JPWO2010029886A1 - Direct backlight unit - Google Patents

Direct backlight unit Download PDF

Info

Publication number
JPWO2010029886A1
JPWO2010029886A1 JP2010502385A JP2010502385A JPWO2010029886A1 JP WO2010029886 A1 JPWO2010029886 A1 JP WO2010029886A1 JP 2010502385 A JP2010502385 A JP 2010502385A JP 2010502385 A JP2010502385 A JP 2010502385A JP WO2010029886 A1 JPWO2010029886 A1 JP WO2010029886A1
Authority
JP
Japan
Prior art keywords
linear light
light source
optical member
manufactured
light sources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010502385A
Other languages
Japanese (ja)
Other versions
JP5749005B2 (en
Inventor
融司 河田
融司 河田
義和 佐藤
義和 佐藤
渡邊 修
渡邊  修
善彦 坂口
善彦 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010502385A priority Critical patent/JP5749005B2/en
Publication of JPWO2010029886A1 publication Critical patent/JPWO2010029886A1/en
Application granted granted Critical
Publication of JP5749005B2 publication Critical patent/JP5749005B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133604Direct backlight with lamps
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

本発明は、特殊な加工を施こした光学部材を用いなくても、管むらを効率的に抑制し、且つ高輝度な表示装置用の直下型バックライト装置を提供せんとするものである。本発明の直下型バックライト装置は、反射材、複数の線状光源、および光学部材群がこの順に配置され、下記(i)〜(v)の条件を満たすものである。(i) 前記複数の線状光源が、それぞれの線状光源の長手方向が平行になるように配置されている。(ii) 前記光学部材群の中の前記線状光源に最も近い光学部材が、線状光源側の面より光を入射させて測定したJIS K 7136(2000年)に基づいたヘイズ値が99.0%以下である。(iii) 前記光学部材群の中にプリズムシートがあり、このプリズムシートが、前記線状光源側とは反対側の面に一方向にのびた複数の凸型形状が形成され、複数の凸型形状の長手方向が平行であり、複数の凸型形状の長手方向が複数の線状光源の長手方向と平行である。(iv) 前記反射材が、前記線状光源側の面のJIS K 7105(1981年)に基づいて測定した60°光沢度が5以下である。(v) 前記複数の線状光源において隣接する線状光源の中心間の距離をL、線状光源の中心から前記線状光源に最も近い光学部材までの距離をHとしたとき、下記式(1)を満たすθが45°≦θ≦70°である。θ=tan−1((L/2)/H) ・・・ 式(1)The present invention is intended to provide a direct type backlight device for a display device that efficiently suppresses tube unevenness and has high brightness without using an optical member that has been subjected to special processing. In the direct type backlight device of the present invention, the reflecting material, the plurality of linear light sources, and the optical member group are arranged in this order, and satisfy the following conditions (i) to (v). (I) The plurality of linear light sources are arranged so that the longitudinal directions of the linear light sources are parallel to each other. (Ii) The haze value based on JIS K 7136 (2000) measured by the optical member closest to the linear light source in the optical member group entering light from the surface on the linear light source side is 99.99. 0% or less. (Iii) There is a prism sheet in the optical member group, and the prism sheet is formed with a plurality of convex shapes extending in one direction on the surface opposite to the linear light source side. The longitudinal directions of the plurality of convex shapes are parallel to the longitudinal directions of the plurality of linear light sources. (Iv) The reflective material has a 60 ° glossiness of 5 or less measured based on JIS K 7105 (1981) of the surface on the linear light source side. (V) When the distance between the centers of adjacent linear light sources in the plurality of linear light sources is L, and the distance from the center of the linear light source to the optical member closest to the linear light source is H, the following formula ( Θ satisfying 1) is 45 ° ≦ θ ≦ 70 °. θ = tan−1 ((L / 2) / H) (1)

Description

本発明は、各種表示装置、特に液晶表示装置の直下型バックライト装置に関する。   The present invention relates to various display devices, and more particularly to a direct backlight device for a liquid crystal display device.

液晶表示装置は、ノートパソコンや携帯電話機器を始め、テレビ、モニター、カーナビゲーション等、多様な用途に用いられている。液晶表示装置には、光源となるバックライト装置が組み込まれており、バックライト装置からの光線を液晶セルに通して制御することにより、表示される仕組みとなっている。このバックライト装置に求められる特性は、単に光を出射する光源としてだけではなく、画面全体を明るく且つ均一に光らせることである。   Liquid crystal display devices are used in various applications such as notebook computers and mobile phone devices, televisions, monitors, car navigation systems, and the like. The liquid crystal display device incorporates a backlight device serving as a light source, and is configured to display light by controlling light beams from the backlight device through a liquid crystal cell. The characteristic required for this backlight device is not only as a light source for emitting light, but also to make the entire screen shine brightly and uniformly.

バックライト装置の構成は大きく2つに分けることができる。1つは、サイドライト型バックライトと称される方式である。これは、例えば薄型化・小型化が求められるノートパソコン等に主に使用される方式であるが、基本構成として導光板を用いるのが特徴である。サイドライト型バックライトの場合、導光板の側面に光源を配置し、側面から導光板に光線を入射させて、導光板内部を全反射させながら面内全体に光を伝搬しつつ、導光板の裏面に施された拡散ドット等により一部を全反射条件から離脱させて導光板前面から採光することにより、バックライトすなわち面光源として機能させるものである。サイドライト型バックライトの場合には、これら構成以外にも、導光板の裏面から漏れ出る光を反射させて再利用させる機能を担う反射フィルム、導光板前面から出射する光を均一化させる拡散シート、正面輝度を向上させるプリズムシートに代表される集光シート、そして液晶パネル上での輝度を向上させる輝度向上シートなど、多種類の光学フィルムが用いられている。   The configuration of the backlight device can be roughly divided into two. One is a system called a sidelight type backlight. This is a method mainly used for, for example, a notebook personal computer or the like that is required to be thin and small, but is characterized by using a light guide plate as a basic configuration. In the case of a sidelight-type backlight, a light source is disposed on the side surface of the light guide plate, light is incident on the light guide plate from the side surface, and light is propagated throughout the surface while totally reflecting inside the light guide plate. A part of the light is removed from the total reflection condition by diffusing dots or the like applied to the back surface, and the light is collected from the front surface of the light guide plate, thereby functioning as a backlight, that is, a surface light source. In the case of a sidelight type backlight, in addition to these configurations, a reflection film that functions to reflect and reuse light leaking from the back surface of the light guide plate, and a diffusion sheet that equalizes the light emitted from the front surface of the light guide plate Various types of optical films are used, such as a light collecting sheet represented by a prism sheet that improves the front luminance, and a luminance improving sheet that improves the luminance on the liquid crystal panel.

また、もう1つの方式は、直下型バックライトと称される方式である。これは、大型化・高輝度化が求められるテレビ用途に好ましく用いられる方式であるが、基本構成としては、導光板は用いず、画面奥に直接蛍光管を並べたり、点光源のLEDを複数線状に配置した構造が特徴である。画面奥に線状または一部線状の蛍光管やLEDからなる線状光源を複数本平行に並べることにより、大画面にも対応可能で、さらに明るさも十分に確保できる。   Another method is a method called a direct type backlight. This is a method that is preferably used for television applications that require large size and high brightness, but as a basic configuration, a light guide plate is not used, but fluorescent tubes are arranged directly behind the screen, or a plurality of point light source LEDs are arranged. Its structure is a linear arrangement. By arranging a plurality of linear light sources composed of linear or partially linear fluorescent tubes or LEDs in the back of the screen, it is possible to cope with a large screen and to secure sufficient brightness.

しかしながら、特徴でもある画面奥に配置された蛍光管やLEDによる画面内の明るさむら(輝度むら)が生じ、ひいてはそのむらが蛍光管やLEDの点及び線状の像(以後管むらと称す。)となり画質低下の要因となってしまう。   However, brightness unevenness (luminance unevenness) in the screen due to fluorescent tubes and LEDs arranged at the back of the screen, which is also a feature, is caused, and as a result, the unevenness is a dot and a linear image of the fluorescent tubes and LEDs (hereinafter referred to as tube unevenness). )), Which is a cause of image quality degradation.

このため、直下型バックライトでは、この管むらを解消するため、極めて強い光拡散性を有する光拡散板を蛍光管の上側に配置し、画面の均一化を図っている(特許文献1)。光拡散板は、微粒子を分散させたアクリル樹脂、またはポリカーボネート樹脂等からなる光拡散板である。この光拡散板により管むらが解消され画面の均一化が図れるのであるが、強く拡散させるために全光線透過率が低く光利用効率が悪くなり、また強く拡散しすぎるために不要な方向へ光を散らしてしまい、結果として、必要となる正面の明るさが不十分となる。   For this reason, in the direct type backlight, in order to eliminate the tube unevenness, a light diffusion plate having extremely strong light diffusibility is arranged on the upper side of the fluorescent tube to make the screen uniform (Patent Document 1). The light diffusing plate is a light diffusing plate made of an acrylic resin or a polycarbonate resin in which fine particles are dispersed. This light diffusing plate eliminates tube unevenness and makes the screen uniform, but because it diffuses strongly, the total light transmittance is low and the light utilization efficiency deteriorates. As a result, the required front brightness is insufficient.

そこで、光拡散板の上に、光を等方的に拡散しながら、正面方向に集光効果を示す拡散シートを配置している。この拡散シートは、基材シート上に有機架橋粒子などの微粒子を含有した拡散層を形成したビーズシートと呼ばれるシートであり、光拡散板とは違い、ある程度正面方向への指向性を示す光学フィルムである。   Therefore, a diffusion sheet showing a light collecting effect in the front direction is disposed on the light diffusion plate while diffusing light isotropically. This diffusion sheet is a sheet called a bead sheet in which a diffusion layer containing fine particles such as organic cross-linked particles is formed on a base material sheet. Unlike a light diffusion plate, this diffusion film is an optical film that exhibits a certain degree of directivity in the front direction. It is.

またこれら以外にも、蛍光管やLEDから後方に出射される光を反射する反射部材、集光性を向上させるためのプリズムシートに代表される集光シート、蛍光管やLEDから放出した光の偏光を分離し液晶パネル上の輝度を向上させるための輝度向上シートなどが組み込まれており、様々シートを組み合わせて直下型バックライト装置を構成している。   In addition to these, a reflecting member that reflects light emitted backward from the fluorescent tube or the LED, a condensing sheet represented by a prism sheet for improving the condensing property, and a light emitted from the fluorescent tube or the LED. A brightness enhancement sheet for separating polarized light and improving the brightness on the liquid crystal panel is incorporated, and a direct type backlight device is configured by combining various sheets.

ところが近年注目されている薄型テレビに使用する直下型バックライトや、環境対応の点から消費電力を少なくすることを目的として搭載する蛍光管の数を削減した直下型バックライト、水銀等の重金属含有量が少ない点光源のLEDを搭載した直下型バックライト装置では、管むらが顕著に発生しやすく輝度も不足する場合がある。そのため、前述の光学部材を多数使用する必要があり、薄型化に困難を要したり、コストアップを招いたり、さらに光学部材製造時に使用する消費電力が多くなってしまい逆に環境負荷が増加する懸念がある。   However, direct-type backlights used for flat-screen TVs that have been attracting attention in recent years, direct-type backlights that reduce the number of fluorescent tubes installed to reduce power consumption from the viewpoint of environmental friendliness, and heavy metals such as mercury In a direct type backlight device equipped with a small amount of point light source LED, tube unevenness is likely to occur remarkably and luminance may be insufficient. For this reason, it is necessary to use a large number of the optical members described above, which makes it difficult to reduce the thickness, increases the cost, and further increases the power consumption used when manufacturing the optical member, which in turn increases the environmental load. There are concerns.

このような問題を解決するために、光拡散板に断面鋸歯状のプリズム形状を施すことにより各種シートの機能統合や性能向上を図る方法(特許文献2)や、その断面鋸歯状のプリズム形状を施した光拡散板に好適となるように反射部材を突起状に成型加工した方法(特許文献3)も提案されている。   In order to solve such a problem, a method (Patent Document 2) for improving the functions and performance of various sheets by applying a prism shape having a sawtooth cross section to the light diffusing plate, and a prism shape having a cross section sawtooth shape. There has also been proposed a method (Patent Document 3) in which a reflecting member is molded into a projection so as to be suitable for the applied light diffusion plate.


特開2004−29091号公報JP 2004-29091 A 特開2006−164890号公報JP 2006-164890 A 特開2006−155926号公報JP 2006-155926 A

しかしながら、特許文献1のような極めて強い光拡散性を有する光拡散板では、管むらを解消し画面の均斉度を高める効果はあるが、全光線透過率が高くなく高輝度化が困難である。   However, the light diffusing plate having extremely strong light diffusibility as in Patent Document 1 has an effect of eliminating the unevenness of the tube and increasing the uniformity of the screen, but the total light transmittance is not high and it is difficult to increase the luminance. .

また、特許文献2、3のように光拡散板や反射部材に成型加工を施す方法ではコストや生産性の点から好ましくないだけでなく、均斉度と輝度の両立が困難であり抜本的対策には至っていないのが実状である。   In addition, the method of molding the light diffusing plate and the reflecting member as in Patent Documents 2 and 3 is not preferable from the viewpoint of cost and productivity, and it is difficult to achieve both uniformity and luminance, and it is a drastic measure. The actual situation is not reached.

本発明は、このような従来技術の背景に鑑み、管むらを効率的に抑制し、且つ高輝度な表示装置用の直下型バックライト装置を提供するものである。すなわち本発明は、光学部材に特殊な加工を施すことなく用いても、管むらを効率的に抑制し、且つ高輝度な表示装置用の直下型バックライト装置を提供するものである。   In view of the background of such a prior art, the present invention provides a direct-type backlight device for a display device that efficiently suppresses tube unevenness and has high luminance. That is, the present invention provides a direct-type backlight device for a display device that efficiently suppresses tube unevenness and has high brightness even when used without applying special processing to an optical member.

本発明は、かかる課題を解決するために、次のような構成を採用する。すなわち本発明の直下型バックライト装置は反射材、複数の線状光源、および光学部材群がこの順に配置され、下記(i)〜(v)の条件を満たすものである。
(i) 前記複数の線状光源が、それぞれの線状光源の長手方向が平行になるように配置されている。
(ii) 前記光学部材群の中の前記線状光源に最も近い光学部材が、線状光源側の面より光を入射させて測定したJIS K 7136(2000年)に基づいたヘイズ値が99.0%以下である。
(iii) 前記光学部材群の中にプリズムシートがあり、このプリズムシートが、前記線状光源側とは反対側の面に一方向にのびた複数の凸型形状が形成され、複数の凸型形状の長手方向が平行であり、複数の凸型形状の長手方向が複数の線状光源の長手方向と平行である。
(iv) 前記反射材が、前記線状光源側の面のJIS K 7105(1981年)に基づいて測定した60°光沢度が5以下である。
(v) 前記複数の線状光源において隣接する線状光源の中心間の距離をL、線状光源の中心から前記線状光源に最も近い光学部材までの距離をHとしたとき、下記式(1)を満たすθが45°≦θ≦70°である。
In order to solve this problem, the present invention employs the following configuration. That is, in the direct type backlight device of the present invention, the reflecting material, the plurality of linear light sources, and the optical member group are arranged in this order, and satisfy the following conditions (i) to (v).
(I) The plurality of linear light sources are arranged so that the longitudinal directions of the linear light sources are parallel to each other.
(Ii) The optical member closest to the linear light source in the optical member group has a haze value of 99.99 based on JIS K 7136 (2000) measured by making light incident from the surface on the linear light source side. 0% or less.
(Iii) There is a prism sheet in the optical member group, and the prism sheet is formed with a plurality of convex shapes extending in one direction on the surface opposite to the linear light source side. The longitudinal directions of the plurality of convex shapes are parallel to the longitudinal directions of the plurality of linear light sources.
(Iv) The reflective material has a 60 ° glossiness of 5 or less measured based on JIS K 7105 (1981) on the surface of the linear light source.
(V) When the distance between the centers of adjacent linear light sources in the plurality of linear light sources is L, and the distance from the center of the linear light source to the optical member closest to the linear light source is H, the following formula ( Θ satisfying 1) is 45 ° ≦ θ ≦ 70 °.

θ=tan−1 ((L/2)/H) ・・・ 式(1)θ = tan −1 ((L / 2) / H) (1)

本発明によれば、特殊な加工を施した光学部材を用いなくても、管むらを効率的に抑制し、且つ高輝度な表示装置用の直下型バックライト装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it does not use the optical member which gave the special process, the direct-type backlight apparatus for display apparatuses which suppresses tube | pipe nonuniformity efficiently and is high-intensity can be provided.

本発明の直下型バックライト装置の断面図である。It is sectional drawing of the direct type | mold backlight apparatus of this invention. 本発明の管むら及び輝度評価に用いた直下型バックライト装置を上部より模式的に示す図である。It is a figure which shows typically the direct type | mold backlight apparatus used for the pipe unevenness and brightness | luminance evaluation of this invention from upper part.

本発明は、前記課題、つまり管むらの抑制を図れる直下型バックライト装置について、光学部材構成の組み合わせと光学部材の光学特性について、鋭意検討し、特定の光学特性を有する部材を特定の組み合わせにて使用したところ、光学部材に特殊な加工を施さずとも、かかる課題を一挙に解決することを究明したものである。   The present invention, which is a direct type backlight device capable of suppressing the above-mentioned problem, that is, tube unevenness, has earnestly studied the combination of the optical member configuration and the optical characteristics of the optical member, and the member having the specific optical characteristic is made into the specific combination. As a result, it has been clarified that such a problem can be solved all at once without performing special processing on the optical member.

本発明の直下型バックライト装置は、反射材、複数の線状光源、および光学部材群がこの順に配置され、下記(i)〜(v)の条件を満たすものである。
(i) 前記複数の線状光源が、それぞれの線状光源の長手方向が平行になるように配置されている。
(ii) 前記光学部材群の中の前記線状光源に最も近い光学部材が、線状光源側の面より光を入射させて測定したJIS K 7136(2000年)に基づいたヘイズ値が99.0%以下である。
(iii) 前記光学部材群の中にプリズムシートがあり、このプリズムシートが、前記線状光源側とは反対側の面に一方向にのびた複数の凸型形状が形成され、複数の凸型形状の長手方向が平行であり、複数の凸型形状の長手方向が複数の線状光源の長手方向と平行である。
(iv) 前記反射材が、前記線状光源側の面のJIS K 7105(1981年)に基づいて測定した60°光沢度が5以下である。
(v) 前記複数の線状光源において隣接する線状光源の中心間の距離をL、線状光源の中心から前記線状光源に最も近い光学部材までの距離をHとしたとき、下記式(1)を満たすθが45°≦θ≦70°である。
In the direct type backlight device of the present invention, the reflecting material, the plurality of linear light sources, and the optical member group are arranged in this order, and satisfy the following conditions (i) to (v).
(I) The plurality of linear light sources are arranged so that the longitudinal directions of the linear light sources are parallel to each other.
(Ii) The optical member closest to the linear light source in the optical member group has a haze value of 99.99 based on JIS K 7136 (2000) measured by making light incident from the surface on the linear light source side. 0% or less.
(Iii) There is a prism sheet in the optical member group, and the prism sheet is formed with a plurality of convex shapes extending in one direction on the surface opposite to the linear light source side. The longitudinal directions of the plurality of convex shapes are parallel to the longitudinal directions of the plurality of linear light sources.
(Iv) The reflective material has a 60 ° glossiness of 5 or less measured based on JIS K 7105 (1981) on the surface of the linear light source.
(V) When the distance between the centers of adjacent linear light sources in the plurality of linear light sources is L, and the distance from the center of the linear light source to the optical member closest to the linear light source is H, the following formula ( Θ satisfying 1) is 45 ° ≦ θ ≦ 70 °.

θ=tan−1 ((L/2)/H) ・・・ 式(1)
このような直下型バックライト構成とすると、管むらが抑制できる理由は明らかではないが、以下のような理由によると推定している。
θ = tan −1 ((L / 2) / H) (1)
With such a direct type backlight configuration, the reason why the tube unevenness can be suppressed is not clear, but it is presumed that the reason is as follows.

すなわち、蛍光管やLEDより放出した光の内、反射材側に到達した光が反射されてプリズムシートに入射するまでの間に、反射材においてある角度に拡散反射され、その角度をもった拡散反射光が前記(ii)のヘイズ値を有する光学部材を透過することで再度拡散されることにより、プリズムシートに到達した際にそのプリズムの変角・集光機能に好適な角度に拡散され、管むらの抑制に寄与しているのではないかと推定している。以下、各部材について詳細に説明をする。   That is, of the light emitted from the fluorescent tube or LED, the light reaching the reflector side is reflected and diffused and reflected at an angle on the reflector until it enters the prism sheet. The reflected light is diffused again by passing through the optical member having the haze value of (ii), so that when it reaches the prism sheet, it is diffused at an angle suitable for the angle changing / condensing function of the prism, It is estimated that it contributes to the suppression of tube unevenness. Hereinafter, each member will be described in detail.

本発明の直下型バックライト装置は、(i)複数の線状光源が、それぞれの線状光源の長手方向が平行になるように配置されているものである。ここでいう線状光源とは、光源自体が直線状のもの、光源の中に直線部分を有する形状(U字管、W字管など)のもの、点光源を線状に配置したもの、または直線状に明暗が観察されるものであればよく、特に限定されない。例えば、冷陰極管に代表される蛍光管や点光源のLED(白色タイプ及びRGBタイプ)を線状に配置したものが好ましく用いられる。これら直線に沿った方向が線状光源の長手方向である。   In the direct type backlight device of the present invention, (i) a plurality of linear light sources are arranged such that the longitudinal directions of the respective linear light sources are parallel to each other. As used herein, the linear light source means that the light source itself is linear, has a linear part in the light source (such as a U-shaped tube or W-shaped tube), has a point light source arranged in a linear shape, or There is no particular limitation as long as light and darkness can be observed in a straight line. For example, a fluorescent tube typified by a cold cathode tube or a point light source LED (white type and RGB type) arranged linearly is preferably used. The direction along these straight lines is the longitudinal direction of the linear light source.

本発明の直下型バックライト装置では、これらの線状光源が複数個平行となるように配置されている。複数の線状光源は厳密に平行に配置されていなくてもよく、各線状光源の長手方向のなす鋭角が10°以下になるように略平行に配置されていればよい。   In the direct type backlight device of the present invention, a plurality of these linear light sources are arranged in parallel. The plurality of linear light sources may not be arranged strictly in parallel, and may be arranged substantially in parallel so that the acute angle formed by the longitudinal direction of each linear light source is 10 ° or less.

また、光源の配列ピッチは、直下型バックライトユニット装置面内において不等であることも好ましい態様である。例えば、直下型バックライト装置の中央部を明るくしたい場合には、画面中央部での光源配列ピッチを短くすることで達成できる。また、画面端部において筐体の枠付近では暗くなるため、ここでも配列ピッチを短くすることで明るくできる。このように、画面内で明るさを調整する目的において、光源の配列ピッチを不等にすることで効果を発揮することがあり好ましい様態である。   It is also a preferred aspect that the arrangement pitch of the light sources is unequal within the plane of the direct type backlight unit device. For example, when it is desired to brighten the central portion of the direct type backlight device, this can be achieved by shortening the light source array pitch at the central portion of the screen. Moreover, since it becomes dark near the frame of the casing at the edge of the screen, it can be brightened by shortening the arrangement pitch here. As described above, for the purpose of adjusting the brightness in the screen, it is preferable to make the arrangement pitches of the light sources unequal, and this is effective.

本発明の直下型バックライト装置は、(ii)光学部材群の中の線状光源に最も近い光学部材が、線状光源側の面より光を入射させて測定したJIS K 7136(2000年)に基づいたヘイズ値が99.0%以下であることが必要である。ヘイズ値が99.0%より大きいと過剰な拡散光が多くなると推定され、前記(i)(iii)(iv)(v)の条件を満たした直下型バックライト装置であっても管むらが抑制できない。ヘイズ値が99.0%以下であれば直下型バックライト装置での管むらを抑制し得る効果が得られるため下限値は特には限定されないが、実質的な下限値は0.0%である。ヘイズ値が小さいほど管むらの抑制効果は小さくなる傾向にあるが高い輝度が得られるメリットがあり、一方、ヘイズ値が大きいほど管むらの抑制効果が得られるメリットがあり、要求する用途等に応じて選択すれば良い。そういった管むら抑制の効果と輝度の両立を図る意味では、反射材等その他部材との組み合わせもあるため一概には言えないが、ヘイズ値は97.5〜98.5%が性能バランスの良い直下型バックライト装置を得られる可能性が高く好ましい。   The direct type backlight device according to the present invention is measured according to JIS K 7136 (2000), in which (ii) the optical member closest to the linear light source in the optical member group is irradiated with light from the surface on the linear light source side. It is necessary that the haze value based on is 99.0% or less. If the haze value is larger than 99.0%, it is presumed that excessive diffused light increases. Even in the direct type backlight device that satisfies the conditions (i), (iii), (iv), and (v), the tube unevenness is generated. It cannot be suppressed. If the haze value is 99.0% or less, the lower limit value is not particularly limited because an effect of suppressing tube unevenness in the direct type backlight device is obtained, but the substantial lower limit value is 0.0%. . The smaller the haze value, the smaller the effect of suppressing tube unevenness, but there is a merit that high brightness can be obtained.On the other hand, the larger the haze value, there is a merit that the effect of suppressing tube unevenness can be obtained. Select according to your needs. In the sense of achieving both the effect of suppressing tube unevenness and brightness, there are some combinations with other materials such as reflectors. However, the haze value is 97.5-98.5%, which is directly under a good performance balance. A type backlight device is preferable because it is highly possible.

本発明にかかるヘイズ値は、日本電色工業(株)製、濁度計(曇り度計)NDH−2000を用い、JIS K 7136(2000年)に基づいて測定する。まず初めに機器の標準合わせを行った後、かかる部材を8cm角の大きさに切り出し、直下型バックライト装置に設置した際に線状光源側となる面から直角に(誤差±2°以内)平行な光束が入射するようにセットして測定する。1サンプルにつき各4隅と中心部分の5箇所を5サンプルについて測定し、計25箇所の平均値をヘイズ値とする。   The haze value according to the present invention is measured based on JIS K 7136 (2000) using a turbidimeter (cloudiness meter) NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd. First, after standardizing the equipment, cut out such a member to a size of 8cm square and perpendicular to the surface of the linear light source when installed in the direct type backlight device (within ± 2 ° error) Set and measure so that a parallel light beam enters. Five samples at four corners and the center part are measured for five samples per sample, and an average value of a total of 25 points is set as a haze value.

ヘイズ値が99.0%以下である光学部材を線状光源に最も近くに配置することにより管むらが抑制の効果が得られる理由は明らかではないが、以下のような理由によると推定している。   Although it is not clear why the effect of suppressing tube unevenness can be obtained by disposing an optical member having a haze value of 99.0% or less closest to the linear light source, it is estimated that the reason is as follows. Yes.

すなわち、線状光源の最も近くに配置した光学部材を透過した光が後述するプリズムシートに入射する際に、その入射角にプリズムシートに好適な角度分布があると推定され、ヘイズ値が99.0%を境にそれより大きい場合は管むら抑制効果を得られないことから、その入射角度分布を付与し得る光学部材のヘイズ値が99.0%以下なのである。線状光源側から、ヘイズ値が99.0%を越える光学部材、ヘイズ値が99.0%以下の光学部材という順に配置されたとしても本願発明の効果は得られない。この線状光源に最も近い光学部材は、ヘイズ値が99.0%以下であればどのような材質、形態であっても良く、例えばアクリル樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、主鎖及び/又は側鎖に脂環式構造を有するような樹脂等の中に粒子等の添加物を含有させ板状やフィルム・シート状に成型したもの、繊維状や布状のシート等が挙げられる。さらに発明の効果を阻害しない範囲でそれら表面のどちらか一方側もしくは両側にプリズム形状や半球形状に代表されるようなパターン形状等の賦形や粒子を含有した樹脂層、透過光の偏光分離機能を有する層を設けても良く、特にこれらに限定されるものではないが、より高い輝度及び管むら抑制能をバランスよく得るためには、プリズム形状賦形の光学部材が好んで用いられる。これら光学部材としては、具体的には、例えば、アクリル系樹脂光拡散板のスミペックス(登録商標)RMシリーズ(住友化学(株)製、クラレックス(登録商標)DRシリーズ(日東樹脂工業(株)製)、ポリカーボネート系樹脂光拡散板のパンライト(登録商標)シリーズ(帝人化成(株)製)、ポリスチレン系樹脂光拡散板(出光ユニテック(株)製)、脂環式樹脂系光拡散板のゼオノア拡散板シリーズ((株)オプテス製)等が挙げられるが、特にこれらに限定されるものではない。   That is, when light transmitted through an optical member arranged closest to the linear light source is incident on a prism sheet, which will be described later, it is presumed that the incident angle has a suitable angle distribution for the prism sheet, and the haze value is 99.99. If it is larger than 0%, the effect of suppressing tube unevenness cannot be obtained, so that the haze value of the optical member capable of providing the incident angle distribution is 99.0% or less. Even if they are arranged in the order of the optical member having a haze value exceeding 99.0% and the optical member having a haze value of 99.0% or less from the linear light source side, the effect of the present invention cannot be obtained. The optical member closest to the linear light source may be of any material and form as long as the haze value is 99.0% or less. For example, acrylic resin, polystyrene resin, polycarbonate resin, main chain and / or side Examples thereof include a resin or the like having a chain having an alicyclic structure and an additive such as particles, which are molded into a plate or film / sheet, and a fiber or cloth sheet. Furthermore, the resin layer containing particles such as a prismatic shape or a hemispherical shape such as a prism shape or a hemispherical shape, or a polarized light separating function for transmitted light, as long as the effect of the invention is not impaired. Although not limited to these, a prism-shaped optical member is preferably used in order to obtain a higher brightness and ability to suppress tube unevenness in a well-balanced manner. Specifically, as these optical members, for example, an acrylic resin light diffusing plate Sumipex (registered trademark) RM series (manufactured by Sumitomo Chemical Co., Ltd., Clarex (registered trademark) DR series (Nitto Resin Co., Ltd.) Panlite (registered trademark) series of polycarbonate resin light diffusion plate (manufactured by Teijin Chemicals Ltd.), polystyrene resin light diffusion plate (manufactured by Idemitsu Unitech Co., Ltd.), alicyclic resin light diffusion plate The ZEONOR diffusion plate series (manufactured by Optes Co., Ltd.) and the like can be mentioned, but are not particularly limited thereto.

本発明の直下型バックライト装置は、(iii)プリズムシートが、線状光源側とは反対側の面に一方向にのびた複数の凸型形状が形成され、複数の凸型形状の長手方向が平行であり、複数の凸型形状の長手方向が複数の線状光源の長手方向と平行であることが必要である。このような凸型形状が形成されていないと前記(i)(ii)(iv)(v)の条件を満たした直下型バックライト装置であっても管むらが抑制できない。ここで凸型形状はどのような形状であっても良く、凸型形状の長手方向に垂直な断面から観察した形状が例えば、レンチキュラーレンズのような半円形状(またはその反転形状)、正弦曲線形状、略楕円形状、鋭角・鈍角・直角の頂角を有する略三角形状(二等辺三角形もしくは非二等辺三角形)、いずれかの角が鋭角・鈍角・直角である略多角形状(正方形、長方形、台形、それら以外の多角形)、前記略三角形状の頂角部分が丸みを帯びた形状、波形状、形状や大きさが不規則に異なるように並んだランダム形状等が挙げられるが、特にこれらに限定されるものではなく、それらの形状を複数種組合せても良い。また、これら凸型形状はシート表面に隙間無く、すなわち平坦部無く敷き詰めるように設けても、また、規則的もしくは不規則に間隔を空けるよう設けても良く、特に限定されるものではない。   In the direct type backlight device of the present invention, (iii) the prism sheet is formed with a plurality of convex shapes extending in one direction on the surface opposite to the linear light source side, and the longitudinal direction of the plurality of convex shapes is It is necessary that the longitudinal directions of the plurality of convex shapes are parallel to the longitudinal direction of the plurality of linear light sources. If such a convex shape is not formed, tube unevenness cannot be suppressed even in a direct type backlight device that satisfies the conditions (i), (ii), (iv), and (v). Here, the convex shape may be any shape, and the shape observed from a cross section perpendicular to the longitudinal direction of the convex shape is, for example, a semicircular shape (or its inverted shape) like a lenticular lens, or a sine curve. Shape, almost elliptical shape, almost triangular shape (isosceles triangle or non-isosceles triangle) with acute angle, obtuse angle, right angle apex angle, almost polygonal shape (square, rectangle, Trapezoids, polygons other than these), the shape of the apex portion of the substantially triangular shape is rounded, the shape of a wave, the random shape in which the shapes and sizes are irregularly different, and the like. It is not limited to these, You may combine those types in multiple types. These convex shapes may be provided without gaps on the sheet surface, that is, provided so as to be spread without a flat portion, or may be provided with regular or irregular spacing, and are not particularly limited.

これら凸型形状を設ける方法としては、特に限定されるものではなく、例えば基材シート上に紫外線硬化もしくは熱硬化タイプの樹脂を設けた後に金型などで成型する方法、溶融した樹脂を射出成型する方法、エンボス加工する方法等種々の方法を適宜選択すれば良い。特に好ましい凸型形状は直角の頂角を有する略三角形状であり、その具体的な例としては、vikuiti BEFシリーズ(3M社製)やプリズムフィルムHGLシリーズ(EFUN TECHNOLOGY CO.Ltd製)等が挙げられる。   The method of providing these convex shapes is not particularly limited. For example, a method of forming an ultraviolet curable or thermosetting resin on a base sheet and then molding it with a mold or the like, or injection molding a molten resin Various methods such as a method for embossing and a method for embossing may be selected as appropriate. A particularly preferable convex shape is a substantially triangular shape having a right apex angle, and specific examples thereof include the vikuiti BEF series (manufactured by 3M) and the prism film HGL series (manufactured by EFUN TECHNOLOGY CO. Ltd). It is done.

また、凸型形状を設けるための基材シートの材質は例えば、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、シクロヘキサンジメタノール共重合ポリエステル樹脂、イソフタル酸共重合ポリエステル樹脂、スピログリコール共重合ポリエステル樹脂、フルオレン共重合ポリエステル樹脂等のポリエステル系樹脂、主鎖及び/又は側鎖に脂環式構造を有するような樹脂、ポリエチレン、ポリプロピレン、ポリメチルペンテン、脂環式オレフィン共重合樹脂等のポリオレフィン系樹脂、ポリメチルメタクリレート等のアクリル樹脂、ポリカーボネート、ポリスチレン、ポリアミド、ポリエーテル、ポリエステルアミド、ポリエーテルエステル、ポリ塩化ビニル、およびこれらを成分とする共重合体、またはこれら樹脂の混合物等の熱可塑性樹脂が挙げられる。これらのうちでは、機械的強度、耐熱性、寸法安定性の点において、二軸延伸されたポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、またはこれらをベースとしたその他成分との共重合体や、混合物などのポリエステル樹脂がより好ましく用いられるが、特にこれらに限定されるものではない。   The material of the base sheet for providing the convex shape is, for example, polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, polybutylene terephthalate, cyclohexanedimethanol copolymer polyester resin, isophthalic acid copolymer polyester resin, Polyester resins such as spiroglycol copolymer polyester resin and fluorene copolymer polyester resin, resins having an alicyclic structure in the main chain and / or side chain, polyethylene, polypropylene, polymethylpentene, alicyclic olefin copolymerization Polyolefin resin such as resin, acrylic resin such as polymethyl methacrylate, polycarbonate, polystyrene, polyamide, polyether, polyesteramide, polyetherester, polyvinyl chloride And copolymers and these components, or a thermoplastic resin such as a mixture of these resins. Among these, in terms of mechanical strength, heat resistance, dimensional stability, biaxially stretched polyethylene terephthalate, polyethylene-2,6-naphthalate, or a copolymer with other components based on these, Although polyester resins, such as a mixture, are used more preferably, it is not specifically limited to these.

また、凸型形状を設けたとしても、凸型形状の長手方向が線状光源の長手方向に平行にならないように配置すると前記(i)(ii)(iv)(v)の条件を満たした直下型バックライト装置であっても管むらが抑制できない。ここで凸型形状の長手方向と線状光源の長手方向とは完全に平行である必要はなく、凸型形状の長手方向と線状光源の長手方向とがなす鋭角が10°以下であれば管むらの抑制効果を発現することができる。   Further, even if the convex shape is provided, the above conditions (i), (ii), (iv), and (v) are satisfied when the convex shape is arranged so that the longitudinal direction thereof is not parallel to the longitudinal direction of the linear light source. Even in a direct type backlight device, tube unevenness cannot be suppressed. Here, the longitudinal direction of the convex shape and the longitudinal direction of the linear light source do not need to be completely parallel, and the acute angle formed by the longitudinal direction of the convex shape and the longitudinal direction of the linear light source is 10 ° or less. An effect of suppressing tube unevenness can be expressed.

本発明の直下型バックライト装置は、(iv)反射材の、線状光源側の面のJIS K 7105(1981年)に基づいて測定した60°光沢度が5以下であることが必要である。60°光沢度が5より大きいと前記(i)(ii)(iii)(v)の条件を満たした直下型バックライト装置であっても管むらが抑制できない。60°光沢度は好ましくは4以下、さらに好ましくは3以下である。   The direct-type backlight device of the present invention requires (iv) that the 60 ° glossiness measured on the basis of JIS K 7105 (1981) of the surface of the reflective material on the side of the linear light source is 5 or less. . If the 60 ° glossiness is greater than 5, tube unevenness cannot be suppressed even in a direct type backlight device that satisfies the conditions (i), (ii), (iii), and (v). The 60 ° gloss is preferably 4 or less, more preferably 3 or less.

本発明にかかる光沢度は、上記反射材の線状光源側に向けた面を、スガ試験機製 デジタル変角光沢計(UGv―4D)を用いて、JIS K 7105(1981年)に基づいて以下の手順で測定する。入射角および受光角を60°にあわせて、絞りを光源側が入射面内0.75±0.25°、垂直面内0.75±0.25°、受光器側が入射面内4.4±0.1°、垂直面内11.7±0.2°となるように、機器附属のスリットを設置する。次に機器附属の暗箱と一次基準面(黒色ガラス)を用いて標準構成を行う。各反射材から10cm角のサンプルを切り出し、測定装置にセットし、その上に試料のそりが生じないように黒色フェルトで裏打ちされた試料押さえで押さえる。各反射材について5サンプルを測定し、その平均値を光沢度60°光沢度とする。   The glossiness according to the present invention is as follows based on JIS K 7105 (1981) with the surface of the reflective material facing the linear light source side, using a digital variable angle gloss meter (UGv-4D) manufactured by Suga Test Instruments. Measure according to the procedure. Adjusting the incident angle and the light receiving angle to 60 °, the diaphragm is 0.75 ± 0.25 ° in the incident plane on the light source side, 0.75 ± 0.25 ° in the vertical plane, and the light receiving side is 4.4 ± in the incident plane. Install the slits attached to the equipment so that the angle is 0.1 ° and 11.7 ± 0.2 ° in the vertical plane. Next, the standard configuration is performed using the dark box attached to the equipment and the primary reference plane (black glass). A 10 cm square sample is cut out from each reflecting material, set in a measuring device, and pressed with a sample press lined with black felt so that the sample does not warp. Five samples are measured for each reflector, and the average value is defined as a glossiness of 60 °.

この反射材は60°光沢度が5以下であればどのような材質、形態であっても特に限定されるものではなく、例えば金属や合金の板、基材に金属層や白色層を設けたもの、不織布のような繊維状の材料をシート状に成型したもの、樹脂内部に非相溶の有機もしくは無機粒子を含有して白色のフィルムやシート状に成型したもの、樹脂内部に多数の気泡を含有し白色のフィルムやシート状に成型したもの等が挙げられる。これらの内、樹脂内部に多数の気泡を有した白色フィルムやシート状のものが、光沢度調整の容易さ、LEDのような色再現性の良好な光源に対する均一な反射性能、直下型バックライト装置に組み込んだ際の輝度、等の点から好ましい。内部に気泡を含有させる方法としては、例えば樹脂内部を発泡する方法や、樹脂との非相溶の有機もしくは無機粒子を含有し延伸等の工程にて粒子周囲に気泡を形成する方法等が挙げられる。特に本発明にかかる反射材は、可視光線反射率が高ければ高い方が良く、このためには内部に気泡を含有する白色フィルムが好ましく使用される。これらの白色フィルムとしては限定されるものではないが、多孔質の未延伸、あるいは二軸延伸ポリプロピレンフィルム、多孔質の未延伸あるいは延伸ポリエチレンテレフタレートフィルムが例として好ましく用いられる。これらの製造方法等については特開平8−262208号公報の〔0034〕〜〔0057〕、特開2002−90515号公報の〔0007〕〜〔0018〕、特開2002−138150号公報の〔0008〕〜〔0034〕等に詳細に開示されている。中でも特開2002−90515号公報の中に開示されている多孔質白色二軸延伸ポリエチレンテレフタレートフィルムや、耐熱性と反射率の点からポリエチレンナフタレートとの混合及び/又は共重合した多孔質白色二軸延伸ポリエチレンテレフタレートフィルムが、前述の理由で本発明にかかる反射材としての白色フィルムとして特に好ましい。   The reflective material is not particularly limited as long as the 60 ° glossiness is 5 or less, and is not particularly limited. For example, a metal layer or a white layer is provided on a metal or alloy plate or base material. , A non-woven fibrous material molded into a sheet, an incompatible organic or inorganic particle inside the resin and molded into a white film or sheet, a large number of bubbles inside the resin And a white film molded into a sheet or the like. Of these, white films and sheets with many bubbles inside the resin are easy to adjust glossiness, uniform reflection performance for light sources with good color reproducibility such as LEDs, direct type backlight This is preferable from the viewpoint of brightness when incorporated in the apparatus. Examples of the method of incorporating bubbles inside include a method of foaming the inside of the resin, a method of containing incompatible organic or inorganic particles with the resin, and a method of forming bubbles around the particles in a process such as stretching. It is done. In particular, the reflective material according to the present invention should have a high visible light reflectance, and for this purpose, a white film containing bubbles therein is preferably used. Although these white films are not limited, porous unstretched or biaxially stretched polypropylene films and porous unstretched or stretched polyethylene terephthalate films are preferably used as examples. Regarding these production methods and the like, [0034] to [0057] of JP-A-8-262208, [0007] to [0018] of JP-A-2002-90515, and [0008] of JP-A-2002-138150. To [0034] and the like. Among them, a porous white biaxially stretched polyethylene terephthalate film disclosed in Japanese Patent Application Laid-Open No. 2002-90515, and a porous white biaxially mixed and / or copolymerized with polyethylene naphthalate from the viewpoint of heat resistance and reflectance. An axially stretched polyethylene terephthalate film is particularly preferable as the white film as the reflective material according to the present invention for the reasons described above.

このような白色フィルムの構成は、使用する用途や要求する特性により適宜選択すれば良く、特に限定されるものではないが、少なくとも1層以上の構成を有する単層及び/又は2層以上の複合フィルムが好ましく、その少なくとも1層以上に気泡、無機粒子、有機粒子のいずれか1種以上を含有していることが好ましい。   The structure of such a white film may be appropriately selected depending on the application to be used and required characteristics, and is not particularly limited, but is a single layer having at least one layer and / or a composite having two or more layers. A film is preferable, and it is preferable that at least one layer thereof contains at least one of bubbles, inorganic particles, and organic particles.

単層構成(=1層)の例としては、たとえば単層のA層のみの白色フィルムであり、前記A層に気泡、無機粒子、有機粒子のいずれか1種以上を含有させた構成のものが挙げられる。また、2層構成の例としては、前記A層にB層を積層した、A層/B層の2層構成の白色フィルムであり、これらA、B層少なくともどちらか1層中に、気泡、無機粒子、有機粒子のいずれか1種以上を含有させた構成のものが挙げられる。さらに、3層構成の例としては、前記同様に、A層/B層/A層やA層/B層/C層の3層を積層してなる3層積層構造の白色フィルムであり、各層の内少なくとも1層中に、気泡、無機粒子、有機粒子のいずれか1種以上を含有させた構成のものが挙げられる。3層構成の場合、生産性の観点からB層が気泡を含有する層であることが最も好ましい。   An example of a single layer configuration (= 1 layer) is, for example, a white film having only a single A layer, and the A layer contains one or more of bubbles, inorganic particles, and organic particles. Is mentioned. In addition, as an example of a two-layer structure, a white film having a two-layer structure of A layer / B layer in which a B layer is laminated on the A layer, and at least one of these A and B layers includes bubbles, The thing of the structure containing any one or more of an inorganic particle and an organic particle is mentioned. Further, as an example of the three-layer structure, as described above, a white film having a three-layer laminated structure in which three layers of A layer / B layer / A layer and A layer / B layer / C layer are laminated, The thing of the structure which contained any 1 or more types of a bubble, an inorganic particle, and an organic particle in at least 1 layer is mentioned. In the case of a three-layer configuration, the B layer is most preferably a layer containing bubbles from the viewpoint of productivity.

かかる白色フィルムに含有する無機微粒子及び/又は有機粒子の数平均粒子径は、0.3〜2.0μmであるのが好ましい。かかる有機粒子として、高融点である架橋高分子成分を主体とする樹脂が好ましく、例えばポリエステル樹脂、ベンゾグアナミンのようなポリアミド系樹脂粒子、ポリウレタン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリ酢酸ビニル樹脂、フッ素系樹脂、シリコーン樹脂粒子、及びそれらの中空粒子などが挙げられる。これらの樹脂は単独で用いてもよく、あるいは2種以上の共重合体もしくは混合物としたものを用いてもよい。白色フィルムの耐光性という点では、含有する球状粒子に紫外線吸収剤、光安定化剤が含まれていることが好ましい。また、かかる無機粒子としては、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、酸化チタン、酸化亜鉛、酸化セリウム、酸化マグネシウム、硫酸バリウム、硫化亜鉛、リン酸カルシウム、シリカ、アルミナ、マイカ、雲母チタン、タルク、クレー、カオリン、フッ化リチウム、フッ化カルシウム等を用いることができる。   The number average particle diameter of the inorganic fine particles and / or organic particles contained in the white film is preferably 0.3 to 2.0 μm. As such organic particles, resins mainly composed of a high-melting cross-linked polymer component are preferable. For example, polyester resin, polyamide resin particles such as benzoguanamine, polyurethane resin, acrylic resin, methacrylic resin, polyamide resin, polyethylene resin, polypropylene Examples thereof include resins, polyvinyl chloride resins, polyvinylidene chloride resins, polystyrene resins, polyvinyl acetate resins, fluorine-based resins, silicone resin particles, and hollow particles thereof. These resins may be used alone, or two or more copolymers or a mixture thereof may be used. In terms of the light resistance of the white film, it is preferable that the contained spherical particles contain an ultraviolet absorber and a light stabilizer. Examples of the inorganic particles include calcium carbonate, magnesium carbonate, zinc carbonate, titanium oxide, zinc oxide, cerium oxide, magnesium oxide, barium sulfate, zinc sulfide, calcium phosphate, silica, alumina, mica, titanium mica, talc, clay, Kaolin, lithium fluoride, calcium fluoride, or the like can be used.

このような白色フィルムの例としては、まず、単層構成の白色フィルムとしては、ルミラー(登録商標)E20(東レ(株)製)、SY64、SY70(SKC製)、ホワイトレフスター(登録商標)WS−220(三井化学(株)製)などが挙げられ、2層構成の白色フィルムとしては、テトロン(登録商標)フィルムUXZ1、UXSP(帝人デュポンフィルム(株)製)などが挙げられ、3層構成の白色フィルムとしては、ルミラー(登録商標)E60L、E6SL、E6SR、E6SQ、E6Z、E6Z2、E80、E80A、E80B(東レ(株)製)、テトロン(登録商標)フィルムUX、UXH(帝人デュポンフィルム(株)製)、PL230(三菱樹脂(株)製)などが挙げられる。また、これら以外の構成である白色シートの例として、Optilon ACR3000、ACR3020(デュポン(株)製)、MCPET(登録商標)(古河電気工業(株)製)が挙げられる。これらの(iv)線状光源側に向けた面がJIS K 7105(1981年)に準じた60°光沢度を5以下であれば、単体として本発明の直下型バックライト装置の反射材として用いれば良く、光沢度が5より大きい場合は後述するような方法にて、光沢度を5以下に調整して使用すればよい。   As an example of such a white film, as a white film having a single layer structure, Lumirror (registered trademark) E20 (manufactured by Toray Industries, Inc.), SY64, SY70 (manufactured by SKC), White Lefster (registered trademark) WS-220 (manufactured by Mitsui Chemicals, Inc.) and the like, and examples of the white film having a two-layer structure include Tetron (registered trademark) film UXZ1, UXSP (manufactured by Teijin DuPont Films Co., Ltd.), and the like. As the white film of the configuration, Lumirror (registered trademark) E60L, E6SL, E6SR, E6SQ, E6Z, E6Z2, E80, E80A (made by Toray Industries, Inc.), Tetron (registered trademark) film UX, UXH (Teijin DuPont film) And PL230 (Mitsubishi Resin Co., Ltd.). Moreover, as an example of a white sheet having a configuration other than these, Optilon ACR3000, ACR3020 (manufactured by DuPont), MCPET (registered trademark) (manufactured by Furukawa Electric Co., Ltd.) can be mentioned. If these (iv) surfaces facing the linear light source have a 60 ° glossiness of 5 or less according to JIS K 7105 (1981), they are used as a reflector of the direct type backlight device of the present invention as a single unit. If the glossiness is higher than 5, the glossiness should be adjusted to 5 or less by the method described later.

本発明における反射材は、フィルムやシートの基材自体の60°光沢度が5より大きい場合、基材にさらに各種加工を施すことによって60°光沢度を5以下に調整して反射材とする必要がある。加工方法は特に限定されるものではなく、例えば紫外線硬化もしくは熱硬化タイプの樹脂を設けた後に金型などで成型する方法、エンボス加工する方法、サンドブラスト加工する方法、ラミネート加工する方法、コーティング加工する方法、2層以上の構成のうち表層を剥離加工する方法、等種々の方法を適宜選択すれば良い。   When the 60 ° glossiness of the film or sheet base material itself is larger than 5, the reflective material in the present invention is further adjusted to 60 ° glossiness to 5 or less by further various processing on the base material. There is a need. The processing method is not particularly limited. For example, a method of molding with a mold after providing an ultraviolet curing or thermosetting resin, a method of embossing, a method of sandblasting, a method of laminating, or a coating process Various methods such as a method, a method of peeling a surface layer among two or more layers, and the like may be appropriately selected.

本発明における反射材は、線状光源側の面に粒子を含有する樹脂層を有することが好ましい。粒子を含有することによって60°光沢度を5以下に調整することが容易であり、ひいては管むらの抑制につながる。前記粒子の形状は、一義的に限定されるものではなく例えば、星状、葉状や円盤状のような扁平状、菱形状、直方状、針状、金平糖状、不定形状のような非球形状、また球状(必ずしも真球だけを意味するのではなく、粒子の断面形状が円形、楕円形、ほぼ円形、ほぼ楕円形等など曲面で囲まれているものを意味する)等が挙げられ、また、それら形状の粒子が多孔質、無孔質、中空質であっても良く、特にこれらに限定されるものではない。さらに前記粒子は、含有することによって60°光沢度が5以下となれば有機系化合物、無機物、無機化合物のいずれでも良く一義的に限定されるものではない。   The reflecting material in the present invention preferably has a resin layer containing particles on the surface on the linear light source side. By containing particles, it is easy to adjust the 60 ° glossiness to 5 or less, which leads to suppression of tube unevenness. The shape of the particles is not uniquely limited. For example, a flat shape such as a star shape, a leaf shape, or a disk shape, a rhombus shape, a rectangular shape, a needle shape, a confetti shape, an aspheric shape such as an indefinite shape. In addition, spherical (not necessarily only a true sphere, but a particle whose cross-sectional shape is surrounded by a curved surface such as a circle, an ellipse, a substantially circle, a substantially ellipse, etc.), etc. The particles having these shapes may be porous, nonporous or hollow, and are not particularly limited thereto. Furthermore, if the 60 degree glossiness becomes 5 or less by containing the particles, any of an organic compound, an inorganic substance, and an inorganic compound may be used, and the particle is not uniquely limited.

反射材の線状光源側の面に粒子を含有する樹脂層を設ける方法は例えば、粒子とバインダー樹脂等を含有した塗液をグラビアコート、ロールコート、スピンコート、リバースコート、バーコート、スクリーンコート、ブレードコート、エアーナイフコートよびディッピングなどの各種塗布方法を用いて、反射材製造時に塗布(インラインコーティング)したり、結晶配向完了後の反射材上に塗布(オフラインコーティング)するなどで塗布層を設ける方法で形成したり、粒子を含有したフィルムやシートをラミネートなどにより貼り合わせる方法が挙げられるが、特にこれらに限定されるものではない。また、前記粒子を含有する層を設ける面は特に限定されるものではなく、反射材がA層/B層の2層構造、A層/B層/A層もしくはA層/B層/C層の3層構造である場合、どちら側に設けてもよい。   The method of providing a resin layer containing particles on the surface of the reflective material on the linear light source side is, for example, gravure coating, roll coating, spin coating, reverse coating, bar coating, screen coating with a coating liquid containing particles and a binder resin. Using various coating methods such as blade coating, air knife coating, and dipping, the coating layer can be applied at the time of production of the reflective material (in-line coating) or on the reflective material after completion of crystal orientation (off-line coating). Examples of the method include a method of forming, and a method of bonding a film or sheet containing particles by lamination or the like, but is not particularly limited thereto. Further, the surface on which the layer containing the particles is provided is not particularly limited, and the reflective material is a two-layer structure of A layer / B layer, A layer / B layer / A layer or A layer / B layer / C layer. If it is a three-layer structure, it may be provided on either side.

このような粒子を含有した層を有する反射材の例としては、ルミラー(登録商標)E6QD、E6ZD(東レ(株)製)、DR240T、RE240T(ETERNAL CHEMICAL CO.,Ltd製)などが挙げられる。   Examples of the reflective material having a layer containing such particles include Lumirror (registered trademark) E6QD, E6ZD (manufactured by Toray Industries, Inc.), DR240T, RE240T (manufactured by ETRNAL CHEMICAL CO., Ltd).

本発明における反射材は、直下型バックライト装置に使用すると、光源、特に冷陰極管などのランプから出る光、そのうち特に紫外線によって反射材や樹脂層に含有する粒子が劣化する場合がある(例えば黄変などの光学的劣化、あるいは低分子化する分解劣化など)。そのため、反射材上に設ける粒子を含有する樹脂層を形成する樹脂中に、本発明の効果を阻害しない範囲内で、紫外線吸収剤および/あるいは光安定剤を含有するのが好ましい。   When the reflective material in the present invention is used in a direct type backlight device, particles contained in the reflective material or the resin layer may be deteriorated by light emitted from a light source, particularly a lamp such as a cold cathode tube, particularly ultraviolet rays (for example, Optical degradation such as yellowing, or degradation degradation that lowers the molecular weight). Therefore, it is preferable to contain an ultraviolet absorber and / or a light stabilizer within the range that does not impair the effects of the present invention in the resin that forms the resin layer containing particles provided on the reflector.

本発明における反射材に設ける樹脂層中の前記粒子の含有率は、60°光沢度が5以下となれば特に限定されず、また、反射材や粒子の種類、生産性等にも依存するため、一義的に限定することはできないが、管むら抑制の効果と輝度とのバランスが良好な含有率を選択すればよい。光沢度と生産性を考慮すると、樹脂層全体に対して0.2重量%以上75重量%以下であることが好ましい。該粒子の含有率が0.2重量%より少ない場合は、60°光沢度が5以下とならない場合がある。また、75重量%を超えると生産性が極端に劣るため、75重量%以下に制御するのが好ましい。好ましくは50重量%以上75重量%以下であり、さらに好ましくは65重量%以上75重量%以下である。   In the present invention, the content of the particles in the resin layer provided on the reflective material is not particularly limited as long as the 60 ° gloss is 5 or less, and also depends on the type of the reflective material, the particles, and productivity. Although it cannot be limited uniquely, it is sufficient to select a content ratio that has a good balance between the effect of suppressing tube unevenness and luminance. Considering glossiness and productivity, it is preferably 0.2% by weight or more and 75% by weight or less with respect to the entire resin layer. When the content of the particles is less than 0.2% by weight, the 60 ° gloss may not be 5 or less. Moreover, since productivity will be extremely inferior when it exceeds 75 weight%, it is preferable to control to 75 weight% or less. Preferably they are 50 to 75 weight%, More preferably, they are 65 to 75 weight%.

本発明における反射材に設ける粒子を含有した樹脂層の厚みは、反射材や粒子の種類、含有率に依存するが、0.05〜50μmであることが好ましい。樹脂層の厚みが0.05μm未満であると、管むら抑制の効果を損ねる場合がある。逆に厚みが50μmを越えると経済性の面から好ましくない。尚、ここでいう樹脂層の厚みとは、粒子を含有する樹脂層の総厚みのことで、1層以上有する場合は、その樹脂層全体の厚み、つまり複数層の樹脂層全体の厚みより求めたものである。   Although the thickness of the resin layer containing the particles provided in the reflective material in the present invention depends on the type of the reflective material, the particles, and the content, it is preferably 0.05 to 50 μm. If the thickness of the resin layer is less than 0.05 μm, the effect of suppressing tube unevenness may be impaired. On the other hand, if the thickness exceeds 50 μm, it is not preferable from the viewpoint of economy. In addition, the thickness of the resin layer here is the total thickness of the resin layer containing particles. When it has one or more layers, it is obtained from the thickness of the entire resin layer, that is, the thickness of the entire resin layer of a plurality of layers. It is a thing.

本発明における直下型バックライト装置は、(v)前記線状光源が、隣接する線状光源の中心間の距離をL、線状光源の中心から線状光源に最も近い光学部材までの距離をHとしたときに、下記式(1)を満たすθが45°≦θ≦70°となるように配置されていることが必要である。   In the direct type backlight device according to the present invention, (v) the linear light source has a distance L between the centers of adjacent linear light sources, and a distance from the center of the linear light source to the optical member closest to the linear light source. When H is set, it is necessary that θ satisfying the following formula (1) is 45 ° ≦ θ ≦ 70 °.

θ=tan−1 ((L/2)/H) ・・・ 式(1)。
より好ましくは、式(1)を満たすθが50°≦θ≦70°となるように配置されていることであり、特に好ましくは、式(1)を満たすθが60°≦θ≦70°となるように配置されていることである。
θ = tan −1 ((L / 2) / H) (1)
More preferably, it is arranged such that θ satisfying the formula (1) is 50 ° ≦ θ ≦ 70 °, and particularly preferably, θ satisfying the formula (1) is 60 ° ≦ θ ≦ 70 °. It is arranged so that.

ここでθが大きくなるということは、線状光源と線状光源に最も近い光学部材との距離が小さくなること、もしくは線状光源同士の距離が広がることを意味する。薄型の直下型バックライト装置は前者の傾向、環境対応の点から消費電力を少なくすることを目的として搭載する蛍光管の数を削減した直下型バックライト装置では後者の傾向にある。本発明においては驚くべきことは、式(1)を満たすθが大きな場合に、より管むらの抑制効果が大きいということ、すなわち薄型あるいは蛍光管の数を削減した直下型バックライト装置においてより大きな管むら抑制効果を発揮するということである。   Here, θ increases means that the distance between the linear light source and the optical member closest to the linear light source decreases, or the distance between the linear light sources increases. Thin direct-type backlight devices tend to be the former, and direct-type backlight devices with a reduced number of fluorescent tubes mounted for the purpose of reducing power consumption from the viewpoint of environmental friendliness tend to be the latter. Surprisingly, in the present invention, when θ satisfying the formula (1) is large, the effect of suppressing tube unevenness is larger, that is, it is larger in a direct type backlight device that is thin or has a reduced number of fluorescent tubes. It means that the tube unevenness suppression effect is exhibited.

さらに好ましくは、式(1)を満たすθが45°≦θ≦70°且つH≦10mmを満たすように線状光源が配置された直下型バックライトであり、さらに管むらを抑制する効果が大きい。   More preferably, it is a direct type backlight in which the linear light source is arranged so that θ satisfying the formula (1) satisfies 45 ° ≦ θ ≦ 70 ° and H ≦ 10 mm, and further has a great effect of suppressing tube unevenness. .

本発明の直下型バックライト装置は、反射材、複数の線状光源、光学部材群がこの順に配置され、前記(i)〜(v)の条件を満たしている限り、光学部材群の中にさらにヘイズ値が99.0%以下の光学部材、プリズムシート、あるいはこれら以外のフィルムやシートの光学部材(以下、その他光学シートとする)が含まれていてもよい。光学部材群の構成としては、線状光源側から順に「ヘイズ値が99.0%以下の光学部材/プリズムシート/その他光学シート」「ヘイズ値が99.0%以下の光学部材/その他光学シート/プリズムシート」「ヘイズ値が99.0%以下の光学シート/プリズムシート/プリズムシート」等があるが、特にこれらに限定されるものではない。   In the direct backlight device of the present invention, the reflector, the plurality of linear light sources, and the optical member group are arranged in this order, and as long as the conditions (i) to (v) are satisfied, Furthermore, an optical member having a haze value of 99.0% or less, a prism sheet, or an optical member of a film or sheet other than these (hereinafter referred to as other optical sheet) may be included. As a configuration of the optical member group, “optical member / prism sheet / other optical sheet having haze value of 99.0% or less” “optical member / other optical sheet having haze value of 99.0% or less” in order from the linear light source side / Prism sheet "" optical sheet having a haze value of 99.0% or less / prism sheet / prism sheet ", but not limited thereto.

これらその他光学シートとしては、例えば、基材に粒子を含有した層や半球形状突起を設けることにより光拡散性や輝度を向上させうる機能を有するフィルムやシートや透過光の偏光特性を制御することにより偏光分離機能を有するフィルムやシート等が挙げられるが、特にこれらに限定されるものではない。それらフィルムやシート部材としては、具体的には、例えば、ライトアップ100GM2、ライトアップ100GM3((株)きもと製)、UTEI、UTEII(MNTech Co.,Ltd製)、vikuiti DBEFシリーズ(3M社製)等が挙げられるが、特にこれらに限定されるものではない。   As these other optical sheets, for example, a film or sheet having a function capable of improving light diffusibility and luminance by providing a layer containing particles or a hemispherical projection on a base material, or controlling polarization characteristics of transmitted light Examples thereof include a film or sheet having a polarization separation function, but are not particularly limited thereto. Specific examples of such films and sheet members include, for example, Light-Up 100GM2, Light-Up 100GM3 (manufactured by Kimoto Co., Ltd.), UTEI, UTEII (manufactured by MNTech Co., Ltd.), vikuiti DBEF series (manufactured by 3M) However, it is not particularly limited to these.

本発明におけるヘイズ値が99.0%以下の光学部材、プリズムシート、反射材、反射材に積層された粒子を含有する樹脂層には、本発明の効果を阻害しない範囲内で各種の添加剤を添加することができる。添加剤としては、例えば、有機および/または無機の微粒子、蛍光増白剤に代表される発光材料、架橋剤、難燃剤、難燃助剤、耐熱安定剤、耐酸化安定剤、有機の滑剤、帯電防止剤、核剤、染料、充填剤、分散剤およびカップリング剤などを用いることができる。   In the resin layer containing an optical member having a haze value of 99.0% or less, a prism sheet, a reflective material, and particles laminated on the reflective material in the present invention, various additives within a range that does not impair the effects of the present invention. Can be added. Examples of additives include organic and / or inorganic fine particles, luminescent materials represented by fluorescent brightening agents, crosslinking agents, flame retardants, flame retardant aids, heat stabilizers, oxidation stabilizers, organic lubricants, Antistatic agents, nucleating agents, dyes, fillers, dispersants, coupling agents, and the like can be used.

測定方法および評価方法を以下に示す。   The measurement method and evaluation method are shown below.

(1)部材のヘイズ値
日本電色工業(株)製、濁度計(曇り度計)NDH−2000を用い、JIS K 7136(2000年)に基づいて測定する。サンプルは直下型バックライト装置の線状光源に最も近くに配置する部材(但し、反射材は除く)を8cm角に切り出す。複数の部材が粘着材等で張り合わせされている場合は、有機溶剤に充分な時間浸漬し、表面に傷を付けないように各部材を剥離し、粘着材等をふき取った後、充分乾燥させたものを用いる。取り出した線状光源の最も近くに配置する部材のサンプルを直下型バックライト装置に設置した際に線状光源側となる面から直角に(誤差±2°以内)平行な光束が入射するようにセットして測定する。1サンプルにつき各4隅と中心部分の5箇所を5サンプルについて測定し、計25箇所の平均値をヘイズ値とする。
(1) Haze value of member It measures based on JISK7136 (2000) using Nippon Denshoku Industries Co., Ltd. product, and a turbidimeter (cloudiness meter) NDH-2000. For the sample, a member (excluding the reflecting material) arranged closest to the linear light source of the direct type backlight device is cut into an 8 cm square. When multiple members are pasted together with an adhesive, etc., immerse in an organic solvent for a sufficient time, peel off each member so as not to damage the surface, wipe off the adhesive, etc., and then dry sufficiently Use things. When a sample of a member arranged closest to the extracted linear light source is installed in a direct type backlight device, a parallel light beam is incident at a right angle (within an error of ± 2 °) from the surface on the linear light source side. Set and measure. Five samples at four corners and the center part are measured for five samples per sample, and an average value of a total of 25 points is set as a haze value.

(2)シートの凸型形状の有無、凸型形状の形
サンプルを日本ミクトローム研究所(株)製ロータリー式ミクロトームを使用し、ナイフ傾斜角度3°にてシート平面に垂直な方向に、且つ、できるだけ凸型形状の長手方向に垂直になるように切断する。得られたシート断面を、トプコン社製走査型電子顕微鏡ABT−32を用いて、凸型形状が視野領域に写し出されるように観察倍率2500倍にて、また、画像のコントラストを適宜調節して凸型形状の形を観察する。同様に凸型形状の長手方向に2〜5cm間隔で計5箇所を観察し、複数の凸型形状が略一方向に延びているか否かを観察する。凸型形状が確認できなかった場合は、同様に観察倍率5000倍でも観察し、それでも観察できなかった場合は観察倍率10000倍にて観察する。いずれかの観察倍率にて複数の凸型形状が略一方向に延びていることが確認できた場合には、凸型形状有りとし、いずれの観察倍率においても型形状が略一方向に延びていることが確認できなかった場合には、凸型形状無しとする。
(2) Presence / absence of convex shape of the sheet, and the shape of the convex shape. Using a rotary microtome manufactured by Nippon Microtome Laboratories Co., Ltd., in a direction perpendicular to the sheet plane at a knife inclination angle of 3 °, and Cut as perpendicular to the longitudinal direction of the convex shape as possible. Using the scanning electron microscope ABT-32 manufactured by Topcon Corporation, the obtained sheet cross-section is convex with an observation magnification of 2500 times so that the convex shape is projected in the visual field region, and the image contrast is adjusted appropriately. Observe the shape of the mold shape. Similarly, a total of five places are observed at intervals of 2 to 5 cm in the longitudinal direction of the convex shape, and it is observed whether or not the plurality of convex shapes extend in substantially one direction. When the convex shape cannot be confirmed, the observation is similarly performed at an observation magnification of 5000 times. When the convex shape is not observed, the observation is performed at an observation magnification of 10,000. When it can be confirmed that a plurality of convex shapes extend substantially in one direction at any observation magnification, it is assumed that there is a convex shape, and the mold shape extends in substantially one direction at any observation magnification. If it cannot be confirmed, no convex shape is assumed.

(3)反射材の60°光沢度
反射材の線状光源側に向けた面を、スガ試験機製 デジタル変角光沢計(UGv―4D)を用いて、JIS K 7105(1981年)に基づいて以下の手順で測定する。入射角および受光角を60°にあわせて、絞りを光源側が入射面内0.75±0.25°、垂直面内0.75±0.25°、受光器側が入射面内4.4±0.1°、垂直面内11.7±0.2°となるように、機器附属のスリットを設置する。次に暗箱と一次基準面(黒色ガラス)を用いて標準校正を行う。各反射材から10cm角のサンプルを切り出し、測定装置にセットし、その上にサンプルのそりが生じないように黒色フェルトで裏打ちされた試料押さえで押さえる。各反射材について5サンプルを測定し、その平均値を60°光沢度とする。
(3) 60 ° glossiness of the reflective material The surface of the reflective material facing the linear light source side is based on JIS K 7105 (1981) using a digital variable angle gloss meter (UGv-4D) manufactured by Suga Test Instruments. Measure according to the following procedure. Adjusting the incident angle and the light receiving angle to 60 °, the diaphragm is 0.75 ± 0.25 ° in the incident plane on the light source side, 0.75 ± 0.25 ° in the vertical plane, and the light receiving side is 4.4 ± in the incident plane. Install the slits attached to the equipment so that the angle is 0.1 ° and 11.7 ± 0.2 ° in the vertical plane. Next, standard calibration is performed using a dark box and a primary reference plane (black glass). A 10 cm square sample is cut out from each reflector, set in a measuring device, and pressed by a sample press lined with black felt so that the sample does not warp. Five samples are measured for each reflector, and the average value is taken as 60 ° gloss.

(4)反射材の粒子を含有した樹脂層の有無、粒子の形状
サンプルを日本ミクトローム研究所(株)製ロータリー式ミクロトームを使用し、ナイフ傾斜角度3°にて反射材平面に垂直な方向切断する。得られた反射材断面を、トプコン社製走査型電子顕微鏡ABT−32を用いて、樹脂層が視野領域に写し出されるように、観察倍率2500倍にて、また、画像のコントラストを適宜調節して線状光源側の樹脂層有無、粒子有無、粒子の形状を観察する。樹脂層有無、粒子有無、粒子の形状が判別できなかった場合は、同様に観察倍率5000倍でも観察し、それでも判別できなかった場合は観察倍率10000倍にて観察する。いずれかの観察倍率にて樹脂層あるいは/及び粒子が確認されれば、樹脂層あるいは/及び粒子有りとし、いずれの観察倍率においても樹脂層あるいは/及び粒子が確認できなかった場合には、樹脂層あるいは/及び粒子無しとする。
(4) Presence / absence of resin layer containing particles of reflecting material, shape of the sample Using a rotary microtome manufactured by Nippon Microtome Laboratories Co., Ltd., cutting the direction perpendicular to the reflecting material plane at a knife inclination angle of 3 ° To do. Using the scanning electron microscope ABT-32 manufactured by Topcon Corporation, the obtained reflecting material cross section was adjusted at an observation magnification of 2500 times and the image contrast was appropriately adjusted so that the resin layer was projected in the visual field region. The presence or absence of the resin layer, the presence or absence of particles, and the shape of the particles on the linear light source side are observed. If the presence / absence of the resin layer, the presence / absence of particles, and the shape of the particles cannot be discriminated, the observation is similarly performed at an observation magnification of 5000 times. If the resin layer or / and particles are confirmed at any magnification, the resin layer or / and particles are present. If the resin layer or / and particles are not confirmed at any magnification, the resin No layers or / and particles.

(5)直下型バックライト装置の輝度、管むら
後述する直下型バックライト(計2種)に各種部材を配置した後に蛍光管を点灯する。点灯してから1時間経過後に(株)コニカミノルタセンシング製、2次元輝度計CA−2000を用いて、図1に示すように直下型バックライト装置に対し正面方向、すなわち直下型バックライト装置に垂直方向より輝度および管むらを測定する。測定領域は、直下型バックライト装置中央部分で、蛍光管に平行な方向に20cmを縦、蛍光管に垂直な方向に隣接する蛍光管の中心間距離の7倍の距離を横とし、その縦横四方の縦に蛍光管が7本入る領域とする。この測定領域の輝度および均斉度を求める。
(5) Luminance and tube unevenness of direct type backlight device After various members are arranged in direct type backlights (two types in total) described later, the fluorescent tube is turned on. 1 hour after lighting, using a two-dimensional luminance meter CA-2000 manufactured by Konica Minolta Sensing Co., Ltd., as shown in FIG. 1, in the front direction, that is, directly below the backlight device. The brightness and tube unevenness are measured from the vertical direction. The measurement area is the central part of the direct type backlight device, 20 cm long in the direction parallel to the fluorescent tube, and 7 times the distance between the centers of the adjacent fluorescent tubes in the direction perpendicular to the fluorescent tube. It is set as an area where seven fluorescent tubes enter vertically in all directions. The brightness and uniformity of this measurement area are obtained.

輝度は前記領域の平均輝度として評価した。   The luminance was evaluated as the average luminance of the area.

管むらは次のようにして求める。図2に示すように、前記領域の縦方向を2cm間隔で10等分する線(図2の点線10)を9本引く。このそれぞれの線を管むらの測定ラインとする。1本1本の管ムラの測定ラインに沿って輝度を測定すると、周りより輝度の高い複数の山と、周りより輝度の低い複数の谷が観察される。管むらの測定ライン1本分について、輝度の高い順から5点の平均値をLmax、輝度の低い順から5点の平均値をLmin、LmaxとLminの平均値をLaveとして、下記の式(2)を用いてこの管むらの測定ラインの均斉度を計算する。そして管むらの測定ライン9本分の均斉度の平均値を管むらとした。尚、その平均値が大きいほど管むらが強く、小さいほど管むらが弱いことを意味する。
・管むらの測定ライン1本分の均斉度(%)=(Lmax−Lmin)/Lave×100 ・・・ (2)。
The tube unevenness is obtained as follows. As shown in FIG. 2, nine lines (dotted line 10 in FIG. 2) that divide the vertical direction of the region into 10 equal parts at intervals of 2 cm are drawn. Each of these lines is a measurement line for tube unevenness. When the luminance is measured along each measurement line of tube unevenness, a plurality of peaks with higher brightness and a plurality of valleys with lower brightness than the surroundings are observed. For one measurement line for tube unevenness, the average value of 5 points from the highest luminance order is Lmax, the average value of the five points from the lowest luminance order is Lmin, the average value of Lmax and Lmin is Lave, and the following formula ( 2) is used to calculate the uniformity of the measurement line of this tube unevenness. And the average value of the uniformity of 9 measurement lines of tube unevenness was made into tube unevenness. The larger the average value, the stronger the tube unevenness, and the smaller the average value, the weaker the tube unevenness.
-Uniformity (%) for one measurement line of tube unevenness (%) = (Lmax−Lmin) / Lave × 100 (2).

実施例、比較例にて使用した装置の構成を以下に示す。   The configuration of the apparatus used in the examples and comparative examples is shown below.

(1)装置1
サイズ:32インチ(725mm×413mm、対角834mm)
蛍光管の直径:3mm
蛍光管の本数:19本
蛍光管の中心間距離L:20.4mm
蛍光管の中心と最も近い光学部材との距離H:6.5mm
蛍光管の中心と反射材との距離:3.0mm
θ:57.5°(θ=tan−1 ((L/2)/H))。
(1) Device 1
Size: 32 inches (725mm x 413mm, diagonal 834mm)
Diameter of fluorescent tube: 3mm
Number of fluorescent tubes: 19 Distance between centers of fluorescent tubes L: 20.4 mm
Distance H: 6.5 mm between the center of the fluorescent tube and the closest optical member
Distance between the center of the fluorescent tube and the reflector: 3.0 mm
θ: 57.5 ° (θ = tan −1 ((L / 2) / H)).

(2)装置2
サイズ:20インチ(424mm×331mm、対角537mm)
蛍光管の直径:4mm
蛍光管の本数:10本
蛍光管の中心間距離L:30mm
蛍光管の中心と最も近い光学部材との距離H:13mm
蛍光管の中心と反射材との距離:6.0mm
θ:49.1°(θ=tan−1 ((L/2)/H))。
(2) Device 2
Size: 20 inches (424mm x 331mm, diagonal 537mm)
Diameter of fluorescent tube: 4mm
Number of fluorescent tubes: 10 Distance between centers of fluorescent tubes L: 30 mm
Distance H: 13 mm between the center of the fluorescent tube and the nearest optical member
Distance between the center of the fluorescent tube and the reflective material: 6.0 mm
θ: 49.1 ° (θ = tan −1 ((L / 2) / H)).

(3)装置3
サイズ:32インチ(725mm×413mm、対角834mm)
蛍光管の直径:3mm
蛍光管の本数:10本
蛍光管の中心間距離L:40.8mm
蛍光管の中心と最も近い光学部材との距離H:9mm
蛍光管の中心と反射材との距離:3.0mm
θ:66.2°(θ=tan−1 ((L/2)/H))。
(3) Device 3
Size: 32 inches (725mm x 413mm, diagonal 834mm)
Diameter of fluorescent tube: 3mm
Number of fluorescent tubes: 10 Distance between centers of fluorescent tubes L: 40.8 mm
Distance H: 9 mm between the center of the fluorescent tube and the closest optical member
Distance between the center of the fluorescent tube and the reflector: 3.0 mm
θ: 66.2 ° (θ = tan −1 ((L / 2) / H)).

(4)装置4
サイズ:20インチ(424mm×331mm、対角537mm)
蛍光管の直径:4mm
蛍光管の本数:10本
蛍光管の中心間距離L:30mm
蛍光管の中心と最も近い光学部材との距離H:16mm
蛍光管の中心と反射材との距離:6.0mm
θ:41.4°(θ=tan−1 ((L/2)/H))。
(4) Device 4
Size: 20 inches (424mm x 331mm, diagonal 537mm)
Diameter of fluorescent tube: 4mm
Number of fluorescent tubes: 10 Distance between centers of fluorescent tubes L: 30 mm
Distance H: 16 mm between the center of the fluorescent tube and the nearest optical member
Distance between the center of the fluorescent tube and the reflective material: 6.0 mm
θ: 41.4 ° (θ = tan −1 ((L / 2) / H)).

(5)装置5
サイズ:32インチ(725mm×413mm、対角834mm)
蛍光管の直径:3mm
蛍光管の本数:10本
蛍光管の中心間距離L:40.8mm
蛍光管の中心と最も近い光学部材との距離H:6.5mm
蛍光管の中心と反射材との距離:3.0mm
θ:72.3°(θ=tan−1 ((L/2)/H))。
(5) Device 5
Size: 32 inches (725mm x 413mm, diagonal 834mm)
Diameter of fluorescent tube: 3mm
Number of fluorescent tubes: 10 Distance between centers of fluorescent tubes L: 40.8 mm
Distance H: 6.5 mm between the center of the fluorescent tube and the closest optical member
Distance between the center of the fluorescent tube and the reflector: 3.0 mm
θ: 72.3 ° (θ = tan −1 ((L / 2) / H)).

各実施例、比較例にて使用する部材A〜D、これら部材の積層順を以下に示す。
A:蛍光管に最も近傍な光学部材
(*)凸型形状が形成された面がある場合は、その面の反対面を蛍光管側に向けて設置。
B:プリズムシート(該シート上の凸型形状の長手方向と蛍光管直線方向との設置位置関係)
(*)凸型形状を設けた面の反対面を蛍光管側に向けて設置。
C:A、B以外のその他光学シート
(*)凹凸面がある場合は、その面の反対面を蛍光管側に向けて設置。
D:反射材
(*)表1−1に記載の光沢度は、蛍光管側に向けた面の値。
積層順:前記D(反射材)以外を記載。A/B/Cとは、蛍光管側よりA、B、Cの順に積層。
The members A to D used in each example and comparative example, and the stacking order of these members are shown below.
A: Optical member closest to the fluorescent tube (*) If there is a surface with a convex shape, install it with the opposite surface facing the fluorescent tube side.
B: Prism sheet (installation positional relationship between the longitudinal direction of the convex shape on the sheet and the linear direction of the fluorescent tube)
(*) Installed with the opposite side of the surface with the convex shape facing the fluorescent tube.
C: Other optical sheets other than A and B (*) If there is a concavo-convex surface, install it with the opposite surface facing the fluorescent tube.
D: Reflector (*) The glossiness described in Table 1-1 is the value of the surface facing the fluorescent tube.
Lamination order: Listed except for D (reflecting material). A / B / C is laminated in the order of A, B, C from the fluorescent tube side.

(実施例1)
下記A〜Dの構成における、前記装置1、2及び3にて評価した。
A:クラレックス(登録商標)DR−III C−A DR−80C(日東樹脂工業(株)製)
B:vikuiti BEFIII 90/50T(3M社製、凸形状:頂角が直角の三角形状、凸形状のピッチ:50μm)(平行方向に設置)
C:なし
D:ルミラー(登録商標)E6QD(東レ(株)製、厚み188μm)
積層順:A/B。
Example 1
Evaluation was made with the above-described apparatuses 1, 2 and 3 in the configurations of A to D below.
A: Clarex (registered trademark) DR-III CA DR-80C (manufactured by Nitto Jushi Kogyo Co., Ltd.)
B: Vikuiti BEFIII 90 / 50T (manufactured by 3M, convex shape: triangular shape with apex angle of right angle, convex pitch: 50 μm) (installed in parallel direction)
C: None D: Lumirror (registered trademark) E6QD (manufactured by Toray Industries, Inc., thickness 188 μm)
Lamination order: A / B.

(実施例2)
下記A〜Dの構成における、前記装置1、2及び3にて評価した。
A:スミペックスE(登録商標) RM804S(住友化学(株)社製)
B:vikuiti BEFIII 90/50T(3M社製、凸形状:頂角が直角の三角形状、凸形状のピッチ:50μm)(平行方向に設置)
C:なし
D:ルミラー(登録商標)E6QD(東レ(株)製、厚み188μm)
積層順:A/B。
(Example 2)
Evaluation was made with the above-described apparatuses 1, 2 and 3 in the configurations of A to D below.
A: Sumipex E (registered trademark) RM804S (manufactured by Sumitomo Chemical Co., Ltd.)
B: Vikuiti BEFIII 90 / 50T (manufactured by 3M, convex shape: triangular shape with apex angle of right angle, convex pitch: 50 μm) (installed in parallel direction)
C: None D: Lumirror (registered trademark) E6QD (manufactured by Toray Industries, Inc., thickness 188 μm)
Lamination order: A / B.

(実施例3)
まず、32インチ液晶テレビ((株)日立製作所製、Wooo(登録商標)UT32−Hv700B)を分解し、蛍光管側とは反対の面に一方向にのびた複数の凸型形状を有し、その凸型形状の長手方向が蛍光管の直線方向と平行に設置された厚み2mmの樹脂板を得た。その樹脂板について分解前の搭載時における蛍光管側から光を入射した際のJIS K7136(2000年)に基づいたヘイズは98.3%であり、その状態より入射面はそのままで90°回転させて同様に測定した結果、ヘイズは98.1%であった。その平均値をとり該樹脂板のヘイズを98.2%とした。
次いで、該樹脂板を前記装置1〜5に設置可能なサイズに切削後(以後凹凸パターン樹脂板と略す。)、下記A〜Dの構成における、前記装置1、2及び3にて評価した。
A:凹凸パターン樹脂板(凸型形状の長手方向を蛍光管直線方向と平行方向に設置)
B:vikuiti BEFIII 90/50T(3M社製、凸形状:頂角が直角の三角形状、凸形状のピッチ:50μm)(平行方向に設置)
C:なし
D:ルミラー(登録商標)E6QD(東レ(株)製、厚み188μm)
積層順:A/B。
(Example 3)
First, a 32-inch LCD TV (manufactured by Hitachi, Ltd., Woo (registered trademark) UT32-Hv700B) is disassembled and has a plurality of convex shapes extending in one direction on the surface opposite to the fluorescent tube side. A resin plate having a thickness of 2 mm was obtained in which the longitudinal direction of the convex shape was installed in parallel with the linear direction of the fluorescent tube. The haze based on JIS K7136 (2000) when light is incident from the fluorescent tube side when the resin plate is mounted before disassembly is 98.3%, and the incident surface is rotated as it is by 90 ° from that state. As a result of the same measurement, the haze was 98.1%. The average value was taken and the haze of the resin plate was 98.2%.
Next, the resin plate was cut to a size that can be installed in the devices 1 to 5 (hereinafter abbreviated as a concavo-convex pattern resin plate), and then evaluated by the devices 1, 2 and 3 in the following configurations AD.
A: Concavity and convexity pattern resin plate (the longitudinal direction of the convex shape is set parallel to the linear direction of the fluorescent tube)
B: Vikuiti BEFIII 90 / 50T (manufactured by 3M, convex shape: triangular shape with apex angle of right angle, convex pitch: 50 μm) (installed in parallel direction)
C: None D: Lumirror (registered trademark) E6QD (manufactured by Toray Industries, Inc., thickness 188 μm)
Lamination order: A / B.

(実施例4)
下記A〜Dの構成における、前記装置1、2及び3にて評価した。
A:クラレックス(登録商標)DR−III C−A DR−90C(日東樹脂工業(株)製)
B:vikuiti BEFIII 90/50T(3M社製、凸形状:頂角が直角の三角形状、凸形状のピッチ:50μm)(平行方向に設置)
C:なし
D:ルミラー(登録商標)E6QD(東レ(株)製、厚み188μm)
積層順:A/B。
Example 4
Evaluation was made with the above-described apparatuses 1, 2 and 3 in the configurations of A to D below.
A: Clarex (registered trademark) DR-III CA DR-90C (manufactured by Nitto Jushi Kogyo Co., Ltd.)
B: Vikuiti BEFIII 90 / 50T (manufactured by 3M, convex shape: triangular shape with apex angle of right angle, convex pitch: 50 μm) (installed in parallel direction)
C: None D: Lumirror (registered trademark) E6QD (manufactured by Toray Industries, Inc., thickness 188 μm)
Lamination order: A / B.

(実施例5)
下記A〜Dの構成における、前記装置1、2及び3にて評価した。
A:凹凸パターン樹脂板(凸型形状の長手方向を蛍光管直線方向と平行方向に設置)
B:vikuiti BEFIII 90/50T(3M社製、凸形状:頂角が直角の三角形状、凸形状のピッチ:50μm)(平行方向に設置)
C:なし
D:下記製法Aにより作成した反射材
(製法A)
ハルスハイブリッド (登録商標)Uv―G720T(アクリル系共重合体、濃度40%の溶液、屈折率1.56、(株)日本触媒製):10.0g、酢酸エチル:7.0g、テクポリマー(商標登録)TRX05S(アクリル系球状粒子、屈折率1.49、積水化成品工業(株)製):9.2gを攪拌しながら添加してなる塗液を準備した。188μmの多孔質の二軸延伸ポリエチレンテレフタレートからなる白色フィルム(東レ株式会社製 ルミラー(登録商標)E6SQ)の片面に、メタバー#16を使用してこの塗液を塗布し、120℃、1分間の乾燥条件にて塗布層を設けた。反射材の光沢度は5であった。
積層順:A/B。
(Example 5)
Evaluation was made with the above-described apparatuses 1, 2 and 3 in the configurations of A to D below.
A: Concavity and convexity pattern resin plate (the longitudinal direction of the convex shape is set parallel to the linear direction of the fluorescent tube)
B: Vikuiti BEFIII 90 / 50T (manufactured by 3M, convex shape: triangular shape with apex angle of right angle, convex pitch: 50 μm) (installed in parallel direction)
C: None D: Reflector prepared by the following production method A (Production method A)
Hals Hybrid (registered trademark) Uv-G720T (acrylic copolymer, 40% concentration solution, refractive index 1.56, manufactured by Nippon Shokubai Co., Ltd.): 10.0 g, ethyl acetate: 7.0 g, techpolymer ( Trademark registration) TRX05S (acrylic spherical particles, refractive index 1.49, manufactured by Sekisui Plastics Co., Ltd.): A coating solution was prepared by adding 9.2 g with stirring. This coating solution was applied to one side of a white film made of 188 μm porous biaxially stretched polyethylene terephthalate (Lumirror (registered trademark) E6SQ manufactured by Toray Industries, Inc.) using Metabar # 16. A coating layer was provided under dry conditions. The glossiness of the reflective material was 5.
Lamination order: A / B.

(実施例6)
下記A〜Dの構成における、前記装置1、2及び3にて評価した。
A:凹凸パターン樹脂板(凸型形状の長手方向を蛍光管直線方向と平行方向に設置)
B:vikuiti BEFIII 90/50T(3M社製、凸形状:頂角が直角の三角形状、凸形状のピッチ:50μm)(平行方向に設置)
C:ライトアップ100GM2((株)きもと製、表層に粒子を含有した層を設けた光拡散シート、ヘイズ値:95.5%)
D:ルミラー(登録商標)E6QD(東レ(株)製、厚み188μm)
積層順:A/B/C。
(Example 6)
Evaluation was made with the above-described apparatuses 1, 2 and 3 in the configurations of A to D below.
A: Concavity and convexity pattern resin plate (the longitudinal direction of the convex shape is set parallel to the linear direction of the fluorescent tube)
B: Vikuiti BEFIII 90 / 50T (manufactured by 3M, convex shape: triangular shape with apex angle of right angle, convex pitch: 50 μm) (installed in parallel direction)
C: Light-up 100GM2 (manufactured by Kimoto Co., Ltd., light diffusion sheet provided with a layer containing particles on the surface layer, haze value: 95.5%)
D: Lumirror (registered trademark) E6QD (manufactured by Toray Industries, Inc., thickness 188 μm)
Lamination order: A / B / C.

(実施例7)
下記A〜Dの構成における、前記装置1、2及び3にて評価した。
A:凹凸パターン樹脂板(凸型形状の長手方向を蛍光管直線方向と平行方向に設置)
B:vikuiti BEFIII 90/50T(3M社製、凸形状:頂角が直角の三角形状、凸形状のピッチ:50μm)(平行方向に設置)
C:vikuiti DBEF(3M社製、偏光分離機能を有するシート、ヘイズ値:81.5%)
D:ルミラー(登録商標)E6QD(東レ(株)製、厚み188μm)
積層順:A/B/C。
(Example 7)
Evaluation was made with the above-described apparatuses 1, 2 and 3 in the configurations of A to D below.
A: Concavity and convexity pattern resin plate (the longitudinal direction of the convex shape is set parallel to the linear direction of the fluorescent tube)
B: Vikuiti BEFIII 90 / 50T (manufactured by 3M, convex shape: triangular shape with apex angle of right angle, convex pitch: 50 μm) (installed in parallel direction)
C: Vikuiti DBEF (manufactured by 3M, sheet having polarization separation function, haze value: 81.5%)
D: Lumirror (registered trademark) E6QD (manufactured by Toray Industries, Inc., thickness 188 μm)
Lamination order: A / B / C.

(実施例8)
下記A〜Dの構成における、前記装置1、2及び3にて評価した。
A:凹凸パターン樹脂板(凸型形状の長手方向を蛍光管直線方向と平行方向に設置)
B:vikuiti BEFIII 90/50T(3M社製、凸形状:頂角が直角の三角形状、凸形状のピッチ:50μm)(平行方向に設置)
C:UTEII(MNTech Co.,Ltd製、表層に半球形状突起を設けた光拡散シート、ヘイズ値:89.6%)
D:ルミラー(登録商標)E6QD(東レ(株)製、厚み188μm)
積層順:A/B/C。
(Example 8)
Evaluation was made with the above-described apparatuses 1, 2 and 3 in the configurations of A to D below.
A: Concavity and convexity pattern resin plate (the longitudinal direction of the convex shape is set parallel to the linear direction of the fluorescent tube)
B: Vikuiti BEFIII 90 / 50T (manufactured by 3M, convex shape: triangular shape with apex angle of right angle, convex pitch: 50 μm) (installed in parallel direction)
C: UTEII (manufactured by MNTtech Co., Ltd., light diffusion sheet with hemispherical protrusions on the surface, haze value: 89.6%)
D: Lumirror (registered trademark) E6QD (manufactured by Toray Industries, Inc., thickness 188 μm)
Lamination order: A / B / C.

(実施例9)
下記A〜Dの構成における、前記装置1、2及び3にて評価した。
A:凹凸パターン樹脂板(凸型形状の長手方向を蛍光管直線方向と平行方向に設置)
B:vikuiti BEFIII 90/50T(3M社製、凸形状:頂角が直角の三角形状、凸形状のピッチ:50μm)(平行方向に設置)
C1:ライトアップ100GM2((株)きもと製、表層に粒子を含有した層を設けた光拡散シート、ヘイズ値:95.5%)
C2:vikuiti DBEF(3M社製、偏光分離機能を有するシート、ヘイズ値:81.5%)
D:ルミラー(登録商標)E6QD(東レ(株)製、厚み188μm)
積層順:A/C1/B/C2。
Example 9
Evaluation was made with the above-described apparatuses 1, 2 and 3 in the configurations of A to D below.
A: Concavity and convexity pattern resin plate (the longitudinal direction of the convex shape is set parallel to the linear direction of the fluorescent tube)
B: Vikuiti BEFIII 90 / 50T (manufactured by 3M, convex shape: triangular shape with apex angle of right angle, convex pitch: 50 μm) (installed in parallel direction)
C1: Light-up 100GM2 (manufactured by Kimoto Co., Ltd., light diffusion sheet provided with a layer containing particles on the surface layer, haze value: 95.5%)
C2: Vikuiti DBEF (manufactured by 3M, sheet having polarization separation function, haze value: 81.5%)
D: Lumirror (registered trademark) E6QD (manufactured by Toray Industries, Inc., thickness 188 μm)
Lamination order: A / C1 / B / C2.

(実施例10)
下記A〜Dの構成における、前記装置1、2及び3にて評価した。
A:凹凸パターン樹脂板(凸型形状の長手方向を蛍光管直線方向と平行方向に設置)
B:vikuiti BEFIII 90/50T(3M社製、凸形状:頂角が直角の三角形状、凸形状のピッチ:50μm)(平行方向に設置)
C:ライトアップ100GM2((株)きもと製、表層に粒子を含有した層を設けた光拡散シート、ヘイズ値:95.5%)
D:ルミラー(登録商標)E6QD(東レ(株)製、厚み188μm)
積層順:A/C/B/C/C。
(Example 10)
Evaluation was made with the above-described apparatuses 1, 2 and 3 in the configurations of A to D below.
A: Concavity and convexity pattern resin plate (the longitudinal direction of the convex shape is set parallel to the linear direction of the fluorescent tube)
B: Vikuiti BEFIII 90 / 50T (manufactured by 3M, convex shape: triangular shape with apex angle of right angle, convex pitch: 50 μm) (installed in parallel direction)
C: Light-up 100GM2 (manufactured by Kimoto Co., Ltd., light diffusion sheet provided with a layer containing particles on the surface layer, haze value: 95.5%)
D: Lumirror (registered trademark) E6QD (manufactured by Toray Industries, Inc., thickness 188 μm)
Lamination order: A / C / B / C / C.

(実施例11)
下記A〜Dの構成における、前記装置1、2及び3にて評価した。
A:凹凸パターン樹脂板(凸型形状の長手方向を蛍光管直線方向と平行方向に設置)
B:vikuiti BEFIII 90/50T(3M社製、凸形状:頂角が直角の三角形状、凸形状のピッチ:50μm)(平行方向に設置)
C:ライトアップ100GM2((株)きもと製、表層に粒子を含有した層を設けた光拡散シート、ヘイズ値:95.5%)
D:下記製法Bにより作成した反射材
(製法B)
ハルスハイブリッド (登録商標)Uv―G720T(アクリル系共重合体、濃度40%の溶液、屈折率1.56、(株)日本触媒製):10.0g、酢酸エチル:7.0g、テクポリマー(商標登録)TRX05S(アクリル系球状粒子、屈折率1.49、積水化成品工業(株)製):9.2gを攪拌しながら添加してなる塗液を準備した。188μmの多孔質の二軸延伸ポリエチレンテレフタレートからなる白色フィルム(東レ株式会社製 ルミラー(登録商標)E80A)の片面に、メタバー#24を使用してこの塗液を塗布し、120℃、1分間の乾燥条件にて塗布層を設けた。反射材の光沢度は3であった。
(Example 11)
Evaluation was made with the above-described apparatuses 1, 2 and 3 in the configurations of A to D below.
A: Concavity and convexity pattern resin plate (the longitudinal direction of the convex shape is set parallel to the linear direction of the fluorescent tube)
B: Vikuiti BEFIII 90 / 50T (manufactured by 3M, convex shape: triangular shape with apex angle of right angle, convex pitch: 50 μm) (installed in parallel direction)
C: Light-up 100GM2 (manufactured by Kimoto Co., Ltd., light diffusion sheet provided with a layer containing particles on the surface layer, haze value: 95.5%)
D: Reflector prepared by the following production method B (Production method B)
Hals Hybrid (registered trademark) Uv-G720T (acrylic copolymer, 40% concentration solution, refractive index 1.56, manufactured by Nippon Shokubai Co., Ltd.): 10.0 g, ethyl acetate: 7.0 g, techpolymer ( Trademark registration) TRX05S (acrylic spherical particles, refractive index 1.49, manufactured by Sekisui Plastics Co., Ltd.): A coating solution was prepared by adding 9.2 g with stirring. This coating solution was applied to one side of a white film made of 188 μm porous biaxially stretched polyethylene terephthalate (Lumirror (registered trademark) E80A manufactured by Toray Industries, Inc.) using Metabar # 24. A coating layer was provided under dry conditions. The glossiness of the reflective material was 3.

(比較例1)
下記A〜Dの構成における、前記装置1、2及び3にて評価した。
A:クラレックス(登録商標)DR−III C−A DR−90C(日東樹脂工業(株)製)
B:vikuiti BEFIII 90/50T(3M社製、凸形状:頂角が直角の三角形状、凸形状のピッチ:50μm)(平行方向に設置)
C:なし
D:ルミラー(登録商標)E6Sv(東レ(株)製、厚み225μm)
(比較例2)
下記A〜Dの構成における、前記装置1、2及び3にて評価した。
A:クラレックス(登録商標)DR−III C−A DR−90C(日東樹脂工業(株)製)
B:vikuiti BEFIII 90/50T(3M社製、凸形状:頂角が直角の三角形状、凸形状のピッチ:50μm)(平行方向に設置)
C:なし
D:下記製法Cにより作成した反射材
(製法C)
ハルスハイブリッド (登録商標)Uv―G720T(アクリル系共重合体、濃度40%の溶液、屈折率1.56、(株)日本触媒製):10.0g、酢酸エチル:24.1g、テクポリマー(商標登録)TRX05S(アクリル系球状粒子、屈折率1.49、積水化成品工業(株)製):4.0gを攪拌しながら添加してなる塗液を準備した。188μmの多孔質の二軸延伸ポリエチレンテレフタレートからなる白色フィルム(東レ株式会社製 ルミラー(登録商標)E6SR)の片面に、メタバー#16を使用してこの塗液を塗布し、120℃、1分間の乾燥条件にて塗布層を設けた。反射材の光沢度は7であった。
(Comparative Example 1)
Evaluation was made with the above-described apparatuses 1, 2 and 3 in the configurations of A to D below.
A: Clarex (registered trademark) DR-III CA DR-90C (manufactured by Nitto Jushi Kogyo Co., Ltd.)
B: Vikuiti BEFIII 90 / 50T (manufactured by 3M, convex shape: triangular shape with apex angle of right angle, convex pitch: 50 μm) (installed in parallel direction)
C: None D: Lumirror (registered trademark) E6Sv (manufactured by Toray Industries, Inc., thickness 225 μm)
(Comparative Example 2)
Evaluation was made with the above-described apparatuses 1, 2 and 3 in the configurations of A to D below.
A: Clarex (registered trademark) DR-III CA DR-90C (manufactured by Nitto Jushi Kogyo Co., Ltd.)
B: Vikuiti BEFIII 90 / 50T (manufactured by 3M, convex shape: triangular shape with apex angle of right angle, convex pitch: 50 μm) (installed in parallel direction)
C: None D: Reflector prepared by the following production method C (Production method C)
Hals Hybrid (registered trademark) Uv-G720T (acrylic copolymer, 40% concentration solution, refractive index 1.56, manufactured by Nippon Shokubai Co., Ltd.): 10.0 g, ethyl acetate: 24.1 g, techpolymer ( Trademark registration) TRX05S (acrylic spherical particles, refractive index 1.49, manufactured by Sekisui Plastics Co., Ltd.): A coating solution was prepared by adding 4.0 g with stirring. This coating solution was applied to one side of a white film made of 188 μm porous biaxially stretched polyethylene terephthalate (Lumirror (registered trademark) E6SR manufactured by Toray Industries, Inc.) using Metabar # 16. A coating layer was provided under dry conditions. The glossiness of the reflective material was 7.

(比較例3)。   (Comparative Example 3).

下記A〜Dの構成における、前記装置1、2及び3にて評価した。
A:凹凸パターン樹脂板(凸型形状の長手方向を蛍光管直線方向と平行方向に設置)
B:なし
C:なし
D:ルミラー(登録商標)E6QD(東レ(株)製、厚み188μm)。
Evaluation was made with the above-described apparatuses 1, 2 and 3 in the configurations of A to D below.
A: Concavity and convexity pattern resin plate (the longitudinal direction of the convex shape is set parallel to the linear direction of the fluorescent tube)
B: None C: None D: Lumirror (registered trademark) E6QD (manufactured by Toray Industries, Inc., thickness 188 μm).

(比較例4)
下記A〜Dの構成における、前記装置1、2及び3にて評価した。
A:凹凸パターン樹脂板(凸型形状の長手方向を蛍光管直線方向と平行方向に設置)
B:vikuiti BEFIII 90/50T(3M社製、凸形状:頂角が直角の三角形状、凸形状のピッチ:50μm)(直交方向に設置)
C:なし
D:ルミラー(登録商標)E6QD(東レ(株)製、厚み188μm)。
(Comparative Example 4)
Evaluation was made with the above-described apparatuses 1, 2 and 3 in the configurations of A to D below.
A: Concavity and convexity pattern resin plate (the longitudinal direction of the convex shape is set parallel to the linear direction of the fluorescent tube)
B: Vikuiti BEFIII 90 / 50T (manufactured by 3M, convex shape: triangular shape with apex angle of right angle, convex pitch: 50 μm) (installed in the orthogonal direction)
C: None D: Lumirror (registered trademark) E6QD (manufactured by Toray Industries, Inc., thickness 188 μm).

(比較例5)
下記A〜Dの構成における、前記装置1、2及び3にて評価した。
A:クラレックス(登録商標)DR−III C−A DR−70C(日東樹脂工業(株)製)
B:vikuiti BEFIII 90/50T(3M社製、凸形状:頂角が直角の三角形状、凸形状のピッチ:50μm)(平行方向に設置)
C:UTEII(MNTech Co.,Ltd製、表層に半球形状突起を設けた光拡散シート、ヘイズ値:89.6%)
D:ルミラー(登録商標)E6QD(東レ(株)製、厚み188μm)
積層順:A/C/B。
(Comparative Example 5)
Evaluation was made with the above-described apparatuses 1, 2 and 3 in the configurations of A to D below.
A: Clarex (registered trademark) DR-III C-A DR-70C (manufactured by Nitto Jushi Kogyo Co., Ltd.)
B: Vikuiti BEFIII 90 / 50T (manufactured by 3M, convex shape: triangular shape with apex angle of right angle, convex pitch: 50 μm) (installed in parallel direction)
C: UTEII (manufactured by MNTtech Co., Ltd., light diffusion sheet with hemispherical protrusions on the surface, haze value: 89.6%)
D: Lumirror (registered trademark) E6QD (manufactured by Toray Industries, Inc., thickness 188 μm)
Lamination order: A / C / B.

(比較例6)
下記A〜Dの構成における、前記装置1、2及び3にて評価した。
A:クラレックス(登録商標)DR−III C−A DR−70C(日東樹脂工業(株)製)
B:vikuiti BEFIII 90/50T(3M社製、凸形状:頂角が直角の三角形状、凸形状のピッチ:50μm)(平行方向に設置)
C1:ライトアップ100GM2((株)きもと製、表層に粒子を含有した層を設けた光拡散シート、ヘイズ値:95.5%)
C2:vikuiti DBEF(3M社製、偏光分離機能を有するシート、ヘイズ値:81.5%)
D:ルミラー(登録商標)E6QD(東レ(株)製、厚み188μm)
積層順:A/C1/B/C2
(比較例7)
下記A〜Dの構成における、前記装置4及び5にて評価した。
A:クラレックス(登録商標)DR−III C−A DR−70C(日東樹脂工業(株)製)
B:vikuiti BEFIII 90/50T(3M社製、凸形状:頂角が直角の三角形状、凸形状のピッチ:50μm)(平行方向に設置)
C1:ライトアップ100GM2((株)きもと製、表層に粒子を含有した層を設けた光拡散シート、ヘイズ値:95.5%)
C2:vikuiti DBEF(3M社製、偏光分離機能を有するシート、ヘイズ値:81.5%)
D:ルミラー(登録商標)E6QD(東レ(株)製、厚み188μm)
積層順:A/C1/B/C2
(比較例8)
下記A〜Dの構成における、前記装置4及び5にて評価した。
A:クラレックス(登録商標)DR−III C−A DR−70C(日東樹脂工業(株)製)
B:vikuiti BEFIII 90/50T(3M社製、凸形状:頂角が直角の三角形状、凸形状のピッチ:50μm)(平行方向に設置)
C1:ライトアップ100GM2((株)きもと製、表層に粒子を含有した層を設けた光拡散シート、ヘイズ値:95.5%)
C2:vikuiti DBEF(3M社製、偏光分離機能を有するシート、ヘイズ値:81.5%)
D:ルミラー(登録商標)E6QD(東レ(株)製、厚み188μm)
積層順:A/C1/B/C2。
(Comparative Example 6)
Evaluation was made with the above-described apparatuses 1, 2 and 3 in the configurations of A to D below.
A: Clarex (registered trademark) DR-III C-A DR-70C (manufactured by Nitto Jushi Kogyo Co., Ltd.)
B: Vikuiti BEFIII 90 / 50T (manufactured by 3M, convex shape: triangular shape with apex angle of right angle, convex pitch: 50 μm) (installed in parallel direction)
C1: Light-up 100GM2 (manufactured by Kimoto Co., Ltd., light diffusion sheet provided with a layer containing particles on the surface layer, haze value: 95.5%)
C2: Vikuiti DBEF (manufactured by 3M, sheet having polarization separation function, haze value: 81.5%)
D: Lumirror (registered trademark) E6QD (manufactured by Toray Industries, Inc., thickness 188 μm)
Stacking order: A / C1 / B / C2
(Comparative Example 7)
Evaluation was performed with the devices 4 and 5 in the following configurations A to D.
A: Clarex (registered trademark) DR-III C-A DR-70C (manufactured by Nitto Jushi Kogyo Co., Ltd.)
B: Vikuiti BEFIII 90 / 50T (manufactured by 3M, convex shape: triangular shape with apex angle of right angle, convex pitch: 50 μm) (installed in parallel direction)
C1: Light-up 100GM2 (manufactured by Kimoto Co., Ltd., light diffusion sheet provided with a layer containing particles on the surface layer, haze value: 95.5%)
C2: Vikuiti DBEF (manufactured by 3M, sheet having polarization separation function, haze value: 81.5%)
D: Lumirror (registered trademark) E6QD (manufactured by Toray Industries, Inc., thickness 188 μm)
Stacking order: A / C1 / B / C2
(Comparative Example 8)
Evaluation was performed with the devices 4 and 5 in the following configurations A to D.
A: Clarex (registered trademark) DR-III C-A DR-70C (manufactured by Nitto Jushi Kogyo Co., Ltd.)
B: Vikuiti BEFIII 90 / 50T (manufactured by 3M, convex shape: triangular shape with apex angle of right angle, convex pitch: 50 μm) (installed in parallel direction)
C1: Light-up 100GM2 (manufactured by Kimoto Co., Ltd., light diffusion sheet provided with a layer containing particles on the surface layer, haze value: 95.5%)
C2: Vikuiti DBEF (manufactured by 3M, sheet having polarization separation function, haze value: 81.5%)
D: Lumirror (registered trademark) E6QD (manufactured by Toray Industries, Inc., thickness 188 μm)
Lamination order: A / C1 / B / C2.

以下の表1―1から表2−2に、上記実施例、比較例における特性を示す。   Tables 1-1 to 2-2 below show the characteristics of the above-described examples and comparative examples.

Figure 2010029886
Figure 2010029886

Figure 2010029886
Figure 2010029886

Figure 2010029886
Figure 2010029886

Figure 2010029886
Figure 2010029886

実施例1〜11のいずれにおいても、管むらの抑制効果が見られた。中でも蛍光管に最も近傍な光学部材のヘイズ値と反射材の蛍光管側の光沢度の各値を好適な範囲にて組み合わせると、その他光学部材を積層せずとも管むらを抑制し、且つ、高輝度な直下型バックライト装置の構成が得られた(実施例3)。   In any of Examples 1 to 11, the effect of suppressing tube unevenness was observed. Among them, when combining the haze value of the optical member closest to the fluorescent tube and the glossiness values on the fluorescent tube side of the reflector in a suitable range, the tube unevenness is suppressed without stacking other optical members, and A configuration of a direct-type backlight device having high luminance was obtained (Example 3).

また、蛍光管に最も近傍な光学部材のヘイズ値を制御することにより、管むら抑制の効果と輝度とのバランスを変化させることができ、様々な要求や用途に応じた構成を提案できた(実施例1、2、4)。さらに、より低光沢度の反射材を用いることにより、管むらをさらに抑制することができた(実施例5と実施例2との対比、実施例6と実施例11との対比)。また、その他光学部材を積層することにより、管むらはさらに抑制でき、その積層順も任意に選択可能であるため、直下型バックライト装置構成の多用な選択肢を得ることができた(実施例5〜11)。さらに驚くべきことに、ほとんどの構成において、管むらが顕在化しやすいより薄型、もしくは搭載する蛍光管の数をより削減した直下型バックライト装置に近似した装置1、3の方が装置2に比して管むらは強く抑制され、直下型バックライト装置のみならず、それを用いたモジュール機器への多用な応用が示唆される結果となった。特にθ角の大きい装置3において管ムラが良好であった。   In addition, by controlling the haze value of the optical member closest to the fluorescent tube, the balance between the effect of suppressing tube unevenness and the brightness can be changed, and a configuration according to various requirements and applications could be proposed ( Examples 1, 2, 4). Furthermore, by using a reflective material having a lower glossiness, it was possible to further suppress tube unevenness (a comparison between Example 5 and Example 2 and a comparison between Example 6 and Example 11). Further, by stacking other optical members, tube unevenness can be further suppressed, and the stacking order can be arbitrarily selected, so that a variety of options for the direct type backlight device configuration can be obtained (Example 5). To 11). Furthermore, surprisingly, in most configurations, the devices 1 and 3 that are thinner than the direct-type backlight device in which the tube unevenness is more likely to appear and the number of fluorescent tubes to be mounted are reduced compared to the device 2. As a result, the tube unevenness was strongly suppressed, suggesting that it was applied not only to the direct backlight device but also to the module equipment using it. The tube unevenness was particularly good in the device 3 having a large θ angle.

一方、反射材の光沢度が5よりも大きい場合は、それ以外の部材構成が好適であっても直下型バックライト装置の管むらの抑制効果が不十分であった(実施例4と比較例1との対比、実施例1と比較例2との対比)。また、各部材が好適な値や部材の様態を有するものを選択しても、プリズムシートの凸型形状の長手方向が蛍光管の長手方向と平行でない場合は管むらが逆に悪化してしまった(実施例3と比較例4との対比)。蛍光管に最も近傍な光学部材のヘイズ値が特定の範囲より大きい場合は、その他光学シートを複数積層しても管むらの抑制は不十分であった(実施例9と比較例6との対比)。さらに、蛍光管に最も近傍な光学部材のヘイズ値が特定の範囲より大きい場合は、蛍光管に最も近傍な光学部材とプリズムシートの間にヘイズ99.0%以下のその他光学シートがあったとしても、管むらの抑制は不十分であった(比較例5、6)。特にプリズムシートを配置しない場合は、管むらが顕著に現れてしまった(実施例3と比較例3との対比)。   On the other hand, when the glossiness of the reflective material is larger than 5, the effect of suppressing the tube unevenness of the direct type backlight device is insufficient even when other member configurations are suitable (Example 4 and Comparative Example). 1 and comparison between Example 1 and Comparative Example 2). Even if each member has a suitable value or member shape, if the longitudinal direction of the convex shape of the prism sheet is not parallel to the longitudinal direction of the fluorescent tube, the tube unevenness is worsened. (Comparison between Example 3 and Comparative Example 4). When the haze value of the optical member closest to the fluorescent tube is larger than a specific range, the tube unevenness was not sufficiently suppressed even when a plurality of other optical sheets were laminated (contrast between Example 9 and Comparative Example 6). ). Further, when the haze value of the optical member closest to the fluorescent tube is larger than a specific range, there is another optical sheet having a haze of 99.0% or less between the optical member closest to the fluorescent tube and the prism sheet. However, the suppression of tube unevenness was insufficient (Comparative Examples 5 and 6). In particular, when the prism sheet was not arranged, the tube unevenness appeared remarkably (contrast between Example 3 and Comparative Example 3).

また、隣接する線状光源の中心間の距離をL、線状光源の中心から前記線状光源に最も近い光学部材までの距離をHとしたとき、下記式(1)を満たすθに対し、θが45°に満たないあるいはθが70°より大きい場合は、それ以外の部材構成が好適であっても、管むらが顕著に現れてしまった(実施例3と比較例7との対比)。   Further, when the distance between the centers of adjacent linear light sources is L, and the distance from the center of the linear light source to the optical member closest to the linear light source is H, for θ satisfying the following formula (1): When θ is less than 45 ° or θ is greater than 70 °, even if other member configurations are suitable, the tube unevenness appears remarkably (contrast between Example 3 and Comparative Example 7). .

θ=tan−1 ((L/2)/H) ・・・ 式(1)
さらに、θが45°に満たないあるいはθが70°より大きい場合は、その他の光学シートを設けた場合でも管むらの抑制は充分ではなかった(実施例5と比較例8との対比)。
θ = tan −1 ((L / 2) / H) (1)
Furthermore, when θ is less than 45 ° or θ is greater than 70 °, the tube unevenness was not sufficiently suppressed even when other optical sheets were provided (comparison between Example 5 and Comparative Example 8).

本発明の直下型バックライト装置は、液晶ディスプレイや液晶Tvだけではなく、各種面光源や照明装置としても好適に使用することができる。   The direct type backlight device of the present invention can be suitably used not only as a liquid crystal display or liquid crystal Tv but also as various surface light sources and lighting devices.

1:蛍光管(線状光源)
2:蛍光管(線状光源)の最も近くに配置された光学部材
3:プリズムシート
4:蛍光管(線状光源)の長手方向と平行に配置した凸型形状の断面図例
5:反射材
6:プリズムシートの下に積層された、その他光学シート
7:プリズムシートの上に積層された、その他光学シート
8:輝度計
9:管むら及び輝度の測定領域
10:管むらの測定ライン
1: Fluorescent tube (linear light source)
2: Optical member arranged closest to the fluorescent tube (linear light source) 3: Prism sheet 4: Convex-shaped cross-sectional view arranged parallel to the longitudinal direction of the fluorescent tube (linear light source) Example 5: Reflective material 6: other optical sheet laminated below the prism sheet 7: other optical sheet laminated on the prism sheet 8: luminance meter 9: measurement of tube unevenness and luminance 10: measurement line of tube unevenness

Claims (3)

反射材、複数の線状光源、および光学部材群がこの順に配置され、下記(i)〜(v)の条件を満たすことを特徴とする直下型バックライト装置。
(i) 前記複数の線状光源が、それぞれの線状光源の長手方向が平行になるように配置されている。
(ii) 前記光学部材群の中の前記線状光源に最も近い光学部材が、線状光源側の面より光を入射させて測定したJIS K 7136(2000年)に基づいたヘイズ値が99.0%以下である。
(iii) 前記光学部材群の中にプリズムシートがあり、このプリズムシートが、前記線状光源側とは反対側の面に一方向にのびた複数の凸型形状が形成され、複数の凸型形状の長手方向が平行であり、複数の凸型形状の長手方向が複数の線状光源の長手方向と平行である。
(iv) 前記反射材が、前記線状光源側の面のJIS K 7105(1981年)に基づいて測定した60°光沢度が5以下である。
(v) 前記複数の線状光源において隣接する線状光源の中心間の距離をL、線状光源の中心から前記線状光源に最も近い光学部材までの距離をHとしたとき、下記式(1)を満たすθが45°≦θ≦70°である。
θ=tan−1 ((L/2)/H) ・・・ 式(1)
A direct type backlight device in which a reflector, a plurality of linear light sources, and an optical member group are arranged in this order and satisfy the following conditions (i) to (v).
(I) The plurality of linear light sources are arranged so that the longitudinal directions of the linear light sources are parallel to each other.
(Ii) The optical member closest to the linear light source in the optical member group has a haze value of 99.99 based on JIS K 7136 (2000) measured by making light incident from the surface on the linear light source side. 0% or less.
(Iii) There is a prism sheet in the optical member group, and the prism sheet is formed with a plurality of convex shapes extending in one direction on the surface opposite to the linear light source side. The longitudinal directions of the plurality of convex shapes are parallel to the longitudinal directions of the plurality of linear light sources.
(Iv) The reflective material has a 60 ° glossiness of 5 or less measured based on JIS K 7105 (1981) of the surface on the linear light source side.
(V) When the distance between the centers of adjacent linear light sources in the plurality of linear light sources is L, and the distance from the center of the linear light source to the optical member closest to the linear light source is H, the following formula ( Θ satisfying 1) is 45 ° ≦ θ ≦ 70 °.
θ = tan −1 ((L / 2) / H) (1)
前記反射材が、線状光源側の面に粒子を含有する樹脂層を有する請求項1に記載の直下型バックライト装置。 The direct-type backlight device according to claim 1, wherein the reflective material has a resin layer containing particles on a surface on the linear light source side. 前記距離Hが、H≦10mmである請求項1または2に記載の直下型バックライト装置。 The direct-type backlight device according to claim 1, wherein the distance H is H ≦ 10 mm.
JP2010502385A 2008-09-09 2009-09-03 Direct backlight unit Expired - Fee Related JP5749005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010502385A JP5749005B2 (en) 2008-09-09 2009-09-03 Direct backlight unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008230719 2008-09-09
JP2008230719 2008-09-09
JP2010502385A JP5749005B2 (en) 2008-09-09 2009-09-03 Direct backlight unit
PCT/JP2009/065384 WO2010029886A1 (en) 2008-09-09 2009-09-03 Directly under backlight device

Publications (2)

Publication Number Publication Date
JPWO2010029886A1 true JPWO2010029886A1 (en) 2012-02-02
JP5749005B2 JP5749005B2 (en) 2015-07-15

Family

ID=42005142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010502385A Expired - Fee Related JP5749005B2 (en) 2008-09-09 2009-09-03 Direct backlight unit

Country Status (5)

Country Link
JP (1) JP5749005B2 (en)
KR (1) KR101597641B1 (en)
CN (2) CN104776329A (en)
TW (1) TWI490605B (en)
WO (1) WO2010029886A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107111014B (en) * 2015-01-05 2020-05-19 帝人薄膜解决方案有限公司 White reflective film for direct type surface light source and direct type surface light source using the same
JP7257417B2 (en) * 2018-11-19 2023-04-13 京セラ株式会社 Fluid detection sensor and fluid detection device
KR102304279B1 (en) 2020-10-15 2021-09-24 주식회사 시노펙스 A backlight unit and manufacturing method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029091A (en) 2002-06-21 2004-01-29 Teijin Chem Ltd Light diffusion plate for just-under type backlight made of polycarbonate resin
JP4049659B2 (en) * 2002-11-20 2008-02-20 株式会社ユポ・コーポレーション Light reflector
WO2004013664A1 (en) * 2002-07-24 2004-02-12 Yupo Corporation Light-reflecting article
TWI288832B (en) * 2002-11-11 2007-10-21 Samsung Electronics Co Ltd Prism sheet and fabrication method thereof and liquid crystal display device employing the same
JP2004219668A (en) * 2003-01-14 2004-08-05 Mitsui Chemicals Inc Optical filter for liquid crystal display device, surface light source device using the same and liquid crystal display
JP2004279532A (en) * 2003-03-13 2004-10-07 Sumitomo Rubber Ind Ltd Spread plate and light-emitting device
US20060209526A1 (en) * 2003-04-02 2006-09-21 Masahiro Miyauchi Light diffusion plate
JP4770166B2 (en) 2004-12-10 2011-09-14 日本ゼオン株式会社 Direct backlight unit
JP4552563B2 (en) * 2004-08-24 2010-09-29 日本ゼオン株式会社 Direct backlight unit
JP2006155926A (en) 2004-11-25 2006-06-15 Nippon Zeon Co Ltd Direct backlight device
TWI313380B (en) * 2005-08-31 2009-08-11 Eternal Chemical Co Ltd Reflector having high light diffusion
JP5293191B2 (en) * 2007-02-02 2013-09-18 大日本印刷株式会社 Optical sheet, surface light source device, transmissive display device

Also Published As

Publication number Publication date
TWI490605B (en) 2015-07-01
CN102089572A (en) 2011-06-08
CN104776329A (en) 2015-07-15
KR101597641B1 (en) 2016-02-25
KR20110063618A (en) 2011-06-13
WO2010029886A1 (en) 2010-03-18
JP5749005B2 (en) 2015-07-15
TW201015175A (en) 2010-04-16

Similar Documents

Publication Publication Date Title
TWI427333B (en) Point light source with light diffusion plate and straight type point light source backlight device
TW200907420A (en) Diffuser prism sheet comprising light diffuser in the valley of prism and LCD back light unit thereby
JP5298569B2 (en) Lens sheet, optical sheet for display, backlight unit using the same, and display device
TWI388883B (en) Prism sheet having inclined ridges and liquid crystal display using the same
JP2011102848A (en) Optical sheet, backlight unit and display device
JP2011227341A (en) Optical sheet, lighting unit, and display device
JP2010078980A (en) Optical control stack, backlight unit using the same and display device
JP5532799B2 (en) White reflective film
JP2010044270A (en) Light diffusion plate, optical sheet, back light unit and display device
JP5104459B2 (en) Optical member and backlight unit and display using it
JP5098520B2 (en) Light diffusing plate, backlight unit for display, display device
JP5749005B2 (en) Direct backlight unit
JP2009025438A (en) Diffusion sheet and direct type backlight unit using the same
JP2010262770A (en) Light emission sheet and lighting apparatus using the same, backlight unit, as well as display device
JP2010108824A (en) Direct backlight
JP2010044269A (en) Light diffusion plate, optical sheet, back light unit and display device
JP2011064745A (en) Optical sheet, backlight unit and display apparatus
JP5256723B2 (en) Light diffusion plate, optical sheet, backlight unit, and display device
JP2007298698A (en) Light diffusing plate and planar irradiation apparatus
JP5315963B2 (en) Light diffusing device, backlight unit and display device
JP2009069347A (en) Optical sheet and backlight unit using the same
KR101102008B1 (en) Diffusion film having diffusing and shielding function and Preparing thereof
JP5267024B2 (en) Optical sheet, backlight unit and display device
JP2010044268A (en) Light diffusion plate, optical sheet, back light unit and display device
JP5838540B2 (en) Light diffusing film and laminated sheet for backlight device and backlight device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140507

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150513

LAPS Cancellation because of no payment of annual fees