JPWO2009104618A1 - High efficiency generator - Google Patents

High efficiency generator Download PDF

Info

Publication number
JPWO2009104618A1
JPWO2009104618A1 JP2009554333A JP2009554333A JPWO2009104618A1 JP WO2009104618 A1 JPWO2009104618 A1 JP WO2009104618A1 JP 2009554333 A JP2009554333 A JP 2009554333A JP 2009554333 A JP2009554333 A JP 2009554333A JP WO2009104618 A1 JPWO2009104618 A1 JP WO2009104618A1
Authority
JP
Japan
Prior art keywords
armature
coil
permanent magnet
magnetic field
rotating disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009554333A
Other languages
Japanese (ja)
Inventor
力男 丸田
力男 丸田
治 渥美
治 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sangikyo Corp
Original Assignee
Sangikyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sangikyo Corp filed Critical Sangikyo Corp
Publication of JPWO2009104618A1 publication Critical patent/JPWO2009104618A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K99/00Subject matter not provided for in other groups of this subclass
    • H02K99/10Generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

電磁誘導を利用する発電機において、電機子への反回転力の抑圧を可能とすることにより、発電効率の大幅な向上を実現する。電機子と永久磁石の一方を固定子とし他方を回転子とする発電機において、永久磁石による磁力線をよぎる電機子をらせん状にコイル化した導線部として構成し、負荷電流が電機子のらせん状にコイル化した導線部を流れる際に発生する磁力線を永久磁石による磁力線と直交する向きに偏向させることにより、永久磁石による磁力線と負荷電流による磁力線の間の干渉を抑え、負荷電流による回転抑止力の発生を抑圧するようにする。In a generator using electromagnetic induction, a significant improvement in power generation efficiency is realized by enabling suppression of anti-rotational force on the armature. In a generator with one of the armature and permanent magnet as the stator and the other as the rotor, the armature that crosses the magnetic lines of force of the permanent magnet is configured as a helically coiled conductor, and the load current is helical in the armature By deflecting the magnetic field lines generated when flowing through the coiled conductor in the direction perpendicular to the magnetic field lines of the permanent magnet, interference between the magnetic field lines of the permanent magnet and the magnetic field lines of the load current is suppressed, and the rotation deterrent force due to the load current is suppressed. Suppress the occurrence of

Description

この発明は、電磁誘導を利用する発電効率の高い発電機に関するものである。   The present invention relates to a generator having high power generation efficiency using electromagnetic induction.

従来、電磁誘導を利用する発電機の発電方式として、一般には回転子と固定子のいずれかに永久磁石を用い他方に電磁石を用いる方式と、回転子と固定子のいずれも電磁石で構成する方式が知られているが、たとえば公知文献(特許文献1参照)のように、一方を永久磁石とし他方を電磁石とする前者の方式が基本となる。すなわち後者の方式では、前者の方式における永久磁石を電磁石で置き換え、その電磁石に常時給電して永久磁石と同等の動作をさせることにより、前者の方式と等価になる。それゆえ以後の説明では、電磁誘導を利用する発電機は、回転子と固定子のいずれか一方を永久磁石とするものとして説明する。   Conventionally, as a power generation method of a generator using electromagnetic induction, a method in which a permanent magnet is generally used for either a rotor or a stator and an electromagnet is used for the other, and a method in which both the rotor and the stator are made of electromagnets However, the former method, in which one is a permanent magnet and the other is an electromagnet, is fundamental, as in, for example, a known document (see Patent Document 1). In other words, the latter method is equivalent to the former method by replacing the permanent magnet in the former method with an electromagnet and constantly supplying power to the electromagnet so as to perform the same operation as the permanent magnet. Therefore, in the following description, a generator using electromagnetic induction will be described on the assumption that either the rotor or the stator is a permanent magnet.

電磁誘導を利用する従来の発電機は、永久磁石を固定子として用い、起電力を生ずる導線(電機子)を回転子として用いる構成の場合、永久磁石(固定子)の磁力線中を回転子としての導線(電機子)がよぎって動くことにより、フレミングの右手の法則に従い電機子導線に起電力が生じることを利用している。   In the case of a configuration in which a conventional generator using electromagnetic induction uses a permanent magnet as a stator and a conductive wire (armature) that generates electromotive force as a rotor, the magnetic field lines of the permanent magnet (stator) are used as the rotor. It is utilized that an electromotive force is generated in the armature conductor in accordance with Fleming's right-hand rule when the lead wire (armature) moves.

フレミングの右手の法則による導線中の起電力の発生は、永久磁石による外部磁力線とその中に置かれた導線(電機子)の間の相対運動によるものであるから、起電力を生じる導線(電機子)を固定子とし永久磁石を回転子とするように発電機を構成しても効果は全く同じで、電機子(この場合は固定子となる)の導線に起電力が生じる。そこで以後は説明の簡単のため、特に断るまで、永久磁石を固定子として用い起電力を生ずる導線(電機子)を回転子として用いる構成として説明する。   The generation of the electromotive force in the conductor by Fleming's right-hand rule is due to the relative motion between the external magnetic field lines by the permanent magnet and the conductor (armature) placed in it. Even if the generator is configured such that the stator is the stator and the permanent magnet is the rotor, the effect is exactly the same, and an electromotive force is generated in the conductor of the armature (in this case, the stator). Therefore, for the sake of simplicity, the following description will be made with a configuration in which a permanent magnet is used as a stator and an electromotive force (armature) that generates an electromotive force is used as a rotor, unless otherwise specified.

導線(電機子)に生じた起電力が外部に接続された負荷に加えられると負荷電流を生じ、その負荷電流は必然的にその導線(電機子)にも流れる。この負荷電流によりその導線(電機子)の回りに磁力線が発生し、この磁力線は永久磁石が作る磁力線に干渉するので、その結果としてフレミングの左手の法則に従った力が、導線(電機子)に対する反回転力として、発電のための回転の方向とは逆向きに加わる。   When an electromotive force generated in the conducting wire (armature) is applied to a load connected to the outside, a load current is generated, and the load current inevitably flows through the conducting wire (armature). This load current generates a magnetic field line around the conductor (armature), and this magnetic field line interferes with the magnetic field line created by the permanent magnet. As a result, the force in accordance with Fleming's left-hand rule is applied to the conductor line (armature). As a counter-rotating force against the power, it is applied in a direction opposite to the direction of rotation for power generation.

従って従来の発電機において持続的に発電を続けるためには、この反回転力に抗して常に外部から力を加え続けることにより、強制的に導線(電機子)を回転させなければならなかった。このとき、発電機から大きな発電出力を得ようとすればするほど、必然的に大きな反回転力が発生するので、持続的にこの反回転力に打ち勝つ大きな動力源が必要であった。   Therefore, in order to continue power generation in the conventional generator, the conductor (armature) must be forcibly rotated by constantly applying force from the outside against this anti-rotational force. . At this time, the larger the power generation output from the generator, the more inevitably a large counter-rotation force is generated. Therefore, a large power source that can overcome this counter-rotation force continuously is required.

従来の発電機において発生が避けられず発電効率向上の妨げとなる反回転力の、発生原理を図1により説明する。   The generation principle of the anti-rotation force that cannot be avoided in the conventional generator and hinders the improvement in power generation efficiency will be described with reference to FIG.

図1(1)は、永久磁石(固定子)101が作る外部磁力線中において回転軸102を中心に回転する電機子(回転子)導線103により、端子104と端子105間に起電力が生ずる電機子回転型発電機の原理図である。端子104と端子105の間に負荷(図示してない)を接続すると負荷電流が電機子導線103にも流れる。図1(2)に、電機子導線103が紙面垂直方向にあるとした時の、永久磁石(固定子)101のN極とS極間の外部磁力線と、電機子(回転子)導線103が作る磁力線の関係を示す。   FIG. 1A shows an electric machine in which an electromotive force is generated between a terminal 104 and a terminal 105 by an armature (rotor) conducting wire 103 that rotates around a rotating shaft 102 in an external magnetic force line formed by a permanent magnet (stator) 101. It is a principle figure of a child rotation type generator. When a load (not shown) is connected between the terminal 104 and the terminal 105, a load current also flows through the armature conductor 103. In FIG. 1 (2), when the armature conductor 103 is in the direction perpendicular to the paper surface, the external magnetic field lines between the N pole and S pole of the permanent magnet (stator) 101 and the armature (rotor) conductor 103 are The relationship of magnetic field lines to be created is shown.

電機子導線103の同図左側にある部分では、紙面表側から裏側に向けて電流が流れているので、アンペールの右ネジの法則に従い右巻きの磁力線が発生する。同様に電機子導線103の同図右側にある部分では、紙面裏側から表側に向けて電流が流れてくるので左巻きの磁力線が発生する。電機子導線103の周りにできる円形の磁力線(同図円形矢印で示す)と、固定子101のN極とS極間の外部磁力線(同図直線矢印で示す)は同一平面上にあり、相互に干渉しあう。同図に「減磁作用が発生」と示される場所では、電機子導線が作る磁力線が固定子101のN極とS極間の外部磁力線に反抗している。いっぽう、同図に「増磁作用が発生」とされる場所では、電機子導線が作る磁力線が固定子101のN極とS極間の外部磁力線を強めている。   In the portion on the left side of the armature lead wire 103 in the figure, a current flows from the front side to the back side of the drawing, so that a right-handed magnetic field line is generated according to Ampere's right-handed screw law. Similarly, in the portion on the right side of the armature conducting wire 103, a current flows from the back side to the front side of the page, so that a left-handed magnetic field line is generated. A circular magnetic field line (indicated by a circular arrow in the figure) formed around the armature conductor 103 and an external magnetic field line (indicated by a linear arrow in the figure) between the north and south poles of the stator 101 are on the same plane, Interfere with each other. In a place where “demagnetizing action occurs” in the same figure, the magnetic field lines formed by the armature conductors oppose the external magnetic field lines between the N pole and S pole of the stator 101. On the other hand, in a place where “magnetizing action is generated” in the same figure, the magnetic lines of force generated by the armature lead wire strengthen the external magnetic field lines between the N pole and S pole of the stator 101.

その結果としての合成磁力線は、図1(3)の曲線矢印で示すように、電機子導線の移動方向に無理やり歪曲されることになる。この現象は、負荷電流が大きければ大きいほど強く現れる。磁力線にはこの歪みを正そうとする作用があり、そのための力(同図に反回転力107と記した矢印)が導線に加わる。これがフレミングの左手の法則に従って発生する力である。   As a result, the resultant magnetic field lines are forcibly distorted in the moving direction of the armature conductor as indicated by the curved arrows in FIG. This phenomenon becomes stronger as the load current increases. The magnetic lines of force have the effect of correcting this distortion, and a force for that purpose (the arrow marked with the anti-rotation force 107 in the figure) is applied to the conductor. This is the force generated according to Fleming's left-hand rule.

従来の発電機では、磁力線の歪を正そうとするこの力に抗って、継続的に外部から大きな力を加えて電機子導線を動かすことにより、継続的に起電力を発生していた。以上説明したように、従来の発電機においては発電のために大きな発電機駆動エネルギーを必要としていた。
特開2007−336783号公報
In the conventional generator, an electromotive force is continuously generated by moving the armature lead wire by continuously applying a large force from the outside against this force to correct the distortion of the magnetic field lines. As described above, the conventional generator requires a large generator driving energy for power generation.
JP 2007-336783 A

上述したように、従来の発電機はその動作原理上、電機子導線中を流れる負荷電流により生じる反回転力に打ち勝って電機子を回転させるため、必然的に大きな外部駆動力を必要としていた。本発明が解決しようとする課題は、電磁誘導を利用する発電機において、新規な構造によって従来不可能と考えられていた上記反回転力の抑圧を可能とすることにより、小さな駆動力でより大きな起電力を得ること、すなわち発電効率の大幅な向上を実現することである。   As described above, the conventional generator inevitably requires a large external driving force in order to overcome the counter-rotating force generated by the load current flowing in the armature conductor and to rotate the armature. The problem to be solved by the present invention is that, in a generator using electromagnetic induction, it is possible to suppress the anti-rotation force, which has been conventionally considered impossible by a novel structure, and thus, it is possible to increase the problem with a small driving force. It is to obtain an electromotive force, that is, to realize a significant improvement in power generation efficiency.

この課題を解決するための第1の手段として、第1の本発明による高効率発電機は、電機子と永久磁石の一方を固定子とし他方を回転子とする電磁誘導利用の発電機において、永久磁石による磁力線をよぎる電機子を、らせん状にコイル化した導線部として構成し、負荷電流が電機子のらせん状にコイル化した導線部を流れる際に発生する磁力線を永久磁石による磁力線と直交する向きに偏向させることにより、永久磁石による磁力線と負荷電流による磁力線の間の干渉を抑え、負荷電流による回転抑止力の発生を抑圧するようにしたことを特徴とする。   As a first means for solving this problem, a high-efficiency generator according to the first aspect of the present invention is an electromagnetic induction generator in which one of an armature and a permanent magnet is a stator and the other is a rotor. The armature that crosses the magnetic lines of force of the permanent magnet is configured as a conducting part coiled in a spiral, and the magnetic lines generated when the load current flows through the coiled part of the armature in a spiral form are orthogonal to the magnetic lines of force generated by the permanent magnet. By deflecting in such a direction, the interference between the magnetic lines of force due to the permanent magnet and the magnetic lines of force due to the load current is suppressed, and the generation of the rotation deterring force due to the load current is suppressed.

この課題を解決するための第2の手段として、第2の本発明による高効率発電機は、電機子と永久磁石の一方を固定子とし他方を回転子とする電磁誘導利用の発電機において、永久磁石による磁力線をよぎる電機子を、右巻きらせん状にコイル化した導線部と左巻きらせん状にコイル化した導線部を組み合わせた同心コイルとして構成し、負荷電流が同心コイルに流れる際に右巻きらせん状にコイル化した導線部によって発生する磁力線と左巻きらせん状にコイル化した導線部によって発生する磁力線を互いに相殺させることにより、負荷電流が同心コイルを流れる際に同心コイル外に生じる磁力線を最小化して永久磁石による磁力線との干渉を抑えて負荷電流による回転抑止力の発生を抑圧するようにすると共に、それぞれのコイルが持つ自己インダクタンスを右巻きと左巻きコイル間の相互インダクタンスの作用によって打ち消させることにより電機子の内部インピーダンスを最小化して外部に取り出す電力を最大化できるようにすることを特徴とする。   As a second means for solving this problem, a high-efficiency generator according to the second aspect of the present invention is an electromagnetic induction generator in which one of an armature and a permanent magnet is a stator and the other is a rotor. The armature that crosses the magnetic lines of force of the permanent magnet is configured as a concentric coil that combines a right-handed helically coiled conductor part and a left-handed spirally coiled conductor part. When the load current flows through the concentric coil, it turns right By minimizing the magnetic field lines generated by the helically coiled conductor and the magnetic lines generated by the left-handed spiral coil, the magnetic field generated outside the concentric coil is minimized when the load current flows through the concentric coil. In order to suppress the interference with the magnetic field lines by the permanent magnets and suppress the generation of rotation deterrence due to the load current, each coil has The power taken out by minimizing the internal impedance of the armature by causing counteracted by the action of the mutual inductance between the right-handed and left-handed coils himself inductance, characterized in that to allow maximized.

本発明の第1または第2の手段により、電機子と永久磁石の一方を固定子とし他方を回転子とする電磁誘導利用の発電機において、永久磁石による起電力を生むための磁力線と負荷電流による磁力線の間の干渉を最小化できるので、負荷電流による回転抑止力の発生を抑圧でき、その効果として、小さな駆動力でより大きな起電力を得ることが可能になる。   According to the first or second means of the present invention, in an electromagnetic induction generator in which one of an armature and a permanent magnet is a stator and the other is a rotor, magnetic field lines and load current for generating an electromotive force by the permanent magnet are used. Since the interference between the magnetic field lines can be minimized, the generation of the rotation deterring force due to the load current can be suppressed, and as a result, a larger electromotive force can be obtained with a small driving force.

従来の反回転力の発生原理を説明する図であり、同図(1)は電機子回転型発電機の原理図、同図(2)は外部磁力線と電機子導線がつくる磁力線の関係、同図(3)は合成磁力線を示す。It is a figure explaining the generation | occurrence | production principle of the conventional anti-rotation force, The figure (1) is a principle figure of an armature rotary type generator, The figure (2) is the relationship between the magnetic force line which an external magnetic force line and an armature lead wire, Figure (3) shows the resultant magnetic field lines. 本発明の第1の手段による発電機の動作原理を説明する図であり、同図(1)はアンペールの右ねじの法則、同図(2)は右巻きコイルの磁界、同図(3)は左巻きコイルの磁界を示す。It is a figure explaining the operation | movement principle of the generator by the 1st means of this invention, the figure (1) is Ampere's right-handed screw rule, the figure (2) is the magnetic field of a right-handed coil, and the figure (3) Indicates the magnetic field of the left-handed coil. 本発明の第1の手段を説明する図であり、同図(1)は従来の発電機の構造、同図(2)は導線の軸方向から見た図、同図(3)は合成磁界、同図(4)は本発明の第1の手段による発電機の構造、同図(5),(6)はコイル化した導線部の軸方向から見た図を示す。It is a figure explaining the 1st means of this invention, The figure (1) is the structure of the conventional generator, The figure (2) is the figure seen from the axial direction of conducting wire, The figure (3) is a synthetic magnetic field. FIG. 4 (4) shows the structure of the generator according to the first means of the present invention, and FIGS. 5 (6) and 6 (6) show a view of the coiled conductor portion viewed from the axial direction. 電機子として用いられるコイルを説明する図であり、同図(1)は2重逆巻きコイル、同図(2)は2n重逆巻きコイルを示す。It is a figure explaining the coil used as an armature, The figure (1) shows a double reverse winding coil, and the figure (2) shows a 2n double reverse winding coil. 本発明の発電機の第1の実施例であり、同図(1)は上面図、同図(2)は側面図である。It is a 1st Example of the generator of this invention, The figure (1) is a top view, The figure (2) is a side view. 図5の電機子の相互結線方法を示す図である。It is a figure which shows the mutual connection method of the armature of FIG. 図6の等価回路と総合起電力と負荷電流の関係を示し、同図(1)は等価回路、同図(2)は総合起電力と負荷電流の関係を示す図である。6 shows the relationship between the equivalent circuit, the total electromotive force, and the load current. FIG. 1A is an equivalent circuit, and FIG. 2B shows the relationship between the total electromotive force and the load current. 同図(1)は二重逆巻きコイル使用時の電機子結線図を、同図(2)は同図(1)の発電機等価回路を示す図である。The figure (1) is an armature connection diagram when a double counter-wound coil is used, and the figure (2) is a diagram showing a generator equivalent circuit of the figure (1). 本発明の第2の実施例であり、同図(1)は上面図、同図(2)は側面図である。It is a 2nd Example of this invention, The figure (1) is a top view, The figure (2) is a side view. 図9の2組の電機子への磁力線の流れを示す図である。It is a figure which shows the flow of the magnetic force line to two sets of armatures of FIG. 図9の円状に配置された電機子各層毎の結線方法を説明する図であり、同図(1)は上部電機子の結線方法、同図(2)は下部電機子の結線方法を示す。FIG. 10 is a diagram illustrating a connection method for each armature layer arranged in a circle in FIG. 9, in which FIG. (1) shows a connection method of an upper armature, and FIG. (2) shows a connection method of a lower armature. . 層別起電ユニットの直列接続結線図であり、同図(1)は上部起電ユニットの結線図、同図(2)は下部起電ユニットの結線図である。FIG. 2 is a series connection diagram of electromotive units by layer, in which FIG. 1A is a connection diagram of an upper electromotive unit, and FIG. 2B is a connection diagram of a lower electromotive unit. 発電出力の取り出し方法の説明図であり、同図(1)は直列接続、同図(2)は並列接続を示す。It is explanatory drawing of the taking-out method of an electric power generation output, The figure (1) shows serial connection and the figure (2) shows parallel connection. 二重逆巻きコイルの起電力特性の評価実験を示す図であり、同図(1)は実験装置前面図、同図(2)は実験装置側面図、同図(3)は起電力特性測定系の構成図、同図(4)は起電力特性の測定結果を示す。It is a figure which shows the evaluation experiment of the electromotive force characteristic of a double reverse winding coil, The figure (1) is an experimental apparatus front view, The figure (2) is an experimental apparatus side view, The figure (3) is an electromotive force characteristic measurement system FIG. 4 shows the measurement result of electromotive force characteristics.

符号の説明Explanation of symbols

101 永久磁石
102 回転軸
103 電機子導線
104,105 端子
106 回転力
107 反回転力
201 導体
202 右巻きコイル
203 左巻きコイル
204 発生磁力線
205 発生磁力線
301 固定子(永久磁石)
302 外部磁力線
303 導線
304 負荷電流
305 負荷電流が作る磁力線
306 導線の移動方向
307 磁力線の歪
308 磁力線の歪を正そうとする力
309 固定子(永久磁石)
310 外部磁力線
311 コイル化した導線部
312 負荷電流が作る磁力線
313 コイル化した導線部の移動方向
401 右巻きコイル化導線部
402 左巻きコイル化導線部
403 電機子(2重逆巻きコイル)
404 ボビン
405 ボビン空心部
406 第1の2重逆巻きコイル
407 右巻き部
408 左巻き部
409 第2の2重逆巻きコイル
410 右巻き部
411 左巻き部
412 第3の2重逆巻きコイル
413 右巻き部
414 左巻き部
415 6重逆巻きコイル
500 回転円盤
501〜508 永久磁石
511〜518 電機子
519 回転軸
601,602 結線部分
603 電機子518の回転円盤外周方向端子
604 電機子517の回転円盤外周方向端子
605 端子間電圧(V)
606 スイッチ
607 負荷インピーダンス
608 負荷電流IL
900 回転円盤
901 回転軸
1001 棒状永久磁石
1002,1003 電機子
1006 棒状永久磁石からの磁力線
1101 電機子U 1の外側端子SU
1102 電機子U 2の外側端子EU
1103 電機子L 1の外側端子SL
1104 電機子L 2の外側端子EL
1201 層別上部起電ユニット1(巻き層1:左巻)
1202 層別上部起電ユニット2(巻き層2:右巻)
1203 層別上部起電ユニット3(巻き層3:左巻)
1204 層別上部起電ユニット4(巻き層4:右巻)
1211 層別下部起電ユニット1(巻き層1:左巻)
1212 層別下部起電ユニット2(巻き層2:右巻)
1213 層別下部起電ユニット3(巻き層3:左巻)
1214 層別下部起電ユニット4(巻き層4:右巻)
1401 永久(棒)磁石
1402 測定用電機子
1403 内側右巻コイル
1404 外側左巻コイル
1405 磁界鎖交方向
1406 基準用単線
DESCRIPTION OF SYMBOLS 101 Permanent magnet 102 Rotating shaft 103 Armature conducting wire 104,105 Terminal 106 Rotating force 107 Anti-rotating force 201 Conductor 202 Right-handed coil 203 Left-handed coil 204 Generated magnetic field line 205 Generated magnetic field line 301 Stator (permanent magnet)
302 External Magnetic Field Line 303 Conductor Wire 304 Load Current 305 Magnetic Field Line Generated by Load Current 306 Conductor Movement Direction 307 Magnetic Field Line Distortion 308 Force to Correct Magnetic Field Line Distortion 309 Stator (Permanent Magnet)
310 External Magnetic Field Line 311 Coiled Conductor Line 312 Magnetic Field Line Generated by Load Current 313 Movement Direction of Coiled Conductor Line 401 Right-handed Coiled Conductor Section 402 Left-handed Coiled Conductor Section 403 Armature (Double Reverse Coil)
404 Bobbin 405 Bobbin air core 406 First double-turn coil 407 Right-hand turn 408 Left-hand turn 409 Second double-turn coil 410 Right-hand turn 411 Left turn 412 Third double turn turn coil 413 Right turn 414 Left turn 415 Rotating disk 501 to 508 Permanent magnet 511 to 518 Armature 519 Rotating shaft 601 and 602 Connection portion 603 Rotating disk outer peripheral direction terminal of armature 518 604 Rotating disk outer peripheral terminal of armature 517 605 Between terminals Voltage (V)
606 Switch 607 Load impedance 608 Load current I L
900 Rotating disk 901 Rotating shaft 1001 Rod-shaped permanent magnet 1002, 1003 Armature 1006 Magnetic field lines from rod-shaped permanent magnet 1101 Outer terminal S U of armature U 1
1102 Outer terminal E U of armature U 2
1103 Outer terminal S L of armature L 1
1104 Armature L 2 outer terminal E L
1201 Upper electromotive unit 1 by layer (winding layer 1: left-handed)
1202 Upper electromotive unit 2 by layer (winding layer 2: right-handed)
1203 Upper electromotive unit 3 by layer (winding layer 3: left-handed)
1204 Upper electromotive unit 4 by layer (winding layer 4: right-handed)
1211 Lower electromotive unit 1 by layer (winding layer 1: left-handed)
1212 Layered lower electromotive unit 2 (winding layer 2: right-handed)
1213 Lower electromotive unit 3 by layer (winding layer 3: left-handed)
1214 Lower electromotive unit 4 by layer (winding layer 4: right-handed)
1401 Permanent (bar) magnet 1402 Measurement armature 1403 Inner right-handed coil 1404 Outer left-handed coil 1405 Magnetic field linkage direction 1406 Reference single wire

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下図面を参照しつつ本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図2は本発明の第1の手段による発電機の動作原理を説明するための図である。同図(1)は、一本の直線状の導線201に電流を流した場合に導線の周りに矢印の方向の磁力線が発生することを示す、アンペールの右ネジの法則としてよく知られた図であり、図1(1)のように、従来の発電機の電機子導線に負荷電流が流れる場合に相当する。   FIG. 2 is a diagram for explaining the operating principle of the generator according to the first means of the present invention. The figure (1) is a well-known figure of Ampere's right-hand screw law, showing that when a current is passed through a single linear conductor 201, magnetic lines of force are generated around the conductor in the direction of the arrow. This corresponds to the case where a load current flows through the armature conductor of the conventional generator as shown in FIG.

この一本の直線状の導線の代わりに、図2(2)に示すような右巻きコイル202に電流を流すと、コイルの断面内を通る同図矢印の向きの磁力線204が発生する。この右巻きコイルを1つの棒磁石と考えれば、電流を流し込む方の端がS極、電流が流れ出ていく方の端がN極となるような磁性を示す。   When a current is passed through the right-handed coil 202 as shown in FIG. 2 (2) instead of this single linear conducting wire, a magnetic force line 204 in the direction of the arrow in the figure passing through the coil cross section is generated. If this right-handed coil is considered as one bar magnet, it shows magnetism such that the end where the current flows is the S pole and the end where the current flows out is the N pole.

同様に図2(3)は左巻きコイル203に電流を流す場合を示す。発生磁力線205はコイル断面内を通り、その方向は同図矢印の向きとなる。すなわちコイルを1つの棒磁石と考えるとき、電流を流し込む方の端がN極、電流が流れ出ていく方の端がS極となるような磁性を示す。   Similarly, FIG. 2 (3) shows a case where a current is passed through the left-handed coil 203. The generated magnetic field line 205 passes through the coil cross section, and the direction thereof is the direction of the arrow in the figure. That is, when the coil is considered as one bar magnet, it exhibits magnetism such that the end where the current flows is the N pole and the end where the current flows out is the S pole.

なお、図2(2)または(3)におけるコイルの直径がコイル長に比し十分小さいとき、コイルから発生する磁力線密度B[wb/m2 ]は、コイルの巻数N[回]とコイルに流す電流i[A]に比例し、次式で与えられる。
B=μ・N・i [wb/m2 ] (1)
ここにμは透磁率と呼ばれる定数であり、コイルが空芯の場合には真空の透磁率に等しく1.257×10−6である。
When the diameter of the coil in FIG. 2 (2) or (3) is sufficiently smaller than the coil length, the magnetic line density B [wb / m 2 ] generated from the coil is the number of turns N [turns] and the coil It is proportional to the flowing current i [A] and is given by the following equation.
B = μ · N · i [wb / m 2 ] (1)
Here, μ is a constant called magnetic permeability, and is 1.257 × 10 −6, which is equal to the vacuum magnetic permeability when the coil is an air core.

従来の発電機では電機子導線を流れる負荷電流により発生する磁力線が図2(1)のようになるので、この磁力線は、図1(2)に示すように、発電のための外部磁力線と相互に干渉しあうが、本発明では電機子導線を図2(2)または図2(3)のようにらせん状にコイル化することにより、図2(2)204および図2(3)205で示すように、負荷電流により発生する磁力線はコイル部分ではコイルの内側に閉じ込められ、磁力線の向きはコイルの中心軸に沿った方向となる。このらせん状にコイル化した導線部を図1(2
)の電機子導線103の代わりに電機子導線部とする新規な構造により、電機子導線部を流れる負荷電流により発生する磁力線は、発電のための外部磁力線と直交することになるので、相互干渉は生じない。
In the conventional generator, the lines of magnetic force generated by the load current flowing through the armature conductors are as shown in FIG. 2 (1). Therefore, as shown in FIG. In the present invention, the armature conductor is coiled in a spiral shape as shown in FIG. 2 (2) or FIG. 2 (3), so that in FIG. 2 (2) 204 and FIG. 2 (3) 205 As shown, the magnetic field lines generated by the load current are confined inside the coil in the coil portion, and the direction of the magnetic field lines is along the central axis of the coil. This spiral coiled conductor is shown in Fig. 1 (2
) Of the armature lead wire 103 instead of the armature lead wire portion 103, the magnetic field lines generated by the load current flowing through the armature lead wire portion are orthogonal to the external magnetic force lines for power generation. Does not occur.

図3により、本発明の第1の手段を詳細に説明する。図3(1)は従来の発電機の構造を示すもので、N極とS極を有する固定子(永久磁石)301による外部磁力線302の中に置かれた一本の電機子(回転子)導線303に負荷電流i304が流れており、その導線の周りにアンペールの右ネジの法則に従った磁力線305が発生する様子を示している。同じ現象をこの導線の軸方向から見ると図3(2)のようになる。導線303は紙面の表側から裏側に垂直にあり、負荷電流i304が紙面表側から裏側に向け流れている。導線303を流れる負荷電流i304が作る磁力線305は右回りになる。この円状にできる磁力線305と固定子301のN極とS極間の外部磁力線302は相互に影響しあう。   With reference to FIG. 3, the first means of the present invention will be described in detail. FIG. 3 (1) shows the structure of a conventional generator. One armature (rotor) placed in an external magnetic field line 302 by a stator (permanent magnet) 301 having N and S poles. A load current i304 is flowing through the conductor 303, and a magnetic field line 305 is generated around the conductor in accordance with Ampere's right-handed screw law. If the same phenomenon is seen from the axial direction of this conducting wire, it will become like FIG. 3 (2). The conductive wire 303 is perpendicular to the back side from the front side of the paper surface, and the load current i304 flows from the front side to the back side of the paper surface. Magnetic field lines 305 generated by the load current i304 flowing through the conductive wire 303 are clockwise. The circular magnetic field lines 305 and the external magnetic field lines 302 between the north and south poles of the stator 301 interact with each other.

すなわち、図3(2)で「減磁作用が生ずる」とされる領域では、導線303が作る磁力線305が外部磁力線に反抗している。他方「増磁作用が生ずる」とされる領域では、導線303が作る磁力線305が外部磁力線302を強めている。ここで図3(3)に示すように導線303に外部から力(発電のための回転力)を加えて同図306に示す方向に移動させると、その結果としての合成磁力線は同図307に示すように、導線303の移動方向(306の方向)に無理やり曲げて歪められることになる。磁力線にはこの歪みを正そうとする働きがあるので、この働きによる力(同図308で示す力)が導線303に加わることになる。これがフレミングの左手の法則として知られている磁界の中で導線に電流を流すと導線に加わる力である。従来の発電機では、この磁力線の歪を正そうとする力(反回転力308)に抗って、外部からの大きな力(発電のための回転力)で導線303を同図306の方向に継続的に動かしてやることにより、起電力を発生し続けるようにしている。なお、図3(1)〜図3(3)には導線303として紙面の表側から裏側に電流が流れる部分のみを示しており、図1(2),図1(3)におけるそれぞれ左側半分での動作を説明している。図1(2),図1(3)のそれぞれ右側半分での動作も全く同様なので、ここでは省略する。   That is, in the region where “demagnetization occurs” in FIG. 3B, the magnetic field lines 305 formed by the conducting wire 303 resist the external magnetic field lines. On the other hand, in the region where “magnetization occurs”, the magnetic lines 305 formed by the conducting wire 303 strengthen the external magnetic lines 302. Here, as shown in FIG. 3 (3), when a force (rotational force for power generation) is applied to the conducting wire 303 from the outside and moved in the direction shown in FIG. 306, the resultant combined magnetic field line is shown in FIG. 307. As shown, the lead wire 303 is forcibly bent and distorted in the moving direction (direction 306). Since the magnetic field lines have a function to correct this distortion, a force (force shown in FIG. 308) due to this function is applied to the conductive wire 303. This is the force applied to the conductor when a current is passed through the conductor in a magnetic field known as Fleming's left-hand rule. In the conventional generator, the conductor 303 is moved in the direction of FIG. 306 with a large external force (rotation force for power generation) against the force (anti-rotation force 308) for correcting the distortion of the magnetic field lines. By continuously moving it, it keeps generating electromotive force. 3 (1) to FIG. 3 (3) show only a portion where current flows from the front side to the back side of the paper surface as the conductive wire 303, and the left half in FIG. 1 (2) and FIG. 1 (3) respectively. Explains the operation. Since the operations in the right half of FIGS. 1 (2) and 1 (3) are exactly the same, they are omitted here.

これに対し図3(4)は本発明の第1の手段による高効率発電機の構造を示すもので、N極とS極を有する永久磁石309(固定子となる)により生じる外部磁力線310を、らせん状にコイル化した導線部311として構成した電機子が回転子としてよぎるように構成する。この構成により、負荷電流iがらせん状にコイル化した導線部311を同図に示した向きに流れる際に発生する磁力線312はらせん状にコイル化した導線部311の内側を通り、らせん状にコイル化した導線部311の中心軸に沿った向き、すなわち起電力を生むための永久磁石309による外部磁力線310と直交する向きに偏向される。   On the other hand, FIG. 3 (4) shows the structure of the high-efficiency generator according to the first means of the present invention. The external magnetic field lines 310 generated by the permanent magnet 309 (being a stator) having N and S poles are shown. The armature configured as the conductive wire portion 311 that is coiled in a spiral shape is configured to cross the rotor. With this configuration, the magnetic field lines 312 that are generated when the load current i flows in the direction shown in the figure through the spirally coiled conductor portion 311 pass through the inside of the spirally coiled conductor portion 311 and spirally. It is deflected in the direction along the central axis of the coiled conductor 311, that is, in the direction perpendicular to the external magnetic field lines 310 by the permanent magnet 309 for generating an electromotive force.

同じ現象をらせん状にコイル化した導線部311の軸方向から見ると図3(5)のようになる。すなわち負荷電流iにより発生する磁力線はらせん状にコイル化した導線部311の内側を通り、その方向は紙面の表側から裏側に垂直に向かう方向となるので永久磁石309による外部磁力線310とは90゜をなし(すなわち直交し)、両磁力線間の相互作用(減磁作用や増磁作用)は生じない。   When the same phenomenon is seen from the axial direction of the conducting wire portion 311 that is coiled in a spiral shape, the result is as shown in FIG. That is, the magnetic lines of force generated by the load current i pass through the inside of the conductive wire portion 311 that is spirally coiled, and the direction thereof is perpendicular to the back side from the front side of the paper. (I.e., orthogonal), and no interaction (demagnetization or magnetization) occurs between the lines of magnetic force.

なお図3(4)〜図3(6)はコイルを右巻きに巻いたときの磁力線の様子を示しているが、左巻きに巻いたコイルを用いる場合は磁力線の方向が紙面の裏側から表側に垂直に向かう方向に180゜反転することになり、外部磁力線とはやはり直交するので、この場合も両磁力線間の相互作用は生じない。   3 (4) to 3 (6) show the state of the magnetic lines of force when the coil is wound clockwise, but when using the coil wound counterclockwise, the direction of the lines of magnetic force changes from the back side to the front side of the page. Since the direction is reversed by 180 ° in the perpendicular direction and is also orthogonal to the external magnetic field lines, there is no interaction between the two magnetic field lines.

図3(4)における負荷電流iは、らせん状にコイル化した導線部311に力(発電の
ための外部からの回転力)を加えて図3(5)および同図(6)の313で示す方向に移動させることにより発生する起電力eが、外部に接続される負荷(図には示してない)に加えられることによって必然的に生じるものである。この負荷電流iによりらせん状にコイル化した導線部311の内部に発生する磁力線が外部磁力線と直交する状態は、この導線部311が図3(5)および同図(6)の313で示す方向に移動(すなわち回転)しても不変なので、この回転により両磁力線間に相互作用(減磁作用や増磁作用)は生じない。従って磁力線の歪も生じない。その結果、フレミングの左手の法則に従って磁力線の歪を正そうとする力も発生しないので、外部から加える回転力は図3(3)の場合のような大きな反回転力を受けることがない。すなわち負荷電流による磁力線と永久磁石による磁力線の間の干渉が抑えられるので負荷電流による回転抑止力の発生は抑圧され、その結果、小さな回転力でらせん状にコイル化した導線部311に起電力を発生させ続けることができる。
The load current i in FIG. 3 (4) is obtained by applying a force (rotational force from the outside for power generation) to the conducting wire portion 311 that is coiled in a spiral shape at 313 in FIG. 3 (5) and FIG. 3 (6). The electromotive force e generated by moving in the direction shown is inevitably generated by being applied to an externally connected load (not shown). The state in which the magnetic force lines generated inside the conductive wire portion 311 spirally coiled by the load current i are perpendicular to the external magnetic force lines is the direction indicated by reference numeral 313 in FIGS. 3 (5) and (6). Therefore, no interaction (demagnetizing action or magnetizing action) occurs between the lines of magnetic force. Therefore, the magnetic field lines are not distorted. As a result, no force is generated to correct the distortion of the magnetic field lines in accordance with Fleming's left-hand rule, so that the rotational force applied from the outside does not receive a large counter-rotating force as in FIG. That is, since the interference between the magnetic field lines due to the load current and the magnetic field lines due to the permanent magnet is suppressed, the generation of the rotation deterring force due to the load current is suppressed. Can continue to generate.

図3(2),図3(3)のように直線状の導線303を外部磁力線をよぎって移動させることによってその導線部に生じる起電力e[V]は、外部磁力線302をよぎる導線の実質長をl[m]、導線がよぎる磁力線の磁力線密度をB[wb/m2
]とし、導線と磁力線間の相対移動速度をv[m/s]とすれば、電気磁気学理論の教えるところにより
e=B・l・v[wb/m2 ] (2)
で与えられるが、図3(5),図3(6)のように直線状の導線の代わりにらせん状にコイル化した導線部312を電機子として用いる本発明の発電機の場合、コイルに巻かれた導線の総長ではなくコイルの筒方向の長さをl[m]とすることにより、上式をそのまま適用した値の起電力が得られる。このようにコイル化された導線部が磁力線をよぎる場合においても、コイルの筒方向の長さに等しい直線状の導線と同等な起電力が得られることは、図14に示す後述される実験によっても確認されている。
As shown in FIGS. 3 (2) and 3 (3), the electromotive force e [V] generated in the conducting wire portion by moving the linear conducting wire 303 across the external magnetic force line is substantially equal to the conductive wire crossing the external magnetic force line 302. The length is l [m], and the magnetic line density of the magnetic field lines crossed by the conducting wire is B [wb / m 2].
], And the relative movement speed between the conductor and the magnetic field line is v [m / s].
e = B · l · v [wb / m 2 ] (2)
3 (5) and FIG. 3 (6), in the case of the generator of the present invention in which the conductor portion 312 spirally coiled instead of the linear conductor is used as the armature, By setting the length of the coil in the cylinder direction instead of the total length of the wound conducting wire to l [m], an electromotive force having a value obtained by applying the above formula as it is can be obtained. Even in the case where the coiled conductor portion crosses the magnetic field lines, it is possible to obtain an electromotive force equivalent to a linear conductor equal to the length of the coil in the cylinder direction by an experiment described later shown in FIG. Has also been confirmed.

らせん状にコイル化した導線部311を外部からの回転力によって図3(5),図3(6)313で示す方向に移動(回転)させるとき、起電力eは図3(5),図3(6)において紙面表面から裏面に向かう方向(コイルの中心軸に沿う方向)に生じ、その結果、この導線部311の両端に外部の負荷(図には示してない)を接続すると、負荷電流iが図3(4)に示す向きにこの導線部311中を流れる。起電力eの向きは、らせん状にコイル化した導線部311の巻き方を図3(4)のように右巻きにしても、逆に左巻きにしても変わらない。このことも図14に示す後述される実験によって確認されている。起電力eの向き、従って負荷電流の流れる向きを180゜逆にするには、外部からこの導線部311に加える回転力を図3(5),図3(6)313で示す方向と180゜逆にする、すなわちらせん状にコイル化した導線部311を反対方向に回転させればよい。   When the spirally coiled conductive wire portion 311 is moved (rotated) in the direction shown in FIGS. 3 (5) and 3 (6) 313 by a rotational force from the outside, the electromotive force e is as shown in FIG. 3 (6) occurs in the direction from the front surface to the back surface of the paper (the direction along the central axis of the coil). As a result, when an external load (not shown) is connected to both ends of the conducting wire portion 311, the load A current i flows through the conductor portion 311 in the direction shown in FIG. The direction of the electromotive force e does not change even if the spirally coiled conductor 311 is wound clockwise as shown in FIG. 3 (4) or conversely counterclockwise. This has also been confirmed by the later-described experiment shown in FIG. In order to reverse the direction of the electromotive force e, that is, the direction in which the load current flows, by 180 °, the rotational force applied to the conducting wire portion 311 from the outside is 180 ° to the direction shown in FIGS. 3 (5) and 3 (6) 313. The conductive wire portion 311 that is reversed, that is, spirally coiled, may be rotated in the opposite direction.

図14は、コイルが磁力線をよぎる場合に生ずる起電力がコイルの筒方向の長さと等しい単一導線による起電力と等しいこと、つまり磁力線をよぎる磁力線と直角方向の導線長で起電力が決まること、またその起電力の向き(極性)はコイルの巻き方が右巻きでも左巻きでも変わらないこと、を実証するための実験装置構成と実験結果を示している。   FIG. 14 shows that the electromotive force generated when the coil crosses the magnetic field lines is equal to the electromotive force generated by a single conductor equal to the length of the coil in the cylinder direction, that is, the electromotive force is determined by the length of the conductor perpendicular to the magnetic field lines crossing the magnetic field lines. Moreover, the direction (polarity) of the electromotive force shows an experimental apparatus configuration and experimental results for demonstrating that the winding method of the coil does not change whether the winding is right-handed or left-handed.

図14(1)は実験装置の前面図、図14(b)はその側面図である。回転円盤の円周上に32個の棒磁石を等間隔で、隣り合う磁石は互いに逆極性となるよう配置されており、この円盤が一定速度で回転させられる。この円盤に接しない最近傍に測定用の電機子1402を配置し、この電機子1402をよぎる磁力線によって生ずる起電力波形をオシロスコープで観測した。図14(3)は棒磁石と電機子の相対位置関係を示しているが、棒磁石と電機子コイルは直角に配置されている。この電機子コイルは右巻きコイル1403と左巻きコイル1404が同心円状に重ねあわされており、さらに中空部分に単一の直線導線(基準用単線1406)が挿入されている。基準用単線1406も右巻きコイル1403も左巻きコイル1404も全て長さは同一(約80mm)に揃えられている。   FIG. 14 (1) is a front view of the experimental apparatus, and FIG. 14 (b) is a side view thereof. On the circumference of the rotating disk, 32 bar magnets are arranged at equal intervals, and adjacent magnets are arranged to have opposite polarities, and this disk is rotated at a constant speed. An armature for measurement 1402 was arranged in the nearest vicinity not in contact with the disk, and an electromotive force waveform generated by magnetic lines crossing the armature 1402 was observed with an oscilloscope. FIG. 14 (3) shows the relative positional relationship between the bar magnet and the armature, but the bar magnet and the armature coil are arranged at right angles. In this armature coil, a right-handed coil 1403 and a left-handed coil 1404 are concentrically overlapped, and a single straight conductor (reference single wire 1406) is inserted into the hollow portion. The reference single wire 1406, the right-handed coil 1403, and the left-handed coil 1404 all have the same length (about 80 mm).

棒磁石が図14(3)で紙面の表から紙面裏に移動すると電機子を直角によぎる磁力線の向きは図中の太い矢印1405で示されるように交互に変化する。この時、外側左巻きコイル1404に誘起する起電力波形を波形1、内側右巻きコイル1403に誘起する起電力波形を波形2、基準用単線1406に誘起する起電力波形を波形3とすると、各波形は図14(4)に示すように位相も電圧もほぼ等しくなることが実測により確認された。このことは右巻きコイルでも左巻きコイルでもそのコイル長に等しい単線と同様な起電力が得られると云う本発明の前提条件が技術的に正しいことを示している。   When the bar magnet moves from the front side to the back side in FIG. 14 (3), the direction of the lines of magnetic force crossing the armature at right angles alternately changes as indicated by the thick arrows 1405 in the figure. At this time, assuming that the electromotive force waveform induced in the outer left-handed coil 1404 is waveform 1, the electromotive force waveform induced in the inner right-handed coil 1403 is waveform 2, and the electromotive force waveform induced in the reference single wire 1406 is waveform 3, each waveform. As shown in FIG. 14 (4), it was confirmed by actual measurement that the phase and voltage were almost equal. This indicates that the precondition of the present invention that the same electromotive force as that of a single wire equal to the coil length can be obtained in both the right-handed coil and the left-handed coil is technically correct.

本発明の第2の手段による高効率発電機は、固定子と回転子から成る電磁誘導利用の発電機において、永久磁石による磁力線をよぎる電機子を、右巻きらせん状にコイル化した導線部と左巻きらせん状にコイル化した導線部を組み合わせた同心コイルとして構成し、負荷電流が同心コイルを流れる際に右巻きらせん状にコイル化した導線部によって発生する磁力線と左巻きらせん状にコイル化した導線部によって発生する磁力線を互いに相殺させることにより、負荷電流が同心コイルを流れる際に同心コイル外に生じる磁力線を最小化して永久磁石による磁力線との干渉を抑え、負荷電流による回転抑止力の発生を抑圧する。   The high-efficiency generator according to the second means of the present invention is a generator using electromagnetic induction composed of a stator and a rotor, and a conductor portion obtained by coiling an armature that crosses magnetic lines of force by a permanent magnet into a right-handed spiral shape. Constructed as a concentric coil that combines left-hand spiral coiled conductors, and when the load current flows through the concentric coil, the magnetic field generated by the right-hand spiral coil and the left-hand spiral coil By canceling out the magnetic lines of force generated by the parts, the magnetic lines generated outside the concentric coil when the load current flows through the concentric coil are minimized to suppress interference with the magnetic lines of force by the permanent magnet, and the rotation deterring force is generated by the load current. Repress.

図4(1)は、本発明の第2の手段による高効率発電機において用いる、右巻きらせん状にコイル化した導線部401と左巻きらせん状にコイル化した導線部402を組み合せた同心コイルとして構成した電機子403の構成例を示すもので、電気絶縁性の高い単一のボビン404上に、電気伝導性の高い導体(たとえば銅または銅合金)でできた導線を、左巻きと右巻きにそれぞれ密に巻いて2つのコイルを構成した同心コイルであり、便宜上2重逆巻きコイルと呼ぶことにする。なお、これらの導線はコイル状に巻かれる際互いに接触するので、この接触により相互間に直接電流が流れないようにするため、それぞれの導線として絶縁性の高い外被で覆われたもの、いわゆるエナメル被覆線等、を使用する。これらのコイルのボビン404は、図4(1)405に示すように空心とするのが良い。   FIG. 4 (1) shows a concentric coil which is a combination of a right-handed spiral coiled conductor 401 and a left-handed spiral coil used in a high efficiency generator according to the second means of the present invention. An example of the structure of the armature 403 is shown. On a single bobbin 404 having high electrical insulation, a conductive wire made of a highly conductive conductor (for example, copper or copper alloy) is turned left-handed and right-handed. These are concentric coils each of which is tightly wound to form two coils, and will be referred to as a double counter-winding coil for convenience. In addition, since these conducting wires contact each other when being wound in a coil shape, in order to prevent direct current from flowing between each other by this contact, each conducting wire is covered with a highly insulating jacket, so-called Use enameled coated wire. The bobbins 404 of these coils are preferably air-centered as shown in FIG.

図4(1)の電機子(2重逆巻きコイルとしての同心コイル)403において、同じ負荷電流が右巻きらせん状にコイル化した導線部401と左巻きらせん状にコイル化した導線部402に流れる際に発生する磁力線は、共にボビン404の内側(すなわちボビン404の空芯部405)に集中し、かつ互いに逆向きになる。このためこれらの磁力線は互いにほぼ相殺され、最小化される。その結果、負荷電流が右巻きらせん状にコイル化した導線部401と左巻きらせん状にコイル化した導線部402を流れる際に同心コイル403外に出て行く磁力線も最小化されて、永久磁石による磁力線との干渉が抑えられ、負荷電流による回転抑止力の発生が抑圧される。   In the armature (concentric coil as a double counter-winding coil) 403 in FIG. 4A, when the same load current flows through the conducting wire portion 401 coiled in a right-handed spiral and the conducting wire portion 402 coiled in a left-handed spiral. The magnetic lines of force generated in are concentrated inside the bobbin 404 (that is, the air core part 405 of the bobbin 404) and are opposite to each other. For this reason, these magnetic field lines are substantially canceled out and minimized. As a result, the line of magnetic force that goes out of the concentric coil 403 when the load current flows through the conducting wire portion 401 coiled in a right-handed spiral and the conducting wire portion 402 coiled in a left-handed spiral shape is also minimized. Interference with the magnetic field lines is suppressed, and the generation of rotation deterrence due to the load current is suppressed.

図4(1)では右巻きらせん状にコイル化した導線部401の内側に左巻きらせん状にコイル化した導線部402が巻かれる構成例を示したが、この順番を逆に構成しても、永久磁石による磁力線と負荷電流による磁力線の間の干渉を最小化する効果が変わらないことは、これまでの説明から自明であろう。   FIG. 4 (1) shows a configuration example in which the lead wire portion coiled in a left-handed spiral is wound inside the lead wire portion 401 coiled in a right-handed spiral shape, but even if this order is reversed, It will be apparent from the above description that the effect of minimizing the interference between the magnetic field lines caused by the permanent magnet and the magnetic field lines caused by the load current does not change.

2重逆巻きコイル403の右巻きらせん状にコイル化した導線部401と左巻きらせん状にコイル化した導線部402に同じ負荷電流を流すには、これら2つのコイルを直列に接続すればよいが、発電機としての総合起電力を大きくするため通常は複数(偶数)個の電機子を使用するので、その場合はまず使用するすべての電機子の右巻きコイルを直列に接続し、同様にすべての電機子の左巻きコイルを直列に接続し、その上で両者を直列に接続する、という構成としてもよい。   In order to allow the same load current to flow through the right-handed spiral coiled conductor 401 and the left-handed spiraled coil 402 of the double reverse wound coil 403, these two coils may be connected in series. Normally, multiple (even) armatures are used to increase the total electromotive force as a generator. In this case, first connect the right-handed coils of all the armatures to be used in series, It is good also as a structure of connecting the left-handed coil of an armature in series, and connecting both in series on it.

従来の発電機では、1つの電機子あたりの起電力を増す手段として、図1(1)に示した外部磁力線をよぎる導線の長さlを実効的に出来るだけ長くするため、同一の導線が同じ磁力線中をn回よぎるように導線をコイル状にn回巻いて、実効的な導線長をn×l[m]にしている。   In the conventional generator, as a means for increasing the electromotive force per one armature, in order to effectively lengthen the length l of the conductor crossing the external magnetic field lines shown in FIG. The conductive wire is wound n times in a coil shape so as to cross the same magnetic field line n times, and the effective conductive wire length is set to n × l [m].

これに対し、本発明の第2の手段を用いる発電機においては、1つの電機子あたりの起電力を増す手段として、図4(2)に示すように2重逆巻きコイルを複数(n)個同心状に重ねた2n重逆巻きコイルの構造にする方法により、発電のための実効的な導線部の長さを2n×l[m]に増加させることができる。図4(2)はn=3の場合の例を示し、右巻き部407と左巻き部408から成る第1の2重逆巻きコイル406と、右巻き部410と左巻き部411から成る第2の2重逆巻きコイル409と、右巻き部413と左巻き部414から成る第3の2重逆巻きコイル412の3つの2重逆巻きコイルを同心コイル状に重ねて6重逆巻きコイル415を構成する構造を示す。   On the other hand, in the generator using the second means of the present invention, as a means for increasing the electromotive force per one armature, as shown in FIG. The length of the effective conductor part for power generation can be increased to 2n × l [m] by the method of concentrically overlapping the 2n double-turn coil structure. FIG. 4 (2) shows an example in the case of n = 3, and a second double-winding coil 406 composed of a right-handed portion 407 and a left-handed portion 408, and a second 2 composed of a right-handed portion 410 and a left-handed portion 411. A structure is shown in which a six-fold reverse-winding coil 415 is formed by concentrating three double-back-winding coils 409 including a double-back-winding coil 409 and a third double-back-winding coil 412 including a right-handed portion 413 and a left-handed portion 414.

図5は、永久磁石を回転子として用い、電機子を固定子として用いる場合の、本発明による発電機の第1の実施例を示し、図5(1)はその上面図、図5(2)は側面図である。本実施例の発電機は、軸受けを中心に回転する回転円盤500、回転円盤の円周部分に沿って等間隔に取り付けられた8個の永久磁石501〜508、回転円盤500の中心から等角度で8方に伸びる放射線に沿い永久磁石501〜508のそれぞれのN極とS極の端面間の空隙部分に位置するように固定された8個の電機子511〜518を有する。構成を単純にするため8個の永久磁石はすべて同一形状で同一特性を持つものとし、8個の電機子もすべて同一形状で同一特性をもつものとする。なお図5の本発明の第1の実施例では電機子8個、永久磁石8個の場合を例示しているが、この数に限るものではなく、一般に永久磁石2m(mは任意の自然数)個、電機子s(sは2m以下の任意の自然数)個、として構成することができる。   FIG. 5 shows a first embodiment of the generator according to the present invention in which a permanent magnet is used as a rotor and an armature is used as a stator. FIG. 5 (1) is a top view thereof, FIG. ) Is a side view. The generator of the present embodiment includes a rotating disk 500 that rotates around a bearing, eight permanent magnets 501 to 508 that are attached at equal intervals along the circumferential portion of the rotating disk, and an equiangular angle from the center of the rotating disk 500. The eight armatures 511 to 518 are fixed so as to be positioned in the gaps between the end faces of the north and south poles of the permanent magnets 501 to 508 along the radiation extending in the eight directions. In order to simplify the configuration, all the eight permanent magnets have the same shape and the same characteristics, and all the eight armatures have the same shape and the same characteristics. In the first embodiment of the present invention shown in FIG. 5, the case of eight armatures and eight permanent magnets is illustrated. However, the number is not limited to this, and generally 2 m of permanent magnets (m is an arbitrary natural number). And armature s (s is an arbitrary natural number of 2 m or less).

回転円盤500は、その中心に取り付けられた回転軸519をコロガリ軸受等で受けてできるだけ少ない摩擦抵抗で回転するように作られ、外部からの駆動機構(図示してない)を通して回転力が与えられる。永久磁石501〜508の形状は、図5(2)の側面図に示すように、それぞれの永久磁石のN極とS極の端面が、適切な余裕間隙を維持しつつ各電機子511〜518を挟み込むように構成する。また回転円盤500の円周部分に沿って配置される永久磁石501〜508は、図5(1)上面図に示すように、隣り合う2つの永久磁石の極性が互いに異なるように配置する。   The rotating disk 500 is made so that it receives a rotating shaft 519 attached to its center by a roller bearing or the like and rotates with as little frictional resistance as possible, and is given a rotational force through an external drive mechanism (not shown). . As shown in the side view of FIG. 5B, the shape of the permanent magnets 501 to 508 is such that each of the armatures 511 to 518 maintains an appropriate margin between the end faces of the N and S poles of each permanent magnet. Is configured to sandwich. Further, the permanent magnets 501 to 508 arranged along the circumferential portion of the rotating disk 500 are arranged so that the polarities of two adjacent permanent magnets are different from each other, as shown in the top view of FIG.

本発明の第1の手段により本発明の第1の実施例を実施する場合、図5における電機子511〜518として、図2(2)に示す右巻きコイルあるいは図2(3)に示す左巻きコイルを用いる。このとき永久磁石501〜508のそれぞれのN極とS極間の磁力線と、各永久磁石が回転することによって各電機子(コイル)の内部に発生する磁力線とは互いに直交するので、すでに説明したように、各永久磁石を取り付けた回転円盤500の回転を妨げる反回転力は生じない。   When the first embodiment of the present invention is implemented by the first means of the present invention, the right-handed coil shown in FIG. 2 (2) or the left-handed winding shown in FIG. 2 (3) is used as the armatures 511 to 518 in FIG. Use a coil. At this time, the magnetic lines of force between the N and S poles of each of the permanent magnets 501 to 508 and the magnetic lines of force generated inside each armature (coil) by rotation of each permanent magnet are orthogonal to each other. Thus, the anti-rotation force which prevents rotation of the rotary disk 500 which attached each permanent magnet does not arise.

いま図5において、回転円盤500が時計回りに回転し永久磁石501が電機子511をよぎる場合を考える。このとき相対的に電機子511から見れば、電機子511が永久磁石501のN極からS極に向かう磁力線を反時計方向によぎることになるから、フレミングの右手の法則により電機子511には円盤中央に向かう電流を流すような起電力eが生じる。この起電力の向きを図6の電機子511のそばに矢印で表示している。このとき同時に永久磁石502が電機子512をよぎるが、永久磁石502の磁力の向きが逆であるので、電機子512には回転円盤の外側方向に向かう起電力eが生じる。同様にして、電機子513では回転円盤内側方向、電機子514では回転円盤外側方向、電機子515では回転円盤内側方向、電機子516では回転円盤外側方向、電機子517では回転円盤内側方向、電機子518では回転円盤外側方向に向かう、同じ大きさの起電力eがそれぞれ生じる。   Now, consider the case in FIG. 5 where the rotating disk 500 rotates clockwise and the permanent magnet 501 crosses the armature 511. At this time, when viewed from the armature 511 relatively, the armature 511 crosses the magnetic field lines from the N pole to the S pole of the permanent magnet 501 in the counterclockwise direction. An electromotive force e that causes a current to flow toward the center of the disk is generated. The direction of the electromotive force is indicated by an arrow near the armature 511 in FIG. At this time, the permanent magnet 502 crosses the armature 512 at the same time. However, since the direction of the magnetic force of the permanent magnet 502 is opposite, an electromotive force e is generated in the armature 512 toward the outer side of the rotating disk. In the same manner, the armature 513 is the inner direction of the rotating disk, the armature 514 is the outer direction of the rotating disk, the armature 515 is the inner direction of the rotating disk, the armature 516 is the outer direction of the rotating disk, the armature 517 is the inner direction of the rotating disk, In the child 518, an electromotive force e having the same magnitude is generated toward the outer side of the rotating disk.

したがって、図6に示すようにこれら8個の電機子511〜518を相互結線することにより、これら8個の電機子がそれぞれ発生する起電力eがすべて同方向に加算されるので、最大の発電出力(図5および図6に示した本発明の第1の実施例の場合は8e)が得られる。   Therefore, by connecting these eight armatures 511 to 518 as shown in FIG. 6, all the electromotive forces e generated by these eight armatures are added in the same direction, so that the maximum power generation An output (8e in the case of the first embodiment of the invention shown in FIGS. 5 and 6) is obtained.

なお図5および図6に示した本発明の第1の実施例において、各電機子間を結ぶ結線部分が、回転する各永久磁石のN極,S極間の磁力線をよぎると、その結線部分でも起電力が生じ、各電機子における起電力を相殺する恐れがあるので、このような起電力が生じないようにするため、各電機子コイル間の結線は、図6の結線部分601,602のように、回転円盤500と同心円状になるような形状で配線する。   In the first embodiment of the present invention shown in FIGS. 5 and 6, when the connecting portion connecting the armatures crosses the magnetic field lines between the north and south poles of each rotating permanent magnet, the connecting portion is obtained. However, since an electromotive force is generated and the electromotive force in each armature may be offset, in order to prevent such an electromotive force from being generated, the connection between the armature coils is performed at connection portions 601 and 602 in FIG. As described above, wiring is performed in a shape that is concentric with the rotating disk 500.

出力電力を取り出す位置は原則的に回路中のどこでも良いが、前述のように回転円盤上の永久磁石からの影響が少ない配線になる方が良いので、回転円盤外周方向にある電機子端子から取り出す方が望ましい。図6に示す本発明の第1の実施例では、電機子518の回転円盤外周方向端子603と電機子517の回転円盤外周方向端子604から取り出すようにしている。   In principle, the output power can be taken anywhere in the circuit. However, as mentioned above, it is better to use a wiring that is less affected by the permanent magnets on the rotating disk. Is preferable. In the first embodiment of the present invention shown in FIG. 6, the rotary disk outer peripheral direction terminal 603 of the armature 518 and the rotary disk outer peripheral direction terminal 604 of the armature 517 are taken out.

各電機子で発生する起電力のピーク値eは基本的に式(2)で表され、図5および図6のように電機子を配置することにより全ての起電力が同じ方向を向くから、総合起電力E(ピーク値)はE=8eと表わされる。図6における端子603と604間の端子間電圧V(605)は、スイッチ606が開放されているとき(無負荷時)、この総合起電力Eに等しい。スイッチ606が閉じられると負荷電流IL
が流れる。この時の等価回路を図7(1)に示す。各電機子の内部インピーダンスが純抵抗のみで且つ負荷インピーダンスも純抵抗であれば負荷電流は電圧と同相になるが、実際には各電機子がコイル化されているためインダクタンスを有し内部インピーダンスは純抵抗のみでなく誘導性リアクタンスを含むことになり、純抵抗負荷に対しても誘導性リアクタンス負荷に対しても、総合起電力Eに対する負荷電流IL
の位相は遅れ角となり、両者の関係は図7(2)に示すようになる。もし負荷が容量性リアクタンスであれば、図7(2)の電流ベクトルは上に持ち上げられ、電機子内部インピーダンスの誘導性リアクタンスを打ち消す程の容量性リアクタンスであれば図7(2)の電流ベクトルはx軸(横軸)の上に来る。
The peak value e of the electromotive force generated in each armature is basically represented by the formula (2), and by arranging the armatures as shown in FIGS. 5 and 6, all the electromotive forces are directed in the same direction. The total electromotive force E (peak value) is expressed as E = 8e. The inter-terminal voltage V (605) between the terminals 603 and 604 in FIG. 6 is equal to the total electromotive force E when the switch 606 is open (no load). When switch 606 is closed, load current I L
Flows. An equivalent circuit at this time is shown in FIG. If the internal impedance of each armature is only a pure resistance and the load impedance is also a pure resistance, the load current will be in phase with the voltage, but in reality each armature is coiled and has an inductance and the internal impedance is Inductive reactance is included as well as pure resistance, and load current I L with respect to total electromotive force E for both pure resistance load and inductive reactance load
The phase becomes a delay angle, and the relationship between them is as shown in FIG. If the load is a capacitive reactance, the current vector of FIG. 7 (2) is lifted upward, and if the capacitive reactance is so large as to cancel the inductive reactance of the armature internal impedance, the current vector of FIG. 7 (2). Comes on the x-axis (horizontal axis).

本発明の第1の手段により図5,図6の構成の本発明による発電機の第1の実施例を実施する場合、外部に取り出せる最大電力は、8個の電機子コイルの持つ内部インピーダンス値と、電機子コイル間を結ぶ配線部分の抵抗値の総和で制限されるので、各電機子コイルの導線部には導電率の高い銅または銅合金による線径の太い導線を用い、導線径はできるだけ太くする必要がある。
なお、この場合、上記導線部に超伝導コイルを用いると、その内部抵抗が極めて小さくなるのでより好ましい。
When the first embodiment of the generator according to the present invention having the configuration shown in FIGS. 5 and 6 is implemented by the first means of the present invention, the maximum power that can be extracted outside is the internal impedance value of the eight armature coils. And the sum of the resistance values of the wiring portions connecting the armature coils, the conductor portion of each armature coil is a conductor with a large wire diameter made of copper or copper alloy having high conductivity, and the conductor diameter is It should be as thick as possible.
In this case, it is more preferable to use a superconducting coil for the conductor part because the internal resistance is extremely small.

本発明の第2の手段により本発明による発電機の第1の実施例を実施する場合、図5における電機子511〜518として、図4(1)に示す2重逆巻きコイルあるいは図4(2)に示す2n重逆巻きコイルによる同心コイルを用いる。このときも永久磁石501〜508のそれぞれのN極とS極間の磁力線と、各永久磁石が回転することによって各電機子(同心コイル)の内部に発生する磁力線は互いに直交するが、さらに各電機子が2重逆巻きコイルまたは2n重逆巻きコイルであるため右巻きコイルと左巻きコイルによって発生する磁力線の向きが互いに逆となり打ち消しあうために、各電機子(同心コイル)の内部に発生する磁力線自体が初めからきわめて小さいことになる。このため本発明の第1の手段を用いる場合と同様かそれ以上に回転円盤500に対する反回転力を最小化することができ高効率の発電機を構成できる。   When the first embodiment of the generator according to the present invention is implemented by the second means of the present invention, as the armatures 511 to 518 in FIG. 5, the double counter-wound coil shown in FIG. 4 (1) or FIG. The concentric coil by the 2n double reverse winding coil shown in FIG. At this time, the magnetic lines of force between the north and south poles of the permanent magnets 501 to 508 and the lines of magnetic force generated inside the armatures (concentric coils) by rotation of the permanent magnets are orthogonal to each other. Since the armature is a double counter-winding coil or 2n double counter-winding coil, the directions of the magnetic lines generated by the right-handed coil and the left-handed coil are opposite to each other and cancel each other, so that the magnetic field lines generated inside each armature (concentric coil) itself Will be very small from the beginning. For this reason, the counter-rotating force with respect to the rotating disk 500 can be minimized as in the case of using the first means of the present invention or more, and a highly efficient generator can be configured.

本発明の第2の手段による発電機においてさらに重要な特徴は、導線のコイル化によって発生するインダクタンスが結果的に抑圧でき、発電機の内部インピーダンスを最小化し出力可能電力を最大化できることである。
右巻きコイルと左巻きコイルは同心状に巻かれるので、電磁気学が教えるように、二つのコイル間で電磁結合による相互誘導作用が生じる。この相互誘導によるインダクタンス分が相互インダクタンスであり、それぞれのコイルが有する自己インダクタンスに相互インダクタンスが加わって全体のインダクタンスとなる。
A further important feature of the generator according to the second means of the present invention is that the inductance generated by coiling the conductor can be suppressed as a result, the internal impedance of the generator can be minimized, and the output power can be maximized.
Since the right-handed coil and the left-handed coil are wound concentrically, mutual induction by electromagnetic coupling occurs between the two coils as taught by electromagnetics. The inductance due to this mutual induction is the mutual inductance, and the mutual inductance is added to the self-inductance of each coil to obtain the overall inductance.

電磁気学の基礎理論によれば、相互インダクタンスM[ヘンリー]は、コイル1の自己インダクタンスをL1 [ヘンリー]、コイル2の自己インダクタンスをL2
[ヘンリー]とすると、

Figure 2009104618
で表わされる。ここにkは二つのコイルの結合状態によって決まる定数で、電磁的結合度が最も高い場合に1、電磁的結合度が皆無の場合に0となる。
コイル1とコイル2が直列接続される場合の総合インダクタンスL[ヘンリー]は、二つのコイルが発生する磁力線が同一方向を向くか、逆方向を向くかにより、それぞれ
L=L1 +L2 +2M
または
L=L1 +L2 −2M
となる。前者はコイルの和動接続の場合、後者はコイルの差動接続の場合の合成インダクタンスを表わす式である。According to the basic theory of electromagnetism, the mutual inductance M [Henry] indicates that the self-inductance of the coil 1 is L 1 [Henry] and the self-inductance of the coil 2 is L 2.
[Henry]
Figure 2009104618
It is represented by Here, k is a constant determined by the coupling state of the two coils, and is 1 when the electromagnetic coupling degree is the highest, and 0 when there is no electromagnetic coupling degree.
When the coil 1 and the coil 2 are connected in series, the total inductance L [Henry] is L = L 1 + L 2 + 2M, depending on whether the magnetic field lines generated by the two coils are directed in the same direction or in opposite directions, respectively.
Or L = L 1 + L 2 −2M
It becomes. The former is a formula representing the combined inductance in the case of the coil connection, and the latter is the combined inductance in the case of the differential connection of the coil.

本発明で用いる二重逆巻きコイル(2n重逆巻きコイルも同じ)は磁力線の向きを互いに逆とするためのものであるから、合成インダクタンスは差動接続の式で表わされる。
ここで今一度図4の2n重逆巻きコイルを見てみると、コイル1もコイル2も同じ長さで同心構造を為しているので、L1≒L2
で且つk≒1と想定できる。
その結果
L=L1 +L2 −2M
≒L1 +L1 −2L1 =0
となり、起電回路の合成インダクタンスは殆ど0に近い値に抑圧できることになる。
Since the double counter-wound coil used in the present invention (the same applies to the 2n double counter-winding coil) is used to reverse the directions of the magnetic lines of force, the combined inductance is expressed by a differential connection equation.
Here, when looking at the 2n double-reverse coil shown in FIG. 4 again, since both the coil 1 and the coil 2 have the same length and have a concentric structure, L 1 ≈L 2
And k≈1.
As a result, L = L 1 + L 2 −2M
≒ L 1 + L 1 -2L 1 = 0
Thus, the combined inductance of the electromotive circuit can be suppressed to a value close to 0.

したがい、本発明の第2の手段を本発明による発電機の第1の実施例に適用する場合のあるべき電機子結線図は図8(1)のようになる。これはn=1の場合であるが、nが複数の場合も容易に拡張できる。電機子第1層と第2層のコイルをそれぞれ別に図6で説明したように結線した後、電機子8の第1層コイルからの出力を電機子1の第2層コイルの入力とするように接続し、電機子1の第1層コイルの入力と電機子8の第2層コイル出力の間に負荷をつなぐことで倍増された起電力が得られる。   Therefore, the armature connection diagram that should be applied when the second means of the present invention is applied to the first embodiment of the generator according to the present invention is as shown in FIG. This is a case where n = 1, but the case where n is plural can be easily expanded. After the armature first layer and second layer coils are separately connected as described with reference to FIG. 6, the output from the first layer coil of the armature 8 is used as the input of the second layer coil of the armature 1. And the electromotive force doubled is obtained by connecting a load between the input of the first layer coil of the armature 1 and the output of the second layer coil of the armature 8.

また、上述のように第1層と第2層は互いに逆巻きであるがそこに同じ負荷電流が流れるためそれぞれのコイルが発生する磁力線は打ち消しあうことになり、電機子コイルからは殆ど磁力線が外部に出ないことになる。さらにコイルを使用しているにも拘らずインダクタが生じないことになる。結果としてこの発電機の等価回路は図8(2)に示すように、内部インダクタンスは実質上なしと想定し得ることになる。起電力は電機子に用いる層数を増やすとほぼ比例的に増加できる。内部インダクタンスは上述のようにほぼ0にできるが、導線の抵抗値による発電機の内部抵抗は外側コイルほど使用する導線長が長くなるので層数比例よりは大きく増加する。このため導線の単位長当たりの抵抗値を可及的に小さく抑えることが本発明による発電機の実現上大きな課題となる。   In addition, as described above, the first layer and the second layer are reversely wound, but the same load current flows therethrough, so that the magnetic field lines generated by the respective coils cancel each other, and almost no magnetic field lines are generated from the armature coil. It will not come out. Furthermore, an inductor is not generated despite the use of a coil. As a result, as shown in FIG. 8B, the equivalent circuit of this generator can be assumed to have substantially no internal inductance. The electromotive force can be increased almost proportionally when the number of layers used in the armature is increased. Although the internal inductance can be made substantially zero as described above, the internal resistance of the generator due to the resistance value of the conducting wire increases more than the proportionality of the number of layers because the length of the conducting wire used becomes longer as the outer coil is used. For this reason, it becomes a big subject on the implementation | achievement of the generator by this invention to suppress the resistance value per unit length of conducting wire as small as possible.

本発明の第1の手段により本発明による発電機の第1の実施例を実施する場合、起電力(出力電圧)を増加させるには、
(1)永久磁石の磁力(磁力線密度B)を高める、
(2)磁力線をよぎる電機子の実質コイル長(l)を長くする、
(3)磁力線をよぎる速度(v)を高める、
(4)回転円盤が一回転するときに通過する磁極数を増やす、
などの方法があり、(1)として適切な永久磁石材料の選択、(2)として電機子コイル長と永久磁石サイズの増加、(3)として回転円盤の回転数や直径の増加、などが具体的な設計項目となる。
In order to increase the electromotive force (output voltage) when implementing the first embodiment of the generator according to the present invention by the first means of the present invention,
(1) Increase the magnetic force (magnetic line density B) of the permanent magnet,
(2) Increasing the effective coil length (l) of the armature that crosses the magnetic field lines,
(3) Increase the speed (v) that crosses the magnetic field lines,
(4) Increase the number of magnetic poles that pass when the rotating disk makes one revolution,
(1) selection of appropriate permanent magnet material, (2) increase in armature coil length and permanent magnet size, (3) increase in rotation speed and diameter of rotating disk, etc. Design item.

また、本発明の第2の手段により本発明による発電機の第1の実施例を実施する場合は、電機子コイルボビン当りの2n重逆巻きコイルの多重数の増加により上記(2)の効果を更に増すことができる。
いずれの場合も、上記(4)項も含めた工学的見地から利点、欠点を総合的に検討し、最適な設計を行なうことができる。
なお、超伝導材料を用いると、電機子巻線の内部抵抗を極端に小さくできるとか、永久磁石の代わりに超伝導電磁石を用いると非常に大きな磁力が得られる等の可能性が生じるので、今後の検討課題である。
Further, when the first embodiment of the generator according to the present invention is implemented by the second means of the present invention, the effect of the above (2) is further improved by increasing the number of multiplexed 2n double-turn coils per armature coil bobbin. Can be increased.
In any case, the optimum design can be performed by comprehensively examining the advantages and disadvantages from the engineering viewpoint including the item (4).
If superconducting materials are used, the internal resistance of the armature winding can be made extremely small, or if superconducting electromagnets are used instead of permanent magnets, there is a possibility that a very large magnetic force will be obtained. It is an examination subject.

本発明の発電機の第1の実施例における各電機子は、回転円盤の回転につれて交互に逆向きの永久磁石磁力線をよぎることになるので、発電電圧出力は交流電圧となり、その周波数は回転円盤の回転速度と回転円盤が1回転するとき1つの電機子が通過する永久磁石極数で決まる。回転速度をN[回/秒]、回転円盤が1回転するとき1つの電機子が通過する永久磁石の極数をPとすれば、出力電圧の周波数F[Hz]は、

F=NP/2 [Hz] (3)

で与えられる。
例えば、円盤の回転数を600rpmとし、円盤周辺の磁石数を32個とすれば、出力の周波数は約160Hzとなる。
Since each armature in the first embodiment of the generator of the present invention crosses the permanent magnet magnetic field lines that are opposite to each other alternately as the rotating disk rotates, the generated voltage output becomes an AC voltage, and its frequency is the rotating disk. And the number of permanent magnet poles through which one armature passes when the rotating disk rotates once. If the rotational speed is N [times / second] and the number of poles of the permanent magnet through which one armature passes when the rotating disk makes one rotation is P, the frequency F [Hz] of the output voltage is

F = NP / 2 [Hz] (3)

Given in.
For example, if the rotational speed of the disk is 600 rpm and the number of magnets around the disk is 32, the output frequency will be about 160 Hz.

本発明の発電機の第1の実施例において、発電出力を高めるために回転円盤の回転数を増やす設計手法を採用した場合、出力電圧の周波数も上式に従って上昇する。もし周波数が高くなりすぎて応用上不都合を生じる場合は、外部にインバータを付加して適切な出力周波数に変換することができる。   In the first embodiment of the generator of the present invention, when a design method for increasing the rotational speed of the rotating disk is employed in order to increase the power generation output, the frequency of the output voltage also increases according to the above equation. If the frequency becomes too high, causing inconvenience in application, an external inverter can be added and converted to an appropriate output frequency.

発電のために回転円盤を回転させるには外部の駆動系からの回転力が必要になる。外部駆動系がこの回転円盤に与える必要のある負荷トルクは、一般的に、(a)摩擦抵抗に対抗するトルクT、(b)回転円盤の慣性に対抗するトルクTj
、(c)発電機の動作時の反回転力に対抗するトルクTwの3種類に分類できる。
Rotating force from an external drive system is required to rotate the rotating disk for power generation. The load torque that the external drive system needs to apply to this rotating disk is generally (a) torque T f that opposes frictional resistance, and (b) torque T j that opposes inertia of the rotating disk.
(C) It can be classified into three types of torque T w that opposes the counter-rotating force during operation of the generator.

本発明の発電機においては、従来の発電機では不可避だった負荷電流による反回転力の発生が抑止されるので、上記(c)のトルクTw はほぼ0とみなせる。いっぽう本発明の第1の実施例による発電機では多数の永久磁石を回転円盤の円周上に配置して取り付けるため、(b)のトルクTjは従来の発電機に比べかなり大きくなる。しかしこのトルクは起動時あるいは回転速度を増減する時に必要となる力であって、回転円盤が一旦定常回転速度に達し回転を継続している時にはほぼ0になるので、実用上大きな障害とはならない。In the generator of the present invention, the generation of the anti-rotation force due to the load current, which was unavoidable with the conventional generator, is suppressed, and therefore the torque T w in (c) can be regarded as almost zero. On the other hand, in the generator according to the first embodiment of the present invention, a large number of permanent magnets are arranged and attached on the circumference of the rotating disk, so that the torque T j in (b) is considerably larger than that of the conventional generator. However, this torque is a force required for starting or increasing / decreasing the rotation speed, and since it becomes almost zero when the rotating disk once reaches the steady rotation speed and continues to rotate, it does not cause a large practical problem. .

更に、起動時や加減速時に大きな外部トルクを必要とするということは回転円盤の慣性モーメントが大きいことを意味し、慣性モーメントが大きいことは発電機が安定な回転を維持する上で効果的だから、むしろ望ましいことと言える。   Furthermore, the fact that a large external torque is required at startup and acceleration / deceleration means that the moment of inertia of the rotating disk is large, and that a large moment of inertia is effective for maintaining a stable rotation of the generator. It is rather desirable.

したがって(a)のトルクT が、本発明の発電機が発電のために定常回転をするのに必要な駆動トルクであり、その大きさは軸受け部や駆動力伝達機構の摩擦抵抗、回転円盤の空気抵抗などによって決まる。とりわけ空気抵抗を如何に抑えるかが本発明の発電機の設計上の課題となる。
上記空気抵抗を減らすには、前記円盤の回転する環境を真空状態、もしくは真空状態に近い減圧状態とすることが望ましい。
また、上記軸受け部の摩擦抵抗を減らすためには、磁気浮上式無接触軸受けを用いることが望ましい。この場合、前記超伝導型のものを用いる可能性も検討される。
Accordingly, the torque T f in (a) is a driving torque necessary for the generator of the present invention to perform steady rotation for power generation, and the magnitude thereof is the frictional resistance of the bearing portion and the driving force transmission mechanism, and the rotating disk. It depends on the air resistance. In particular, how to suppress the air resistance is a problem in designing the generator of the present invention.
In order to reduce the air resistance, it is desirable that the environment in which the disk rotates is in a vacuum state or a reduced pressure state close to a vacuum state.
In order to reduce the frictional resistance of the bearing portion, it is desirable to use a magnetic levitation type non-contact bearing. In this case, the possibility of using the superconducting type is also considered.

本発明の発電機の第1の実施例においては、永久磁石の形状が図5(2)のように馬蹄形をしているため上記の空気抵抗が大きくなりがちという難点があり、またその形状から重量も増加しがちで慣性モーメントTj
が必要以上に増大し、起動時に大きな駆動力が必要となる恐れがある。更に、このような特殊形状の永久磁石は製造コストの上昇を招く。
In the first embodiment of the generator of the present invention, since the shape of the permanent magnet is a horseshoe shape as shown in FIG. 5 (2), there is a problem that the air resistance tends to increase. Moment of inertia T j tends to increase weight
May increase more than necessary, and a large driving force may be required at startup. Further, such specially shaped permanent magnets increase the manufacturing cost.

本発明の発電機の第1の実施例における上記のような難点を解決する1つの方法として、図9に、永久磁石を回転子として用い電機子を固定子として用いる場合の、本発明による発電機の第2の実施例を示す。   As one method for solving the above-mentioned difficulty in the first embodiment of the generator of the present invention, FIG. 9 shows the power generation according to the present invention when a permanent magnet is used as a rotor and an armature is used as a stator. 2 shows a second embodiment of the machine.

本発明による発電機の第2の実施例は、回転軸を中心に回転する回転円盤と、回転円盤の外縁に永久磁石保持具を用いて均等間隔に取り付けられ、隣り合う該棒状永久磁石同士では上部と下部の磁極極性が互いに逆となるように配置された任意の偶数(2m)個の棒状永久磁石と、回転円盤とは接触しないように各棒状永久磁石の上部磁極端面に近い位置に取り付けられたs(sは2m以下の任意の自然数)個の上部電機子(例えば、図9(2)の電機子U
3,U 7)と、回転円盤とは接触しないように各棒状永久磁石の下部磁極端面に近い位置に取り付けられたs個の下部電機子(例えば、図9(2)の電機子L
3,L 7)を有する。
In a second embodiment of the generator according to the present invention, a rotating disk rotating around a rotating shaft, and an outer edge of the rotating disk are attached at equal intervals using a permanent magnet holder. Arbitrary even number (2m) of rod-shaped permanent magnets arranged so that the polarities of the upper and lower magnetic poles are opposite to each other and the rotating disk are attached at positions close to the upper magnetic pole end face of each rod-shaped permanent magnet S (s is an arbitrary natural number of 2 m or less) upper armatures (for example, the armature U in FIG. 9B)
3, U 7) and s number of lower armatures (for example, armature L in FIG. 9 (2)) attached to positions close to the lower magnetic pole end face of each rod-like permanent magnet so as not to contact the rotating disk
3, L 7).

図9(1)は、本発明による発電機の第2の実施例の上面図、図9(2)は、本発明による発電機の第2の実施例の側面図である。図9(1),図9(2)に示すように、回転円盤900に取り付けるそれぞれの永久磁石の形状は単純な棒状(丸棒に限らず断面が長方形であっても良い)とする。外部駆動系(図示してない)からの駆動力により回転軸901を中心に回転する回転円盤900の外縁に、任意の偶数個(2m個、図9の例では8個)の棒状永久磁石を、永久磁石保持具を用いて均等間隔に取り付ける。簡単のため、これら棒状永久磁石の形状や特性はすべて同じものとする。   FIG. 9 (1) is a top view of a second embodiment of the generator according to the present invention, and FIG. 9 (2) is a side view of the second embodiment of the generator according to the present invention. As shown in FIG. 9 (1) and FIG. 9 (2), the shape of each permanent magnet attached to the rotating disk 900 is a simple bar (not limited to a round bar, the cross section may be a rectangle). Arbitrary even numbers (2m, 8 in the example of FIG. 9) of rod-like permanent magnets are provided on the outer edge of the rotating disk 900 that rotates about the rotating shaft 901 by a driving force from an external driving system (not shown). Attach them at regular intervals using a permanent magnet holder. For simplicity, the shape and characteristics of these rod-shaped permanent magnets are all the same.

この際、隣り合う棒状永久磁石同士(例えば、図9の磁石1と磁石2)で、上部と下部の磁極極性が互いに逆となるように配置する。回転円盤900とは接触しないように、各棒状永久磁石の上部磁極端面に近い位置に電機子U
1,電機子U 2,電機子U 3,・・・・電機子U8を、各棒状永久磁石の下部磁極端面に近い位置に電機子L
1,電機子L 2,電機子L 3,・・・・電機子L8を、それぞれ取り付ける。簡単のため、これら電機子の形状や特性はすべて同じものとする。
At this time, the rod-shaped permanent magnets adjacent to each other (for example, the magnet 1 and the magnet 2 in FIG. 9) are arranged so that the upper and lower magnetic pole polarities are opposite to each other. The armature U is positioned at a position close to the top pole end face of each rod-like permanent magnet so as not to contact the rotating disk 900.
1, armature U 2, armature U 3, armature and ... armature U 8, at a position close to the lower pole end faces of the rod-shaped permanent magnets L
1, armature L 2, armature L 3,... Armature L 8 are attached. For simplicity, these armatures have the same shape and characteristics.

図10は、本発明による発電機の第2の実施例において、各棒状永久磁石が発生する磁力線が各電機子をよぎる(相対的に各電機子が各棒状永久磁石が発生する磁力線をよぎるのと等価)ことにより起電力を発生する様子を説明する図であり、図9(2)の側面図における回転円盤900上の棒状永久磁石3(図10の1101)が、図9(2)の2個の電機子U
3(図10の1002)、電機子L 3(図10の1003)の位置を通過する瞬間の磁力線1006の様子を示している。図9において回転円盤900を外部駆動系(図示してない)によって回転させ、この回転によって図10において棒状永久磁石1001が紙面裏から表に向かう方向に移動しているものとすれば、相対的に各電機子(1002、1003)が紙面表から裏方向に移動しているのと等価であるから、フレミングの右手の法則に従い、これら2個の電機子のそれぞれにおいて、図10にeと記した矢印方向の起電力が生じる。
FIG. 10 shows a second embodiment of the generator according to the present invention, in which the magnetic lines generated by each bar-shaped permanent magnet cross each armature (relatively each armature crosses the magnetic field lines generated by each bar-shaped permanent magnet. 9 is a diagram for explaining how the electromotive force is generated, and the rod-like permanent magnet 3 (1101 in FIG. 10) on the rotating disk 900 in the side view of FIG. 2 armatures U
3 (1002 in FIG. 10) and the state of the magnetic field lines 1006 at the moment of passing through the position of the armature L3 (1003 in FIG. 10). In FIG. 9, the rotating disk 900 is rotated by an external drive system (not shown), and this rotation causes the rod-like permanent magnet 1001 to move in the direction from the back to the front in FIG. Is equivalent to the fact that each armature (1002, 1003) is moving from the front to the back of the page, and in accordance with Fleming's right-hand rule, each of these two armatures is denoted by e in FIG. An electromotive force in the direction of the arrow is generated.

回転円盤の回転につれ、次の瞬間には2個の電機子1002、1003の位置に磁極の向きが反対の棒状永久磁石(図9(1)の永久磁石6)が通過することになり、このときは各電機子に逆向きの起電力が発生する。このように回転円盤の回転につれて交互に極性が反転した棒状永久磁石が各2個の電機子の位置を通過して、各2個の電機子に、向きの揃った交流起電力が得られることになる。   As the rotating disk rotates, at the next moment, the rod-shaped permanent magnets (permanent magnet 6 in FIG. 9 (1)) having opposite magnetic pole directions pass through the positions of the two armatures 1002 and 1003. Sometimes, an opposite electromotive force is generated in each armature. As described above, the bar-shaped permanent magnets whose polarities are alternately reversed with the rotation of the rotating disk pass through the positions of the two armatures, and the AC electromotive force having the same orientation can be obtained in each of the two armatures. become.

本発明の第2の実施例において、永久磁石として図9,図10に示したような単純な棒状のものを用いることにより、コストの低減が可能になるだけでなく空気抵抗も軽減できる。更に、回転円盤上のすべての棒状永久磁石をプラスチック等の薄い非磁性体材料で作ったカバーで覆うことにより、磁力線への影響無しに、回転時の空気抵抗を一層軽減できる。   In the second embodiment of the present invention, by using a simple rod-shaped magnet as shown in FIGS. 9 and 10 as the permanent magnet, not only the cost can be reduced but also the air resistance can be reduced. Furthermore, by covering all the rod-like permanent magnets on the rotating disk with a cover made of a thin non-magnetic material such as plastic, the air resistance during rotation can be further reduced without affecting the lines of magnetic force.

本発明の第1の手段により本発明の第2の実施例を実施しようとすると、図9の各電機子として図2(2)に示す右巻きコイルまたは図2(3)に示す左巻きコイルを用いることになる。この場合、図10の各電機子1002,1003のコイルに負荷電流が流れる際各コイルの外に出て行く磁力線(図示していない)に、回転円盤上の棒状永久磁石からの磁力線(図10の1006)と直交しなくなる部分が生じて相互作用が発生し、そのため各棒状永久磁石と各電機子間に吸引力あるいは反発力が働いて、回転円盤の円滑な回転が妨げられる可能性がある。従って、本発明の第2の実施例を実施するにあたっては、各電機子からの磁力線の発生そのものをできるだけ押さえる必要があり、そのためには本発明の第2の手段によることが有用である。   When trying to implement the second embodiment of the present invention by the first means of the present invention, the right-handed coil shown in FIG. 2 (2) or the left-handed coil shown in FIG. 2 (3) is used as each armature of FIG. Will be used. In this case, when the load current flows through the coils of the armatures 1002 and 1003 in FIG. 10, the magnetic lines of force (not shown) that go out of the coils, and the lines of magnetic force from the rod-like permanent magnets on the rotating disk (FIG. 10). 1006), a portion that is not perpendicular to the surface is generated, and interaction occurs. Therefore, an attractive force or a repulsive force acts between each rod-like permanent magnet and each armature, and smooth rotation of the rotating disk may be hindered. . Therefore, in implementing the second embodiment of the present invention, it is necessary to suppress the generation of magnetic field lines from each armature as much as possible, and for this purpose, the second means of the present invention is useful.

本発明の第2の手段により本発明の第2の実施例を実施する場合は、図9の各電機子として図4(1)に示す2重逆巻きコイルまたは図4(2)に示す2n重逆巻きコイル(任意の偶数重逆巻きコイル)による同心コイルを用いる。個々の電機子コイルを2n重巻きとすることで電機子1個当りの起電力を高めることができる。なお以下では簡単のため同心コイルの層数を4(n=2)として説明するが、一般にはnの値を任意に増やして各電機子の起電力を更に増すことができる。   When the second embodiment of the present invention is implemented by the second means of the present invention, the double counter-winding coil shown in FIG. 4 (1) or the 2n-fold shown in FIG. 4 (2) is used as each armature of FIG. A concentric coil by a reverse winding coil (any even number of reverse winding coils) is used. The electromotive force per armature can be increased by setting each armature coil to 2n-fold. In the following description, the number of concentric coils is assumed to be 4 (n = 2) for simplicity, but in general, the value of n can be arbitrarily increased to further increase the electromotive force of each armature.

本発明の第2の手段により図9の本発明の第2の実施例を実施する場合、各電機子の起電力を相加し発電機全体として最大の起電力を取り出すため、各電機子として同一ボビン上に巻かれた多層(2n層)の同心コイルの、各層ごとに図11(1),(2)のような結線を行なう。   When the second embodiment of the present invention of FIG. 9 is implemented by the second means of the present invention, in order to take out the maximum electromotive force as the whole generator by adding the electromotive force of each armature, Connections as shown in FIGS. 11 (1) and 11 (2) are made for each layer of multi-layer (2n layers) concentric coils wound on the same bobbin.

すなわち、図9の本発明の第2の実施例においては、回転円盤上に取り付けられる棒状永久磁石の極性が隣り合う棒状永久磁石同士は逆向きになっているから、隣り合う電機子同士での起電力の向きは互いに逆向きとなる。そこで2m個の上部電機子の組、2m個の下部電機子の組ごとに、図11に示されるように、或る電機子の同心コイル第j層(j=1,2,3,4[=2n])の回転円盤回転軸側(内側)端子を隣の電機子の同心コイル第j層の回転円盤回転軸側(内側)端子に接続し、次にその電機子の同心コイル第j層の外側端子を更に隣の電機子の同心コイル第j層の外側端子に接続する、という順番に各電機子の同心コイルの各層端子を層ごとに直列に接続することにより、起電力を相加させる。このとき各電機子の同心コイル端子間の接続線は、第1実施例の場合と同様に、回転円盤の回転軸を中心とする同心円に沿って配線し、各電機子の同心コイル端子間の接続線が棒状永久磁石の磁力線をよぎって逆起電力が発生することを防ぐ。   That is, in the second embodiment of the present invention in FIG. 9, the pole-shaped permanent magnets mounted on the rotating disk are opposite in polarity to each other, so that the adjacent armatures are opposite to each other. The directions of the electromotive forces are opposite to each other. Therefore, for each set of 2m upper armatures and each set of 2m lower armatures, as shown in FIG. 11, the concentric coil jth layer (j = 1, 2, 3, 4 [ = 2n]) is connected to the rotating disk rotating shaft side (inside) terminal of the concentric coil jth layer of the adjacent armature, and then the concentric coil jth layer of the armature. The electromotive force is added by connecting each layer terminal of the concentric coil of each armature in series in order of connecting the outer terminal of each armature to the outer terminal of the jth layer of the concentric coil of the adjacent armature. Let At this time, the connection line between the concentric coil terminals of each armature is wired along a concentric circle centering on the rotation axis of the rotating disk, as in the first embodiment, and between the concentric coil terminals of each armature. The connection line prevents the counter electromotive force from being generated across the magnetic field lines of the rod-shaped permanent magnet.

図11(1)は、2m=8として、この相加接続を上部電機子について行なった例、図11(2)は2m=8として、この相加接続を下部電機子について行なった例である。各層別の相加起電力は、このようなリング状の結線の任意の1箇所を開放し、その両端間の電圧として得られる。たとえば図11(1)における上部電機子の組では電機子U
1の外側端子SU (1101)と電機子U2の外側端子EU (1102)間、図11(2)における下部電機子の組では電機子L
1の外側端子SL(1103)と電機子L 2の外側端子EL (1104)間の電圧としてそれぞれ出力を取り出す。
FIG. 11 (1) is an example in which this additive connection is made for the upper armature with 2m = 8, and FIG. 11 (2) is an example in which this additive connection is made for the lower armature with 2m = 8. . The additive electromotive force for each layer is obtained as a voltage across both ends of the ring-shaped connection. Armature U is a set of upper armature for example in FIG. 11 (1)
1 between the outer terminal S U (1101) of the armature 1 and the outer terminal E U (1102) of the armature U 2, the armature L in the lower armature set in FIG.
The output is taken out as a voltage between one outer terminal S L (1103) and the outer terminal E L (1104) of the armature L 2.

2m個の上部電機子の組および2m個の下部電機子の組ごとに、電機子の同心コイルを層ごとに直列接続したものを便宜上「層別起電ユニット」と名づけ、上部電機子が構成する層別起電ユニットRU
jの開放端子を便宜上「始点側端子」SU jおよび「終点側端子」EUjと名づける。本発明の第2の実施例においては同心コイルの層数を4としたのでj=1,2,3,4のいずれかとなる。
For each set of 2m upper armatures and 2m lower armatures, concentric coils of armatures connected in series are named “electromotive units by layer” for convenience. Layered electromotive unit R U
For convenience, the open terminals of j will be referred to as “start point side terminal” S U j and “end point side terminal” E U j. In the second embodiment of the present invention, since the number of concentric coils is 4, j = 1, 2, 3 or 4.

このようにして得られる層別起電ユニットを直列接続して大きな起電圧を得る。すなわち、上部電機子の組によるj個の層別起電ユニットRU 1,層別起電ユニットRU
2,・・・・層別起電ユニットRUjをこの順番に直列接続した上部起電ユニットと下部電機子の組によるj個の層別起電ユニットRL
1,層別起電ユニットRL2,・・・・層別起電ユニットRL jをこの順番に直列接続した下部外側起電ユニットを得る。
The layered electromotive units obtained in this way are connected in series to obtain a large electromotive voltage. That is, j layer-by-layer electromotive units R U 1 and layer-by-layer electromotive units R U by a set of upper armatures
2,... J layered electromotive units R L by a set of an upper electromotive unit and a lower armature in which layered electromotive units R U j are connected in series in this order
1. Layered electromotive units R L 2,... A lower outer electromotive unit in which layer electromotive units R L j are connected in series in this order is obtained.

図12(1)は上部電機子の組(図9の本発明の第2の実施例においては8個)で構成される上部起電ユニットとしての出力を得るための結線図である。同図の層別起電ユニットRU
1(巻層1:左巻)1201は上部電機子の組の同心コイル第1層(左巻きに巻かれている)による起電ユニットであり、その入力端子はSU1、出力端子はEU
1である。同様に同図の層別起電ユニットRU 2(巻層2:右巻)1202は上部電機子の組の同心コイル第2層(右巻きに巻かれている)による起電ユニットであり、その入力端子はSU2、出力端子はEU
2である。同様に同図の層別起電ユニットRU 3(巻層3:左巻)1203は上部電機子の組の同心コイル第3層(左巻きに巻かれている)による起電ユニットであり、その入力端子はSU3、出力端子はEU
3である。同様に同図の層別起電ユニットRU 4(巻層4:右巻)1204は上部電機子の組の同心コイル第4層(右巻きに巻かれている)による起電ユニットであり、その入力端子はSU4、出力端子はEU
4である。
FIG. 12A is a connection diagram for obtaining an output as an upper electromotive unit composed of a set of upper armatures (eight in the second embodiment of the present invention in FIG. 9). Fig. 2 Layered electromotive unit R U
1 (winding layer 1: left-handed) 1201 is an electromotive unit formed by a first layer of concentric coils (wound in a left-handed manner) of the upper armature set, and its input terminal is S U 1 and its output terminal is E U
1. Similarly, the layered electromotive unit R U 2 (winding layer 2: right-handed) 1202 in the figure is an electromotive unit based on the second layer of the concentric coil (wound in the right-handed) of the upper armature set, Its input terminal is S U 2 and its output terminal is E U
2. Similarly, the layered electromotive unit R U 3 (winding layer 3: left-handed) 1203 in the figure is an electromotive unit formed by the third layer of concentric coils (winded in the left-handed winding) of the upper armature set. The input terminal is S U 3 and the output terminal is E U
3. Similarly, the layered electromotive unit R U 4 (winding layer 4: right-handed) 1204 in the figure is an electromotive unit based on the fourth layer of concentric coils (winded in the right-handed winding) of the upper armature set, Its input terminal is S U 4 and its output terminal is E U
4.

同様に、図12(2)は下部電機子の組で構成される下部起電ユニットとしての出力を得るための結線図である。図12は各電機子が左巻き2層と右巻き2層の合計4層の同心コイルである場合を例示しているが、既に述べたように起電力増加のためには層数を増やすほうが良く、4層に限るものではない。   Similarly, FIG. 12 (2) is a connection diagram for obtaining an output as a lower electromotive unit composed of a set of lower armatures. FIG. 12 exemplifies a case where each armature is a concentric coil having a total of four layers of two left-handed layers and two right-handed layers. However, as described above, it is better to increase the number of layers in order to increase the electromotive force. It is not limited to four layers.

最終的な発電出力としては、図13に示すように、各起電ユニットを直列接続するか並列接続するかによって得られる。高い出力電圧を得たい場合は図13(1)のように各起電ユニットを直列に接続し、出力電圧は増やさず発電機の内部インピーダンスを減らしたい場合は図13(2)のように各起電ユニットを並列に接続する。   As shown in FIG. 13, the final power generation output is obtained by connecting each electromotive unit in series or in parallel. When it is desired to obtain a high output voltage, the respective electromotive units are connected in series as shown in FIG. 13 (1), and when the output voltage is not increased but the internal impedance of the generator is reduced, each of the units as shown in FIG. 13 (2). Connect the electromotive units in parallel.

本発明の発電機では、電機子を構成する導線の全長に対し起電力発生に寄与する部分が従来の発電機に比べると相対的に少なくなるため、所望の高電圧を得ようとすると電機子の内部インピーダンスが大きくなりがちである。発電機を電圧源として使用する場合、内部インピーダンスは一般に小さいことが望ましい。そのためには図13(1)のように構成して、発電機の起電力を高くしたのち変圧器で所望の電圧まで降圧するか、図13(2)のように構成して、変圧器を使わずにほぼ同等の効果を得るようにすればよい。   In the generator of the present invention, the portion that contributes to the generation of electromotive force is relatively smaller than the conventional generator with respect to the total length of the conductors constituting the armature. Therefore, when trying to obtain a desired high voltage, the armature The internal impedance tends to increase. When using a generator as a voltage source, it is generally desirable that the internal impedance be small. To that end, it is configured as shown in FIG. 13 (1) and the electromotive force of the generator is increased, and then the voltage is reduced to a desired voltage with a transformer, or as shown in FIG. 13 (2), the transformer is You should get almost the same effect without using it.

以上説明した第1の実施例および第2の実施例においては電機子を固定子とし永久磁石を回転子とする構成を説明したが、永久磁石を固定子とし電機子を回転子とする構造を用いながら本発明の第1の手段または第2の手段を実施することによっても、同等の効果を有する発電機を構成することができる。   In the first and second embodiments described above, the structure in which the armature is the stator and the permanent magnet is the rotor has been described. However, the structure in which the permanent magnet is the stator and the armature is the rotor is described. By implementing the first means or the second means of the present invention while being used, a generator having an equivalent effect can be configured.

また、以上説明した第1の実施例および第2の実施例においては永久磁石により発電のための外部磁界を発生させているが、永久磁石の代わりに、永久磁石と同等の外部磁界を発生する電磁石を用いてもよい。
本発明の第1および第2の実施例として単相発電機の例を示したが、本発明は3相発電機に容易に拡張できる。すなわち電機子コイルを1相用、2相用、3相用にグループ化し、1相用の電機子グループが磁石をよぎった後に2相用の電機子グループ、続いて3相用電機子グループが磁石をよぎるように、電機子グループを配置し、これら個々のグループごとに第1および第2の実施例で説明した配線を行うことで、120度ずつ位相がずれた3つの単相電力が得られる。これをデルタ結線、あるいはY結線することで3相交流が得られる。このような単相−3相変換技術は既存の発電技術として確立されたものであるので改めて図面を用いた説明は行わないが、本発明が3相交流発電機にも適用できることは明白であろう。
Further, in the first and second embodiments described above, an external magnetic field for generating power is generated by a permanent magnet, but an external magnetic field equivalent to that of a permanent magnet is generated instead of the permanent magnet. An electromagnet may be used.
Although an example of a single-phase generator has been shown as the first and second embodiments of the present invention, the present invention can be easily extended to a three-phase generator. That is, the armature coils are grouped for one phase, two phases, and three phases, and after the armature group for one phase crosses the magnet, the armature group for two phases, and then the armature group for three phases By arranging the armature groups so as to cross the magnets and performing the wiring described in the first and second embodiments for each of these groups, three single-phase powers whose phases are shifted by 120 degrees can be obtained. It is done. A three-phase alternating current can be obtained by delta connection or Y connection. Since such a single-phase to three-phase conversion technology has been established as an existing power generation technology, it will not be described again with reference to the drawings, but it is obvious that the present invention can also be applied to a three-phase AC generator. Let's go.

以上詳細に説明したように、本発明の第1の手段または本発明の第2の手段により、従来の発電機では避けられなかった負荷電流による反回転力の発生を抑圧できるので、負荷電流が流れた場合においても無負荷時とほとんど変わらない小さな駆動力で発電でき、従来の発電機に比べ大幅な発電効率の改善が可能となる。   As described above in detail, the first means of the present invention or the second means of the present invention can suppress the generation of the anti-rotation force due to the load current, which was unavoidable with the conventional generator. Even when it flows, power can be generated with a small driving force that is almost the same as when there is no load, and the power generation efficiency can be greatly improved compared to conventional generators.

従来の発電機の駆動動力源は主に水力、火力、原子力などであるが、水力発電は電力需要の全てを賄うだけの水源や立地条件に不足するため、現在では火力や原子力を熱源とし蒸気タービンを動力源とする発電が主力となっている。本発明を火力や原子力を駆動力とする発電機に適用することにより発電効率が大幅に向上し、省エネルギー化や環境破壊の防止に大きく貢献できるので産業上の利用性が大である。また、本発明を水力発電に適用すれば、小さな力で従来より大きな発電出力が得られるので、従来発電には効率が悪くて使えないとされていた水圧源でも使えるようになり、水力発電への依存率を増加させることができる。これは化石燃料への依存を下げることにつながり、地球環境保護の観点から意義が大きい。
また本発明の発電機は自動車等の輸送機械をはじめとするあらゆる産業機械装置で使用する発電機に適用でき、発電の高効率化による装置の小型軽量化、省資源化に寄与するところ大である。
Conventional power generators for power generators are mainly hydropower, thermal power, nuclear power, etc., but hydropower generation is insufficient for water sources and location conditions to cover all power demand. Power generation using a turbine as a power source is the mainstay. By applying the present invention to a generator that uses thermal power or nuclear power as a driving force, the power generation efficiency is greatly improved, and it can greatly contribute to energy saving and prevention of environmental destruction, so that industrial applicability is great. Moreover, if the present invention is applied to hydroelectric power generation, a larger power generation output than before can be obtained with a small force, so that it can be used even with a water pressure source that has been considered to be inefficient for conventional power generation and can be used for hydropower generation. The dependency rate of can be increased. This leads to lower reliance on fossil fuels, and is significant from the viewpoint of protecting the global environment.
In addition, the generator of the present invention can be applied to generators used in all industrial machinery such as automobiles and other transportation machines, and contributes to reducing the size and weight of the equipment and saving resources by increasing the efficiency of power generation. is there.

Claims (19)

電機子と永久磁石の一方を固定子とし他方を回転子とする電磁誘導利用の発電機において、永久磁石による磁力線をよぎる電機子を、らせん状にコイル化した導線部として構成し、負荷電流が電機子のらせん状にコイル化した導線部を流れる際に発生する磁力線を永久磁石による磁力線と直交する向きに偏向させることにより、永久磁石による磁力線と負荷電流による磁力線の間の干渉を抑え、負荷電流による回転抑止力の発生を抑圧したことを特徴とする高効率発電機。   In an electromagnetic induction generator in which one of the armature and the permanent magnet is the stator and the other is the rotor, the armature that crosses the magnetic lines of force of the permanent magnet is configured as a spirally coiled conductor, and the load current is By deflecting the magnetic field lines generated when flowing through the coiled conductor of the armature in a direction perpendicular to the magnetic field lines generated by the permanent magnets, interference between the magnetic field lines generated by the permanent magnets and the magnetic field lines generated by the load current is suppressed. A high-efficiency generator characterized by suppressing the generation of rotational deterrence due to electric current. 請求項1記載の高効率発電機において、電機子を固定子とし、永久磁石を回転子とすることを特徴とする高効率発電機。   2. The high efficiency generator according to claim 1, wherein the armature is a stator and the permanent magnet is a rotor. 請求項2記載の高効率発電機において、軸受けを中心に回転する回転円盤と、回転円盤の円周部分に沿って等間隔に取り付けられた任意の偶数(2m)個の永久磁石と、回転円盤の中心から等角度で伸びる放射線上に設けられ、各永久磁石のそれぞれのN極とS極の端面間の空隙部分に位置するように固定された電機子を有することを特徴とする高効率発電機。   3. The high efficiency generator according to claim 2, wherein a rotating disk rotating around a bearing, any even number (2m) of permanent magnets mounted at equal intervals along a circumferential portion of the rotating disk, and the rotating disk A high-efficiency power generation comprising an armature that is provided on radiation extending at an equal angle from the center of each of the permanent magnets and is fixed so as to be positioned in a gap portion between the end faces of each N pole and S pole of each permanent magnet Machine. 請求項3記載の高効率発電機において、隣り合う2つの永久磁石の極性が互いに異なるように配置したことを特徴とする高効率発電機。   4. The high efficiency generator according to claim 3, wherein the two adjacent permanent magnets are arranged so that the polarities thereof are different from each other. 請求項3記載の高効率発電機において、電機子として右巻きコイルまたは左巻きコイルを用いることを特徴とする高効率発電機。   4. The high efficiency generator according to claim 3, wherein a right-handed coil or a left-handed coil is used as an armature. 請求項5記載の高効率発電機において、電機子として偶数(2n)重逆巻きコイルを用いることを特徴とする高効率発電機。   6. The high-efficiency generator according to claim 5, wherein an even (2n) heavy counter-wound coil is used as an armature. 請求項5または請求項6記載の高効率発電機において、電機子でそれぞれ発生する起電力がすべて同方向に加算されるように電機子コイル間を結線したことを特徴とする高効率発電機。   7. The high efficiency generator according to claim 5, wherein the armature coils are connected so that all electromotive forces generated in the armature are added in the same direction. 請求項7記載の高効率発電機において、電機子コイル間の結線を回転円盤と同心円状に配置するようにしたことを特徴とする高効率発電機。   8. The high efficiency generator according to claim 7, wherein the connection between the armature coils is arranged concentrically with the rotating disk. 電機子と永久磁石の一方を固定子とし他方を回転子とする電磁誘導利用の発電機において、永久磁石による磁力線をよぎる電機子を、右巻きらせん状にコイル化した導線部と左巻きらせん状にコイル化した導線部を組み合わせた同心コイルとして構成し、負荷電流が同心コイルを流れる際に右巻きらせん状にコイル化した導線部によって発生する磁力線と左巻きらせん状にコイル化した導線部によって発生する磁力線を互いに相殺させることにより、負荷電流が同心コイルを流れる際に同心コイル外に生じる磁力線を最小化して永久磁石による該磁力線との干渉を抑え、負荷電流による回転抑止力の発生を抑圧するようにすると共に、前記電機子として二重逆巻きコイル(2n重逆巻きコイルを含む。)を用い、それぞれのコイルが持つ自己インダクタンスを右巻きと左巻きコイル間の相互インダクタンスの作用によって打ち消させることにより電機子の内部インピーダンスを最小化して外部に取り出す電力を最大化できるようにしたことを特徴とする高効率発電機。   In an electromagnetic induction generator with one of the armature and permanent magnet as the stator and the other as the rotor, the armature that crosses the magnetic lines of force of the permanent magnet is formed into a right-handed spiral coil and a left-handed spiral. Constructed as a concentric coil that combines coiled conductors, and when the load current flows through the concentric coil, it is generated by the lines of magnetic force generated by the spirally coiled conductor and the conductors coiled in a left-handed spiral. By canceling the magnetic field lines to each other, the magnetic field lines generated outside the concentric coils when the load current flows through the concentric coils are minimized, so that interference with the magnetic field lines by the permanent magnets is suppressed, and the generation of rotation deterrence due to the load currents is suppressed. In addition, a double counter-wound coil (including a 2n double counter-winding coil) is used as the armature, and each coil has its own self. High efficiency power generator, characterized in that to allow maximizing the power taken out by minimizing the internal impedance of the armature by causing counteracted by the action of the mutual inductance between the right-handed and left-handed coils inductance. 請求項9記載の高効率発電機において、電機子を固定子とし、永久磁石を回転子とすることを特徴とする高効率発電機。   10. The high efficiency generator according to claim 9, wherein the armature is a stator and the permanent magnet is a rotor. 請求項10記載の高効率発電機において、回転軸を中心に回転する回転円盤と、回転円盤の外縁円周部分に永久磁石保持具を用いて棒状永久磁石を均等間隔に取り付けられ、隣り合う該棒状永久磁石同士では上部と下部の磁極極性が互いに逆となるように配置された任意の偶数(2m)個の棒状永久磁石と、回転円盤とは接触しないように各棒状永久磁石の上部磁極端面に近い位置の回転円盤上側に設けられた上部電機子と、回転円盤とは接触しないように各棒状永久磁石の下部磁極端面に近い位置の回転円盤下側に設けられた下部電機子を有することを特徴とする高効率発電機。   The high-efficiency generator according to claim 10, wherein a rotating disk rotating about a rotating shaft and rod-shaped permanent magnets are attached to the outer circumferential portion of the rotating disk at equal intervals using a permanent magnet holder, The upper magnetic pole end face of each bar-shaped permanent magnet so that any even number (2m) of bar-shaped permanent magnets arranged so that the magnetic pole polarities of the upper and lower poles are opposite to each other and the rotating disk are not in contact with each other. The upper armature provided on the upper side of the rotating disk at a position close to the rotating disk and the lower armature provided on the lower side of the rotating disk at a position close to the lower magnetic pole end face of each rod-like permanent magnet so as not to contact the rotating disk. High-efficiency generator characterized by 請求項11記載の高効率発電機において、回転円盤上のすべての棒状永久磁石をプラスチック等非磁性体材料のカバーで覆ったことを特徴とする高効率発電機。   The high-efficiency generator according to claim 11, wherein all rod-like permanent magnets on the rotating disk are covered with a cover made of a non-magnetic material such as plastic. 請求項11記載の高効率発電機において、各電機子として任意の偶数重(2n重)逆巻きコイルによる同心コイルを用いることを特徴とする高効率発電機。   The high-efficiency generator according to claim 11, wherein a concentric coil formed by any even-numbered (2n-fold) reverse winding coil is used as each armature. 請求項13記載の高効率発電機において、偶数(2m)個の上部電機子の組、偶数(2m)個の下部電機子の組ごとに、各電機子の同心コイル第j層(j=1,2,3,・・・2n)の回転円盤回転軸側(内側)端子を隣の電機子の同心コイル第j層の回転円盤回転軸側(内側)端子に接続し、次にその電機子の同心コイル第j層の外側端子をさらに隣の電機子の同心コイル第j層の外側端子に接続する、という順番に各電機子の同心コイルの各層端子を層ごとに直列に接続することにより、起電力を相加させたj個の層別起電ユニット(Rj)を得るようにしたことを特徴とする高効率発電機。   14. The high-efficiency generator according to claim 13, wherein a concentric coil j-th layer (j = 1) of each armature is set for each set of even (2m) upper armatures and even (2m) lower armatures. , 2, 3,..., 2n) is connected to the rotating disk rotating shaft side (inside) terminal of the concentric coil j layer of the adjacent armature, and then the armature is connected. By connecting each outer layer terminal of the concentric coil of each armature in series in order of connecting the outer terminal of the jth layer of the concentric coil to the outer terminal of the jth layer of the concentric coil of the adjacent armature. A high-efficiency generator characterized in that j-layered electromotive units (Rj) obtained by adding electromotive forces are obtained. 請求項14記載の高効率発電機において、電機子の同心コイル各層端子間の結線を回転円盤と同心円状に配置するようにしたことを特徴とする高効率発電機。   15. The high efficiency generator according to claim 14, wherein the connection between the concentric coil terminals of the armature is arranged concentrically with the rotating disk. 請求項14記載の高効率発電機において、上部電機子の組によるj個の層別起電ユニット(RU 1),層別起電ユニット(RU
2),・・・層別起電ユニット(RU j)を直列接続した上部起電ユニットと、下部電機子の組によるj個の層別起電ユニット(RL
1),層別起電ユニット(RL 2),・・・層別起電ユニット(RL j)を直列接続した下部起電ユニットを得るようにしたことを特徴とする高効率発電機。
15. The high efficiency generator according to claim 14, wherein j layers of electromotive units (R U 1) and layers of electromotive units (R U ) by a set of upper armatures.
2),... J layered electromotive units (R L ) by a set of an upper electromotive unit in series of layered electromotive units (R U j) and a lower armature
1), stratified electromotive unit (R L 2), high-efficiency power generator, characterized in that ... stratification photovoltaic units (R L j) and to obtain a lower electromotive unit connected in series.
請求項16記載の高効率発電機において、上部起電ユニットおよび下部起電ユニットを直列接続して成ることを特徴とする高効率発電機。   The high efficiency generator according to claim 16, wherein the upper electromotive unit and the lower electromotive unit are connected in series. 請求項16記載の高効率発電機において、上部起電ユニットおよび下部起電ユニットを並列接続して成ることを特徴とする高効率発電機。   The high efficiency generator according to claim 16, wherein the upper electromotive unit and the lower electromotive unit are connected in parallel. 請求項1または請求項9記載の高効率発電機において、永久磁石を電磁石に置き換えた構成によることを特徴とする高効率発電機。   10. The high efficiency generator according to claim 1, wherein the permanent magnet is replaced with an electromagnet.
JP2009554333A 2008-02-24 2009-02-18 High efficiency generator Pending JPWO2009104618A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008042291 2008-02-24
JP2008042291 2008-02-24
PCT/JP2009/052723 WO2009104618A1 (en) 2008-02-24 2009-02-18 High-efficiency generator

Publications (1)

Publication Number Publication Date
JPWO2009104618A1 true JPWO2009104618A1 (en) 2011-06-23

Family

ID=40985496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009554333A Pending JPWO2009104618A1 (en) 2008-02-24 2009-02-18 High efficiency generator

Country Status (2)

Country Link
JP (1) JPWO2009104618A1 (en)
WO (1) WO2009104618A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002136084A (en) * 2000-10-30 2002-05-10 Koki Sangyo Kk Power generating method of generator
JP2007306700A (en) * 2006-05-11 2007-11-22 Kohei Minato Magnetic power generating device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731345A (en) * 1980-07-31 1982-02-19 Matsushita Electric Works Ltd Coreless armature and its manufacture
EP1501174A4 (en) * 2002-05-01 2005-10-05 Makoto Ogoshi Power generator and torque amplifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002136084A (en) * 2000-10-30 2002-05-10 Koki Sangyo Kk Power generating method of generator
JP2007306700A (en) * 2006-05-11 2007-11-22 Kohei Minato Magnetic power generating device

Also Published As

Publication number Publication date
WO2009104618A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP5122685B2 (en) Superconducting rotating electrical machine and stator for superconducting rotating electrical machine
US11128207B2 (en) Axial flux generators having a flat strip conductor with particular axial widths for long term reliability
JP2013215021A (en) Electromagnetic induction device
CN103023264A (en) Mechanically commutated switched reluctance motor
CN103812294A (en) Five-phase doubly-salient motor
US8917004B2 (en) Homopolar motor-generator
JP2018524964A (en) Rotating electromagnetic device
CN104410177A (en) Stator, corresponding brushless direct current motor and three-phase switch reluctance motor
JP2010041786A (en) Stator windings and electric rotary machine
US9768652B2 (en) Superconducting field pole
TWI355131B (en) A linear-type direct driven tubular generator
JP2007202292A (en) Exciter
KR101511012B1 (en) development magnetic induced
CN107026559B (en) Method for generating magnetic field along center line and vertical center line and magnetic armature motor
WO2009104618A1 (en) High-efficiency generator
US20200304000A1 (en) Generator with reduced magnetic resistance
WO2017182912A1 (en) A generator having unlike magnetic poles radially aligned
WO2016086888A1 (en) Novel super-powered electrical device
JP6415029B2 (en) Electromagnetic induction device
JP5594660B2 (en) Reluctance generator
JP4923301B2 (en) Superconducting coil device, inductor-type synchronous machine, and transformer device
CN206490509U (en) With the alternating current generator without End winding for returning magnetic circuit stator core
CN113872406B (en) Birotor axial hybrid excitation double salient pole motor
JP2011004576A (en) Generator
JP2017135892A (en) Rotary electric machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218