JPWO2009066562A1 - Erythrocyte stem cell differentiation promoter and / or proliferation promoter, and use of methionine for preventing or treating senile anemia and a composition containing methionine - Google Patents

Erythrocyte stem cell differentiation promoter and / or proliferation promoter, and use of methionine for preventing or treating senile anemia and a composition containing methionine Download PDF

Info

Publication number
JPWO2009066562A1
JPWO2009066562A1 JP2009542517A JP2009542517A JPWO2009066562A1 JP WO2009066562 A1 JPWO2009066562 A1 JP WO2009066562A1 JP 2009542517 A JP2009542517 A JP 2009542517A JP 2009542517 A JP2009542517 A JP 2009542517A JP WO2009066562 A1 JPWO2009066562 A1 JP WO2009066562A1
Authority
JP
Japan
Prior art keywords
met
anemia
cells
thr
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009542517A
Other languages
Japanese (ja)
Inventor
幸夫 浅見
幸夫 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Co Ltd
Meiji Dairies Corp
Original Assignee
Meiji Co Ltd
Meiji Dairies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Co Ltd, Meiji Dairies Corp filed Critical Meiji Co Ltd
Publication of JPWO2009066562A1 publication Critical patent/JPWO2009066562A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/4172Imidazole-alkanecarboxylic acids, e.g. histidine
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/175Amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid, pantothenic acid
    • A61K31/198Alpha-aminoacids, e.g. alanine, edetic acids [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/405Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics

Abstract

老化に伴い、頻繁に貧血が見られることから、老人性の貧血防止に有効な治療剤を開発することを第1の課題とする。更に、今後は老齢化が進むことから、副作用が低く安価で効果的なアンチエイジング剤を提供することを第2の課題とする。また、骨髄機能抑制を原因とする貧血、具体的には抗癌剤投与の副作用としての貧血に有効な治療剤を提供することを第3の課題とする。本願発明者は、メチオニン(Met)の単体や、メチオニン(Met)と、グリシン(Gly)、セリン(Ser)、スレオニン(Thr)から選ばれる1以上からなるアミノ酸組成物など、更に、(1)Ile、Trp、Thr、Val、His、Phe、Lys及びLeu、(2)Ile、Thr、Val、His、Lys及びLeu、(3)Trp、Thr、His、Phe、及びLys、(4)Ile、Trp、Thr、Val、Phe、及びLeuから選択されるアミノ酸混合物を有効成分として含む剤に、老人性貧血を改善回復する能力などがあることを初めて見出し、老人性貧血防止剤、老人性貧血治療剤、及び細胞老化防止剤を提供できた。Since anemia is frequently observed with aging, the first task is to develop a therapeutic agent effective in preventing senile anemia. Furthermore, since aging will progress in the future, it is a second object to provide an inexpensive and effective anti-aging agent with low side effects. It is a third object to provide a therapeutic agent effective for anemia caused by bone marrow function suppression, specifically, anemia as a side effect of administration of an anticancer drug. The inventor of the present application includes a simple substance of methionine (Met), an amino acid composition composed of one or more selected from methionine (Met), glycine (Gly), serine (Ser), and threonine (Thr). Ile, Trp, Thr, Val, His, Phe, Lys and Leu, (2) Ile, Thr, Val, His, Lys and Leu, (3) Trp, Thr, His, Phe and Lys, (4) Ile, An agent containing an amino acid mixture selected from Trp, Thr, Val, Phe, and Leu as an active ingredient has been found for the first time to have the ability to improve and recover senile anemia. Agent and cell antiaging agent could be provided.

Description

本願発明は、赤血球系幹細胞の分化促進剤及び/又は増殖促進剤及び老化防止の技術分野に関する。本願発明は、特に赤血球の増殖における、造血幹細胞等赤血球系幹細胞の機能低下の抑制及び老化防止の技術に関する。   The present invention relates to a technical field of erythroid stem cell differentiation promoter and / or proliferation promoter and anti-aging. The present invention relates to a technique for suppressing a decrease in function of erythroid stem cells such as hematopoietic stem cells and preventing aging, particularly in the proliferation of erythrocytes.

老化、加齢により、皮膚のしわ、頭髪の減少・白髪などの身体の表面に現れる変化だけでなく、身体の機能は徐々に低下し、様々な症状が現れる。例えば、高血圧、心筋梗塞、狭心症などの疾患、インスリン生産の低下による糖尿病リスクの増大、骨粗しょう症、老人性白内障、老人性貧血などが挙げられる。   With aging and aging, not only changes that appear on the surface of the body, such as wrinkles on the skin, hair loss, and white hair, but the function of the body gradually declines and various symptoms appear. Examples include diseases such as hypertension, myocardial infarction and angina, increased risk of diabetes due to decreased insulin production, osteoporosis, senile cataract and senile anemia.

これら老化対策として、民間療法も含め、種々の健康食品、治療薬が開発されてきた。   As a countermeasure against aging, various health foods and therapeutic drugs have been developed including folk remedies.

例えば、メラトニンは老化に伴い減少することから、老化により生じる神経変性疾患へのメラトニン投与が検討され、近年ではメラトニン又はその類縁物質(米国特許第5403851号)に老化防止作用があるといわれている。更に、このメラトニンの作用はHGHを介するものとして、成長ホルモンを老化防止剤として用いることもなされている(Annu Rev Med. 2003;54:513-33. Epub 2001 Dec 3)。   For example, since melatonin decreases with aging, administration of melatonin to neurodegenerative diseases caused by aging has been studied, and in recent years, melatonin or its related substance (US Pat. No. 5,403,851) is said to have an antiaging effect. . Further, the action of melatonin is mediated by HGH, and growth hormone is also used as an anti-aging agent (Annu Rev Med. 2003; 54: 513-33. Epub 2001 Dec 3).

また、体内で生じる活性酸素は細胞やDNAの損傷、脂質の過酸化などを引き起こし、多くの疾患に関与することによる種々の影響があるとして、活性酸素を封じ込めるための抗酸化剤の利用が検討され、例えば、ビタミンC、ビタミンEなどが利用され、αトコフェロールの利用及びその類縁体の利用など(特開平8−277282号)、更には、ラジカルスカベンジャーが開発されてきた(特開平9−241637号)。   In addition, active oxygen generated in the body causes damage to cells and DNA, lipid peroxidation, etc., and there are various effects due to involvement in many diseases, and the use of antioxidants to contain active oxygen is studied For example, vitamin C, vitamin E and the like are used, use of α-tocopherol and its analog (JP-A-8-277282), and radical scavengers have been developed (JP-A-9-241636). issue).

また更に、老化に伴う諸症状のうち、貧血との関係では、体内で発生する「活性酸素」が貧血や免疫不全を誘発するとの報告もある(Nature 431,997-1002)。   Furthermore, among the symptoms associated with aging, there is a report that “active oxygen” generated in the body induces anemia and immunodeficiency in relation to anemia (Nature 431, 997-1002).

老人性貧血用については、漢方薬として、例えば、人参(ニンジン)、蒼朮(ソウジュツ)又は白朮(ビャクジュツ)、茯苓(ブクリョウ)、甘草(カンゾウ)、生姜(ショウキョウ)、大棗(タイソウ)、酸棗仁(サンソウニン)、竜眼(リュウガン)、遠志(オンジ)、当帰(トウキ)、黄耆(オウギ)、木香(モッコウ)、柴胡(サイコ)及び梔子(シシ)からなる加味帰脾湯が知られている。
米国特許第5403851号 特開平8−277282号 特開平9−241637号 Annu Rev Med.2003,54 ,513-33.Epub 2001 Dec 3 Nature 431,997-1002
For senile anemia, as herbal medicine, for example, ginseng (carrot), 蒼朮 (jujutsu) or birches (bakujutsu), 茯苓 (bakuryo), licorice (licorice), ginger (shoyu), daikon (taiso), acid 棗Kami Kaishou-yu consisting of Jin (Sangoonin), Longan (Longan), Toshi (Onji), Toki (Otogi), Twilight (Ogi), Mika (Mokkou), Saiko (Psycho) and Shishi (Shishi) It has been known.
US Pat. No. 5,403,851 JP-A-8-277282 JP-A-9-241737 Annu Rev Med. 2003, 54, 513-33. Epub 2001 Dec 3 Nature 431, 997-1002

老化に伴い、頻繁に貧血が見られることから、老人性の貧血防止に有効な治療剤を開発することを第1の課題とする。   Since anemia is frequently observed with aging, the first task is to develop a therapeutic agent effective in preventing senile anemia.

そして、今後は更に老齢化が進むことから、副作用が低く安価で効果的なアンチエイジング剤を提供することを第2の課題とする。   In the future, the aging process will progress further, and it is a second problem to provide an inexpensive and effective anti-aging agent with low side effects.

また、老人に限らず、広く適用できる貧血防止に有効な治療剤を開発することを第3の課題とする。   In addition, a third problem is to develop a therapeutic agent effective in preventing anemia that can be widely applied not only to the elderly.

更に、人工血液製造などのために、効率的に赤血球を細胞培養により調製することを第4の課題とする。   Furthermore, a fourth problem is to efficiently prepare red blood cells by cell culture for artificial blood production and the like.

本願発明者は、偶然にも、メチオニン(Met)及びメチオニン含有アミノ酸組成物が赤血球の造血機能を維持や促進する効果を有し、老人性貧血の改善に効果的であることを見出した。メチオニン含有アミノ酸組成物として具体的には、メチオニンに加えて、グリシン(Gly)及びグルタミン酸(Glu)を有効成分として含むアミノ酸組成物に、老人性貧血を改善回復する能力があることを初めて見出したものである。   The inventor of this application has found that methionine (Met) and a methionine-containing amino acid composition have the effect of maintaining and promoting the hematopoietic function of erythrocytes, and are effective in improving senile anemia. Specifically, as an amino acid composition containing methionine, for the first time, it was found that an amino acid composition containing glycine (Gly) and glutamic acid (Glu) as an active ingredient in addition to methionine has the ability to improve and recover senile anemia. Is.

又本願発明は、in vitroでの効率的な赤血球の増殖及び/又は分化方法を提供する。   The present invention also provides an efficient method for the proliferation and / or differentiation of red blood cells in vitro.

本願発明のメチオニンを有効成分とする老人性貧血防止剤又は老人性貧血治療剤により、今後も増大すると予想される老人性貧血に対し、安全で安価な処置が可能となる。更に、本願発明の赤血球系幹細胞の分化促進剤及び/又は増殖促進剤により、強度の運動者の貧血、抗癌剤の副作用や腎臓の疾患による貧血などの造血を必要とする幅広い範囲の貧血を治療・改善できる。更に、本願発明により、老化に伴う細胞の機能低下を防止でき、老化現象を全般的に防止できる。又、本願発明により、細胞培養による赤血球への効率的な増殖、分化が可能となる。   The senile anemia prevention agent or senile anemia therapeutic agent containing methionine of the present invention as an active ingredient enables safe and inexpensive treatment for senile anemia, which is expected to increase in the future. Furthermore, the differentiation promoting agent and / or proliferation promoting agent of the erythroid stem cell of the present invention treats a wide range of anemias that require hematopoiesis such as anemia of intense athletes, side effects of anticancer agents and anemia due to renal diseases. Can improve. Furthermore, according to the present invention, it is possible to prevent a decrease in the function of cells accompanying aging, and to generally prevent the aging phenomenon. Further, according to the present invention, efficient proliferation and differentiation into red blood cells by cell culture becomes possible.

本明細書は本願の優先権の基礎である日本国特許出願2007-300814号の明細書および/または図面に記載される内容を包含する。   This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2007-300814, which is the basis of the priority of the present application.

アミノ酸混合物投与開始直前の各群マウス末梢血のヘモグロビン量。平均±標準偏差を示す。*:P<0.0001(若齢マウスに対するstudent’s t-test)The hemoglobin amount in the peripheral blood of each group of mice immediately before the start of administration of the amino acid mixture. Mean ± standard deviation is shown. *: P <0.0001 (student ’s t-test for young mice) アミノ酸混合物投与後の各群マウス末梢血のヘモグロビン量。平均±標準偏差を示す。*:P<0.01 (老齢マウス(カゼイン)に対するstudent’s t-test)The amount of hemoglobin in the peripheral blood of each group of mice after administration of the amino acid mixture. Mean ± standard deviation is shown. *: P <0.01 (student ’s t-test for old mice (casein)) アミノ酸混合物が707fl.細胞の増殖に与える効果。平均±標準偏差を示す。*:P<0.05(アミノ酸混合物を添加していない条件に対するstudent’s t-test)Effect of amino acid mixture on the growth of 707 fl. Cells. Mean ± standard deviation is shown. *: P <0.05 (student ’s t-test with no amino acid mixture added) 必須アミノ酸混合物から特定のアミノ酸を除いた場合に707fl.細胞の増殖促進効果に与える影響。平均±標準偏差を示す。*:P<0.005(アミノ酸混合物を添加していない条件に対するstudent’s t-test)Effect of 707 fl. Cell growth promotion effect when a specific amino acid is removed from an essential amino acid mixture. Mean ± standard deviation is shown. *: P <0.005 (student ’s t-test with no amino acid mixture added) メチオニンとスレオニンが707fl.細胞の増殖に与える影響。平均±標準偏差を示す。*:P<0.05(アミノ酸混合物を添加していない条件に対するstudent’s t-test)Effect of methionine and threonine on 707fl. Cell proliferation. Mean ± standard deviation is shown. *: P <0.05 (student ’s t-test with no amino acid mixture added) アミノ酸混合物のヒト由来K562細胞に対する増殖促進効果。平均±標準偏差を示す。*:P<0.05(アミノ酸混合物を添加していない条件に対するstudent’s t-test)The growth promoting effect of the amino acid mixture on human-derived K562 cells. Mean ± standard deviation is shown. *: P <0.05 (student ’s t-test with no amino acid mixture added) アミノ酸混合物のヒト由来HEL92.1.7細胞に対する増殖促進効果。平均±標準偏差を示す。*:P<0.05(アミノ酸混合物を添加していない条件に対するstudent’s t-test)The growth promotion effect with respect to the human origin HEL92.1.7 cell of an amino acid mixture. Mean ± standard deviation is shown. *: P <0.05 (student ’s t-test with no amino acid mixture added) メチオニンの濃度が707fl.細胞の増殖に与える影響。平均値±標準偏差を示す。Effect of methionine concentration on 707 fl. Cell proliferation. Mean value ± standard deviation is shown. 高濃度メチオニンによる707fl.細胞の増殖阻害活性に対するアミノ酸[スレオニン(Thr)、又はグリシン(Gly)及びグルタミン酸(Glu)の混合物]の緩和効果。平均±標準偏差を示す。*:P<0.05(コントロールに対するstudent t-test)Mitigation effect of amino acid [threonine (Thr), or a mixture of glycine (Gly) and glutamic acid (Glu)] on the growth inhibitory activity of 707fl. Cells by high concentration methionine. Mean ± standard deviation is shown. *: P <0.05 (student t-test for control) 抗癌剤アクチノマイシンD誘導貧血モデルにおけるメチオニンの有効性・試験期間中の末梢血ヘモグロビン量の推移。平均±標準誤差を示す。Effect of methionine in anticancer drug actinomycin D-induced anemia model and transition of peripheral blood hemoglobin during the test period. Mean ± standard error is shown. 抗癌剤アクチノマイシンD誘導貧血モデルにおけるメチオニンの有効性・アクチノマイシンD投与開始から17日後の抹消血ヘモグロビン量。平均±標準誤差を示す。異なる文字間に有意差あり、P<0.05(one-way ANOVA with Newman-Keuls's post hoc analysis)Efficacy of methionine in the anticancer drug actinomycin D-induced anemia model. Peripheral hemoglobin level 17 days after the start of actinomycin D administration. Mean ± standard error is shown. Significant difference between different characters, P <0.05 (one-way ANOVA with Newman-Keuls's post hoc analysis) メチオニンの濃度と707fl.細胞の増殖量。平均±標準偏差を示す。統計解析はstudent’s t-testによる。Methionine concentration and 707 fl. Cell proliferation. Mean ± standard deviation is shown. Statistical analysis is based on student ’s t-test. メチオニンの濃度の違いによる、赤血球関連遺伝子の発現量の変化。平均±標準偏差を示す。統計解析はstudent’s t-testによる。Changes in the expression level of erythrocyte-related genes due to differences in methionine concentration. Mean ± standard deviation is shown. Statistical analysis is based on student ’s t-test. メチオニンの経時的な濃度の変化が、赤血球分化関連遺伝子の発現量に及ぼす効果−1。はじめの3日間、次の24時間、及びその後の24時間の培養に用いられた培地は、それぞれ次の濃度のメチオニン等を含む培地である。図中左から:1:30μM→30μM→30μM2:30μM→150μM→150μM3:30μM→150μM→30μM4:30μM→150μM→>3μM5:30μM→150μM+1%DMSO→150μM+1%DMSO平均±標準偏差を示す。*:P<0.05(2に対するstudent’s t-test)Effect-1 of change in methionine concentration over time on expression level of erythroid differentiation-related gene. The medium used for the first 3 days, the next 24 hours, and the subsequent 24 hours of culture is a medium containing methionine at the next concentration. From the left in the figure: 1:30 μM → 30 μM → 30 μM 2: 30 μM → 150 μM → 150 μM 3: 30 μM → 150 μM → 30 μM 4: 30 μM → 150 μM →> 3 μM 5:30 μM → 150 μM + 1% DMSO → 150 μM + 1% DMSO average ± standard deviation is shown. *: P <0.05 (student ’s t-test for 2) メチオニンの経時的な濃度の変化が、赤血球分化関連遺伝子の発現量に及ぼす効果−2。はじめの3日間、次の24時間、及びその後の24時間の培養に用いられた培地は、それぞれ次の濃度のメチオニン等を含む培地である。図中左から:1:30μM→30μM→30μM2:30μM→150μM→150μM3:30μM→150μM→30μM4:30μM→150μM→>3μM5:30μM→150μM+1%DMSO→150μM+1%DMSO平均±標準偏差を示す。*:P<0.05(2に対するstudent’s t-test)Effect-2 of change in methionine concentration over time on expression level of erythroid differentiation-related gene-2. The medium used for the first 3 days, the next 24 hours, and the subsequent 24 hours of culture is a medium containing methionine at the next concentration. From the left in the figure: 1:30 μM → 30 μM → 30 μM 2: 30 μM → 150 μM → 150 μM 3: 30 μM → 150 μM → 30 μM 4: 30 μM → 150 μM →> 3 μM 5:30 μM → 150 μM + 1% DMSO → 150 μM + 1% DMSO average ± standard deviation is shown. *: P <0.05 (student ’s t-test for 2)

1.はじめに
貧血は単に症状を示すもので、直接的には、赤血球の産生低下、ヘモグロビンの合成低下、赤血球の破壊の亢進などにより生じ、原因はそれぞれ異なっている。
1. Introduction Anemia is simply a symptom, and is caused directly by reduced production of erythrocytes, decreased synthesis of hemoglobin, increased destruction of erythrocytes, and the causes are different.

例えば、赤血球の産生低下では、(イ)腎不全などによるエリスロポエチンの産生低下、(ロ)再生不良性貧血などに見られる造血幹細胞の異常、(ハ)白血病や癌の骨髄などが原因として挙げられている。また、ヘモグロビンの合成低下では、鉄の不足が原因として挙げられており、それぞれの原因に応じた処置が必要となっている。   For example, the decrease in red blood cell production can be attributed to (i) decreased erythropoietin production due to renal failure, (b) abnormal hematopoietic stem cells seen in aplastic anemia, (c) bone marrow of leukemia or cancer, etc. ing. Moreover, the decrease in the synthesis of hemoglobin is cited as a cause of lack of iron, and treatment according to each cause is necessary.

2.老人性貧血並びに赤血球系幹細胞の増殖促進及び赤血球系幹細胞から赤血球への分化促進(赤血球系幹細胞の分化増殖促進)
若年性の貧血では、鉄の欠乏が原因であることが多い。老化による貧血の発生原因は完全には解明されていないが、若年性貧血とは対照的に、骨髄の老化に伴う造血幹細胞の減少、産生される赤血球の寿命の短縮、胃の粘膜の萎縮に伴う栄養の吸収量の減少などが原因として挙げられている。現段階で内臓出血や栄養不足など以外の原因では、加齢による血液幹細胞の機能低下、特に自己再生能の低下と、赤血球への分化誘導が阻害や低下した状態と考えられている。
2. Senile anemia and erythroid stem cell proliferation and erythroid stem cell to erythrocyte differentiation (differentiation and proliferation of erythroid stem cells)
In juvenile anemia, iron deficiency is often the cause. The cause of anemia due to aging has not been fully elucidated, but in contrast to juvenile anemia, it decreases the number of hematopoietic stem cells associated with aging of the bone marrow, shortens the lifespan of produced red blood cells, and atrophy of the gastric mucosa. It is cited as a cause of a decrease in the amount of nutrient absorption that accompanies it. At present, causes other than visceral hemorrhage and nutritional deficiencies are thought to be due to a decrease in blood stem cell function due to aging, particularly a decrease in self-renewal ability and induction of differentiation into red blood cells.

なお、赤血球は造血幹細胞から、赤芽球バースト形成細胞(BFU−E:burst-forming-unit-erythroid)、赤芽球コロニー形成細胞(CFU-E:colony-forming-unit-erythroid)、前赤芽球、赤芽球、網状赤血球、赤血球と分化して生産されると考えられている。   Red blood cells are derived from hematopoietic stem cells, erythroblast burst-forming cells (BFU-E: burst-forming-unit-erythroid), erythroblast colony-forming cells (CFU-E: colony-forming-unit-erythroid), pro-red It is thought to be produced by differentiation from blasts, erythroblasts, reticulocytes and erythrocytes.

本願発明でいう赤血球系幹細胞には、造血幹細胞、赤芽球バースト形成細胞(BFU−E:burst-forming-unit-erythroid)、赤芽球コロニー形成細胞(CFU-E:colony-forming-unit-erythroid)、前赤芽球、及び赤芽球などの赤血球前駆細胞が包含される。   The erythroid stem cells referred to in the present invention include hematopoietic stem cells, erythroblast burst-forming cells (BFU-E), and erythroid colony-forming cells (CFU-E). erythroid), proerythroblasts, and erythroid progenitors such as erythroblasts.

3.メチオニン(Met)と老人性貧血の予防又は治療、細胞老化抑制、赤血球系幹細胞の分化及び/又は増殖の促進、老化に伴う赤血球系幹細胞の分化及び/又は増殖機能の低下や、抗癌剤の副作用による骨髄機能の抑制に起因する貧血の予防や改善(以下、アミノ酸は3文字コードで示すことがある。)
3−1.本願発明者は、Met及びMetを含むアミノ酸組成物が、赤血球の造血機能を維持や促進する効果を有し、老人性貧血の改善に効果的であることを実験的に見出した。
3. Due to prevention or treatment of methionine (Met) and senile anemia, suppression of cellular aging, promotion of differentiation and / or proliferation of erythroid stem cells, decrease in differentiation and / or proliferation function of erythroid stem cells accompanying aging, and side effects of anticancer agents Prevention or improvement of anemia caused by suppression of bone marrow function (hereinafter, amino acids may be indicated by a three-letter code)
3-1. The inventor of the present application experimentally found that an amino acid composition containing Met and Met has an effect of maintaining or promoting the hematopoietic function of erythrocytes and is effective in improving senile anemia.

また、Met及びMetを含むアミノ酸組成物の投与により、老化に伴い発現量の低下、あるいは亢進が認められる遺伝子の発現量が回復することから、本特定組成のアミノ酸組成物を老化に伴う細胞機能の低下や不調を抑制するための剤、言い換えれば、細胞老化防止剤として用いることが可能であることを見出した。   In addition, the administration of an amino acid composition containing Met and Met restores the expression level of a gene whose expression level decreases or increases with aging, so that the amino acid composition of this specific composition can be It has been found that it can be used as an agent for suppressing the decrease or malfunction of the cell, in other words, as a cell anti-aging agent.

3−2.更に、Met及びMetを含むアミノ酸組成物が、マウスの脾臓に由来する赤芽球様細胞である707fl.細胞の増殖を促進させることを見出した。同時にMetで増殖が促進された赤芽球様細胞である707fl.細胞の遺伝子発現を解析した結果、老齢マウスの場合と同様に、ヘム合成酵素や赤血球の構造タンパク質の遺伝子の発現は増加し、主に白血球で発現するインターロイキン(IL)などの遺伝子の発現は減少したため、赤血球への分化の促進が推定された。またこのとき、DNA (cytosine-5)-methyltransferase 1 遺伝子(Dnmt1)やHistone deacetylase (Hdac)などのエピジェネティクな変化に関連する遺伝子の発現が変動したことで、Metによる707fl.細胞の増殖促進には、細胞におけるエピジェネティックな変化を伴うことが予想された。実際にDNA (cytosine-5)-methyltransferase 1 (DNMT1)の阻害剤であるゼブラリンを作用させたところ、707fl.細胞に対するMetの増殖促進活性は阻害された。   3-2. Furthermore, it has been found that an amino acid composition containing Met and Met promotes the growth of 707fl. Cells, which are erythroblast-like cells derived from the spleen of mice. At the same time, as a result of analyzing the gene expression of 707fl. Cells, which are erythroblast-like cells whose proliferation was promoted by Met, the expression of heme synthase and erythrocyte structural protein genes increased as in the case of old mice, Since the expression of genes such as interleukin (IL) mainly expressed in leukocytes decreased, it was estimated that differentiation into erythrocytes was promoted. At this time, the expression of genes related to epigenetic changes such as DNA (cytosine-5) -methyltransferase 1 gene (Dnmt1) and Histone deacetylase (Hdac) fluctuated, and Met promoted the growth of 707fl. Cells. Was expected to be accompanied by epigenetic changes in the cells. When Zebralin, an inhibitor of DNA (cytosine-5) -methyltransferase 1 (DNMT1), was actually allowed to act, Met proliferation-promoting activity on 707fl. Cells was inhibited.

3−3.赤血球系幹細胞の増殖促進及び/又は分化促進、老化に伴う赤血球系幹細胞の増殖及び/又は分化機能の低下や、抗癌剤の副作用による骨髄機能の抑制に起因する貧血の予防や改善
Metが赤血球系幹細胞の増殖を促進すること、及び赤血球系幹細胞から赤血球への分化を促進することが明らかになった。
3-3. Prevention and improvement of anemia caused by promotion of proliferation and / or differentiation of erythroid stem cells, reduction of proliferation and / or differentiation function of erythroid stem cells accompanying aging, and suppression of bone marrow function due to side effects of anticancer agents
It was found that Met promotes the proliferation of erythroid stem cells and the differentiation of erythroid stem cells into erythrocytes.

つまり、Metの赤血球系幹細胞の分化及び/又は増殖促進作用を通じて、老人を含む健常者の貧血、強度の運動者の貧血、抗癌剤の副作用や腎臓の疾患による貧血などの造血を必要とする幅広い範囲の人に、Met又はMet含むアミノ酸組成物を与えることにより、貧血などの造血機能の低下を予防や改善することができる。   In other words, through the differentiation and / or proliferation-promoting action of Met's erythroid stem cells, a wide range that requires hematopoiesis such as anemia of healthy individuals including the elderly, anemia of intense exercisers, side effects of anticancer drugs and anemia due to kidney disease By providing Met or a person with an amino acid composition containing Met, a decrease in hematopoietic function such as anemia can be prevented or improved.

また、副作用として貧血を起こす抗癌剤としては、副作用として貧血を生じるいずれの抗癌剤も対象となるが、特に骨髄機能の抑制に起因する貧血を生じる抗癌剤が挙げられる。例えば、シスプラチンやカルボプラチンなどのプラチナ系、ドキソルビシンやエピルビシンなどのアントラサイクリン系、タキソールやタキソテールなどのタキサン系の抗癌剤を挙げることができる。   In addition, as an anticancer agent that causes anemia as a side effect, any anticancer agent that causes anemia as a side effect is targeted, and in particular, an anticancer agent that causes anemia due to suppression of bone marrow function can be mentioned. Examples thereof include platinum-based anticancer agents such as cisplatin and carboplatin, anthracyclines such as doxorubicin and epirubicin, and taxanes such as taxol and taxotere.

本発明者等は、培養細胞を用いた系で、上記のようにMetが赤芽球様細胞の増殖及び分化に効果を示すことを見出した後、Metの有効な濃度範囲及び濃度があたえる影響について検討した。まず、赤芽球様細胞の増殖促進に有効なMetの濃度範囲としては、25μM〜50000μM、好適には30μM〜5000μM、より好適には、50μM〜3500μM、さらに好適には、50μM〜200μMの範囲を挙げることができる。なお、Metの濃度がある一定範囲、約200μM付近より高濃度で2mM以下の範囲では、細胞増殖への効果を弱める何らかのメカニズムが存在するかも知れない。或いは、メチオニンの濃度により、細胞増殖のメカニズムが異なる増殖作用が存在する可能性もある。 In the system using cultured cells, the present inventors have found that Met has an effect on the proliferation and differentiation of erythroblast-like cells as described above, and then the effect of having an effective concentration range and concentration of Met. Was examined. First, the effective concentration range of Met for promoting the growth of erythroblast-like cells is 25 μM to 50000 μM, preferably 30 μM to 5000 μM, more preferably 50 μM to 3500 μM, and even more preferably 50 μM to 200 μM. Can be mentioned. Note that there may be some mechanism that weakens the effect on cell proliferation when the Met concentration is in a certain range, higher than about 200 μM and below 2 mM. Alternatively, there is a possibility that there is a proliferative action in which the mechanism of cell proliferation differs depending on the concentration of methionine.

また、Met濃度が25μM未満では、赤芽球様細胞への増殖作用は弱いが、赤芽球様細胞に対する分化促進作用が優勢となることを見出した。   It was also found that when the Met concentration is less than 25 μM, the proliferation effect on erythroblast-like cells is weak, but the differentiation promoting action on erythroblast-like cells is dominant.

また、一過性にMetの濃度を上昇させた後、さらに再びMetの濃度を減少さることにより、Metが低濃度の状態で優勢となる分化促進作用が、より一層増強できることを見出した。つまり、Metの急激な濃度変化を与えることにより、赤血球系幹細胞の増殖と分化をより効率よく制御できることとなる。人や動物がMetを摂取したときには、一過性に造血組織中でのMet濃度が上昇すると予想され、赤血球系幹細胞の増殖は促進されると考えられる。さらに再びMetの濃度が減少した場合に分化が進行するので、元の赤血球系幹細胞が増殖した分だけ赤血球が多く産生されることになり、その結果として、赤血球数が増加すると考えられる。以前から、過剰なMetの摂取による溶血性貧血が生じることが知られていたが、これは、過剰なMetの摂取は、赤血球先駆細胞の増殖を継続的に促進すると同時に分化を阻害し、その結果として、未分化の赤血球が大量に産生されるために溶血性貧血を誘導するためと考えることができる。   Further, it was found that the differentiation promoting action that predominates in a low concentration state of Met can be further enhanced by temporarily increasing the Met concentration and then decreasing the Met concentration again. That is, by giving a rapid change in Met concentration, the proliferation and differentiation of erythroid stem cells can be controlled more efficiently. When humans or animals ingest Met, it is expected that the Met concentration in hematopoietic tissues will rise transiently, and the proliferation of erythroid stem cells is thought to be promoted. Furthermore, since differentiation proceeds when the Met concentration decreases again, more red blood cells are produced as much as the original erythroid stem cells proliferate, and as a result, the number of red blood cells is considered to increase. It has been known for some time that hemolytic anemia is caused by excessive Met intake, which means that excessive Met intake continuously promotes the proliferation of erythroid progenitor cells and at the same time inhibits differentiation. As a result, it can be considered to induce hemolytic anemia because a large amount of undifferentiated red blood cells are produced.

4.Metを含むアミノ酸組成物(アミノ酸製剤)
本願発明で用いるアミノ酸組成物として、Metを含むアミノ酸組成物を有効成分として含有する赤血球系幹細胞の分化促進剤及び/又は増殖促進剤、貧血防止剤、貧血治療剤、老人性貧血防止剤、老人性貧血治療剤、又は細胞老化防止剤を包含する。
4). Amino acid composition containing Met (amino acid preparation)
As an amino acid composition used in the present invention, as an active ingredient, an erythroid stem cell differentiation promoter and / or proliferation promoter, an anemia inhibitor, an anemia treatment agent, an senile anemia inhibitor, an elderly man, which contains an amino acid composition containing Met as an active ingredient A therapeutic agent for congenital anemia, or a cell anti-aging agent.

本願発明は、好適には、Metに加えて、Gly及びGluが添加されたアミノ酸組成物を有効成分として含有する、赤血球系幹細胞の分化促進剤及び/又は増殖促進剤、老人性貧血防止剤、貧血治療剤、又は細胞老化防止剤を包含する。   The invention of the present application preferably contains, in addition to Met, an amino acid composition to which Gly and Glu are added as an active ingredient, an erythroid stem cell differentiation promoter and / or proliferation promoter, a senile anemia inhibitor, An anemia treatment agent or a cell antiaging agent is included.

本願発明には、前記アミノ酸組成物に任意の添加成分として、イソロイシン(IIe)、トリプトファン(Trp)、バリン(Val)、ヒスチジン(His)、フェニルアラニン(Phe)、リジン(Lys)及び/又はロイシン(Leu)を更に含むアミノ酸組成物を有効成分として含有する赤血球系幹細胞の分化促進剤及び/又は増殖促進剤、貧血防止剤、貧血治療剤、老人性貧血防止剤、老人性貧血治療剤、又は細胞老化防止剤を包含する。   In the present invention, as an optional additive component to the amino acid composition, isoleucine (IIe), tryptophan (Trp), valine (Val), histidine (His), phenylalanine (Phe), lysine (Lys) and / or leucine ( Leu), an erythroid stem cell differentiation promoter and / or proliferation promoter, anemia inhibitor, anemia therapeutic agent, senile anemia inhibitor, senile anemia therapeutic agent, or cell Includes anti-aging agents.

具体的には、アミノ酸組成物がMet、Gly、セリン(Ser)、スレオニン(Thr)、Ile、Trp、Val、His、Phe、Lys及び/又はLeuからなるアミノ酸組成物を有効成分として含有する赤血球系幹細胞の分化促進剤及び/又は増殖促進剤、貧血防止剤、貧血治療剤、老人性貧血防止剤、老人性貧血治療剤、又は細胞老化防止剤を包含する。   Specifically, an erythrocyte whose amino acid composition contains as an active ingredient an amino acid composition comprising Met, Gly, serine (Ser), threonine (Thr), Ile, Trp, Val, His, Phe, Lys and / or Leu A stem cell differentiation promoter and / or proliferation promoter, anemia prevention agent, anemia treatment agent, senile anemia prevention agent, senile anemia treatment agent, or cell aging prevention agent are included.

本願発明のアミノ酸組成物を構成する各アミノ酸は、D-体、L-体のどちらでもよく、好ましくはL-体である。また、遊離のアミノ酸でもよく、また、薬学上又は食品上、許容される塩でもよい。例えば、各アミノ酸は、塩酸塩、乳酸塩などであってもよい。   Each amino acid constituting the amino acid composition of the present invention may be either D-form or L-form, preferably L-form. Further, it may be a free amino acid, or a pharmaceutically or food acceptable salt. For example, each amino acid may be hydrochloride, lactate, and the like.

本願アミノ酸組成物としては、次のものを挙げることができる。   Examples of the present amino acid composition include the following.

4−1.Metに加えて、Gly、Glu、Ser及びThrからなる群から選ばれる1以上のアミノ酸が添加されたアミノ酸組成物を有効成分として含有する赤血球系幹細胞の分化促進剤及び/又は増殖促進剤、貧血防止剤、貧血治療剤、老人性貧血防止剤、老人性貧血治療剤、又は細胞老化防止剤。 4-1. In addition to Met, an erythroid stem cell differentiation promoter and / or proliferation promoter containing an amino acid composition to which one or more amino acids selected from the group consisting of Gly, Glu, Ser and Thr are added as an active ingredient, anemia An inhibitor, an anemia treatment agent, an senile anemia prevention agent, an senile anemia treatment agent, or a cell aging prevention agent.

本願発明には、Metに Gly、Glu、Ser及びThrからなる群から選ばれる1以上のアミノ酸が添加されたアミノ酸組成物からなる赤血球系幹細胞の分化促進剤及び/又は増殖促進剤、貧血防止剤、貧血治療剤、老人性貧血防止剤、老人性貧血治療剤、又は細胞老化防止剤が包含される。Gly、及びGluを併用することでは、Metを過剰に摂取した場合の溶血性貧血に対する抑制効果を示す。   The present invention includes an agent for promoting differentiation and / or proliferation of an erythroid stem cell comprising an amino acid composition in which one or more amino acids selected from the group consisting of Gly, Glu, Ser and Thr are added to Met, and an anemia inhibitor An anemia treatment agent, a senile anemia prevention agent, a senile anemia treatment agent, or a cell aging prevention agent. The combined use of Gly and Glu shows an inhibitory effect on hemolytic anemia when Met is excessively consumed.

更に、本願発明には、Metに Gly及びGluが添加されたアミノ酸組成物からなる赤血球系幹細胞の分化促進剤及び/又は増殖促進剤、貧血防止剤、貧血治療剤、老人性貧血防止剤、老人性貧血治療剤、又は細胞老化防止剤が包含される。GlyとGluを併用してMetに添加すると、Glyを単独で添加するよりも、高濃度のMetに対する細胞障害作用を緩和することができる。   Furthermore, the present invention includes an agent for promoting differentiation and / or proliferation of an erythroid stem cell comprising an amino acid composition in which Gly and Glu are added to Met, an anemia prevention agent, an anemia treatment agent, an senile anemia prevention agent, Therapeutic anemia or cell anti-aging agent is included. When Gly and Glu are used in combination and added to Met, the cytotoxic effect against high concentrations of Met can be mitigated, compared to adding Gly alone.

4−2.Metに加えて、Ile、Trp、Thr、Val、His、Phe、Lys及びLeuからなる群から選択される1以上のアミノ酸が添加されたアミノ酸組成物を有効成分とする赤血球系幹細胞の分化促進剤及び/又は増殖促進剤、老人性貧血防止剤、老人性貧血治療剤、又は細胞老化防止剤。 4-2. In addition to Met, an erythroid stem cell differentiation promoter comprising as an active ingredient an amino acid composition to which one or more amino acids selected from the group consisting of Ile, Trp, Thr, Val, His, Phe, Lys and Leu are added And / or a growth promoter, a senile anemia inhibitor, a senile anemia therapeutic agent, or a cell aging inhibitor.

好適には、(1)Ile、Thr、Val、His、Met、Lys及びLeuからなるアミノ酸混合物、(2)Trp、Thr、His、Phe、Met、及びLysからなるアミノ酸混合物、(3)Ile、Trp、Thr、Val、Phe、Met及びLeuからからなるアミノ酸混合物から選択されるアミノ酸混合物からなる赤血球系幹細胞の分化促進剤及び/又は増殖促進剤、貧血防止剤、貧血治療剤、老人性貧血防止剤、老人性貧血治療剤、又は細胞老化防止剤が挙げられる。   Preferably, (1) an amino acid mixture consisting of Ile, Thr, Val, His, Met, Lys and Leu, (2) an amino acid mixture consisting of Trp, Thr, His, Phe, Met and Lys, (3) Ile, Differentiation promoter and / or proliferation promoter of erythroid stem cells consisting of amino acid mixture selected from amino acid mixture consisting of Trp, Thr, Val, Phe, Met and Leu, anemia prevention agent, anemia treatment agent, senile anemia prevention Agent, senile anemia treatment agent, or cell antiaging agent.

5.本願発明の組成物の使用の形態
本願発明のアミノ酸組成物の使用形態は特に限定されないが、飲食用、栄養補助飲食用としても、医療用としても用いることができる。食用とする場合には、本願アミノ酸組成物は、そのまま食用できるが、各種食品への添加物とすることもできる。また、本願発明の組成物は水に溶解して飲料とすることもでき、その場合には、他の栄養成分、例えば、水溶性ビタミン類、タウリンなどを更に添加することもできる。また、嗜好性の改善のために、塩化ナトリウムなどの塩類、クエン酸等の酸類及び/又は他の適当な風味を加えて飲料とすることもできる。安定性のために、pH調整剤、キレート剤を更に添加することもできる。
5. Form of use of the composition of the present invention
Although the usage form of the amino acid composition of the present invention is not particularly limited, it can be used for food and drink, for nutritional supplement and for medical use. In the case of edible use, the amino acid composition of the present application can be edible as it is, but can also be used as an additive to various foods. In addition, the composition of the present invention can be dissolved in water to make a beverage. In that case, other nutritional components such as water-soluble vitamins and taurine can be further added. Moreover, in order to improve palatability, it can also be set as a drink by adding salts, such as sodium chloride, acids, such as a citric acid, and / or other suitable flavors. A pH adjusting agent and a chelating agent can be further added for stability.

医療用とする場合にも、経口投与、経管投与、直腸投与、注射,輸液による投与などの一般的投与径路により使用することができる。経口投与としては、上記組成物自体あるいは薬学上、許容される担体、賦形剤、希釈剤などとともに混合し、散剤、顆粒剤、錠剤、カプセル剤、トローチ剤、シロップ剤などとすることもできる。また、注射剤としては、適当な緩衝剤、等張剤などを添加し、滅菌蒸留水に溶解したものを用いればよい。好適には、経口投与することができる。   In the case of medical use, it can be used by general administration routes such as oral administration, tube administration, rectal administration, injection, administration by infusion. For oral administration, it can be mixed with the above composition itself or a pharmaceutically acceptable carrier, excipient, diluent, etc. to form powders, granules, tablets, capsules, troches, syrups, etc. . As an injection, an appropriate buffer, an isotonic agent or the like added and dissolved in sterilized distilled water may be used. Preferably, it can be administered orally.

本願発明のMet及びMet含有アミノ酸組成物は極めて安全であるので、その投与量は非常に広範に設定でき、更に、投与方法、使用目的により異なる。例えば、Met含量0.1%〜1%の溶液で1日1ml〜600mlくらいの範囲で経口投与できる。また、例えば、MetにGly及びGluを添加した組成物として使用する場合には、例えば、Met:Gly:Gluの比率は10:1〜10:1〜10で使用することができる。そして、本願発明の組成物は、鉄、葉酸、ビタミンB12などと併用して、その効果を更に高めることを期待できる。   Since the Met and Met-containing amino acid composition of the present invention are extremely safe, the dosage can be set in a very wide range, and further varies depending on the administration method and purpose of use. For example, it can be orally administered in a range of 1 ml to 600 ml per day in a solution having a Met content of 0.1% to 1%. For example, when using as a composition which added Gly and Glu to Met, the ratio of Met: Gly: Glu can be used at 10: 1-10: 1-10, for example. The composition of the present invention can be expected to further enhance the effect when used in combination with iron, folic acid, vitamin B12 and the like.

また、具体的には、例えば、10mg / 50kg body / day〜100g / 50kg body / day程度の範囲、好適には、100mg / 50kg body / day〜10g / 50kg body / day程度の範囲、より好適には、130mg / 50kg body / day程度の投与量が挙げられる。赤血球系幹細胞の増殖促進に有効なMetの濃度範囲としては、25μM〜50000μM、好適には30μM〜5000μM、より好適には、50μM〜3500μM、さらに好適には、50μM〜200μMの範囲を挙げることができる。赤芽球などから赤血球への分化を主とする場合に有効なMetの濃度範囲としては、25μM未満、好適には0.01μM〜20μM、より好適には0.1μM〜10μM さらに好適には0.1μM〜5μMの範囲を挙げることができる。   Specifically, for example, a range of about 10 mg / 50 kg body / day to 100 g / 50 kg body / day, preferably a range of about 100 mg / 50 kg body / day to 10 g / 50 kg body / day, more preferably The dosage is about 130 mg / 50 kg body / day. An effective Met concentration range for promoting the proliferation of erythroid stem cells is 25 μM to 50000 μM, preferably 30 μM to 5000 μM, more preferably 50 μM to 3500 μM, and even more preferably 50 μM to 200 μM. it can. The effective concentration range of Met when mainly differentiating erythroblasts into erythrocytes is less than 25 μM, preferably 0.01 μM to 20 μM, more preferably 0.1 μM to 10 μM, and even more preferably 0.1 μM to A range of 5 μM can be mentioned.

6.赤血球系幹細胞の培養
6−1.細胞培養添加剤
本願発明は、更に、Metを有効成分として含有する、赤血球系幹細胞の増殖促進又は/及び分化促進するための細胞培養培地添加剤を包含する。
6). Culturing of erythroid stem cells 6-1. Cell culture additive The present invention further includes a cell culture medium additive for promoting proliferation or / and differentiation of erythroid stem cells, containing Met as an active ingredient.

本願発明のMetを有効成分とする赤血球系幹細胞の増殖促進剤及び/または分化促進剤は、赤血球系幹細胞、つまり造血幹細胞、赤芽球バースト形成細胞(BFU−E:burst-forming-unit-erythroid)、赤芽球コロニー形成細胞(CFU-E:colony-forming-unit-erythroid)、前赤芽球、及び赤芽球などの赤血球前駆細胞の細胞培養培地に添加して用いることができる。これら赤血球系幹細胞用の細胞培養培地としては、いずれの培地でも良いが、例えば、商業上入手できる単分化能赤血球前駆細胞用培地などを挙げることができる。   The proliferation promoter and / or differentiation promoter for erythroid stem cells containing Met of the present invention as an active ingredient are erythroid stem cells, that is, hematopoietic stem cells, erythroblast burst-forming cells (BFU-E). ), Erythroblast colony-forming cells (CFU-E: colony-forming-unit-erythroid), pre-erythroblasts, and erythroid progenitor cells such as erythroblasts can be added to the cell culture medium. As the cell culture medium for these erythroid stem cells, any medium may be used, and examples thereof include a commercially available medium for monopotential erythroid progenitor cells.

前記の培地への添加濃度としては、まず、赤血球系幹細胞の増殖促進に有効なMetの濃度範囲としては、25μM〜50000μM、好適には30μM〜5000μM、より好適には、50μM〜3500μM、さらに好適には、50μM〜200μMの範囲を挙げることができる。また、赤血球系幹細胞の分化促進に有効なMet濃度範囲としては、25μM未満、好適には0.01μM〜20μM、より好適には0.1μM〜10μM さらに好適には0.1μM〜5μMの範囲を挙げることができる
6−2.赤血球系幹細胞の培養方法
本願発明は、赤血球系幹細胞を(1)Metを高濃度で含有する培地を用いて増殖させる工程、(2)Metを低濃度で含有する培地を用いて分化させる工程を包含する、赤血球系幹細胞の培養方法を含む。更に、本願発明には、(1)Metを高濃度で含有する培地を用いて赤血球系幹細胞を増殖させる工程、及び(2)前記(1)工程で増殖した赤血球系幹細胞を再びMetを低濃度で含有する培地を用いて分化させる工程により、分化促進作用をより一層増強する工程を包含する、赤血球系幹細胞の培養方法を含む。又本願発明には、低濃度と高濃度でMetを含有する培地を組み合わせて用いることにより、赤血球系幹細胞の増殖と分化を効率よく制御する工程を含む、赤血球系幹細胞の培養方法を含む。
As the concentration added to the medium, first, the Met concentration range effective for promoting the proliferation of erythroid stem cells is 25 μM to 50000 μM, preferably 30 μM to 5000 μM, more preferably 50 μM to 3500 μM, and more preferably Can include a range of 50 μM to 200 μM. The effective Met concentration range for promoting the differentiation of erythroid stem cells is less than 25 μM, preferably 0.01 μM to 20 μM, more preferably 0.1 μM to 10 μM, and even more preferably 0.1 μM to 5 μM. 6-2. Method of culturing erythroid stem cells The present invention comprises (1) a step of growing erythroid stem cells using a medium containing Met at a high concentration, and (2) a step of differentiating using a medium containing Met at a low concentration. And a method of culturing erythroid stem cells. Furthermore, the present invention includes (1) a step of proliferating erythroid stem cells using a medium containing Met at a high concentration, and (2) erythrocyte stem cells proliferated in the step (1) again with a low concentration of Met. A method of culturing erythroid stem cells, comprising a step of further enhancing the differentiation promoting action by the step of differentiating using the medium contained in 1. The present invention also includes a method for culturing erythroid stem cells, comprising a step of efficiently controlling the proliferation and differentiation of erythroid stem cells by using a combination of mediums containing Met at low and high concentrations.

前記の赤血球系幹細胞としては、前述のように、造血幹細胞、赤芽球バースト形成細胞(BFU−E:burst-forming-unit-erythroid)、赤芽球コロニー形成細胞(CFU-E:colony-forming-unit-erythroid)、前赤芽球、及び赤芽球などの赤血球前駆細胞が包含される。   As described above, the erythroid stem cells include hematopoietic stem cells, erythroblast burst-forming cells (BFU-E), and erythroid colony-forming cells (CFU-E). -unit-erythroid), proerythroblasts, and erythroid progenitors such as erythroblasts.

前記(1)工程で含有させる高濃度のMetの濃度としては、25μM〜50000μM、好適には、30μM〜5000μM、より好適には、50μM〜3500μM、さらに好適には、50μM〜200μMの範囲を挙げることができる。また、前記(2)工程で含有させる低濃度のMetの濃度としては、25μM未満、好適には、0.01μM〜20μM、より好適には、0.1μM〜10μM、 さらに好適には、0.1μM〜5μMの範囲を挙げることができる   The concentration of high-concentration Met contained in the step (1) is 25 μM to 50000 μM, preferably 30 μM to 5000 μM, more preferably 50 μM to 3500 μM, and even more preferably 50 μM to 200 μM. be able to. The concentration of the low concentration of Met contained in the step (2) is less than 25 μM, preferably 0.01 μM to 20 μM, more preferably 0.1 μM to 10 μM, and even more preferably 0.1 μM to 5 μM. Can range

アミノ酸の摂取による老齢マウスの抹消血ヘモグロビン量の増加
ICR雄性マウスを、20ヶ月齢まで自由飲水、MF飼料(オリエンタル酵母)の自由摂取条件で飼育し、体重により3群に群分けした(老齢マウス)。また、対照として、5週齢のICR雄性マウスを用いた(若齢マウス)。試験飼料には、表1に示すように、AIN-93M精製飼料(カゼイン含量14%)を基本飼料とし、この基本飼料に14%で含まれるカゼインの2%相当分をアミノ酸組成物に置換した飼料を用いた。試験期間中、飼料は自由摂取とした。
Amino acid intake increases peripheral blood hemoglobin in aged mice
ICR male mice were bred under free drinking water and MF diet (oriental yeast) up to 20 months of age and divided into 3 groups according to body weight (old mice). As a control, 5-week-old ICR male mice were used (young mice). As shown in Table 1, AIN-93M refined feed (casein content 14%) was used as the basic feed, and 2% of the casein contained in this basic feed was replaced with an amino acid composition. Feed was used. During the test period, feed was freely consumed.

アミノ酸を与える群では、表2に示すように、16種類のアミノ酸を混合したアミノ酸混合1(AAM1)を投与した群(老齢マウス(AAM1))と、必須アミノ酸を中心としたアミノ酸混合2(AAM2)を投与した群(老齢マウス(AAM2))の2群を設けた。対照としてAIN-93M精製飼料を与える群(カゼイン投与群)は、若齢マウス、老齢マウス(カゼイン)の各1群を設けた。

Figure 2009066562
Figure 2009066562
In the group giving amino acids, as shown in Table 2, the group (aged mouse (AAM1)) administered with amino acid mixture 1 (AAM1) mixed with 16 kinds of amino acids, and amino acid mixture 2 (AAM2) centered on essential amino acids. ) Group (aged mice (AAM2)). As a control, a group (casein administration group) fed with AIN-93M purified feed was provided with one group each of a young mouse and an old mouse (casein).
Figure 2009066562
Figure 2009066562

老齢マウス及び若齢マウスの各群の尾静脈より採血して、末梢血のヘモグロビン量を、ヘモグロビンB-テスト・ワコー(和光純薬)にて測定した。このとき、若齢マウスは5週齢、老齢マウスは各群とも20ヶ月齢であった。そして、若齢マウスはn=9、老齢マウスは各群ともn=15である。統計解析は、student's t-testを用い、若齢マウスに対する有意差検定を行った。   Blood was collected from the tail vein of each group of old mice and young mice, and the amount of hemoglobin in the peripheral blood was measured with hemoglobin B-Test Wako (Wako Pure Chemical Industries). At this time, young mice were 5 weeks old, and old mice were 20 months old in each group. And young mice have n = 9, and old mice have n = 15 in each group. Statistical analysis was performed using a student's t-test and a significant difference test for young mice.

結果を図1に示す。老齢マウスのカッコ内のAAM1は17種類のアミノ酸からなる混合物を投与する予定の群、AAM2は12種類のアミノ酸混合物を投与する予定の群を示す(アミノ酸の種類などは表1参照)。この投与前では、若齢マウスに比べて有意に、老齢マウスでヘモグロビン量の低下が認められ、造血機能の低下が示された。   The results are shown in FIG. AAM1 in parentheses of an aged mouse indicates a group scheduled to administer a mixture of 17 types of amino acids, and AAM2 indicates a group scheduled to administer a mixture of 12 types of amino acids (see Table 1 for types of amino acids). Prior to this administration, the amount of hemoglobin was significantly decreased in the aged mice compared to the young mice, indicating a decrease in hematopoietic function.

この後、それぞれの群の老齢マウスに、表1に示したアミノ酸混合AAM1又はAAM2を、2ヶ月間摂取させた。その後に、尾静脈より採血して、末梢血中のヘモグロビン量を同様に測定した。このとき、上記と同様に、若齢マウスはn=9、老齢マウスは各群ともn=15である。統計解析では、student's t-testを用い、カゼイン投与群の老齢マウスに対する有意差検定を行った。   Thereafter, the old mice of each group were ingested with the amino acid mixture AAM1 or AAM2 shown in Table 1 for 2 months. Thereafter, blood was collected from the tail vein, and the amount of hemoglobin in the peripheral blood was measured in the same manner. At this time, similarly to the above, n = 9 for young mice and n = 15 for each group of old mice. In the statistical analysis, a significant difference test for old mice in the casein administration group was performed using student's t-test.

結果を図2に示す。アミノ酸を摂取しなかった老齢マウスでは、ヘモグロビン量の回復は認められなかったが、アミノ酸を摂取させた老齢マウスの末梢血ヘモグロビン量は、若齢マウスと同レベルにまで回復した。これにより、アミノ酸混合物の経口摂取は赤血球造血機能を促進し、老化に伴い低下した抹消血ヘモグロビン量を効果的に上昇させることが示された。   The results are shown in FIG. Although the recovery of hemoglobin was not observed in the old mice that did not receive amino acids, the peripheral blood hemoglobin level of the old mice that received amino acids recovered to the same level as that of young mice. Thus, it was shown that ingestion of the amino acid mixture promotes the erythropoiesis function and effectively increases the amount of peripheral blood hemoglobin decreased with aging.

アミノ酸混合物によるマウス赤芽球様細胞(707fl.細胞)の細胞増殖の促進効果
実施例1において、加齢により低下する抹消血ヘモグロビン量を増加させたアミノ酸の本体を同定するため、707fl.細胞(ECACC(European Collection of Cell Cultures)標準株の細胞を購入した。)を用いて検討した。707fl.細胞は赤血球に分化可能なマウス脾臓由来の赤芽球様細胞である。この707fl.細胞を、RPMI1640培地(SIGMA)に最終濃度が5%の濃度となるように牛胎児血清を添加した培地(5%牛胎児血清含RPMI1640培地)で培養した。アッセイ開始時に、約1×104 cell/wellで、96穴マイクロプレートに細胞を播種し、そこにアミノ酸混合物を種々の濃度(0.5%〜0.001%程度)で添加した。その際に、アミノ酸混合物のpHを中性付近に調整して添加した。この状態で細胞を3日間、培養した後に、WST-1アッセイ法により細胞の増殖を測定した。すなわち、10μlのPremix WST-1試薬(タカラバイオ)を各ウェル(well)に加え、炭酸ガスインキュベーター内で1〜4時間、インキュベーションし、生きている細胞中のミトコンドリア内脱水素酵素によるWST-1の開裂により生成されるホルマザンの量を、A450nm(リファレンスA655nm)で測定した。
Effect of Promoting Cell Proliferation of Mouse Erythrocyte-like Cells (707fl. Cells) by Amino Acid Mixture In Example 1, in order to identify the main body of amino acids that increased the amount of peripheral blood hemoglobin decreased by aging, 707fl. Cells ( ECACC (European Collection of Cell Cultures standard cells) was purchased). 707fl. Cells are erythroblast-like cells derived from mouse spleen that can differentiate into erythrocytes. The 707 fl. Cells were cultured in a RPMI1640 medium (SIGMA) supplemented with fetal calf serum so that the final concentration was 5% (RPMI1640 medium containing 5% fetal calf serum). At assay starting at about 1 × 10 4 cell / well, the cells were seeded in 96-well microplate were added thereto an amino acid mixture in various concentrations (0.5% to 0.001%). At that time, the pH of the amino acid mixture was adjusted to around neutral and added. After culturing the cells for 3 days in this state, cell proliferation was measured by the WST-1 assay. That is, 10 μl of Premix WST-1 reagent (Takara Bio) is added to each well, incubated for 1 to 4 hours in a carbon dioxide incubator, and WST-1 by mitochondrial dehydrogenase in living cells. The amount of formazan produced by the cleavage of was measured at A450nm (reference A655nm).

まず、必須アミノ酸を中心とした12種類のアミノ酸混合物であるAAM2、および9種類の必須アミノ酸混合物であるAAM3について検討した(アミノ酸の種類などは表2参照)。   First, AAM2, which is a mixture of 12 amino acids centered on essential amino acids, and AAM3, which is a mixture of 9 essential amino acids, were examined (see Table 2 for the types of amino acids).

結果を図3に示す。AAM2およびAAM3の両者に707fl.細胞の増殖を促進する効果が認められた。上記の結果は、実施例1における老齢マウスを用いた結果と一致しており、この707fl.細胞を用いた評価系が、赤血球系幹細胞に対するアミノ酸の増殖促進効果を推定するのに有効であることが示された。   The results are shown in FIG. Both AAM2 and AAM3 were effective in promoting the growth of 707 fl. Cells. The above results are consistent with the results obtained using the aged mice in Example 1, and the evaluation system using 707fl. Cells is effective in estimating the effect of promoting amino acid proliferation on erythroid stem cells. It has been shown.

赤血球系幹細胞に対する増殖促進活性の本体となるアミノ酸の特定
実施例2において、赤芽球様細胞に対する増殖促進活性が認められた必須アミノ酸混合物のAAM3から、2ないし3種のアミノ酸を除いた混合物を細胞培養用培地である5%牛胎児血清含RPMI1640培地に溶解した。ここでアミノ酸を除く際の組合せは、分枝鎖アミノ酸(Val、Leu、Ile)、塩基性アミノ酸(His、Lys)、芳香族アミノ酸(Trp、Phe)、その他のアミノ酸(Met、Thr)とした。また、このとき、個々のアミノ酸濃度は、基本となるAAM3の1%溶液に含まれる濃度と等しくなるようにした。各アミノ酸溶液の2倍希釈の系列を50μlで、96穴マイクロプレートに分注した。そこに適当に希釈した細胞(約1×104cell)を50μlで加え、炭酸ガスインキュベーター内で3日間、培養した。この後に、10μlのWST-1試薬を各ウェル(well)に加え、炭酸ガスインキュベーター内で1〜4時間、インキュベーションし、A450nm(リファレンスA655nm)を測定し、細胞増殖を確認した。
Identification of Amino Acids as the Main Body of Growth Promoting Activity against Erythroid Stem Cells In Example 2, a mixture obtained by removing 2 to 3 amino acids from AAM3, an essential amino acid mixture in which growth promoting activity against erythroblast-like cells was observed It was dissolved in RPMI1640 medium containing 5% fetal calf serum, which is a cell culture medium. Here, the combinations when excluding amino acids were branched chain amino acids (Val, Leu, Ile), basic amino acids (His, Lys), aromatic amino acids (Trp, Phe), and other amino acids (Met, Thr). . At this time, the concentration of each amino acid was made equal to the concentration contained in the basic 1% solution of AAM3. A series of 2-fold dilution of each amino acid solution was dispensed at 50 μl into a 96-well microplate. An appropriately diluted cell (about 1 × 10 4 cell) was added at 50 μl, and cultured in a carbon dioxide incubator for 3 days. Thereafter, 10 μl of WST-1 reagent was added to each well, incubated for 1 to 4 hours in a carbon dioxide incubator, and A450 nm (reference A655 nm) was measured to confirm cell proliferation.

結果を図4に示す。707fl.細胞に対する増殖促進活性は、AAM3およびAAM3より各アミノ酸を除いた混合物の大半において、濃度が0.004%〜0.008%の範囲において確認された。しかしながら、MetとThrを除いた際に、細胞の増殖促進活性が認められず、赤芽球様細胞に対する増殖促進活性の本体はMetあるいはThrである可能性が強く示された。   The results are shown in FIG. The growth promoting activity against 707fl. Cells was confirmed in the range of 0.004% to 0.008% in most of AAM3 and the mixture obtained by removing each amino acid from AAM3. However, when Met and Thr were removed, cell growth promoting activity was not observed, and it was strongly suggested that the body of growth promoting activity against erythroblast-like cells might be Met or Thr.

そこで、更に、上記と同様な方法で、MetとThrの赤芽球様細胞に対する増殖促進活性を検討した。   Therefore, the proliferation promoting activity of Met and Thr against erythroblast-like cells was further examined by the same method as described above.

結果を図5に示す。Metには赤芽球様細胞に対する増殖促進活性が認められたが、Thrには増殖促進活性は認められず、増殖促進活性の大部分がMetに依存していることが示された。また、Metの赤芽球様細胞に対する増殖促進活性の至適濃度は、約1〜5μg/mlと推定された。一方、AAM3の赤芽球様細胞に対する増殖促進活性は、0.005%(W/V)付近で認められており、このときに含まれるMet量は全体の3.3%(W/V)=1.65μg/mlとなり、今回の結果とほぼ一致した。   The results are shown in FIG. Met showed growth promoting activity against erythroblast-like cells, but Thr did not show growth promoting activity, indicating that most of the growth promoting activity was dependent on Met. In addition, the optimum concentration of Met to promote the proliferation of erythroblast-like cells was estimated to be about 1 to 5 μg / ml. On the other hand, the growth promoting activity of AAM3 on erythroblast-like cells was observed around 0.005% (W / V), and the amount of Met contained at this time was 3.3% (W / V) = 1.65 μg / ml, which is almost in agreement with the current result.

ここで、Metを過剰に摂取すると、副作用で溶血性貧血が惹起されることが報告されている。また、この現象が、Gly、Ser、Thrなどのアミノ酸によって抑制されることも報告されている。上記の現象とMetの赤芽球様細胞に対する細胞増殖促進効果とから、Metを過剰に摂取した場合には、造血組織での赤血球系幹細胞の増殖が過度に促進され、不完全な赤血球が生産されることで溶血が促進し、貧血が誘導されることが推定される。   Here, it has been reported that excessive intake of Met causes hemolytic anemia as a side effect. It has also been reported that this phenomenon is suppressed by amino acids such as Gly, Ser, and Thr. Based on the above phenomenon and the effect of Met on cell proliferation promotion on erythroblast-like cells, when Met is ingested excessively, the proliferation of erythroid stem cells in hematopoietic tissues is excessively promoted and incomplete red blood cells are produced. It is estimated that hemolysis is promoted and anemia is induced.

またGlyなどのアミノ酸により、Met過剰摂取で誘導される溶血性貧血が抑制される理由は、生体成分の材料として必要とされるアミノ酸の追加は、造血における補助要件として有効であるからと考えられる。つまり、Metの細胞増殖促進の誘導において、赤血球に必要なグルタチオン、赤血球中のヘムの材料となる生体成分であるGly及びサクシニルCoA、さらには、サクシニルCoAの材料となる生体成分である分岐鎖アミノ酸(BCAA)やMet、Glyの合成の材料になるSer、また、サクシニルCoAはクエン酸サイクルからも供給されるので、クエン酸サイクルに関わる生体成分の材料となるアミノ酸が追加されることは、造血における補助用件と考えられる。アミノ酸の関与は、赤血球合成のための生体成分の材料となるだけでなく、例えばGlyが、サクシニルCoAとの量的バランスを取ることによる効果もあると考えられる。またGlyは、細胞分裂に必要な核酸の合成、グルタチオンやクレアチンの生合成の材料でもあるためと考えられる。 The reason why hemolytic anemia induced by Met overdose is suppressed by amino acids such as Gly is thought to be because the addition of amino acids required as a material for biological components is effective as an auxiliary requirement in hematopoiesis . In other words, glutathione required for erythrocytes, Gly and succinyl CoA, which are the components of heme in erythrocytes, and branched chain amino acids, which are the components of succinyl CoA, in the induction of Met cell proliferation. (BCAA), Met, Gly synthetic material Ser, and succinyl CoA are also supplied from the citric acid cycle, so the addition of amino acids as the material of the biological components involved in the citric acid cycle This is considered to be an auxiliary requirement. Involvement of amino acids is considered not only to be a material of a biological component for erythrocyte synthesis but also to have an effect due to, for example, a quantitative balance between Gly and succinyl CoA. Gly is also considered to be a material for the synthesis of nucleic acids necessary for cell division and the biosynthesis of glutathione and creatine.

ヒト由来血球系細胞に対するアミノ酸の増殖促進効果
ヒト細胞でも同様に、Metの細胞増殖の促進効果を検討した。ヒト細胞には、慢性骨髄性白血病(赤白血病)由来のK562細胞と赤芽球性白血病由来のHEL92.1.7細胞(いずれも、ECACC(European Collection of Cell Cultures)標準株の細胞を購入した。)を用いた。いずれの細胞ともに、赤血球に分化させられることが報告されている。アッセイ開始時に、約1×104 cell/wellで、96穴マイクロプレートに細胞を播種し、そこに、アミノ酸混合物を種々の濃度(0.5%〜0.008%程度)で添加した。また、その際に、アミノ酸混合物のpHを中性付近に調整して添加した。この状態で3〜4日、培養した後に、WST-1アッセイ法により細胞の増殖を確認した。
Amino acid growth-promoting effect on human-derived hematopoietic cells The effect of Met on cell proliferation was also examined in human cells. As human cells, K562 cells derived from chronic myeloid leukemia (erythroleukemia) and HEL92.1.7 cells derived from erythroblastic leukemia (both purchased cells from ECACC (European Collection of Cell Cultures) standard strain). Was used. Both cells have been reported to be differentiated into erythrocytes. At the start of the assay, cells were seeded in a 96-well microplate at about 1 × 10 4 cells / well, and the amino acid mixture was added thereto at various concentrations (about 0.5% to 0.008%). At that time, the pH of the amino acid mixture was adjusted to around neutral and added. After culturing in this state for 3 to 4 days, cell proliferation was confirmed by WST-1 assay.

結果を図6と図7に示す。K562細胞およびHEL92.1.7細胞に対しても、707fl.細胞と同様に、アミノ酸混合物による増殖促進効果が認められた。更に、AAM2よりも必須アミノ酸混合物であるAAM3の方に、より高い細胞増殖に対する促進効果が認められた。以上の検討から、必須アミノ酸は、ヒトでもマウスと同様に、赤血球造血に対する促進効果のあることが示唆された。   The results are shown in FIGS. Similarly to 707fl. Cells, the proliferation promoting effect by the amino acid mixture was also observed for K562 cells and HEL92.1.7 cells. Further, AAM3, which is an essential amino acid mixture, was found to have a higher promoting effect on cell proliferation than AAM2. From the above study, it was suggested that essential amino acids have a promoting effect on erythropoiesis in humans as in mice.

707fl.細胞の増殖に必要なMet量
707fl.細胞の増殖に必要なメチオニンの濃度の影響を検討した。
707fl. Met amount required for cell growth
The effect of methionine concentration required for cell growth was examined.

基本培地であるRPMI1640よりメチオニンを除いた培地(Met不含RPMI1640培地)(フナコシ)に5%終濃度で牛胎児血清を添加した(5%牛胎血清含Met不含RPMI1640培地)。また5%牛胎児血清含Met不含RPMI1640培地で100mM Met溶液を調製した。5%牛胎児血清含Met不含RPMI1640培地で、上記Met溶液の2倍希釈系列を作製し、50μl/wellで96穴マイクロプレートに分注した。さらに2×105 cell/mlになるように707fl.細胞を5%牛胎児血清含Met不含RPMI1640培地に懸濁し、50μl/wellでMet希釈系列の入ったウェルに加えた。炭酸ガスインキュベーター中で3日間、培養した後に、WST-1アッセイ法により細胞増殖の程度を確認した。Fetal bovine serum was added at a final concentration of 5% (Met-free RPMI1640 medium containing 5% fetal calf serum) to a medium (Met-free RPMI1640 medium) (Funakoshi) obtained by removing methionine from RPMI1640, which is a basic medium. A 100 mM Met solution was prepared in 5% fetal bovine serum-containing Met-free RPMI1640 medium. A 2-fold dilution series of the above Met solution was prepared with 5% fetal bovine serum-containing Met-free RPMI1640 medium, and dispensed into a 96-well microplate at 50 μl / well. Further, 707 fl. Cells were suspended in 5% fetal bovine serum-containing Met-free RPMI1640 medium at 2 × 10 5 cells / ml, and added to wells containing Met dilution series at 50 μl / well. After culturing for 3 days in a carbon dioxide incubator, the degree of cell proliferation was confirmed by the WST-1 assay.

結果を図8に示す。Metの濃度が25μM〜50000μMで、707fl.細胞の 細胞増殖の促進効果が認められ、50μM〜200μMの濃度において最も高い細胞増殖促進効果が認められた。   The results are shown in FIG. When the Met concentration was 25 μM to 50000 μM, a cell growth promoting effect of 707 fl. Cells was observed, and the highest cell growth promoting effect was observed at a concentration of 50 μM to 200 μM.

高濃度Metによる細胞増殖阻害を緩和するアミノ酸の検討
実施例3に示されるように、高濃度のMetは細胞の増殖に最適なMetの濃度のときと比べて707fl.細胞の増殖を阻害する。そこで、これを緩和することを指標として、高濃度Metによる増殖阻害活性を緩和するアミノ酸の検討を行った。試験に供する各アミノ酸としては、(イ)Thr、又は(ロ)Gly及びGluを用い、それぞれMetと同重量混合したものを作製した。各アミノ酸混合物を細胞培養用培地である5%牛胎児血清含RPMI1640培地に溶解し、その希釈系列50μlを96穴マイクロプレートに分注した。そこに適当に希釈した細胞(およそ5×104 cell/50μl)50μlを加え、炭酸ガスインキュベーター内で3日間培養した。この後、10μlのWST-1試薬を各ウェルに加え、さらに2〜4時間インキュベーションし、A450nm(リファレンスA655nm)を測定し、細胞増殖を比較した。
Examination of amino acids that mitigate cell growth inhibition by high concentration Met As shown in Example 3, high concentration Met inhibits the growth of 707 fl. Cells compared to the case of Met concentration optimal for cell growth. Thus, amino acids that mitigate the growth inhibitory activity caused by high concentrations of Met were examined using mitigation as an index. As each amino acid to be used in the test, (i) Thr, or (b) Gly and Glu were used, which were each mixed with the same weight as Met. Each amino acid mixture was dissolved in 5% fetal calf serum-containing RPMI1640 medium, which is a cell culture medium, and 50 μl of the dilution series was dispensed into a 96-well microplate. 50 μl of appropriately diluted cells (approximately 5 × 10 4 cells / 50 μl) were added thereto, and the cells were cultured in a carbon dioxide incubator for 3 days. After this, 10 μl of WST-1 reagent was added to each well, further incubated for 2-4 hours, A450 nm (reference A655 nm) was measured, and cell proliferation was compared.

結果を図9に示す。Met、12.5μg/mlの濃度以上において、細胞増殖阻害が検出された。ThrをMetと同濃度共存させた場合には、12.5μg/ml 以上25μg/ml未満の範囲まで阻害活性を遅延させることが可能であった。これに対してGlyとGluをそれぞれMetと同濃度共存させた場合、50μg/ml以上のMetが及ぼす増殖阻害効果の抑制が認められ、Thrよりも高い効果があることが示された。   The results are shown in FIG. Cell growth inhibition was detected at a concentration of Met, 12.5 μg / ml and above. When Thr was present in the same concentration as Met, the inhibitory activity could be delayed to a range of 12.5 μg / ml or more and less than 25 μg / ml. On the other hand, when Gly and Glu were allowed to coexist with Met at the same concentration, suppression of the growth inhibitory effect exerted by 50 μg / ml or more of Met was observed, indicating that the effect was higher than Thr.

抗癌剤アクチノマイシンD誘導貧血モデルにおけるMetの有効性の検討
[方法]
導入したマウスは10日間馴化した。馴化7日目に尾静脈より血液を10μl採取し、ヘモグロビン(Hb)量を測定した。また体重も測定し、Hb量と体重により群分けを行った。群分け後、マウスに対して、5日間連続でアクチノマイシンDの腹腔内投与を2日間のインターバルを入れて2回行った。投与量はマウス腹腔内5日間連続投与時のLD50の半分量である0.07mg/kg body mass/dayとした。またアクチノマイシンDは、生理食塩水に溶解した後、100μl/bodyで投与を行った。また、アクチノマイシンDではなく生理食塩水を100μl/bodyの投与量で腹空内投与し、陰性対照群とした。
Efficacy of Met in the anticancer drug actinomycin D-induced anemia model [method]
The introduced mice were acclimated for 10 days. On the seventh day of acclimatization, 10 μl of blood was collected from the tail vein and the amount of hemoglobin (Hb) was measured. The body weight was also measured and divided into groups based on Hb amount and body weight. After grouping, the mice were given intraperitoneal administration of actinomycin D twice for 5 consecutive days with an interval of 2 days. The dose was 0.07 mg / kg body mass / day, which is half of the LD50 when administered intraperitoneally for 5 days in the mouse. Actinomycin D was dissolved in physiological saline and administered at 100 μl / body. Further, physiological saline, not actinomycin D, was intraperitoneally administered at a dose of 100 μl / body to serve as a negative control group.

アクチノマイシンD投与開始時より試験終了時まで、アミノ酸水溶液又は滅菌水の強制経口投与を行った。Met水溶液の濃度は0.2%、1%、5%水溶液とした。陰性対照として滅菌水を用いた。また、造血効果に関するアミノ酸水溶液の陰性対照として1%Thr水溶液を用いた。投与量はいずれのアミノ酸水溶液又は滅菌水とも、200μl/body/dayとした。   From the start of actinomycin D administration to the end of the test, an amino acid aqueous solution or sterilized water was forcibly administered orally. The concentration of the Met aqueous solution was 0.2%, 1%, and 5% aqueous solution. Sterile water was used as a negative control. A 1% Thr aqueous solution was used as a negative control for the amino acid aqueous solution related to the hematopoietic effect. The dosage was 200 μl / body / day for any amino acid aqueous solution or sterilized water.

試験期間中は、適当な頻度で尾静脈より10μlの血液を採取し、Hb量を測定した。 During the test period, 10 μl of blood was collected from the tail vein at an appropriate frequency, and the amount of Hb was measured.

上記試験終了後、マウスは麻酔下で全採血して殺処分し、脾臓および骨髄組織を採取して遺伝子解析を行った。   After completion of the above test, the mice were subjected to whole blood collection under anesthesia and sacrificed, and spleen and bone marrow tissues were collected for gene analysis.

なお群構成(各群10匹)は次のとおりである。   The group composition (10 animals in each group) is as follows.

第1群:生理食塩水腹腔内投与、滅菌水経口投与群
第2群:アクチノマイシンD(0.07mg/kg body mass/ day)腹腔内投与、滅菌水経口投与群
第3群:アクチノマイシンD(0.07mg/kg body mass/ day)腹腔内投与、1%Thr水溶液経口投与群
第4群:アクチノマイシンD(0.07mg/kg body mass/ day)腹腔内投与、0.2%Met水溶液経口投与群
第5群:アクチノマイシンD(0.07mg/kg body mass/ day)腹腔内投与、1.0%Met水溶液経口投与群
第6群:アクチノマイシンD(0.07mg/kg body mass/ day)腹腔内投与、5.0%Met水溶液経口投与群
[結果]
試験期間中の末梢血Hb量の変動を測定した結果を図10に示す。投与開始17日後にHb量の低下が最大となった。投与開始から17日後の抹消血Hb量を図11に示す。このとき、1%Thr水溶液投与群は滅菌水投与群と統計的有意差が認められなかった。これに対して0.2%Met水溶液投与群では、Hb量の上昇傾向が認められ、さらに1%と5%Met水溶液投与群では有意差を持って上昇が認められた。
Group 1: Intraperitoneal saline, oral sterilized water group Group 2: Actinomycin D (0.07 mg / kg body mass / day) intraperitoneal, sterile water oral group 3: Actinomycin D ( 0.07mg / kg body mass / day) Intraperitoneal administration, 1% Thr aqueous solution oral administration group Group 4: Actinomycin D (0.07mg / kg body mass / day) intraperitoneal administration, 0.2% Met aqueous solution oral administration group 5 Group: Actinomycin D (0.07mg / kg body mass / day) intraperitoneal administration, 1.0% Met aqueous solution oral administration group Group 6: Actinomycin D (0.07mg / kg body mass / day) intraperitoneal administration, 5.0% Met Oral solution administration group [Result]
FIG. 10 shows the results of measuring the fluctuation of the peripheral blood Hb amount during the test period. The decrease in Hb amount reached the maximum 17 days after the start of administration. FIG. 11 shows the amount of peripheral blood Hb 17 days after the start of administration. At this time, the 1% Thr aqueous solution administration group was not statistically different from the sterilized water administration group. On the other hand, in the 0.2% Met aqueous solution administration group, an increasing tendency of Hb was observed, and in the 1% and 5% Met aqueous solution administration groups, there was a significant difference.

本試験により、Metに骨髄機能抑制に伴う貧血を抑制あるいは改善する効果のあることが再度確認できた。骨髄機能抑制に伴う貧血を抑制あるいは改善するためには、Met濃度1%の経口摂取で十分効果があることが判明したが、Met濃度0.2%でも効果が期待できる。1%Metの投与量をヒトに換算した場合、体表面積換算でおよそ130mg / 50kg body / dayとなる。これはヒトに対して十分投与可能な量である。Metの赤血球造血促進効果は、老齢マウスにおいて低下する末梢血Hb量を回復するだけでなく、抗癌剤の副作用に起因する貧血に対しても効果があることが確認された。 This study confirmed again that Met has the effect of suppressing or improving anemia associated with suppression of bone marrow function. In order to suppress or ameliorate anemia associated with bone marrow function suppression, oral ingestion at a Met concentration of 1% was found to be sufficiently effective, but an effect can also be expected at a Met concentration of 0.2%. When the dose of 1% Met is converted to human, it is approximately 130 mg / 50 kg body / day in terms of body surface area. This is an amount that can be sufficiently administered to humans. It was confirmed that Met's erythropoiesis-promoting effect was effective not only for recovering the amount of peripheral blood Hb decreased in old mice, but also for anemia caused by side effects of anticancer drugs.

Met投与アクチノマイシンD誘導貧血マウスの脾臓および骨髄の遺伝子発現量解析
〔方法〕
実施例7に供されたマウスから脾臓と骨髄組織を採取し、組織の約10倍容のAmbion社製RNAレイター試薬に浸け4℃一晩静置した。処理後の組織はRNAを抽出するまで-80℃で保存した。保存組織からのRNA抽出および精製はキアゲン社のRNeasyキットを用い、添付の手順書にしたがって行った。精製後のRNAの品質は、Agilent社のバイオアナライザーを用いて確認した。さらに精製したRNAを用いDNAマイクロアレイ解析を、Affymetrix社のGeneChip、マウス430_2.0アレイを用いて行った。アクチノマイシンD投与で貧血を誘導したマウスへの1%Met投与の効果(実施例7第5群に供されたマウス)を、アクチノマイシンDで貧血を誘導し滅菌水を投与したアミノ酸投与群の対照となるマウス(実施例7第2群に供されたマウス)との遺伝子発現量の比較により検討した。
Analysis of gene expression levels in spleen and bone marrow of Met-administered actinomycin D-induced anemia mice
Spleen and bone marrow tissues were collected from the mice provided in Example 7, immersed in an RNA rater reagent manufactured by Ambion about 10 times the volume of the tissues, and allowed to stand overnight at 4 ° C. The treated tissue was stored at −80 ° C. until RNA was extracted. RNA extraction and purification from the preserved tissue was performed using Qiagen RNeasy kit according to the attached manual. The quality of the RNA after purification was confirmed using an Agilent bioanalyzer. Further, DNA microarray analysis using purified RNA was performed using Affymetrix GeneChip, mouse 430_2.0 array. The effect of administration of 1% Met to mice in which anemia was induced by actinomycin D administration (in mice subjected to Example 7 group 5) was compared with that in the amino acid administration group in which anemia was induced by actinomycin D and sterilized water was administered. It examined by comparison of the gene expression level with the mouse | mouth used as a control | contrast (The mouse | mouth used for Example 7 2nd group).

〔結果〕
1%Met投与により発現が上昇した赤血球関連遺伝子を表3に示した。なお、アクチノマイシンDにより貧血を誘導し、かつ滅菌水を投与したマウスの各遺伝子の発現量に対する相対発現量が数値で表3に示されている。
〔result〕
Table 3 shows erythrocyte-related genes whose expression was increased by administration of 1% Met. Table 3 shows the relative expression levels relative to the expression levels of each gene in mice in which anemia was induced with actinomycin D and sterilized water was administered.

マウスの赤血球造血組織である脾臓および骨髄の両者において、赤血球に関連する遺伝子の多くは滅菌水を投与したマウスに比べて上昇した。この結果、Metの投与により赤血球の分化が促進していることが示された。また発現上昇している遺伝子は、骨髄幹細胞からCFU-Eにまで発現しているc-kit(別名CD117膜貫通型チロシンキナーゼで、コロニー形成細胞など造血前駆細胞に発現しているがB細胞系の前駆細胞には発現していない。CD117とリガンドとの相互作用は造血に重要である。)およびそのリガンド(幹細胞因子:SCFとも言われる。)から、CFU-E以降の分化段階で発現量が増すトランスフェリン受容体(CD71)、ヘム合成酵素や赤血球膜タンパク質にまで及んでいる。したがって、Metの効果は、赤血球に分化が決まった単能性幹細胞から赤芽球までの広い範囲に及んでいると言える。

Figure 2009066562
In both spleen and bone marrow, which are erythropoietic tissues of mice, many of the genes associated with erythrocytes were elevated compared to mice administered with sterilized water. As a result, it was shown that the administration of Met promotes the differentiation of erythrocytes. In addition, the up-regulated genes are c-kit (also known as CD117 transmembrane tyrosine kinase) expressed from bone marrow stem cells to CFU-E and expressed in hematopoietic progenitor cells such as colony-forming cells, but B cell lineage (The interaction between CD117 and ligand is important for hematopoiesis.) And its ligand (stem cell factor: also referred to as SCF). It extends to transferrin receptor (CD71), heme synthase and erythrocyte membrane protein. Therefore, it can be said that the effect of Met extends over a wide range from unipotent stem cells differentiated into erythrocytes to erythroblasts.
Figure 2009066562

Metの濃度と赤芽球様細胞の分化と増殖促進効果との関係
マウスあるいはヒトの血漿中のMetの濃度は、およそ30μM前後である。更に主要な造血組織である骨髄となると、その組織液中のMet濃度は検出限界以下(<3μM)となる。したがって、通常生体の造血組織における細胞外Met濃度は、In vitroにおける細胞培養条件に比べてかなり低いと考えられる。また前出の図8から、赤芽球様細胞に対して、Metは25μM〜50000μMで増殖促進効果を示すことが分かる。
Relationship between Met concentration and erythroblast-like cell differentiation and proliferation promoting effect The concentration of Met in mouse or human plasma is about 30 μM. Furthermore, in the case of bone marrow, which is the main hematopoietic tissue, the Met concentration in the tissue fluid is below the detection limit (<3 μM). Therefore, the extracellular Met concentration in normal hematopoietic tissues is considered to be considerably lower than in vitro cell culture conditions. Moreover, from FIG. 8 mentioned above, it can be seen that Met shows a growth promoting effect at 25 μM to 50000 μM against erythroblast-like cells.

そこで、赤芽球様細胞に対して増殖促進効果を示す150μMの濃度でMetが存在する場合と、骨髄液同様にMetがほぼ存在しない場合の707fl.細胞の遺伝子発現を比較検討した。 Therefore, we compared the gene expression of 707fl. Cells when Met was present at a concentration of 150 μM, which showed a growth promoting effect on erythroblast-like cells, and when there was almost no Met as in the case of bone marrow fluid.

〔方法〕
Met不含RPMI1640培地に、最終濃度5%の濃度となるように牛胎児血清を添加した培地(5%牛胎児血清含Met不含RPMI1640培地)を調製した。さらに上記培地に各々の濃度となるようMet添加した培地(各濃度Met含5%牛胎児血清含RPMI1640培地)を調製した。
〔Method〕
A medium in which fetal bovine serum was added to a Met-free RPMI1640 medium to a final concentration of 5% (5% fetal bovine serum-containing Met-free RPMI1640 medium) was prepared. Further, a medium (MRP containing 5% fetal bovine serum-containing RPMI1640 medium containing each concentration of Met) was prepared by adding Met to the above-mentioned medium to have each concentration.

707fl.細胞を30μM Met含5%牛胎児血清含RPMI1640培地で3日間培養した。培養後の細胞は2分して集め、一方はおよそ5×105 cell/mlの濃度で5%牛胎児血清含Met不含RPMI1640培地に再懸濁した。ここで5%牛胎児血清含Met不含RPMI1640培地は、5%のウシ胎児血清を添加してあるため、およそ1〜3μM 程度の血清由来のMetが含まれている。もう一方は、およそ5×105 Cell/mlの濃度で150μM Met含5%牛胎児血清含RPMI1640培地に再懸濁した。さらに各条件の細胞は3分割して、それぞれ24時間培養した後、細胞培養液の一部を取ってWST-1アッセイ法により細胞増殖の程度を確認した。707 fl. Cells were cultured in RPMI1640 medium containing 5% fetal bovine serum containing 30 μM Met for 3 days. The cultured cells were collected in two minutes, and one was resuspended in RPMI1640 medium containing 5% fetal bovine serum and not containing Met at a concentration of about 5 × 10 5 cells / ml. Here, the 5% fetal bovine serum-containing Met-free RPMI1640 medium contains 5% fetal bovine serum and therefore contains about 1 to 3 μM of serum-derived Met. The other was resuspended in RPMI1640 medium containing 5% fetal calf serum containing 150 μM Met at a concentration of approximately 5 × 10 5 cells / ml. Further, the cells under each condition were divided into 3 parts and cultured for 24 hours, respectively, and a portion of the cell culture solution was taken and the degree of cell proliferation was confirmed by the WST-1 assay.

〔結果〕
150μM Met含5%牛胎児血清含RPMI1640培地で培養した細胞(150μM Met)は、5%牛胎児血清含Met不含RPMI1640培地で培養した細胞(>3μM Met)と比べて有意に細胞数の増加が認められた(図12)。さらにこれらの細胞からRNAを抽出し、リアルタイムPCRにより赤血球関連マーカー遺伝子の発現量を比較検討した。赤血球分化マーカーとしては、赤血球の細胞膜状に豊富かつ特異的に存在するタンパク質であるグリコフォリンAと、ヘム生合成系の酵素で律速酵素のひとつであるフェロケラターゼの遺伝子の発現量を測定した。またこのとき、リファレンス遺伝子としては、ベータ・アクチンを用いた。その結果、5%牛胎児血清含Met不含RPMI1640培地で培養した細胞(>3μM Met)では、150μM Met含5%牛胎児血清含RPMI1640培地で培養した細胞(150μM Met)と比べて両遺伝子の発現は有意に高くなっていた(図13)。したがって、通常よりも高い濃度でMetが存在した場合には、赤血球系幹細胞は分化よりも増殖が促進され、逆にMetが低い濃度に変化した場合には増殖よりも分化がより促進されることが示された。上記の結果より、赤血球系幹細胞にはMet濃度を感じ取るセンサー機能が備わっており、細胞外のMetの濃度により巧妙に増殖と分化がコントロールされると考えられた。
〔result〕
Cells cultured in RPMI1640 medium containing 150% Met containing 5% fetal bovine serum (150µM Met) increased significantly compared to cells cultured in RPMI1640 medium containing no 5% fetal calf serum (> 3µM Met) Was observed (Figure 12). Furthermore, RNA was extracted from these cells, and the expression levels of erythrocyte-related marker genes were compared by real-time PCR. As the erythroid differentiation marker, the expression level of the gene for glycophorin A, a protein that is abundant and specifically present in the cell membrane of erythrocytes, and ferrochelatase, which is one of the rate-limiting enzymes of heme biosynthesis, was measured. At this time, beta actin was used as a reference gene. As a result, the cells cultured in 5% fetal bovine serum-containing Met-free RPMI1640 medium (> 3μM Met) were compared to the cells cultured in 150μM Met-containing 5% fetal bovine serum-containing RPMI1640 medium (150μM Met). Expression was significantly higher (Figure 13). Therefore, when Met is present at a higher concentration than normal, erythroid stem cells are more proliferating than differentiation, and conversely, when Met is changed to a lower concentration, differentiation is more promoted than proliferation. It has been shown. From the above results, it was considered that the erythroid stem cells have a sensor function that senses the Met concentration, and that proliferation and differentiation are skillfully controlled by the extracellular Met concentration.

Met濃度の変化に伴う赤芽球様細胞の分化と増殖促進効果との関係
〔方法〕
5%牛胎児血清含Met不含RPMI1640培地に、さらに150μMの濃度となるようMetを添加し、さらにそこに1%の終濃度となるようにdimethyl sulfoxide(DMSO)を添加した培地(150μMMet含5%牛胎児血清含1%DMSO含RPMI1640培地)を調製した。
Relationship between erythroblast-like cell differentiation and growth-promoting effect with changes in Met concentration [method]
Add 5% fetal bovine serum-containing Met-free RPMI1640 medium to a concentration of 150 μM, and then add dimethyl sulfoxide (DMSO) to a final concentration of 1% (containing 150 μMMet) 1% DMSO-containing RPMI1640 medium containing 1% fetal bovine serum) was prepared.

30μM Met含5%牛胎児血清含RPMI1640培地(30μM)にて707fl.細胞を第1〜5までの5つのグループに分けて、3日間培養した。その後、第1のグループは、再度30μM Met含5%牛胎児血清含RPMI1640培地(30μM)に、第2−4グループは、150μM Met含5%牛胎児血清含RPMI1640培地(150μM)に、第5グループは、50μM Met含5%牛胎児血清含1%DMSO含RPMI1640培地(150μM+1%DMSO)にそれぞれ交換し、24時間培養した。 707 fl. Cells were divided into 5 groups from 1 to 5 in 5% fetal bovine serum-containing RPMI1640 medium (30 μM) containing 30 μM Met and cultured for 3 days. Thereafter, the first group was again added to 5% fetal bovine serum-containing RPMI1640 medium (30 μM) containing 30 μM Met, and the second group was added to 5% fetal bovine serum-containing RPMI1640 medium (150 μM) containing 150 μM Met. Each group was replaced with RPMI1640 medium (150 μM + 1% DMSO) containing 1% DMSO containing 5% fetal bovine serum containing 50 μM Met, and cultured for 24 hours.

さらに第1及び3のグループは、30μM Met含5%牛胎児血清含RPMI1640培地(30μM)に、第2のグループは150μM Met含5%牛胎児血清含RPMI1640培地(150μM)に、第4のグループは、5%牛胎児血清含Met不含RPMI1640培地(>3μM )に、第5のグループは、150μM Met含5%牛胎児血清含1%DMSO含RPMI1640培地(150μM+1%DMSO)に、それぞれ交換し、24時間培養した。ここで1%DMSOは、分化に関する陽性対照として加えた。培養終了後、各々の細胞からRNAを抽出し、リアルタイムPCRにより赤血球関連マーカー遺伝子であるグリコフォリンA及びフェロケラターゼの遺伝子発現量を比較検討した。またこのときのリファレンス遺伝子としては、ベータ・アクチンを用いた。 Furthermore, the first and third groups are in RPMI1640 medium (30 μM) containing 5% fetal bovine serum containing 30 μM Met, the second group is RPMI1640 medium (150 μM) containing 5% fetal bovine serum containing 150 μM Met, and the fourth group. Replaced with 5% fetal bovine serum-containing Met-free RPMI1640 medium (> 3 μM) and the fifth group with 150 μM Met-containing 5% fetal bovine serum-containing 1% DMSO-containing RPMI1640 medium (150 μM + 1% DMSO). And cultured for 24 hours. Here 1% DMSO was added as a positive control for differentiation. After completion of the culture, RNA was extracted from each cell, and the gene expression levels of glycophorin A and ferrochelatase, which are erythrocyte-related marker genes, were compared by real-time PCR. In addition, beta actin was used as a reference gene at this time.

〔結果〕
Met濃度30μMで継続して培養した細胞と比較して、Met濃度150μMで培養した細胞では、赤血球分化関連遺伝子の発現は減少しており、分化より増殖が促進されていると言える。これに対して、Met濃度を3μM未満に低下させると分化関連遺伝子の発現は、Met濃度30μMで継続して培養した場合や150μM Met含有培地から30μM Met含有培地に交換して培養した場合よりも上昇し、1%DMSO存在下で培養した場合とほぼ同じレベルに達した(図14、図15)。これらの結果は、Metの急激な濃度変化により、赤芽球様細胞である707fl.細胞において、細胞増殖から分化に効率よく誘導が行われたことを示した。したがって、Metは赤血球系幹細胞の増殖と分化を効率よく制御できることを示している。
〔result〕
Compared with cells cultured continuously at a Met concentration of 30 μM, cells cultured at a Met concentration of 150 μM have decreased expression of erythroid differentiation-related genes, and it can be said that proliferation is promoted by differentiation. On the other hand, when the Met concentration is reduced to less than 3 μM, the expression of differentiation-related genes is greater than when culturing continuously at a Met concentration of 30 μM or by replacing the medium containing 150 μM Met with a medium containing 30 μM Met. The level increased and reached almost the same level as when cultured in the presence of 1% DMSO (FIGS. 14 and 15). These results indicated that the rapid induction of Met concentration induced efficient differentiation from cell proliferation to differentiation in 707fl. Cells, which are erythroblast-like cells. Therefore, Met has been shown to efficiently control the proliferation and differentiation of erythroid stem cells.

本願発明は、老人性貧血防止剤及び老人性貧血治療剤を提供するものであり、医薬品製造業又は食品製造業で利用可能である。   The present invention provides a preventive agent for senile anemia and a therapeutic agent for senile anemia, and can be used in the pharmaceutical manufacturing industry or the food manufacturing industry.

本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。   All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims (10)

Metを有効成分として含有する赤血球系幹細胞の分化促進剤及び/又は増殖促進剤。   An agent for promoting differentiation and / or proliferation of erythroid stem cells containing Met as an active ingredient. 更に、Glu及びGlyを含む請求項1記載の赤血球系幹細胞の分化促進剤及び/又は増殖促進剤。   Furthermore, the differentiation promoter and / or proliferation promoter of erythroid stem cells according to claim 1, further comprising Glu and Gly. 更に、以下の(1)〜(3)から選択されるアミノ酸混合物を含む請求項1記載の赤血球系幹細胞の分化促進剤及び/又は増殖促進剤。
(1)Ile、Thr、Val、His、Lys、及びLeu
(2)Trp、Thr、His、Phe、及びLys
(3)Ile、Trp、Thr、Val、Phe、及びLeu
Furthermore, the differentiation promoter and / or proliferation promoter of erythroid stem cells according to claim 1, further comprising an amino acid mixture selected from the following (1) to (3).
(1) Ile, Thr, Val, His, Lys, and Leu
(2) Trp, Thr, His, Phe, and Lys
(3) Ile, Trp, Thr, Val, Phe, and Leu
請求項1から3のいずれか1項記載の赤血球系幹細胞の分化促進剤及び/又は増殖促進剤を含有する飲食品。   A food or drink containing the erythroid stem cell differentiation promoter and / or growth promoter according to any one of claims 1 to 3. 請求項1から3のいずれか1項記載の赤血球系幹細胞の分化促進剤及び/又は増殖促進剤を含有する貧血防止剤又は貧血治療剤。   The anemia prevention agent or anemia therapeutic agent containing the differentiation promoter and / or proliferation promoter of the erythroid stem cell according to any one of claims 1 to 3. 請求項1から3のいずれか1項記載の赤血球系幹細胞の分化促進剤及び/又は増殖促進剤を含有する老人性貧血防止剤又は老人性貧血治療剤。   A senile anemia prevention agent or a senile anemia treatment agent comprising the erythroid stem cell differentiation promoting agent and / or proliferation promoting agent according to any one of claims 1 to 3. Metを有効成分として含有する細胞老化防止剤。   A cell aging inhibitor containing Met as an active ingredient. 更に、Glu及びGlyを含む請求項7記載の細胞老化防止剤。   The cell aging inhibitor according to claim 7, further comprising Glu and Gly. 更に、以下の(1)〜(3)から選択されるアミノ酸混合物を含む請求項7記載の細胞老化防止剤。
(1)Ile、Thr、Val、His、Lys、及びLeu
(2)Trp、Thr、His、Phe、及びLys
(3)Ile、Trp、Thr、Val、Phe、及びLeu
Furthermore, the cell aging inhibitor of Claim 7 containing the amino acid mixture selected from the following (1)-(3).
(1) Ile, Thr, Val, His, Lys, and Leu
(2) Trp, Thr, His, Phe, and Lys
(3) Ile, Trp, Thr, Val, Phe, and Leu
請求項7から9のいずれか1項記載の細胞老化防止剤を含有する飲食品。   A food or drink containing the cell antiaging agent according to any one of claims 7 to 9.
JP2009542517A 2007-11-20 2008-11-04 Erythrocyte stem cell differentiation promoter and / or proliferation promoter, and use of methionine for preventing or treating senile anemia and a composition containing methionine Pending JPWO2009066562A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007300814 2007-11-20
JP2007300814 2007-11-20
PCT/JP2008/070042 WO2009066562A1 (en) 2007-11-20 2008-11-04 Differentiation promoter and/or proliferation promoter for erythrocyte stem cells, use of methionine for preventing or treating senile anemia, and compositions containing methionine

Publications (1)

Publication Number Publication Date
JPWO2009066562A1 true JPWO2009066562A1 (en) 2011-04-07

Family

ID=40667387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009542517A Pending JPWO2009066562A1 (en) 2007-11-20 2008-11-04 Erythrocyte stem cell differentiation promoter and / or proliferation promoter, and use of methionine for preventing or treating senile anemia and a composition containing methionine

Country Status (4)

Country Link
JP (1) JPWO2009066562A1 (en)
KR (1) KR20100098400A (en)
CN (1) CN101868230A (en)
WO (1) WO2009066562A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012147901A1 (en) * 2011-04-28 2014-07-28 味の素株式会社 Anticancer drug side effect improving composition
JP6851060B2 (en) * 2016-09-29 2021-03-31 日本メナード化粧品株式会社 Hematopoietic stem cell differentiation promoter
EP4349344A1 (en) * 2021-05-25 2024-04-10 Ajinomoto Co., Inc. Composition for improving or preventing iron deficiency anaemia

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510145A (en) * 1997-07-14 2001-07-31 エヌ・ヴイ・ヌートリシア Nutritional composition containing methionine
JP2003155234A (en) * 2001-11-20 2003-05-27 Fancl Corp Antiaging composition
JP2004519241A (en) * 2001-03-09 2004-07-02 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Composition that improves physiological disorders associated with aging and extends lifespan
JP2005198642A (en) * 2003-12-15 2005-07-28 Yutaka Miyauchi Liquid drinking product using fruit skin of citrus fruit as raw material
WO2007029730A1 (en) * 2005-09-06 2007-03-15 Meiji Dairies Corporation Amino acid composition for prevention or treatment of senile anemia

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510145A (en) * 1997-07-14 2001-07-31 エヌ・ヴイ・ヌートリシア Nutritional composition containing methionine
JP2004519241A (en) * 2001-03-09 2004-07-02 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Composition that improves physiological disorders associated with aging and extends lifespan
JP2003155234A (en) * 2001-11-20 2003-05-27 Fancl Corp Antiaging composition
JP2005198642A (en) * 2003-12-15 2005-07-28 Yutaka Miyauchi Liquid drinking product using fruit skin of citrus fruit as raw material
WO2007029730A1 (en) * 2005-09-06 2007-03-15 Meiji Dairies Corporation Amino acid composition for prevention or treatment of senile anemia

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KARASAWA, M. ET AL, JAP. J. MED., vol. 25, no. 2, JPN6013021104, 1986, pages 155 - 161, ISSN: 0002521453 *
MASSOBRIO, V. ET AL, CHEMICAL ABSTRACTS, vol. 47, JPN6013021106, 1952, pages 3976, ISSN: 0002521454 *

Also Published As

Publication number Publication date
WO2009066562A1 (en) 2009-05-28
KR20100098400A (en) 2010-09-06
CN101868230A (en) 2010-10-20

Similar Documents

Publication Publication Date Title
Dröge et al. Glutathione and immune function
AU2012299126B2 (en) Compositions and methods for use in promoting lean body mass
JP5019875B2 (en) Composition that promotes alcohol metabolism or improves fatigue by gluconeogenesis
US20080038321A1 (en) Prophylactic/therapeutic compositions for liver diseases
K Ross et al. Immunocal® and preservation of glutathione as a novel neuroprotective strategy for degenerative disorders of the nervous system
JP5220415B2 (en) Amino acid composition for preventing or treating senile anemia
US20150246018A1 (en) N-acetyl l-cysteine chelates and methods for making and using the same
JPWO2009066562A1 (en) Erythrocyte stem cell differentiation promoter and / or proliferation promoter, and use of methionine for preventing or treating senile anemia and a composition containing methionine
EP2135604A1 (en) Infusion preparation for cancer patient
US20220288002A1 (en) Composition comprising EPA, MA and leucine for improving muscle function
JP2007153845A (en) Fat accumulation inhibitor
JP2010235544A (en) Immunity activator and food and drink
US20110318333A1 (en) Novel non-toxic composition and method of using such for treating a degenerative or an immune system-related disease
US20010011070A1 (en) Use of threonine for the treatment of phenylketonuria
CN102133215B (en) Application of butylphenyl phthaleine in preparing medicament for treating chronic alcoholism
JP2022186084A (en) Glutathione production enhancer
JP2022186086A (en) Glutathione production enhancer
JP2022017829A (en) Mitochondrial function activator
JP6851060B2 (en) Hematopoietic stem cell differentiation promoter
JP2011256126A (en) Transcription factor nrf2 activator
US20070037886A1 (en) Bone marrow erythroid progenitor cell(s) differentiation inducer
EP2556828A1 (en) Composition for amelioration of hypoalbuminemia
CN116570559A (en) Compound amino acid injection for treating phenylketonuria infant and malnutrition
US7304038B2 (en) Therapeutic composition and method of supporting the immune system
KR20180126273A (en) Composition for increasing immune activity comprising pituitary adenylate cyclase-activating peptide-38

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112