mol% and 96.43 compared with the case where the conversion of isobutylene was 99.01 mol%. In the case of mol%, the methacrolein conversion rate in the latter stage is rather improved. That is, the yields of methacrylic acid were also 54.65 mol% (when the isobutylene conversion was 99.01 mol%) and 56.10 mol% (when the isobutylene conversion was 97.92 mol%), respectively. And 55.41 mol% (when the conversion of isobutylene is 96.43 mol%), the coexistence of an ammonium component and a pore forming agent indicates that it is particularly preferable.

産業上の利用の可能性Industrial applicability

直結二段接触気相酸化法において、前記本発明で使用する特定の触媒を使用すると、未反応イソブチレン含有メタクロレインガスであっても、メタクロレインのメタクリル酸への転化率の下げが小さいので、反応生成ガス前段イソブチレンの転化率を下げて、前段有効選択率が向上する好ましい条件で反応させた場合でも、メタクリル酸を高収率で得ることができ、前段イソブチレンの転化率を下げる結果、反応温度が低く済み、触媒への熱負荷が減り、第一段目の触媒寿命を長くできる。また、二段目も触媒も、未反応イソブチレン被毒が少ないことから、触媒寿命を延ばすことができる。直結二段接触気相酸化法において、特定の触媒を使用する本発明のメタクリル酸製造方法は、直結二段接触気相酸化法でのメタクリル酸の収率を向上させるために非常に有用である。   In the direct-coupled two-stage contact gas phase oxidation method, when the specific catalyst used in the present invention is used, even if it is unreacted isobutylene-containing methacrolein gas, the reduction in the conversion rate of methacrolein to methacrylic acid is small. Even when the conversion rate of the pre-stage isobutylene in the reaction product gas is lowered and the reaction is carried out under favorable conditions that improve the pre-stage effective selectivity, methacrylic acid can be obtained in a high yield, and as a result, the conversion rate of the pre-stage isobutylene is lowered. The temperature is low, the heat load on the catalyst is reduced, and the life of the first stage catalyst can be extended. In addition, the catalyst life can be extended because both the second stage catalyst and the catalyst have little unreacted isobutylene poisoning. The methacrylic acid production method of the present invention using a specific catalyst in the direct-coupled two-stage catalytic gas phase oxidation method is very useful for improving the yield of methacrylic acid in the direct-coupled two-stage catalytic gas phase oxidation method. .

Claims (20)

(a)イソブチレンを、酸化触媒の存在下に、分子状酸素または分子状酸素含有ガスにより気相にてメタクロレインに酸化し(工程(a))、
(b)得られた、未反応イソブチレン及びメタクロレインを含む、反応生成ガスを、酸化触媒の存在下に、分子状酸素または分子状酸素含有ガスにより気相にて酸化してメタクリル酸を製造する(工程(b))、
方法であって、
工程(a)におけるイソブチレンの転化率を95モル%以上、98モル%以下で、反応を行い、工程(b)の酸化触媒が、モリブデン、バナジウム、リン、及び、カリウム、ルビジウム、セシウム及びアンモニウム成分からなる群から選ばれる一種又は二種、を含む触媒組成物を成形及び焼成して得られた触媒であることを特徴とするメタクリル酸の製造方法。
(A) oxidizing isobutylene to methacrolein in the gas phase with molecular oxygen or a molecular oxygen-containing gas in the presence of an oxidation catalyst (step (a)),
(B) The obtained reaction product gas containing unreacted isobutylene and methacrolein is oxidized in the gas phase with molecular oxygen or a molecular oxygen-containing gas in the presence of an oxidation catalyst to produce methacrylic acid. (Step (b)),
A method,
The reaction is performed at a conversion rate of isobutylene in the step (a) of 95 mol% or more and 98 mol% or less, and the oxidation catalyst of the step (b) is molybdenum, vanadium, phosphorus, potassium, rubidium, cesium and ammonium components. A method for producing methacrylic acid, which is a catalyst obtained by molding and firing a catalyst composition containing one or two kinds selected from the group consisting of:
工程(b)における、酸化触媒が、一般式(1)
Mo10(NH (1)
(式中Moはモリブデン、Vはバナジウム、Pはリン、(NH)はアンモニウム基を、XはK、Rb、Csから選ばれる少なくとも一種の元素、YはSb、As、Cu、Ag、Mg、Zn、Al、B、Ge、Sn、Pb、Ti、Zr、Cr、Re、Bi、W、Fe、Co、Ni、Ce、Thからなる群から選ばれる少なくとも一種の元素をそれぞれ表し、a〜hは、それぞれの元素の原子比を表し、aは0.1≦a≦6.0の正数、bは0.5≦b≦6.0の正数、cは0.1≦c≦10.0の正数、dは0.1≦d≦3.0の正数、eは0≦e≦3.0の正数をそれぞれ表す。)で表される活性成分組成を有する触媒組成物を成型及び焼成することにより得られたメタクリル酸製造用触媒である請求項1に記載のメタクリル酸の製造方法。
In step (b), the oxidation catalyst is represented by the general formula (1).
Mo 10 V a P b (NH 4) c X d Y e O f (1)
(Wherein Mo is molybdenum, V is vanadium, P is phosphorus, (NH 4 ) is an ammonium group, X is at least one element selected from K, Rb, and Cs, Y is Sb, As, Cu, Ag, Mg) Represents at least one element selected from the group consisting of Zn, Al, B, Ge, Sn, Pb, Ti, Zr, Cr, Re, Bi, W, Fe, Co, Ni, Ce, and Th; h represents an atomic ratio of each element, a is a positive number of 0.1 ≦ a ≦ 6.0, b is a positive number of 0.5 ≦ b ≦ 6.0, and c is 0.1 ≦ c ≦ A positive number of 10.0, d is a positive number of 0.1 ≦ d ≦ 3.0, and e is a positive number of 0 ≦ e ≦ 3.0. The method for producing methacrylic acid according to claim 1, which is a catalyst for producing methacrylic acid obtained by molding and firing a product. .
一般式(1)で表される活性成分組成を有する触媒組成物を焼成する温度が300〜400℃未満で焼成することにより得られたメタクリル酸製造用触媒を使用する請求項2に記載のメタクリル酸の製造方法。   The methacrylic acid according to claim 2, wherein a catalyst for producing methacrylic acid obtained by calcining the catalyst composition having the active ingredient composition represented by the general formula (1) at a temperature of 300 to less than 400 ° C is used. Acid production method. YがSb、As及びCuからなる群から選ばれる少なくとも2種の元素である請求項2に記載のメタクリル酸の製造方法。   The method for producing methacrylic acid according to claim 2, wherein Y is at least two elements selected from the group consisting of Sb, As and Cu. YがAs及びCuの両者である請求項4に記載のメタクリル酸の製造方法。   The method for producing methacrylic acid according to claim 4, wherein Y is both As and Cu. 一般式(1)で表される活性成分組成を有する触媒組成物の成型が、該組成物のスラリー乾燥体を、強度向上剤と共に、水又は炭素数1〜4のアルコールをバインダーとし、球状担体上に被覆して、球状被覆触媒とするものである請求項2に記載のメタクリル酸の製造方法。   Molding of the catalyst composition having the active ingredient composition represented by the general formula (1) is carried out by using a slurry dried body of the composition together with a strength improver and water or an alcohol having 1 to 4 carbon atoms as a binder. The method for producing methacrylic acid according to claim 2, wherein the catalyst is coated on top to form a spherical coating catalyst. 一般式(1)で表される活性成分組成を有する触媒組成物の成型が、該組成物のスラリー乾燥体を、強度向上剤及び細孔形成剤と共に、水又は炭素数1〜4のアルコールをバインダーとし、球状担体上に被覆して、球状被覆触媒とするものである請求項2に記載のメタクリル酸の製造方法。   Molding of the catalyst composition having the active ingredient composition represented by the general formula (1) is carried out by adding water or an alcohol having 1 to 4 carbon atoms together with a strength improving agent and a pore forming agent to the slurry dried body of the composition. The method for producing methacrylic acid according to claim 2, wherein the catalyst is coated on a spherical carrier as a binder to form a spherical coated catalyst. 工程(a)において、ビスマス‐モリブデン含有複合酸化物触媒を使用する請求項1又は2に記載のメタクリル酸の製造方法。   The method for producing methacrylic acid according to claim 1 or 2, wherein a bismuth-molybdenum-containing composite oxide catalyst is used in step (a). ビスマス‐モリブデン含有複合酸化物触媒が、モリブデン、ビスマス及び鉄の3者、及びコバルト、ニッケル、錫、亜鉛、タングステン、クロム、マンガン、マグネシウム、アンチモン、セリウム、チタンからなる群から選択される少なくとも一種、更に、アルカリ金属又はタリウムを含む複合酸化物触媒を使用する請求項8に記載のメタクリル酸の製造方法。   The bismuth-molybdenum-containing composite oxide catalyst is at least one selected from the group consisting of molybdenum, bismuth and iron, and cobalt, nickel, tin, zinc, tungsten, chromium, manganese, magnesium, antimony, cerium, and titanium. Furthermore, the manufacturing method of methacrylic acid of Claim 8 which uses the complex oxide catalyst containing an alkali metal or thallium. 工程(b)における、未反応イソブチレン及びメタクロレインを含む、反応生成ガスが、反応生成ガスの総量中に、未反応イソブチレンを2〜5モル%含むものである請求項1又は2に記載のメタクリル酸の製造方法。   The methacrylic acid solution according to claim 1 or 2, wherein the reaction product gas containing unreacted isobutylene and methacrolein in step (b) contains 2 to 5 mol% of unreacted isobutylene in the total amount of the reaction product gas. Production method. 一般式(1)
Mo10(NH (1)
(式中Moはモリブデン、Vはバナジウム、Pはリン、(NH)はアンモニウム基を、XはK、Rb、Csから選ばれる少なくとも一種の元素、YはSb、As、Cu、Ag、Mg、Zn、Al、B、Ge、Sn、Pb、Ti、Zr、Cr、Re、Bi、W、Fe、Co、Ni、Ce、Thから選ばれる少なくとも一種の元素をそれぞれ表し、a〜fは、それぞれの元素の原子比を表し、aは0.1≦a≦6.0の正数、bは0.5≦b≦6.0の正数、cは0.1≦c≦10.0の正数、dは0.1≦d≦3.0の正数、eは0≦e≦3.0の正数をそれぞれ表す。)で表される活性成分組成を有する触媒組成物のスラリー乾燥体を、強度向上剤及び細孔形成剤と共に、水又は炭素数1〜4のアルコールをバインダーとし、球状担体上に被覆して、球状被覆触媒に成形し、100〜450℃で焼成することにより得られた請求項1における工程(b)用メタクリル酸製造用酸化触媒。
General formula (1)
Mo 10 V a P b (NH 4) c X d Y e O f (1)
(Wherein Mo is molybdenum, V is vanadium, P is phosphorus, (NH 4 ) is an ammonium group, X is at least one element selected from K, Rb, and Cs, Y is Sb, As, Cu, Ag, Mg) Represents at least one element selected from Zn, Al, B, Ge, Sn, Pb, Ti, Zr, Cr, Re, Bi, W, Fe, Co, Ni, Ce, Th, Represents the atomic ratio of each element, a is a positive number of 0.1 ≦ a ≦ 6.0, b is a positive number of 0.5 ≦ b ≦ 6.0, and c is 0.1 ≦ c ≦ 10.0. A positive number of 0.1 ≦ d ≦ 3.0, e represents a positive number of 0 ≦ e ≦ 3.0, and a slurry of a catalyst composition having an active component composition represented by: On the spherical carrier, the dried product, together with a strength improver and a pore-forming agent, water or an alcohol having 1 to 4 carbon atoms as a binder Coated with, formed into spherical coated catalyst, 100 to 450 steps in claim 1 obtained by firing ° C. (b) for producing methacrylic acid oxidation catalyst.
YはSb、As及びCuからなる群から選ばれる少なくとも2種の元素である請求項11に記載の工程(b)用メタクリル酸製造用触媒。   The catalyst for producing methacrylic acid for step (b) according to claim 11, wherein Y is at least two elements selected from the group consisting of Sb, As and Cu. YがAs及びCuからなる群から選ばれる少なくとも一種の元素である一般式(1)で表される活性成分組成を有する触媒組成物を成型し、次いで250〜400℃で焼成することにより得られた請求項12における工程(b)用メタクリル酸製造用触媒。   It is obtained by molding a catalyst composition having an active component composition represented by the general formula (1), wherein Y is at least one element selected from the group consisting of As and Cu, and then firing at 250 to 400 ° C. A catalyst for producing methacrylic acid for step (b) in claim 12. 球状被覆触媒全体に対する活性成分の割合が10〜60質量%である請求項11又は13に記載のメタクリル酸製造用触媒。   The catalyst for methacrylic acid production according to claim 11 or 13, wherein the ratio of the active ingredient to the entire spherical coated catalyst is 10 to 60% by mass. 細孔形成剤の割合が活性成分に対して1〜40質量%である請求項11に記載の工程(b)用メタクリル酸製造用触媒。   The catalyst for producing methacrylic acid for step (b) according to claim 11, wherein the ratio of the pore forming agent is 1 to 40% by mass with respect to the active ingredient. 工程(b)用の、触媒組成物を成型及び焼成することにより得られた触媒が、下記一般式(a’−1)
Mo10(NHc’dd (a’−1)
(式中,Moはモリブデン、Vはバナジウム、Pはリン、(NH)はアンモニウム基を、XはK、Rb、Csから選ばれる少なくとも一種の元素、YはSb、As、Cu、Ag、Mg、Zn、Al、B、Ge、Sn、Pb、Ti、Zr、Cr、Re、Bi、W、Fe、Co、Ni、Ce、Thから選ばれる少なくとも一種の元素をそれぞれ表し、a、b、c’、dd、g及びfは、それぞれの元素の原子比を表し、aは0.1≦a≦6.0の正数、bは0.5≦b≦6.0の正数、c’は0≦c’≦10の正数、ddは0≦dd≦3.0の正数、eは0≦e≦3.0の正数をそれぞれ表す。)
で表される活性成分組成を有する触媒である請求項1に記載のメタクリル酸の製造方法。
The catalyst obtained by molding and firing the catalyst composition for the step (b) is represented by the following general formula (a′-1)
Mo 10 V a P b (NH 4) c 'X dd Y e O f (a'-1)
(Wherein Mo is molybdenum, V is vanadium, P is phosphorus, (NH 4 ) is an ammonium group, X is at least one element selected from K, Rb, and Cs, Y is Sb, As, Cu, Ag, Each represents at least one element selected from Mg, Zn, Al, B, Ge, Sn, Pb, Ti, Zr, Cr, Re, Bi, W, Fe, Co, Ni, Ce, and Th; c ′, dd, g and f represent the atomic ratio of each element, a is a positive number of 0.1 ≦ a ≦ 6.0, b is a positive number of 0.5 ≦ b ≦ 6.0, c 'Represents a positive number of 0 ≦ c' ≦ 10, dd represents a positive number of 0 ≦ dd ≦ 3.0, and e represents a positive number of 0 ≦ e ≦ 3.0.)
The method for producing methacrylic acid according to claim 1, wherein the catalyst has an active ingredient composition represented by:
触媒組成物の成型が、該組成物のスラリー乾燥体を、強度向上剤及び細孔形成剤と共に、水又は炭素数1〜4のアルコールをバインダーとし、球状担体上に被覆して、球状被覆触媒とするものである請求項16に記載のメタクリル酸の製造方法。   When the catalyst composition is molded, the dried slurry of the composition is coated on a spherical carrier with water or an alcohol having 1 to 4 carbon atoms as a binder together with a strength improver and a pore forming agent. The method for producing methacrylic acid according to claim 16. YがSb、As及びCuからなる群から選ばれる少なくとも2種の元素である請求項17に記載のメタクリル酸の製造方法。   The method for producing methacrylic acid according to claim 17, wherein Y is at least two elements selected from the group consisting of Sb, As and Cu. c’が0.01≦c’≦5の正数である請求項16に記載のメタクリル酸の製造方法。  The method for producing methacrylic acid according to claim 16, wherein c ′ is a positive number satisfying 0.01 ≦ c ′ ≦ 5. ddが0.1≦d≦3.0の正数である請求項16に記載のメタクリル酸の製造方法。   The method for producing methacrylic acid according to claim 16, wherein dd is a positive number satisfying 0.1 ≦ d ≦ 3.0.
JP2010536690A 2008-11-06 2009-11-05 Method for producing methacrylic acid and catalyst for producing methacrylic acid Expired - Fee Related JP5574434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010536690A JP5574434B2 (en) 2008-11-06 2009-11-05 Method for producing methacrylic acid and catalyst for producing methacrylic acid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008285291 2008-11-06
JP2008285291 2008-11-06
PCT/JP2009/005873 WO2010052909A1 (en) 2008-11-06 2009-11-05 Methacrylic acid manufacturing method and catalyst for methacrylic acid manufacture
JP2010536690A JP5574434B2 (en) 2008-11-06 2009-11-05 Method for producing methacrylic acid and catalyst for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JPWO2010052909A1 true JPWO2010052909A1 (en) 2012-04-05
JP5574434B2 JP5574434B2 (en) 2014-08-20

Family

ID=42152722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010536690A Expired - Fee Related JP5574434B2 (en) 2008-11-06 2009-11-05 Method for producing methacrylic acid and catalyst for producing methacrylic acid

Country Status (4)

Country Link
JP (1) JP5574434B2 (en)
KR (1) KR20110092272A (en)
CN (1) CN102203040B (en)
WO (1) WO2010052909A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892826B2 (en) 2012-03-27 2016-03-23 住友化学株式会社 Method for producing methacrylic acid
KR20150020541A (en) * 2012-05-18 2015-02-26 닛뽄 가야쿠 가부시키가이샤 Catalyst for use in production of methacrylic acid, method for producing said catalyst, and method for producing methacrylic acid using said catalyst
CN103664554B (en) * 2012-09-05 2016-01-13 中国石油化工股份有限公司 For the preparation of the method for Methylacrylaldehyde
JP6078387B2 (en) * 2013-03-19 2017-02-08 住友化学株式会社 Method for producing methacrylic acid
KR101621678B1 (en) * 2013-09-11 2016-05-16 미쯔비시 레이온 가부시끼가이샤 Method of preparing catalyst for production of methacrylic acid
KR101511449B1 (en) * 2013-11-28 2015-04-10 롯데케미칼 주식회사 Preparation method of catalyst for producing methacrolein or methacrylic acid and catalyst using the same
JP6837749B2 (en) * 2015-03-09 2021-03-03 日本化薬株式会社 Catalyst for methacrylic acid production
CN105749944A (en) * 2016-03-23 2016-07-13 重庆紫光海力催化剂有限公司 Catalyst for preparing alpha-methacrylic acid from 2-methylacrolein with gas-phase catalytic oxidation method
WO2019163707A1 (en) * 2018-02-20 2019-08-29 日本化薬株式会社 Catalyst and direct-coupled two-stage contact gas phase oxidation method using same
CN110420643A (en) * 2019-08-16 2019-11-08 中国科学院过程工程研究所 A kind of preparation method and applications of eggshell type composite metal catalyst
CN114425355B (en) * 2020-09-27 2023-08-15 中国石油化工股份有限公司 Catalyst for preparing methacrolein by fixed bed, preparation method and application

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3930533C1 (en) * 1989-09-13 1991-05-08 Degussa Ag, 6000 Frankfurt, De
CN1028224C (en) * 1990-06-09 1995-04-19 齐鲁石油化工公司研究院 Methyl acrylic acid made by sobutene or tertiary butanol double step oxidation
JP4279038B2 (en) * 2002-06-27 2009-06-17 三菱レイヨン株式会社 Solid catalyst filling method
TWI341219B (en) * 2003-02-20 2011-05-01 Nippon Kayaku Kk Catalyst for producing methacrylic acid and preparation method thereof
EP1629889B1 (en) * 2003-05-30 2012-05-02 Nippon Kayaku Kabushiki Kaisha Process for producing catalyst for methacrylic acid production
JP4756890B2 (en) * 2005-03-29 2011-08-24 日本化薬株式会社 Catalyst for producing methacrylic acid and method for producing the same
JP2006314923A (en) * 2005-05-12 2006-11-24 Nippon Kayaku Co Ltd Manufacturing method of catalyst for producing methacrylic acid
JP5063055B2 (en) * 2006-08-04 2012-10-31 三菱レイヨン株式会社 Method for packing solid catalyst and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2008238161A (en) * 2007-02-27 2008-10-09 Sumitomo Chemical Co Ltd Method for manufacturing catalyst
DE102007009981A1 (en) * 2007-03-01 2008-09-04 Evonik Degussa Gmbh Hollow form mixed oxide catalyst for catalysis of gaseous phase oxidation of olefins, has general formula

Also Published As

Publication number Publication date
JP5574434B2 (en) 2014-08-20
WO2010052909A1 (en) 2010-05-14
CN102203040A (en) 2011-09-28
CN102203040B (en) 2014-04-16
KR20110092272A (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP5574434B2 (en) Method for producing methacrylic acid and catalyst for producing methacrylic acid
JP4756890B2 (en) Catalyst for producing methacrylic acid and method for producing the same
JP5973999B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid using the same
US8148291B2 (en) Method for manufacturing catalyst for use in production of methacrylic acid
KR101579702B1 (en) Catalyst for oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acid, method of making and method of using thereof
JP4421558B2 (en) Method for producing a catalyst for methacrylic acid production
US8586499B2 (en) Method for producing catalyst for preparation of methacrylic acid and method for preparing methacrylic acid
JP4478107B2 (en) Catalyst for producing methacrylic acid and process for producing the same
JP2020015043A (en) Method fop producing catalyst for producing methacrylic acid
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
KR101925641B1 (en) Method of producing catalyst used in the production of methacrylic acid and method of producing methacrylic acid
JP2015120133A (en) Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst
JP6628386B1 (en) Catalyst for unsaturated carboxylic acid production
JP2011152543A (en) Method for producing catalyst for producing methacrylic acid
WO2022163725A1 (en) Catalyst, and method for producing unsaturated carboxylic acid using same
JP7105397B1 (en) Catalyst and method for producing unsaturated carboxylic acid using the same
WO2022163727A1 (en) Catalyst, and method for producing unsaturated carboxylic acid using same
JP5269046B2 (en) Method for producing a catalyst for methacrylic acid production
JP2013091016A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP2012016706A (en) Method for producing catalyst for preparation of methacrylic acid, and method of preparing methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Effective date: 20140306

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD04 Notification of resignation of power of attorney

Effective date: 20140306

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140626

R150 Certificate of patent or registration of utility model

Ref document number: 5574434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees