JPWO2009066395A1 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JPWO2009066395A1
JPWO2009066395A1 JP2009542451A JP2009542451A JPWO2009066395A1 JP WO2009066395 A1 JPWO2009066395 A1 JP WO2009066395A1 JP 2009542451 A JP2009542451 A JP 2009542451A JP 2009542451 A JP2009542451 A JP 2009542451A JP WO2009066395 A1 JPWO2009066395 A1 JP WO2009066395A1
Authority
JP
Japan
Prior art keywords
reaction pipe
reaction
pipe
plasma processing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009542451A
Other languages
Japanese (ja)
Other versions
JP5194026B2 (en
Inventor
板谷 良平
良平 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adtec Plasma Tech Co Ltd
Original Assignee
Adtec Plasma Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adtec Plasma Tech Co Ltd filed Critical Adtec Plasma Tech Co Ltd
Publication of JPWO2009066395A1 publication Critical patent/JPWO2009066395A1/en
Application granted granted Critical
Publication of JP5194026B2 publication Critical patent/JP5194026B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)
  • Treating Waste Gases (AREA)

Abstract

上下方向にのびる反応管路4と、反応管路の軸方向に、反応管路の内部空間が介在するように間隔をあけて配置された一対の放電電極5、6と、一対の放電電極に電圧を印加する電源13と、反応管路の上部から水Wを供給し、反応管路の内壁面に沿って流し、反応管路の下端開口2から排出させる給水手段9、18と、被処理ガスGを反応管路内に流入させ、反応管路内を通過させる被処理ガス供給手段8と、反応管路の上部から反応管路内に電解液を供給する電解液供給手段11、11aと、電源および電解液供給手段を制御し、電解液供給手段から電解液を供給して一対の放電電極間に電流路を形成した後、電解液供給手段からの電解液の供給を停止して電流路を遮断することによって放電を誘発させる制御手段14を備える。反応管路内における被処理ガスの流入部の近傍に、隘路部15およびその下側に続く拡張部16が設けられる。A pair of discharge electrodes 5, 6 arranged in the vertical direction, a pair of discharge electrodes 5, 6 arranged in the axial direction of the reaction pipe so as to interpose an internal space of the reaction pipe, and a pair of discharge electrodes A power supply 13 for applying a voltage, water supply means 9 and 18 for supplying water W from the upper part of the reaction pipe, flowing along the inner wall surface of the reaction pipe, and discharging from the lower end opening 2 of the reaction pipe; A gas supply means 8 for flowing gas G into the reaction pipe and passing through the reaction pipe; electrolyte supply means 11 and 11a for supplying an electrolyte into the reaction pipe from the upper part of the reaction pipe; , Controlling the power source and the electrolyte supply means, supplying the electrolyte solution from the electrolyte supply means to form a current path between the pair of discharge electrodes, and then stopping the supply of the electrolyte solution from the electrolyte supply means The control means 14 which induces discharge by interrupting | blocking a path | route is provided. In the vicinity of the inflow portion of the gas to be treated in the reaction pipe line, a narrow passage portion 15 and an extension portion 16 following the lower portion are provided.

Description

本発明は、放電電極間に発生させた放電によるプラズマを用いて被処理ガスを分解処理するプラズマ処理装置に関するものである。   The present invention relates to a plasma processing apparatus for decomposing a gas to be processed using plasma generated by discharge generated between discharge electrodes.

従来技術において、放電電極間に直流放電プラズマを発生させ、それを用いて被処理ガス(処理すべきガス、または処理すべき固体または液体成分を含んだガスをいう。以下同様)を分解し、無害化する等の処理を行うように構成されたプラズマ処理装置が知られている。   In the prior art, a direct current discharge plasma is generated between discharge electrodes, and a gas to be processed (a gas to be processed or a gas containing a solid or liquid component to be processed; hereinafter the same) is decomposed using the plasma. A plasma processing apparatus configured to perform a process such as detoxification is known.

この種の装置として、例えば、本願発明者が提案したものがある(特許文献1参照)。この装置は、下方向にのびる反応管路と、反応管路の軸方向に、反応管路の内部空間が介在するように間隔をあけて配置された一対の放電電極と、一対の放電電極に電圧を印加する電源と、反応管路の上部から水を供給し、反応管路の内壁面に沿って流した後、反応管路の下端開口から排出させる給水手段と、被処理ガスを反応管路内に流入させ、反応管路内を通過させる被処理ガス供給手段と、反応管路の上部から反応管路内に電解液を供給する電解液供給手段と、電源および電解液供給手段を制御し、電解液供給手段から電解液を供給して放電電極間に電流路を形成した後、電解液供給手段からの電解液の供給を停止して電流路を遮断することによって放電を誘発させる制御手段を備えている。   As this type of device, for example, there is one proposed by the present inventor (see Patent Document 1). The apparatus includes a reaction pipe extending downward, a pair of discharge electrodes arranged in an axial direction of the reaction pipe at intervals so that an internal space of the reaction pipe is interposed, and a pair of discharge electrodes. A power source for applying a voltage, water supply means for supplying water from the upper part of the reaction pipe, flowing along the inner wall surface of the reaction pipe, and then discharging from the lower end opening of the reaction pipe; Controls the gas supply means to be treated that flows into the passage and passes through the reaction pipe, the electrolyte supply means for supplying the electrolyte into the reaction pipe from the upper part of the reaction pipe, and the power source and the electrolyte supply means After the electrolytic solution is supplied from the electrolytic solution supply means to form a current path between the discharge electrodes, the supply of the electrolytic solution from the electrolytic solution supply means is stopped and the current path is interrupted to induce discharge. Means.

このプラズマ処理装置によれば、容易に放電を誘発することができ、それによって、反応管路の軸方向にのびるプラズマを生成し、反応管路中の長い距離にわたって管路の断面全体をプラズマ化することにより、被処理ガスを効率良く分解処理することができるという効果が得られる。   According to this plasma processing apparatus, a discharge can be easily induced, thereby generating a plasma extending in the axial direction of the reaction pipe and converting the entire cross section of the pipe into a plasma over a long distance in the reaction pipe. By doing so, it is possible to obtain an effect that the gas to be treated can be efficiently decomposed.

この場合、被処理ガスの分解効率をより高めるためには、被処理ガスをプラズマによって高温にして分解を促進すると同時に、分解によって生じた水溶性の成分を、反応管路の内壁面に形成された流水層中に素早く溶解させることが必要である。   In this case, in order to further improve the decomposition efficiency of the gas to be processed, the gas to be processed is heated to a high temperature by plasma to promote the decomposition, and at the same time, water-soluble components generated by the decomposition are formed on the inner wall surface of the reaction pipe. It is necessary to dissolve quickly in the flowing water layer.

しかし、上記の構成によれば、放電によって形成されるプラズマは、ガス流中に位置するので、その太さが軸方向に変化し、その結果、プラズマが流水層から遠く離れる領域が生じてしまうことがあった。これを考慮して、反応管路の直径を小さくすると、プラズマおよび流水層間の距離は縮まるが、その一方で、被処理ガスを流すための管路抵抗が増大してしまうという問題を生じていた。
また、分解処理時の消費電力を低減する必要もあった。
However, according to the above configuration, since the plasma formed by the discharge is located in the gas flow, its thickness changes in the axial direction, resulting in a region where the plasma is far from the flowing water layer. There was a thing. Considering this, if the diameter of the reaction pipe is reduced, the distance between the plasma and the flowing water layer is reduced, but on the other hand, there is a problem that the pipe resistance for flowing the gas to be processed increases. .
In addition, it is necessary to reduce the power consumption during the decomposition process.

特開2004−209373号公報JP 2004-209373 A

したがって、本発明の課題は、プラズマ処理装置の被処理ガスの分解処理効率を高めるとともに、分解処理時の消費電力を低減することにある。   Accordingly, an object of the present invention is to increase the decomposition efficiency of the gas to be processed of the plasma processing apparatus and reduce the power consumption during the decomposition process.

上記課題を解決するため、本発明は、上下方向にのびる反応管路と、前記反応管路の軸方向に、前記反応管路の内部空間が介在するように間隔をあけて配置された一対の放電電極と、前記一対の放電電極に電圧を印加する電源と、前記反応管路の上部から水を供給し、前記反応管路の内壁面に沿って流し、前記反応管路の下端開口から排出させる給水手段と、被処理ガスを前記反応管路内に流入させ、前記反応管路内を通過させる被処理ガス供給手段と、を備え、前記反応管路内における前記被処理ガスの流入部の近傍または該流入部から下方に所定の距離離れた位置に、隘路部およびその下側に続く拡張部が設けられていることを特徴とするプラズマ処理装置を構成したものである。   In order to solve the above-described problems, the present invention provides a pair of reaction pipes that extend in the vertical direction and a pair of the reaction pipes that are spaced apart from each other in the axial direction of the reaction pipe. A discharge electrode, a power source for applying a voltage to the pair of discharge electrodes, water is supplied from the upper part of the reaction pipe, flows along the inner wall surface of the reaction pipe, and is discharged from the lower end opening of the reaction pipe And a water supply means for causing the gas to be treated to flow into the reaction pipe and passing the gas through the reaction pipe, and an inflow portion of the gas to be treated in the reaction pipe. The plasma processing apparatus is characterized in that a bottleneck part and an extended part following the bottleneck part are provided in the vicinity or at a position away from the inflow part by a predetermined distance.

上記構成において、好ましくは、前記反応管路における前記隘路部および前記拡張部が、前記反応管路の壁と一体に形成されており、あるいは、前記隘路部および前記拡張部が、前記反応管路の壁とは別個の部材として形成され、前記反応管路に取り付けられている。
また好ましくは、前記隘路部および前記拡張部が、前記反応管路における前記処理ガスの流入部から下方に、前記反応管路の全長の1/4〜1/3の長さ離れた位置に設けられている。
In the above configuration, preferably, the bottleneck part and the extension part in the reaction pipe line are formed integrally with a wall of the reaction pipe line, or the bottleneck part and the extension part are the reaction pipe line. The wall is formed as a member separate from the wall and attached to the reaction pipe.
Preferably, the bottleneck part and the extension part are provided at a position separated from the processing gas inflow part in the reaction pipe line by a distance of ¼ to 3 of the total length of the reaction pipe line. It has been.

また好ましくは、前記一対の放電電極は、前記反応管路の上方に配置された高圧電極と、前記反応管路の内壁面における前記拡張部の下方に取り付けられた接地電極とからなり、前記高圧電極は、尖った先端をもつ棒状に形成されるとともに、前記先端が前記反応管路の上端開口の近傍において前記反応管路内に向けられるように配置され、前記接地電極は湾曲した板状に形成されるとともに、前記反応管路の内壁面に沿って配置されており、あるいは、前記一対の放電電極は、前記反応管路の上方に配置された高圧電極と、前記反応管路の下方に配置された接地電極とからなり、前記高圧電極は、尖った先端をもつ棒状に形成されるとともに、前記先端が前記反応管路の上端開口の近傍において前記反応管路内に向けられるように配置され、前記接地電極は平板状に形成されるとともに、その一方の面が前記反応管路の下端開口に近接しかつ対向するように配置されている。   Further preferably, the pair of discharge electrodes includes a high voltage electrode disposed above the reaction conduit and a ground electrode attached below the extension portion on the inner wall surface of the reaction conduit, The electrode is formed in a rod shape having a sharp tip, the tip is arranged so as to be directed into the reaction pipe in the vicinity of the upper end opening of the reaction pipe, and the ground electrode is formed in a curved plate shape. Formed and disposed along the inner wall surface of the reaction conduit, or the pair of discharge electrodes is provided with a high-pressure electrode disposed above the reaction conduit and a lower portion of the reaction conduit. The high-voltage electrode is formed in a rod shape having a pointed tip, and is arranged so that the tip is directed into the reaction pipe in the vicinity of the upper end opening of the reaction pipe. Is The ground electrode is formed in a flat plate shape, one surface is arranged adjacent to and facing the lower end opening of the reaction conduit.

本発明によれば、反応管路の隘路部において、放電電流の密度が上昇すると同時に、プラズマの高温部分と流水層が近接する。その結果、プラズマと水との接触によって発生する水蒸気が、プラズマ中に効率よく取り込まれ、それによって、被処理ガスの分解反応が促進され、分解反応によって生じた水溶性の反応生成物が効率的に流水層中に溶解される。さらに、隘路部の下側に続く拡張部を設けたことにより、管路抵抗の上昇が防止され、圧力損失が低減される。こうして、本発明によれば、反応管路に隘路部およびその下側に続く拡張部を設けたことにより、被処理ガスの分解処理効率が高められ、処理時の消費電力が低減される。   According to the present invention, in the bottleneck portion of the reaction pipe, the density of the discharge current increases, and at the same time, the high temperature portion of the plasma and the flowing water layer are close to each other. As a result, water vapor generated by the contact between the plasma and water is efficiently taken into the plasma, thereby promoting the decomposition reaction of the gas to be treated, and the water-soluble reaction products generated by the decomposition reaction are efficiently produced. Dissolved in the flowing water layer. Furthermore, by providing the extended part below the narrow part, the increase in pipe resistance is prevented and the pressure loss is reduced. Thus, according to the present invention, by providing the reaction pipe with the bottleneck part and the extension part that follows the narrow part, the decomposition efficiency of the gas to be treated is increased, and the power consumption during the treatment is reduced.

本発明の1実施例によるプラズマ処理装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the plasma processing apparatus by one Example of this invention. 本発明の別の実施例によるプラズマ処理装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the plasma processing apparatus by another Example of this invention. 本発明のさらに別の実施例によるプラズマ処理装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the plasma processing apparatus by another Example of this invention. 本発明のさらに別の実施例によるプラズマ処理装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the plasma processing apparatus by another Example of this invention. 本発明のさらに別の実施例によるプラズマ処理装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the plasma processing apparatus by another Example of this invention.

符号の説明Explanation of symbols

1a ハウジング
1b ブロック
2 貫通孔
3 パイプ
4 反応管路
5、6 放電電極
7 被処理ガス供給口
8 被処理ガス供給管
9 給水管
10 冷却水通路
11 電解液供給部
11a ノズル
12 マッチング回路
13 電源
14 制御部
15 隘路部
16 拡張部
17 流水層
18 水溜
19 Oリング
20 水槽
G 被処理ガス
W 水
DESCRIPTION OF SYMBOLS 1a Housing 1b Block 2 Through-hole 3 Pipe 4 Reaction pipe line 5, 6 Discharge electrode 7 Processed gas supply port 8 Processed gas supply pipe 9 Water supply pipe 10 Cooling water path 11 Electrolyte supply part 11a Nozzle 12 Matching circuit 13 Power supply 14 Control part 15 Kushiro part 16 Expansion part 17 Flowing water layer 18 Water reservoir 19 O-ring 20 Water tank G Processed gas W Water

以下、添付図面を参照して本発明の好ましい実施例について説明する。図1は、本発明の1実施例によるプラズマ処理装置の主要部の構成を示す縦断面図である。図1を参照して、本発明によるプラズマ処理装置は、上端開口が閉じられた円筒状のハウジング1aと、ハウジング1aの下端開口にOリング19を介してシールされた状態で嵌め込み固定された円柱状のブロック1bとからなる本体を有している。
ブロック1bには、その中心軸に沿って、ハウジング1aの内部空間と本体外部とを連通する貫通孔2が形成される。そして、この貫通孔2には、パイプ3が嵌め込み固定され、ブロック1bから上方に向かってハウジング1aの内部空間にのびている。そして、パイプ3によって反応管路4が構成される。また、ブロック1bの下端部には、貫通孔12から半径方向にブロック1b内部にのび外部に開口する冷却水通路10が設けられる。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a longitudinal sectional view showing a configuration of a main part of a plasma processing apparatus according to one embodiment of the present invention. Referring to FIG. 1, a plasma processing apparatus according to the present invention includes a cylindrical housing 1a whose upper end opening is closed, and a circle that is fitted and fixed in a sealed state via an O-ring 19 at the lower end opening of the housing 1a. It has a main body composed of a columnar block 1b.
The block 1b is formed with a through hole 2 that communicates the internal space of the housing 1a with the outside of the main body along the central axis. A pipe 3 is fitted and fixed in the through hole 2 and extends upward from the block 1b into the internal space of the housing 1a. The pipe 3 forms a reaction line 4. In addition, a cooling water passage 10 is provided at the lower end of the block 1b. The cooling water passage 10 extends in the radial direction from the through hole 12 and opens to the outside.

反応管路4には、上端開口から一定の長さにわたって隘路部15とその下側に続く拡張部16が設けられる。隘路部15は全長にわたって内径が一定となるように形成され、拡張部16は、隘路部15との接続位置から下方に向かって一定の割合で内径が大きくなるように形成される。
また、隘路部15および拡張部16は、反応管路4の壁と一体に形成される。
The reaction pipe line 4 is provided with a narrow channel part 15 and an extended part 16 continuing below the narrow channel part 15 over a certain length from the upper end opening. The narrow part 15 is formed so that the inner diameter is constant over the entire length, and the expansion part 16 is formed so that the inner diameter increases at a constant rate downward from the connection position with the narrow part 15.
Further, the bottleneck portion 15 and the extension portion 16 are formed integrally with the wall of the reaction pipe line 4.

本発明によるプラズマ処理装置は、また、一対の放電電極5、6を備えている。一対の放電電極5、6は、反応管路4の上方に配置された高圧電極6と、反応管路4の内壁面における拡張部16の下方に取り付けられた接地電極5とからなる。   The plasma processing apparatus according to the present invention also includes a pair of discharge electrodes 5 and 6. The pair of discharge electrodes 5, 6 includes a high voltage electrode 6 disposed above the reaction pipe 4 and a ground electrode 5 attached below the extension 16 on the inner wall surface of the reaction pipe 4.

高圧電極6は、尖った先端をもつ棒状に形成され、この場合、先端部が耐アーク性の材料から形成される。耐アーク性の材料としては、例えば白金が挙げられる。また、高圧電極6の先端部を除く残りの棒状部分は、金属パイプや金属棒、またカーボン棒、Ti−Pd合金棒等の、放電電極としての機能を発揮しうる任意の材料から形成される。
高圧電極6は、ハウジング1aの上壁の中央に取り付けられ、該上壁から下向きに反応管路4の中心軸に沿ってハウジング1aの内部空間にのび、先端が反応管路4の上端開口に対向するように配置される。この場合、高圧電極6の配置はこれに限定されず、高圧電極6の先端が反応管路4の上端開口の近傍において反応管路4内に向けられるような任意の配置をとることができ、例えば、高圧電極6の先端が反応管路4内に挿入されるような配置でもよい。
The high-voltage electrode 6 is formed in the shape of a rod having a sharp tip, and in this case, the tip is formed from an arc-resistant material. Examples of the arc resistant material include platinum. Further, the remaining rod-like portion excluding the tip of the high-voltage electrode 6 is formed of any material that can function as a discharge electrode, such as a metal pipe, a metal rod, a carbon rod, or a Ti—Pd alloy rod. .
The high-voltage electrode 6 is attached to the center of the upper wall of the housing 1 a, extends downward from the upper wall along the central axis of the reaction pipe 4, extends into the internal space of the housing 1 a, and has a tip at the upper end opening of the reaction pipe 4. It arrange | positions so that it may oppose. In this case, the arrangement of the high voltage electrode 6 is not limited to this, and can be any arrangement in which the tip of the high voltage electrode 6 is directed into the reaction pipe line 4 in the vicinity of the upper end opening of the reaction pipe line 4, For example, an arrangement in which the tip of the high voltage electrode 6 is inserted into the reaction pipe 4 may be used.

接地電極5は、湾曲した板状に形成されるとともに、反応管路4の内壁面に沿って配置され、接地される。接地電極5は、例えば、真鍮や銅等の導電性の高い金属から形成されるのが好ましいが、プラズマを発生させるという機能を発揮し得る限り、これらの材料に限定されるものではない。   The ground electrode 5 is formed in a curved plate shape, and is disposed along the inner wall surface of the reaction pipe 4 and is grounded. The ground electrode 5 is preferably formed of a highly conductive metal such as brass or copper, but is not limited to these materials as long as the function of generating plasma can be exhibited.

高圧電極6には、電源13がマッチング回路12を介して接続されている。電源13は交流高周波電源からなっている。なお、電源13が直流高圧電源からなっている場合には、マッチング回路12は不要である。   A power source 13 is connected to the high voltage electrode 6 via a matching circuit 12. The power source 13 is an AC high frequency power source. If the power supply 13 is a DC high-voltage power supply, the matching circuit 12 is not necessary.

ハウジング1aの下部周壁には、給水口が設けられ、この給水口には給水管9がシールされた状態で接合される。そして、給水管9からハウジング1aの内側空間内に水Wが供給される。ハウジング1a内に供給された水Wは、ハウジング1aの内壁面と、反応管路4の外壁面との間の空間内に貯えられ、反応管路4の外側を取り囲む水溜18を形成する。そして、この水溜18の容量を超えて供給された水は、反応管路4(この実施例では隘路部15)の上端開口の縁からオーバーフローし、反応管路4の内壁面に沿って流れ、ブロック1bの下端開口から外部に排出される。   A water supply port is provided in the lower peripheral wall of the housing 1a, and the water supply tube 9 is joined to the water supply port in a sealed state. Then, water W is supplied from the water supply pipe 9 into the inner space of the housing 1a. The water W supplied into the housing 1 a is stored in a space between the inner wall surface of the housing 1 a and the outer wall surface of the reaction pipe 4, and forms a water reservoir 18 that surrounds the outside of the reaction pipe 4. Then, the water supplied beyond the capacity of the water reservoir 18 overflows from the edge of the upper end opening of the reaction pipe 4 (in this embodiment, the bottleneck portion 15), flows along the inner wall surface of the reaction pipe 4, It is discharged to the outside from the lower end opening of the block 1b.

ハウジング1aの上部周壁には開口が形成されるとともに、この開口に短管がシールされた状態で接合され、被処理ガス供給口7が設けられる。被処理ガス供給口7には、被処理ガスGをハウジング1a内に供給する被処理ガス供給管8が接続される。被処理ガス供給管8から供給された被処理ガスGは、ハウジング1a内の水溜18の上方の空間に充満した後、反応管路4(この実施例では隘路部15)の上端開口から反応管路4内に流入し、反応管路4を通過する。   An opening is formed in the upper peripheral wall of the housing 1 a, and a short gas pipe is sealed and joined to the opening to provide a gas supply port 7 to be processed. A gas supply pipe 8 for supplying gas to be processed G into the housing 1a is connected to the gas supply port 7 to be processed. The gas to be processed G supplied from the gas supply pipe 8 to be processed fills the space above the water reservoir 18 in the housing 1a, and then the reaction pipe is opened from the upper end opening of the reaction pipe 4 (in this embodiment, the narrow section 15). It flows into the channel 4 and passes through the reaction tube 4.

ハウジング1aの上壁には、電解液を供給するノズル11aがシールされた状態で取り付けられる。ノズル11aは、ハウジング1aの上壁からハウジング1a内にのび、先端が、放電電極の高圧電極6の先端、並びに反応管路4(隘路部15)の上端開口に向けられるように配置される。ノズル11aのハウジング1aから外部に突出する後端には、電解液供給部11が接続される。そして、電解液供給部11からノズル11aを介して、電解液が反応管路4内に供給される。電解液としては、例えば、NaCl、NaOH、HSOまたはHNOが使用され得る。A nozzle 11a for supplying an electrolytic solution is attached to the upper wall of the housing 1a in a sealed state. The nozzle 11a extends from the upper wall of the housing 1a into the housing 1a, and is arranged so that the tip is directed to the tip of the high-voltage electrode 6 of the discharge electrode and the upper end opening of the reaction conduit 4 (the bottleneck portion 15). The electrolyte solution supply unit 11 is connected to the rear end of the nozzle 11a that protrudes from the housing 1a. Then, the electrolytic solution is supplied from the electrolytic solution supply unit 11 into the reaction pipe line 4 through the nozzle 11a. As the electrolyte, for example, NaCl, NaOH, H 2 SO 4 or HNO 3 can be used.

また、電源13および電解液供給部22を制御する制御部14が備えられる。   Moreover, the control part 14 which controls the power supply 13 and the electrolyte solution supply part 22 is provided.

次に、本発明によるプラズマ処理装置の動作について説明する。
制御部14からの制御信号により、電解液が電解液供給部11からノズル11aに供給され、ノズル11aから電解液が吐出される。ノズル21から吐出された電解液は、反応管路4内に直接に、または高圧電極6をつたって反応管路4内に供給され、反応管路4の内壁面に沿って流れて接地電極5を通過する。
Next, the operation of the plasma processing apparatus according to the present invention will be described.
In accordance with a control signal from the control unit 14, the electrolytic solution is supplied from the electrolytic solution supply unit 11 to the nozzle 11a, and the electrolytic solution is discharged from the nozzle 11a. The electrolyte discharged from the nozzle 21 is supplied into the reaction pipe 4 directly into the reaction pipe 4 or via the high voltage electrode 6, flows along the inner wall surface of the reaction pipe 4, and flows into the ground electrode 5. Pass through.

電解液の反応管路4内への供給開始後、所定時間が経過したとき、制御部14からの制御信号により、高圧電極6に対し電源13から高圧電圧が印加される。このとき、反応管路4の内壁面を流れる電解液によって、高圧電極6と接地電極5との間に電流を流す経路(電流路)が形成されているので、高圧電極6と接地電極5の間に電流が流れ始める。その後、制御部14からの制御信号によって電解液供給部11からの電解液の供給が停止され、よって、反応管路4内への電解液の供給が停止される。その結果、反応管路4内に形成されていた電流路が遮断され、反応管路4内に放電が誘発され、それによって反応管路4内にプラズマが形成される。この場合、反応管路4の隘路部15において、放電電流の密度が上昇する。   A high voltage is applied from the power source 13 to the high voltage electrode 6 by a control signal from the control unit 14 when a predetermined time has elapsed after the supply of the electrolyte into the reaction pipe 4 is started. At this time, a path (current path) through which a current flows between the high-voltage electrode 6 and the ground electrode 5 is formed by the electrolyte flowing on the inner wall surface of the reaction pipe 4. Current begins to flow in between. Thereafter, the supply of the electrolytic solution from the electrolytic solution supply unit 11 is stopped by the control signal from the control unit 14, and thus the supply of the electrolytic solution into the reaction pipe 4 is stopped. As a result, the current path formed in the reaction conduit 4 is interrupted, and a discharge is induced in the reaction conduit 4, thereby forming a plasma in the reaction conduit 4. In this case, the density of the discharge current increases in the bottleneck portion 15 of the reaction tube 4.

給水管9から水溜18に供給される水Wは、反応管路4(隘路部15)の上端開口の縁からオーバーフローして、反応管路4内に流入し、反応管路4の内壁面に沿って、隘路部15および拡張部16を通過した後、反応管路4の下端開口から外部に排出される。こうして、隘路部15および拡張部16を含む反応管路4の内壁面の全体にわたって、切れ目のない流水層17が形成される。
被処理ガスGは、被処理ガス供給管8から被処理ガス供給口7を経て、ハウジング1a内に供給される。ハウジング1a内に供給された被処理ガスGは、反応管路4内に流入し、反応管路4内を通過するときにプラズマと接触して高温に加熱され、各ガス構成成分に分解される。
The water W supplied from the water supply pipe 9 to the water reservoir 18 overflows from the edge of the upper end opening of the reaction pipe 4 (bottle 15), flows into the reaction pipe 4, and enters the inner wall surface of the reaction pipe 4. Then, after passing through the narrow channel portion 15 and the extended portion 16, the reaction tube 4 is discharged from the lower end opening to the outside. In this way, a continuous flowing water layer 17 is formed over the entire inner wall surface of the reaction pipe line 4 including the narrow channel portion 15 and the expanded portion 16.
The gas G to be processed is supplied into the housing 1a from the gas supply pipe 8 to be processed through the gas supply port 7 to be processed. The gas to be processed G supplied into the housing 1a flows into the reaction pipe 4 and is heated to a high temperature in contact with the plasma when passing through the reaction pipe 4, and is decomposed into gas components. .

この場合、反応管路4の隘路部15において、プラズマの高温部分と流水層17とが近接する。その結果、プラズマと水Wの接触によって発生する水蒸気が、プラズマ中に効率よく取り込まれ、被処理ガスGの分解反応が促進され、分解反応によって生じた水溶性の反応生成物が効率的に流水中に溶解される。さらに、隘路部15の下側に拡張部16が設けられているので、管路抵抗の上昇することが防止され、圧力損失が低減される。また、反応管路4の内壁面は常に流水層17によって覆われているので、反応管路4の内壁面の侵食が防止される。
こうして、本発明によれば、隘路部15およびその下側に続く拡張部16を設けたことによって、被処理ガスG中の有害物質の分解処理効率が高められ、さらには、処理時の消費電力が低減される。そして、化学的に安定なCFを含むPFCなどのフッ素化合物であっても、効果的に分解することができる。また、処理対象が固体や液体であっても、それらを媒体となる適当なガス中に混合し、被処理ガス供給口7からハウジング1a内に供給して反応管路4内に流入させることによって、分解処理することができる。
In this case, the high temperature portion of the plasma and the flowing water layer 17 are close to each other in the narrow portion 15 of the reaction pipe line 4. As a result, water vapor generated by the contact between the plasma and the water W is efficiently taken into the plasma, the decomposition reaction of the gas G to be treated is promoted, and the water-soluble reaction product generated by the decomposition reaction is efficiently discharged. Dissolved in. Furthermore, since the expansion part 16 is provided on the lower side of the bottleneck part 15, an increase in pipe resistance is prevented, and pressure loss is reduced. Moreover, since the inner wall surface of the reaction pipe line 4 is always covered with the flowing water layer 17, erosion of the inner wall surface of the reaction pipe line 4 is prevented.
Thus, according to the present invention, by providing the narrow passage 15 and the extended portion 16 that is provided below, the decomposition efficiency of the harmful substances in the gas G to be treated is increased, and further, the power consumption during the treatment is increased. Is reduced. Even a fluorine compound such as PFC containing chemically stable CF 4 can be effectively decomposed. Further, even if the object to be processed is solid or liquid, they are mixed in an appropriate gas as a medium, supplied into the housing 1a from the gas supply port 7 to be processed, and flowed into the reaction pipe 4 Can be decomposed.

分解によって生じた水溶性の反応生成物は、反応管路4内に形成された流水層17中に溶け、流水とともに反応管路4から外部に排出される。この場合、冷却水通路10からブロック1bの貫通孔2内に水Wを供給することにより、反応管路4から排出される水溶性の反応生成物をさらに効率的に水Wに溶かして除去することができ、しかも、装置の排気側が熱によって損傷することを防止できる。   The water-soluble reaction product generated by the decomposition is dissolved in the flowing water layer 17 formed in the reaction pipe 4 and discharged from the reaction pipe 4 together with the flowing water. In this case, by supplying water W from the cooling water passage 10 into the through-hole 2 of the block 1b, the water-soluble reaction product discharged from the reaction pipe 4 is more efficiently dissolved and removed in the water W. In addition, the exhaust side of the apparatus can be prevented from being damaged by heat.

上述の実施例では、隘路部15および拡張部16を反応管路4の壁と一体に形成したが、図2に示すように、隘路部15’および拡張部16’を、反応管路4の壁とは別個の部材として形成し、反応管路4に取り付けるようにしてもよい。この場合、隘路部15’および拡張部16’は、必ずしも反応管路4の壁と同じ材質であることは必要なく、流水に曝されることを考慮して、適当な耐熱性、耐久性を有してさえいれば良い。   In the above-described embodiment, the narrow passage portion 15 and the expansion portion 16 are formed integrally with the wall of the reaction pipe line 4. However, as shown in FIG. 2, the narrow passage portion 15 ′ and the expansion portion 16 ′ are connected to the reaction pipe line 4. It may be formed as a member separate from the wall and attached to the reaction pipe 4. In this case, the narrow channel portion 15 ′ and the expanded portion 16 ′ are not necessarily made of the same material as the wall of the reaction pipe line 4, and have appropriate heat resistance and durability in consideration of exposure to running water. You only have to have it.

図3は、本発明の別の実施例によるプラズマ処理装置の概略構成を示す縦断面図である。図3の実施例は、図1の実施例と、反応管路内の隘路部および拡張部の構成が異なるだけである。したがって、図3において、図1に示されたものと同じ構成要素については同一番号を付して詳細な説明を省略する。
図3を参照して、この実施例では、隘路部15”および拡張部16”が、反応管路4における処理ガスGの流入部(反応管路4の上端開口)から下方に、反応管路4の全長の1/4〜1/3の長さ離れた位置に設けられる。この実施例では、隘路部15”は、反応管路4との接続位置から下側に向かって一定の割合で内径が小さくなる第1の部分と、第1の部分の下側に接続する内径が一定の第2の部分とから形成され、拡張部16”は、隘路部15”との接続位置から下方に向かって一定の割合で内径が大きくなるように形成される。この構成によれば、生成されるプラズマの温度が最も高温になる位置において、プラズマと流水層17とが近接するので、被処理ガスの分解がより促進されると同時に、流水層17からの蒸発もより促進され、それによって、被処理ガスの分解処理がより効率的になされ、処理時の消費電力もより低減される。
FIG. 3 is a longitudinal sectional view showing a schematic configuration of a plasma processing apparatus according to another embodiment of the present invention. The embodiment of FIG. 3 differs from the embodiment of FIG. 1 only in the configuration of the bottleneck portion and the extension portion in the reaction pipe. Therefore, in FIG. 3, the same components as those shown in FIG.
Referring to FIG. 3, in this embodiment, the bottleneck portion 15 ″ and the expansion portion 16 ″ are provided below the reaction pipe line from the inflow part (upper end opening of the reaction pipe line 4) of the processing gas G in the reaction pipe line 4. 4 is provided at a position that is 1/4 to 1/3 of the total length of 4. In this embodiment, the narrow channel portion 15 ″ has a first portion whose inner diameter decreases at a constant rate from the connection position with the reaction pipe line 4 toward the lower side, and an inner diameter connected to the lower side of the first portion. Is formed from a constant second portion, and the expanded portion 16 ″ is formed so that the inner diameter increases at a constant rate downward from the connecting position with the narrow portion 15 ″. Since the plasma and the flowing water layer 17 are close to each other at a position where the temperature of the generated plasma is the highest, decomposition of the gas to be treated is further promoted, and at the same time, evaporation from the flowing water layer 17 is further promoted, As a result, the gas to be processed is decomposed more efficiently, and the power consumption during processing is further reduced.

図4は、本発明のさらに別の実施例によるプラズマ処理装置の概略構成を示す縦断面図である。図4の実施例は、実質上、図1の実施例と、放電電極の接地電極の構成が異なるだけである。したがって、図4において、図1に示されたものと同じ構成要素については同一番号を付して詳細な説明を省略する。
図4を参照して、この実施例では、反応管路4が、ブロック1bの貫通孔2を通ってブロック1bからさらに下方にのび、反応管路4の下端部が、水槽20内に貯えられた水の中に導入される。そして、放電電極の接地電極5’が水槽20の水中であって、反応管路4の下端開口の近傍に配置される。接地電極5’は、平板状に形成され、一方の面が反応管路4の下端開口に対向している。
この構成によれば、被処理ガスGは、反応管路4の下端開口から水中に排出されるので、水中を気泡となって放出される。この場合、プラズマを形成する放電電流は水槽20の水中の接地電極5’まで流れる。このような電極の配置においても、反応管路4に隘路部15および拡張部16を設けたことによって、被処理ガスの分解処理の効率を上げ、処理時の消費電力を低減させることができることは上記実施例の場合と同様である。
FIG. 4 is a longitudinal sectional view showing a schematic configuration of a plasma processing apparatus according to still another embodiment of the present invention. The embodiment of FIG. 4 is substantially different from the embodiment of FIG. 1 only in the configuration of the ground electrode of the discharge electrode. Therefore, in FIG. 4, the same components as those shown in FIG.
With reference to FIG. 4, in this embodiment, the reaction pipe 4 extends further downward from the block 1 b through the through hole 2 of the block 1 b, and the lower end portion of the reaction pipe 4 is stored in the water tank 20. Introduced into the water. The ground electrode 5 ′ of the discharge electrode is disposed in the water of the water tank 20 and in the vicinity of the lower end opening of the reaction pipe 4. The ground electrode 5 ′ is formed in a flat plate shape, and one surface faces the lower end opening of the reaction pipe line 4.
According to this configuration, the gas to be treated G is discharged into the water from the lower end opening of the reaction pipe 4, and is thus discharged as bubbles in the water. In this case, the discharge current that forms plasma flows to the ground electrode 5 ′ in the water tank 20. Even in such an electrode arrangement, it is possible to increase the efficiency of the decomposition treatment of the gas to be processed and reduce the power consumption during the treatment by providing the narrow channel portion 15 and the expansion portion 16 in the reaction pipe 4. This is the same as in the above embodiment.

図5は、本発明のさらに別の実施例によるプラズマ処理装置の概略構成を示す縦断面図である。図5の実施例は、図1の実施例と、放電電極の接地電極の構成が異なるだけである。したがって、図5において、図1に示されたものと同じ構成要素については同一番号を付して詳細な説明を省略する。
図5を参照して、この実施例では、放電電極の接地電極5”が細長い棒状に形成され、反応管路4の下端開口側から反応管路4の中心軸に沿って挿入され、適当な支持手段を用いて、所定位置に固定されている。このような放電電極の配置においても、反応管路4に隘路部15および拡張部16を設けたことによって、上記実施例の場合と同様に、被処理ガスの分解処理の効率を上げ、処理時の消費電力の低減を図ることができる。
FIG. 5 is a longitudinal sectional view showing a schematic configuration of a plasma processing apparatus according to still another embodiment of the present invention. The embodiment of FIG. 5 differs from the embodiment of FIG. 1 only in the configuration of the ground electrode of the discharge electrode. Therefore, in FIG. 5, the same components as those shown in FIG.
Referring to FIG. 5, in this embodiment, the ground electrode 5 ″ of the discharge electrode is formed in an elongated rod shape, inserted from the lower end opening side of the reaction tube 4 along the central axis of the reaction tube 4, and an appropriate In this arrangement of the discharge electrode, by providing the narrow channel portion 15 and the expansion portion 16 in the reaction pipe 4 as in the case of the above embodiment, the support electrode is used. Thus, the efficiency of the decomposition of the gas to be processed can be increased, and the power consumption during the processing can be reduced.

具体例として、被処理ガスとしてCFを分解するプラズマ処理装置を構成した。この装置の各部の寸法は次のとおりである。反応管路4の内径を12mm〜30mm、長さを150mm〜400mmとした。隘路部15の内径を8mm〜16mmとした。また、放電電極5、6間の距離を、200mm以上、好ましくは250mm以上とした。
このプラズマ処理装置を作動させることにより、CFの分解を効率的に行うことができた。
As a specific example, a plasma processing apparatus for decomposing CF 4 as a gas to be processed was configured. The dimensions of each part of this device are as follows. The inner diameter of the reaction line 4 was 12 mm to 30 mm, and the length was 150 mm to 400 mm. The inner diameter of the narrow portion 15 was 8 mm to 16 mm. Further, the distance between the discharge electrodes 5 and 6 was set to 200 mm or more, preferably 250 mm or more.
By operating this plasma processing apparatus, CF 4 could be decomposed efficiently.

Claims (6)

上下方向にのびる反応管路と、
前記反応管路の軸方向に、前記反応管路の内部空間が介在するように間隔をあけて配置された一対の放電電極と、
前記一対の放電電極に電圧を印加する電源と、
前記反応管路の上部から水を供給し、前記反応管路の内壁面に沿って流し、前記反応管路の下端開口から排出させる給水手段と、
被処理ガスを前記反応管路内に流入させ、前記反応管路内を通過させる被処理ガス供給手段と、
前記反応管路内における前記被処理ガスの流入部の近傍または前記流入部から下方に所定の距離離れた位置に、隘路部およびその下側に続く拡張部が設けられていることを特徴とするプラズマ処理装置。
A reaction line extending vertically,
A pair of discharge electrodes arranged at an interval so that an internal space of the reaction conduit is interposed in the axial direction of the reaction conduit;
A power source for applying a voltage to the pair of discharge electrodes;
Water supply means for supplying water from an upper part of the reaction pipe, flowing along an inner wall surface of the reaction pipe, and discharging from a lower end opening of the reaction pipe;
A gas supply means for allowing gas to be processed to flow into the reaction pipe and passing through the reaction pipe;
A narrow passage portion and an extension portion that extends below the narrow passage portion are provided in the vicinity of the inflow portion of the gas to be treated in the reaction pipe line or at a position spaced apart from the inflow portion by a predetermined distance. Plasma processing equipment.
前記反応管路における前記隘路部および前記拡張部が、前記反応管路の壁と一体に形成されていることを特徴とする請求項1に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the bottleneck part and the extension part in the reaction pipe are formed integrally with a wall of the reaction pipe. 前記反応管路における前記隘路部および前記拡張部が、前記反応管路の壁とは別個の部材として形成され、前記反応管路に取り付けられていることを特徴とする請求項1に記載のプラズマ処理装置。   2. The plasma according to claim 1, wherein the bottleneck part and the extension part in the reaction pipe are formed as members separate from the walls of the reaction pipe and are attached to the reaction pipe. Processing equipment. 前記隘路部および前記拡張部が、前記反応管路における前記処理ガスの流入部から下方に、前記反応管路の全長の1/4〜1/3の長さ離れた位置に設けられていることを特徴とする請求項1〜請求項3のいずれかに記載のプラズマ処理装置。   The said bottleneck part and the said expansion part are provided in the position away from 1/4 to 1/3 of the full length of the said reaction pipe line below the inflow part of the said process gas in the said reaction pipe line. The plasma processing apparatus according to claim 1, wherein: 前記一対の放電電極は、前記反応管路の上方に配置された高圧電極と、前記反応管路の内壁面における前記拡張部の下方に取り付けられた接地電極とからなり、前記高圧電極は、尖った先端をもつ棒状に形成されるとともに、前記先端が前記反応管路の上端開口の近傍において前記反応管路内に向けられるように配置され、前記接地電極は湾曲した板状に形成されるとともに、前記反応管路の内壁面に沿って配置されていることを特徴とする請求項1〜請求項4のいずれかに記載のプラズマ処理装置。   The pair of discharge electrodes includes a high voltage electrode disposed above the reaction conduit and a ground electrode attached below the extension on the inner wall surface of the reaction conduit. The tip is disposed so that the tip is directed into the reaction pipe in the vicinity of the upper end opening of the reaction pipe, and the ground electrode is formed in a curved plate shape. The plasma processing apparatus according to claim 1, wherein the plasma processing apparatus is disposed along an inner wall surface of the reaction pipe. 前記一対の放電電極は、前記反応管路の上方に配置された高圧電極と、前記反応管路の下方に配置された接地電極とからなり、前記高圧電極は、尖った先端をもつ棒状に形成されるとともに、前記先端が前記反応管路の上端開口の近傍において前記反応管路内に向けられるように配置され、前記接地電極は平板状に形成されるとともに、その一方の面が前記反応管路の下端開口に近接しかつ対向するように配置されていることを特徴とする請求項1〜請求項4のいずれかに記載のプラズマ処理装置。   The pair of discharge electrodes includes a high voltage electrode disposed above the reaction conduit and a ground electrode disposed below the reaction conduit, and the high pressure electrode is formed in a rod shape having a sharp tip. In addition, the tip is arranged so as to be directed into the reaction pipe in the vicinity of the upper end opening of the reaction pipe, the ground electrode is formed in a flat plate shape, and one surface thereof is the reaction pipe. The plasma processing apparatus according to claim 1, wherein the plasma processing apparatus is disposed so as to be close to and face a lower end opening of the path.
JP2009542451A 2007-11-22 2007-11-22 Plasma processing equipment Expired - Fee Related JP5194026B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/072664 WO2009066395A1 (en) 2007-11-22 2007-11-22 Plasma processing system

Publications (2)

Publication Number Publication Date
JPWO2009066395A1 true JPWO2009066395A1 (en) 2011-03-31
JP5194026B2 JP5194026B2 (en) 2013-05-08

Family

ID=40667232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009542451A Expired - Fee Related JP5194026B2 (en) 2007-11-22 2007-11-22 Plasma processing equipment

Country Status (2)

Country Link
JP (1) JP5194026B2 (en)
WO (1) WO2009066395A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016677A (en) * 2010-07-09 2012-01-26 Edwards Kk Removal device and removal system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493750A (en) * 2011-08-17 2013-02-20 Edwards Ltd Apparatus for treating a gas stream
JP5844124B2 (en) * 2011-11-22 2016-01-13 クリーン・テクノロジー株式会社 Starting method of exhaust gas treatment equipment
KR102362761B1 (en) * 2017-11-22 2022-02-15 씨에스케이(주) Gas treating apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346565A (en) * 1999-06-10 2000-12-15 Yoshikazu Kumihigashi Fast cooling tower
JP3069700B1 (en) * 1999-07-22 2000-07-24 静岡大学長 Discharge vessel and plasma radical generator provided with the discharge vessel
US7378062B2 (en) * 2000-05-29 2008-05-27 Three Tec Co., Ltd. Object processing apparatus and plasma facility comprising the same
JP4107959B2 (en) * 2002-12-27 2008-06-25 株式会社アドテック プラズマ テクノロジー Discharge starting method, processing object processing method using the starting method, and processing object processing apparatus using the starting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016677A (en) * 2010-07-09 2012-01-26 Edwards Kk Removal device and removal system

Also Published As

Publication number Publication date
JP5194026B2 (en) 2013-05-08
WO2009066395A1 (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP4796733B2 (en) Gas decomposition apparatus and plasma equipment using the same
CN107922223B (en) Reformate producing device and reformate producing method
JP5884074B2 (en) Liquid processing apparatus and liquid processing method
WO2015111465A1 (en) Water treatment apparatus and water treatment method
US9593030B2 (en) Liquid treatment apparatus and liquid treatment method
JP5194026B2 (en) Plasma processing equipment
KR101984437B1 (en) Water treating apparatus using plasma
JP6562205B2 (en) Nitrous acid generator
US10562796B2 (en) Liquid treatment apparatus including first electrode, second electrode, and third electrode, and liquid treatment method using liquid treatment apparatus
US10343132B2 (en) Plasma emitting method and plasma emitting device
JP2013049015A (en) Water treatment apparatus
KR20220130683A (en) plasma generator
US9328002B2 (en) Discharge unit
JP4107959B2 (en) Discharge starting method, processing object processing method using the starting method, and processing object processing apparatus using the starting method
US20110000432A1 (en) One atmospheric pressure non-thermal plasma reactor with dual discharging-electrode structure
JP2005205330A (en) Plasma decomposition method of perfluoro compound exhaust gas, plasma decomposition apparatus using the method, and exhaust gas treating system mounted with the apparatus
JP2013081916A (en) Water treatment apparatus
JP2006224066A (en) Control method of plazma harmful material removing machine and device using it
UA81374C2 (en) Device for treating liquid by plasma-chemical method
JP2013031802A (en) Water treatment device
CN110526342B (en) Coupled sewage purification system
RU201546U1 (en) Device for plasma-chemical treatment of liquids
JP6787382B2 (en) Water treatment equipment
KR102522689B1 (en) Underwater Plasma Generating Apparatus
RU2241868C1 (en) Device to reduce hydraulic losses in pipeline

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

R150 Certificate of patent or registration of utility model

Ref document number: 5194026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees