JPWO2009122931A1 - Personal authentication method and personal authentication device using subcutaneous blood flow measurement - Google Patents

Personal authentication method and personal authentication device using subcutaneous blood flow measurement Download PDF

Info

Publication number
JPWO2009122931A1
JPWO2009122931A1 JP2010505609A JP2010505609A JPWO2009122931A1 JP WO2009122931 A1 JPWO2009122931 A1 JP WO2009122931A1 JP 2010505609 A JP2010505609 A JP 2010505609A JP 2010505609 A JP2010505609 A JP 2010505609A JP WO2009122931 A1 JPWO2009122931 A1 JP WO2009122931A1
Authority
JP
Japan
Prior art keywords
blood flow
finger
personal authentication
laser
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010505609A
Other languages
Japanese (ja)
Other versions
JP5340262B2 (en
Inventor
仁 藤居
仁 藤居
兼児 岡本
兼児 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Syscom Japan Inc
Original Assignee
Kyushu Institute of Technology NUC
Syscom Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Syscom Japan Inc filed Critical Kyushu Institute of Technology NUC
Priority to JP2010505609A priority Critical patent/JP5340262B2/en
Publication of JPWO2009122931A1 publication Critical patent/JPWO2009122931A1/en
Application granted granted Critical
Publication of JP5340262B2 publication Critical patent/JP5340262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1312Sensors therefor direct reading, e.g. contactless acquisition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/489Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6838Clamps or clips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/30Individual registration on entry or exit not involving the use of a pass
    • G07C9/32Individual registration on entry or exit not involving the use of a pass in combination with an identity check
    • G07C9/37Individual registration on entry or exit not involving the use of a pass in combination with an identity check using biometric data, e.g. fingerprints, iris scans or voice recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Human Computer Interaction (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Vascular Medicine (AREA)
  • Multimedia (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Collating Specific Patterns (AREA)
  • Image Input (AREA)

Abstract

レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系を用いてイメージセンサ上にレーザースペックルとして結像し、レーザースペックルの各画素における受光量の時間変化の速さを表す量を算出し、その数値を2次元マップとして指腹の血流マップを求め、該血流マップを、予め登録されている個人データと比較・照合することを特徴とする皮下血流測定を利用した個人認証方法において、レーザーの照射部位からずれた領域をイメージセンサの観察領域として、イメージセンサ上にレーザースペックルを結像させることからなる個人認証方法と、そのために用いる個人認証装置。指腹のレーザースペックルに基づく指紋パターン等を利用して個人認証を行う方法と装置に関し、指紋パターン等の抽出を精度良く行うための改良技術が提供される。The laser beam is expanded to irradiate the finger pad, and the light reflected from the subcutaneous blood vessel layer is imaged as a laser speckle on the image sensor using an optical system. An amount representing the speed of change is calculated, a finger blood flow map is obtained using the numerical value as a two-dimensional map, and the blood flow map is compared with collated personal data. In a personal authentication method using subcutaneous blood flow measurement, a personal authentication method including imaging a laser speckle on an image sensor using an area shifted from a laser irradiation region as an observation area of the image sensor, and a method used therefor Personal authentication device. An improved technique for accurately extracting a fingerprint pattern or the like is provided for a method and apparatus for performing personal authentication using a fingerprint pattern or the like based on laser speckles on the finger pad.

Description

本発明は、皮下血流を測定することを特徴とする個人認証方法とそれに用いる装置に関する。特に、指腹の血流マップから指紋に相当するパターン等を抽出し、本人認証を行う方法とそれに用いる装置に関するものである。 The present invention relates to a personal authentication method characterized by measuring subcutaneous blood flow and a device used therefor. In particular, the present invention relates to a method for extracting a pattern corresponding to a fingerprint from a blood flow map of the finger pad and authenticating the user and a device used therefor.

指紋による本人認証は古くからある目視による方法に代わって、レーザー等を用い、パターンを画像としてコンピュータに入力して解析する様々なシステムが今日まで開発されてきた。指紋を検出するセンサ部分も多数の手法が提案され、山と谷の散乱角の違いと全反射条件を組み合わせて、指紋パターンを直接イメージセンサに取り込む光学的方法や、接触面の電荷分布の差を検出する半導体センサを利用して、パターンを抽出する方法も実用化されている。また指先や手のひらの静脈パターンを、近赤外光を利用して抽出して個人認証する方法も提案され、製品化も進んでいる(例えば、特許文献1〜3参照)。指紋パターンは静脈パターンより形状が複雑であるため、より確度の高い個人認証システムを構成できる可能性があるが、指紋をシリコンなどの材料の型に取るなど、指腹と同じ形状を偽造すれば、誤認証される危険がある。 Various systems that use a laser or the like and input a pattern as an image and analyze it have been developed to date instead of the visual method that has been used for fingerprint authentication. Many methods have been proposed for the sensor part to detect fingerprints, combining the difference in scattering angle between peaks and valleys with the total reflection condition, an optical method to capture the fingerprint pattern directly into the image sensor, and the difference in charge distribution on the contact surface. A method for extracting a pattern by using a semiconductor sensor for detecting the above has been put into practical use. In addition, a method of extracting a fingertip or palm vein pattern using near-infrared light and performing personal authentication has been proposed, and commercialization is also progressing (for example, see Patent Documents 1 to 3). Since the fingerprint pattern is more complicated than the vein pattern, it may be possible to construct a more accurate personal authentication system. However, if the fingerprint is made of a material such as silicon, the same shape as the finger pad is forged. There is a risk of incorrect authentication.

一方、レーザーを生体に向けて照射すると、反射散乱光の強度分布は、血球などの移動散乱粒子によって動的なレーザースペックル(ランダムな斑点模様)を形成し、このパターンを、結像面においてイメージセンサで検出し、各画素における模様の時間変化を定量化し、マップ状に表示することで、生体表面近傍の毛細血管の血流分布を画像化できることが知られている。そして、かかる現象を利用して、皮膚の下や眼底の血流マップを測定する技術や装置は、本発明者らによっていくつか提案されている(例えば、特許文献4〜9参照)。 On the other hand, when the laser is irradiated toward the living body, the intensity distribution of the reflected scattered light forms a dynamic laser speckle (random spot pattern) by moving scattering particles such as blood cells, and this pattern is reflected on the image plane. It is known that the blood flow distribution of capillaries in the vicinity of the living body surface can be imaged by detecting with an image sensor, quantifying the temporal change of the pattern in each pixel, and displaying it in a map. And several techniques and apparatuses which measure the blood flow map under the skin and the fundus oculi by using such a phenomenon have been proposed by the present inventors (for example, see Patent Documents 4 to 9).

そして、本発明者は、上記文献で示された血流マップを、指紋パターンと結びつけて個人認証に用いるという発明を完成し、既に提案したところである(特許文献10と11参照)。
これらの特許文献では、レーザー血流画像化法によって指先の血流を画像化したときに、指紋の谷の部分の血流が山の部分よりも早いため血流マップ内に指紋パターンが現れることを利用して、生きたままの本人の指であることを認証している(特許文献10)。また、近赤外レーザー光を用いることで、指内部の血流分布を検出し、本人認証と他人排除の精度を上げる方法や、あるいは、指先の血流が心拍に同期して変動するので、その波形を解析して生きた指か模擬指かを判定する方法も提案されている(特許文献11)。
The present inventor has completed the invention of using the blood flow map shown in the above-mentioned document for personal authentication by combining it with a fingerprint pattern, and has already proposed (see Patent Documents 10 and 11).
In these patent documents, when the blood flow of the fingertip is imaged by the laser blood flow imaging method, the blood flow in the valley portion of the fingerprint is faster than the mountain portion, so that the fingerprint pattern appears in the blood flow map. Is used to authenticate that the finger is alive (Patent Document 10). In addition, by using near-infrared laser light, the blood flow distribution inside the finger is detected, and the accuracy of identity authentication and the exclusion of others is increased, or the blood flow at the fingertip fluctuates in synchronization with the heartbeat, There has also been proposed a method for determining whether the finger is a living finger or a simulated finger by analyzing the waveform (Patent Document 11).

しかしこれらの方法をもってしても、例えば、非常に薄いシリコン膜に指紋の凹凸を模ったものを指の表面に貼り付けると、背後にある指の血流をセンサが拾ってしまい、生きていると判断してしまうという問題点がある。また、室温が下がる冬場においては、指先が冷たくなり、表面の血流が低下して拍動成分を検出できなくなり、模擬指と判断してしまう点も問題である。本発明者の知る限り、これらの弱点を克服する方法や装置は、まだ提案されていないのが現状である。 However, even with these methods, for example, if a very thin silicon film imitating fingerprint irregularities is attached to the finger surface, the sensor will pick up the blood flow of the finger behind and live There is a problem of judging that it is. Further, in winter when the room temperature is lowered, the fingertip becomes cold, the blood flow on the surface is lowered, and the pulsation component cannot be detected, so that it is judged as a simulated finger. As far as the inventor is aware, no method or apparatus for overcoming these weaknesses has been proposed yet.

特開平5−73666号公報JP-A-5-73666 特開平8−16752号公報Japanese Patent Laid-Open No. 8-16752 特開2003−331268号公報JP 2003-331268 A 特公平5−28133号公報Japanese Patent Publication No. 5-28133 特公平5−28134号公報Japanese Patent Publication No. 5-28134 特開平4−242628号公報JP-A-4-242628 特開平8−112262号公報JP-A-8-112262 特開2003−164431号公報JP 2003-164431 A 特開2003−180641号公報JP 2003-180641 A 国際公開第05/122896号パンフレットInternational Publication No. 05/122896 Pamphlet 国際公開第07/097129号パンフレットInternational Publication No. 07/097129 Pamphlet

指腹のレーザースペックルに基づく指紋パターン等を利用した個人認証方法・装置では、指紋の型を取り、シリコンなどの材料で指紋に似せた凹凸を設けたシートを作り、指先に貼るなどの模擬指により、生体指紋であると偽認証される危険性がある。また、室温が下がる冬場においては、指先が冷たくなり、表面の血流が低下して拍動成分を検出できなくなり、模擬指と判断してしまうという問題もある。本発明は、これらの問題点を解決した確度の高い個人認証方法と認証装置を提供しようとするものである。 For personal authentication methods and devices that use fingerprint patterns based on laser speckles on the finger pad, take a fingerprint mold, create a sheet with irregularities resembling fingerprints using a material such as silicon, and paste it on the fingertip There is a risk of false authentication by a finger as a biometric fingerprint. Further, in winter when the room temperature decreases, there is a problem that the fingertip becomes cold, the blood flow on the surface is lowered, the pulsation component cannot be detected, and the finger is judged as a simulated finger. The present invention is intended to provide a highly accurate personal authentication method and authentication apparatus that solve these problems.

生きた指であることを認識するためには、心拍に同期した血流変動があることを精度良く検出する必要がある。本発明者は、そのためには皮膚表層部よりも、内部の血流変化にウエイトをかけた血流測定をすれば良いことを知見し、これを実現するために、以下の技術的事項を創出したものである。(1)レーザー照射部位とイメージセンサーが観察する領域をずらせば、表層よりも内部を通過してから検出される光信号成分が増えること。(2)指腹部にレーザーを照射し、指先側にイメージセンサを設置するか、その逆に設置するかのいずれかの方法により、指の内部を十分長い距離、レーザーを通過させれば、内部の血流変動を精度良く捉えられること。(3)指表面に、散乱性が高く且つ血流の無い膜を貼り付けると、レーザー散乱波が干渉してイメージセンサ上に形成する模様には固定パターンが重畳し、各画素間の分散値が増える。そして、画素間の分散値の差を利用して、模擬指かどうかを判断できること。 In order to recognize that it is a living finger, it is necessary to accurately detect that there is a blood flow fluctuation synchronized with the heartbeat. For this purpose, the present inventor has found that it is only necessary to perform blood flow measurement with weight on the internal blood flow change rather than the skin surface layer portion, and in order to realize this, the following technical matters are created. It is a thing. (1) If the laser irradiation site and the region observed by the image sensor are shifted, the optical signal component detected after passing through the inside rather than the surface layer increases. (2) If the laser is passed through the finger for a sufficiently long distance by irradiating the finger pad with laser and installing the image sensor on the fingertip side or vice versa, Capable of accurately capturing blood flow fluctuations. (3) When a film with high scattering properties and no blood flow is pasted on the finger surface, a fixed pattern is superimposed on the pattern formed on the image sensor due to interference of laser scattered waves, and the dispersion value between pixels Will increase. It is possible to determine whether the finger is a simulated finger by using a difference in dispersion values between pixels.

前記本発明の課題は、前記本発明者の技術的知見に基づき、請求の範囲の請求項1〜14に記載された下記の本発明によって達成される。 The object of the present invention is achieved by the following present invention described in claims 1 to 14 based on the technical knowledge of the inventor.

本発明のうち請求項1に記載された発明は、レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系を用いてイメージセンサ上にレーザースペックルとして結像し、レーザースペックルの各画素における受光量の時間変化の速さを表す量を算出し、その数値を2次元マップに変換して指腹の血流マップを求め、該血流マップを、予め登録されている個人データと比較・照合することを特徴とする皮下血流測定を利用した個人認証方法において、レーザーの照射部位からずれた領域をイメージセンサの観察領域として、イメージセンサ上にレーザースペックルを結像させることを特徴とする皮下血流測定を利用した個人認証方法である。 According to the first aspect of the present invention, the laser beam is spread to irradiate the finger pad, and the light reflected from the blood vessel layer under the skin is bound as a laser speckle on the image sensor using an optical system. And calculating an amount representing the speed of temporal change in the amount of light received at each pixel of the laser speckle, converting the numerical value into a two-dimensional map to obtain a blood flow map of the finger pad, In a personal authentication method using subcutaneous blood flow measurement, which is characterized by comparing and collating with pre-registered personal data, a laser beam on the image sensor is set as an observation area of the image sensor. This is a personal authentication method using subcutaneous blood flow measurement, characterized in that speckle is imaged.

請求項2に記載された発明は、レーザー光束を線状のスポットとし、イメージセンサとしてラインセンサを用い、該ラインセンサの観察領域と前記線状のスポットとが平行になるように設定することを特徴とする請求項1記載の皮下血流測定を利用した個人認証方法である。 The invention described in claim 2 uses a laser beam as a linear spot, uses a line sensor as an image sensor, and sets the observation area of the line sensor and the linear spot to be parallel to each other. The personal authentication method using subcutaneous blood flow measurement according to claim 1.

請求項3に記載された発明は、指腹の中央部分にレーザーを照射し、指腹の指先側にイメージセンサの観察領域を設定することを特徴とする請求項1記載の皮下血流測定を利用した個人認証方法である。 The invention described in claim 3 irradiates the center part of the finger pad with laser, and sets the observation region of the image sensor on the fingertip side of the finger pad. This is the personal authentication method used.


請求項4に記載された発明は、指腹の指先部分にレーザーを照射し、指腹の中央部分にイメージセンサの観察領域を設定することを特徴とする請求項1記載の皮下血流測定を利用した個人認証方法である。

The invention described in claim 4 irradiates the fingertip part of the finger pad with a laser, and sets the observation region of the image sensor in the center part of the finger pad. This is the personal authentication method used.

請求項5に記載された発明は、イメージセンサ上の少なくとも1列分の各画素における受光量の強度分布を表す信号波形を検出し、該信号波形を予め設定された生体の指の信号波形と比較して、模擬指を検出する機能を付加したことを特徴とする請求項1〜4のいずれか1項記載の皮下血流測定を利用した個人認証方法である。 According to a fifth aspect of the present invention, a signal waveform representing the intensity distribution of the amount of received light in each pixel for at least one column on the image sensor is detected, and the signal waveform is set as a signal waveform of a biological finger set in advance. 5. The personal authentication method using subcutaneous blood flow measurement according to claim 1, further comprising a function of detecting a simulated finger in comparison.

請求項6に記載された発明は、レーザー光束を拡げて指腹に照射する一つ又は二つの照射手段と、多数の画素を有し指腹の下の血管層からの反射光を受光する受光手段と、該受光手段で得られた前記各画素の出力を記憶する記憶手段と、該記憶手段の記憶内容から前記各画素における受光量の時間変化の速さを表す量を演算する演算手段と、前記各画素において得られた演算結果の二次元分布を血流マップとして記憶する第2の記憶手段と、該第2の記憶手段に記憶された血流マップを、予め登録されている個人データと比較・判定する手段を具備した個人認証装置において、前記照射手段と前記受光手段とが、レーザーの照射部位とイメージセンサによる反射光の観測領域がずれるように配置されていることを特徴とする皮下血流測定を利用した個人認証装置である。 The invention described in claim 6 is one or two irradiating means for expanding the laser beam to irradiate the finger pad, and receiving light that has a number of pixels and receives reflected light from the blood vessel layer under the finger pad. Means, storage means for storing the output of each pixel obtained by the light receiving means, and calculation means for calculating an amount representing the speed of temporal change of the amount of received light in each pixel from the stored contents of the storage means , Second storage means for storing a two-dimensional distribution of the calculation results obtained in each pixel as a blood flow map, and blood flow map stored in the second storage means for pre-registered personal data In the personal authentication apparatus provided with the means for comparing / determining, the irradiating means and the light receiving means are arranged so that the laser irradiation part and the observation area of the reflected light by the image sensor are shifted. Use subcutaneous blood flow measurement It is the personal authentication device.

請求項7に記載された発明は、イメージセンサ上の少なくとも1列分の各画素における受光量の強度分布を表す信号波形を検出し、該信号波形を予め設定された生体の指の信号波形と比較して、模擬指を検出する手段を付加したことを特徴とする請求項6記載の皮下血流測定を利用した個人認証装置である。 According to the seventh aspect of the present invention, a signal waveform representing the intensity distribution of the amount of received light in each pixel of at least one column on the image sensor is detected, and the signal waveform is set as a signal waveform of a biological finger set in advance. 7. The personal authentication device using subcutaneous blood flow measurement according to claim 6, further comprising means for detecting a simulated finger.

請求項8に記載された発明は、レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系を用いてイメージセンサ上にレーザースペックルとして結像し、レーザースペックルの各画素における受光量の時間変化の速さを表す量を算出し、その数値を2次元マップに変換して指腹の血流マップを求め、該血流マップを、予め登録されている個人データと比較・照合すると共に、全体又はある領域内の平均血流の経時変化を求め、得られた値を予め定められた基準と比較・判定することを特徴とする皮下血流測定を利用した個人認証方法において、レーザーの照射部位からずれた領域をイメージセンサの観察領域として、イメージセンサ上にレーザースペックルを結像させることを特徴とする皮下血流測定を利用した個人認証方法である。 According to the eighth aspect of the present invention, a laser beam is spread to irradiate the finger pad, and light reflected from a subcutaneous blood vessel layer is imaged as a laser speckle on an image sensor using an optical system. An amount representing the speed of temporal change in the amount of light received at each pixel of the speckle is calculated, the numerical value is converted into a two-dimensional map to obtain a blood flow map of the finger pad, and the blood flow map is registered in advance. Subcutaneous blood flow measurement, characterized by comparing and checking the average blood flow over time or within a certain area and comparing / determining the obtained value with a predetermined standard. In the personal authentication method used, an individual using subcutaneous blood flow measurement, in which laser speckles are imaged on the image sensor, using the region shifted from the laser irradiation site as the observation region of the image sensor It is a testament method.

請求項9に記載された発明は、レーザー光束を拡げて指腹に照射する一つ又は二つの照射手段と、多数の画素を有し指腹の下の血管層からの反射光を受光する受光手段と、該受光手段で得られた前記各画素の出力を記憶する記憶手段と、該記憶手段の記憶内容から前記各画素における受光量の時間変化の速さを表す量を演算する演算手段と、前記各画素において得られた演算結果の二次元分布を血流マップとして記憶する第2の記憶手段と、該第2の記憶手段に記憶された血流マップを、予め登録されている個人データと比較・判定する手段を具備すると共に、全体又はある領域内の平均血流の経時変化を算出し、得られた値を予め定められた基準と比較・判定する手段を具備した個人認証装置において、前記照射手段と前記受光手段とが、レーザーの照射部位とイメージセンサによる反射光の観測領域がずれるように配置されていることを特徴とする皮下血流測定を利用した個人認証装置である。 The invention described in claim 9 includes one or two irradiating means for expanding the laser beam to irradiate the finger pad, and light reception for receiving reflected light from a blood vessel layer under the finger pad having a large number of pixels. Means, storage means for storing the output of each pixel obtained by the light receiving means, and calculation means for calculating an amount representing the speed of temporal change of the amount of received light in each pixel from the stored contents of the storage means , Second storage means for storing a two-dimensional distribution of the calculation results obtained in each pixel as a blood flow map, and blood flow map stored in the second storage means for pre-registered personal data In a personal authentication device comprising means for comparing / determining the average blood flow over time or in a certain region and comparing / determining the obtained value with a predetermined reference , The irradiation means and the light receiving means, It is the personal authentication device using subcutaneous blood flow measurement, characterized in that observation area of the light reflected by the irradiated part and the image sensor of the Za are arranged to be shifted.

請求項10に記載された発明は、イメージセンサ上の少なくとも1列分の各画素における受光量の強度分布を表す信号波形を検出し、該信号波形を予め設定された生体の指の信号波形と比較して、模擬指を検出する手段を付加したことを特徴とする請求項9記載の皮下血流測定を利用した個人認証装置である。 According to the tenth aspect of the present invention, a signal waveform representing the intensity distribution of the amount of received light in each pixel of at least one column on the image sensor is detected, and the signal waveform is set as a signal waveform of a biological finger set in advance. The personal authentication device using subcutaneous blood flow measurement according to claim 9, further comprising means for detecting a simulated finger.

請求項11に記載された発明は、レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系を用いてイメージセンサ上にレーザースペックルとして結像し、レーザースペックルの各画素における受光量の時間変化の速さを表す量を算出し、その数値を2次元マップに変換して指腹の血流マップを求め、該血流マップを、予め登録されている個人データと比較・照合することを特徴とする皮下血流測定を利用した個人認証方法において、これらの操作の前後又は進行途中の時間帯を利用して、イメージセンサ上の少なくとも1列分の各画素における受光量の強度分布を表す信号波形を検出し、該信号波形を予め設定された生体の指の信号波形と比較して、模擬指を検出する機能を付加したことを特徴とする皮下血流測定を利用した個人認証方法である。 According to an eleventh aspect of the present invention, a laser beam is spread to irradiate the finger pad, and light reflected from a subcutaneous blood vessel layer is imaged as a laser speckle on an image sensor by using an optical system. An amount representing the speed of temporal change in the amount of light received at each pixel of the speckle is calculated, the numerical value is converted into a two-dimensional map to obtain a blood flow map of the finger pad, and the blood flow map is registered in advance. In the personal authentication method using subcutaneous blood flow measurement, characterized by comparing and collating with existing personal data, using at least one column on the image sensor using the time zone before, after or during these operations A subcutaneous waveform characterized by adding a function of detecting a simulated finger by detecting a signal waveform representing the intensity distribution of the amount of received light in each pixel and comparing the signal waveform with a signal waveform of a biological finger set in advance. Blood flow measurement Is the use the personal authentication method.

請求項12に記載された発明は、レーザー光束を拡げて指腹に照射する一つ又は二つの照射手段と、多数の画素を有し指腹の下の血管層からの反射光を受光する受光手段と、該受光手段で得られた前記各画素の出力を記憶する記憶手段と、該記憶手段の記憶内容から前記各画素における受光量の時間変化の速さを表す量を演算する演算手段と、前記各画素において得られた演算結果の二次元分布を血流マップとして記憶する第2の記憶手段と、該第2の記憶手段に記憶された血流マップを、予め登録されている個人データと比較・判定する手段を具備した個人認証装置において、イメージセンサ上の少なくとも1列分の各画素における受光量の強度分布を表す信号波形を検出し、該信号波形を予め設定された生体の指の信号波形と比較して、模擬指を検出する手段を付加したことを特徴とする皮下血流測定を利用した個人認証装置である。 The invention described in claim 12 has one or two irradiating means for expanding the laser beam and irradiating the finger pad, and receiving light that has a large number of pixels and receives reflected light from the blood vessel layer under the finger pad. Means, storage means for storing the output of each pixel obtained by the light receiving means, and calculation means for calculating an amount representing the speed of temporal change of the amount of received light in each pixel from the stored contents of the storage means , Second storage means for storing a two-dimensional distribution of the calculation results obtained in each pixel as a blood flow map, and blood flow map stored in the second storage means for pre-registered personal data In the personal authentication device provided with a means for comparing / determining, a signal waveform representing the intensity distribution of the amount of received light in each pixel for at least one column on the image sensor is detected, and the signal waveform is set in advance to a predetermined finger of a living body. Compared to the signal waveform of擬指 a personal authentication device using subcutaneous blood flow measurement, characterized in that the addition means for detecting.

請求項13に記載された発明は、レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系を用いてイメージセンサ上にレーザースペックルとして結像し、レーザースペックルの各画素における受光量の時間変化の速さを表す量を算出し、その数値を2次元マップとして指腹の血流マップを求め、該血流マップを、予め登録されている個人データと比較・照合することを特徴とする皮下血流測定を利用した個人認証方法において、レーザーを、多数の横長のスリットを有する遮蔽板を通過させることによって、指腹上に格子状のレーザースポットを投影し、該スポットとセンサの走査線の方向を合わせておき、該スポット上のデータを解析し指腹の表層部の血流マップとその経時変化を検出するか、又は該スポットとスポットの間のデータを解析し指腹の内層部の血流マップとその経時変化を検出することを特徴とする皮下血流測定を利用した個人認証方法である。 According to a thirteenth aspect of the present invention, a laser beam is spread to irradiate the finger pad, and light reflected from a subcutaneous blood vessel layer is imaged as a laser speckle on an image sensor using an optical system. An amount representing the speed of temporal change in the amount of light received at each pixel of the speckle is calculated, and a blood flow map of the finger pad is obtained using the numerical value as a two-dimensional map, and the blood flow map is stored in advance as personal data. In the personal authentication method using subcutaneous blood flow measurement characterized by comparing and collating with the laser, a laser beam is passed through a shielding plate having a number of horizontally long slits, thereby forming a lattice-like laser spot on the finger pad. Project the spot and the direction of the scanning line of the sensor and analyze the data on the spot to detect a blood flow map of the surface layer of the finger pad and its change over time, or A personal authentication method utilizing subcutaneous blood flow measurements and detecting the blood flow map and its change with time of the inner layer portion of the data to analyze the finger pad between the pot.

請求項14に記載された発明は、レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系を用いてイメージセンサ上にレーザースペックルとして結像し、レーザースペックルの各画素における受光量の時間変化の速さを表す量を算出し、その数値を2次元マップとして指腹の血流マップを求め、該血流マップを、予め登録されている個人データと比較・照合すると共に、全体又はある領域内の平均血流の経時変化を求め、得られた値を予め定められた基準と比較・判定することを特徴とする皮下血流測定を利用した個人認証方法において、レーザーを、多数の横長のスリットを有する遮蔽板を通過させることによって、指腹上に格子状のレーザースポットを投影し、該スポットとセンサの走査線の方向を合わせておき、該スポット上のデータを解析し指腹の表層部の血流マップとその経時変化を検出するか、又は該スポットとスポットの間のデータを解析し指腹の内層部の血流マップとその経時変化を検出することを特徴とする皮下血流測定を利用した個人認証方法である。 According to a fourteenth aspect of the present invention, a laser beam is spread to irradiate the finger pad, and light reflected from a subcutaneous blood vessel layer is imaged as a laser speckle on an image sensor using an optical system. An amount representing the speed of temporal change in the amount of light received at each pixel of the speckle is calculated, and a blood flow map of the finger pad is obtained using the numerical value as a two-dimensional map, and the blood flow map is stored in advance as personal data. An individual using subcutaneous blood flow measurement, which compares and collates with the average, calculates the time course of the average blood flow in the whole or in a certain area, and compares and determines the obtained value with a predetermined standard In the authentication method, a laser beam is passed through a shielding plate having a large number of horizontally long slits to project a lattice-like laser spot on the finger pad, and the direction of the scanning line of the sensor is aligned with the spot. Analyzing the data on the spot and detecting the blood flow map of the surface of the finger pad and its change over time, or analyzing the data between the spots and the blood flow map of the inner layer of the finger pad and its It is a personal authentication method using subcutaneous blood flow measurement characterized by detecting a change with time.

指腹のレーザースペックルに基づく指紋パターン等を利用した個人認証技術は、生体固有の血流情報を用いて指紋のパターンを描くものであり、また、そのパターンは心拍に同期して時間的に変動することを利用したものであり、このように2次元パターンと時間軸を組み合わせたモデルは、偽造が非常に難しい。しかしそれでも、シリコン樹脂などで指紋の凹凸を模った模擬指や、これを薄いシート状にして指に貼り付けたものを、本物の指と誤認識する欠点があった。本発明の方法・装置によれば、指内部の血流情報をより的確に取り出すことができ、更に、寒冷地などで寒さのため血流が低い場合にも、内部の血流信号を確実に拾うことができるので、模擬指と標準的な人の指との間に明確な区別することが可能となる。 Personal authentication technology that uses fingerprint patterns based on laser speckles on the finger pad draws a fingerprint pattern using blood flow information unique to the living body, and the pattern is temporally synchronized with the heartbeat. This model uses fluctuations, and it is very difficult to forge a model that combines a two-dimensional pattern and a time axis. However, there is still a defect that a simulated finger imitating the fingerprint unevenness with silicon resin or the like, or a thin sheet of the finger stuck to the finger is mistakenly recognized as a real finger. According to the method and apparatus of the present invention, blood flow information inside the finger can be extracted more accurately, and even when the blood flow is low due to cold in a cold region, the internal blood flow signal can be reliably obtained. Since it can be picked up, a clear distinction can be made between a simulated finger and a standard human finger.

従来のレーザースペックルに基づく個人認証技術の概念図を示す。The conceptual diagram of the personal authentication technique based on the conventional laser speckle is shown. 本発明のレーザースペックルに基づく個人認証技術の概念図を示す。The conceptual diagram of the personal authentication technique based on the laser speckle of this invention is shown. 本発明におけるレーザーの照射スポットと、イメージセンサの観測位置の関係の一例を示す図である。It is a figure which shows an example of the relationship between the irradiation spot of the laser in this invention, and the observation position of an image sensor. 本発明におけるレーザーの照射スポットと、イメージセンサの観測位置の関係の他の例を示す図である。It is a figure which shows the other example of the relationship between the irradiation spot of the laser in this invention, and the observation position of an image sensor. 指の皮下の血管層と角質層から得られるラインセンサの信号を示す図である。It is a figure which shows the signal of the line sensor obtained from the blood vessel layer and stratum corneum of a finger | toe subcutaneously. 本発明の他の態様である、指腹上に格子状のレーザースポットを投影させる場合の例を示す図である。It is a figure which shows the example in the case of projecting a grid | lattice-like laser spot on the finger pad which is the other aspect of this invention.

生体情報の中でも血流から得られる情報は、本人が生きた状態でセンサを操作しなければ認証できないという特徴がある。指腹のレーザースペックルに基づく指紋パターン等を利用した個人認証技術は、レーザー散乱を利用した血流測定技術により、指紋の凹凸によって空間的に変調された皮下血流を測定するものであるが、皮下血流を測定するために、先ず、レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系を用いてイメージセンサ上にスペックルパターンとして結像する。そして、スペックルをイメージセンサを用いて連続的に走査し、各画素における受光量の時間変化の速さを表す量、例えば、平均時間変化率、あるいはイメージセンサの露光時間にしたがって積分された受光量の変動度の逆数を算出し、得られた数値を2次元マップに変換して指腹の血流マップを得る。次に、血流マップとして現れた指紋パターン等を、予め登録されている個人データと比較・判定する。そして、他の態様においては、以上の工程に付加して、全体又はある領域内の平均血流の経時変化を求め、予め定められた基準と比較・判定する工程も加えられる。これらには、必要に応じ、得られた血流マップあるいは指紋パターンを表示する工程、あるいは表示する手段を組み入れることもできる。 Among biometric information, information obtained from blood flow has a feature that it cannot be authenticated unless the sensor is operated while the person is alive. Personal authentication technology using fingerprint patterns based on laser speckles on the finger pad measures blood flow spatially modulated by fingerprint irregularities by blood flow measurement technology using laser scattering. In order to measure subcutaneous blood flow, first, the laser beam is expanded and applied to the finger pad, and the light reflected from the subcutaneous blood vessel layer is imaged as a speckle pattern on the image sensor using an optical system. . Then, the speckle is continuously scanned using the image sensor, and the light reception integrated by the amount representing the speed of time change of the light reception amount in each pixel, for example, the average time change rate or the exposure time of the image sensor. The reciprocal of the amount of fluctuation is calculated, and the obtained numerical value is converted into a two-dimensional map to obtain a finger blood flow map. Next, a fingerprint pattern or the like appearing as a blood flow map is compared / determined with personal data registered in advance. And in another aspect, in addition to the above process, the process of calculating | requiring the time-dependent change of the average blood flow in the whole or a certain area | region and comparing and determining with a predetermined reference | standard is also added. These may include a step of displaying the obtained blood flow map or fingerprint pattern, or a means for displaying as necessary.

本発明は、上記の指腹のレーザースペックルに基づく指紋パターン等を利用した個人認証技術を、更に改良したものであって、レーザーの照射部位からずれた領域をイメージセンサによる反射光の観察領域として、イメージセンサ上にレーザースペックルを結像させることを特徴とする個人認証方法又はそれに用いる装置である。 The present invention is a further improvement of the personal authentication technology using a fingerprint pattern or the like based on the laser speckle of the finger pad described above, and an area shifted from the laser irradiation area is an observation area of reflected light by an image sensor. As a personal authentication method or an apparatus used therefor, the method includes imaging laser speckles on an image sensor.

図1には、従来の、指の血流測定によるレーザースペックルに基づく指紋パターン等を利用した、個人認証技術の概念図を示した。1は半導体レーザーなどの小型のレーザー光源、2は光学系、3は指腹、4はレーザースポット(照射スポット)又は観察領域、5は結像光学系、6はイメージセンサ若しくはCCDカメラ、7は解析用パーソナルコンピュータ、8はディスプレイを示す。 FIG. 1 shows a conceptual diagram of a personal authentication technique using a conventional fingerprint pattern based on laser speckle based on finger blood flow measurement. 1 is a small laser light source such as a semiconductor laser, 2 is an optical system, 3 is a finger pad, 4 is a laser spot (irradiation spot) or observation region, 5 is an imaging optical system, 6 is an image sensor or CCD camera, 7 is An analysis personal computer 8 is a display.

図1に示したように、半導体レーザーなどの小型のレーザー光源1から出た光を、光学系2を通して拡げ、指腹3の広い面積(照射スポット4)に照射する。この照射スポットを、結像光学系5を通してイメージセンサ若しくはCCDカメラ6などの受光面に結像する。イメージセンサ若しくはCCDカメラから得られる映像信号を、A/D変換して解析用パーソナルコンピュータ7に取り込み、各画素における受光量の時間変化の速さを表す量、例えば、平均時間変化率、あるいはイメージセンサの露光時間にしたがって積分された受光量の変動度の逆数を算出し、必要な場合にはディスプレイ8にマップ状に表示して、血流マップデータとする。 As shown in FIG. 1, light emitted from a small laser light source 1 such as a semiconductor laser is spread through an optical system 2 to irradiate a wide area (irradiation spot 4) of the finger pad 3. This irradiation spot is imaged on a light receiving surface such as an image sensor or a CCD camera 6 through the imaging optical system 5. A video signal obtained from an image sensor or a CCD camera is A / D converted and taken into the personal computer 7 for analysis, and an amount representing the speed of temporal change in received light amount at each pixel, for example, an average time change rate or an image. The reciprocal of the variation in the amount of received light integrated according to the exposure time of the sensor is calculated, and if necessary, displayed on the display 8 in a map form to obtain blood flow map data.

かくして表現される指腹の皮下にある毛細血管の血流のマップには、指紋パターン等が浮き出てくるので、このデータを予め登録されているデータと比較し、個人認証を行う。血流マップとして現れた指紋パターン等を、予め登録されている個人データと比較・判定する方法・手段としては、特別なものである必要はなく、従来知られている方法・手段を用いることができる。 Since the blood flow map of the capillaries under the finger pad expressed in this way shows a fingerprint pattern or the like, this data is compared with previously registered data for personal authentication. As a method / means for comparing / determining a fingerprint pattern, etc. appearing as a blood flow map with pre-registered personal data, it is not necessary to use a special method / means. it can.

ところで、図1に示される従来の方法・装置においては、レーザースポットと観察視野が一致しているため、指の皮膚深部まで拡散してから表面まで戻ってくる光よりも、皮膚表層部からカメラに向かって散乱されてくる光の方が、イメージセンサ6に検出される割合が高い。このため皮膚内部の血流変動が、効率良く検出されにくいという問題がある。 By the way, in the conventional method and apparatus shown in FIG. 1, since the laser spot and the observation field of view coincide with each other, the camera from the skin surface layer portion is used rather than the light returning to the surface after diffusing to the deep skin of the finger. The ratio of the light scattered toward the image sensor 6 is higher than that detected by the image sensor 6. For this reason, there is a problem that blood flow fluctuations in the skin are difficult to detect efficiently.

図2には、レーザーの照射部位とイメージセンサによる反射光の観測視野をずらして、イメージセンサ上にレーザースペックルを結像させる概念図を示した。図2において、1は半導体レーザー、2は光学系、9はレーザースポット、10は線状の観察領域、11は結像レンズ、12はラインセンサを示す。図2においては、レーザースポットは横長の楕円形であるが、線状のスポットであっても良い。また、観察領域は線状である必要はなく、センサも2次元のイメージセンサであっても良い。好ましいのは、レーザー光束を線状のスポットとし、イメージセンサとしてラインセンサを用い、ラインセンサの観察領域と線状のスポットとが平行になるようにした場合である。 FIG. 2 shows a conceptual diagram in which laser speckles are imaged on the image sensor by shifting the laser irradiation site and the observation field of the reflected light from the image sensor. In FIG. 2, 1 is a semiconductor laser, 2 is an optical system, 9 is a laser spot, 10 is a linear observation region, 11 is an imaging lens, and 12 is a line sensor. In FIG. 2, the laser spot is a horizontally long ellipse, but may be a linear spot. Further, the observation region does not need to be linear, and the sensor may be a two-dimensional image sensor. Preferred is a case where the laser beam is used as a linear spot and a line sensor is used as an image sensor so that the observation area of the line sensor and the linear spot are parallel to each other.

図2に示したように、レーザーの照射スポット9とイメージセンサの観測位置10をずらした場合には、例えば、図3に示したように、レーザースポット13から組織内部に十分入った光が、観測位置14まで戻ってくることになる。そして、この場合には、組織内部の血流により依存したデータが得られ、指先が冷たいときも心拍に同期した血流変動を明白に観察できる。 As shown in FIG. 2, when the irradiation spot 9 of the laser and the observation position 10 of the image sensor are shifted, for example, as shown in FIG. It will return to the observation position 14. In this case, data depending on the blood flow inside the tissue is obtained, and blood flow fluctuations synchronized with the heartbeat can be clearly observed even when the fingertip is cold.

あるいは、例えば、図4に示したように、指腹の中央部分にレーザーを照射し、指の先端側にセンサを持って行くと、レーザースポット13から入った光が、皮膚内部を長距離伝搬した波面を観測位置14で受光することになり、血流波形が更に安定する。図4において、指腹の指先部分にレーザーを照射し、指腹の中央部分にイメージセンサの観察領域を設定しても良い。 Or, for example, as shown in FIG. 4, when the center part of the finger pad is irradiated with a laser and the sensor is brought to the tip of the finger, the light from the laser spot 13 propagates in the skin over a long distance. The received wavefront is received at the observation position 14, and the blood flow waveform is further stabilized. In FIG. 4, it is also possible to irradiate the fingertip part of the finger pad with laser and set the observation area of the image sensor in the center part of the finger pad.

更に、本発明においては、イメージセンサ上の少なくとも1列分の各画素における受光量の強度分布を表す信号波形を検出し、この信号波形を予め設定された生体の指の信号波形と比較して、模擬指を検出する機能を付加することも好ましい態様である。これを図5で説明する。図5において、15は皮下の血管層、16は角質層、17はシリコンなどの薄膜を示す。 Furthermore, in the present invention, a signal waveform representing the intensity distribution of the amount of received light in each pixel for at least one column on the image sensor is detected, and this signal waveform is compared with a preset signal waveform of a biological finger. It is also a preferred aspect to add a function of detecting a simulated finger. This will be described with reference to FIG. In FIG. 5, 15 is a subcutaneous blood vessel layer, 16 is a stratum corneum, and 17 is a thin film such as silicon.

図5の(a)は、普通の指の皮下の血管層15と角質層16から得られるラインセンサの信号で、グラフの横軸Pが画素位置(pixel)、縦軸Iが光信号強度を示す。図5の(b)は、指の表面にシリコンなどの薄膜17を貼った時に得られる信号で、グラフから分かるように波形のコントラストが高くなっている。一般に血流のない層、即ち、内部に散乱粒子の動きがない層にレーザーが当たると、反射散乱光が像面で干渉したときには静止したスペックルが形成される。従って、ラインセンサなどで光強度分布を走査すると、図5の(b)のグラフようにコントラストの高い信号波形が得られ、模様が静止しているため、波形は変わることはない。 FIG. 5 (a) is a line sensor signal obtained from the subcutaneous blood vessel layer 15 and stratum corneum 16 of a normal finger. The horizontal axis P of the graph is the pixel position (pixel), and the vertical axis I is the optical signal intensity. Show. FIG. 5B is a signal obtained when a thin film 17 such as silicon is applied to the surface of the finger, and the waveform contrast is high as can be seen from the graph. In general, when a laser hits a layer without blood flow, that is, a layer in which scattering particles do not move, a stationary speckle is formed when reflected scattered light interferes with the image plane. Therefore, when the light intensity distribution is scanned with a line sensor or the like, a signal waveform with high contrast is obtained as shown in the graph of FIG. 5B, and the pattern is stationary, so the waveform does not change.

しかし、内部に血球が多数移動していると、像面の各点では干渉条件が刻々変化し(ある時は同位相に、ある時は逆位相で干渉するため)明暗の模様が時間と共に入れ替わっていく。実際は、数キロヘルツまで達する早い模様の変化になるため、イメージセンサの露光時間内で積分され、ブレた画像になり、図5の(a)のグラフのようにコントラストは低下する。指の表面に血流のない組織を貼ると、動きのない散乱粒子が手前にあるため静止したスペックル画像に近くなり、図5の(b)のグラフのようにコントラストの高い走査信号が得られる。この効果を利用して、例えば、生体の取り得る一定の基準値を定めておき、それから外れる人工物を判別することができる。 However, when many blood cells are moving inside, the interference condition changes every moment on the image plane (because it interferes in the same phase in some cases and in the opposite phase in other cases), the pattern of light and dark changes over time. To go. Actually, since the pattern changes rapidly up to several kilohertz, it is integrated within the exposure time of the image sensor, resulting in a blurred image, and the contrast is lowered as shown in the graph of FIG. When a tissue without blood flow is pasted on the finger surface, a stationary speckle image is obtained because scattered particles that do not move are in front, and a scanning signal with high contrast is obtained as shown in the graph of FIG. 5B. It is done. By utilizing this effect, for example, a certain reference value that can be taken by a living body can be determined, and an artifact that deviates therefrom can be determined.

図5に示した態様、即ち、イメージセンサ上の少なくとも1列分の各画素における受光量の強度分布を表す信号波形を検出し、この信号波形を予め設定された生体の指の信号波形と比較して、模擬指を検出する機能は、本発明のうち請求項1〜4に記載された発明に付加して用いることができる。しかし、かかる態様は、それだけではなく、皮下血流測定を利用した従来の個人認証方法と直接組み合わせても良い。即ち、従来の個人認証方法において、認証のための各操作の前後又は進行途中の時間帯を利用して、イメージセンサ上の少なくとも1列分の各画素における受光量の強度分布を表す信号波形を検出し、該信号波形を予め設定された生体の指の信号波形と比較して、模擬指を検出する機能を付加し組合わせることができる。これによって、模擬指と標準的な人の指とのより明確な区別をすることができる。 5, that is, a signal waveform representing the intensity distribution of the amount of received light in each pixel for at least one column on the image sensor is detected, and this signal waveform is compared with a preset signal waveform of a finger of a living body. Thus, the function of detecting a simulated finger can be used in addition to the invention described in claims 1 to 4 of the present invention. However, such a mode may be directly combined with a conventional personal authentication method using subcutaneous blood flow measurement. That is, in the conventional personal authentication method, a signal waveform representing the intensity distribution of the received light amount in each pixel for at least one column on the image sensor is obtained by using time zones before or after each operation for authentication. A function of detecting a simulated finger can be added and combined by detecting and comparing the signal waveform with a preset biological finger signal waveform. This allows a clearer distinction between simulated fingers and standard human fingers.

以上の本発明の説明においては、主にラインセンサを用いた例で説明したが、本発明の他の態様においては、従来のようにTVカメラなどの二次元イメージセンサを用いることもできる。特に、図6のようにレーザーを、多数の横長のスリットを有する遮蔽板18を通過させることによって、指腹上に格子状のレーザースポット19を投影しても良い。この場合には、横長のスポットとカメラの走査線の方向を合わせておき、スポット上のデータを解析すれば、表層部の血流分布とその経時変化を検出することができる。あるいは、スポットとスポットの間のデータを解析すれば、内部の血流分布とその経時変化を調べることができる。そして、これらのデータを、予め登録されている個人データと比較・照合したり、予め定められた基準と比較・判定することによって、非常に精密な個人認証に役立てることもできる。かかる場合において、血流による指紋画像を取り込む場合は、遮蔽板18を挿入せず、内部の血流分布を取り込むときだけ遮蔽板18を挿入することで時間的に切り替えることもできる。 In the above description of the present invention, an example using a line sensor has been mainly described. However, in another aspect of the present invention, a two-dimensional image sensor such as a TV camera can be used as in the related art. In particular, as shown in FIG. 6, a lattice-like laser spot 19 may be projected on the finger pad by passing a laser through a shielding plate 18 having a large number of horizontally long slits. In this case, the blood flow distribution in the surface layer and its change with time can be detected by matching the direction of the horizontally long spot and the scanning line of the camera and analyzing the data on the spot. Or if the data between spots are analyzed, an internal blood flow distribution and its temporal change can be investigated. These data can be used for very precise personal authentication by comparing / collating with pre-registered personal data or comparing / determining with a predetermined standard. In such a case, when a fingerprint image based on blood flow is captured, the shielding plate 18 is not inserted, and the shielding plate 18 is inserted only when the internal blood flow distribution is captured.

本発明において、レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系を用いてイメージセンサ上にレーザースペックルとして結像し、レーザースペックルの各画素における受光量の時間変化の速さを表す量を算出し、その数値を2次元マップに変換して指腹の血流マップを求め、該血流マップを、予め登録されている個人データと比較・照合することを特徴とする従来の技術には、特定波長の一つのレーザー光束を指腹に照射し、あるいは特定波長の複数の異なるレーザー光束を同時または順次に指腹に照射し、皮下及び内部組織にある血管層からの反射光に対する重畳的なあるいは複数の血流速マップを求めるという方法・手段をも含むものである。 In the present invention, the laser beam is expanded to irradiate the finger pad, and the light reflected from the subcutaneous blood vessel layer is imaged as a laser speckle on the image sensor using an optical system. An amount representing the speed of temporal change in the amount of received light is calculated, the numerical value is converted into a two-dimensional map to obtain a blood flow map of the finger pad, and the blood flow map is compared with pre-registered personal data. Conventional techniques characterized by collation include irradiating the finger pad with a single laser beam of a specific wavelength, or irradiating the finger pad with a plurality of different laser beams of a specific wavelength simultaneously or sequentially. It also includes a method / means for obtaining a superimposed or plural blood flow velocity map for the reflected light from the blood vessel layer in the tissue.

レーザーは波長によって組織深達性が異なり、可視光のような波長が短いものでは、表面に近い血流の分布、即ち、指紋パターンのみが得られるが、近赤外光のような波長の長いものでは組織内部に深く入るため、内部の血流分布を反映した血流マップが得られる。内部の血流分布にも個人差があり、偽造が困難であるため、これを認証データに加えれば、相乗効果によって個人照合精度を向上させられる。かかる従来技術においても、前記本発明は適用できる。この際、例えば、指腹の内部組織まで到達し得る近赤外レーザー光束と、皮下の角質層に吸収され易い可視レーザー光束とを用い、それぞれの反射光により求められる指腹の血流マップを同時又は順次に測定し2種類の血流マップを得る場合には、それぞれのレーザーの照射スポットと観察領域をずらすようにすれば良い。 Lasers have different tissue penetration characteristics depending on the wavelength. When the wavelength is short, such as visible light, only the blood flow distribution close to the surface, that is, the fingerprint pattern is obtained, but the wavelength is long, such as near infrared light. Since the object goes deep inside the tissue, a blood flow map reflecting the internal blood flow distribution can be obtained. Since there are individual differences in the internal blood flow distribution and it is difficult to counterfeit, if this is added to the authentication data, the personal verification accuracy can be improved by a synergistic effect. The present invention can also be applied to such prior art. At this time, for example, using a near-infrared laser beam that can reach the internal tissue of the finger pad and a visible laser beam that is easily absorbed by the subcutaneous stratum corneum, a blood flow map of the finger pad that is obtained by each reflected light is obtained. When two types of blood flow maps are obtained simultaneously or sequentially, the laser irradiation spot and the observation area may be shifted.

本発明によれば、前記のごとき個人認証方法を実行するための装置が提供される。本発明の装置は、レーザー光束を拡げて指腹に照射する一つ又は二つの照射手段と、多数の画素を有し指腹の下の血管層からの反射光を受光する受光手段と、該受光手段で得られた前記各画素の出力を記憶する記憶手段と、該記憶手段の記憶内容から前記各画素における受光量の時間変化の速さを表す量を演算する演算手段と、前記各画素において得られた演算結果の二次元分布を血流マップとして記憶する第2の記憶手段と、該第2の記憶手段に記憶された血流マップを、予め登録されている個人データと比較・判定する手段を具備した個人認証装置において、前記照射手段と前記受光手段とが、レーザーの照射部位とイメージセンサによる反射光の観測視野がずれるように配置されていることを特徴とする皮下血流測定を利用した個人認証装置である。 According to the present invention, there is provided an apparatus for executing the personal authentication method as described above. The apparatus of the present invention includes one or two irradiating means for expanding the laser beam to irradiate the finger pad, a light receiving means for receiving reflected light from a blood vessel layer under the finger pad having a large number of pixels, Storage means for storing the output of each pixel obtained by the light receiving means, calculation means for calculating an amount representing the speed of temporal change in the amount of received light in each pixel from the stored contents of the storage means, and each pixel The second storage means for storing the two-dimensional distribution of the calculation result obtained in step 2 as a blood flow map, and comparing / determining the blood flow map stored in the second storage means with pre-registered personal data In the personal authentication apparatus provided with the means for performing subcutaneous blood flow measurement, wherein the irradiation means and the light receiving means are arranged so that the laser irradiation site and the observation field of the reflected light by the image sensor are shifted from each other Personal recognition using It is a device.

そして、本発明のもう一つの装置は、レーザー光束を拡げて指腹に照射する一つ又は二つの照射手段と、多数の画素を有し指腹の下の血管層からの反射光を受光する受光手段と、該受光手段で得られた前記各画素の出力を記憶する記憶手段と、該記憶手段の記憶内容から前記各画素における受光量の時間変化の速さを表す量を演算する演算手段と、前記各画素において得られた演算結果の二次元分布を血流マップとして記憶する第2の記憶手段と、該第2の記憶手段に記憶された血流マップを、予め登録されている個人データと比較・判定する手段を具備すると共に、これらに加えて、全体又はある領域内の平均血流の経時変化を算出し、予め定められた基準と比較・判定する手段を具備した個人認証装置において、前記照射手段と前記受光手段とが、レーザーの照射部位とイメージセンサによる反射光の観測視野がずれるように配置されていることを特徴とする皮下血流測定を利用した個人認証装置である。 Another apparatus of the present invention receives one or two irradiation means for expanding the laser beam to irradiate the finger pad and a reflected light from a blood vessel layer under the finger pad having a large number of pixels. A light receiving means, a storage means for storing the output of each pixel obtained by the light receiving means, and a calculation means for calculating an amount representing a time change rate of the received light amount in each pixel from the stored contents of the storage means. And a second storage means for storing the two-dimensional distribution of the calculation results obtained in each pixel as a blood flow map, and a blood flow map stored in the second storage means, In addition to the means for comparing / determining with the data, in addition to these, a personal authentication apparatus having means for calculating the change over time of the average blood flow in the whole or in a certain region and comparing / determining with a predetermined standard In the above, the irradiation means and the light receiving And the step is a personal authentication device using subcutaneous blood flow measurement, characterized in that it is arranged so that fields of view of the light reflected by the irradiated part and the image sensor of the laser deviates.

前記本発明の個人認証装置には、前記各手段に加えて、イメージセンサ上の少なくとも1列分の各画素における受光量の強度分布を表す信号波形を検出し、該信号波形を予め設定された生体の指の信号波形と比較して、模擬指を検出する手段を付加することができる。 In the personal authentication device of the present invention, in addition to the above means, a signal waveform representing the intensity distribution of the amount of received light in each pixel for at least one column on the image sensor is detected, and the signal waveform is preset. A means for detecting a simulated finger can be added as compared with the signal waveform of a biological finger.

本発明の装置の更に他の態様は、レーザー光束を拡げて指腹に照射する一つ又は二つの照射手段と、多数の画素を有し指腹の下の血管層からの反射光を受光する受光手段と、該受光手段で得られた前記各画素の出力を記憶する記憶手段と、該記憶手段の記憶内容から前記各画素における受光量の時間変化の速さを表す量を演算する演算手段と、前記各画素において得られた演算結果の二次元分布を血流マップとして記憶する第2の記憶手段と、該第2の記憶手段に記憶された血流マップを、予め登録されている個人データと比較・判定する手段を具備した個人認証装置において、イメージセンサ上の少なくとも1列分の各画素における受光量の強度分布を表す信号波形を検出し、該信号波形を予め設定された生体の指の信号波形と比較して、模擬指を検出する手段を付加したことを特徴とする皮下血流測定を利用した個人認証装置である。 Still another aspect of the device of the present invention is to receive one or two irradiation means for expanding the laser beam to irradiate the finger pad and the reflected light from the blood vessel layer under the finger pad having a large number of pixels. A light receiving means, a storage means for storing the output of each pixel obtained by the light receiving means, and a calculation means for calculating an amount representing a time change rate of the received light amount in each pixel from the stored contents of the storage means. And a second storage means for storing the two-dimensional distribution of the calculation results obtained in each pixel as a blood flow map, and a blood flow map stored in the second storage means, In a personal authentication device comprising means for comparing / determining with data, a signal waveform representing the intensity distribution of the amount of received light in each pixel for at least one column on the image sensor is detected, and the signal waveform is set to a predetermined biological Compared to the finger signal waveform,擬指 a personal authentication device using subcutaneous blood flow measurement, characterized in that the addition means for detecting.

照射手段としては、例えば、半導体レーザーから出射した光をレンズを通して拡げ、指腹の広い領域を一度に照射する。受光手段としては、ラインセンサやエリアセンサ等のイメージセンサが用いられる。センサからの電気信号は、A/D変換した後、マイコンやパソコンの記憶部に記憶される。数秒間にわたり連続して画像信号を記憶部に取りこみ、マイコンやパソコンにあらかじめ設定されたプログラムにより、連続する2枚の画像の差を求めて、受光量の時間変化の速さを演算する。または画像のぶれ率、すなわちイメージセンサの露光時間内で光量が高速に変化すると、信号が積分され、逆に2画面の差が減少する性質を利用して受光量の時間変化の速さを演算する。演算結果は各画素の配置に従って、パソコンの画面上に二次元のカラーマップとして表示することもできる。演算した値を、あるいは表示手段に表示された指紋パターン等を、予め登録されている個人の指紋パターン等と比較・判定する手段には、従来公知の各種の手段を用いることができる。また指腹のある領域について平均した血流値の数秒間にわたる経時変化を求め、例えば、この血流変化の波の形、振幅、周期などを利用できる。 As the irradiation means, for example, light emitted from a semiconductor laser is expanded through a lens, and a wide area of the finger pad is irradiated at once. An image sensor such as a line sensor or an area sensor is used as the light receiving means. The electrical signal from the sensor is A / D converted and then stored in a storage unit of a microcomputer or a personal computer. The image signal is continuously taken into the storage unit for several seconds, the difference between two consecutive images is obtained by a program set in advance in a microcomputer or a personal computer, and the speed of temporal change in the amount of received light is calculated. Or, when the light amount changes rapidly within the image sensor exposure rate, that is, within the exposure time of the image sensor, the signal is integrated, and conversely, the speed of light reception amount change over time is calculated. To do. The calculation result can be displayed as a two-dimensional color map on a personal computer screen according to the arrangement of each pixel. Various conventionally known means can be used as means for comparing / determining the calculated value or the fingerprint pattern displayed on the display means with a personal fingerprint pattern registered in advance. Further, a change over time of the blood flow value averaged for a region having a finger pad over several seconds is obtained, and for example, the wave shape, amplitude, period, etc. of the blood flow change can be used.

本発明による個人認証方法及び装置は、複雑な指紋パターンと生体情報を組み合わせているため、偽造が難しい。この利点を生かして、高度なセキュリティ管理を要求される施設の入退室監視や、出入国管理等に利用できる。

The personal authentication method and apparatus according to the present invention is difficult to counterfeit because it combines a complex fingerprint pattern and biometric information. Taking advantage of this advantage, it can be used for entrance / exit monitoring and immigration control of facilities that require advanced security management.

Claims (14)

レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系を用いてイメージセンサ上にレーザースペックルとして結像し、レーザースペックルの各画素における受光量の時間変化の速さを表す量を算出し、その数値を2次元マップに変換して指腹の血流マップを求め、該血流マップを、予め登録されている個人データと比較・照合することを特徴とする皮下血流測定を利用した個人認証方法において、レーザーの照射部位からずれた領域をイメージセンサの観察領域として、イメージセンサ上にレーザースペックルを結像させることを特徴とする皮下血流測定を利用した個人認証方法。 The laser beam is spread to irradiate the finger pad, and the light reflected from the subcutaneous blood vessel layer is imaged as a laser speckle on the image sensor using an optical system, and the amount of light received by each pixel of the laser speckle An amount representing the speed of change is calculated, the numerical value is converted into a two-dimensional map, a blood flow map of the finger pad is obtained, and the blood flow map is compared with collated personal data. In the personal authentication method using the characteristic subcutaneous blood flow measurement, the laser blood flow is characterized in that laser speckle is imaged on the image sensor using the region shifted from the laser irradiation region as the observation region of the image sensor. Personal authentication method using measurement. レーザー光束を線状のスポットとし、イメージセンサとしてラインセンサを用い、該ラインセンサの観察領域と前記線状のスポットとが平行になるように設定することを特徴とする請求項1記載の皮下血流測定を利用した個人認証方法。 2. The subcutaneous blood according to claim 1, wherein a laser beam is used as a linear spot, a line sensor is used as an image sensor, and the observation area of the line sensor and the linear spot are set parallel to each other. Personal authentication method using flow measurement. 指腹の中央部分にレーザーを照射し、指腹の指先側にイメージセンサの観察領域を設定することを特徴とする請求項1記載の皮下血流測定を利用した個人認証方法。 The personal authentication method using subcutaneous blood flow measurement according to claim 1, wherein a laser is irradiated to a central portion of the finger pad, and an observation area of the image sensor is set on the fingertip side of the finger pad. 指腹の指先部分にレーザーを照射し、指腹の中央部分にイメージセンサの観察領域を設定することを特徴とする請求項1記載の皮下血流測定を利用した個人認証方法。 2. The personal authentication method using subcutaneous blood flow measurement according to claim 1, wherein the fingertip portion of the finger pad is irradiated with a laser, and an observation region of the image sensor is set in the center portion of the finger pad. イメージセンサ上の少なくとも1列分の各画素における受光量の強度分布を表す信号波形を検出し、該信号波形を予め設定された生体の指の信号波形と比較して、模擬指を検出する機能を付加したことを特徴とする請求項1〜4のいずれか1項記載の皮下血流測定を利用した個人認証方法。 A function for detecting a simulated finger by detecting a signal waveform representing the intensity distribution of the amount of received light in each pixel of at least one column on the image sensor and comparing the signal waveform with a preset signal waveform of a finger of a living body The personal authentication method using subcutaneous blood flow measurement according to any one of claims 1 to 4, wherein レーザー光束を拡げて指腹に照射する一つ又は二つの照射手段と、多数の画素を有し指腹の下の血管層からの反射光を受光する受光手段と、該受光手段で得られた前記各画素の出力を記憶する記憶手段と、該記憶手段の記憶内容から前記各画素における受光量の時間変化の速さを表す量を演算する演算手段と、前記各画素において得られた演算結果の二次元分布を血流マップとして記憶する第2の記憶手段と、該第2の記憶手段に記憶された血流マップを、予め登録されている個人データと比較・判定する手段を具備した個人認証装置において、前記照射手段と前記受光手段とが、レーザーの照射部位とイメージセンサによる反射光の観測領域がずれるように配置されていることを特徴とする皮下血流測定を利用した個人認証装置。 One or two irradiation means for spreading the laser beam to irradiate the finger pad, a light receiving means for receiving reflected light from a blood vessel layer under the finger pad, having a large number of pixels, and obtained by the light receiving means Storage means for storing the output of each pixel, calculation means for calculating the amount of temporal change in the amount of received light in each pixel from the storage contents of the storage means, and calculation results obtained in each pixel A second storage means for storing the two-dimensional distribution of the blood flow as a blood flow map, and a means for comparing and determining the blood flow map stored in the second storage means with pre-registered personal data In the authentication apparatus, the irradiation means and the light receiving means are arranged so that a laser irradiation site and an observation area of reflected light by the image sensor are shifted from each other, and a personal authentication apparatus using subcutaneous blood flow measurement, . イメージセンサ上の少なくとも1列分の各画素における受光量の強度分布を表す信号波形を検出し、該信号波形を予め設定された生体の指の信号波形と比較して、模擬指を検出する手段を付加したことを特徴とする請求項6記載の皮下血流測定を利用した個人認証装置。 Means for detecting a simulated finger by detecting a signal waveform representing the intensity distribution of the amount of received light in each pixel of at least one column on the image sensor, and comparing the signal waveform with a preset signal waveform of a biological finger The personal authentication device using subcutaneous blood flow measurement according to claim 6, wherein: レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系を用いてイメージセンサ上にレーザースペックルとして結像し、レーザースペックルの各画素における受光量の時間変化の速さを表す量を算出し、その数値を2次元マップに変換して指腹の血流マップを求め、該血流マップを、予め登録されている個人データと比較・照合すると共に、全体又はある領域内の平均血流の経時変化を求め、得られた値を予め定められた基準と比較・判定することを特徴とする皮下血流測定を利用した個人認証方法において、レーザーの照射部位からずれた領域をイメージセンサの観察領域として、イメージセンサ上にレーザースペックルを結像させることを特徴とする皮下血流測定を利用した個人認証方法。 The laser beam is spread to irradiate the finger pad, and the light reflected from the subcutaneous blood vessel layer is imaged as a laser speckle on the image sensor using an optical system, and the amount of light received by each pixel of the laser speckle An amount representing the speed of change is calculated, the numerical value is converted into a two-dimensional map to obtain a blood flow map of the finger pad, the blood flow map is compared with collated personal data, Laser irradiation in a personal authentication method using subcutaneous blood flow measurement, characterized in that a change in the average blood flow over time or in a certain region is obtained over time, and the obtained value is compared with a predetermined standard. A personal authentication method using subcutaneous blood flow measurement, in which a laser speckle is imaged on an image sensor using an area shifted from a region as an observation area of the image sensor. レーザー光束を拡げて指腹に照射する一つ又は二つの照射手段と、多数の画素を有し指腹の下の血管層からの反射光を受光する受光手段と、該受光手段で得られた前記各画素の出力を記憶する記憶手段と、該記憶手段の記憶内容から前記各画素における受光量の時間変化の速さを表す量を演算する演算手段と、前記各画素において得られた演算結果の二次元分布を血流マップとして記憶する第2の記憶手段と、該第2の記憶手段に記憶された血流マップを、予め登録されている個人データと比較・判定する手段を具備すると共に、全体又はある領域内の平均血流の経時変化を算出し、得られた値を予め定められた基準と比較・判定する手段を具備した個人認証装置において、前記照射手段と前記受光手段とが、レーザーの照射部位とイメージセンサによる反射光の観測領域がずれるように配置されていることを特徴とする皮下血流測定を利用した個人認証装置。 One or two irradiation means for spreading the laser beam to irradiate the finger pad, a light receiving means for receiving reflected light from a blood vessel layer under the finger pad, having a large number of pixels, and obtained by the light receiving means Storage means for storing the output of each pixel, calculation means for calculating the amount of temporal change in the amount of received light in each pixel from the storage contents of the storage means, and calculation results obtained in each pixel A second storage means for storing the two-dimensional distribution as a blood flow map, and means for comparing and determining the blood flow map stored in the second storage means with pre-registered personal data In the personal authentication device comprising means for calculating the change over time of the average blood flow in the whole or in a certain region and comparing / determining the obtained value with a predetermined reference, the irradiation means and the light receiving means , Laser irradiation site and image Personal authentication device using subcutaneous blood flow measurement, characterized in that it is arranged so that the observation area of the reflected light is shifted by capacitors. イメージセンサ上の少なくとも1列分の各画素における受光量の強度分布を表す信号波形を検出し、該信号波形を予め設定された生体の指の信号波形と比較して、模擬指を検出する手段を付加したことを特徴とする請求項9記載の皮下血流測定を利用した個人認証装置。 Means for detecting a simulated finger by detecting a signal waveform representing the intensity distribution of the amount of received light in each pixel of at least one column on the image sensor, and comparing the signal waveform with a preset signal waveform of a biological finger The personal authentication device using subcutaneous blood flow measurement according to claim 9, wherein: レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系を用いてイメージセンサ上にレーザースペックルとして結像し、レーザースペックルの各画素における受光量の時間変化の速さを表す量を算出し、その数値を2次元マップに変換して指腹の血流マップを求め、該血流マップを、予め登録されている個人データと比較・照合することを特徴とする皮下血流測定を利用した個人認証方法において、これらの操作の前後又は進行途中の時間帯を利用して、イメージセンサ上の少なくとも1列分の各画素における受光量の強度分布を表す信号波形を検出し、該信号波形を予め設定された生体の指の信号波形と比較して、模擬指を検出する機能を付加したことを特徴とする皮下血流測定を利用した個人認証方法。 The laser beam is spread to irradiate the finger pad, and the light reflected from the subcutaneous blood vessel layer is imaged as a laser speckle on the image sensor using an optical system, and the amount of light received by each pixel of the laser speckle An amount representing the speed of change is calculated, the numerical value is converted into a two-dimensional map, a blood flow map of the finger pad is obtained, and the blood flow map is compared with collated personal data. In the personal authentication method using the characteristic subcutaneous blood flow measurement, the intensity distribution of the amount of received light in each pixel for at least one column on the image sensor is expressed using the time zone before, after, or during the operation. A personal authentication method using subcutaneous blood flow measurement, characterized in that a signal waveform is detected and a function of detecting a simulated finger is added by comparing the signal waveform with a preset signal waveform of a biological finger. レーザー光束を拡げて指腹に照射する一つ又は二つの照射手段と、多数の画素を有し指腹の下の血管層からの反射光を受光する受光手段と、該受光手段で得られた前記各画素の出力を記憶する記憶手段と、該記憶手段の記憶内容から前記各画素における受光量の時間変化の速さを表す量を演算する演算手段と、前記各画素において得られた演算結果の二次元分布を血流マップとして記憶する第2の記憶手段と、該第2の記憶手段に記憶された血流マップを、予め登録されている個人データと比較・判定する手段を具備した個人認証装置において、イメージセンサ上の少なくとも1列分の各画素における受光量の強度分布を表す信号波形を検出し、該信号波形を予め設定された生体の指の信号波形と比較して、模擬指を検出する手段を付加したことを特徴とする皮下血流測定を利用した個人認証装置。 One or two irradiation means for spreading the laser beam to irradiate the finger pad, a light receiving means for receiving reflected light from a blood vessel layer under the finger pad, having a large number of pixels, and obtained by the light receiving means Storage means for storing the output of each pixel, calculation means for calculating the amount of temporal change in the amount of received light in each pixel from the storage contents of the storage means, and calculation results obtained in each pixel A second storage means for storing the two-dimensional distribution of the blood flow as a blood flow map, and a means for comparing and determining the blood flow map stored in the second storage means with pre-registered personal data In the authentication device, a signal waveform representing the intensity distribution of the amount of received light in each pixel for at least one column on the image sensor is detected, and the signal waveform is compared with a preset signal waveform of a biological finger to simulate a simulated finger. Added a means to detect Personal authentication device using subcutaneous blood flow measurement, characterized and. レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系を用いてイメージセンサ上にレーザースペックルとして結像し、レーザースペックルの各画素における受光量の時間変化の速さを表す量を算出し、その数値を2次元マップとして指腹の血流マップを求め、該血流マップを、予め登録されている個人データと比較・照合することを特徴とする皮下血流測定を利用した個人認証方法において、レーザーを、多数の横長のスリットを有する遮蔽板を通過させることによって、指腹上に格子状のレーザースポットを投影し、該スポットとセンサの走査線の方向を合わせておき、該スポット上のデータを解析し指腹の表層部の血流マップとその経時変化を検出するか、又は該スポットとスポットの間のデータを解析し指腹の内層部の血流マップとその経時変化を検出することを特徴とする皮下血流測定を利用した個人認証方法。 The laser beam is spread to irradiate the finger pad, and the light reflected from the subcutaneous blood vessel layer is imaged as a laser speckle on the image sensor using an optical system, and the amount of light received by each pixel of the laser speckle An amount representing the speed of change is calculated, a finger blood flow map is obtained using the numerical value as a two-dimensional map, and the blood flow map is compared with collated personal data. In a personal authentication method using subcutaneous blood flow measurement, a laser beam is passed through a shielding plate having a number of horizontally long slits to project a lattice laser spot on the finger pad, and the scanning line of the spot and sensor Align the direction of the spot and analyze the data on the spot to detect the blood flow map on the surface of the finger pad and its change over time, or analyze the data between the spot and the finger Personal authentication method utilizing subcutaneous blood flow measurements and detecting a blood flow map of the inner portion and its change with time. レーザー光束を拡げて指腹に照射し、皮下にある血管層から反射した光を、光学系を用いてイメージセンサ上にレーザースペックルとして結像し、レーザースペックルの各画素における受光量の時間変化の速さを表す量を算出し、その数値を2次元マップとして指腹の血流マップを求め、該血流マップを、予め登録されている個人データと比較・照合すると共に、全体又はある領域内の平均血流の経時変化を求め、得られた値を予め定められた基準と比較・判定することを特徴とする皮下血流測定を利用した個人認証方法において、レーザーを、多数の横長のスリットを有する遮蔽板を通過させることによって、指腹上に格子状のレーザースポットを投影し、該スポットとセンサの走査線の方向を合わせておき、該スポット上のデータを解析し指腹の表層部の血流マップとその経時変化を検出するか、又は該スポットとスポットの間のデータを解析し指腹の内層部の血流マップとその経時変化を検出することを特徴とする皮下血流測定を利用した個人認証方法。

The laser beam is spread to irradiate the finger pad, and the light reflected from the subcutaneous blood vessel layer is imaged as a laser speckle on the image sensor using an optical system, and the amount of light received by each pixel of the laser speckle The amount representing the speed of change is calculated, and the blood flow map of the finger pad is obtained using the numerical value as a two-dimensional map, and the blood flow map is compared or collated with personal data registered in advance, or all or there is In a personal authentication method using subcutaneous blood flow measurement, in which an average blood flow in a region is obtained over time, and the obtained value is compared and determined with a predetermined standard, laser is A grid-like laser spot is projected onto the finger pad by passing through a shielding plate having a slit, and the spot and the scanning line direction of the sensor are aligned, and the data on the spot is analyzed. The blood flow map of the surface layer of the finger pad and its change over time are detected, or the data between the spots is analyzed to detect the blood flow map of the inner layer of the finger pad and its change over time. A personal authentication method using subcutaneous blood flow measurement.

JP2010505609A 2008-04-03 2009-03-23 Personal authentication method and personal authentication device using subcutaneous blood flow measurement Active JP5340262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010505609A JP5340262B2 (en) 2008-04-03 2009-03-23 Personal authentication method and personal authentication device using subcutaneous blood flow measurement

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008096679 2008-04-03
JP2008096679 2008-04-03
JP2010505609A JP5340262B2 (en) 2008-04-03 2009-03-23 Personal authentication method and personal authentication device using subcutaneous blood flow measurement
PCT/JP2009/055580 WO2009122931A1 (en) 2008-04-03 2009-03-23 Authentication method and device using subcutaneous blood flow measurement

Publications (2)

Publication Number Publication Date
JPWO2009122931A1 true JPWO2009122931A1 (en) 2011-07-28
JP5340262B2 JP5340262B2 (en) 2013-11-13

Family

ID=41135313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010505609A Active JP5340262B2 (en) 2008-04-03 2009-03-23 Personal authentication method and personal authentication device using subcutaneous blood flow measurement

Country Status (3)

Country Link
US (1) US8494228B2 (en)
JP (1) JP5340262B2 (en)
WO (1) WO2009122931A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8489178B2 (en) * 2006-06-29 2013-07-16 Accuvein Inc. Enhanced laser vein contrast enhancer with projection of analyzed vein data
EP2704093A4 (en) * 2011-04-22 2014-10-01 Hitachi Ltd Blood vessel image pickup device, and organism authentication device
CN102357033B (en) * 2011-09-27 2013-07-24 华中科技大学 Laser speckle blood stream imaging processing system and method
US9848787B2 (en) 2012-02-07 2017-12-26 Laser Associated Sciences, Inc. Perfusion assessment using transmission laser speckle imaging
WO2014056032A1 (en) * 2012-10-09 2014-04-17 Terence Vardy System and methods for identification and fraud prevention
JP5974844B2 (en) * 2012-11-14 2016-08-23 富士通株式会社 Image processing apparatus, image processing system, image processing method, and program
US8966616B2 (en) * 2013-04-01 2015-02-24 Microsoft Corporation Leveraging biometrics for authentication and touch differentiation
KR102255303B1 (en) 2014-10-13 2021-05-24 삼성전자주식회사 Authentication structure and method for authenticating object and device adopting the same
KR102299365B1 (en) 2014-11-03 2021-09-07 삼성전자주식회사 Authentication apparatus of using speckle, authentication system comprising the same and authentication mathod using speckle
MX2017008537A (en) 2014-12-27 2018-02-21 Guardian Optical Tech Ltd System and method for detecting surface vibrations.
US11747135B2 (en) * 2015-02-13 2023-09-05 Carnegie Mellon University Energy optimized imaging system with synchronized dynamic control of directable beam light source and reconfigurably masked photo-sensor
JP2016150081A (en) * 2015-02-17 2016-08-22 ソニー株式会社 Optical unit, measurement system and measurement method
US9722793B2 (en) 2015-09-09 2017-08-01 Microsoft Technology Licensing, Llc Personal identification via acoustically stimulated biospeckles
US9916433B2 (en) * 2016-02-10 2018-03-13 ContinUse Biometrics Ltd. Condition authentication based upon temporal-spatial analysis of vibrational responsivity
US11709120B2 (en) 2016-04-06 2023-07-25 Covidien Ag System for blood flow measurement with affixed laser speckle contrast analysis
KR102560710B1 (en) * 2016-08-24 2023-07-27 삼성전자주식회사 Apparatus and method using optical speckle
US10643057B2 (en) * 2016-12-28 2020-05-05 Warren M. Shadd Systems and methods for biometrically authenticating a user using authentication data and liveness data
US10813597B2 (en) 2017-04-14 2020-10-27 The Regents Of The University Of California Non-invasive hemodynamic assessment via interrogation of biological tissue using a coherent light source
CN107981855B (en) * 2017-12-29 2024-06-25 深圳开立生物医疗科技股份有限公司 Blood flow imaging device and endoscope
JP2019171225A (en) * 2019-07-23 2019-10-10 京セラ株式会社 Measuring device and measuring method
CN111611952B (en) * 2020-05-27 2023-07-14 深圳市汇顶科技股份有限公司 Fingerprint identification device and electronic equipment
JP2024061695A (en) * 2021-03-22 2024-05-08 ソニーグループ株式会社 In-vivo observation system, in-vivo observation method, and irradiation device
CN115581445A (en) * 2022-09-09 2023-01-10 华侨大学 Laser speckle blood flow imaging method and device based on energy modulation

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528133B2 (en) 1972-09-05 1977-03-07
JPH01124437A (en) 1987-11-07 1989-05-17 Hitoshi Fujii Blood flow monitor apparatus
AU608807B2 (en) * 1987-03-03 1991-04-18 Hitoshi Fujii Apparatus for monitoring bloodstream
GB8907101D0 (en) * 1989-03-29 1989-05-10 Nat Res Dev Blood flow determination
JP2813899B2 (en) 1989-09-26 1998-10-22 仁 藤居 Ophthalmic measurement device
KR920007329B1 (en) 1990-05-30 1992-08-31 금성사 주식회사 Optical apparatus for finger printers recognition
JPH0816752A (en) 1994-06-27 1996-01-19 Nec Corp Device and method for inputting fingerprint image
JPH08112262A (en) 1994-10-19 1996-05-07 Hitoshi Fujii Rheometer
US7536557B2 (en) * 2001-03-22 2009-05-19 Ensign Holdings Method for biometric authentication through layering biometric traits
JP2003164431A (en) 2001-11-30 2003-06-10 Hitoshi Fujii Blood flow velocity measuring apparatus
JP3855024B2 (en) 2001-12-13 2006-12-06 国立大学法人九州工業大学 Blood flow velocity measuring device
JP4200687B2 (en) 2002-05-13 2008-12-24 株式会社日立製作所 Biometric authentication device and program for realizing the device
KR100662782B1 (en) * 2004-04-14 2007-01-02 엘지.필립스 엘시디 주식회사 Laser mask and method of crystallization using thereof
GB2426580B (en) 2004-06-18 2007-03-07 Kyushu Inst Technology Personal identification method by subcutaneous bloodstream measurement and personal identification device
US7844083B2 (en) * 2004-06-18 2010-11-30 Kyushu Institute Of Technology Method for acquiring personal identification data, personal identification method, apparatus for acquiring personal identification data, and personal identification apparatus
JP4207937B2 (en) 2005-08-25 2009-01-14 株式会社日立製作所 Personal authentication device
AU2006285023A1 (en) * 2005-09-01 2007-03-08 Lumidigm, Inc. Biometric sensors
US7817256B2 (en) * 2006-02-22 2010-10-19 Kyushu Institute Of Technology Personal authentication method and personal authentication device utilizing finger-tip blood flow measurement by laser light
JP4788526B2 (en) * 2006-08-30 2011-10-05 株式会社日立製作所 Finger vein authentication input device

Also Published As

Publication number Publication date
WO2009122931A1 (en) 2009-10-08
US20110026783A1 (en) 2011-02-03
US8494228B2 (en) 2013-07-23
JP5340262B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5340262B2 (en) Personal authentication method and personal authentication device using subcutaneous blood flow measurement
JP4769952B2 (en) Personal authentication method and personal authentication device using fingertip blood flow measurement by laser light
JP3903188B2 (en) Personal authentication method and personal authentication device based on subcutaneous blood flow measurement
JP5096168B2 (en) Optical speckle pattern inspection
KR101058152B1 (en) Personal authentication method and personal authentication device using fundus blood flow measurement by laser light
US7708695B2 (en) Apparatus and method for detecting blood flow
Chatterjee et al. Anti-spoof touchless 3D fingerprint recognition system using single shot fringe projection and biospeckle analysis
JP2007511256A (en) Powerful and low-cost optical system for sensing stress, emotions and deception in human subjects
JP5780053B2 (en) Biometric authentication device, biometric authentication method, and program
US9721138B2 (en) System and method for fingerprint validation
JP2010092121A (en) Imaging device, imaging program, imaging method, authentication device, authentication program and authentication method
JP6956737B2 (en) Optical coherence tomography for identity verification
JP2008529705A (en) Sweat tube alignment method and apparatus
Drahansky et al. Liveness detection based on fine movements of the fingertip surface
JP5763160B2 (en) Biometric authentication device and personal authentication system
US9916433B2 (en) Condition authentication based upon temporal-spatial analysis of vibrational responsivity
Drahansky et al. New experiments with optical liveness testing methods

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130806

R150 Certificate of patent or registration of utility model

Ref document number: 5340262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250