JPWO2009110402A1 - Method for producing para-xylene - Google Patents

Method for producing para-xylene Download PDF

Info

Publication number
JPWO2009110402A1
JPWO2009110402A1 JP2009510628A JP2009510628A JPWO2009110402A1 JP WO2009110402 A1 JPWO2009110402 A1 JP WO2009110402A1 JP 2009510628 A JP2009510628 A JP 2009510628A JP 2009510628 A JP2009510628 A JP 2009510628A JP WO2009110402 A1 JPWO2009110402 A1 JP WO2009110402A1
Authority
JP
Japan
Prior art keywords
reaction
ethylene
xylene
petroleum
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009510628A
Other languages
Japanese (ja)
Inventor
高西 慶次郎
慶次郎 高西
曽根 三郎
三郎 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2009110402A1 publication Critical patent/JPWO2009110402A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/93Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems condensed with a ring other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/247Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by splitting of cyclic ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/36Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/08Bridged systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

2,5−ジメチルフランおよびエチレンを原料とし、ディールスアルダー反応および脱水反応を工程として含むパラキシレンの製造方法。本発明は、非石油系物質であるグルコースから合成されるジメチルフランとエチレンを原料としてパラキシレンを製造する方法を提供する。A process for producing para-xylene using 2,5-dimethylfuran and ethylene as raw materials and comprising a Diels-Alder reaction and a dehydration reaction as steps. The present invention provides a method for producing paraxylene using dimethylfuran and ethylene synthesized from glucose, which is a non-petroleum material, as raw materials.

Description

本発明はパラキシレンの製造方法に関するものである。   The present invention relates to a method for producing para-xylene.

近年、原油価格の不安定化、化石燃料燃焼消費による二酸化炭素放出とそれによる地球温暖化への懸念などがクローズアップされている。それに伴って太陽光発電などの非石油系エネルギーとともに、材料分野においてもポリ乳酸などの非石油系樹脂材料が活発に開発・採用されてきている。   In recent years, destabilization of crude oil prices, carbon dioxide emission due to fossil fuel combustion consumption, and concerns about global warming due to this have been highlighted. Accordingly, non-petroleum resin materials such as polylactic acid have been actively developed and adopted in the material field as well as non-petroleum energy such as photovoltaic power generation.

一方、ポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)といった汎用縮合樹脂は、包装材料、光学材料、電気電子機器、自動車などの各部品を始め広範な分野で使用されている。これらはテレフタル酸のようなジカルボン酸化合物とジオール化合物という、いずれも石油由来の化合物を原料とする縮合重合体である。最近、非石油系ジオールである1,3−プロパンジオールが開発され、それをこの系列の樹脂原料に採用するなど、樹脂材料にも環境負荷を考慮したバイオマス原料を用いる動きが活発となってきた。しかし、もう一方の原料であるジカルボン酸化合物、特によく用いられているテレフタル酸に関しては、依然として石油由来の原料であるパラキシレンをその合成出発物質としていることから、当該樹脂のバイオマス化のため、パラキシレンのバイオ原料からの単段階合成が熱望されていた。   On the other hand, general-purpose condensation resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) are used in a wide range of fields including parts such as packaging materials, optical materials, electrical and electronic equipment, and automobiles. These are condensation polymers made from petroleum-derived compounds, such as dicarboxylic acid compounds such as terephthalic acid and diol compounds. Recently, 1,3-propanediol, which is a non-petroleum diol, has been developed, and it has been actively used to use biomass raw materials that take environmental impact into consideration, such as adopting it as a resin raw material of this series. . However, for the dicarboxylic acid compound that is the other raw material, particularly terephthalic acid that is often used, since the synthesis starting material is paraxylene, which is a petroleum-derived raw material, Single-step synthesis of para-xylene from bio raw materials has been eagerly desired.

一方、非石油系化合物すなわちバイオ系化合物から種々の合成シントンへの変換についても、酵素法などの生物化学的手法や人工合成的手法を用いて活発に検討されている。中でもグルコースやフルクトースのような糖鎖系化合物から合成できるフラン系化合物が最近注目されてきている。特に注目に値するものとして、グルコースを加圧下熱水処理することにより、ヒドロキシメチルフルフラールに変換する技術や、さらにそこから水素還元を経てジメチルフランを得る技術があり、最近その高収率化が報告された。すなわち、グルコースからジメチルフランへの変換が極めて高効率に行える可能性が示されたことから、この物質を燃料として用いることも提案されてきている。   On the other hand, conversion of non-petroleum compounds, that is, bio-based compounds into various synthetic synthons, is also actively studied using biochemical techniques such as enzymatic methods and artificial synthetic techniques. Of these, furan compounds that can be synthesized from sugar chain compounds such as glucose and fructose have recently attracted attention. Particularly noteworthy is the technology to convert glucose to hydroxymethylfurfural by hydrothermal treatment under pressure and the technology to obtain dimethylfuran through hydrogen reduction from it, and recently reported high yields. It was done. That is, since it has been shown that conversion of glucose to dimethylfuran can be performed with extremely high efficiency, it has been proposed to use this substance as a fuel.

さらに、もう一つの代表的石油系樹脂であるポリエチレンについても、その原料であるエチレンの非石油系原料からの合成が試みられ、特に発酵で得られるエタノールを脱水反応させエチレンに変換する検討が活発に行われている。
特開2005−200321号公報 特開2005−232116号公報 米国特許第4828603号公報 SCIENCE vol.312, 1933 (2006) Nature vol.447, 982 (2007)
Furthermore, another representative petroleum-based resin, polyethylene, has been attempted to synthesize ethylene, which is a raw material, from non-petroleum-based raw materials. In particular, active studies are underway to convert ethanol obtained by fermentation into ethylene by dehydration. Has been done.
Japanese Patent Laid-Open No. 2005-200321 JP-A-2005-232116 U.S. Pat. No. 4,828,603 SCIENCE vol.312, 1933 (2006) Nature vol.447, 982 (2007)

本発明の目的は、2,5−ジメチルフランおよびエチレンを原料としてパラキシレンを製造する方法を提供することにある。   An object of the present invention is to provide a method for producing paraxylene using 2,5-dimethylfuran and ethylene as raw materials.

上記のような状況から、2,5−ジメチルフランおよびエチレンを出発物質としてパラキシレンを合成できれば、非石油由来の原料からテレフタル酸を合成できることになる。それはすなわち、PET等のテレフタル酸構造を有する汎用樹脂の原料を、石油系材料から非石油系バイオマス材料に転換できることを意味する。このような技術が有する環境負荷低減効果は絶大なものであり、持続可能な社会構造構築に大きく寄与できる重要な技術といえる。   From the above situation, if para-xylene can be synthesized using 2,5-dimethylfuran and ethylene as starting materials, terephthalic acid can be synthesized from non-petroleum-derived raw materials. That means that a raw material of a general-purpose resin having a terephthalic acid structure such as PET can be converted from a petroleum material to a non-petroleum biomass material. Such technology has a tremendous effect on reducing environmental impact, and it can be said that it is an important technology that can greatly contribute to the construction of a sustainable social structure.

このような観点に立ち、本発明者等は2,5−ジメチルフランを原料としてパラキシレンを合成する方法として、2,5−ジメチルフランとエチレンを下記式1で表されるようにディールスアルダー反応させ、得られたビシクロ化合物を下記式2で表されるように脱水反応させる方法を考案した。   In view of such a point, the present inventors, as a method of synthesizing para-xylene using 2,5-dimethylfuran as a raw material, used Diels-Alder reaction as shown in the following formula 1. Then, a method of dehydrating the obtained bicyclo compound as represented by the following formula 2 was devised.

Figure 2009110402
Figure 2009110402

ジエノフィルであるエチレンに電子吸引性置換基が存在する場合には、無触媒もしくは各種触媒(チタン、ジルコニウム、ハフニウム、アルミニウム、亜鉛などの金属塩類など)存在下、容易にディールスアルダー反応が進行することは広く知られている。しかし、置換基のない単なるエチレンのディールスアルダー反応は過去に報告例はない。置換基のないエチレンのディールスアルダー反応は活性化エネルギーが高く進行しにくいという問題があった。   When an electron-withdrawing substituent is present in ethylene, which is a dienophile, Diels-Alder reaction can easily proceed in the presence of no catalyst or various catalysts (metal salts such as titanium, zirconium, hafnium, aluminum, zinc, etc.) Is widely known. However, there has been no report of a simple Diels-Alder reaction of ethylene with no substituent. The Diels-Alder reaction of ethylene without a substituent has a problem that it has a high activation energy and is difficult to proceed.

本発明者らは、上記の課題を解決すべく鋭意検討した結果、2,5−ジメチルフランとエチレンのディールスアルダー反応においては、(1)付加生成物であるビシクロ化合物を得るためには高温を要すること、および、(2)生成したビシクロ化合物は加熱条件では、逆反応であるレトロディールスアルダー反応により、再び原料にもどることを確認した。これらのことから原料を効率よく反応させ、パラキシレンを得るためには、不可逆反応である次の脱水反応を速やかに進行させることが重要であるということを突き止め、本発明に到達した。   As a result of intensive studies to solve the above problems, the present inventors have found that in the Diels-Alder reaction of 2,5-dimethylfuran and ethylene, (1) a high temperature is required to obtain a bicyclo compound as an addition product. It was confirmed that (2) the produced bicyclo compound was returned to the raw material again by the retro Diels-Alder reaction which was a reverse reaction under heating conditions. From these facts, in order to efficiently react the raw materials and obtain para-xylene, it was determined that it is important to promptly advance the next dehydration reaction, which is an irreversible reaction, and the present invention has been achieved.

本発明により、非石油系原料であるグルコースから合成されるジメチルフランとエチレンを原料としてパラキシレンを製造することが可能となる。これによってテレフタル酸構造を有する石油系汎用樹脂の原料を非石油系バイオマス材料に転換でき、その環境負荷低減効果によって持続可能な社会構造の構築に大きく寄与する技術を確立できた。   The present invention makes it possible to produce para-xylene using dimethylfuran and ethylene synthesized from glucose, which is a non-petroleum raw material, as raw materials. As a result, the raw material of petroleum-based general-purpose resin having a terephthalic acid structure could be converted into non-petroleum biomass material, and the technology that greatly contributed to the construction of a sustainable social structure could be established by its environmental impact reduction effect.

以下、本発明のパラキシレン製造方法について、具体的に説明する。
本発明のパラキシレン製造方法とは、原料として2,5−ジメチルフラン(以下DMFと略す)とエチレンを用い、ディールスアルダー反応(以下DA反応と略す)(下記式1)を行うことによって、下記のビシクロ化合物(1)を得、つづいて該ビシクロ化合物(1)を脱水反応(下記式2)させることによってパラキシレンを製造する。
Hereinafter, the para-xylene manufacturing method of this invention is demonstrated concretely.
The para-xylene production method of the present invention uses 2,5-dimethylfuran (hereinafter abbreviated as DMF) and ethylene as raw materials and performs Diels-Alder reaction (hereinafter abbreviated as DA reaction) (the following formula 1). Then, the bicyclo compound (1) is obtained, and then the bicyclo compound (1) is subjected to a dehydration reaction (the following formula 2) to produce paraxylene.

Figure 2009110402
Figure 2009110402

Figure 2009110402
Figure 2009110402

式1のDA反応において、原料であるエチレンおよびDMFの仕込み比(エチレン/DMF)は、1もしくは1より大きいことが好ましい。仕込み比(エチレン/DMF)が1より大きいと言うことは、エチレン過剰であることを意味する。ただし反応後の過剰エチレン回収量が少ない方が好ましいので、より好適な仕込み比は1以上50以下、より好ましくは1以上10以下である。また式1のDA反応は、原料の一つであるエチレンの沸点が極めて低いために、圧力によって反応の進行が大きく影響される。そのため、該DA反応は、原料を密閉容器内に封入して行うか、もしくは反応管内へそれぞれの原料を連続高圧注入しながら行うのが好ましい。好ましい反応温度は40〜250℃であり、より好ましくは80〜200℃、さらに好ましくは120〜180℃である。反応圧力は、密閉容器を用いる場合には原料仕込量と反応容器体積に、反応管を用いる場合にはその断面積および原料の送液圧力に依存する。どちらの場合も、反応圧力は温度と容器体積などにより適宜変化するが、好ましくは1atm以上100atm以下である。   In the DA reaction of Formula 1, the feed ratio of ethylene and DMF (ethylene / DMF) as raw materials is preferably 1 or greater than 1. A charge ratio (ethylene / DMF) of greater than 1 means an excess of ethylene. However, since it is preferable that the recovered amount of excess ethylene after the reaction is small, a more preferable charging ratio is 1 or more and 50 or less, more preferably 1 or more and 10 or less. In the DA reaction of Formula 1, the progress of the reaction is greatly influenced by pressure because the boiling point of ethylene, which is one of the raw materials, is extremely low. For this reason, the DA reaction is preferably carried out by enclosing the raw materials in a sealed container or while continuously injecting the respective raw materials into the reaction tube. A preferable reaction temperature is 40 to 250 ° C, more preferably 80 to 200 ° C, and still more preferably 120 to 180 ° C. The reaction pressure depends on the amount of raw material charged and the reaction vessel volume when using a sealed container, and on the cross-sectional area and the liquid feed pressure of the raw material when using a reaction tube. In either case, the reaction pressure appropriately changes depending on the temperature and the volume of the container, but is preferably 1 atm or more and 100 atm or less.

さらにビシクロ化合物(1)をパラキシレンに変換する式2の脱水反応は、ビシクロ化合物(1)に脱水作用のある無機塩、無機酸化物、あるいはカルボジイミドなどの有機系縮合剤を作用させることにより進行させることができる。   Further, the dehydration reaction of Formula 2 for converting the bicyclo compound (1) to paraxylene proceeds by allowing the bicyclo compound (1) to act on an organic condensing agent such as an inorganic salt, inorganic oxide, or carbodiimide having a dehydrating action. Can be made.

さらにビシクロ化合物(1)を単離することなく、DA反応と脱水反応を同一の反応容器内で行うことも好ましい。すなわち、DA反応を行う際に、脱水触媒として硫酸ナトリウムや硫酸マグネシウムなどの無機塩、もしくはシリカ・アルミナなどの複合酸化物などを存在させることによって、ビシクロ化合物(1)を単離精製せずにDA反応と脱水反応を連続して行うことができ、反応の効率を向上させることができる。この場合用いる脱水触媒として、より好ましくはシリカ・アルミナを含む複合酸化物である。   Furthermore, it is also preferable to perform the DA reaction and the dehydration reaction in the same reaction vessel without isolating the bicyclo compound (1). That is, when performing the DA reaction, the bicyclo compound (1) can be isolated and purified by allowing an inorganic salt such as sodium sulfate or magnesium sulfate or a composite oxide such as silica / alumina to be present as a dehydration catalyst. The DA reaction and the dehydration reaction can be performed continuously, and the efficiency of the reaction can be improved. The dehydration catalyst used in this case is more preferably a composite oxide containing silica / alumina.

脱水触媒の量としては原料であるDMFに対して、0.1モル%以上20モル%以下が好ましい。   The amount of the dehydration catalyst is preferably 0.1 mol% or more and 20 mol% or less with respect to DMF as a raw material.

さらに反応の効率を上げるために、DA反応にも触媒(DA触媒)を用いることができる。DA触媒としては、チタン、ジルコニウム、ハフニウム、アルミニウム、亜鉛、アンチモンなどの金属塩類や錯体化合物などが好ましく用いられる。また、DA触媒と前記脱水触媒を共存させることも好ましい。   In order to further increase the efficiency of the reaction, a catalyst (DA catalyst) can also be used for the DA reaction. As the DA catalyst, metal salts such as titanium, zirconium, hafnium, aluminum, zinc, and antimony, complex compounds, and the like are preferably used. It is also preferable that the DA catalyst and the dehydration catalyst coexist.

DA触媒の量としては原料であるDMFに対して、0.1モル%以上10モル%以下が好ましい。   The amount of the DA catalyst is preferably 0.1 mol% or more and 10 mol% or less with respect to DMF as a raw material.

以下に実施例を挙げて本発明を説明するが、本発明はこれらの例によって限定されるものではない。なお、反応後の生成物(パラキシレン等)および残留原料の確認にはプロトン核磁気共鳴(H−NMR)法を用いた。EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. Note that the confirmation of the product after the reaction (para xylene) and residual material using proton nuclear magnetic resonance (1 H-NMR) method.

実施例
反応用耐熱ガラスアンプル(容積10ml)にDMF(分子量96)を5mmol(0.48g)、チタノセンジクロリド0.05mmol(12.5mg)、シリカアルミナ複合酸化物粒子(粒径0.1〜5μm、81mg:シリカアルミナ複合酸化物の分子量を135として0.6mmol)を充填し、窒素置換した後、ガラスコック付きゴム栓にて密閉した。続いて、ガラスコック部にエチレンガスを充填した風船を接続し、ガラスアンプル部分を液体窒素で冷却した。気体状エチレンがアンプル容器内に凝縮し終わるのを確認した後、コックを閉じアンプルを封入した。続いてこのアンプルを180℃に加熱したオイルバスに3時間投入し反応を行った。その後アンプルを取り出し、再び液体窒素で容器を冷却した後、アンプルを開封した。開封したアンプルを、徐々に室温まで温度を上げて過剰のエチレンガスを自然蒸発させて除去した。アンプル内に残った有機物の重量は0.51gであった。当該有機物の主成分がパラキシレンであることを確認し(H−NMR)。内部標準を使って定量した結果、パラキシレンの収量は0.49gであった。
Example Heat-resistant glass ampule for reaction (volume: 10 ml), DMF (molecular weight 96) 5 mmol (0.48 g), titanocene dichloride 0.05 mmol (12.5 mg), silica alumina composite oxide particles (particle size 0.1-5 μm) 81 mg: The silica-alumina composite oxide was filled with 0.6 mmol) with a molecular weight of 135, and purged with nitrogen, and then sealed with a rubber stopper with a glass cock. Subsequently, a balloon filled with ethylene gas was connected to the glass cock part, and the glass ampoule part was cooled with liquid nitrogen. After confirming that the gaseous ethylene had finished condensing in the ampule container, the cock was closed and the ampule was sealed. Subsequently, this ampoule was put into an oil bath heated to 180 ° C. for 3 hours for reaction. Thereafter, the ampule was taken out and the container was again cooled with liquid nitrogen, and then the ampule was opened. The opened ampoule was gradually heated to room temperature and the excess ethylene gas was removed by natural evaporation. The weight of the organic matter remaining in the ampoule was 0.51 g. It was confirmed that the main component of the organic substance was para-xylene ( 1 H-NMR). As a result of quantification using the internal standard, the yield of paraxylene was 0.49 g.

本発明により、非石油系原料であるグルコースから合成されるジメチルフランとエチレンを原料としてパラキシレンを製造することが可能となる。これによってテレフタル酸構造を有する石油系汎用樹脂の原料を非石油系バイオマス材料に転換でき、その環境負荷低減効果によって持続可能な社会構造の構築に大きく寄与する技術を確立できた。   The present invention makes it possible to produce para-xylene using dimethylfuran and ethylene synthesized from glucose, which is a non-petroleum raw material, as raw materials. As a result, the raw material of petroleum-based general-purpose resin having a terephthalic acid structure could be converted into non-petroleum biomass material, and the technology that greatly contributed to the construction of a sustainable social structure could be established by its environmental impact reduction effect.

Claims (4)

2,5−ジメチルフランおよびエチレンを原料とし、下記式1で表されるディールスアルダー反応および下記式2で表される脱水反応を工程として含むパラキシレンの製造方法。
Figure 2009110402
A process for producing para-xylene using 2,5-dimethylfuran and ethylene as raw materials and comprising a Diels-Alder reaction represented by the following formula 1 and a dehydration reaction represented by the following formula 2 as steps.
Figure 2009110402
前記ディールスアルダー反応と前記脱水反応を同じ反応槽で行う請求項1に記載のパラキシレンの製造方法。 The method for producing paraxylene according to claim 1, wherein the Diels-Alder reaction and the dehydration reaction are performed in the same reaction vessel. 前記脱水反応に触媒を用いる請求項1または2に記載のパラキシレンの製造方法。 The method for producing paraxylene according to claim 1 or 2, wherein a catalyst is used for the dehydration reaction. 前記触媒がシリカ・アルミナを含む複合酸化物である請求項3に記載のパラキシレンの製造方法。 The method for producing paraxylene according to claim 3, wherein the catalyst is a composite oxide containing silica / alumina.
JP2009510628A 2008-03-03 2009-03-02 Method for producing para-xylene Pending JPWO2009110402A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008051656 2008-03-03
JP2008051656 2008-03-03
PCT/JP2009/053813 WO2009110402A1 (en) 2008-03-03 2009-03-02 Method for producing paraxylene

Publications (1)

Publication Number Publication Date
JPWO2009110402A1 true JPWO2009110402A1 (en) 2011-07-14

Family

ID=41055958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009510628A Pending JPWO2009110402A1 (en) 2008-03-03 2009-03-02 Method for producing para-xylene

Country Status (2)

Country Link
JP (1) JPWO2009110402A1 (en)
WO (1) WO2009110402A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314267B2 (en) * 2009-06-26 2012-11-20 Uop Llc Carbohydrate route to para-xylene and terephthalic acid
KR20150000453A (en) * 2011-09-16 2015-01-02 마이크로마이다스, 인코포레이티드 Methods of producing para-xylene and terephthalic acid
US8889938B2 (en) 2012-03-15 2014-11-18 Micromidas, Inc. Methods of producing para-xylene
JP6163539B2 (en) * 2012-04-20 2017-07-12 ザ コカ・コーラ カンパニーThe Coca‐Cola Company Method for preparing para-xylene from biomass
US20130324772A1 (en) * 2012-06-05 2013-12-05 University Of Massachusetts Method for converting a hydrocarbonaceous material to a fluid hydrocarbon product comprising p-xylene
IN2015DN02933A (en) * 2012-09-14 2015-09-18 Micromidas Inc
US10392317B2 (en) 2012-09-14 2019-08-27 Micromidas, Inc. Methods of producing para-xylene and terephthalic acid
KR102247145B1 (en) 2013-03-14 2021-05-04 마이크로마이다스, 인코포레이티드 Methods for purifying 5-(halomethyl)furfural
TW201527289A (en) 2013-09-20 2015-07-16 Micromidas Inc Methods for producing 5-(halomethyl)furfural
US9115155B1 (en) 2014-03-20 2015-08-25 Eastman Chemical Company Low-pressure synthesis of cyclohexanedimethanol and derivatives
US9321714B1 (en) 2014-12-05 2016-04-26 Uop Llc Processes and catalysts for conversion of 2,5-dimethylfuran derivatives to terephthalate
WO2016114668A1 (en) 2015-01-16 2016-07-21 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method to prepare phenolics from biomass
CN106256807B (en) * 2015-06-19 2019-01-25 中国石油化工股份有限公司 The method of tetrahydrofurans aromatisation production aromatic hydrocarbons
CN106565396B (en) * 2015-10-12 2019-04-12 中国石油化工股份有限公司 The method of cycloaddition production aromatic hydrocarbons
CN115368375B (en) * 2021-05-19 2024-01-26 中国石油化工股份有限公司 Method for preparing oxa-norbornene
WO2023127644A1 (en) * 2021-12-27 2023-07-06 東レ株式会社 Method for manufacturing aromatic hydrocarbon, method for manufacturing polymer, and apparatus for manufacturing aromatic hydrocarbon

Also Published As

Publication number Publication date
WO2009110402A1 (en) 2009-09-11

Similar Documents

Publication Publication Date Title
JPWO2009110402A1 (en) Method for producing para-xylene
Kucherov et al. Chemical transformations of biomass-derived C6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks
Kashparova et al. Furan monomers and polymers from renewable plant biomass
Han et al. Photocatalytic pinacol C–C coupling and jet fuel precursor production on ZnIn2S4 nanosheets
Peng et al. Solid acid catalyzed glucose conversion to ethyl levulinate
Deng et al. Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures
CN104557801B (en) Method for preparing gamma-valerolactone from furfural on metal/solid acid catalyst
JP6518060B2 (en) Glucalic acid production process
WO2005052097A1 (en) Process for producing diesel fuel oil from fat
Fang et al. Au/NiO composite: A catalyst for one-pot cascade conversion of furfural
Wu et al. Carbon promoted ZrO2 catalysts for aqueous-phase ketonization of acetic acid
CN101044089A (en) Base-facilitated production of hydrogen from biomass
Liu et al. Recyclable Zr/Hf-containing acid-base bifunctional catalysts for hydrogen transfer upgrading of biofuranics: A review
González et al. Potassium titanate as heterogeneous catalyst for methyl transesterification
CN112724058B (en) Synthesis method of visible light-promoted beta-hydroxyselenide compound
Yao et al. Magnetically-recoverable carbonaceous material: An efficient catalyst for the synthesis of 5-hydroxymethylfurfural and 5-ethoxymethylfurfural from carbohydrates
JP2009286741A (en) Hydroxycarboxylic acid compound, method for producing the same and polyester resin
CN108610228A (en) A method of dimethylnaphthalene is prepared by methacrylaldehyde and isophorone
Quereshi et al. Catalytic conversion of lignocellulosic biomass into fuels and value-added chemicals
CN112062649B (en) Alkyl-substituted polycyclic biomass high-density aviation fuel and preparation method thereof
Joshi Agricultural Biomass to Adipic Acid–An Industrially Important Chemical
CN114797949B (en) Solid acid catalyst based on MCM-41 mesoporous molecular sieve, and preparation method and application thereof
CN113845497B (en) Method for synthesizing 5-hydroxymethylfurfural at low temperature
BR112020018435B1 (en) DIALKYL TEREPHTALATE PREPARATION PROCESS
Zhu et al. Catalytic production of 1, 4-pentanediol from lignocellulosic biomass